1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/Bitcode/BitcodeCommon.h" 30 #include "llvm/Bitcode/BitcodeReader.h" 31 #include "llvm/Bitcode/LLVMBitCodes.h" 32 #include "llvm/Bitstream/BitCodes.h" 33 #include "llvm/Bitstream/BitstreamWriter.h" 34 #include "llvm/Config/llvm-config.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Comdat.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/UseListOrder.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/MC/StringTableBuilder.h" 63 #include "llvm/MC/TargetRegistry.h" 64 #include "llvm/Object/IRSymtab.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Endian.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/SHA1.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <memory> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 101 namespace { 102 103 /// These are manifest constants used by the bitcode writer. They do not need to 104 /// be kept in sync with the reader, but need to be consistent within this file. 105 enum { 106 // VALUE_SYMTAB_BLOCK abbrev id's. 107 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 VST_ENTRY_7_ABBREV, 109 VST_ENTRY_6_ABBREV, 110 VST_BBENTRY_6_ABBREV, 111 112 // CONSTANTS_BLOCK abbrev id's. 113 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 CONSTANTS_INTEGER_ABBREV, 115 CONSTANTS_CE_CAST_Abbrev, 116 CONSTANTS_NULL_Abbrev, 117 118 // FUNCTION_BLOCK abbrev id's. 119 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 120 FUNCTION_INST_UNOP_ABBREV, 121 FUNCTION_INST_UNOP_FLAGS_ABBREV, 122 FUNCTION_INST_BINOP_ABBREV, 123 FUNCTION_INST_BINOP_FLAGS_ABBREV, 124 FUNCTION_INST_CAST_ABBREV, 125 FUNCTION_INST_RET_VOID_ABBREV, 126 FUNCTION_INST_RET_VAL_ABBREV, 127 FUNCTION_INST_UNREACHABLE_ABBREV, 128 FUNCTION_INST_GEP_ABBREV, 129 }; 130 131 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 132 /// file type. 133 class BitcodeWriterBase { 134 protected: 135 /// The stream created and owned by the client. 136 BitstreamWriter &Stream; 137 138 StringTableBuilder &StrtabBuilder; 139 140 public: 141 /// Constructs a BitcodeWriterBase object that writes to the provided 142 /// \p Stream. 143 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 144 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 145 146 protected: 147 void writeModuleVersion(); 148 }; 149 150 void BitcodeWriterBase::writeModuleVersion() { 151 // VERSION: [version#] 152 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 153 } 154 155 /// Base class to manage the module bitcode writing, currently subclassed for 156 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 157 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 158 protected: 159 /// The Module to write to bitcode. 160 const Module &M; 161 162 /// Enumerates ids for all values in the module. 163 ValueEnumerator VE; 164 165 /// Optional per-module index to write for ThinLTO. 166 const ModuleSummaryIndex *Index; 167 168 /// Map that holds the correspondence between GUIDs in the summary index, 169 /// that came from indirect call profiles, and a value id generated by this 170 /// class to use in the VST and summary block records. 171 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 172 173 /// Tracks the last value id recorded in the GUIDToValueMap. 174 unsigned GlobalValueId; 175 176 /// Saves the offset of the VSTOffset record that must eventually be 177 /// backpatched with the offset of the actual VST. 178 uint64_t VSTOffsetPlaceholder = 0; 179 180 public: 181 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 182 /// writing to the provided \p Buffer. 183 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 184 BitstreamWriter &Stream, 185 bool ShouldPreserveUseListOrder, 186 const ModuleSummaryIndex *Index) 187 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 188 VE(M, ShouldPreserveUseListOrder), Index(Index) { 189 // Assign ValueIds to any callee values in the index that came from 190 // indirect call profiles and were recorded as a GUID not a Value* 191 // (which would have been assigned an ID by the ValueEnumerator). 192 // The starting ValueId is just after the number of values in the 193 // ValueEnumerator, so that they can be emitted in the VST. 194 GlobalValueId = VE.getValues().size(); 195 if (!Index) 196 return; 197 for (const auto &GUIDSummaryLists : *Index) 198 // Examine all summaries for this GUID. 199 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 200 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 201 // For each call in the function summary, see if the call 202 // is to a GUID (which means it is for an indirect call, 203 // otherwise we would have a Value for it). If so, synthesize 204 // a value id. 205 for (auto &CallEdge : FS->calls()) 206 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 207 assignValueId(CallEdge.first.getGUID()); 208 } 209 210 protected: 211 void writePerModuleGlobalValueSummary(); 212 213 private: 214 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 215 GlobalValueSummary *Summary, 216 unsigned ValueID, 217 unsigned FSCallsAbbrev, 218 unsigned FSCallsProfileAbbrev, 219 const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 344 SmallVectorImpl<uint64_t> &Record, 345 unsigned Abbrev); 346 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIGlobalVariable(const DIGlobalVariable *N, 350 SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDILocalVariable(const DILocalVariable *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDILabel(const DILabel *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIExpression(const DIExpression *N, 357 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 358 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 359 SmallVectorImpl<uint64_t> &Record, 360 unsigned Abbrev); 361 void writeDIObjCProperty(const DIObjCProperty *N, 362 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 363 void writeDIImportedEntity(const DIImportedEntity *N, 364 SmallVectorImpl<uint64_t> &Record, 365 unsigned Abbrev); 366 unsigned createNamedMetadataAbbrev(); 367 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 368 unsigned createMetadataStringsAbbrev(); 369 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 370 SmallVectorImpl<uint64_t> &Record); 371 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 372 SmallVectorImpl<uint64_t> &Record, 373 std::vector<unsigned> *MDAbbrevs = nullptr, 374 std::vector<uint64_t> *IndexPos = nullptr); 375 void writeModuleMetadata(); 376 void writeFunctionMetadata(const Function &F); 377 void writeFunctionMetadataAttachment(const Function &F); 378 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 379 const GlobalObject &GO); 380 void writeModuleMetadataKinds(); 381 void writeOperandBundleTags(); 382 void writeSyncScopeNames(); 383 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 384 void writeModuleConstants(); 385 bool pushValueAndType(const Value *V, unsigned InstID, 386 SmallVectorImpl<unsigned> &Vals); 387 void writeOperandBundles(const CallBase &CB, unsigned InstID); 388 void pushValue(const Value *V, unsigned InstID, 389 SmallVectorImpl<unsigned> &Vals); 390 void pushValueSigned(const Value *V, unsigned InstID, 391 SmallVectorImpl<uint64_t> &Vals); 392 void writeInstruction(const Instruction &I, unsigned InstID, 393 SmallVectorImpl<unsigned> &Vals); 394 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 395 void writeGlobalValueSymbolTable( 396 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 397 void writeUseList(UseListOrder &&Order); 398 void writeUseListBlock(const Function *F); 399 void 400 writeFunction(const Function &F, 401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 402 void writeBlockInfo(); 403 void writeModuleHash(size_t BlockStartPos); 404 405 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 406 return unsigned(SSID); 407 } 408 409 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 410 }; 411 412 /// Class to manage the bitcode writing for a combined index. 413 class IndexBitcodeWriter : public BitcodeWriterBase { 414 /// The combined index to write to bitcode. 415 const ModuleSummaryIndex &Index; 416 417 /// When writing a subset of the index for distributed backends, client 418 /// provides a map of modules to the corresponding GUIDs/summaries to write. 419 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 420 421 /// Map that holds the correspondence between the GUID used in the combined 422 /// index and a value id generated by this class to use in references. 423 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 424 425 /// Tracks the last value id recorded in the GUIDToValueMap. 426 unsigned GlobalValueId = 0; 427 428 public: 429 /// Constructs a IndexBitcodeWriter object for the given combined index, 430 /// writing to the provided \p Buffer. When writing a subset of the index 431 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 432 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 433 const ModuleSummaryIndex &Index, 434 const std::map<std::string, GVSummaryMapTy> 435 *ModuleToSummariesForIndex = nullptr) 436 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 437 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 438 // Assign unique value ids to all summaries to be written, for use 439 // in writing out the call graph edges. Save the mapping from GUID 440 // to the new global value id to use when writing those edges, which 441 // are currently saved in the index in terms of GUID. 442 forEachSummary([&](GVInfo I, bool) { 443 GUIDToValueIdMap[I.first] = ++GlobalValueId; 444 }); 445 } 446 447 /// The below iterator returns the GUID and associated summary. 448 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 449 450 /// Calls the callback for each value GUID and summary to be written to 451 /// bitcode. This hides the details of whether they are being pulled from the 452 /// entire index or just those in a provided ModuleToSummariesForIndex map. 453 template<typename Functor> 454 void forEachSummary(Functor Callback) { 455 if (ModuleToSummariesForIndex) { 456 for (auto &M : *ModuleToSummariesForIndex) 457 for (auto &Summary : M.second) { 458 Callback(Summary, false); 459 // Ensure aliasee is handled, e.g. for assigning a valueId, 460 // even if we are not importing the aliasee directly (the 461 // imported alias will contain a copy of aliasee). 462 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 463 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 464 } 465 } else { 466 for (auto &Summaries : Index) 467 for (auto &Summary : Summaries.second.SummaryList) 468 Callback({Summaries.first, Summary.get()}, false); 469 } 470 } 471 472 /// Calls the callback for each entry in the modulePaths StringMap that 473 /// should be written to the module path string table. This hides the details 474 /// of whether they are being pulled from the entire index or just those in a 475 /// provided ModuleToSummariesForIndex map. 476 template <typename Functor> void forEachModule(Functor Callback) { 477 if (ModuleToSummariesForIndex) { 478 for (const auto &M : *ModuleToSummariesForIndex) { 479 const auto &MPI = Index.modulePaths().find(M.first); 480 if (MPI == Index.modulePaths().end()) { 481 // This should only happen if the bitcode file was empty, in which 482 // case we shouldn't be importing (the ModuleToSummariesForIndex 483 // would only include the module we are writing and index for). 484 assert(ModuleToSummariesForIndex->size() == 1); 485 continue; 486 } 487 Callback(*MPI); 488 } 489 } else { 490 for (const auto &MPSE : Index.modulePaths()) 491 Callback(MPSE); 492 } 493 } 494 495 /// Main entry point for writing a combined index to bitcode. 496 void write(); 497 498 private: 499 void writeModStrings(); 500 void writeCombinedGlobalValueSummary(); 501 502 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 503 auto VMI = GUIDToValueIdMap.find(ValGUID); 504 if (VMI == GUIDToValueIdMap.end()) 505 return None; 506 return VMI->second; 507 } 508 509 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 510 }; 511 512 } // end anonymous namespace 513 514 static unsigned getEncodedCastOpcode(unsigned Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Unknown cast instruction!"); 517 case Instruction::Trunc : return bitc::CAST_TRUNC; 518 case Instruction::ZExt : return bitc::CAST_ZEXT; 519 case Instruction::SExt : return bitc::CAST_SEXT; 520 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 521 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 522 case Instruction::UIToFP : return bitc::CAST_UITOFP; 523 case Instruction::SIToFP : return bitc::CAST_SITOFP; 524 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 525 case Instruction::FPExt : return bitc::CAST_FPEXT; 526 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 527 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 528 case Instruction::BitCast : return bitc::CAST_BITCAST; 529 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 530 } 531 } 532 533 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 534 switch (Opcode) { 535 default: llvm_unreachable("Unknown binary instruction!"); 536 case Instruction::FNeg: return bitc::UNOP_FNEG; 537 } 538 } 539 540 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 541 switch (Opcode) { 542 default: llvm_unreachable("Unknown binary instruction!"); 543 case Instruction::Add: 544 case Instruction::FAdd: return bitc::BINOP_ADD; 545 case Instruction::Sub: 546 case Instruction::FSub: return bitc::BINOP_SUB; 547 case Instruction::Mul: 548 case Instruction::FMul: return bitc::BINOP_MUL; 549 case Instruction::UDiv: return bitc::BINOP_UDIV; 550 case Instruction::FDiv: 551 case Instruction::SDiv: return bitc::BINOP_SDIV; 552 case Instruction::URem: return bitc::BINOP_UREM; 553 case Instruction::FRem: 554 case Instruction::SRem: return bitc::BINOP_SREM; 555 case Instruction::Shl: return bitc::BINOP_SHL; 556 case Instruction::LShr: return bitc::BINOP_LSHR; 557 case Instruction::AShr: return bitc::BINOP_ASHR; 558 case Instruction::And: return bitc::BINOP_AND; 559 case Instruction::Or: return bitc::BINOP_OR; 560 case Instruction::Xor: return bitc::BINOP_XOR; 561 } 562 } 563 564 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 565 switch (Op) { 566 default: llvm_unreachable("Unknown RMW operation!"); 567 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 568 case AtomicRMWInst::Add: return bitc::RMW_ADD; 569 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 570 case AtomicRMWInst::And: return bitc::RMW_AND; 571 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 572 case AtomicRMWInst::Or: return bitc::RMW_OR; 573 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 574 case AtomicRMWInst::Max: return bitc::RMW_MAX; 575 case AtomicRMWInst::Min: return bitc::RMW_MIN; 576 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 577 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 578 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 579 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 580 } 581 } 582 583 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 584 switch (Ordering) { 585 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 586 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 587 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 588 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 589 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 590 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 591 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 592 } 593 llvm_unreachable("Invalid ordering"); 594 } 595 596 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 597 StringRef Str, unsigned AbbrevToUse) { 598 SmallVector<unsigned, 64> Vals; 599 600 // Code: [strchar x N] 601 for (char C : Str) { 602 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 603 AbbrevToUse = 0; 604 Vals.push_back(C); 605 } 606 607 // Emit the finished record. 608 Stream.EmitRecord(Code, Vals, AbbrevToUse); 609 } 610 611 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 612 switch (Kind) { 613 case Attribute::Alignment: 614 return bitc::ATTR_KIND_ALIGNMENT; 615 case Attribute::AllocAlign: 616 return bitc::ATTR_KIND_ALLOC_ALIGN; 617 case Attribute::AllocSize: 618 return bitc::ATTR_KIND_ALLOC_SIZE; 619 case Attribute::AlwaysInline: 620 return bitc::ATTR_KIND_ALWAYS_INLINE; 621 case Attribute::ArgMemOnly: 622 return bitc::ATTR_KIND_ARGMEMONLY; 623 case Attribute::Builtin: 624 return bitc::ATTR_KIND_BUILTIN; 625 case Attribute::ByVal: 626 return bitc::ATTR_KIND_BY_VAL; 627 case Attribute::Convergent: 628 return bitc::ATTR_KIND_CONVERGENT; 629 case Attribute::InAlloca: 630 return bitc::ATTR_KIND_IN_ALLOCA; 631 case Attribute::Cold: 632 return bitc::ATTR_KIND_COLD; 633 case Attribute::DisableSanitizerInstrumentation: 634 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 635 case Attribute::Hot: 636 return bitc::ATTR_KIND_HOT; 637 case Attribute::ElementType: 638 return bitc::ATTR_KIND_ELEMENTTYPE; 639 case Attribute::InaccessibleMemOnly: 640 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 641 case Attribute::InaccessibleMemOrArgMemOnly: 642 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 643 case Attribute::InlineHint: 644 return bitc::ATTR_KIND_INLINE_HINT; 645 case Attribute::InReg: 646 return bitc::ATTR_KIND_IN_REG; 647 case Attribute::JumpTable: 648 return bitc::ATTR_KIND_JUMP_TABLE; 649 case Attribute::MinSize: 650 return bitc::ATTR_KIND_MIN_SIZE; 651 case Attribute::AllocatedPointer: 652 return bitc::ATTR_KIND_ALLOCATED_POINTER; 653 case Attribute::AllocKind: 654 return bitc::ATTR_KIND_ALLOC_KIND; 655 case Attribute::Naked: 656 return bitc::ATTR_KIND_NAKED; 657 case Attribute::Nest: 658 return bitc::ATTR_KIND_NEST; 659 case Attribute::NoAlias: 660 return bitc::ATTR_KIND_NO_ALIAS; 661 case Attribute::NoBuiltin: 662 return bitc::ATTR_KIND_NO_BUILTIN; 663 case Attribute::NoCallback: 664 return bitc::ATTR_KIND_NO_CALLBACK; 665 case Attribute::NoCapture: 666 return bitc::ATTR_KIND_NO_CAPTURE; 667 case Attribute::NoDuplicate: 668 return bitc::ATTR_KIND_NO_DUPLICATE; 669 case Attribute::NoFree: 670 return bitc::ATTR_KIND_NOFREE; 671 case Attribute::NoImplicitFloat: 672 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 673 case Attribute::NoInline: 674 return bitc::ATTR_KIND_NO_INLINE; 675 case Attribute::NoRecurse: 676 return bitc::ATTR_KIND_NO_RECURSE; 677 case Attribute::NoMerge: 678 return bitc::ATTR_KIND_NO_MERGE; 679 case Attribute::NonLazyBind: 680 return bitc::ATTR_KIND_NON_LAZY_BIND; 681 case Attribute::NonNull: 682 return bitc::ATTR_KIND_NON_NULL; 683 case Attribute::Dereferenceable: 684 return bitc::ATTR_KIND_DEREFERENCEABLE; 685 case Attribute::DereferenceableOrNull: 686 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 687 case Attribute::NoRedZone: 688 return bitc::ATTR_KIND_NO_RED_ZONE; 689 case Attribute::NoReturn: 690 return bitc::ATTR_KIND_NO_RETURN; 691 case Attribute::NoSync: 692 return bitc::ATTR_KIND_NOSYNC; 693 case Attribute::NoCfCheck: 694 return bitc::ATTR_KIND_NOCF_CHECK; 695 case Attribute::NoProfile: 696 return bitc::ATTR_KIND_NO_PROFILE; 697 case Attribute::NoUnwind: 698 return bitc::ATTR_KIND_NO_UNWIND; 699 case Attribute::NoSanitizeBounds: 700 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 701 case Attribute::NoSanitizeCoverage: 702 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 703 case Attribute::NullPointerIsValid: 704 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 705 case Attribute::OptForFuzzing: 706 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 707 case Attribute::OptimizeForSize: 708 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 709 case Attribute::OptimizeNone: 710 return bitc::ATTR_KIND_OPTIMIZE_NONE; 711 case Attribute::ReadNone: 712 return bitc::ATTR_KIND_READ_NONE; 713 case Attribute::ReadOnly: 714 return bitc::ATTR_KIND_READ_ONLY; 715 case Attribute::Returned: 716 return bitc::ATTR_KIND_RETURNED; 717 case Attribute::ReturnsTwice: 718 return bitc::ATTR_KIND_RETURNS_TWICE; 719 case Attribute::SExt: 720 return bitc::ATTR_KIND_S_EXT; 721 case Attribute::Speculatable: 722 return bitc::ATTR_KIND_SPECULATABLE; 723 case Attribute::StackAlignment: 724 return bitc::ATTR_KIND_STACK_ALIGNMENT; 725 case Attribute::StackProtect: 726 return bitc::ATTR_KIND_STACK_PROTECT; 727 case Attribute::StackProtectReq: 728 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 729 case Attribute::StackProtectStrong: 730 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 731 case Attribute::SafeStack: 732 return bitc::ATTR_KIND_SAFESTACK; 733 case Attribute::ShadowCallStack: 734 return bitc::ATTR_KIND_SHADOWCALLSTACK; 735 case Attribute::StrictFP: 736 return bitc::ATTR_KIND_STRICT_FP; 737 case Attribute::StructRet: 738 return bitc::ATTR_KIND_STRUCT_RET; 739 case Attribute::SanitizeAddress: 740 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 741 case Attribute::SanitizeHWAddress: 742 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 743 case Attribute::SanitizeThread: 744 return bitc::ATTR_KIND_SANITIZE_THREAD; 745 case Attribute::SanitizeMemory: 746 return bitc::ATTR_KIND_SANITIZE_MEMORY; 747 case Attribute::SpeculativeLoadHardening: 748 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 749 case Attribute::SwiftError: 750 return bitc::ATTR_KIND_SWIFT_ERROR; 751 case Attribute::SwiftSelf: 752 return bitc::ATTR_KIND_SWIFT_SELF; 753 case Attribute::SwiftAsync: 754 return bitc::ATTR_KIND_SWIFT_ASYNC; 755 case Attribute::UWTable: 756 return bitc::ATTR_KIND_UW_TABLE; 757 case Attribute::VScaleRange: 758 return bitc::ATTR_KIND_VSCALE_RANGE; 759 case Attribute::WillReturn: 760 return bitc::ATTR_KIND_WILLRETURN; 761 case Attribute::WriteOnly: 762 return bitc::ATTR_KIND_WRITEONLY; 763 case Attribute::ZExt: 764 return bitc::ATTR_KIND_Z_EXT; 765 case Attribute::ImmArg: 766 return bitc::ATTR_KIND_IMMARG; 767 case Attribute::SanitizeMemTag: 768 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 769 case Attribute::Preallocated: 770 return bitc::ATTR_KIND_PREALLOCATED; 771 case Attribute::NoUndef: 772 return bitc::ATTR_KIND_NOUNDEF; 773 case Attribute::ByRef: 774 return bitc::ATTR_KIND_BYREF; 775 case Attribute::MustProgress: 776 return bitc::ATTR_KIND_MUSTPROGRESS; 777 case Attribute::EndAttrKinds: 778 llvm_unreachable("Can not encode end-attribute kinds marker."); 779 case Attribute::None: 780 llvm_unreachable("Can not encode none-attribute."); 781 case Attribute::EmptyKey: 782 case Attribute::TombstoneKey: 783 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 784 } 785 786 llvm_unreachable("Trying to encode unknown attribute"); 787 } 788 789 void ModuleBitcodeWriter::writeAttributeGroupTable() { 790 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 791 VE.getAttributeGroups(); 792 if (AttrGrps.empty()) return; 793 794 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 795 796 SmallVector<uint64_t, 64> Record; 797 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 798 unsigned AttrListIndex = Pair.first; 799 AttributeSet AS = Pair.second; 800 Record.push_back(VE.getAttributeGroupID(Pair)); 801 Record.push_back(AttrListIndex); 802 803 for (Attribute Attr : AS) { 804 if (Attr.isEnumAttribute()) { 805 Record.push_back(0); 806 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 807 } else if (Attr.isIntAttribute()) { 808 Record.push_back(1); 809 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 810 Record.push_back(Attr.getValueAsInt()); 811 } else if (Attr.isStringAttribute()) { 812 StringRef Kind = Attr.getKindAsString(); 813 StringRef Val = Attr.getValueAsString(); 814 815 Record.push_back(Val.empty() ? 3 : 4); 816 Record.append(Kind.begin(), Kind.end()); 817 Record.push_back(0); 818 if (!Val.empty()) { 819 Record.append(Val.begin(), Val.end()); 820 Record.push_back(0); 821 } 822 } else { 823 assert(Attr.isTypeAttribute()); 824 Type *Ty = Attr.getValueAsType(); 825 Record.push_back(Ty ? 6 : 5); 826 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 827 if (Ty) 828 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 829 } 830 } 831 832 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 833 Record.clear(); 834 } 835 836 Stream.ExitBlock(); 837 } 838 839 void ModuleBitcodeWriter::writeAttributeTable() { 840 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 841 if (Attrs.empty()) return; 842 843 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 844 845 SmallVector<uint64_t, 64> Record; 846 for (const AttributeList &AL : Attrs) { 847 for (unsigned i : AL.indexes()) { 848 AttributeSet AS = AL.getAttributes(i); 849 if (AS.hasAttributes()) 850 Record.push_back(VE.getAttributeGroupID({i, AS})); 851 } 852 853 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 854 Record.clear(); 855 } 856 857 Stream.ExitBlock(); 858 } 859 860 /// WriteTypeTable - Write out the type table for a module. 861 void ModuleBitcodeWriter::writeTypeTable() { 862 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 863 864 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 865 SmallVector<uint64_t, 64> TypeVals; 866 867 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 868 869 // Abbrev for TYPE_CODE_POINTER. 870 auto Abbv = std::make_shared<BitCodeAbbrev>(); 871 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 873 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 874 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 875 876 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 877 Abbv = std::make_shared<BitCodeAbbrev>(); 878 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 879 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 880 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 881 882 // Abbrev for TYPE_CODE_FUNCTION. 883 Abbv = std::make_shared<BitCodeAbbrev>(); 884 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 888 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 889 890 // Abbrev for TYPE_CODE_STRUCT_ANON. 891 Abbv = std::make_shared<BitCodeAbbrev>(); 892 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 896 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 897 898 // Abbrev for TYPE_CODE_STRUCT_NAME. 899 Abbv = std::make_shared<BitCodeAbbrev>(); 900 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 903 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 904 905 // Abbrev for TYPE_CODE_STRUCT_NAMED. 906 Abbv = std::make_shared<BitCodeAbbrev>(); 907 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 911 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 912 913 // Abbrev for TYPE_CODE_ARRAY. 914 Abbv = std::make_shared<BitCodeAbbrev>(); 915 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 918 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 919 920 // Emit an entry count so the reader can reserve space. 921 TypeVals.push_back(TypeList.size()); 922 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 923 TypeVals.clear(); 924 925 // Loop over all of the types, emitting each in turn. 926 for (Type *T : TypeList) { 927 int AbbrevToUse = 0; 928 unsigned Code = 0; 929 930 switch (T->getTypeID()) { 931 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 932 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 933 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 934 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 935 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 936 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 937 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 938 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 939 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 940 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 941 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 942 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 943 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 944 case Type::IntegerTyID: 945 // INTEGER: [width] 946 Code = bitc::TYPE_CODE_INTEGER; 947 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 948 break; 949 case Type::PointerTyID: { 950 PointerType *PTy = cast<PointerType>(T); 951 unsigned AddressSpace = PTy->getAddressSpace(); 952 if (PTy->isOpaque()) { 953 // OPAQUE_POINTER: [address space] 954 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 955 TypeVals.push_back(AddressSpace); 956 if (AddressSpace == 0) 957 AbbrevToUse = OpaquePtrAbbrev; 958 } else { 959 // POINTER: [pointee type, address space] 960 Code = bitc::TYPE_CODE_POINTER; 961 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 962 TypeVals.push_back(AddressSpace); 963 if (AddressSpace == 0) 964 AbbrevToUse = PtrAbbrev; 965 } 966 break; 967 } 968 case Type::FunctionTyID: { 969 FunctionType *FT = cast<FunctionType>(T); 970 // FUNCTION: [isvararg, retty, paramty x N] 971 Code = bitc::TYPE_CODE_FUNCTION; 972 TypeVals.push_back(FT->isVarArg()); 973 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 974 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 975 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 976 AbbrevToUse = FunctionAbbrev; 977 break; 978 } 979 case Type::StructTyID: { 980 StructType *ST = cast<StructType>(T); 981 // STRUCT: [ispacked, eltty x N] 982 TypeVals.push_back(ST->isPacked()); 983 // Output all of the element types. 984 for (Type *ET : ST->elements()) 985 TypeVals.push_back(VE.getTypeID(ET)); 986 987 if (ST->isLiteral()) { 988 Code = bitc::TYPE_CODE_STRUCT_ANON; 989 AbbrevToUse = StructAnonAbbrev; 990 } else { 991 if (ST->isOpaque()) { 992 Code = bitc::TYPE_CODE_OPAQUE; 993 } else { 994 Code = bitc::TYPE_CODE_STRUCT_NAMED; 995 AbbrevToUse = StructNamedAbbrev; 996 } 997 998 // Emit the name if it is present. 999 if (!ST->getName().empty()) 1000 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1001 StructNameAbbrev); 1002 } 1003 break; 1004 } 1005 case Type::ArrayTyID: { 1006 ArrayType *AT = cast<ArrayType>(T); 1007 // ARRAY: [numelts, eltty] 1008 Code = bitc::TYPE_CODE_ARRAY; 1009 TypeVals.push_back(AT->getNumElements()); 1010 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1011 AbbrevToUse = ArrayAbbrev; 1012 break; 1013 } 1014 case Type::FixedVectorTyID: 1015 case Type::ScalableVectorTyID: { 1016 VectorType *VT = cast<VectorType>(T); 1017 // VECTOR [numelts, eltty] or 1018 // [numelts, eltty, scalable] 1019 Code = bitc::TYPE_CODE_VECTOR; 1020 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1021 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1022 if (isa<ScalableVectorType>(VT)) 1023 TypeVals.push_back(true); 1024 break; 1025 } 1026 case Type::DXILPointerTyID: 1027 llvm_unreachable("DXIL pointers cannot be added to IR modules"); 1028 } 1029 1030 // Emit the finished record. 1031 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1032 TypeVals.clear(); 1033 } 1034 1035 Stream.ExitBlock(); 1036 } 1037 1038 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1039 switch (Linkage) { 1040 case GlobalValue::ExternalLinkage: 1041 return 0; 1042 case GlobalValue::WeakAnyLinkage: 1043 return 16; 1044 case GlobalValue::AppendingLinkage: 1045 return 2; 1046 case GlobalValue::InternalLinkage: 1047 return 3; 1048 case GlobalValue::LinkOnceAnyLinkage: 1049 return 18; 1050 case GlobalValue::ExternalWeakLinkage: 1051 return 7; 1052 case GlobalValue::CommonLinkage: 1053 return 8; 1054 case GlobalValue::PrivateLinkage: 1055 return 9; 1056 case GlobalValue::WeakODRLinkage: 1057 return 17; 1058 case GlobalValue::LinkOnceODRLinkage: 1059 return 19; 1060 case GlobalValue::AvailableExternallyLinkage: 1061 return 12; 1062 } 1063 llvm_unreachable("Invalid linkage"); 1064 } 1065 1066 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1067 return getEncodedLinkage(GV.getLinkage()); 1068 } 1069 1070 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1071 uint64_t RawFlags = 0; 1072 RawFlags |= Flags.ReadNone; 1073 RawFlags |= (Flags.ReadOnly << 1); 1074 RawFlags |= (Flags.NoRecurse << 2); 1075 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1076 RawFlags |= (Flags.NoInline << 4); 1077 RawFlags |= (Flags.AlwaysInline << 5); 1078 RawFlags |= (Flags.NoUnwind << 6); 1079 RawFlags |= (Flags.MayThrow << 7); 1080 RawFlags |= (Flags.HasUnknownCall << 8); 1081 RawFlags |= (Flags.MustBeUnreachable << 9); 1082 return RawFlags; 1083 } 1084 1085 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1086 // in BitcodeReader.cpp. 1087 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1088 uint64_t RawFlags = 0; 1089 1090 RawFlags |= Flags.NotEligibleToImport; // bool 1091 RawFlags |= (Flags.Live << 1); 1092 RawFlags |= (Flags.DSOLocal << 2); 1093 RawFlags |= (Flags.CanAutoHide << 3); 1094 1095 // Linkage don't need to be remapped at that time for the summary. Any future 1096 // change to the getEncodedLinkage() function will need to be taken into 1097 // account here as well. 1098 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1099 1100 RawFlags |= (Flags.Visibility << 8); // 2 bits 1101 1102 return RawFlags; 1103 } 1104 1105 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1106 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1107 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1108 return RawFlags; 1109 } 1110 1111 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1112 switch (GV.getVisibility()) { 1113 case GlobalValue::DefaultVisibility: return 0; 1114 case GlobalValue::HiddenVisibility: return 1; 1115 case GlobalValue::ProtectedVisibility: return 2; 1116 } 1117 llvm_unreachable("Invalid visibility"); 1118 } 1119 1120 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1121 switch (GV.getDLLStorageClass()) { 1122 case GlobalValue::DefaultStorageClass: return 0; 1123 case GlobalValue::DLLImportStorageClass: return 1; 1124 case GlobalValue::DLLExportStorageClass: return 2; 1125 } 1126 llvm_unreachable("Invalid DLL storage class"); 1127 } 1128 1129 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1130 switch (GV.getThreadLocalMode()) { 1131 case GlobalVariable::NotThreadLocal: return 0; 1132 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1133 case GlobalVariable::LocalDynamicTLSModel: return 2; 1134 case GlobalVariable::InitialExecTLSModel: return 3; 1135 case GlobalVariable::LocalExecTLSModel: return 4; 1136 } 1137 llvm_unreachable("Invalid TLS model"); 1138 } 1139 1140 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1141 switch (C.getSelectionKind()) { 1142 case Comdat::Any: 1143 return bitc::COMDAT_SELECTION_KIND_ANY; 1144 case Comdat::ExactMatch: 1145 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1146 case Comdat::Largest: 1147 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1148 case Comdat::NoDeduplicate: 1149 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1150 case Comdat::SameSize: 1151 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1152 } 1153 llvm_unreachable("Invalid selection kind"); 1154 } 1155 1156 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1157 switch (GV.getUnnamedAddr()) { 1158 case GlobalValue::UnnamedAddr::None: return 0; 1159 case GlobalValue::UnnamedAddr::Local: return 2; 1160 case GlobalValue::UnnamedAddr::Global: return 1; 1161 } 1162 llvm_unreachable("Invalid unnamed_addr"); 1163 } 1164 1165 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1166 if (GenerateHash) 1167 Hasher.update(Str); 1168 return StrtabBuilder.add(Str); 1169 } 1170 1171 void ModuleBitcodeWriter::writeComdats() { 1172 SmallVector<unsigned, 64> Vals; 1173 for (const Comdat *C : VE.getComdats()) { 1174 // COMDAT: [strtab offset, strtab size, selection_kind] 1175 Vals.push_back(addToStrtab(C->getName())); 1176 Vals.push_back(C->getName().size()); 1177 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1178 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1179 Vals.clear(); 1180 } 1181 } 1182 1183 /// Write a record that will eventually hold the word offset of the 1184 /// module-level VST. For now the offset is 0, which will be backpatched 1185 /// after the real VST is written. Saves the bit offset to backpatch. 1186 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1187 // Write a placeholder value in for the offset of the real VST, 1188 // which is written after the function blocks so that it can include 1189 // the offset of each function. The placeholder offset will be 1190 // updated when the real VST is written. 1191 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1192 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1193 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1194 // hold the real VST offset. Must use fixed instead of VBR as we don't 1195 // know how many VBR chunks to reserve ahead of time. 1196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1197 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1198 1199 // Emit the placeholder 1200 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1201 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1202 1203 // Compute and save the bit offset to the placeholder, which will be 1204 // patched when the real VST is written. We can simply subtract the 32-bit 1205 // fixed size from the current bit number to get the location to backpatch. 1206 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1207 } 1208 1209 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1210 1211 /// Determine the encoding to use for the given string name and length. 1212 static StringEncoding getStringEncoding(StringRef Str) { 1213 bool isChar6 = true; 1214 for (char C : Str) { 1215 if (isChar6) 1216 isChar6 = BitCodeAbbrevOp::isChar6(C); 1217 if ((unsigned char)C & 128) 1218 // don't bother scanning the rest. 1219 return SE_Fixed8; 1220 } 1221 if (isChar6) 1222 return SE_Char6; 1223 return SE_Fixed7; 1224 } 1225 1226 /// Emit top-level description of module, including target triple, inline asm, 1227 /// descriptors for global variables, and function prototype info. 1228 /// Returns the bit offset to backpatch with the location of the real VST. 1229 void ModuleBitcodeWriter::writeModuleInfo() { 1230 // Emit various pieces of data attached to a module. 1231 if (!M.getTargetTriple().empty()) 1232 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1233 0 /*TODO*/); 1234 const std::string &DL = M.getDataLayoutStr(); 1235 if (!DL.empty()) 1236 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1237 if (!M.getModuleInlineAsm().empty()) 1238 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1239 0 /*TODO*/); 1240 1241 // Emit information about sections and GC, computing how many there are. Also 1242 // compute the maximum alignment value. 1243 std::map<std::string, unsigned> SectionMap; 1244 std::map<std::string, unsigned> GCMap; 1245 MaybeAlign MaxAlignment; 1246 unsigned MaxGlobalType = 0; 1247 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1248 if (A) 1249 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1250 }; 1251 for (const GlobalVariable &GV : M.globals()) { 1252 UpdateMaxAlignment(GV.getAlign()); 1253 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1254 if (GV.hasSection()) { 1255 // Give section names unique ID's. 1256 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1257 if (!Entry) { 1258 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1259 0 /*TODO*/); 1260 Entry = SectionMap.size(); 1261 } 1262 } 1263 } 1264 for (const Function &F : M) { 1265 UpdateMaxAlignment(F.getAlign()); 1266 if (F.hasSection()) { 1267 // Give section names unique ID's. 1268 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1269 if (!Entry) { 1270 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1271 0 /*TODO*/); 1272 Entry = SectionMap.size(); 1273 } 1274 } 1275 if (F.hasGC()) { 1276 // Same for GC names. 1277 unsigned &Entry = GCMap[F.getGC()]; 1278 if (!Entry) { 1279 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1280 0 /*TODO*/); 1281 Entry = GCMap.size(); 1282 } 1283 } 1284 } 1285 1286 // Emit abbrev for globals, now that we know # sections and max alignment. 1287 unsigned SimpleGVarAbbrev = 0; 1288 if (!M.global_empty()) { 1289 // Add an abbrev for common globals with no visibility or thread localness. 1290 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1291 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1295 Log2_32_Ceil(MaxGlobalType+1))); 1296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1297 //| explicitType << 1 1298 //| constant 1299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1301 if (!MaxAlignment) // Alignment. 1302 Abbv->Add(BitCodeAbbrevOp(0)); 1303 else { 1304 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1306 Log2_32_Ceil(MaxEncAlignment+1))); 1307 } 1308 if (SectionMap.empty()) // Section. 1309 Abbv->Add(BitCodeAbbrevOp(0)); 1310 else 1311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1312 Log2_32_Ceil(SectionMap.size()+1))); 1313 // Don't bother emitting vis + thread local. 1314 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1315 } 1316 1317 SmallVector<unsigned, 64> Vals; 1318 // Emit the module's source file name. 1319 { 1320 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1321 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1322 if (Bits == SE_Char6) 1323 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1324 else if (Bits == SE_Fixed7) 1325 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1326 1327 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1328 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1329 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1331 Abbv->Add(AbbrevOpToUse); 1332 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1333 1334 for (const auto P : M.getSourceFileName()) 1335 Vals.push_back((unsigned char)P); 1336 1337 // Emit the finished record. 1338 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1339 Vals.clear(); 1340 } 1341 1342 // Emit the global variable information. 1343 for (const GlobalVariable &GV : M.globals()) { 1344 unsigned AbbrevToUse = 0; 1345 1346 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1347 // linkage, alignment, section, visibility, threadlocal, 1348 // unnamed_addr, externally_initialized, dllstorageclass, 1349 // comdat, attributes, DSO_Local] 1350 Vals.push_back(addToStrtab(GV.getName())); 1351 Vals.push_back(GV.getName().size()); 1352 Vals.push_back(VE.getTypeID(GV.getValueType())); 1353 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1354 Vals.push_back(GV.isDeclaration() ? 0 : 1355 (VE.getValueID(GV.getInitializer()) + 1)); 1356 Vals.push_back(getEncodedLinkage(GV)); 1357 Vals.push_back(getEncodedAlign(GV.getAlign())); 1358 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1359 : 0); 1360 if (GV.isThreadLocal() || 1361 GV.getVisibility() != GlobalValue::DefaultVisibility || 1362 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1363 GV.isExternallyInitialized() || 1364 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1365 GV.hasComdat() || 1366 GV.hasAttributes() || 1367 GV.isDSOLocal() || 1368 GV.hasPartition()) { 1369 Vals.push_back(getEncodedVisibility(GV)); 1370 Vals.push_back(getEncodedThreadLocalMode(GV)); 1371 Vals.push_back(getEncodedUnnamedAddr(GV)); 1372 Vals.push_back(GV.isExternallyInitialized()); 1373 Vals.push_back(getEncodedDLLStorageClass(GV)); 1374 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1375 1376 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1377 Vals.push_back(VE.getAttributeListID(AL)); 1378 1379 Vals.push_back(GV.isDSOLocal()); 1380 Vals.push_back(addToStrtab(GV.getPartition())); 1381 Vals.push_back(GV.getPartition().size()); 1382 } else { 1383 AbbrevToUse = SimpleGVarAbbrev; 1384 } 1385 1386 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1387 Vals.clear(); 1388 } 1389 1390 // Emit the function proto information. 1391 for (const Function &F : M) { 1392 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1393 // linkage, paramattrs, alignment, section, visibility, gc, 1394 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1395 // prefixdata, personalityfn, DSO_Local, addrspace] 1396 Vals.push_back(addToStrtab(F.getName())); 1397 Vals.push_back(F.getName().size()); 1398 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1399 Vals.push_back(F.getCallingConv()); 1400 Vals.push_back(F.isDeclaration()); 1401 Vals.push_back(getEncodedLinkage(F)); 1402 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1403 Vals.push_back(getEncodedAlign(F.getAlign())); 1404 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1405 : 0); 1406 Vals.push_back(getEncodedVisibility(F)); 1407 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1408 Vals.push_back(getEncodedUnnamedAddr(F)); 1409 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1410 : 0); 1411 Vals.push_back(getEncodedDLLStorageClass(F)); 1412 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1413 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1414 : 0); 1415 Vals.push_back( 1416 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1417 1418 Vals.push_back(F.isDSOLocal()); 1419 Vals.push_back(F.getAddressSpace()); 1420 Vals.push_back(addToStrtab(F.getPartition())); 1421 Vals.push_back(F.getPartition().size()); 1422 1423 unsigned AbbrevToUse = 0; 1424 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1425 Vals.clear(); 1426 } 1427 1428 // Emit the alias information. 1429 for (const GlobalAlias &A : M.aliases()) { 1430 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1431 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1432 // DSO_Local] 1433 Vals.push_back(addToStrtab(A.getName())); 1434 Vals.push_back(A.getName().size()); 1435 Vals.push_back(VE.getTypeID(A.getValueType())); 1436 Vals.push_back(A.getType()->getAddressSpace()); 1437 Vals.push_back(VE.getValueID(A.getAliasee())); 1438 Vals.push_back(getEncodedLinkage(A)); 1439 Vals.push_back(getEncodedVisibility(A)); 1440 Vals.push_back(getEncodedDLLStorageClass(A)); 1441 Vals.push_back(getEncodedThreadLocalMode(A)); 1442 Vals.push_back(getEncodedUnnamedAddr(A)); 1443 Vals.push_back(A.isDSOLocal()); 1444 Vals.push_back(addToStrtab(A.getPartition())); 1445 Vals.push_back(A.getPartition().size()); 1446 1447 unsigned AbbrevToUse = 0; 1448 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1449 Vals.clear(); 1450 } 1451 1452 // Emit the ifunc information. 1453 for (const GlobalIFunc &I : M.ifuncs()) { 1454 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1455 // val#, linkage, visibility, DSO_Local] 1456 Vals.push_back(addToStrtab(I.getName())); 1457 Vals.push_back(I.getName().size()); 1458 Vals.push_back(VE.getTypeID(I.getValueType())); 1459 Vals.push_back(I.getType()->getAddressSpace()); 1460 Vals.push_back(VE.getValueID(I.getResolver())); 1461 Vals.push_back(getEncodedLinkage(I)); 1462 Vals.push_back(getEncodedVisibility(I)); 1463 Vals.push_back(I.isDSOLocal()); 1464 Vals.push_back(addToStrtab(I.getPartition())); 1465 Vals.push_back(I.getPartition().size()); 1466 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1467 Vals.clear(); 1468 } 1469 1470 writeValueSymbolTableForwardDecl(); 1471 } 1472 1473 static uint64_t getOptimizationFlags(const Value *V) { 1474 uint64_t Flags = 0; 1475 1476 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1477 if (OBO->hasNoSignedWrap()) 1478 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1479 if (OBO->hasNoUnsignedWrap()) 1480 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1481 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1482 if (PEO->isExact()) 1483 Flags |= 1 << bitc::PEO_EXACT; 1484 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1485 if (FPMO->hasAllowReassoc()) 1486 Flags |= bitc::AllowReassoc; 1487 if (FPMO->hasNoNaNs()) 1488 Flags |= bitc::NoNaNs; 1489 if (FPMO->hasNoInfs()) 1490 Flags |= bitc::NoInfs; 1491 if (FPMO->hasNoSignedZeros()) 1492 Flags |= bitc::NoSignedZeros; 1493 if (FPMO->hasAllowReciprocal()) 1494 Flags |= bitc::AllowReciprocal; 1495 if (FPMO->hasAllowContract()) 1496 Flags |= bitc::AllowContract; 1497 if (FPMO->hasApproxFunc()) 1498 Flags |= bitc::ApproxFunc; 1499 } 1500 1501 return Flags; 1502 } 1503 1504 void ModuleBitcodeWriter::writeValueAsMetadata( 1505 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1506 // Mimic an MDNode with a value as one operand. 1507 Value *V = MD->getValue(); 1508 Record.push_back(VE.getTypeID(V->getType())); 1509 Record.push_back(VE.getValueID(V)); 1510 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1511 Record.clear(); 1512 } 1513 1514 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1515 SmallVectorImpl<uint64_t> &Record, 1516 unsigned Abbrev) { 1517 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1518 Metadata *MD = N->getOperand(i); 1519 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1520 "Unexpected function-local metadata"); 1521 Record.push_back(VE.getMetadataOrNullID(MD)); 1522 } 1523 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1524 : bitc::METADATA_NODE, 1525 Record, Abbrev); 1526 Record.clear(); 1527 } 1528 1529 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1530 // Assume the column is usually under 128, and always output the inlined-at 1531 // location (it's never more expensive than building an array size 1). 1532 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1533 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1540 return Stream.EmitAbbrev(std::move(Abbv)); 1541 } 1542 1543 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1544 SmallVectorImpl<uint64_t> &Record, 1545 unsigned &Abbrev) { 1546 if (!Abbrev) 1547 Abbrev = createDILocationAbbrev(); 1548 1549 Record.push_back(N->isDistinct()); 1550 Record.push_back(N->getLine()); 1551 Record.push_back(N->getColumn()); 1552 Record.push_back(VE.getMetadataID(N->getScope())); 1553 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1554 Record.push_back(N->isImplicitCode()); 1555 1556 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1557 Record.clear(); 1558 } 1559 1560 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1561 // Assume the column is usually under 128, and always output the inlined-at 1562 // location (it's never more expensive than building an array size 1). 1563 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1564 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1571 return Stream.EmitAbbrev(std::move(Abbv)); 1572 } 1573 1574 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1575 SmallVectorImpl<uint64_t> &Record, 1576 unsigned &Abbrev) { 1577 if (!Abbrev) 1578 Abbrev = createGenericDINodeAbbrev(); 1579 1580 Record.push_back(N->isDistinct()); 1581 Record.push_back(N->getTag()); 1582 Record.push_back(0); // Per-tag version field; unused for now. 1583 1584 for (auto &I : N->operands()) 1585 Record.push_back(VE.getMetadataOrNullID(I)); 1586 1587 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1588 Record.clear(); 1589 } 1590 1591 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1592 SmallVectorImpl<uint64_t> &Record, 1593 unsigned Abbrev) { 1594 const uint64_t Version = 2 << 1; 1595 Record.push_back((uint64_t)N->isDistinct() | Version); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1600 1601 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1602 Record.clear(); 1603 } 1604 1605 void ModuleBitcodeWriter::writeDIGenericSubrange( 1606 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1607 unsigned Abbrev) { 1608 Record.push_back((uint64_t)N->isDistinct()); 1609 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1610 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1611 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1612 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1613 1614 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1615 Record.clear(); 1616 } 1617 1618 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1619 if ((int64_t)V >= 0) 1620 Vals.push_back(V << 1); 1621 else 1622 Vals.push_back((-V << 1) | 1); 1623 } 1624 1625 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1626 // We have an arbitrary precision integer value to write whose 1627 // bit width is > 64. However, in canonical unsigned integer 1628 // format it is likely that the high bits are going to be zero. 1629 // So, we only write the number of active words. 1630 unsigned NumWords = A.getActiveWords(); 1631 const uint64_t *RawData = A.getRawData(); 1632 for (unsigned i = 0; i < NumWords; i++) 1633 emitSignedInt64(Vals, RawData[i]); 1634 } 1635 1636 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1637 SmallVectorImpl<uint64_t> &Record, 1638 unsigned Abbrev) { 1639 const uint64_t IsBigInt = 1 << 2; 1640 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1641 Record.push_back(N->getValue().getBitWidth()); 1642 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1643 emitWideAPInt(Record, N->getValue()); 1644 1645 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1646 Record.clear(); 1647 } 1648 1649 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1650 SmallVectorImpl<uint64_t> &Record, 1651 unsigned Abbrev) { 1652 Record.push_back(N->isDistinct()); 1653 Record.push_back(N->getTag()); 1654 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1655 Record.push_back(N->getSizeInBits()); 1656 Record.push_back(N->getAlignInBits()); 1657 Record.push_back(N->getEncoding()); 1658 Record.push_back(N->getFlags()); 1659 1660 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1661 Record.clear(); 1662 } 1663 1664 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1665 SmallVectorImpl<uint64_t> &Record, 1666 unsigned Abbrev) { 1667 Record.push_back(N->isDistinct()); 1668 Record.push_back(N->getTag()); 1669 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1670 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1671 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1672 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1673 Record.push_back(N->getSizeInBits()); 1674 Record.push_back(N->getAlignInBits()); 1675 Record.push_back(N->getEncoding()); 1676 1677 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1678 Record.clear(); 1679 } 1680 1681 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1682 SmallVectorImpl<uint64_t> &Record, 1683 unsigned Abbrev) { 1684 Record.push_back(N->isDistinct()); 1685 Record.push_back(N->getTag()); 1686 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1688 Record.push_back(N->getLine()); 1689 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1690 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1691 Record.push_back(N->getSizeInBits()); 1692 Record.push_back(N->getAlignInBits()); 1693 Record.push_back(N->getOffsetInBits()); 1694 Record.push_back(N->getFlags()); 1695 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1696 1697 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1698 // that there is no DWARF address space associated with DIDerivedType. 1699 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1700 Record.push_back(*DWARFAddressSpace + 1); 1701 else 1702 Record.push_back(0); 1703 1704 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1705 1706 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1707 Record.clear(); 1708 } 1709 1710 void ModuleBitcodeWriter::writeDICompositeType( 1711 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1712 unsigned Abbrev) { 1713 const unsigned IsNotUsedInOldTypeRef = 0x2; 1714 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1715 Record.push_back(N->getTag()); 1716 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1718 Record.push_back(N->getLine()); 1719 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1721 Record.push_back(N->getSizeInBits()); 1722 Record.push_back(N->getAlignInBits()); 1723 Record.push_back(N->getOffsetInBits()); 1724 Record.push_back(N->getFlags()); 1725 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1726 Record.push_back(N->getRuntimeLang()); 1727 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1728 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1729 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1730 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1731 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1732 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1733 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1734 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1735 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1736 1737 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1738 Record.clear(); 1739 } 1740 1741 void ModuleBitcodeWriter::writeDISubroutineType( 1742 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1743 unsigned Abbrev) { 1744 const unsigned HasNoOldTypeRefs = 0x2; 1745 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1746 Record.push_back(N->getFlags()); 1747 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1748 Record.push_back(N->getCC()); 1749 1750 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1751 Record.clear(); 1752 } 1753 1754 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1755 SmallVectorImpl<uint64_t> &Record, 1756 unsigned Abbrev) { 1757 Record.push_back(N->isDistinct()); 1758 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1759 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1760 if (N->getRawChecksum()) { 1761 Record.push_back(N->getRawChecksum()->Kind); 1762 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1763 } else { 1764 // Maintain backwards compatibility with the old internal representation of 1765 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1766 Record.push_back(0); 1767 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1768 } 1769 auto Source = N->getRawSource(); 1770 if (Source) 1771 Record.push_back(VE.getMetadataOrNullID(*Source)); 1772 1773 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1774 Record.clear(); 1775 } 1776 1777 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1778 SmallVectorImpl<uint64_t> &Record, 1779 unsigned Abbrev) { 1780 assert(N->isDistinct() && "Expected distinct compile units"); 1781 Record.push_back(/* IsDistinct */ true); 1782 Record.push_back(N->getSourceLanguage()); 1783 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1785 Record.push_back(N->isOptimized()); 1786 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1787 Record.push_back(N->getRuntimeVersion()); 1788 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1789 Record.push_back(N->getEmissionKind()); 1790 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1791 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1792 Record.push_back(/* subprograms */ 0); 1793 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1795 Record.push_back(N->getDWOId()); 1796 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1797 Record.push_back(N->getSplitDebugInlining()); 1798 Record.push_back(N->getDebugInfoForProfiling()); 1799 Record.push_back((unsigned)N->getNameTableKind()); 1800 Record.push_back(N->getRangesBaseAddress()); 1801 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1803 1804 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1805 Record.clear(); 1806 } 1807 1808 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1809 SmallVectorImpl<uint64_t> &Record, 1810 unsigned Abbrev) { 1811 const uint64_t HasUnitFlag = 1 << 1; 1812 const uint64_t HasSPFlagsFlag = 1 << 2; 1813 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1814 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1817 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1818 Record.push_back(N->getLine()); 1819 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1820 Record.push_back(N->getScopeLine()); 1821 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1822 Record.push_back(N->getSPFlags()); 1823 Record.push_back(N->getVirtualIndex()); 1824 Record.push_back(N->getFlags()); 1825 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1826 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1827 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1828 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1829 Record.push_back(N->getThisAdjustment()); 1830 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1831 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1832 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1833 1834 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1835 Record.clear(); 1836 } 1837 1838 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1839 SmallVectorImpl<uint64_t> &Record, 1840 unsigned Abbrev) { 1841 Record.push_back(N->isDistinct()); 1842 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1843 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1844 Record.push_back(N->getLine()); 1845 Record.push_back(N->getColumn()); 1846 1847 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1848 Record.clear(); 1849 } 1850 1851 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1852 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1853 unsigned Abbrev) { 1854 Record.push_back(N->isDistinct()); 1855 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1857 Record.push_back(N->getDiscriminator()); 1858 1859 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1860 Record.clear(); 1861 } 1862 1863 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1864 SmallVectorImpl<uint64_t> &Record, 1865 unsigned Abbrev) { 1866 Record.push_back(N->isDistinct()); 1867 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1868 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1869 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1870 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1871 Record.push_back(N->getLineNo()); 1872 1873 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1874 Record.clear(); 1875 } 1876 1877 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1878 SmallVectorImpl<uint64_t> &Record, 1879 unsigned Abbrev) { 1880 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1881 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1882 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1883 1884 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1885 Record.clear(); 1886 } 1887 1888 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1889 SmallVectorImpl<uint64_t> &Record, 1890 unsigned Abbrev) { 1891 Record.push_back(N->isDistinct()); 1892 Record.push_back(N->getMacinfoType()); 1893 Record.push_back(N->getLine()); 1894 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1895 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1896 1897 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1898 Record.clear(); 1899 } 1900 1901 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1902 SmallVectorImpl<uint64_t> &Record, 1903 unsigned Abbrev) { 1904 Record.push_back(N->isDistinct()); 1905 Record.push_back(N->getMacinfoType()); 1906 Record.push_back(N->getLine()); 1907 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1908 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1909 1910 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1911 Record.clear(); 1912 } 1913 1914 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1915 SmallVectorImpl<uint64_t> &Record, 1916 unsigned Abbrev) { 1917 Record.reserve(N->getArgs().size()); 1918 for (ValueAsMetadata *MD : N->getArgs()) 1919 Record.push_back(VE.getMetadataID(MD)); 1920 1921 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1922 Record.clear(); 1923 } 1924 1925 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1926 SmallVectorImpl<uint64_t> &Record, 1927 unsigned Abbrev) { 1928 Record.push_back(N->isDistinct()); 1929 for (auto &I : N->operands()) 1930 Record.push_back(VE.getMetadataOrNullID(I)); 1931 Record.push_back(N->getLineNo()); 1932 Record.push_back(N->getIsDecl()); 1933 1934 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1935 Record.clear(); 1936 } 1937 1938 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1939 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1940 unsigned Abbrev) { 1941 Record.push_back(N->isDistinct()); 1942 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1943 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1944 Record.push_back(N->isDefault()); 1945 1946 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1947 Record.clear(); 1948 } 1949 1950 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1951 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1952 unsigned Abbrev) { 1953 Record.push_back(N->isDistinct()); 1954 Record.push_back(N->getTag()); 1955 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1956 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1957 Record.push_back(N->isDefault()); 1958 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1959 1960 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1961 Record.clear(); 1962 } 1963 1964 void ModuleBitcodeWriter::writeDIGlobalVariable( 1965 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1966 unsigned Abbrev) { 1967 const uint64_t Version = 2 << 1; 1968 Record.push_back((uint64_t)N->isDistinct() | Version); 1969 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1970 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1971 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1972 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1973 Record.push_back(N->getLine()); 1974 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1975 Record.push_back(N->isLocalToUnit()); 1976 Record.push_back(N->isDefinition()); 1977 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1978 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1979 Record.push_back(N->getAlignInBits()); 1980 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1981 1982 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1983 Record.clear(); 1984 } 1985 1986 void ModuleBitcodeWriter::writeDILocalVariable( 1987 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1988 unsigned Abbrev) { 1989 // In order to support all possible bitcode formats in BitcodeReader we need 1990 // to distinguish the following cases: 1991 // 1) Record has no artificial tag (Record[1]), 1992 // has no obsolete inlinedAt field (Record[9]). 1993 // In this case Record size will be 8, HasAlignment flag is false. 1994 // 2) Record has artificial tag (Record[1]), 1995 // has no obsolete inlignedAt field (Record[9]). 1996 // In this case Record size will be 9, HasAlignment flag is false. 1997 // 3) Record has both artificial tag (Record[1]) and 1998 // obsolete inlignedAt field (Record[9]). 1999 // In this case Record size will be 10, HasAlignment flag is false. 2000 // 4) Record has neither artificial tag, nor inlignedAt field, but 2001 // HasAlignment flag is true and Record[8] contains alignment value. 2002 const uint64_t HasAlignmentFlag = 1 << 1; 2003 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2004 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2005 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2006 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2007 Record.push_back(N->getLine()); 2008 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2009 Record.push_back(N->getArg()); 2010 Record.push_back(N->getFlags()); 2011 Record.push_back(N->getAlignInBits()); 2012 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2013 2014 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2015 Record.clear(); 2016 } 2017 2018 void ModuleBitcodeWriter::writeDILabel( 2019 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2020 unsigned Abbrev) { 2021 Record.push_back((uint64_t)N->isDistinct()); 2022 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2023 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2024 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2025 Record.push_back(N->getLine()); 2026 2027 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2028 Record.clear(); 2029 } 2030 2031 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2032 SmallVectorImpl<uint64_t> &Record, 2033 unsigned Abbrev) { 2034 Record.reserve(N->getElements().size() + 1); 2035 const uint64_t Version = 3 << 1; 2036 Record.push_back((uint64_t)N->isDistinct() | Version); 2037 Record.append(N->elements_begin(), N->elements_end()); 2038 2039 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2040 Record.clear(); 2041 } 2042 2043 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2044 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2045 unsigned Abbrev) { 2046 Record.push_back(N->isDistinct()); 2047 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2048 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2049 2050 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2051 Record.clear(); 2052 } 2053 2054 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2055 SmallVectorImpl<uint64_t> &Record, 2056 unsigned Abbrev) { 2057 Record.push_back(N->isDistinct()); 2058 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2059 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2060 Record.push_back(N->getLine()); 2061 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2062 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2063 Record.push_back(N->getAttributes()); 2064 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2065 2066 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2067 Record.clear(); 2068 } 2069 2070 void ModuleBitcodeWriter::writeDIImportedEntity( 2071 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2072 unsigned Abbrev) { 2073 Record.push_back(N->isDistinct()); 2074 Record.push_back(N->getTag()); 2075 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2076 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2077 Record.push_back(N->getLine()); 2078 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2079 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2080 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2081 2082 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2083 Record.clear(); 2084 } 2085 2086 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2087 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2088 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2091 return Stream.EmitAbbrev(std::move(Abbv)); 2092 } 2093 2094 void ModuleBitcodeWriter::writeNamedMetadata( 2095 SmallVectorImpl<uint64_t> &Record) { 2096 if (M.named_metadata_empty()) 2097 return; 2098 2099 unsigned Abbrev = createNamedMetadataAbbrev(); 2100 for (const NamedMDNode &NMD : M.named_metadata()) { 2101 // Write name. 2102 StringRef Str = NMD.getName(); 2103 Record.append(Str.bytes_begin(), Str.bytes_end()); 2104 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2105 Record.clear(); 2106 2107 // Write named metadata operands. 2108 for (const MDNode *N : NMD.operands()) 2109 Record.push_back(VE.getMetadataID(N)); 2110 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2111 Record.clear(); 2112 } 2113 } 2114 2115 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2116 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2117 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2121 return Stream.EmitAbbrev(std::move(Abbv)); 2122 } 2123 2124 /// Write out a record for MDString. 2125 /// 2126 /// All the metadata strings in a metadata block are emitted in a single 2127 /// record. The sizes and strings themselves are shoved into a blob. 2128 void ModuleBitcodeWriter::writeMetadataStrings( 2129 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2130 if (Strings.empty()) 2131 return; 2132 2133 // Start the record with the number of strings. 2134 Record.push_back(bitc::METADATA_STRINGS); 2135 Record.push_back(Strings.size()); 2136 2137 // Emit the sizes of the strings in the blob. 2138 SmallString<256> Blob; 2139 { 2140 BitstreamWriter W(Blob); 2141 for (const Metadata *MD : Strings) 2142 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2143 W.FlushToWord(); 2144 } 2145 2146 // Add the offset to the strings to the record. 2147 Record.push_back(Blob.size()); 2148 2149 // Add the strings to the blob. 2150 for (const Metadata *MD : Strings) 2151 Blob.append(cast<MDString>(MD)->getString()); 2152 2153 // Emit the final record. 2154 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2155 Record.clear(); 2156 } 2157 2158 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2159 enum MetadataAbbrev : unsigned { 2160 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2161 #include "llvm/IR/Metadata.def" 2162 LastPlusOne 2163 }; 2164 2165 void ModuleBitcodeWriter::writeMetadataRecords( 2166 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2167 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2168 if (MDs.empty()) 2169 return; 2170 2171 // Initialize MDNode abbreviations. 2172 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2173 #include "llvm/IR/Metadata.def" 2174 2175 for (const Metadata *MD : MDs) { 2176 if (IndexPos) 2177 IndexPos->push_back(Stream.GetCurrentBitNo()); 2178 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2179 assert(N->isResolved() && "Expected forward references to be resolved"); 2180 2181 switch (N->getMetadataID()) { 2182 default: 2183 llvm_unreachable("Invalid MDNode subclass"); 2184 #define HANDLE_MDNODE_LEAF(CLASS) \ 2185 case Metadata::CLASS##Kind: \ 2186 if (MDAbbrevs) \ 2187 write##CLASS(cast<CLASS>(N), Record, \ 2188 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2189 else \ 2190 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2191 continue; 2192 #include "llvm/IR/Metadata.def" 2193 } 2194 } 2195 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2196 } 2197 } 2198 2199 void ModuleBitcodeWriter::writeModuleMetadata() { 2200 if (!VE.hasMDs() && M.named_metadata_empty()) 2201 return; 2202 2203 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2204 SmallVector<uint64_t, 64> Record; 2205 2206 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2207 // block and load any metadata. 2208 std::vector<unsigned> MDAbbrevs; 2209 2210 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2211 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2212 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2213 createGenericDINodeAbbrev(); 2214 2215 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2216 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2219 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2220 2221 Abbv = std::make_shared<BitCodeAbbrev>(); 2222 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2225 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2226 2227 // Emit MDStrings together upfront. 2228 writeMetadataStrings(VE.getMDStrings(), Record); 2229 2230 // We only emit an index for the metadata record if we have more than a given 2231 // (naive) threshold of metadatas, otherwise it is not worth it. 2232 if (VE.getNonMDStrings().size() > IndexThreshold) { 2233 // Write a placeholder value in for the offset of the metadata index, 2234 // which is written after the records, so that it can include 2235 // the offset of each entry. The placeholder offset will be 2236 // updated after all records are emitted. 2237 uint64_t Vals[] = {0, 0}; 2238 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2239 } 2240 2241 // Compute and save the bit offset to the current position, which will be 2242 // patched when we emit the index later. We can simply subtract the 64-bit 2243 // fixed size from the current bit number to get the location to backpatch. 2244 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2245 2246 // This index will contain the bitpos for each individual record. 2247 std::vector<uint64_t> IndexPos; 2248 IndexPos.reserve(VE.getNonMDStrings().size()); 2249 2250 // Write all the records 2251 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2252 2253 if (VE.getNonMDStrings().size() > IndexThreshold) { 2254 // Now that we have emitted all the records we will emit the index. But 2255 // first 2256 // backpatch the forward reference so that the reader can skip the records 2257 // efficiently. 2258 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2259 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2260 2261 // Delta encode the index. 2262 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2263 for (auto &Elt : IndexPos) { 2264 auto EltDelta = Elt - PreviousValue; 2265 PreviousValue = Elt; 2266 Elt = EltDelta; 2267 } 2268 // Emit the index record. 2269 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2270 IndexPos.clear(); 2271 } 2272 2273 // Write the named metadata now. 2274 writeNamedMetadata(Record); 2275 2276 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2277 SmallVector<uint64_t, 4> Record; 2278 Record.push_back(VE.getValueID(&GO)); 2279 pushGlobalMetadataAttachment(Record, GO); 2280 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2281 }; 2282 for (const Function &F : M) 2283 if (F.isDeclaration() && F.hasMetadata()) 2284 AddDeclAttachedMetadata(F); 2285 // FIXME: Only store metadata for declarations here, and move data for global 2286 // variable definitions to a separate block (PR28134). 2287 for (const GlobalVariable &GV : M.globals()) 2288 if (GV.hasMetadata()) 2289 AddDeclAttachedMetadata(GV); 2290 2291 Stream.ExitBlock(); 2292 } 2293 2294 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2295 if (!VE.hasMDs()) 2296 return; 2297 2298 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2299 SmallVector<uint64_t, 64> Record; 2300 writeMetadataStrings(VE.getMDStrings(), Record); 2301 writeMetadataRecords(VE.getNonMDStrings(), Record); 2302 Stream.ExitBlock(); 2303 } 2304 2305 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2306 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2307 // [n x [id, mdnode]] 2308 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2309 GO.getAllMetadata(MDs); 2310 for (const auto &I : MDs) { 2311 Record.push_back(I.first); 2312 Record.push_back(VE.getMetadataID(I.second)); 2313 } 2314 } 2315 2316 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2317 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2318 2319 SmallVector<uint64_t, 64> Record; 2320 2321 if (F.hasMetadata()) { 2322 pushGlobalMetadataAttachment(Record, F); 2323 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2324 Record.clear(); 2325 } 2326 2327 // Write metadata attachments 2328 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2329 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2330 for (const BasicBlock &BB : F) 2331 for (const Instruction &I : BB) { 2332 MDs.clear(); 2333 I.getAllMetadataOtherThanDebugLoc(MDs); 2334 2335 // If no metadata, ignore instruction. 2336 if (MDs.empty()) continue; 2337 2338 Record.push_back(VE.getInstructionID(&I)); 2339 2340 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2341 Record.push_back(MDs[i].first); 2342 Record.push_back(VE.getMetadataID(MDs[i].second)); 2343 } 2344 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2345 Record.clear(); 2346 } 2347 2348 Stream.ExitBlock(); 2349 } 2350 2351 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2352 SmallVector<uint64_t, 64> Record; 2353 2354 // Write metadata kinds 2355 // METADATA_KIND - [n x [id, name]] 2356 SmallVector<StringRef, 8> Names; 2357 M.getMDKindNames(Names); 2358 2359 if (Names.empty()) return; 2360 2361 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2362 2363 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2364 Record.push_back(MDKindID); 2365 StringRef KName = Names[MDKindID]; 2366 Record.append(KName.begin(), KName.end()); 2367 2368 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2369 Record.clear(); 2370 } 2371 2372 Stream.ExitBlock(); 2373 } 2374 2375 void ModuleBitcodeWriter::writeOperandBundleTags() { 2376 // Write metadata kinds 2377 // 2378 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2379 // 2380 // OPERAND_BUNDLE_TAG - [strchr x N] 2381 2382 SmallVector<StringRef, 8> Tags; 2383 M.getOperandBundleTags(Tags); 2384 2385 if (Tags.empty()) 2386 return; 2387 2388 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2389 2390 SmallVector<uint64_t, 64> Record; 2391 2392 for (auto Tag : Tags) { 2393 Record.append(Tag.begin(), Tag.end()); 2394 2395 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2396 Record.clear(); 2397 } 2398 2399 Stream.ExitBlock(); 2400 } 2401 2402 void ModuleBitcodeWriter::writeSyncScopeNames() { 2403 SmallVector<StringRef, 8> SSNs; 2404 M.getContext().getSyncScopeNames(SSNs); 2405 if (SSNs.empty()) 2406 return; 2407 2408 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2409 2410 SmallVector<uint64_t, 64> Record; 2411 for (auto SSN : SSNs) { 2412 Record.append(SSN.begin(), SSN.end()); 2413 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2414 Record.clear(); 2415 } 2416 2417 Stream.ExitBlock(); 2418 } 2419 2420 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2421 bool isGlobal) { 2422 if (FirstVal == LastVal) return; 2423 2424 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2425 2426 unsigned AggregateAbbrev = 0; 2427 unsigned String8Abbrev = 0; 2428 unsigned CString7Abbrev = 0; 2429 unsigned CString6Abbrev = 0; 2430 // If this is a constant pool for the module, emit module-specific abbrevs. 2431 if (isGlobal) { 2432 // Abbrev for CST_CODE_AGGREGATE. 2433 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2434 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2437 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2438 2439 // Abbrev for CST_CODE_STRING. 2440 Abbv = std::make_shared<BitCodeAbbrev>(); 2441 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2444 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2445 // Abbrev for CST_CODE_CSTRING. 2446 Abbv = std::make_shared<BitCodeAbbrev>(); 2447 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2450 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2451 // Abbrev for CST_CODE_CSTRING. 2452 Abbv = std::make_shared<BitCodeAbbrev>(); 2453 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2456 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2457 } 2458 2459 SmallVector<uint64_t, 64> Record; 2460 2461 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2462 Type *LastTy = nullptr; 2463 for (unsigned i = FirstVal; i != LastVal; ++i) { 2464 const Value *V = Vals[i].first; 2465 // If we need to switch types, do so now. 2466 if (V->getType() != LastTy) { 2467 LastTy = V->getType(); 2468 Record.push_back(VE.getTypeID(LastTy)); 2469 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2470 CONSTANTS_SETTYPE_ABBREV); 2471 Record.clear(); 2472 } 2473 2474 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2475 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2476 Record.push_back( 2477 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2478 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2479 2480 // Add the asm string. 2481 const std::string &AsmStr = IA->getAsmString(); 2482 Record.push_back(AsmStr.size()); 2483 Record.append(AsmStr.begin(), AsmStr.end()); 2484 2485 // Add the constraint string. 2486 const std::string &ConstraintStr = IA->getConstraintString(); 2487 Record.push_back(ConstraintStr.size()); 2488 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2489 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2490 Record.clear(); 2491 continue; 2492 } 2493 const Constant *C = cast<Constant>(V); 2494 unsigned Code = -1U; 2495 unsigned AbbrevToUse = 0; 2496 if (C->isNullValue()) { 2497 Code = bitc::CST_CODE_NULL; 2498 } else if (isa<PoisonValue>(C)) { 2499 Code = bitc::CST_CODE_POISON; 2500 } else if (isa<UndefValue>(C)) { 2501 Code = bitc::CST_CODE_UNDEF; 2502 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2503 if (IV->getBitWidth() <= 64) { 2504 uint64_t V = IV->getSExtValue(); 2505 emitSignedInt64(Record, V); 2506 Code = bitc::CST_CODE_INTEGER; 2507 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2508 } else { // Wide integers, > 64 bits in size. 2509 emitWideAPInt(Record, IV->getValue()); 2510 Code = bitc::CST_CODE_WIDE_INTEGER; 2511 } 2512 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2513 Code = bitc::CST_CODE_FLOAT; 2514 Type *Ty = CFP->getType(); 2515 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2516 Ty->isDoubleTy()) { 2517 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2518 } else if (Ty->isX86_FP80Ty()) { 2519 // api needed to prevent premature destruction 2520 // bits are not in the same order as a normal i80 APInt, compensate. 2521 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2522 const uint64_t *p = api.getRawData(); 2523 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2524 Record.push_back(p[0] & 0xffffLL); 2525 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2526 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2527 const uint64_t *p = api.getRawData(); 2528 Record.push_back(p[0]); 2529 Record.push_back(p[1]); 2530 } else { 2531 assert(0 && "Unknown FP type!"); 2532 } 2533 } else if (isa<ConstantDataSequential>(C) && 2534 cast<ConstantDataSequential>(C)->isString()) { 2535 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2536 // Emit constant strings specially. 2537 unsigned NumElts = Str->getNumElements(); 2538 // If this is a null-terminated string, use the denser CSTRING encoding. 2539 if (Str->isCString()) { 2540 Code = bitc::CST_CODE_CSTRING; 2541 --NumElts; // Don't encode the null, which isn't allowed by char6. 2542 } else { 2543 Code = bitc::CST_CODE_STRING; 2544 AbbrevToUse = String8Abbrev; 2545 } 2546 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2547 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2548 for (unsigned i = 0; i != NumElts; ++i) { 2549 unsigned char V = Str->getElementAsInteger(i); 2550 Record.push_back(V); 2551 isCStr7 &= (V & 128) == 0; 2552 if (isCStrChar6) 2553 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2554 } 2555 2556 if (isCStrChar6) 2557 AbbrevToUse = CString6Abbrev; 2558 else if (isCStr7) 2559 AbbrevToUse = CString7Abbrev; 2560 } else if (const ConstantDataSequential *CDS = 2561 dyn_cast<ConstantDataSequential>(C)) { 2562 Code = bitc::CST_CODE_DATA; 2563 Type *EltTy = CDS->getElementType(); 2564 if (isa<IntegerType>(EltTy)) { 2565 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2566 Record.push_back(CDS->getElementAsInteger(i)); 2567 } else { 2568 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2569 Record.push_back( 2570 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2571 } 2572 } else if (isa<ConstantAggregate>(C)) { 2573 Code = bitc::CST_CODE_AGGREGATE; 2574 for (const Value *Op : C->operands()) 2575 Record.push_back(VE.getValueID(Op)); 2576 AbbrevToUse = AggregateAbbrev; 2577 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2578 switch (CE->getOpcode()) { 2579 default: 2580 if (Instruction::isCast(CE->getOpcode())) { 2581 Code = bitc::CST_CODE_CE_CAST; 2582 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2583 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2584 Record.push_back(VE.getValueID(C->getOperand(0))); 2585 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2586 } else { 2587 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2588 Code = bitc::CST_CODE_CE_BINOP; 2589 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2590 Record.push_back(VE.getValueID(C->getOperand(0))); 2591 Record.push_back(VE.getValueID(C->getOperand(1))); 2592 uint64_t Flags = getOptimizationFlags(CE); 2593 if (Flags != 0) 2594 Record.push_back(Flags); 2595 } 2596 break; 2597 case Instruction::FNeg: { 2598 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2599 Code = bitc::CST_CODE_CE_UNOP; 2600 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2601 Record.push_back(VE.getValueID(C->getOperand(0))); 2602 uint64_t Flags = getOptimizationFlags(CE); 2603 if (Flags != 0) 2604 Record.push_back(Flags); 2605 break; 2606 } 2607 case Instruction::GetElementPtr: { 2608 Code = bitc::CST_CODE_CE_GEP; 2609 const auto *GO = cast<GEPOperator>(C); 2610 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2611 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2612 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2613 Record.push_back((*Idx << 1) | GO->isInBounds()); 2614 } else if (GO->isInBounds()) 2615 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2616 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2617 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2618 Record.push_back(VE.getValueID(C->getOperand(i))); 2619 } 2620 break; 2621 } 2622 case Instruction::Select: 2623 Code = bitc::CST_CODE_CE_SELECT; 2624 Record.push_back(VE.getValueID(C->getOperand(0))); 2625 Record.push_back(VE.getValueID(C->getOperand(1))); 2626 Record.push_back(VE.getValueID(C->getOperand(2))); 2627 break; 2628 case Instruction::ExtractElement: 2629 Code = bitc::CST_CODE_CE_EXTRACTELT; 2630 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2631 Record.push_back(VE.getValueID(C->getOperand(0))); 2632 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2633 Record.push_back(VE.getValueID(C->getOperand(1))); 2634 break; 2635 case Instruction::InsertElement: 2636 Code = bitc::CST_CODE_CE_INSERTELT; 2637 Record.push_back(VE.getValueID(C->getOperand(0))); 2638 Record.push_back(VE.getValueID(C->getOperand(1))); 2639 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2640 Record.push_back(VE.getValueID(C->getOperand(2))); 2641 break; 2642 case Instruction::ShuffleVector: 2643 // If the return type and argument types are the same, this is a 2644 // standard shufflevector instruction. If the types are different, 2645 // then the shuffle is widening or truncating the input vectors, and 2646 // the argument type must also be encoded. 2647 if (C->getType() == C->getOperand(0)->getType()) { 2648 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2649 } else { 2650 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2651 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2652 } 2653 Record.push_back(VE.getValueID(C->getOperand(0))); 2654 Record.push_back(VE.getValueID(C->getOperand(1))); 2655 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2656 break; 2657 case Instruction::ICmp: 2658 case Instruction::FCmp: 2659 Code = bitc::CST_CODE_CE_CMP; 2660 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2661 Record.push_back(VE.getValueID(C->getOperand(0))); 2662 Record.push_back(VE.getValueID(C->getOperand(1))); 2663 Record.push_back(CE->getPredicate()); 2664 break; 2665 case Instruction::ExtractValue: 2666 case Instruction::InsertValue: 2667 report_fatal_error("extractvalue/insertvalue constexprs not supported"); 2668 break; 2669 } 2670 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2671 Code = bitc::CST_CODE_BLOCKADDRESS; 2672 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2673 Record.push_back(VE.getValueID(BA->getFunction())); 2674 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2675 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2676 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2677 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2678 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2679 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2680 Code = bitc::CST_CODE_NO_CFI_VALUE; 2681 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2682 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2683 } else { 2684 #ifndef NDEBUG 2685 C->dump(); 2686 #endif 2687 llvm_unreachable("Unknown constant!"); 2688 } 2689 Stream.EmitRecord(Code, Record, AbbrevToUse); 2690 Record.clear(); 2691 } 2692 2693 Stream.ExitBlock(); 2694 } 2695 2696 void ModuleBitcodeWriter::writeModuleConstants() { 2697 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2698 2699 // Find the first constant to emit, which is the first non-globalvalue value. 2700 // We know globalvalues have been emitted by WriteModuleInfo. 2701 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2702 if (!isa<GlobalValue>(Vals[i].first)) { 2703 writeConstants(i, Vals.size(), true); 2704 return; 2705 } 2706 } 2707 } 2708 2709 /// pushValueAndType - The file has to encode both the value and type id for 2710 /// many values, because we need to know what type to create for forward 2711 /// references. However, most operands are not forward references, so this type 2712 /// field is not needed. 2713 /// 2714 /// This function adds V's value ID to Vals. If the value ID is higher than the 2715 /// instruction ID, then it is a forward reference, and it also includes the 2716 /// type ID. The value ID that is written is encoded relative to the InstID. 2717 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2718 SmallVectorImpl<unsigned> &Vals) { 2719 unsigned ValID = VE.getValueID(V); 2720 // Make encoding relative to the InstID. 2721 Vals.push_back(InstID - ValID); 2722 if (ValID >= InstID) { 2723 Vals.push_back(VE.getTypeID(V->getType())); 2724 return true; 2725 } 2726 return false; 2727 } 2728 2729 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2730 unsigned InstID) { 2731 SmallVector<unsigned, 64> Record; 2732 LLVMContext &C = CS.getContext(); 2733 2734 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2735 const auto &Bundle = CS.getOperandBundleAt(i); 2736 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2737 2738 for (auto &Input : Bundle.Inputs) 2739 pushValueAndType(Input, InstID, Record); 2740 2741 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2742 Record.clear(); 2743 } 2744 } 2745 2746 /// pushValue - Like pushValueAndType, but where the type of the value is 2747 /// omitted (perhaps it was already encoded in an earlier operand). 2748 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2749 SmallVectorImpl<unsigned> &Vals) { 2750 unsigned ValID = VE.getValueID(V); 2751 Vals.push_back(InstID - ValID); 2752 } 2753 2754 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2755 SmallVectorImpl<uint64_t> &Vals) { 2756 unsigned ValID = VE.getValueID(V); 2757 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2758 emitSignedInt64(Vals, diff); 2759 } 2760 2761 /// WriteInstruction - Emit an instruction to the specified stream. 2762 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2763 unsigned InstID, 2764 SmallVectorImpl<unsigned> &Vals) { 2765 unsigned Code = 0; 2766 unsigned AbbrevToUse = 0; 2767 VE.setInstructionID(&I); 2768 switch (I.getOpcode()) { 2769 default: 2770 if (Instruction::isCast(I.getOpcode())) { 2771 Code = bitc::FUNC_CODE_INST_CAST; 2772 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2773 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2774 Vals.push_back(VE.getTypeID(I.getType())); 2775 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2776 } else { 2777 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2778 Code = bitc::FUNC_CODE_INST_BINOP; 2779 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2780 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2781 pushValue(I.getOperand(1), InstID, Vals); 2782 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2783 uint64_t Flags = getOptimizationFlags(&I); 2784 if (Flags != 0) { 2785 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2786 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2787 Vals.push_back(Flags); 2788 } 2789 } 2790 break; 2791 case Instruction::FNeg: { 2792 Code = bitc::FUNC_CODE_INST_UNOP; 2793 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2794 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2795 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2796 uint64_t Flags = getOptimizationFlags(&I); 2797 if (Flags != 0) { 2798 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2799 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2800 Vals.push_back(Flags); 2801 } 2802 break; 2803 } 2804 case Instruction::GetElementPtr: { 2805 Code = bitc::FUNC_CODE_INST_GEP; 2806 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2807 auto &GEPInst = cast<GetElementPtrInst>(I); 2808 Vals.push_back(GEPInst.isInBounds()); 2809 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2810 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2811 pushValueAndType(I.getOperand(i), InstID, Vals); 2812 break; 2813 } 2814 case Instruction::ExtractValue: { 2815 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2816 pushValueAndType(I.getOperand(0), InstID, Vals); 2817 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2818 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2819 break; 2820 } 2821 case Instruction::InsertValue: { 2822 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2823 pushValueAndType(I.getOperand(0), InstID, Vals); 2824 pushValueAndType(I.getOperand(1), InstID, Vals); 2825 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2826 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2827 break; 2828 } 2829 case Instruction::Select: { 2830 Code = bitc::FUNC_CODE_INST_VSELECT; 2831 pushValueAndType(I.getOperand(1), InstID, Vals); 2832 pushValue(I.getOperand(2), InstID, Vals); 2833 pushValueAndType(I.getOperand(0), InstID, Vals); 2834 uint64_t Flags = getOptimizationFlags(&I); 2835 if (Flags != 0) 2836 Vals.push_back(Flags); 2837 break; 2838 } 2839 case Instruction::ExtractElement: 2840 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2841 pushValueAndType(I.getOperand(0), InstID, Vals); 2842 pushValueAndType(I.getOperand(1), InstID, Vals); 2843 break; 2844 case Instruction::InsertElement: 2845 Code = bitc::FUNC_CODE_INST_INSERTELT; 2846 pushValueAndType(I.getOperand(0), InstID, Vals); 2847 pushValue(I.getOperand(1), InstID, Vals); 2848 pushValueAndType(I.getOperand(2), InstID, Vals); 2849 break; 2850 case Instruction::ShuffleVector: 2851 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2852 pushValueAndType(I.getOperand(0), InstID, Vals); 2853 pushValue(I.getOperand(1), InstID, Vals); 2854 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2855 Vals); 2856 break; 2857 case Instruction::ICmp: 2858 case Instruction::FCmp: { 2859 // compare returning Int1Ty or vector of Int1Ty 2860 Code = bitc::FUNC_CODE_INST_CMP2; 2861 pushValueAndType(I.getOperand(0), InstID, Vals); 2862 pushValue(I.getOperand(1), InstID, Vals); 2863 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2864 uint64_t Flags = getOptimizationFlags(&I); 2865 if (Flags != 0) 2866 Vals.push_back(Flags); 2867 break; 2868 } 2869 2870 case Instruction::Ret: 2871 { 2872 Code = bitc::FUNC_CODE_INST_RET; 2873 unsigned NumOperands = I.getNumOperands(); 2874 if (NumOperands == 0) 2875 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2876 else if (NumOperands == 1) { 2877 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2878 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2879 } else { 2880 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2881 pushValueAndType(I.getOperand(i), InstID, Vals); 2882 } 2883 } 2884 break; 2885 case Instruction::Br: 2886 { 2887 Code = bitc::FUNC_CODE_INST_BR; 2888 const BranchInst &II = cast<BranchInst>(I); 2889 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2890 if (II.isConditional()) { 2891 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2892 pushValue(II.getCondition(), InstID, Vals); 2893 } 2894 } 2895 break; 2896 case Instruction::Switch: 2897 { 2898 Code = bitc::FUNC_CODE_INST_SWITCH; 2899 const SwitchInst &SI = cast<SwitchInst>(I); 2900 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2901 pushValue(SI.getCondition(), InstID, Vals); 2902 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2903 for (auto Case : SI.cases()) { 2904 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2905 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2906 } 2907 } 2908 break; 2909 case Instruction::IndirectBr: 2910 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2911 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2912 // Encode the address operand as relative, but not the basic blocks. 2913 pushValue(I.getOperand(0), InstID, Vals); 2914 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2915 Vals.push_back(VE.getValueID(I.getOperand(i))); 2916 break; 2917 2918 case Instruction::Invoke: { 2919 const InvokeInst *II = cast<InvokeInst>(&I); 2920 const Value *Callee = II->getCalledOperand(); 2921 FunctionType *FTy = II->getFunctionType(); 2922 2923 if (II->hasOperandBundles()) 2924 writeOperandBundles(*II, InstID); 2925 2926 Code = bitc::FUNC_CODE_INST_INVOKE; 2927 2928 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2929 Vals.push_back(II->getCallingConv() | 1 << 13); 2930 Vals.push_back(VE.getValueID(II->getNormalDest())); 2931 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2932 Vals.push_back(VE.getTypeID(FTy)); 2933 pushValueAndType(Callee, InstID, Vals); 2934 2935 // Emit value #'s for the fixed parameters. 2936 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2937 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2938 2939 // Emit type/value pairs for varargs params. 2940 if (FTy->isVarArg()) { 2941 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2942 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2943 } 2944 break; 2945 } 2946 case Instruction::Resume: 2947 Code = bitc::FUNC_CODE_INST_RESUME; 2948 pushValueAndType(I.getOperand(0), InstID, Vals); 2949 break; 2950 case Instruction::CleanupRet: { 2951 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2952 const auto &CRI = cast<CleanupReturnInst>(I); 2953 pushValue(CRI.getCleanupPad(), InstID, Vals); 2954 if (CRI.hasUnwindDest()) 2955 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2956 break; 2957 } 2958 case Instruction::CatchRet: { 2959 Code = bitc::FUNC_CODE_INST_CATCHRET; 2960 const auto &CRI = cast<CatchReturnInst>(I); 2961 pushValue(CRI.getCatchPad(), InstID, Vals); 2962 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2963 break; 2964 } 2965 case Instruction::CleanupPad: 2966 case Instruction::CatchPad: { 2967 const auto &FuncletPad = cast<FuncletPadInst>(I); 2968 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2969 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2970 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2971 2972 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2973 Vals.push_back(NumArgOperands); 2974 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2975 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2976 break; 2977 } 2978 case Instruction::CatchSwitch: { 2979 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2980 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2981 2982 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2983 2984 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2985 Vals.push_back(NumHandlers); 2986 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2987 Vals.push_back(VE.getValueID(CatchPadBB)); 2988 2989 if (CatchSwitch.hasUnwindDest()) 2990 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2991 break; 2992 } 2993 case Instruction::CallBr: { 2994 const CallBrInst *CBI = cast<CallBrInst>(&I); 2995 const Value *Callee = CBI->getCalledOperand(); 2996 FunctionType *FTy = CBI->getFunctionType(); 2997 2998 if (CBI->hasOperandBundles()) 2999 writeOperandBundles(*CBI, InstID); 3000 3001 Code = bitc::FUNC_CODE_INST_CALLBR; 3002 3003 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3004 3005 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3006 1 << bitc::CALL_EXPLICIT_TYPE); 3007 3008 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3009 Vals.push_back(CBI->getNumIndirectDests()); 3010 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3011 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3012 3013 Vals.push_back(VE.getTypeID(FTy)); 3014 pushValueAndType(Callee, InstID, Vals); 3015 3016 // Emit value #'s for the fixed parameters. 3017 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3018 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3019 3020 // Emit type/value pairs for varargs params. 3021 if (FTy->isVarArg()) { 3022 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3023 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3024 } 3025 break; 3026 } 3027 case Instruction::Unreachable: 3028 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3029 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3030 break; 3031 3032 case Instruction::PHI: { 3033 const PHINode &PN = cast<PHINode>(I); 3034 Code = bitc::FUNC_CODE_INST_PHI; 3035 // With the newer instruction encoding, forward references could give 3036 // negative valued IDs. This is most common for PHIs, so we use 3037 // signed VBRs. 3038 SmallVector<uint64_t, 128> Vals64; 3039 Vals64.push_back(VE.getTypeID(PN.getType())); 3040 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3041 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3042 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3043 } 3044 3045 uint64_t Flags = getOptimizationFlags(&I); 3046 if (Flags != 0) 3047 Vals64.push_back(Flags); 3048 3049 // Emit a Vals64 vector and exit. 3050 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3051 Vals64.clear(); 3052 return; 3053 } 3054 3055 case Instruction::LandingPad: { 3056 const LandingPadInst &LP = cast<LandingPadInst>(I); 3057 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3058 Vals.push_back(VE.getTypeID(LP.getType())); 3059 Vals.push_back(LP.isCleanup()); 3060 Vals.push_back(LP.getNumClauses()); 3061 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3062 if (LP.isCatch(I)) 3063 Vals.push_back(LandingPadInst::Catch); 3064 else 3065 Vals.push_back(LandingPadInst::Filter); 3066 pushValueAndType(LP.getClause(I), InstID, Vals); 3067 } 3068 break; 3069 } 3070 3071 case Instruction::Alloca: { 3072 Code = bitc::FUNC_CODE_INST_ALLOCA; 3073 const AllocaInst &AI = cast<AllocaInst>(I); 3074 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3075 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3076 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3077 using APV = AllocaPackedValues; 3078 unsigned Record = 0; 3079 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3080 Bitfield::set<APV::AlignLower>( 3081 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3082 Bitfield::set<APV::AlignUpper>(Record, 3083 EncodedAlign >> APV::AlignLower::Bits); 3084 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3085 Bitfield::set<APV::ExplicitType>(Record, true); 3086 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3087 Vals.push_back(Record); 3088 3089 unsigned AS = AI.getAddressSpace(); 3090 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3091 Vals.push_back(AS); 3092 break; 3093 } 3094 3095 case Instruction::Load: 3096 if (cast<LoadInst>(I).isAtomic()) { 3097 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3098 pushValueAndType(I.getOperand(0), InstID, Vals); 3099 } else { 3100 Code = bitc::FUNC_CODE_INST_LOAD; 3101 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3102 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3103 } 3104 Vals.push_back(VE.getTypeID(I.getType())); 3105 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3106 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3107 if (cast<LoadInst>(I).isAtomic()) { 3108 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3109 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3110 } 3111 break; 3112 case Instruction::Store: 3113 if (cast<StoreInst>(I).isAtomic()) 3114 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3115 else 3116 Code = bitc::FUNC_CODE_INST_STORE; 3117 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3118 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3119 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3120 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3121 if (cast<StoreInst>(I).isAtomic()) { 3122 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3123 Vals.push_back( 3124 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3125 } 3126 break; 3127 case Instruction::AtomicCmpXchg: 3128 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3129 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3130 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3131 pushValue(I.getOperand(2), InstID, Vals); // newval. 3132 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3133 Vals.push_back( 3134 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3135 Vals.push_back( 3136 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3137 Vals.push_back( 3138 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3139 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3140 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3141 break; 3142 case Instruction::AtomicRMW: 3143 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3144 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3145 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3146 Vals.push_back( 3147 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3148 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3149 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3150 Vals.push_back( 3151 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3152 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3153 break; 3154 case Instruction::Fence: 3155 Code = bitc::FUNC_CODE_INST_FENCE; 3156 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3157 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3158 break; 3159 case Instruction::Call: { 3160 const CallInst &CI = cast<CallInst>(I); 3161 FunctionType *FTy = CI.getFunctionType(); 3162 3163 if (CI.hasOperandBundles()) 3164 writeOperandBundles(CI, InstID); 3165 3166 Code = bitc::FUNC_CODE_INST_CALL; 3167 3168 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3169 3170 unsigned Flags = getOptimizationFlags(&I); 3171 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3172 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3173 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3174 1 << bitc::CALL_EXPLICIT_TYPE | 3175 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3176 unsigned(Flags != 0) << bitc::CALL_FMF); 3177 if (Flags != 0) 3178 Vals.push_back(Flags); 3179 3180 Vals.push_back(VE.getTypeID(FTy)); 3181 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3182 3183 // Emit value #'s for the fixed parameters. 3184 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3185 // Check for labels (can happen with asm labels). 3186 if (FTy->getParamType(i)->isLabelTy()) 3187 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3188 else 3189 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3190 } 3191 3192 // Emit type/value pairs for varargs params. 3193 if (FTy->isVarArg()) { 3194 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3195 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3196 } 3197 break; 3198 } 3199 case Instruction::VAArg: 3200 Code = bitc::FUNC_CODE_INST_VAARG; 3201 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3202 pushValue(I.getOperand(0), InstID, Vals); // valist. 3203 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3204 break; 3205 case Instruction::Freeze: 3206 Code = bitc::FUNC_CODE_INST_FREEZE; 3207 pushValueAndType(I.getOperand(0), InstID, Vals); 3208 break; 3209 } 3210 3211 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3212 Vals.clear(); 3213 } 3214 3215 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3216 /// to allow clients to efficiently find the function body. 3217 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3218 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3219 // Get the offset of the VST we are writing, and backpatch it into 3220 // the VST forward declaration record. 3221 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3222 // The BitcodeStartBit was the stream offset of the identification block. 3223 VSTOffset -= bitcodeStartBit(); 3224 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3225 // Note that we add 1 here because the offset is relative to one word 3226 // before the start of the identification block, which was historically 3227 // always the start of the regular bitcode header. 3228 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3229 3230 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3231 3232 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3233 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3236 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3237 3238 for (const Function &F : M) { 3239 uint64_t Record[2]; 3240 3241 if (F.isDeclaration()) 3242 continue; 3243 3244 Record[0] = VE.getValueID(&F); 3245 3246 // Save the word offset of the function (from the start of the 3247 // actual bitcode written to the stream). 3248 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3249 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3250 // Note that we add 1 here because the offset is relative to one word 3251 // before the start of the identification block, which was historically 3252 // always the start of the regular bitcode header. 3253 Record[1] = BitcodeIndex / 32 + 1; 3254 3255 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3256 } 3257 3258 Stream.ExitBlock(); 3259 } 3260 3261 /// Emit names for arguments, instructions and basic blocks in a function. 3262 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3263 const ValueSymbolTable &VST) { 3264 if (VST.empty()) 3265 return; 3266 3267 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3268 3269 // FIXME: Set up the abbrev, we know how many values there are! 3270 // FIXME: We know if the type names can use 7-bit ascii. 3271 SmallVector<uint64_t, 64> NameVals; 3272 3273 for (const ValueName &Name : VST) { 3274 // Figure out the encoding to use for the name. 3275 StringEncoding Bits = getStringEncoding(Name.getKey()); 3276 3277 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3278 NameVals.push_back(VE.getValueID(Name.getValue())); 3279 3280 // VST_CODE_ENTRY: [valueid, namechar x N] 3281 // VST_CODE_BBENTRY: [bbid, namechar x N] 3282 unsigned Code; 3283 if (isa<BasicBlock>(Name.getValue())) { 3284 Code = bitc::VST_CODE_BBENTRY; 3285 if (Bits == SE_Char6) 3286 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3287 } else { 3288 Code = bitc::VST_CODE_ENTRY; 3289 if (Bits == SE_Char6) 3290 AbbrevToUse = VST_ENTRY_6_ABBREV; 3291 else if (Bits == SE_Fixed7) 3292 AbbrevToUse = VST_ENTRY_7_ABBREV; 3293 } 3294 3295 for (const auto P : Name.getKey()) 3296 NameVals.push_back((unsigned char)P); 3297 3298 // Emit the finished record. 3299 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3300 NameVals.clear(); 3301 } 3302 3303 Stream.ExitBlock(); 3304 } 3305 3306 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3307 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3308 unsigned Code; 3309 if (isa<BasicBlock>(Order.V)) 3310 Code = bitc::USELIST_CODE_BB; 3311 else 3312 Code = bitc::USELIST_CODE_DEFAULT; 3313 3314 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3315 Record.push_back(VE.getValueID(Order.V)); 3316 Stream.EmitRecord(Code, Record); 3317 } 3318 3319 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3320 assert(VE.shouldPreserveUseListOrder() && 3321 "Expected to be preserving use-list order"); 3322 3323 auto hasMore = [&]() { 3324 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3325 }; 3326 if (!hasMore()) 3327 // Nothing to do. 3328 return; 3329 3330 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3331 while (hasMore()) { 3332 writeUseList(std::move(VE.UseListOrders.back())); 3333 VE.UseListOrders.pop_back(); 3334 } 3335 Stream.ExitBlock(); 3336 } 3337 3338 /// Emit a function body to the module stream. 3339 void ModuleBitcodeWriter::writeFunction( 3340 const Function &F, 3341 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3342 // Save the bitcode index of the start of this function block for recording 3343 // in the VST. 3344 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3345 3346 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3347 VE.incorporateFunction(F); 3348 3349 SmallVector<unsigned, 64> Vals; 3350 3351 // Emit the number of basic blocks, so the reader can create them ahead of 3352 // time. 3353 Vals.push_back(VE.getBasicBlocks().size()); 3354 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3355 Vals.clear(); 3356 3357 // If there are function-local constants, emit them now. 3358 unsigned CstStart, CstEnd; 3359 VE.getFunctionConstantRange(CstStart, CstEnd); 3360 writeConstants(CstStart, CstEnd, false); 3361 3362 // If there is function-local metadata, emit it now. 3363 writeFunctionMetadata(F); 3364 3365 // Keep a running idea of what the instruction ID is. 3366 unsigned InstID = CstEnd; 3367 3368 bool NeedsMetadataAttachment = F.hasMetadata(); 3369 3370 DILocation *LastDL = nullptr; 3371 SmallSetVector<Function *, 4> BlockAddressUsers; 3372 3373 // Finally, emit all the instructions, in order. 3374 for (const BasicBlock &BB : F) { 3375 for (const Instruction &I : BB) { 3376 writeInstruction(I, InstID, Vals); 3377 3378 if (!I.getType()->isVoidTy()) 3379 ++InstID; 3380 3381 // If the instruction has metadata, write a metadata attachment later. 3382 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3383 3384 // If the instruction has a debug location, emit it. 3385 DILocation *DL = I.getDebugLoc(); 3386 if (!DL) 3387 continue; 3388 3389 if (DL == LastDL) { 3390 // Just repeat the same debug loc as last time. 3391 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3392 continue; 3393 } 3394 3395 Vals.push_back(DL->getLine()); 3396 Vals.push_back(DL->getColumn()); 3397 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3398 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3399 Vals.push_back(DL->isImplicitCode()); 3400 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3401 Vals.clear(); 3402 3403 LastDL = DL; 3404 } 3405 3406 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3407 SmallVector<Value *> Worklist{BA}; 3408 SmallPtrSet<Value *, 8> Visited{BA}; 3409 while (!Worklist.empty()) { 3410 Value *V = Worklist.pop_back_val(); 3411 for (User *U : V->users()) { 3412 if (auto *I = dyn_cast<Instruction>(U)) { 3413 Function *P = I->getFunction(); 3414 if (P != &F) 3415 BlockAddressUsers.insert(P); 3416 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3417 Visited.insert(U).second) 3418 Worklist.push_back(U); 3419 } 3420 } 3421 } 3422 } 3423 3424 if (!BlockAddressUsers.empty()) { 3425 Vals.resize(BlockAddressUsers.size()); 3426 for (auto I : llvm::enumerate(BlockAddressUsers)) 3427 Vals[I.index()] = VE.getValueID(I.value()); 3428 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3429 Vals.clear(); 3430 } 3431 3432 // Emit names for all the instructions etc. 3433 if (auto *Symtab = F.getValueSymbolTable()) 3434 writeFunctionLevelValueSymbolTable(*Symtab); 3435 3436 if (NeedsMetadataAttachment) 3437 writeFunctionMetadataAttachment(F); 3438 if (VE.shouldPreserveUseListOrder()) 3439 writeUseListBlock(&F); 3440 VE.purgeFunction(); 3441 Stream.ExitBlock(); 3442 } 3443 3444 // Emit blockinfo, which defines the standard abbreviations etc. 3445 void ModuleBitcodeWriter::writeBlockInfo() { 3446 // We only want to emit block info records for blocks that have multiple 3447 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3448 // Other blocks can define their abbrevs inline. 3449 Stream.EnterBlockInfoBlock(); 3450 3451 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3452 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3457 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3458 VST_ENTRY_8_ABBREV) 3459 llvm_unreachable("Unexpected abbrev ordering!"); 3460 } 3461 3462 { // 7-bit fixed width VST_CODE_ENTRY strings. 3463 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3464 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3468 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3469 VST_ENTRY_7_ABBREV) 3470 llvm_unreachable("Unexpected abbrev ordering!"); 3471 } 3472 { // 6-bit char6 VST_CODE_ENTRY strings. 3473 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3474 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3478 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3479 VST_ENTRY_6_ABBREV) 3480 llvm_unreachable("Unexpected abbrev ordering!"); 3481 } 3482 { // 6-bit char6 VST_CODE_BBENTRY strings. 3483 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3484 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3488 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3489 VST_BBENTRY_6_ABBREV) 3490 llvm_unreachable("Unexpected abbrev ordering!"); 3491 } 3492 3493 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3494 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3495 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3497 VE.computeBitsRequiredForTypeIndicies())); 3498 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3499 CONSTANTS_SETTYPE_ABBREV) 3500 llvm_unreachable("Unexpected abbrev ordering!"); 3501 } 3502 3503 { // INTEGER abbrev for CONSTANTS_BLOCK. 3504 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3505 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3507 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3508 CONSTANTS_INTEGER_ABBREV) 3509 llvm_unreachable("Unexpected abbrev ordering!"); 3510 } 3511 3512 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3513 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3514 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3517 VE.computeBitsRequiredForTypeIndicies())); 3518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3519 3520 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3521 CONSTANTS_CE_CAST_Abbrev) 3522 llvm_unreachable("Unexpected abbrev ordering!"); 3523 } 3524 { // NULL abbrev for CONSTANTS_BLOCK. 3525 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3526 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3527 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3528 CONSTANTS_NULL_Abbrev) 3529 llvm_unreachable("Unexpected abbrev ordering!"); 3530 } 3531 3532 // FIXME: This should only use space for first class types! 3533 3534 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3535 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3536 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3539 VE.computeBitsRequiredForTypeIndicies())); 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3542 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3543 FUNCTION_INST_LOAD_ABBREV) 3544 llvm_unreachable("Unexpected abbrev ordering!"); 3545 } 3546 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3547 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3548 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3551 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3552 FUNCTION_INST_UNOP_ABBREV) 3553 llvm_unreachable("Unexpected abbrev ordering!"); 3554 } 3555 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3556 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3557 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3561 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3562 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3563 llvm_unreachable("Unexpected abbrev ordering!"); 3564 } 3565 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3566 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3567 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3571 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3572 FUNCTION_INST_BINOP_ABBREV) 3573 llvm_unreachable("Unexpected abbrev ordering!"); 3574 } 3575 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3576 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3577 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3582 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3583 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3584 llvm_unreachable("Unexpected abbrev ordering!"); 3585 } 3586 { // INST_CAST abbrev for FUNCTION_BLOCK. 3587 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3588 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3591 VE.computeBitsRequiredForTypeIndicies())); 3592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3593 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3594 FUNCTION_INST_CAST_ABBREV) 3595 llvm_unreachable("Unexpected abbrev ordering!"); 3596 } 3597 3598 { // INST_RET abbrev for FUNCTION_BLOCK. 3599 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3600 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3601 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3602 FUNCTION_INST_RET_VOID_ABBREV) 3603 llvm_unreachable("Unexpected abbrev ordering!"); 3604 } 3605 { // INST_RET abbrev for FUNCTION_BLOCK. 3606 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3607 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3609 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3610 FUNCTION_INST_RET_VAL_ABBREV) 3611 llvm_unreachable("Unexpected abbrev ordering!"); 3612 } 3613 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3614 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3615 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3616 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3617 FUNCTION_INST_UNREACHABLE_ABBREV) 3618 llvm_unreachable("Unexpected abbrev ordering!"); 3619 } 3620 { 3621 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3622 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3625 Log2_32_Ceil(VE.getTypes().size() + 1))); 3626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3628 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3629 FUNCTION_INST_GEP_ABBREV) 3630 llvm_unreachable("Unexpected abbrev ordering!"); 3631 } 3632 3633 Stream.ExitBlock(); 3634 } 3635 3636 /// Write the module path strings, currently only used when generating 3637 /// a combined index file. 3638 void IndexBitcodeWriter::writeModStrings() { 3639 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3640 3641 // TODO: See which abbrev sizes we actually need to emit 3642 3643 // 8-bit fixed-width MST_ENTRY strings. 3644 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3645 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3649 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3650 3651 // 7-bit fixed width MST_ENTRY strings. 3652 Abbv = std::make_shared<BitCodeAbbrev>(); 3653 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3657 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3658 3659 // 6-bit char6 MST_ENTRY strings. 3660 Abbv = std::make_shared<BitCodeAbbrev>(); 3661 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3665 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3666 3667 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3668 Abbv = std::make_shared<BitCodeAbbrev>(); 3669 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3675 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3676 3677 SmallVector<unsigned, 64> Vals; 3678 forEachModule( 3679 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3680 StringRef Key = MPSE.getKey(); 3681 const auto &Value = MPSE.getValue(); 3682 StringEncoding Bits = getStringEncoding(Key); 3683 unsigned AbbrevToUse = Abbrev8Bit; 3684 if (Bits == SE_Char6) 3685 AbbrevToUse = Abbrev6Bit; 3686 else if (Bits == SE_Fixed7) 3687 AbbrevToUse = Abbrev7Bit; 3688 3689 Vals.push_back(Value.first); 3690 Vals.append(Key.begin(), Key.end()); 3691 3692 // Emit the finished record. 3693 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3694 3695 // Emit an optional hash for the module now 3696 const auto &Hash = Value.second; 3697 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3698 Vals.assign(Hash.begin(), Hash.end()); 3699 // Emit the hash record. 3700 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3701 } 3702 3703 Vals.clear(); 3704 }); 3705 Stream.ExitBlock(); 3706 } 3707 3708 /// Write the function type metadata related records that need to appear before 3709 /// a function summary entry (whether per-module or combined). 3710 template <typename Fn> 3711 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3712 FunctionSummary *FS, 3713 Fn GetValueID) { 3714 if (!FS->type_tests().empty()) 3715 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3716 3717 SmallVector<uint64_t, 64> Record; 3718 3719 auto WriteVFuncIdVec = [&](uint64_t Ty, 3720 ArrayRef<FunctionSummary::VFuncId> VFs) { 3721 if (VFs.empty()) 3722 return; 3723 Record.clear(); 3724 for (auto &VF : VFs) { 3725 Record.push_back(VF.GUID); 3726 Record.push_back(VF.Offset); 3727 } 3728 Stream.EmitRecord(Ty, Record); 3729 }; 3730 3731 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3732 FS->type_test_assume_vcalls()); 3733 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3734 FS->type_checked_load_vcalls()); 3735 3736 auto WriteConstVCallVec = [&](uint64_t Ty, 3737 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3738 for (auto &VC : VCs) { 3739 Record.clear(); 3740 Record.push_back(VC.VFunc.GUID); 3741 Record.push_back(VC.VFunc.Offset); 3742 llvm::append_range(Record, VC.Args); 3743 Stream.EmitRecord(Ty, Record); 3744 } 3745 }; 3746 3747 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3748 FS->type_test_assume_const_vcalls()); 3749 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3750 FS->type_checked_load_const_vcalls()); 3751 3752 auto WriteRange = [&](ConstantRange Range) { 3753 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3754 assert(Range.getLower().getNumWords() == 1); 3755 assert(Range.getUpper().getNumWords() == 1); 3756 emitSignedInt64(Record, *Range.getLower().getRawData()); 3757 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3758 }; 3759 3760 if (!FS->paramAccesses().empty()) { 3761 Record.clear(); 3762 for (auto &Arg : FS->paramAccesses()) { 3763 size_t UndoSize = Record.size(); 3764 Record.push_back(Arg.ParamNo); 3765 WriteRange(Arg.Use); 3766 Record.push_back(Arg.Calls.size()); 3767 for (auto &Call : Arg.Calls) { 3768 Record.push_back(Call.ParamNo); 3769 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3770 if (!ValueID) { 3771 // If ValueID is unknown we can't drop just this call, we must drop 3772 // entire parameter. 3773 Record.resize(UndoSize); 3774 break; 3775 } 3776 Record.push_back(*ValueID); 3777 WriteRange(Call.Offsets); 3778 } 3779 } 3780 if (!Record.empty()) 3781 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3782 } 3783 } 3784 3785 /// Collect type IDs from type tests used by function. 3786 static void 3787 getReferencedTypeIds(FunctionSummary *FS, 3788 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3789 if (!FS->type_tests().empty()) 3790 for (auto &TT : FS->type_tests()) 3791 ReferencedTypeIds.insert(TT); 3792 3793 auto GetReferencedTypesFromVFuncIdVec = 3794 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3795 for (auto &VF : VFs) 3796 ReferencedTypeIds.insert(VF.GUID); 3797 }; 3798 3799 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3800 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3801 3802 auto GetReferencedTypesFromConstVCallVec = 3803 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3804 for (auto &VC : VCs) 3805 ReferencedTypeIds.insert(VC.VFunc.GUID); 3806 }; 3807 3808 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3809 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3810 } 3811 3812 static void writeWholeProgramDevirtResolutionByArg( 3813 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3814 const WholeProgramDevirtResolution::ByArg &ByArg) { 3815 NameVals.push_back(args.size()); 3816 llvm::append_range(NameVals, args); 3817 3818 NameVals.push_back(ByArg.TheKind); 3819 NameVals.push_back(ByArg.Info); 3820 NameVals.push_back(ByArg.Byte); 3821 NameVals.push_back(ByArg.Bit); 3822 } 3823 3824 static void writeWholeProgramDevirtResolution( 3825 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3826 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3827 NameVals.push_back(Id); 3828 3829 NameVals.push_back(Wpd.TheKind); 3830 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3831 NameVals.push_back(Wpd.SingleImplName.size()); 3832 3833 NameVals.push_back(Wpd.ResByArg.size()); 3834 for (auto &A : Wpd.ResByArg) 3835 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3836 } 3837 3838 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3839 StringTableBuilder &StrtabBuilder, 3840 const std::string &Id, 3841 const TypeIdSummary &Summary) { 3842 NameVals.push_back(StrtabBuilder.add(Id)); 3843 NameVals.push_back(Id.size()); 3844 3845 NameVals.push_back(Summary.TTRes.TheKind); 3846 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3847 NameVals.push_back(Summary.TTRes.AlignLog2); 3848 NameVals.push_back(Summary.TTRes.SizeM1); 3849 NameVals.push_back(Summary.TTRes.BitMask); 3850 NameVals.push_back(Summary.TTRes.InlineBits); 3851 3852 for (auto &W : Summary.WPDRes) 3853 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3854 W.second); 3855 } 3856 3857 static void writeTypeIdCompatibleVtableSummaryRecord( 3858 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3859 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3860 ValueEnumerator &VE) { 3861 NameVals.push_back(StrtabBuilder.add(Id)); 3862 NameVals.push_back(Id.size()); 3863 3864 for (auto &P : Summary) { 3865 NameVals.push_back(P.AddressPointOffset); 3866 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3867 } 3868 } 3869 3870 // Helper to emit a single function summary record. 3871 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3872 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3873 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3874 const Function &F) { 3875 NameVals.push_back(ValueID); 3876 3877 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3878 3879 writeFunctionTypeMetadataRecords( 3880 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3881 return {VE.getValueID(VI.getValue())}; 3882 }); 3883 3884 auto SpecialRefCnts = FS->specialRefCounts(); 3885 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3886 NameVals.push_back(FS->instCount()); 3887 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3888 NameVals.push_back(FS->refs().size()); 3889 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3890 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3891 3892 for (auto &RI : FS->refs()) 3893 NameVals.push_back(VE.getValueID(RI.getValue())); 3894 3895 bool HasProfileData = 3896 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3897 for (auto &ECI : FS->calls()) { 3898 NameVals.push_back(getValueId(ECI.first)); 3899 if (HasProfileData) 3900 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3901 else if (WriteRelBFToSummary) 3902 NameVals.push_back(ECI.second.RelBlockFreq); 3903 } 3904 3905 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3906 unsigned Code = 3907 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3908 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3909 : bitc::FS_PERMODULE)); 3910 3911 // Emit the finished record. 3912 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3913 NameVals.clear(); 3914 } 3915 3916 // Collect the global value references in the given variable's initializer, 3917 // and emit them in a summary record. 3918 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3919 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3920 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3921 auto VI = Index->getValueInfo(V.getGUID()); 3922 if (!VI || VI.getSummaryList().empty()) { 3923 // Only declarations should not have a summary (a declaration might however 3924 // have a summary if the def was in module level asm). 3925 assert(V.isDeclaration()); 3926 return; 3927 } 3928 auto *Summary = VI.getSummaryList()[0].get(); 3929 NameVals.push_back(VE.getValueID(&V)); 3930 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3931 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3932 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3933 3934 auto VTableFuncs = VS->vTableFuncs(); 3935 if (!VTableFuncs.empty()) 3936 NameVals.push_back(VS->refs().size()); 3937 3938 unsigned SizeBeforeRefs = NameVals.size(); 3939 for (auto &RI : VS->refs()) 3940 NameVals.push_back(VE.getValueID(RI.getValue())); 3941 // Sort the refs for determinism output, the vector returned by FS->refs() has 3942 // been initialized from a DenseSet. 3943 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3944 3945 if (VTableFuncs.empty()) 3946 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3947 FSModRefsAbbrev); 3948 else { 3949 // VTableFuncs pairs should already be sorted by offset. 3950 for (auto &P : VTableFuncs) { 3951 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3952 NameVals.push_back(P.VTableOffset); 3953 } 3954 3955 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3956 FSModVTableRefsAbbrev); 3957 } 3958 NameVals.clear(); 3959 } 3960 3961 /// Emit the per-module summary section alongside the rest of 3962 /// the module's bitcode. 3963 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3964 // By default we compile with ThinLTO if the module has a summary, but the 3965 // client can request full LTO with a module flag. 3966 bool IsThinLTO = true; 3967 if (auto *MD = 3968 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3969 IsThinLTO = MD->getZExtValue(); 3970 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3971 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3972 4); 3973 3974 Stream.EmitRecord( 3975 bitc::FS_VERSION, 3976 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3977 3978 // Write the index flags. 3979 uint64_t Flags = 0; 3980 // Bits 1-3 are set only in the combined index, skip them. 3981 if (Index->enableSplitLTOUnit()) 3982 Flags |= 0x8; 3983 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3984 3985 if (Index->begin() == Index->end()) { 3986 Stream.ExitBlock(); 3987 return; 3988 } 3989 3990 for (const auto &GVI : valueIds()) { 3991 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3992 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3993 } 3994 3995 // Abbrev for FS_PERMODULE_PROFILE. 3996 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3997 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4005 // numrefs x valueid, n x (valueid, hotness) 4006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4008 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4009 4010 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4011 Abbv = std::make_shared<BitCodeAbbrev>(); 4012 if (WriteRelBFToSummary) 4013 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4014 else 4015 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4023 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4026 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4027 4028 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4029 Abbv = std::make_shared<BitCodeAbbrev>(); 4030 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4035 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4036 4037 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4038 Abbv = std::make_shared<BitCodeAbbrev>(); 4039 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4043 // numrefs x valueid, n x (valueid , offset) 4044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4046 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4047 4048 // Abbrev for FS_ALIAS. 4049 Abbv = std::make_shared<BitCodeAbbrev>(); 4050 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4054 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4055 4056 // Abbrev for FS_TYPE_ID_METADATA 4057 Abbv = std::make_shared<BitCodeAbbrev>(); 4058 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4061 // n x (valueid , offset) 4062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4064 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4065 4066 SmallVector<uint64_t, 64> NameVals; 4067 // Iterate over the list of functions instead of the Index to 4068 // ensure the ordering is stable. 4069 for (const Function &F : M) { 4070 // Summary emission does not support anonymous functions, they have to 4071 // renamed using the anonymous function renaming pass. 4072 if (!F.hasName()) 4073 report_fatal_error("Unexpected anonymous function when writing summary"); 4074 4075 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4076 if (!VI || VI.getSummaryList().empty()) { 4077 // Only declarations should not have a summary (a declaration might 4078 // however have a summary if the def was in module level asm). 4079 assert(F.isDeclaration()); 4080 continue; 4081 } 4082 auto *Summary = VI.getSummaryList()[0].get(); 4083 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4084 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4085 } 4086 4087 // Capture references from GlobalVariable initializers, which are outside 4088 // of a function scope. 4089 for (const GlobalVariable &G : M.globals()) 4090 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4091 FSModVTableRefsAbbrev); 4092 4093 for (const GlobalAlias &A : M.aliases()) { 4094 auto *Aliasee = A.getAliaseeObject(); 4095 if (!Aliasee->hasName()) 4096 // Nameless function don't have an entry in the summary, skip it. 4097 continue; 4098 auto AliasId = VE.getValueID(&A); 4099 auto AliaseeId = VE.getValueID(Aliasee); 4100 NameVals.push_back(AliasId); 4101 auto *Summary = Index->getGlobalValueSummary(A); 4102 AliasSummary *AS = cast<AliasSummary>(Summary); 4103 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4104 NameVals.push_back(AliaseeId); 4105 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4106 NameVals.clear(); 4107 } 4108 4109 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4110 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4111 S.second, VE); 4112 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4113 TypeIdCompatibleVtableAbbrev); 4114 NameVals.clear(); 4115 } 4116 4117 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4118 ArrayRef<uint64_t>{Index->getBlockCount()}); 4119 4120 Stream.ExitBlock(); 4121 } 4122 4123 /// Emit the combined summary section into the combined index file. 4124 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4125 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4126 Stream.EmitRecord( 4127 bitc::FS_VERSION, 4128 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4129 4130 // Write the index flags. 4131 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4132 4133 for (const auto &GVI : valueIds()) { 4134 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4135 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4136 } 4137 4138 // Abbrev for FS_COMBINED. 4139 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4140 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4150 // numrefs x valueid, n x (valueid) 4151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4153 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4154 4155 // Abbrev for FS_COMBINED_PROFILE. 4156 Abbv = std::make_shared<BitCodeAbbrev>(); 4157 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4167 // numrefs x valueid, n x (valueid, hotness) 4168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4170 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4171 4172 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4173 Abbv = std::make_shared<BitCodeAbbrev>(); 4174 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4180 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4181 4182 // Abbrev for FS_COMBINED_ALIAS. 4183 Abbv = std::make_shared<BitCodeAbbrev>(); 4184 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4189 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4190 4191 // The aliases are emitted as a post-pass, and will point to the value 4192 // id of the aliasee. Save them in a vector for post-processing. 4193 SmallVector<AliasSummary *, 64> Aliases; 4194 4195 // Save the value id for each summary for alias emission. 4196 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4197 4198 SmallVector<uint64_t, 64> NameVals; 4199 4200 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4201 // with the type ids referenced by this index file. 4202 std::set<GlobalValue::GUID> ReferencedTypeIds; 4203 4204 // For local linkage, we also emit the original name separately 4205 // immediately after the record. 4206 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4207 // We don't need to emit the original name if we are writing the index for 4208 // distributed backends (in which case ModuleToSummariesForIndex is 4209 // non-null). The original name is only needed during the thin link, since 4210 // for SamplePGO the indirect call targets for local functions have 4211 // have the original name annotated in profile. 4212 // Continue to emit it when writing out the entire combined index, which is 4213 // used in testing the thin link via llvm-lto. 4214 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4215 return; 4216 NameVals.push_back(S.getOriginalName()); 4217 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4218 NameVals.clear(); 4219 }; 4220 4221 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4222 forEachSummary([&](GVInfo I, bool IsAliasee) { 4223 GlobalValueSummary *S = I.second; 4224 assert(S); 4225 DefOrUseGUIDs.insert(I.first); 4226 for (const ValueInfo &VI : S->refs()) 4227 DefOrUseGUIDs.insert(VI.getGUID()); 4228 4229 auto ValueId = getValueId(I.first); 4230 assert(ValueId); 4231 SummaryToValueIdMap[S] = *ValueId; 4232 4233 // If this is invoked for an aliasee, we want to record the above 4234 // mapping, but then not emit a summary entry (if the aliasee is 4235 // to be imported, we will invoke this separately with IsAliasee=false). 4236 if (IsAliasee) 4237 return; 4238 4239 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4240 // Will process aliases as a post-pass because the reader wants all 4241 // global to be loaded first. 4242 Aliases.push_back(AS); 4243 return; 4244 } 4245 4246 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4247 NameVals.push_back(*ValueId); 4248 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4249 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4250 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4251 for (auto &RI : VS->refs()) { 4252 auto RefValueId = getValueId(RI.getGUID()); 4253 if (!RefValueId) 4254 continue; 4255 NameVals.push_back(*RefValueId); 4256 } 4257 4258 // Emit the finished record. 4259 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4260 FSModRefsAbbrev); 4261 NameVals.clear(); 4262 MaybeEmitOriginalName(*S); 4263 return; 4264 } 4265 4266 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4267 return getValueId(VI.getGUID()); 4268 }; 4269 4270 auto *FS = cast<FunctionSummary>(S); 4271 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4272 getReferencedTypeIds(FS, ReferencedTypeIds); 4273 4274 NameVals.push_back(*ValueId); 4275 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4276 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4277 NameVals.push_back(FS->instCount()); 4278 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4279 NameVals.push_back(FS->entryCount()); 4280 4281 // Fill in below 4282 NameVals.push_back(0); // numrefs 4283 NameVals.push_back(0); // rorefcnt 4284 NameVals.push_back(0); // worefcnt 4285 4286 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4287 for (auto &RI : FS->refs()) { 4288 auto RefValueId = getValueId(RI.getGUID()); 4289 if (!RefValueId) 4290 continue; 4291 NameVals.push_back(*RefValueId); 4292 if (RI.isReadOnly()) 4293 RORefCnt++; 4294 else if (RI.isWriteOnly()) 4295 WORefCnt++; 4296 Count++; 4297 } 4298 NameVals[6] = Count; 4299 NameVals[7] = RORefCnt; 4300 NameVals[8] = WORefCnt; 4301 4302 bool HasProfileData = false; 4303 for (auto &EI : FS->calls()) { 4304 HasProfileData |= 4305 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4306 if (HasProfileData) 4307 break; 4308 } 4309 4310 for (auto &EI : FS->calls()) { 4311 // If this GUID doesn't have a value id, it doesn't have a function 4312 // summary and we don't need to record any calls to it. 4313 Optional<unsigned> CallValueId = GetValueId(EI.first); 4314 if (!CallValueId) 4315 continue; 4316 NameVals.push_back(*CallValueId); 4317 if (HasProfileData) 4318 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4319 } 4320 4321 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4322 unsigned Code = 4323 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4324 4325 // Emit the finished record. 4326 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4327 NameVals.clear(); 4328 MaybeEmitOriginalName(*S); 4329 }); 4330 4331 for (auto *AS : Aliases) { 4332 auto AliasValueId = SummaryToValueIdMap[AS]; 4333 assert(AliasValueId); 4334 NameVals.push_back(AliasValueId); 4335 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4336 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4337 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4338 assert(AliaseeValueId); 4339 NameVals.push_back(AliaseeValueId); 4340 4341 // Emit the finished record. 4342 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4343 NameVals.clear(); 4344 MaybeEmitOriginalName(*AS); 4345 4346 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4347 getReferencedTypeIds(FS, ReferencedTypeIds); 4348 } 4349 4350 if (!Index.cfiFunctionDefs().empty()) { 4351 for (auto &S : Index.cfiFunctionDefs()) { 4352 if (DefOrUseGUIDs.count( 4353 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4354 NameVals.push_back(StrtabBuilder.add(S)); 4355 NameVals.push_back(S.size()); 4356 } 4357 } 4358 if (!NameVals.empty()) { 4359 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4360 NameVals.clear(); 4361 } 4362 } 4363 4364 if (!Index.cfiFunctionDecls().empty()) { 4365 for (auto &S : Index.cfiFunctionDecls()) { 4366 if (DefOrUseGUIDs.count( 4367 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4368 NameVals.push_back(StrtabBuilder.add(S)); 4369 NameVals.push_back(S.size()); 4370 } 4371 } 4372 if (!NameVals.empty()) { 4373 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4374 NameVals.clear(); 4375 } 4376 } 4377 4378 // Walk the GUIDs that were referenced, and write the 4379 // corresponding type id records. 4380 for (auto &T : ReferencedTypeIds) { 4381 auto TidIter = Index.typeIds().equal_range(T); 4382 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4383 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4384 It->second.second); 4385 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4386 NameVals.clear(); 4387 } 4388 } 4389 4390 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4391 ArrayRef<uint64_t>{Index.getBlockCount()}); 4392 4393 Stream.ExitBlock(); 4394 } 4395 4396 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4397 /// current llvm version, and a record for the epoch number. 4398 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4399 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4400 4401 // Write the "user readable" string identifying the bitcode producer 4402 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4403 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4406 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4407 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4408 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4409 4410 // Write the epoch version 4411 Abbv = std::make_shared<BitCodeAbbrev>(); 4412 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4414 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4415 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4416 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4417 Stream.ExitBlock(); 4418 } 4419 4420 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4421 // Emit the module's hash. 4422 // MODULE_CODE_HASH: [5*i32] 4423 if (GenerateHash) { 4424 uint32_t Vals[5]; 4425 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4426 Buffer.size() - BlockStartPos)); 4427 std::array<uint8_t, 20> Hash = Hasher.result(); 4428 for (int Pos = 0; Pos < 20; Pos += 4) { 4429 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4430 } 4431 4432 // Emit the finished record. 4433 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4434 4435 if (ModHash) 4436 // Save the written hash value. 4437 llvm::copy(Vals, std::begin(*ModHash)); 4438 } 4439 } 4440 4441 void ModuleBitcodeWriter::write() { 4442 writeIdentificationBlock(Stream); 4443 4444 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4445 size_t BlockStartPos = Buffer.size(); 4446 4447 writeModuleVersion(); 4448 4449 // Emit blockinfo, which defines the standard abbreviations etc. 4450 writeBlockInfo(); 4451 4452 // Emit information describing all of the types in the module. 4453 writeTypeTable(); 4454 4455 // Emit information about attribute groups. 4456 writeAttributeGroupTable(); 4457 4458 // Emit information about parameter attributes. 4459 writeAttributeTable(); 4460 4461 writeComdats(); 4462 4463 // Emit top-level description of module, including target triple, inline asm, 4464 // descriptors for global variables, and function prototype info. 4465 writeModuleInfo(); 4466 4467 // Emit constants. 4468 writeModuleConstants(); 4469 4470 // Emit metadata kind names. 4471 writeModuleMetadataKinds(); 4472 4473 // Emit metadata. 4474 writeModuleMetadata(); 4475 4476 // Emit module-level use-lists. 4477 if (VE.shouldPreserveUseListOrder()) 4478 writeUseListBlock(nullptr); 4479 4480 writeOperandBundleTags(); 4481 writeSyncScopeNames(); 4482 4483 // Emit function bodies. 4484 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4485 for (const Function &F : M) 4486 if (!F.isDeclaration()) 4487 writeFunction(F, FunctionToBitcodeIndex); 4488 4489 // Need to write after the above call to WriteFunction which populates 4490 // the summary information in the index. 4491 if (Index) 4492 writePerModuleGlobalValueSummary(); 4493 4494 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4495 4496 writeModuleHash(BlockStartPos); 4497 4498 Stream.ExitBlock(); 4499 } 4500 4501 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4502 uint32_t &Position) { 4503 support::endian::write32le(&Buffer[Position], Value); 4504 Position += 4; 4505 } 4506 4507 /// If generating a bc file on darwin, we have to emit a 4508 /// header and trailer to make it compatible with the system archiver. To do 4509 /// this we emit the following header, and then emit a trailer that pads the 4510 /// file out to be a multiple of 16 bytes. 4511 /// 4512 /// struct bc_header { 4513 /// uint32_t Magic; // 0x0B17C0DE 4514 /// uint32_t Version; // Version, currently always 0. 4515 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4516 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4517 /// uint32_t CPUType; // CPU specifier. 4518 /// ... potentially more later ... 4519 /// }; 4520 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4521 const Triple &TT) { 4522 unsigned CPUType = ~0U; 4523 4524 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4525 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4526 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4527 // specific constants here because they are implicitly part of the Darwin ABI. 4528 enum { 4529 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4530 DARWIN_CPU_TYPE_X86 = 7, 4531 DARWIN_CPU_TYPE_ARM = 12, 4532 DARWIN_CPU_TYPE_POWERPC = 18 4533 }; 4534 4535 Triple::ArchType Arch = TT.getArch(); 4536 if (Arch == Triple::x86_64) 4537 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4538 else if (Arch == Triple::x86) 4539 CPUType = DARWIN_CPU_TYPE_X86; 4540 else if (Arch == Triple::ppc) 4541 CPUType = DARWIN_CPU_TYPE_POWERPC; 4542 else if (Arch == Triple::ppc64) 4543 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4544 else if (Arch == Triple::arm || Arch == Triple::thumb) 4545 CPUType = DARWIN_CPU_TYPE_ARM; 4546 4547 // Traditional Bitcode starts after header. 4548 assert(Buffer.size() >= BWH_HeaderSize && 4549 "Expected header size to be reserved"); 4550 unsigned BCOffset = BWH_HeaderSize; 4551 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4552 4553 // Write the magic and version. 4554 unsigned Position = 0; 4555 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4556 writeInt32ToBuffer(0, Buffer, Position); // Version. 4557 writeInt32ToBuffer(BCOffset, Buffer, Position); 4558 writeInt32ToBuffer(BCSize, Buffer, Position); 4559 writeInt32ToBuffer(CPUType, Buffer, Position); 4560 4561 // If the file is not a multiple of 16 bytes, insert dummy padding. 4562 while (Buffer.size() & 15) 4563 Buffer.push_back(0); 4564 } 4565 4566 /// Helper to write the header common to all bitcode files. 4567 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4568 // Emit the file header. 4569 Stream.Emit((unsigned)'B', 8); 4570 Stream.Emit((unsigned)'C', 8); 4571 Stream.Emit(0x0, 4); 4572 Stream.Emit(0xC, 4); 4573 Stream.Emit(0xE, 4); 4574 Stream.Emit(0xD, 4); 4575 } 4576 4577 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4578 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4579 writeBitcodeHeader(*Stream); 4580 } 4581 4582 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4583 4584 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4585 Stream->EnterSubblock(Block, 3); 4586 4587 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4588 Abbv->Add(BitCodeAbbrevOp(Record)); 4589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4590 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4591 4592 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4593 4594 Stream->ExitBlock(); 4595 } 4596 4597 void BitcodeWriter::writeSymtab() { 4598 assert(!WroteStrtab && !WroteSymtab); 4599 4600 // If any module has module-level inline asm, we will require a registered asm 4601 // parser for the target so that we can create an accurate symbol table for 4602 // the module. 4603 for (Module *M : Mods) { 4604 if (M->getModuleInlineAsm().empty()) 4605 continue; 4606 4607 std::string Err; 4608 const Triple TT(M->getTargetTriple()); 4609 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4610 if (!T || !T->hasMCAsmParser()) 4611 return; 4612 } 4613 4614 WroteSymtab = true; 4615 SmallVector<char, 0> Symtab; 4616 // The irsymtab::build function may be unable to create a symbol table if the 4617 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4618 // table is not required for correctness, but we still want to be able to 4619 // write malformed modules to bitcode files, so swallow the error. 4620 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4621 consumeError(std::move(E)); 4622 return; 4623 } 4624 4625 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4626 {Symtab.data(), Symtab.size()}); 4627 } 4628 4629 void BitcodeWriter::writeStrtab() { 4630 assert(!WroteStrtab); 4631 4632 std::vector<char> Strtab; 4633 StrtabBuilder.finalizeInOrder(); 4634 Strtab.resize(StrtabBuilder.getSize()); 4635 StrtabBuilder.write((uint8_t *)Strtab.data()); 4636 4637 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4638 {Strtab.data(), Strtab.size()}); 4639 4640 WroteStrtab = true; 4641 } 4642 4643 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4644 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4645 WroteStrtab = true; 4646 } 4647 4648 void BitcodeWriter::writeModule(const Module &M, 4649 bool ShouldPreserveUseListOrder, 4650 const ModuleSummaryIndex *Index, 4651 bool GenerateHash, ModuleHash *ModHash) { 4652 assert(!WroteStrtab); 4653 4654 // The Mods vector is used by irsymtab::build, which requires non-const 4655 // Modules in case it needs to materialize metadata. But the bitcode writer 4656 // requires that the module is materialized, so we can cast to non-const here, 4657 // after checking that it is in fact materialized. 4658 assert(M.isMaterialized()); 4659 Mods.push_back(const_cast<Module *>(&M)); 4660 4661 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4662 ShouldPreserveUseListOrder, Index, 4663 GenerateHash, ModHash); 4664 ModuleWriter.write(); 4665 } 4666 4667 void BitcodeWriter::writeIndex( 4668 const ModuleSummaryIndex *Index, 4669 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4670 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4671 ModuleToSummariesForIndex); 4672 IndexWriter.write(); 4673 } 4674 4675 /// Write the specified module to the specified output stream. 4676 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4677 bool ShouldPreserveUseListOrder, 4678 const ModuleSummaryIndex *Index, 4679 bool GenerateHash, ModuleHash *ModHash) { 4680 SmallVector<char, 0> Buffer; 4681 Buffer.reserve(256*1024); 4682 4683 // If this is darwin or another generic macho target, reserve space for the 4684 // header. 4685 Triple TT(M.getTargetTriple()); 4686 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4687 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4688 4689 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4690 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4691 ModHash); 4692 Writer.writeSymtab(); 4693 Writer.writeStrtab(); 4694 4695 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4696 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4697 4698 // Write the generated bitstream to "Out". 4699 if (!Buffer.empty()) 4700 Out.write((char *)&Buffer.front(), Buffer.size()); 4701 } 4702 4703 void IndexBitcodeWriter::write() { 4704 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4705 4706 writeModuleVersion(); 4707 4708 // Write the module paths in the combined index. 4709 writeModStrings(); 4710 4711 // Write the summary combined index records. 4712 writeCombinedGlobalValueSummary(); 4713 4714 Stream.ExitBlock(); 4715 } 4716 4717 // Write the specified module summary index to the given raw output stream, 4718 // where it will be written in a new bitcode block. This is used when 4719 // writing the combined index file for ThinLTO. When writing a subset of the 4720 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4721 void llvm::writeIndexToFile( 4722 const ModuleSummaryIndex &Index, raw_ostream &Out, 4723 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4724 SmallVector<char, 0> Buffer; 4725 Buffer.reserve(256 * 1024); 4726 4727 BitcodeWriter Writer(Buffer); 4728 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4729 Writer.writeStrtab(); 4730 4731 Out.write((char *)&Buffer.front(), Buffer.size()); 4732 } 4733 4734 namespace { 4735 4736 /// Class to manage the bitcode writing for a thin link bitcode file. 4737 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4738 /// ModHash is for use in ThinLTO incremental build, generated while writing 4739 /// the module bitcode file. 4740 const ModuleHash *ModHash; 4741 4742 public: 4743 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4744 BitstreamWriter &Stream, 4745 const ModuleSummaryIndex &Index, 4746 const ModuleHash &ModHash) 4747 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4748 /*ShouldPreserveUseListOrder=*/false, &Index), 4749 ModHash(&ModHash) {} 4750 4751 void write(); 4752 4753 private: 4754 void writeSimplifiedModuleInfo(); 4755 }; 4756 4757 } // end anonymous namespace 4758 4759 // This function writes a simpilified module info for thin link bitcode file. 4760 // It only contains the source file name along with the name(the offset and 4761 // size in strtab) and linkage for global values. For the global value info 4762 // entry, in order to keep linkage at offset 5, there are three zeros used 4763 // as padding. 4764 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4765 SmallVector<unsigned, 64> Vals; 4766 // Emit the module's source file name. 4767 { 4768 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4769 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4770 if (Bits == SE_Char6) 4771 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4772 else if (Bits == SE_Fixed7) 4773 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4774 4775 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4776 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4777 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4779 Abbv->Add(AbbrevOpToUse); 4780 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4781 4782 for (const auto P : M.getSourceFileName()) 4783 Vals.push_back((unsigned char)P); 4784 4785 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4786 Vals.clear(); 4787 } 4788 4789 // Emit the global variable information. 4790 for (const GlobalVariable &GV : M.globals()) { 4791 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4792 Vals.push_back(StrtabBuilder.add(GV.getName())); 4793 Vals.push_back(GV.getName().size()); 4794 Vals.push_back(0); 4795 Vals.push_back(0); 4796 Vals.push_back(0); 4797 Vals.push_back(getEncodedLinkage(GV)); 4798 4799 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4800 Vals.clear(); 4801 } 4802 4803 // Emit the function proto information. 4804 for (const Function &F : M) { 4805 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4806 Vals.push_back(StrtabBuilder.add(F.getName())); 4807 Vals.push_back(F.getName().size()); 4808 Vals.push_back(0); 4809 Vals.push_back(0); 4810 Vals.push_back(0); 4811 Vals.push_back(getEncodedLinkage(F)); 4812 4813 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4814 Vals.clear(); 4815 } 4816 4817 // Emit the alias information. 4818 for (const GlobalAlias &A : M.aliases()) { 4819 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4820 Vals.push_back(StrtabBuilder.add(A.getName())); 4821 Vals.push_back(A.getName().size()); 4822 Vals.push_back(0); 4823 Vals.push_back(0); 4824 Vals.push_back(0); 4825 Vals.push_back(getEncodedLinkage(A)); 4826 4827 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4828 Vals.clear(); 4829 } 4830 4831 // Emit the ifunc information. 4832 for (const GlobalIFunc &I : M.ifuncs()) { 4833 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4834 Vals.push_back(StrtabBuilder.add(I.getName())); 4835 Vals.push_back(I.getName().size()); 4836 Vals.push_back(0); 4837 Vals.push_back(0); 4838 Vals.push_back(0); 4839 Vals.push_back(getEncodedLinkage(I)); 4840 4841 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4842 Vals.clear(); 4843 } 4844 } 4845 4846 void ThinLinkBitcodeWriter::write() { 4847 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4848 4849 writeModuleVersion(); 4850 4851 writeSimplifiedModuleInfo(); 4852 4853 writePerModuleGlobalValueSummary(); 4854 4855 // Write module hash. 4856 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4857 4858 Stream.ExitBlock(); 4859 } 4860 4861 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4862 const ModuleSummaryIndex &Index, 4863 const ModuleHash &ModHash) { 4864 assert(!WroteStrtab); 4865 4866 // The Mods vector is used by irsymtab::build, which requires non-const 4867 // Modules in case it needs to materialize metadata. But the bitcode writer 4868 // requires that the module is materialized, so we can cast to non-const here, 4869 // after checking that it is in fact materialized. 4870 assert(M.isMaterialized()); 4871 Mods.push_back(const_cast<Module *>(&M)); 4872 4873 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4874 ModHash); 4875 ThinLinkWriter.write(); 4876 } 4877 4878 // Write the specified thin link bitcode file to the given raw output stream, 4879 // where it will be written in a new bitcode block. This is used when 4880 // writing the per-module index file for ThinLTO. 4881 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4882 const ModuleSummaryIndex &Index, 4883 const ModuleHash &ModHash) { 4884 SmallVector<char, 0> Buffer; 4885 Buffer.reserve(256 * 1024); 4886 4887 BitcodeWriter Writer(Buffer); 4888 Writer.writeThinLinkBitcode(M, Index, ModHash); 4889 Writer.writeSymtab(); 4890 Writer.writeStrtab(); 4891 4892 Out.write((char *)&Buffer.front(), Buffer.size()); 4893 } 4894 4895 static const char *getSectionNameForBitcode(const Triple &T) { 4896 switch (T.getObjectFormat()) { 4897 case Triple::MachO: 4898 return "__LLVM,__bitcode"; 4899 case Triple::COFF: 4900 case Triple::ELF: 4901 case Triple::Wasm: 4902 case Triple::UnknownObjectFormat: 4903 return ".llvmbc"; 4904 case Triple::GOFF: 4905 llvm_unreachable("GOFF is not yet implemented"); 4906 break; 4907 case Triple::SPIRV: 4908 llvm_unreachable("SPIRV is not yet implemented"); 4909 break; 4910 case Triple::XCOFF: 4911 llvm_unreachable("XCOFF is not yet implemented"); 4912 break; 4913 case Triple::DXContainer: 4914 llvm_unreachable("DXContainer is not yet implemented"); 4915 break; 4916 } 4917 llvm_unreachable("Unimplemented ObjectFormatType"); 4918 } 4919 4920 static const char *getSectionNameForCommandline(const Triple &T) { 4921 switch (T.getObjectFormat()) { 4922 case Triple::MachO: 4923 return "__LLVM,__cmdline"; 4924 case Triple::COFF: 4925 case Triple::ELF: 4926 case Triple::Wasm: 4927 case Triple::UnknownObjectFormat: 4928 return ".llvmcmd"; 4929 case Triple::GOFF: 4930 llvm_unreachable("GOFF is not yet implemented"); 4931 break; 4932 case Triple::SPIRV: 4933 llvm_unreachable("SPIRV is not yet implemented"); 4934 break; 4935 case Triple::XCOFF: 4936 llvm_unreachable("XCOFF is not yet implemented"); 4937 break; 4938 case Triple::DXContainer: 4939 llvm_unreachable("DXC is not yet implemented"); 4940 break; 4941 } 4942 llvm_unreachable("Unimplemented ObjectFormatType"); 4943 } 4944 4945 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4946 bool EmbedBitcode, bool EmbedCmdline, 4947 const std::vector<uint8_t> &CmdArgs) { 4948 // Save llvm.compiler.used and remove it. 4949 SmallVector<Constant *, 2> UsedArray; 4950 SmallVector<GlobalValue *, 4> UsedGlobals; 4951 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4952 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4953 for (auto *GV : UsedGlobals) { 4954 if (GV->getName() != "llvm.embedded.module" && 4955 GV->getName() != "llvm.cmdline") 4956 UsedArray.push_back( 4957 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4958 } 4959 if (Used) 4960 Used->eraseFromParent(); 4961 4962 // Embed the bitcode for the llvm module. 4963 std::string Data; 4964 ArrayRef<uint8_t> ModuleData; 4965 Triple T(M.getTargetTriple()); 4966 4967 if (EmbedBitcode) { 4968 if (Buf.getBufferSize() == 0 || 4969 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4970 (const unsigned char *)Buf.getBufferEnd())) { 4971 // If the input is LLVM Assembly, bitcode is produced by serializing 4972 // the module. Use-lists order need to be preserved in this case. 4973 llvm::raw_string_ostream OS(Data); 4974 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4975 ModuleData = 4976 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4977 } else 4978 // If the input is LLVM bitcode, write the input byte stream directly. 4979 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4980 Buf.getBufferSize()); 4981 } 4982 llvm::Constant *ModuleConstant = 4983 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4984 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4985 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4986 ModuleConstant); 4987 GV->setSection(getSectionNameForBitcode(T)); 4988 // Set alignment to 1 to prevent padding between two contributions from input 4989 // sections after linking. 4990 GV->setAlignment(Align(1)); 4991 UsedArray.push_back( 4992 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4993 if (llvm::GlobalVariable *Old = 4994 M.getGlobalVariable("llvm.embedded.module", true)) { 4995 assert(Old->hasZeroLiveUses() && 4996 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4997 GV->takeName(Old); 4998 Old->eraseFromParent(); 4999 } else { 5000 GV->setName("llvm.embedded.module"); 5001 } 5002 5003 // Skip if only bitcode needs to be embedded. 5004 if (EmbedCmdline) { 5005 // Embed command-line options. 5006 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5007 CmdArgs.size()); 5008 llvm::Constant *CmdConstant = 5009 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5010 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5011 llvm::GlobalValue::PrivateLinkage, 5012 CmdConstant); 5013 GV->setSection(getSectionNameForCommandline(T)); 5014 GV->setAlignment(Align(1)); 5015 UsedArray.push_back( 5016 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5017 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5018 assert(Old->hasZeroLiveUses() && 5019 "llvm.cmdline can only be used once in llvm.compiler.used"); 5020 GV->takeName(Old); 5021 Old->eraseFromParent(); 5022 } else { 5023 GV->setName("llvm.cmdline"); 5024 } 5025 } 5026 5027 if (UsedArray.empty()) 5028 return; 5029 5030 // Recreate llvm.compiler.used. 5031 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5032 auto *NewUsed = new GlobalVariable( 5033 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5034 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5035 NewUsed->setSection("llvm.metadata"); 5036 } 5037