1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRangeList.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <memory> 80 #include <optional> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 namespace llvm { 100 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 101 } 102 103 extern bool WriteNewDbgInfoFormatToBitcode; 104 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 105 106 namespace { 107 108 /// These are manifest constants used by the bitcode writer. They do not need to 109 /// be kept in sync with the reader, but need to be consistent within this file. 110 enum { 111 // VALUE_SYMTAB_BLOCK abbrev id's. 112 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 113 VST_ENTRY_7_ABBREV, 114 VST_ENTRY_6_ABBREV, 115 VST_BBENTRY_6_ABBREV, 116 117 // CONSTANTS_BLOCK abbrev id's. 118 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 119 CONSTANTS_INTEGER_ABBREV, 120 CONSTANTS_CE_CAST_Abbrev, 121 CONSTANTS_NULL_Abbrev, 122 123 // FUNCTION_BLOCK abbrev id's. 124 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 125 FUNCTION_INST_UNOP_ABBREV, 126 FUNCTION_INST_UNOP_FLAGS_ABBREV, 127 FUNCTION_INST_BINOP_ABBREV, 128 FUNCTION_INST_BINOP_FLAGS_ABBREV, 129 FUNCTION_INST_CAST_ABBREV, 130 FUNCTION_INST_CAST_FLAGS_ABBREV, 131 FUNCTION_INST_RET_VOID_ABBREV, 132 FUNCTION_INST_RET_VAL_ABBREV, 133 FUNCTION_INST_UNREACHABLE_ABBREV, 134 FUNCTION_INST_GEP_ABBREV, 135 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 136 }; 137 138 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 139 /// file type. 140 class BitcodeWriterBase { 141 protected: 142 /// The stream created and owned by the client. 143 BitstreamWriter &Stream; 144 145 StringTableBuilder &StrtabBuilder; 146 147 public: 148 /// Constructs a BitcodeWriterBase object that writes to the provided 149 /// \p Stream. 150 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 151 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 152 153 protected: 154 void writeModuleVersion(); 155 }; 156 157 void BitcodeWriterBase::writeModuleVersion() { 158 // VERSION: [version#] 159 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 160 } 161 162 /// Base class to manage the module bitcode writing, currently subclassed for 163 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 164 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 165 protected: 166 /// The Module to write to bitcode. 167 const Module &M; 168 169 /// Enumerates ids for all values in the module. 170 ValueEnumerator VE; 171 172 /// Optional per-module index to write for ThinLTO. 173 const ModuleSummaryIndex *Index; 174 175 /// Map that holds the correspondence between GUIDs in the summary index, 176 /// that came from indirect call profiles, and a value id generated by this 177 /// class to use in the VST and summary block records. 178 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 179 180 /// Tracks the last value id recorded in the GUIDToValueMap. 181 unsigned GlobalValueId; 182 183 /// Saves the offset of the VSTOffset record that must eventually be 184 /// backpatched with the offset of the actual VST. 185 uint64_t VSTOffsetPlaceholder = 0; 186 187 public: 188 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 189 /// writing to the provided \p Buffer. 190 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 191 BitstreamWriter &Stream, 192 bool ShouldPreserveUseListOrder, 193 const ModuleSummaryIndex *Index) 194 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 195 VE(M, ShouldPreserveUseListOrder), Index(Index) { 196 // Assign ValueIds to any callee values in the index that came from 197 // indirect call profiles and were recorded as a GUID not a Value* 198 // (which would have been assigned an ID by the ValueEnumerator). 199 // The starting ValueId is just after the number of values in the 200 // ValueEnumerator, so that they can be emitted in the VST. 201 GlobalValueId = VE.getValues().size(); 202 if (!Index) 203 return; 204 for (const auto &GUIDSummaryLists : *Index) 205 // Examine all summaries for this GUID. 206 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 207 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) { 208 // For each call in the function summary, see if the call 209 // is to a GUID (which means it is for an indirect call, 210 // otherwise we would have a Value for it). If so, synthesize 211 // a value id. 212 for (auto &CallEdge : FS->calls()) 213 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 214 assignValueId(CallEdge.first.getGUID()); 215 216 // For each referenced variables in the function summary, see if the 217 // variable is represented by a GUID (as opposed to a symbol to 218 // declarations or definitions in the module). If so, synthesize a 219 // value id. 220 for (auto &RefEdge : FS->refs()) 221 if (!RefEdge.haveGVs() || !RefEdge.getValue()) 222 assignValueId(RefEdge.getGUID()); 223 } 224 } 225 226 protected: 227 void writePerModuleGlobalValueSummary(); 228 229 private: 230 void writePerModuleFunctionSummaryRecord( 231 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 232 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 233 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 234 void writeModuleLevelReferences(const GlobalVariable &V, 235 SmallVector<uint64_t, 64> &NameVals, 236 unsigned FSModRefsAbbrev, 237 unsigned FSModVTableRefsAbbrev); 238 239 void assignValueId(GlobalValue::GUID ValGUID) { 240 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 241 } 242 243 unsigned getValueId(GlobalValue::GUID ValGUID) { 244 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 245 // Expect that any GUID value had a value Id assigned by an 246 // earlier call to assignValueId. 247 assert(VMI != GUIDToValueIdMap.end() && 248 "GUID does not have assigned value Id"); 249 return VMI->second; 250 } 251 252 // Helper to get the valueId for the type of value recorded in VI. 253 unsigned getValueId(ValueInfo VI) { 254 if (!VI.haveGVs() || !VI.getValue()) 255 return getValueId(VI.getGUID()); 256 return VE.getValueID(VI.getValue()); 257 } 258 259 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 260 }; 261 262 /// Class to manage the bitcode writing for a module. 263 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 264 /// True if a module hash record should be written. 265 bool GenerateHash; 266 267 /// If non-null, when GenerateHash is true, the resulting hash is written 268 /// into ModHash. 269 ModuleHash *ModHash; 270 271 SHA1 Hasher; 272 273 /// The start bit of the identification block. 274 uint64_t BitcodeStartBit; 275 276 public: 277 /// Constructs a ModuleBitcodeWriter object for the given Module, 278 /// writing to the provided \p Buffer. 279 ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 280 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 281 const ModuleSummaryIndex *Index, bool GenerateHash, 282 ModuleHash *ModHash = nullptr) 283 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 284 ShouldPreserveUseListOrder, Index), 285 GenerateHash(GenerateHash), ModHash(ModHash), 286 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 287 288 /// Emit the current module to the bitstream. 289 void write(); 290 291 private: 292 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 293 294 size_t addToStrtab(StringRef Str); 295 296 void writeAttributeGroupTable(); 297 void writeAttributeTable(); 298 void writeTypeTable(); 299 void writeComdats(); 300 void writeValueSymbolTableForwardDecl(); 301 void writeModuleInfo(); 302 void writeValueAsMetadata(const ValueAsMetadata *MD, 303 SmallVectorImpl<uint64_t> &Record); 304 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 unsigned createDILocationAbbrev(); 307 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned &Abbrev); 309 unsigned createGenericDINodeAbbrev(); 310 void writeGenericDINode(const GenericDINode *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 312 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 313 unsigned Abbrev); 314 void writeDIGenericSubrange(const DIGenericSubrange *N, 315 SmallVectorImpl<uint64_t> &Record, 316 unsigned Abbrev); 317 void writeDIEnumerator(const DIEnumerator *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIStringType(const DIStringType *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDIDerivedType(const DIDerivedType *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDICompositeType(const DICompositeType *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDISubroutineType(const DISubroutineType *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDICompileUnit(const DICompileUnit *N, 333 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 334 void writeDISubprogram(const DISubprogram *N, 335 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 336 void writeDILexicalBlock(const DILexicalBlock *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDICommonBlock(const DICommonBlock *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 350 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 355 SmallVectorImpl<uint64_t> &Record, 356 unsigned Abbrev); 357 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIGlobalVariable(const DIGlobalVariable *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 void writeDILocalVariable(const DILocalVariable *N, 364 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 365 void writeDILabel(const DILabel *N, 366 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 367 void writeDIExpression(const DIExpression *N, 368 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 369 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 370 SmallVectorImpl<uint64_t> &Record, 371 unsigned Abbrev); 372 void writeDIObjCProperty(const DIObjCProperty *N, 373 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 374 void writeDIImportedEntity(const DIImportedEntity *N, 375 SmallVectorImpl<uint64_t> &Record, 376 unsigned Abbrev); 377 unsigned createNamedMetadataAbbrev(); 378 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 379 unsigned createMetadataStringsAbbrev(); 380 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 381 SmallVectorImpl<uint64_t> &Record); 382 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 383 SmallVectorImpl<uint64_t> &Record, 384 std::vector<unsigned> *MDAbbrevs = nullptr, 385 std::vector<uint64_t> *IndexPos = nullptr); 386 void writeModuleMetadata(); 387 void writeFunctionMetadata(const Function &F); 388 void writeFunctionMetadataAttachment(const Function &F); 389 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 390 const GlobalObject &GO); 391 void writeModuleMetadataKinds(); 392 void writeOperandBundleTags(); 393 void writeSyncScopeNames(); 394 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 395 void writeModuleConstants(); 396 bool pushValueAndType(const Value *V, unsigned InstID, 397 SmallVectorImpl<unsigned> &Vals); 398 bool pushValueOrMetadata(const Value *V, unsigned InstID, 399 SmallVectorImpl<unsigned> &Vals); 400 void writeOperandBundles(const CallBase &CB, unsigned InstID); 401 void pushValue(const Value *V, unsigned InstID, 402 SmallVectorImpl<unsigned> &Vals); 403 void pushValueSigned(const Value *V, unsigned InstID, 404 SmallVectorImpl<uint64_t> &Vals); 405 void writeInstruction(const Instruction &I, unsigned InstID, 406 SmallVectorImpl<unsigned> &Vals); 407 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 408 void writeGlobalValueSymbolTable( 409 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 410 void writeUseList(UseListOrder &&Order); 411 void writeUseListBlock(const Function *F); 412 void 413 writeFunction(const Function &F, 414 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 415 void writeBlockInfo(); 416 void writeModuleHash(StringRef View); 417 418 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 419 return unsigned(SSID); 420 } 421 422 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 423 }; 424 425 /// Class to manage the bitcode writing for a combined index. 426 class IndexBitcodeWriter : public BitcodeWriterBase { 427 /// The combined index to write to bitcode. 428 const ModuleSummaryIndex &Index; 429 430 /// When writing combined summaries, provides the set of global value 431 /// summaries for which the value (function, function alias, etc) should be 432 /// imported as a declaration. 433 const GVSummaryPtrSet *DecSummaries = nullptr; 434 435 /// When writing a subset of the index for distributed backends, client 436 /// provides a map of modules to the corresponding GUIDs/summaries to write. 437 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex; 438 439 /// Map that holds the correspondence between the GUID used in the combined 440 /// index and a value id generated by this class to use in references. 441 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 442 443 // The stack ids used by this index, which will be a subset of those in 444 // the full index in the case of distributed indexes. 445 std::vector<uint64_t> StackIds; 446 447 // Keep a map of the stack id indices used by records being written for this 448 // index to the index of the corresponding stack id in the above StackIds 449 // vector. Ensures we write each referenced stack id once. 450 DenseMap<unsigned, unsigned> StackIdIndicesToIndex; 451 452 /// Tracks the last value id recorded in the GUIDToValueMap. 453 unsigned GlobalValueId = 0; 454 455 /// Tracks the assignment of module paths in the module path string table to 456 /// an id assigned for use in summary references to the module path. 457 DenseMap<StringRef, uint64_t> ModuleIdMap; 458 459 public: 460 /// Constructs a IndexBitcodeWriter object for the given combined index, 461 /// writing to the provided \p Buffer. When writing a subset of the index 462 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 463 /// If provided, \p DecSummaries specifies the set of summaries for which 464 /// the corresponding functions or aliased functions should be imported as a 465 /// declaration (but not definition) for each module. 466 IndexBitcodeWriter( 467 BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 468 const ModuleSummaryIndex &Index, 469 const GVSummaryPtrSet *DecSummaries = nullptr, 470 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr) 471 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 472 DecSummaries(DecSummaries), 473 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 474 475 // See if the StackIdIndex was already added to the StackId map and 476 // vector. If not, record it. 477 auto RecordStackIdReference = [&](unsigned StackIdIndex) { 478 // If the StackIdIndex is not yet in the map, the below insert ensures 479 // that it will point to the new StackIds vector entry we push to just 480 // below. 481 auto Inserted = 482 StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()}); 483 if (Inserted.second) 484 StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex)); 485 }; 486 487 // Assign unique value ids to all summaries to be written, for use 488 // in writing out the call graph edges. Save the mapping from GUID 489 // to the new global value id to use when writing those edges, which 490 // are currently saved in the index in terms of GUID. 491 forEachSummary([&](GVInfo I, bool IsAliasee) { 492 GUIDToValueIdMap[I.first] = ++GlobalValueId; 493 if (IsAliasee) 494 return; 495 auto *FS = dyn_cast<FunctionSummary>(I.second); 496 if (!FS) 497 return; 498 // Record all stack id indices actually used in the summary entries being 499 // written, so that we can compact them in the case of distributed ThinLTO 500 // indexes. 501 for (auto &CI : FS->callsites()) { 502 // If the stack id list is empty, this callsite info was synthesized for 503 // a missing tail call frame. Ensure that the callee's GUID gets a value 504 // id. Normally we only generate these for defined summaries, which in 505 // the case of distributed ThinLTO is only the functions already defined 506 // in the module or that we want to import. We don't bother to include 507 // all the callee symbols as they aren't normally needed in the backend. 508 // However, for the synthesized callsite infos we do need the callee 509 // GUID in the backend so that we can correlate the identified callee 510 // with this callsite info (which for non-tail calls is done by the 511 // ordering of the callsite infos and verified via stack ids). 512 if (CI.StackIdIndices.empty()) { 513 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 514 continue; 515 } 516 for (auto Idx : CI.StackIdIndices) 517 RecordStackIdReference(Idx); 518 } 519 for (auto &AI : FS->allocs()) 520 for (auto &MIB : AI.MIBs) 521 for (auto Idx : MIB.StackIdIndices) 522 RecordStackIdReference(Idx); 523 }); 524 } 525 526 /// The below iterator returns the GUID and associated summary. 527 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 528 529 /// Calls the callback for each value GUID and summary to be written to 530 /// bitcode. This hides the details of whether they are being pulled from the 531 /// entire index or just those in a provided ModuleToSummariesForIndex map. 532 template<typename Functor> 533 void forEachSummary(Functor Callback) { 534 if (ModuleToSummariesForIndex) { 535 for (auto &M : *ModuleToSummariesForIndex) 536 for (auto &Summary : M.second) { 537 Callback(Summary, false); 538 // Ensure aliasee is handled, e.g. for assigning a valueId, 539 // even if we are not importing the aliasee directly (the 540 // imported alias will contain a copy of aliasee). 541 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 542 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 543 } 544 } else { 545 for (auto &Summaries : Index) 546 for (auto &Summary : Summaries.second.SummaryList) 547 Callback({Summaries.first, Summary.get()}, false); 548 } 549 } 550 551 /// Calls the callback for each entry in the modulePaths StringMap that 552 /// should be written to the module path string table. This hides the details 553 /// of whether they are being pulled from the entire index or just those in a 554 /// provided ModuleToSummariesForIndex map. 555 template <typename Functor> void forEachModule(Functor Callback) { 556 if (ModuleToSummariesForIndex) { 557 for (const auto &M : *ModuleToSummariesForIndex) { 558 const auto &MPI = Index.modulePaths().find(M.first); 559 if (MPI == Index.modulePaths().end()) { 560 // This should only happen if the bitcode file was empty, in which 561 // case we shouldn't be importing (the ModuleToSummariesForIndex 562 // would only include the module we are writing and index for). 563 assert(ModuleToSummariesForIndex->size() == 1); 564 continue; 565 } 566 Callback(*MPI); 567 } 568 } else { 569 // Since StringMap iteration order isn't guaranteed, order by path string 570 // first. 571 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 572 // map lookup. 573 std::vector<StringRef> ModulePaths; 574 for (auto &[ModPath, _] : Index.modulePaths()) 575 ModulePaths.push_back(ModPath); 576 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 577 for (auto &ModPath : ModulePaths) 578 Callback(*Index.modulePaths().find(ModPath)); 579 } 580 } 581 582 /// Main entry point for writing a combined index to bitcode. 583 void write(); 584 585 private: 586 void writeModStrings(); 587 void writeCombinedGlobalValueSummary(); 588 589 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 590 auto VMI = GUIDToValueIdMap.find(ValGUID); 591 if (VMI == GUIDToValueIdMap.end()) 592 return std::nullopt; 593 return VMI->second; 594 } 595 596 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 597 }; 598 599 } // end anonymous namespace 600 601 static unsigned getEncodedCastOpcode(unsigned Opcode) { 602 switch (Opcode) { 603 default: llvm_unreachable("Unknown cast instruction!"); 604 case Instruction::Trunc : return bitc::CAST_TRUNC; 605 case Instruction::ZExt : return bitc::CAST_ZEXT; 606 case Instruction::SExt : return bitc::CAST_SEXT; 607 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 608 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 609 case Instruction::UIToFP : return bitc::CAST_UITOFP; 610 case Instruction::SIToFP : return bitc::CAST_SITOFP; 611 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 612 case Instruction::FPExt : return bitc::CAST_FPEXT; 613 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 614 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 615 case Instruction::BitCast : return bitc::CAST_BITCAST; 616 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 617 } 618 } 619 620 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 621 switch (Opcode) { 622 default: llvm_unreachable("Unknown binary instruction!"); 623 case Instruction::FNeg: return bitc::UNOP_FNEG; 624 } 625 } 626 627 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 628 switch (Opcode) { 629 default: llvm_unreachable("Unknown binary instruction!"); 630 case Instruction::Add: 631 case Instruction::FAdd: return bitc::BINOP_ADD; 632 case Instruction::Sub: 633 case Instruction::FSub: return bitc::BINOP_SUB; 634 case Instruction::Mul: 635 case Instruction::FMul: return bitc::BINOP_MUL; 636 case Instruction::UDiv: return bitc::BINOP_UDIV; 637 case Instruction::FDiv: 638 case Instruction::SDiv: return bitc::BINOP_SDIV; 639 case Instruction::URem: return bitc::BINOP_UREM; 640 case Instruction::FRem: 641 case Instruction::SRem: return bitc::BINOP_SREM; 642 case Instruction::Shl: return bitc::BINOP_SHL; 643 case Instruction::LShr: return bitc::BINOP_LSHR; 644 case Instruction::AShr: return bitc::BINOP_ASHR; 645 case Instruction::And: return bitc::BINOP_AND; 646 case Instruction::Or: return bitc::BINOP_OR; 647 case Instruction::Xor: return bitc::BINOP_XOR; 648 } 649 } 650 651 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 652 switch (Op) { 653 default: llvm_unreachable("Unknown RMW operation!"); 654 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 655 case AtomicRMWInst::Add: return bitc::RMW_ADD; 656 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 657 case AtomicRMWInst::And: return bitc::RMW_AND; 658 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 659 case AtomicRMWInst::Or: return bitc::RMW_OR; 660 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 661 case AtomicRMWInst::Max: return bitc::RMW_MAX; 662 case AtomicRMWInst::Min: return bitc::RMW_MIN; 663 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 664 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 665 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 666 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 667 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 668 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 669 case AtomicRMWInst::UIncWrap: 670 return bitc::RMW_UINC_WRAP; 671 case AtomicRMWInst::UDecWrap: 672 return bitc::RMW_UDEC_WRAP; 673 case AtomicRMWInst::USubCond: 674 return bitc::RMW_USUB_COND; 675 case AtomicRMWInst::USubSat: 676 return bitc::RMW_USUB_SAT; 677 } 678 } 679 680 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 681 switch (Ordering) { 682 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 683 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 684 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 685 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 686 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 687 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 688 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 689 } 690 llvm_unreachable("Invalid ordering"); 691 } 692 693 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 694 StringRef Str, unsigned AbbrevToUse) { 695 SmallVector<unsigned, 64> Vals; 696 697 // Code: [strchar x N] 698 for (char C : Str) { 699 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 700 AbbrevToUse = 0; 701 Vals.push_back(C); 702 } 703 704 // Emit the finished record. 705 Stream.EmitRecord(Code, Vals, AbbrevToUse); 706 } 707 708 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 709 switch (Kind) { 710 case Attribute::Alignment: 711 return bitc::ATTR_KIND_ALIGNMENT; 712 case Attribute::AllocAlign: 713 return bitc::ATTR_KIND_ALLOC_ALIGN; 714 case Attribute::AllocSize: 715 return bitc::ATTR_KIND_ALLOC_SIZE; 716 case Attribute::AlwaysInline: 717 return bitc::ATTR_KIND_ALWAYS_INLINE; 718 case Attribute::Builtin: 719 return bitc::ATTR_KIND_BUILTIN; 720 case Attribute::ByVal: 721 return bitc::ATTR_KIND_BY_VAL; 722 case Attribute::Convergent: 723 return bitc::ATTR_KIND_CONVERGENT; 724 case Attribute::InAlloca: 725 return bitc::ATTR_KIND_IN_ALLOCA; 726 case Attribute::Cold: 727 return bitc::ATTR_KIND_COLD; 728 case Attribute::DisableSanitizerInstrumentation: 729 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 730 case Attribute::FnRetThunkExtern: 731 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 732 case Attribute::Hot: 733 return bitc::ATTR_KIND_HOT; 734 case Attribute::ElementType: 735 return bitc::ATTR_KIND_ELEMENTTYPE; 736 case Attribute::HybridPatchable: 737 return bitc::ATTR_KIND_HYBRID_PATCHABLE; 738 case Attribute::InlineHint: 739 return bitc::ATTR_KIND_INLINE_HINT; 740 case Attribute::InReg: 741 return bitc::ATTR_KIND_IN_REG; 742 case Attribute::JumpTable: 743 return bitc::ATTR_KIND_JUMP_TABLE; 744 case Attribute::MinSize: 745 return bitc::ATTR_KIND_MIN_SIZE; 746 case Attribute::AllocatedPointer: 747 return bitc::ATTR_KIND_ALLOCATED_POINTER; 748 case Attribute::AllocKind: 749 return bitc::ATTR_KIND_ALLOC_KIND; 750 case Attribute::Memory: 751 return bitc::ATTR_KIND_MEMORY; 752 case Attribute::NoFPClass: 753 return bitc::ATTR_KIND_NOFPCLASS; 754 case Attribute::Naked: 755 return bitc::ATTR_KIND_NAKED; 756 case Attribute::Nest: 757 return bitc::ATTR_KIND_NEST; 758 case Attribute::NoAlias: 759 return bitc::ATTR_KIND_NO_ALIAS; 760 case Attribute::NoBuiltin: 761 return bitc::ATTR_KIND_NO_BUILTIN; 762 case Attribute::NoCallback: 763 return bitc::ATTR_KIND_NO_CALLBACK; 764 case Attribute::NoCapture: 765 return bitc::ATTR_KIND_NO_CAPTURE; 766 case Attribute::NoDivergenceSource: 767 return bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE; 768 case Attribute::NoDuplicate: 769 return bitc::ATTR_KIND_NO_DUPLICATE; 770 case Attribute::NoFree: 771 return bitc::ATTR_KIND_NOFREE; 772 case Attribute::NoImplicitFloat: 773 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 774 case Attribute::NoInline: 775 return bitc::ATTR_KIND_NO_INLINE; 776 case Attribute::NoRecurse: 777 return bitc::ATTR_KIND_NO_RECURSE; 778 case Attribute::NoMerge: 779 return bitc::ATTR_KIND_NO_MERGE; 780 case Attribute::NonLazyBind: 781 return bitc::ATTR_KIND_NON_LAZY_BIND; 782 case Attribute::NonNull: 783 return bitc::ATTR_KIND_NON_NULL; 784 case Attribute::Dereferenceable: 785 return bitc::ATTR_KIND_DEREFERENCEABLE; 786 case Attribute::DereferenceableOrNull: 787 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 788 case Attribute::NoRedZone: 789 return bitc::ATTR_KIND_NO_RED_ZONE; 790 case Attribute::NoReturn: 791 return bitc::ATTR_KIND_NO_RETURN; 792 case Attribute::NoSync: 793 return bitc::ATTR_KIND_NOSYNC; 794 case Attribute::NoCfCheck: 795 return bitc::ATTR_KIND_NOCF_CHECK; 796 case Attribute::NoProfile: 797 return bitc::ATTR_KIND_NO_PROFILE; 798 case Attribute::SkipProfile: 799 return bitc::ATTR_KIND_SKIP_PROFILE; 800 case Attribute::NoUnwind: 801 return bitc::ATTR_KIND_NO_UNWIND; 802 case Attribute::NoSanitizeBounds: 803 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 804 case Attribute::NoSanitizeCoverage: 805 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 806 case Attribute::NullPointerIsValid: 807 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 808 case Attribute::OptimizeForDebugging: 809 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 810 case Attribute::OptForFuzzing: 811 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 812 case Attribute::OptimizeForSize: 813 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 814 case Attribute::OptimizeNone: 815 return bitc::ATTR_KIND_OPTIMIZE_NONE; 816 case Attribute::ReadNone: 817 return bitc::ATTR_KIND_READ_NONE; 818 case Attribute::ReadOnly: 819 return bitc::ATTR_KIND_READ_ONLY; 820 case Attribute::Returned: 821 return bitc::ATTR_KIND_RETURNED; 822 case Attribute::ReturnsTwice: 823 return bitc::ATTR_KIND_RETURNS_TWICE; 824 case Attribute::SExt: 825 return bitc::ATTR_KIND_S_EXT; 826 case Attribute::Speculatable: 827 return bitc::ATTR_KIND_SPECULATABLE; 828 case Attribute::StackAlignment: 829 return bitc::ATTR_KIND_STACK_ALIGNMENT; 830 case Attribute::StackProtect: 831 return bitc::ATTR_KIND_STACK_PROTECT; 832 case Attribute::StackProtectReq: 833 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 834 case Attribute::StackProtectStrong: 835 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 836 case Attribute::SafeStack: 837 return bitc::ATTR_KIND_SAFESTACK; 838 case Attribute::ShadowCallStack: 839 return bitc::ATTR_KIND_SHADOWCALLSTACK; 840 case Attribute::StrictFP: 841 return bitc::ATTR_KIND_STRICT_FP; 842 case Attribute::StructRet: 843 return bitc::ATTR_KIND_STRUCT_RET; 844 case Attribute::SanitizeAddress: 845 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 846 case Attribute::SanitizeHWAddress: 847 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 848 case Attribute::SanitizeThread: 849 return bitc::ATTR_KIND_SANITIZE_THREAD; 850 case Attribute::SanitizeMemory: 851 return bitc::ATTR_KIND_SANITIZE_MEMORY; 852 case Attribute::SanitizeNumericalStability: 853 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY; 854 case Attribute::SanitizeRealtime: 855 return bitc::ATTR_KIND_SANITIZE_REALTIME; 856 case Attribute::SanitizeRealtimeBlocking: 857 return bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING; 858 case Attribute::SpeculativeLoadHardening: 859 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 860 case Attribute::SwiftError: 861 return bitc::ATTR_KIND_SWIFT_ERROR; 862 case Attribute::SwiftSelf: 863 return bitc::ATTR_KIND_SWIFT_SELF; 864 case Attribute::SwiftAsync: 865 return bitc::ATTR_KIND_SWIFT_ASYNC; 866 case Attribute::UWTable: 867 return bitc::ATTR_KIND_UW_TABLE; 868 case Attribute::VScaleRange: 869 return bitc::ATTR_KIND_VSCALE_RANGE; 870 case Attribute::WillReturn: 871 return bitc::ATTR_KIND_WILLRETURN; 872 case Attribute::WriteOnly: 873 return bitc::ATTR_KIND_WRITEONLY; 874 case Attribute::ZExt: 875 return bitc::ATTR_KIND_Z_EXT; 876 case Attribute::ImmArg: 877 return bitc::ATTR_KIND_IMMARG; 878 case Attribute::SanitizeMemTag: 879 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 880 case Attribute::Preallocated: 881 return bitc::ATTR_KIND_PREALLOCATED; 882 case Attribute::NoUndef: 883 return bitc::ATTR_KIND_NOUNDEF; 884 case Attribute::ByRef: 885 return bitc::ATTR_KIND_BYREF; 886 case Attribute::MustProgress: 887 return bitc::ATTR_KIND_MUSTPROGRESS; 888 case Attribute::PresplitCoroutine: 889 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 890 case Attribute::Writable: 891 return bitc::ATTR_KIND_WRITABLE; 892 case Attribute::CoroDestroyOnlyWhenComplete: 893 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 894 case Attribute::CoroElideSafe: 895 return bitc::ATTR_KIND_CORO_ELIDE_SAFE; 896 case Attribute::DeadOnUnwind: 897 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 898 case Attribute::Range: 899 return bitc::ATTR_KIND_RANGE; 900 case Attribute::Initializes: 901 return bitc::ATTR_KIND_INITIALIZES; 902 case Attribute::NoExt: 903 return bitc::ATTR_KIND_NO_EXT; 904 case Attribute::EndAttrKinds: 905 llvm_unreachable("Can not encode end-attribute kinds marker."); 906 case Attribute::None: 907 llvm_unreachable("Can not encode none-attribute."); 908 case Attribute::EmptyKey: 909 case Attribute::TombstoneKey: 910 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 911 } 912 913 llvm_unreachable("Trying to encode unknown attribute"); 914 } 915 916 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 917 if ((int64_t)V >= 0) 918 Vals.push_back(V << 1); 919 else 920 Vals.push_back((-V << 1) | 1); 921 } 922 923 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 924 // We have an arbitrary precision integer value to write whose 925 // bit width is > 64. However, in canonical unsigned integer 926 // format it is likely that the high bits are going to be zero. 927 // So, we only write the number of active words. 928 unsigned NumWords = A.getActiveWords(); 929 const uint64_t *RawData = A.getRawData(); 930 for (unsigned i = 0; i < NumWords; i++) 931 emitSignedInt64(Vals, RawData[i]); 932 } 933 934 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 935 const ConstantRange &CR, bool EmitBitWidth) { 936 unsigned BitWidth = CR.getBitWidth(); 937 if (EmitBitWidth) 938 Record.push_back(BitWidth); 939 if (BitWidth > 64) { 940 Record.push_back(CR.getLower().getActiveWords() | 941 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 942 emitWideAPInt(Record, CR.getLower()); 943 emitWideAPInt(Record, CR.getUpper()); 944 } else { 945 emitSignedInt64(Record, CR.getLower().getSExtValue()); 946 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 947 } 948 } 949 950 void ModuleBitcodeWriter::writeAttributeGroupTable() { 951 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 952 VE.getAttributeGroups(); 953 if (AttrGrps.empty()) return; 954 955 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 956 957 SmallVector<uint64_t, 64> Record; 958 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 959 unsigned AttrListIndex = Pair.first; 960 AttributeSet AS = Pair.second; 961 Record.push_back(VE.getAttributeGroupID(Pair)); 962 Record.push_back(AttrListIndex); 963 964 for (Attribute Attr : AS) { 965 if (Attr.isEnumAttribute()) { 966 Record.push_back(0); 967 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 968 } else if (Attr.isIntAttribute()) { 969 Record.push_back(1); 970 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 971 Record.push_back(Attr.getValueAsInt()); 972 } else if (Attr.isStringAttribute()) { 973 StringRef Kind = Attr.getKindAsString(); 974 StringRef Val = Attr.getValueAsString(); 975 976 Record.push_back(Val.empty() ? 3 : 4); 977 Record.append(Kind.begin(), Kind.end()); 978 Record.push_back(0); 979 if (!Val.empty()) { 980 Record.append(Val.begin(), Val.end()); 981 Record.push_back(0); 982 } 983 } else if (Attr.isTypeAttribute()) { 984 Type *Ty = Attr.getValueAsType(); 985 Record.push_back(Ty ? 6 : 5); 986 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 987 if (Ty) 988 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 989 } else if (Attr.isConstantRangeAttribute()) { 990 Record.push_back(7); 991 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 992 emitConstantRange(Record, Attr.getValueAsConstantRange(), 993 /*EmitBitWidth=*/true); 994 } else { 995 assert(Attr.isConstantRangeListAttribute()); 996 Record.push_back(8); 997 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 998 ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList(); 999 Record.push_back(Val.size()); 1000 Record.push_back(Val[0].getBitWidth()); 1001 for (auto &CR : Val) 1002 emitConstantRange(Record, CR, /*EmitBitWidth=*/false); 1003 } 1004 } 1005 1006 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 1007 Record.clear(); 1008 } 1009 1010 Stream.ExitBlock(); 1011 } 1012 1013 void ModuleBitcodeWriter::writeAttributeTable() { 1014 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 1015 if (Attrs.empty()) return; 1016 1017 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 1018 1019 SmallVector<uint64_t, 64> Record; 1020 for (const AttributeList &AL : Attrs) { 1021 for (unsigned i : AL.indexes()) { 1022 AttributeSet AS = AL.getAttributes(i); 1023 if (AS.hasAttributes()) 1024 Record.push_back(VE.getAttributeGroupID({i, AS})); 1025 } 1026 1027 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 1028 Record.clear(); 1029 } 1030 1031 Stream.ExitBlock(); 1032 } 1033 1034 /// WriteTypeTable - Write out the type table for a module. 1035 void ModuleBitcodeWriter::writeTypeTable() { 1036 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 1037 1038 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 1039 SmallVector<uint64_t, 64> TypeVals; 1040 1041 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 1042 1043 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 1044 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1045 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 1046 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 1047 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1048 1049 // Abbrev for TYPE_CODE_FUNCTION. 1050 Abbv = std::make_shared<BitCodeAbbrev>(); 1051 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1055 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1056 1057 // Abbrev for TYPE_CODE_STRUCT_ANON. 1058 Abbv = std::make_shared<BitCodeAbbrev>(); 1059 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1063 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1064 1065 // Abbrev for TYPE_CODE_STRUCT_NAME. 1066 Abbv = std::make_shared<BitCodeAbbrev>(); 1067 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1070 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1071 1072 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1073 Abbv = std::make_shared<BitCodeAbbrev>(); 1074 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1078 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1079 1080 // Abbrev for TYPE_CODE_ARRAY. 1081 Abbv = std::make_shared<BitCodeAbbrev>(); 1082 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1085 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1086 1087 // Emit an entry count so the reader can reserve space. 1088 TypeVals.push_back(TypeList.size()); 1089 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1090 TypeVals.clear(); 1091 1092 // Loop over all of the types, emitting each in turn. 1093 for (Type *T : TypeList) { 1094 int AbbrevToUse = 0; 1095 unsigned Code = 0; 1096 1097 switch (T->getTypeID()) { 1098 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1099 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1100 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1101 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1102 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1103 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1104 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1105 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1106 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1107 case Type::MetadataTyID: 1108 Code = bitc::TYPE_CODE_METADATA; 1109 break; 1110 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1111 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1112 case Type::IntegerTyID: 1113 // INTEGER: [width] 1114 Code = bitc::TYPE_CODE_INTEGER; 1115 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1116 break; 1117 case Type::PointerTyID: { 1118 PointerType *PTy = cast<PointerType>(T); 1119 unsigned AddressSpace = PTy->getAddressSpace(); 1120 // OPAQUE_POINTER: [address space] 1121 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1122 TypeVals.push_back(AddressSpace); 1123 if (AddressSpace == 0) 1124 AbbrevToUse = OpaquePtrAbbrev; 1125 break; 1126 } 1127 case Type::FunctionTyID: { 1128 FunctionType *FT = cast<FunctionType>(T); 1129 // FUNCTION: [isvararg, retty, paramty x N] 1130 Code = bitc::TYPE_CODE_FUNCTION; 1131 TypeVals.push_back(FT->isVarArg()); 1132 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1133 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1134 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1135 AbbrevToUse = FunctionAbbrev; 1136 break; 1137 } 1138 case Type::StructTyID: { 1139 StructType *ST = cast<StructType>(T); 1140 // STRUCT: [ispacked, eltty x N] 1141 TypeVals.push_back(ST->isPacked()); 1142 // Output all of the element types. 1143 for (Type *ET : ST->elements()) 1144 TypeVals.push_back(VE.getTypeID(ET)); 1145 1146 if (ST->isLiteral()) { 1147 Code = bitc::TYPE_CODE_STRUCT_ANON; 1148 AbbrevToUse = StructAnonAbbrev; 1149 } else { 1150 if (ST->isOpaque()) { 1151 Code = bitc::TYPE_CODE_OPAQUE; 1152 } else { 1153 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1154 AbbrevToUse = StructNamedAbbrev; 1155 } 1156 1157 // Emit the name if it is present. 1158 if (!ST->getName().empty()) 1159 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1160 StructNameAbbrev); 1161 } 1162 break; 1163 } 1164 case Type::ArrayTyID: { 1165 ArrayType *AT = cast<ArrayType>(T); 1166 // ARRAY: [numelts, eltty] 1167 Code = bitc::TYPE_CODE_ARRAY; 1168 TypeVals.push_back(AT->getNumElements()); 1169 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1170 AbbrevToUse = ArrayAbbrev; 1171 break; 1172 } 1173 case Type::FixedVectorTyID: 1174 case Type::ScalableVectorTyID: { 1175 VectorType *VT = cast<VectorType>(T); 1176 // VECTOR [numelts, eltty] or 1177 // [numelts, eltty, scalable] 1178 Code = bitc::TYPE_CODE_VECTOR; 1179 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1180 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1181 if (isa<ScalableVectorType>(VT)) 1182 TypeVals.push_back(true); 1183 break; 1184 } 1185 case Type::TargetExtTyID: { 1186 TargetExtType *TET = cast<TargetExtType>(T); 1187 Code = bitc::TYPE_CODE_TARGET_TYPE; 1188 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1189 StructNameAbbrev); 1190 TypeVals.push_back(TET->getNumTypeParameters()); 1191 for (Type *InnerTy : TET->type_params()) 1192 TypeVals.push_back(VE.getTypeID(InnerTy)); 1193 for (unsigned IntParam : TET->int_params()) 1194 TypeVals.push_back(IntParam); 1195 break; 1196 } 1197 case Type::TypedPointerTyID: 1198 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1199 } 1200 1201 // Emit the finished record. 1202 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1203 TypeVals.clear(); 1204 } 1205 1206 Stream.ExitBlock(); 1207 } 1208 1209 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1210 switch (Linkage) { 1211 case GlobalValue::ExternalLinkage: 1212 return 0; 1213 case GlobalValue::WeakAnyLinkage: 1214 return 16; 1215 case GlobalValue::AppendingLinkage: 1216 return 2; 1217 case GlobalValue::InternalLinkage: 1218 return 3; 1219 case GlobalValue::LinkOnceAnyLinkage: 1220 return 18; 1221 case GlobalValue::ExternalWeakLinkage: 1222 return 7; 1223 case GlobalValue::CommonLinkage: 1224 return 8; 1225 case GlobalValue::PrivateLinkage: 1226 return 9; 1227 case GlobalValue::WeakODRLinkage: 1228 return 17; 1229 case GlobalValue::LinkOnceODRLinkage: 1230 return 19; 1231 case GlobalValue::AvailableExternallyLinkage: 1232 return 12; 1233 } 1234 llvm_unreachable("Invalid linkage"); 1235 } 1236 1237 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1238 return getEncodedLinkage(GV.getLinkage()); 1239 } 1240 1241 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1242 uint64_t RawFlags = 0; 1243 RawFlags |= Flags.ReadNone; 1244 RawFlags |= (Flags.ReadOnly << 1); 1245 RawFlags |= (Flags.NoRecurse << 2); 1246 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1247 RawFlags |= (Flags.NoInline << 4); 1248 RawFlags |= (Flags.AlwaysInline << 5); 1249 RawFlags |= (Flags.NoUnwind << 6); 1250 RawFlags |= (Flags.MayThrow << 7); 1251 RawFlags |= (Flags.HasUnknownCall << 8); 1252 RawFlags |= (Flags.MustBeUnreachable << 9); 1253 return RawFlags; 1254 } 1255 1256 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1257 // in BitcodeReader.cpp. 1258 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags, 1259 bool ImportAsDecl = false) { 1260 uint64_t RawFlags = 0; 1261 1262 RawFlags |= Flags.NotEligibleToImport; // bool 1263 RawFlags |= (Flags.Live << 1); 1264 RawFlags |= (Flags.DSOLocal << 2); 1265 RawFlags |= (Flags.CanAutoHide << 3); 1266 1267 // Linkage don't need to be remapped at that time for the summary. Any future 1268 // change to the getEncodedLinkage() function will need to be taken into 1269 // account here as well. 1270 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1271 1272 RawFlags |= (Flags.Visibility << 8); // 2 bits 1273 1274 unsigned ImportType = Flags.ImportType | ImportAsDecl; 1275 RawFlags |= (ImportType << 10); // 1 bit 1276 1277 return RawFlags; 1278 } 1279 1280 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1281 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1282 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1283 return RawFlags; 1284 } 1285 1286 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1287 uint64_t RawFlags = 0; 1288 1289 RawFlags |= CI.Hotness; // 3 bits 1290 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1291 1292 return RawFlags; 1293 } 1294 1295 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1296 uint64_t RawFlags = 0; 1297 1298 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1299 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1300 1301 return RawFlags; 1302 } 1303 1304 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1305 switch (GV.getVisibility()) { 1306 case GlobalValue::DefaultVisibility: return 0; 1307 case GlobalValue::HiddenVisibility: return 1; 1308 case GlobalValue::ProtectedVisibility: return 2; 1309 } 1310 llvm_unreachable("Invalid visibility"); 1311 } 1312 1313 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1314 switch (GV.getDLLStorageClass()) { 1315 case GlobalValue::DefaultStorageClass: return 0; 1316 case GlobalValue::DLLImportStorageClass: return 1; 1317 case GlobalValue::DLLExportStorageClass: return 2; 1318 } 1319 llvm_unreachable("Invalid DLL storage class"); 1320 } 1321 1322 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1323 switch (GV.getThreadLocalMode()) { 1324 case GlobalVariable::NotThreadLocal: return 0; 1325 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1326 case GlobalVariable::LocalDynamicTLSModel: return 2; 1327 case GlobalVariable::InitialExecTLSModel: return 3; 1328 case GlobalVariable::LocalExecTLSModel: return 4; 1329 } 1330 llvm_unreachable("Invalid TLS model"); 1331 } 1332 1333 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1334 switch (C.getSelectionKind()) { 1335 case Comdat::Any: 1336 return bitc::COMDAT_SELECTION_KIND_ANY; 1337 case Comdat::ExactMatch: 1338 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1339 case Comdat::Largest: 1340 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1341 case Comdat::NoDeduplicate: 1342 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1343 case Comdat::SameSize: 1344 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1345 } 1346 llvm_unreachable("Invalid selection kind"); 1347 } 1348 1349 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1350 switch (GV.getUnnamedAddr()) { 1351 case GlobalValue::UnnamedAddr::None: return 0; 1352 case GlobalValue::UnnamedAddr::Local: return 2; 1353 case GlobalValue::UnnamedAddr::Global: return 1; 1354 } 1355 llvm_unreachable("Invalid unnamed_addr"); 1356 } 1357 1358 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1359 if (GenerateHash) 1360 Hasher.update(Str); 1361 return StrtabBuilder.add(Str); 1362 } 1363 1364 void ModuleBitcodeWriter::writeComdats() { 1365 SmallVector<unsigned, 64> Vals; 1366 for (const Comdat *C : VE.getComdats()) { 1367 // COMDAT: [strtab offset, strtab size, selection_kind] 1368 Vals.push_back(addToStrtab(C->getName())); 1369 Vals.push_back(C->getName().size()); 1370 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1371 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1372 Vals.clear(); 1373 } 1374 } 1375 1376 /// Write a record that will eventually hold the word offset of the 1377 /// module-level VST. For now the offset is 0, which will be backpatched 1378 /// after the real VST is written. Saves the bit offset to backpatch. 1379 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1380 // Write a placeholder value in for the offset of the real VST, 1381 // which is written after the function blocks so that it can include 1382 // the offset of each function. The placeholder offset will be 1383 // updated when the real VST is written. 1384 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1385 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1386 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1387 // hold the real VST offset. Must use fixed instead of VBR as we don't 1388 // know how many VBR chunks to reserve ahead of time. 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1390 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1391 1392 // Emit the placeholder 1393 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1394 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1395 1396 // Compute and save the bit offset to the placeholder, which will be 1397 // patched when the real VST is written. We can simply subtract the 32-bit 1398 // fixed size from the current bit number to get the location to backpatch. 1399 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1400 } 1401 1402 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1403 1404 /// Determine the encoding to use for the given string name and length. 1405 static StringEncoding getStringEncoding(StringRef Str) { 1406 bool isChar6 = true; 1407 for (char C : Str) { 1408 if (isChar6) 1409 isChar6 = BitCodeAbbrevOp::isChar6(C); 1410 if ((unsigned char)C & 128) 1411 // don't bother scanning the rest. 1412 return SE_Fixed8; 1413 } 1414 if (isChar6) 1415 return SE_Char6; 1416 return SE_Fixed7; 1417 } 1418 1419 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1420 "Sanitizer Metadata is too large for naive serialization."); 1421 static unsigned 1422 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1423 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1424 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1425 } 1426 1427 /// Emit top-level description of module, including target triple, inline asm, 1428 /// descriptors for global variables, and function prototype info. 1429 /// Returns the bit offset to backpatch with the location of the real VST. 1430 void ModuleBitcodeWriter::writeModuleInfo() { 1431 // Emit various pieces of data attached to a module. 1432 if (!M.getTargetTriple().empty()) 1433 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1434 0 /*TODO*/); 1435 const std::string &DL = M.getDataLayoutStr(); 1436 if (!DL.empty()) 1437 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1438 if (!M.getModuleInlineAsm().empty()) 1439 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1440 0 /*TODO*/); 1441 1442 // Emit information about sections and GC, computing how many there are. Also 1443 // compute the maximum alignment value. 1444 std::map<std::string, unsigned> SectionMap; 1445 std::map<std::string, unsigned> GCMap; 1446 MaybeAlign MaxAlignment; 1447 unsigned MaxGlobalType = 0; 1448 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1449 if (A) 1450 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1451 }; 1452 for (const GlobalVariable &GV : M.globals()) { 1453 UpdateMaxAlignment(GV.getAlign()); 1454 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1455 if (GV.hasSection()) { 1456 // Give section names unique ID's. 1457 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1458 if (!Entry) { 1459 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1460 0 /*TODO*/); 1461 Entry = SectionMap.size(); 1462 } 1463 } 1464 } 1465 for (const Function &F : M) { 1466 UpdateMaxAlignment(F.getAlign()); 1467 if (F.hasSection()) { 1468 // Give section names unique ID's. 1469 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1470 if (!Entry) { 1471 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1472 0 /*TODO*/); 1473 Entry = SectionMap.size(); 1474 } 1475 } 1476 if (F.hasGC()) { 1477 // Same for GC names. 1478 unsigned &Entry = GCMap[F.getGC()]; 1479 if (!Entry) { 1480 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1481 0 /*TODO*/); 1482 Entry = GCMap.size(); 1483 } 1484 } 1485 } 1486 1487 // Emit abbrev for globals, now that we know # sections and max alignment. 1488 unsigned SimpleGVarAbbrev = 0; 1489 if (!M.global_empty()) { 1490 // Add an abbrev for common globals with no visibility or thread localness. 1491 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1492 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1496 Log2_32_Ceil(MaxGlobalType+1))); 1497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1498 //| explicitType << 1 1499 //| constant 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1502 if (!MaxAlignment) // Alignment. 1503 Abbv->Add(BitCodeAbbrevOp(0)); 1504 else { 1505 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1507 Log2_32_Ceil(MaxEncAlignment+1))); 1508 } 1509 if (SectionMap.empty()) // Section. 1510 Abbv->Add(BitCodeAbbrevOp(0)); 1511 else 1512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1513 Log2_32_Ceil(SectionMap.size()+1))); 1514 // Don't bother emitting vis + thread local. 1515 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1516 } 1517 1518 SmallVector<unsigned, 64> Vals; 1519 // Emit the module's source file name. 1520 { 1521 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1522 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1523 if (Bits == SE_Char6) 1524 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1525 else if (Bits == SE_Fixed7) 1526 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1527 1528 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1529 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1530 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1532 Abbv->Add(AbbrevOpToUse); 1533 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1534 1535 for (const auto P : M.getSourceFileName()) 1536 Vals.push_back((unsigned char)P); 1537 1538 // Emit the finished record. 1539 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1540 Vals.clear(); 1541 } 1542 1543 // Emit the global variable information. 1544 for (const GlobalVariable &GV : M.globals()) { 1545 unsigned AbbrevToUse = 0; 1546 1547 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1548 // linkage, alignment, section, visibility, threadlocal, 1549 // unnamed_addr, externally_initialized, dllstorageclass, 1550 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1551 Vals.push_back(addToStrtab(GV.getName())); 1552 Vals.push_back(GV.getName().size()); 1553 Vals.push_back(VE.getTypeID(GV.getValueType())); 1554 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1555 Vals.push_back(GV.isDeclaration() ? 0 : 1556 (VE.getValueID(GV.getInitializer()) + 1)); 1557 Vals.push_back(getEncodedLinkage(GV)); 1558 Vals.push_back(getEncodedAlign(GV.getAlign())); 1559 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1560 : 0); 1561 if (GV.isThreadLocal() || 1562 GV.getVisibility() != GlobalValue::DefaultVisibility || 1563 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1564 GV.isExternallyInitialized() || 1565 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1566 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1567 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1568 Vals.push_back(getEncodedVisibility(GV)); 1569 Vals.push_back(getEncodedThreadLocalMode(GV)); 1570 Vals.push_back(getEncodedUnnamedAddr(GV)); 1571 Vals.push_back(GV.isExternallyInitialized()); 1572 Vals.push_back(getEncodedDLLStorageClass(GV)); 1573 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1574 1575 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1576 Vals.push_back(VE.getAttributeListID(AL)); 1577 1578 Vals.push_back(GV.isDSOLocal()); 1579 Vals.push_back(addToStrtab(GV.getPartition())); 1580 Vals.push_back(GV.getPartition().size()); 1581 1582 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1583 GV.getSanitizerMetadata()) 1584 : 0)); 1585 Vals.push_back(GV.getCodeModelRaw()); 1586 } else { 1587 AbbrevToUse = SimpleGVarAbbrev; 1588 } 1589 1590 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1591 Vals.clear(); 1592 } 1593 1594 // Emit the function proto information. 1595 for (const Function &F : M) { 1596 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1597 // linkage, paramattrs, alignment, section, visibility, gc, 1598 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1599 // prefixdata, personalityfn, DSO_Local, addrspace] 1600 Vals.push_back(addToStrtab(F.getName())); 1601 Vals.push_back(F.getName().size()); 1602 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1603 Vals.push_back(F.getCallingConv()); 1604 Vals.push_back(F.isDeclaration()); 1605 Vals.push_back(getEncodedLinkage(F)); 1606 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1607 Vals.push_back(getEncodedAlign(F.getAlign())); 1608 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1609 : 0); 1610 Vals.push_back(getEncodedVisibility(F)); 1611 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1612 Vals.push_back(getEncodedUnnamedAddr(F)); 1613 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1614 : 0); 1615 Vals.push_back(getEncodedDLLStorageClass(F)); 1616 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1617 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1618 : 0); 1619 Vals.push_back( 1620 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1621 1622 Vals.push_back(F.isDSOLocal()); 1623 Vals.push_back(F.getAddressSpace()); 1624 Vals.push_back(addToStrtab(F.getPartition())); 1625 Vals.push_back(F.getPartition().size()); 1626 1627 unsigned AbbrevToUse = 0; 1628 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1629 Vals.clear(); 1630 } 1631 1632 // Emit the alias information. 1633 for (const GlobalAlias &A : M.aliases()) { 1634 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1635 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1636 // DSO_Local] 1637 Vals.push_back(addToStrtab(A.getName())); 1638 Vals.push_back(A.getName().size()); 1639 Vals.push_back(VE.getTypeID(A.getValueType())); 1640 Vals.push_back(A.getType()->getAddressSpace()); 1641 Vals.push_back(VE.getValueID(A.getAliasee())); 1642 Vals.push_back(getEncodedLinkage(A)); 1643 Vals.push_back(getEncodedVisibility(A)); 1644 Vals.push_back(getEncodedDLLStorageClass(A)); 1645 Vals.push_back(getEncodedThreadLocalMode(A)); 1646 Vals.push_back(getEncodedUnnamedAddr(A)); 1647 Vals.push_back(A.isDSOLocal()); 1648 Vals.push_back(addToStrtab(A.getPartition())); 1649 Vals.push_back(A.getPartition().size()); 1650 1651 unsigned AbbrevToUse = 0; 1652 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1653 Vals.clear(); 1654 } 1655 1656 // Emit the ifunc information. 1657 for (const GlobalIFunc &I : M.ifuncs()) { 1658 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1659 // val#, linkage, visibility, DSO_Local] 1660 Vals.push_back(addToStrtab(I.getName())); 1661 Vals.push_back(I.getName().size()); 1662 Vals.push_back(VE.getTypeID(I.getValueType())); 1663 Vals.push_back(I.getType()->getAddressSpace()); 1664 Vals.push_back(VE.getValueID(I.getResolver())); 1665 Vals.push_back(getEncodedLinkage(I)); 1666 Vals.push_back(getEncodedVisibility(I)); 1667 Vals.push_back(I.isDSOLocal()); 1668 Vals.push_back(addToStrtab(I.getPartition())); 1669 Vals.push_back(I.getPartition().size()); 1670 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1671 Vals.clear(); 1672 } 1673 1674 writeValueSymbolTableForwardDecl(); 1675 } 1676 1677 static uint64_t getOptimizationFlags(const Value *V) { 1678 uint64_t Flags = 0; 1679 1680 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1681 if (OBO->hasNoSignedWrap()) 1682 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1683 if (OBO->hasNoUnsignedWrap()) 1684 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1685 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1686 if (PEO->isExact()) 1687 Flags |= 1 << bitc::PEO_EXACT; 1688 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1689 if (PDI->isDisjoint()) 1690 Flags |= 1 << bitc::PDI_DISJOINT; 1691 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1692 if (FPMO->hasAllowReassoc()) 1693 Flags |= bitc::AllowReassoc; 1694 if (FPMO->hasNoNaNs()) 1695 Flags |= bitc::NoNaNs; 1696 if (FPMO->hasNoInfs()) 1697 Flags |= bitc::NoInfs; 1698 if (FPMO->hasNoSignedZeros()) 1699 Flags |= bitc::NoSignedZeros; 1700 if (FPMO->hasAllowReciprocal()) 1701 Flags |= bitc::AllowReciprocal; 1702 if (FPMO->hasAllowContract()) 1703 Flags |= bitc::AllowContract; 1704 if (FPMO->hasApproxFunc()) 1705 Flags |= bitc::ApproxFunc; 1706 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1707 if (NNI->hasNonNeg()) 1708 Flags |= 1 << bitc::PNNI_NON_NEG; 1709 } else if (const auto *TI = dyn_cast<TruncInst>(V)) { 1710 if (TI->hasNoSignedWrap()) 1711 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; 1712 if (TI->hasNoUnsignedWrap()) 1713 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; 1714 } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) { 1715 if (GEP->isInBounds()) 1716 Flags |= 1 << bitc::GEP_INBOUNDS; 1717 if (GEP->hasNoUnsignedSignedWrap()) 1718 Flags |= 1 << bitc::GEP_NUSW; 1719 if (GEP->hasNoUnsignedWrap()) 1720 Flags |= 1 << bitc::GEP_NUW; 1721 } else if (const auto *ICmp = dyn_cast<ICmpInst>(V)) { 1722 if (ICmp->hasSameSign()) 1723 Flags |= 1 << bitc::ICMP_SAME_SIGN; 1724 } 1725 1726 return Flags; 1727 } 1728 1729 void ModuleBitcodeWriter::writeValueAsMetadata( 1730 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1731 // Mimic an MDNode with a value as one operand. 1732 Value *V = MD->getValue(); 1733 Record.push_back(VE.getTypeID(V->getType())); 1734 Record.push_back(VE.getValueID(V)); 1735 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1736 Record.clear(); 1737 } 1738 1739 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1740 SmallVectorImpl<uint64_t> &Record, 1741 unsigned Abbrev) { 1742 for (const MDOperand &MDO : N->operands()) { 1743 Metadata *MD = MDO; 1744 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1745 "Unexpected function-local metadata"); 1746 Record.push_back(VE.getMetadataOrNullID(MD)); 1747 } 1748 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1749 : bitc::METADATA_NODE, 1750 Record, Abbrev); 1751 Record.clear(); 1752 } 1753 1754 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1755 // Assume the column is usually under 128, and always output the inlined-at 1756 // location (it's never more expensive than building an array size 1). 1757 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1758 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1765 return Stream.EmitAbbrev(std::move(Abbv)); 1766 } 1767 1768 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1769 SmallVectorImpl<uint64_t> &Record, 1770 unsigned &Abbrev) { 1771 if (!Abbrev) 1772 Abbrev = createDILocationAbbrev(); 1773 1774 Record.push_back(N->isDistinct()); 1775 Record.push_back(N->getLine()); 1776 Record.push_back(N->getColumn()); 1777 Record.push_back(VE.getMetadataID(N->getScope())); 1778 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1779 Record.push_back(N->isImplicitCode()); 1780 1781 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1782 Record.clear(); 1783 } 1784 1785 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1786 // Assume the column is usually under 128, and always output the inlined-at 1787 // location (it's never more expensive than building an array size 1). 1788 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1789 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1796 return Stream.EmitAbbrev(std::move(Abbv)); 1797 } 1798 1799 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1800 SmallVectorImpl<uint64_t> &Record, 1801 unsigned &Abbrev) { 1802 if (!Abbrev) 1803 Abbrev = createGenericDINodeAbbrev(); 1804 1805 Record.push_back(N->isDistinct()); 1806 Record.push_back(N->getTag()); 1807 Record.push_back(0); // Per-tag version field; unused for now. 1808 1809 for (auto &I : N->operands()) 1810 Record.push_back(VE.getMetadataOrNullID(I)); 1811 1812 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1813 Record.clear(); 1814 } 1815 1816 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1817 SmallVectorImpl<uint64_t> &Record, 1818 unsigned Abbrev) { 1819 const uint64_t Version = 2 << 1; 1820 Record.push_back((uint64_t)N->isDistinct() | Version); 1821 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1822 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1823 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1824 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1825 1826 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1827 Record.clear(); 1828 } 1829 1830 void ModuleBitcodeWriter::writeDIGenericSubrange( 1831 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1832 unsigned Abbrev) { 1833 Record.push_back((uint64_t)N->isDistinct()); 1834 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1835 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1836 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1837 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1838 1839 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1840 Record.clear(); 1841 } 1842 1843 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1844 SmallVectorImpl<uint64_t> &Record, 1845 unsigned Abbrev) { 1846 const uint64_t IsBigInt = 1 << 2; 1847 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1848 Record.push_back(N->getValue().getBitWidth()); 1849 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1850 emitWideAPInt(Record, N->getValue()); 1851 1852 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1853 Record.clear(); 1854 } 1855 1856 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1857 SmallVectorImpl<uint64_t> &Record, 1858 unsigned Abbrev) { 1859 Record.push_back(N->isDistinct()); 1860 Record.push_back(N->getTag()); 1861 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1862 Record.push_back(N->getSizeInBits()); 1863 Record.push_back(N->getAlignInBits()); 1864 Record.push_back(N->getEncoding()); 1865 Record.push_back(N->getFlags()); 1866 1867 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1868 Record.clear(); 1869 } 1870 1871 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1872 SmallVectorImpl<uint64_t> &Record, 1873 unsigned Abbrev) { 1874 Record.push_back(N->isDistinct()); 1875 Record.push_back(N->getTag()); 1876 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1877 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1878 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1879 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1880 Record.push_back(N->getSizeInBits()); 1881 Record.push_back(N->getAlignInBits()); 1882 Record.push_back(N->getEncoding()); 1883 1884 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1885 Record.clear(); 1886 } 1887 1888 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1889 SmallVectorImpl<uint64_t> &Record, 1890 unsigned Abbrev) { 1891 Record.push_back(N->isDistinct()); 1892 Record.push_back(N->getTag()); 1893 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1894 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1895 Record.push_back(N->getLine()); 1896 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1897 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1898 Record.push_back(N->getSizeInBits()); 1899 Record.push_back(N->getAlignInBits()); 1900 Record.push_back(N->getOffsetInBits()); 1901 Record.push_back(N->getFlags()); 1902 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1903 1904 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1905 // that there is no DWARF address space associated with DIDerivedType. 1906 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1907 Record.push_back(*DWARFAddressSpace + 1); 1908 else 1909 Record.push_back(0); 1910 1911 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1912 1913 if (auto PtrAuthData = N->getPtrAuthData()) 1914 Record.push_back(PtrAuthData->RawData); 1915 else 1916 Record.push_back(0); 1917 1918 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1919 Record.clear(); 1920 } 1921 1922 void ModuleBitcodeWriter::writeDICompositeType( 1923 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1924 unsigned Abbrev) { 1925 const unsigned IsNotUsedInOldTypeRef = 0x2; 1926 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1927 Record.push_back(N->getTag()); 1928 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1929 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1930 Record.push_back(N->getLine()); 1931 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1932 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1933 Record.push_back(N->getSizeInBits()); 1934 Record.push_back(N->getAlignInBits()); 1935 Record.push_back(N->getOffsetInBits()); 1936 Record.push_back(N->getFlags()); 1937 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1938 Record.push_back(N->getRuntimeLang()); 1939 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1940 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1941 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1942 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1943 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1944 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1945 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1946 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1947 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1948 1949 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1950 Record.clear(); 1951 } 1952 1953 void ModuleBitcodeWriter::writeDISubroutineType( 1954 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1955 unsigned Abbrev) { 1956 const unsigned HasNoOldTypeRefs = 0x2; 1957 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1958 Record.push_back(N->getFlags()); 1959 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1960 Record.push_back(N->getCC()); 1961 1962 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1963 Record.clear(); 1964 } 1965 1966 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1967 SmallVectorImpl<uint64_t> &Record, 1968 unsigned Abbrev) { 1969 Record.push_back(N->isDistinct()); 1970 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1971 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1972 if (N->getRawChecksum()) { 1973 Record.push_back(N->getRawChecksum()->Kind); 1974 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1975 } else { 1976 // Maintain backwards compatibility with the old internal representation of 1977 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1978 Record.push_back(0); 1979 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1980 } 1981 auto Source = N->getRawSource(); 1982 if (Source) 1983 Record.push_back(VE.getMetadataOrNullID(Source)); 1984 1985 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1986 Record.clear(); 1987 } 1988 1989 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1990 SmallVectorImpl<uint64_t> &Record, 1991 unsigned Abbrev) { 1992 assert(N->isDistinct() && "Expected distinct compile units"); 1993 Record.push_back(/* IsDistinct */ true); 1994 Record.push_back(N->getSourceLanguage()); 1995 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1996 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1997 Record.push_back(N->isOptimized()); 1998 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1999 Record.push_back(N->getRuntimeVersion()); 2000 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 2001 Record.push_back(N->getEmissionKind()); 2002 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 2003 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 2004 Record.push_back(/* subprograms */ 0); 2005 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 2006 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 2007 Record.push_back(N->getDWOId()); 2008 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 2009 Record.push_back(N->getSplitDebugInlining()); 2010 Record.push_back(N->getDebugInfoForProfiling()); 2011 Record.push_back((unsigned)N->getNameTableKind()); 2012 Record.push_back(N->getRangesBaseAddress()); 2013 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 2014 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 2015 2016 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 2017 Record.clear(); 2018 } 2019 2020 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 2021 SmallVectorImpl<uint64_t> &Record, 2022 unsigned Abbrev) { 2023 const uint64_t HasUnitFlag = 1 << 1; 2024 const uint64_t HasSPFlagsFlag = 1 << 2; 2025 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 2026 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2027 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2028 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2029 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2030 Record.push_back(N->getLine()); 2031 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2032 Record.push_back(N->getScopeLine()); 2033 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 2034 Record.push_back(N->getSPFlags()); 2035 Record.push_back(N->getVirtualIndex()); 2036 Record.push_back(N->getFlags()); 2037 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 2038 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 2039 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 2040 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 2041 Record.push_back(N->getThisAdjustment()); 2042 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 2043 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2044 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 2045 2046 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 2047 Record.clear(); 2048 } 2049 2050 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 2051 SmallVectorImpl<uint64_t> &Record, 2052 unsigned Abbrev) { 2053 Record.push_back(N->isDistinct()); 2054 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2055 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2056 Record.push_back(N->getLine()); 2057 Record.push_back(N->getColumn()); 2058 2059 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 2060 Record.clear(); 2061 } 2062 2063 void ModuleBitcodeWriter::writeDILexicalBlockFile( 2064 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 2065 unsigned Abbrev) { 2066 Record.push_back(N->isDistinct()); 2067 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2068 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2069 Record.push_back(N->getDiscriminator()); 2070 2071 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 2072 Record.clear(); 2073 } 2074 2075 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 2076 SmallVectorImpl<uint64_t> &Record, 2077 unsigned Abbrev) { 2078 Record.push_back(N->isDistinct()); 2079 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2080 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2081 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2082 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2083 Record.push_back(N->getLineNo()); 2084 2085 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2086 Record.clear(); 2087 } 2088 2089 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2090 SmallVectorImpl<uint64_t> &Record, 2091 unsigned Abbrev) { 2092 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2093 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2094 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2095 2096 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2097 Record.clear(); 2098 } 2099 2100 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2101 SmallVectorImpl<uint64_t> &Record, 2102 unsigned Abbrev) { 2103 Record.push_back(N->isDistinct()); 2104 Record.push_back(N->getMacinfoType()); 2105 Record.push_back(N->getLine()); 2106 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2107 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2108 2109 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2110 Record.clear(); 2111 } 2112 2113 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2114 SmallVectorImpl<uint64_t> &Record, 2115 unsigned Abbrev) { 2116 Record.push_back(N->isDistinct()); 2117 Record.push_back(N->getMacinfoType()); 2118 Record.push_back(N->getLine()); 2119 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2120 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2121 2122 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2123 Record.clear(); 2124 } 2125 2126 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2127 SmallVectorImpl<uint64_t> &Record) { 2128 Record.reserve(N->getArgs().size()); 2129 for (ValueAsMetadata *MD : N->getArgs()) 2130 Record.push_back(VE.getMetadataID(MD)); 2131 2132 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2133 Record.clear(); 2134 } 2135 2136 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2137 SmallVectorImpl<uint64_t> &Record, 2138 unsigned Abbrev) { 2139 Record.push_back(N->isDistinct()); 2140 for (auto &I : N->operands()) 2141 Record.push_back(VE.getMetadataOrNullID(I)); 2142 Record.push_back(N->getLineNo()); 2143 Record.push_back(N->getIsDecl()); 2144 2145 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2146 Record.clear(); 2147 } 2148 2149 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2150 SmallVectorImpl<uint64_t> &Record, 2151 unsigned Abbrev) { 2152 // There are no arguments for this metadata type. 2153 Record.push_back(N->isDistinct()); 2154 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2155 Record.clear(); 2156 } 2157 2158 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2159 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2160 unsigned Abbrev) { 2161 Record.push_back(N->isDistinct()); 2162 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2163 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2164 Record.push_back(N->isDefault()); 2165 2166 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2167 Record.clear(); 2168 } 2169 2170 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2171 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2172 unsigned Abbrev) { 2173 Record.push_back(N->isDistinct()); 2174 Record.push_back(N->getTag()); 2175 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2176 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2177 Record.push_back(N->isDefault()); 2178 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2179 2180 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2181 Record.clear(); 2182 } 2183 2184 void ModuleBitcodeWriter::writeDIGlobalVariable( 2185 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2186 unsigned Abbrev) { 2187 const uint64_t Version = 2 << 1; 2188 Record.push_back((uint64_t)N->isDistinct() | Version); 2189 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2190 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2191 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2192 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2193 Record.push_back(N->getLine()); 2194 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2195 Record.push_back(N->isLocalToUnit()); 2196 Record.push_back(N->isDefinition()); 2197 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2198 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2199 Record.push_back(N->getAlignInBits()); 2200 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2201 2202 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2203 Record.clear(); 2204 } 2205 2206 void ModuleBitcodeWriter::writeDILocalVariable( 2207 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2208 unsigned Abbrev) { 2209 // In order to support all possible bitcode formats in BitcodeReader we need 2210 // to distinguish the following cases: 2211 // 1) Record has no artificial tag (Record[1]), 2212 // has no obsolete inlinedAt field (Record[9]). 2213 // In this case Record size will be 8, HasAlignment flag is false. 2214 // 2) Record has artificial tag (Record[1]), 2215 // has no obsolete inlignedAt field (Record[9]). 2216 // In this case Record size will be 9, HasAlignment flag is false. 2217 // 3) Record has both artificial tag (Record[1]) and 2218 // obsolete inlignedAt field (Record[9]). 2219 // In this case Record size will be 10, HasAlignment flag is false. 2220 // 4) Record has neither artificial tag, nor inlignedAt field, but 2221 // HasAlignment flag is true and Record[8] contains alignment value. 2222 const uint64_t HasAlignmentFlag = 1 << 1; 2223 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2224 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2225 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2226 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2227 Record.push_back(N->getLine()); 2228 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2229 Record.push_back(N->getArg()); 2230 Record.push_back(N->getFlags()); 2231 Record.push_back(N->getAlignInBits()); 2232 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2233 2234 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2235 Record.clear(); 2236 } 2237 2238 void ModuleBitcodeWriter::writeDILabel( 2239 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2240 unsigned Abbrev) { 2241 Record.push_back((uint64_t)N->isDistinct()); 2242 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2243 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2244 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2245 Record.push_back(N->getLine()); 2246 2247 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2248 Record.clear(); 2249 } 2250 2251 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2252 SmallVectorImpl<uint64_t> &Record, 2253 unsigned Abbrev) { 2254 Record.reserve(N->getElements().size() + 1); 2255 const uint64_t Version = 3 << 1; 2256 Record.push_back((uint64_t)N->isDistinct() | Version); 2257 Record.append(N->elements_begin(), N->elements_end()); 2258 2259 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2260 Record.clear(); 2261 } 2262 2263 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2264 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2265 unsigned Abbrev) { 2266 Record.push_back(N->isDistinct()); 2267 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2268 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2269 2270 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2271 Record.clear(); 2272 } 2273 2274 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2275 SmallVectorImpl<uint64_t> &Record, 2276 unsigned Abbrev) { 2277 Record.push_back(N->isDistinct()); 2278 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2279 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2280 Record.push_back(N->getLine()); 2281 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2282 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2283 Record.push_back(N->getAttributes()); 2284 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2285 2286 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2287 Record.clear(); 2288 } 2289 2290 void ModuleBitcodeWriter::writeDIImportedEntity( 2291 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2292 unsigned Abbrev) { 2293 Record.push_back(N->isDistinct()); 2294 Record.push_back(N->getTag()); 2295 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2296 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2297 Record.push_back(N->getLine()); 2298 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2299 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2300 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2301 2302 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2303 Record.clear(); 2304 } 2305 2306 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2307 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2308 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2311 return Stream.EmitAbbrev(std::move(Abbv)); 2312 } 2313 2314 void ModuleBitcodeWriter::writeNamedMetadata( 2315 SmallVectorImpl<uint64_t> &Record) { 2316 if (M.named_metadata_empty()) 2317 return; 2318 2319 unsigned Abbrev = createNamedMetadataAbbrev(); 2320 for (const NamedMDNode &NMD : M.named_metadata()) { 2321 // Write name. 2322 StringRef Str = NMD.getName(); 2323 Record.append(Str.bytes_begin(), Str.bytes_end()); 2324 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2325 Record.clear(); 2326 2327 // Write named metadata operands. 2328 for (const MDNode *N : NMD.operands()) 2329 Record.push_back(VE.getMetadataID(N)); 2330 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2331 Record.clear(); 2332 } 2333 } 2334 2335 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2336 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2337 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2341 return Stream.EmitAbbrev(std::move(Abbv)); 2342 } 2343 2344 /// Write out a record for MDString. 2345 /// 2346 /// All the metadata strings in a metadata block are emitted in a single 2347 /// record. The sizes and strings themselves are shoved into a blob. 2348 void ModuleBitcodeWriter::writeMetadataStrings( 2349 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2350 if (Strings.empty()) 2351 return; 2352 2353 // Start the record with the number of strings. 2354 Record.push_back(bitc::METADATA_STRINGS); 2355 Record.push_back(Strings.size()); 2356 2357 // Emit the sizes of the strings in the blob. 2358 SmallString<256> Blob; 2359 { 2360 BitstreamWriter W(Blob); 2361 for (const Metadata *MD : Strings) 2362 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2363 W.FlushToWord(); 2364 } 2365 2366 // Add the offset to the strings to the record. 2367 Record.push_back(Blob.size()); 2368 2369 // Add the strings to the blob. 2370 for (const Metadata *MD : Strings) 2371 Blob.append(cast<MDString>(MD)->getString()); 2372 2373 // Emit the final record. 2374 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2375 Record.clear(); 2376 } 2377 2378 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2379 enum MetadataAbbrev : unsigned { 2380 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2381 #include "llvm/IR/Metadata.def" 2382 LastPlusOne 2383 }; 2384 2385 void ModuleBitcodeWriter::writeMetadataRecords( 2386 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2387 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2388 if (MDs.empty()) 2389 return; 2390 2391 // Initialize MDNode abbreviations. 2392 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2393 #include "llvm/IR/Metadata.def" 2394 2395 for (const Metadata *MD : MDs) { 2396 if (IndexPos) 2397 IndexPos->push_back(Stream.GetCurrentBitNo()); 2398 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2399 assert(N->isResolved() && "Expected forward references to be resolved"); 2400 2401 switch (N->getMetadataID()) { 2402 default: 2403 llvm_unreachable("Invalid MDNode subclass"); 2404 #define HANDLE_MDNODE_LEAF(CLASS) \ 2405 case Metadata::CLASS##Kind: \ 2406 if (MDAbbrevs) \ 2407 write##CLASS(cast<CLASS>(N), Record, \ 2408 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2409 else \ 2410 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2411 continue; 2412 #include "llvm/IR/Metadata.def" 2413 } 2414 } 2415 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2416 writeDIArgList(AL, Record); 2417 continue; 2418 } 2419 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2420 } 2421 } 2422 2423 void ModuleBitcodeWriter::writeModuleMetadata() { 2424 if (!VE.hasMDs() && M.named_metadata_empty()) 2425 return; 2426 2427 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2428 SmallVector<uint64_t, 64> Record; 2429 2430 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2431 // block and load any metadata. 2432 std::vector<unsigned> MDAbbrevs; 2433 2434 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2435 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2436 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2437 createGenericDINodeAbbrev(); 2438 2439 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2440 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2443 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2444 2445 Abbv = std::make_shared<BitCodeAbbrev>(); 2446 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2449 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2450 2451 // Emit MDStrings together upfront. 2452 writeMetadataStrings(VE.getMDStrings(), Record); 2453 2454 // We only emit an index for the metadata record if we have more than a given 2455 // (naive) threshold of metadatas, otherwise it is not worth it. 2456 if (VE.getNonMDStrings().size() > IndexThreshold) { 2457 // Write a placeholder value in for the offset of the metadata index, 2458 // which is written after the records, so that it can include 2459 // the offset of each entry. The placeholder offset will be 2460 // updated after all records are emitted. 2461 uint64_t Vals[] = {0, 0}; 2462 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2463 } 2464 2465 // Compute and save the bit offset to the current position, which will be 2466 // patched when we emit the index later. We can simply subtract the 64-bit 2467 // fixed size from the current bit number to get the location to backpatch. 2468 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2469 2470 // This index will contain the bitpos for each individual record. 2471 std::vector<uint64_t> IndexPos; 2472 IndexPos.reserve(VE.getNonMDStrings().size()); 2473 2474 // Write all the records 2475 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2476 2477 if (VE.getNonMDStrings().size() > IndexThreshold) { 2478 // Now that we have emitted all the records we will emit the index. But 2479 // first 2480 // backpatch the forward reference so that the reader can skip the records 2481 // efficiently. 2482 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2483 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2484 2485 // Delta encode the index. 2486 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2487 for (auto &Elt : IndexPos) { 2488 auto EltDelta = Elt - PreviousValue; 2489 PreviousValue = Elt; 2490 Elt = EltDelta; 2491 } 2492 // Emit the index record. 2493 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2494 IndexPos.clear(); 2495 } 2496 2497 // Write the named metadata now. 2498 writeNamedMetadata(Record); 2499 2500 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2501 SmallVector<uint64_t, 4> Record; 2502 Record.push_back(VE.getValueID(&GO)); 2503 pushGlobalMetadataAttachment(Record, GO); 2504 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2505 }; 2506 for (const Function &F : M) 2507 if (F.isDeclaration() && F.hasMetadata()) 2508 AddDeclAttachedMetadata(F); 2509 // FIXME: Only store metadata for declarations here, and move data for global 2510 // variable definitions to a separate block (PR28134). 2511 for (const GlobalVariable &GV : M.globals()) 2512 if (GV.hasMetadata()) 2513 AddDeclAttachedMetadata(GV); 2514 2515 Stream.ExitBlock(); 2516 } 2517 2518 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2519 if (!VE.hasMDs()) 2520 return; 2521 2522 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2523 SmallVector<uint64_t, 64> Record; 2524 writeMetadataStrings(VE.getMDStrings(), Record); 2525 writeMetadataRecords(VE.getNonMDStrings(), Record); 2526 Stream.ExitBlock(); 2527 } 2528 2529 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2530 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2531 // [n x [id, mdnode]] 2532 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2533 GO.getAllMetadata(MDs); 2534 for (const auto &I : MDs) { 2535 Record.push_back(I.first); 2536 Record.push_back(VE.getMetadataID(I.second)); 2537 } 2538 } 2539 2540 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2541 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2542 2543 SmallVector<uint64_t, 64> Record; 2544 2545 if (F.hasMetadata()) { 2546 pushGlobalMetadataAttachment(Record, F); 2547 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2548 Record.clear(); 2549 } 2550 2551 // Write metadata attachments 2552 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2553 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2554 for (const BasicBlock &BB : F) 2555 for (const Instruction &I : BB) { 2556 MDs.clear(); 2557 I.getAllMetadataOtherThanDebugLoc(MDs); 2558 2559 // If no metadata, ignore instruction. 2560 if (MDs.empty()) continue; 2561 2562 Record.push_back(VE.getInstructionID(&I)); 2563 2564 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2565 Record.push_back(MDs[i].first); 2566 Record.push_back(VE.getMetadataID(MDs[i].second)); 2567 } 2568 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2569 Record.clear(); 2570 } 2571 2572 Stream.ExitBlock(); 2573 } 2574 2575 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2576 SmallVector<uint64_t, 64> Record; 2577 2578 // Write metadata kinds 2579 // METADATA_KIND - [n x [id, name]] 2580 SmallVector<StringRef, 8> Names; 2581 M.getMDKindNames(Names); 2582 2583 if (Names.empty()) return; 2584 2585 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2586 2587 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2588 Record.push_back(MDKindID); 2589 StringRef KName = Names[MDKindID]; 2590 Record.append(KName.begin(), KName.end()); 2591 2592 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2593 Record.clear(); 2594 } 2595 2596 Stream.ExitBlock(); 2597 } 2598 2599 void ModuleBitcodeWriter::writeOperandBundleTags() { 2600 // Write metadata kinds 2601 // 2602 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2603 // 2604 // OPERAND_BUNDLE_TAG - [strchr x N] 2605 2606 SmallVector<StringRef, 8> Tags; 2607 M.getOperandBundleTags(Tags); 2608 2609 if (Tags.empty()) 2610 return; 2611 2612 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2613 2614 SmallVector<uint64_t, 64> Record; 2615 2616 for (auto Tag : Tags) { 2617 Record.append(Tag.begin(), Tag.end()); 2618 2619 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2620 Record.clear(); 2621 } 2622 2623 Stream.ExitBlock(); 2624 } 2625 2626 void ModuleBitcodeWriter::writeSyncScopeNames() { 2627 SmallVector<StringRef, 8> SSNs; 2628 M.getContext().getSyncScopeNames(SSNs); 2629 if (SSNs.empty()) 2630 return; 2631 2632 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2633 2634 SmallVector<uint64_t, 64> Record; 2635 for (auto SSN : SSNs) { 2636 Record.append(SSN.begin(), SSN.end()); 2637 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2638 Record.clear(); 2639 } 2640 2641 Stream.ExitBlock(); 2642 } 2643 2644 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2645 bool isGlobal) { 2646 if (FirstVal == LastVal) return; 2647 2648 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2649 2650 unsigned AggregateAbbrev = 0; 2651 unsigned String8Abbrev = 0; 2652 unsigned CString7Abbrev = 0; 2653 unsigned CString6Abbrev = 0; 2654 // If this is a constant pool for the module, emit module-specific abbrevs. 2655 if (isGlobal) { 2656 // Abbrev for CST_CODE_AGGREGATE. 2657 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2658 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2661 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2662 2663 // Abbrev for CST_CODE_STRING. 2664 Abbv = std::make_shared<BitCodeAbbrev>(); 2665 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2668 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2669 // Abbrev for CST_CODE_CSTRING. 2670 Abbv = std::make_shared<BitCodeAbbrev>(); 2671 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2674 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2675 // Abbrev for CST_CODE_CSTRING. 2676 Abbv = std::make_shared<BitCodeAbbrev>(); 2677 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2680 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2681 } 2682 2683 SmallVector<uint64_t, 64> Record; 2684 2685 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2686 Type *LastTy = nullptr; 2687 for (unsigned i = FirstVal; i != LastVal; ++i) { 2688 const Value *V = Vals[i].first; 2689 // If we need to switch types, do so now. 2690 if (V->getType() != LastTy) { 2691 LastTy = V->getType(); 2692 Record.push_back(VE.getTypeID(LastTy)); 2693 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2694 CONSTANTS_SETTYPE_ABBREV); 2695 Record.clear(); 2696 } 2697 2698 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2699 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2700 Record.push_back( 2701 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2702 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2703 2704 // Add the asm string. 2705 const std::string &AsmStr = IA->getAsmString(); 2706 Record.push_back(AsmStr.size()); 2707 Record.append(AsmStr.begin(), AsmStr.end()); 2708 2709 // Add the constraint string. 2710 const std::string &ConstraintStr = IA->getConstraintString(); 2711 Record.push_back(ConstraintStr.size()); 2712 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2713 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2714 Record.clear(); 2715 continue; 2716 } 2717 const Constant *C = cast<Constant>(V); 2718 unsigned Code = -1U; 2719 unsigned AbbrevToUse = 0; 2720 if (C->isNullValue()) { 2721 Code = bitc::CST_CODE_NULL; 2722 } else if (isa<PoisonValue>(C)) { 2723 Code = bitc::CST_CODE_POISON; 2724 } else if (isa<UndefValue>(C)) { 2725 Code = bitc::CST_CODE_UNDEF; 2726 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2727 if (IV->getBitWidth() <= 64) { 2728 uint64_t V = IV->getSExtValue(); 2729 emitSignedInt64(Record, V); 2730 Code = bitc::CST_CODE_INTEGER; 2731 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2732 } else { // Wide integers, > 64 bits in size. 2733 emitWideAPInt(Record, IV->getValue()); 2734 Code = bitc::CST_CODE_WIDE_INTEGER; 2735 } 2736 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2737 Code = bitc::CST_CODE_FLOAT; 2738 Type *Ty = CFP->getType()->getScalarType(); 2739 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2740 Ty->isDoubleTy()) { 2741 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2742 } else if (Ty->isX86_FP80Ty()) { 2743 // api needed to prevent premature destruction 2744 // bits are not in the same order as a normal i80 APInt, compensate. 2745 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2746 const uint64_t *p = api.getRawData(); 2747 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2748 Record.push_back(p[0] & 0xffffLL); 2749 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2750 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2751 const uint64_t *p = api.getRawData(); 2752 Record.push_back(p[0]); 2753 Record.push_back(p[1]); 2754 } else { 2755 assert(0 && "Unknown FP type!"); 2756 } 2757 } else if (isa<ConstantDataSequential>(C) && 2758 cast<ConstantDataSequential>(C)->isString()) { 2759 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2760 // Emit constant strings specially. 2761 unsigned NumElts = Str->getNumElements(); 2762 // If this is a null-terminated string, use the denser CSTRING encoding. 2763 if (Str->isCString()) { 2764 Code = bitc::CST_CODE_CSTRING; 2765 --NumElts; // Don't encode the null, which isn't allowed by char6. 2766 } else { 2767 Code = bitc::CST_CODE_STRING; 2768 AbbrevToUse = String8Abbrev; 2769 } 2770 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2771 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2772 for (unsigned i = 0; i != NumElts; ++i) { 2773 unsigned char V = Str->getElementAsInteger(i); 2774 Record.push_back(V); 2775 isCStr7 &= (V & 128) == 0; 2776 if (isCStrChar6) 2777 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2778 } 2779 2780 if (isCStrChar6) 2781 AbbrevToUse = CString6Abbrev; 2782 else if (isCStr7) 2783 AbbrevToUse = CString7Abbrev; 2784 } else if (const ConstantDataSequential *CDS = 2785 dyn_cast<ConstantDataSequential>(C)) { 2786 Code = bitc::CST_CODE_DATA; 2787 Type *EltTy = CDS->getElementType(); 2788 if (isa<IntegerType>(EltTy)) { 2789 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2790 Record.push_back(CDS->getElementAsInteger(i)); 2791 } else { 2792 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2793 Record.push_back( 2794 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2795 } 2796 } else if (isa<ConstantAggregate>(C)) { 2797 Code = bitc::CST_CODE_AGGREGATE; 2798 for (const Value *Op : C->operands()) 2799 Record.push_back(VE.getValueID(Op)); 2800 AbbrevToUse = AggregateAbbrev; 2801 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2802 switch (CE->getOpcode()) { 2803 default: 2804 if (Instruction::isCast(CE->getOpcode())) { 2805 Code = bitc::CST_CODE_CE_CAST; 2806 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2807 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2808 Record.push_back(VE.getValueID(C->getOperand(0))); 2809 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2810 } else { 2811 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2812 Code = bitc::CST_CODE_CE_BINOP; 2813 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2814 Record.push_back(VE.getValueID(C->getOperand(0))); 2815 Record.push_back(VE.getValueID(C->getOperand(1))); 2816 uint64_t Flags = getOptimizationFlags(CE); 2817 if (Flags != 0) 2818 Record.push_back(Flags); 2819 } 2820 break; 2821 case Instruction::FNeg: { 2822 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2823 Code = bitc::CST_CODE_CE_UNOP; 2824 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2825 Record.push_back(VE.getValueID(C->getOperand(0))); 2826 uint64_t Flags = getOptimizationFlags(CE); 2827 if (Flags != 0) 2828 Record.push_back(Flags); 2829 break; 2830 } 2831 case Instruction::GetElementPtr: { 2832 Code = bitc::CST_CODE_CE_GEP; 2833 const auto *GO = cast<GEPOperator>(C); 2834 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2835 Record.push_back(getOptimizationFlags(GO)); 2836 if (std::optional<ConstantRange> Range = GO->getInRange()) { 2837 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; 2838 emitConstantRange(Record, *Range, /*EmitBitWidth=*/true); 2839 } 2840 for (const Value *Op : CE->operands()) { 2841 Record.push_back(VE.getTypeID(Op->getType())); 2842 Record.push_back(VE.getValueID(Op)); 2843 } 2844 break; 2845 } 2846 case Instruction::ExtractElement: 2847 Code = bitc::CST_CODE_CE_EXTRACTELT; 2848 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2849 Record.push_back(VE.getValueID(C->getOperand(0))); 2850 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2851 Record.push_back(VE.getValueID(C->getOperand(1))); 2852 break; 2853 case Instruction::InsertElement: 2854 Code = bitc::CST_CODE_CE_INSERTELT; 2855 Record.push_back(VE.getValueID(C->getOperand(0))); 2856 Record.push_back(VE.getValueID(C->getOperand(1))); 2857 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2858 Record.push_back(VE.getValueID(C->getOperand(2))); 2859 break; 2860 case Instruction::ShuffleVector: 2861 // If the return type and argument types are the same, this is a 2862 // standard shufflevector instruction. If the types are different, 2863 // then the shuffle is widening or truncating the input vectors, and 2864 // the argument type must also be encoded. 2865 if (C->getType() == C->getOperand(0)->getType()) { 2866 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2867 } else { 2868 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2869 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2870 } 2871 Record.push_back(VE.getValueID(C->getOperand(0))); 2872 Record.push_back(VE.getValueID(C->getOperand(1))); 2873 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2874 break; 2875 } 2876 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2877 Code = bitc::CST_CODE_BLOCKADDRESS; 2878 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2879 Record.push_back(VE.getValueID(BA->getFunction())); 2880 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2881 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2882 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2883 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2884 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2885 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2886 Code = bitc::CST_CODE_NO_CFI_VALUE; 2887 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2888 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2889 } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) { 2890 Code = bitc::CST_CODE_PTRAUTH; 2891 Record.push_back(VE.getValueID(CPA->getPointer())); 2892 Record.push_back(VE.getValueID(CPA->getKey())); 2893 Record.push_back(VE.getValueID(CPA->getDiscriminator())); 2894 Record.push_back(VE.getValueID(CPA->getAddrDiscriminator())); 2895 } else { 2896 #ifndef NDEBUG 2897 C->dump(); 2898 #endif 2899 llvm_unreachable("Unknown constant!"); 2900 } 2901 Stream.EmitRecord(Code, Record, AbbrevToUse); 2902 Record.clear(); 2903 } 2904 2905 Stream.ExitBlock(); 2906 } 2907 2908 void ModuleBitcodeWriter::writeModuleConstants() { 2909 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2910 2911 // Find the first constant to emit, which is the first non-globalvalue value. 2912 // We know globalvalues have been emitted by WriteModuleInfo. 2913 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2914 if (!isa<GlobalValue>(Vals[i].first)) { 2915 writeConstants(i, Vals.size(), true); 2916 return; 2917 } 2918 } 2919 } 2920 2921 /// pushValueAndType - The file has to encode both the value and type id for 2922 /// many values, because we need to know what type to create for forward 2923 /// references. However, most operands are not forward references, so this type 2924 /// field is not needed. 2925 /// 2926 /// This function adds V's value ID to Vals. If the value ID is higher than the 2927 /// instruction ID, then it is a forward reference, and it also includes the 2928 /// type ID. The value ID that is written is encoded relative to the InstID. 2929 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2930 SmallVectorImpl<unsigned> &Vals) { 2931 unsigned ValID = VE.getValueID(V); 2932 // Make encoding relative to the InstID. 2933 Vals.push_back(InstID - ValID); 2934 if (ValID >= InstID) { 2935 Vals.push_back(VE.getTypeID(V->getType())); 2936 return true; 2937 } 2938 return false; 2939 } 2940 2941 bool ModuleBitcodeWriter::pushValueOrMetadata(const Value *V, unsigned InstID, 2942 SmallVectorImpl<unsigned> &Vals) { 2943 bool IsMetadata = V->getType()->isMetadataTy(); 2944 if (IsMetadata) { 2945 Vals.push_back(bitc::OB_METADATA); 2946 Metadata *MD = cast<MetadataAsValue>(V)->getMetadata(); 2947 unsigned ValID = VE.getMetadataID(MD); 2948 Vals.push_back(InstID - ValID); 2949 return false; 2950 } 2951 return pushValueAndType(V, InstID, Vals); 2952 } 2953 2954 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2955 unsigned InstID) { 2956 SmallVector<unsigned, 64> Record; 2957 LLVMContext &C = CS.getContext(); 2958 2959 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2960 const auto &Bundle = CS.getOperandBundleAt(i); 2961 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2962 2963 for (auto &Input : Bundle.Inputs) 2964 pushValueOrMetadata(Input, InstID, Record); 2965 2966 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2967 Record.clear(); 2968 } 2969 } 2970 2971 /// pushValue - Like pushValueAndType, but where the type of the value is 2972 /// omitted (perhaps it was already encoded in an earlier operand). 2973 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2974 SmallVectorImpl<unsigned> &Vals) { 2975 unsigned ValID = VE.getValueID(V); 2976 Vals.push_back(InstID - ValID); 2977 } 2978 2979 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2980 SmallVectorImpl<uint64_t> &Vals) { 2981 unsigned ValID = VE.getValueID(V); 2982 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2983 emitSignedInt64(Vals, diff); 2984 } 2985 2986 /// WriteInstruction - Emit an instruction to the specified stream. 2987 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2988 unsigned InstID, 2989 SmallVectorImpl<unsigned> &Vals) { 2990 unsigned Code = 0; 2991 unsigned AbbrevToUse = 0; 2992 VE.setInstructionID(&I); 2993 switch (I.getOpcode()) { 2994 default: 2995 if (Instruction::isCast(I.getOpcode())) { 2996 Code = bitc::FUNC_CODE_INST_CAST; 2997 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2998 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2999 Vals.push_back(VE.getTypeID(I.getType())); 3000 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 3001 uint64_t Flags = getOptimizationFlags(&I); 3002 if (Flags != 0) { 3003 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 3004 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 3005 Vals.push_back(Flags); 3006 } 3007 } else { 3008 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 3009 Code = bitc::FUNC_CODE_INST_BINOP; 3010 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3011 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 3012 pushValue(I.getOperand(1), InstID, Vals); 3013 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 3014 uint64_t Flags = getOptimizationFlags(&I); 3015 if (Flags != 0) { 3016 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 3017 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 3018 Vals.push_back(Flags); 3019 } 3020 } 3021 break; 3022 case Instruction::FNeg: { 3023 Code = bitc::FUNC_CODE_INST_UNOP; 3024 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3025 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 3026 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 3027 uint64_t Flags = getOptimizationFlags(&I); 3028 if (Flags != 0) { 3029 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 3030 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 3031 Vals.push_back(Flags); 3032 } 3033 break; 3034 } 3035 case Instruction::GetElementPtr: { 3036 Code = bitc::FUNC_CODE_INST_GEP; 3037 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 3038 auto &GEPInst = cast<GetElementPtrInst>(I); 3039 Vals.push_back(getOptimizationFlags(&I)); 3040 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 3041 for (const Value *Op : I.operands()) 3042 pushValueAndType(Op, InstID, Vals); 3043 break; 3044 } 3045 case Instruction::ExtractValue: { 3046 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 3047 pushValueAndType(I.getOperand(0), InstID, Vals); 3048 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 3049 Vals.append(EVI->idx_begin(), EVI->idx_end()); 3050 break; 3051 } 3052 case Instruction::InsertValue: { 3053 Code = bitc::FUNC_CODE_INST_INSERTVAL; 3054 pushValueAndType(I.getOperand(0), InstID, Vals); 3055 pushValueAndType(I.getOperand(1), InstID, Vals); 3056 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 3057 Vals.append(IVI->idx_begin(), IVI->idx_end()); 3058 break; 3059 } 3060 case Instruction::Select: { 3061 Code = bitc::FUNC_CODE_INST_VSELECT; 3062 pushValueAndType(I.getOperand(1), InstID, Vals); 3063 pushValue(I.getOperand(2), InstID, Vals); 3064 pushValueAndType(I.getOperand(0), InstID, Vals); 3065 uint64_t Flags = getOptimizationFlags(&I); 3066 if (Flags != 0) 3067 Vals.push_back(Flags); 3068 break; 3069 } 3070 case Instruction::ExtractElement: 3071 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 3072 pushValueAndType(I.getOperand(0), InstID, Vals); 3073 pushValueAndType(I.getOperand(1), InstID, Vals); 3074 break; 3075 case Instruction::InsertElement: 3076 Code = bitc::FUNC_CODE_INST_INSERTELT; 3077 pushValueAndType(I.getOperand(0), InstID, Vals); 3078 pushValue(I.getOperand(1), InstID, Vals); 3079 pushValueAndType(I.getOperand(2), InstID, Vals); 3080 break; 3081 case Instruction::ShuffleVector: 3082 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 3083 pushValueAndType(I.getOperand(0), InstID, Vals); 3084 pushValue(I.getOperand(1), InstID, Vals); 3085 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 3086 Vals); 3087 break; 3088 case Instruction::ICmp: 3089 case Instruction::FCmp: { 3090 // compare returning Int1Ty or vector of Int1Ty 3091 Code = bitc::FUNC_CODE_INST_CMP2; 3092 pushValueAndType(I.getOperand(0), InstID, Vals); 3093 pushValue(I.getOperand(1), InstID, Vals); 3094 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3095 uint64_t Flags = getOptimizationFlags(&I); 3096 if (Flags != 0) 3097 Vals.push_back(Flags); 3098 break; 3099 } 3100 3101 case Instruction::Ret: 3102 { 3103 Code = bitc::FUNC_CODE_INST_RET; 3104 unsigned NumOperands = I.getNumOperands(); 3105 if (NumOperands == 0) 3106 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3107 else if (NumOperands == 1) { 3108 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3109 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3110 } else { 3111 for (const Value *Op : I.operands()) 3112 pushValueAndType(Op, InstID, Vals); 3113 } 3114 } 3115 break; 3116 case Instruction::Br: 3117 { 3118 Code = bitc::FUNC_CODE_INST_BR; 3119 const BranchInst &II = cast<BranchInst>(I); 3120 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3121 if (II.isConditional()) { 3122 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3123 pushValue(II.getCondition(), InstID, Vals); 3124 } 3125 } 3126 break; 3127 case Instruction::Switch: 3128 { 3129 Code = bitc::FUNC_CODE_INST_SWITCH; 3130 const SwitchInst &SI = cast<SwitchInst>(I); 3131 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3132 pushValue(SI.getCondition(), InstID, Vals); 3133 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3134 for (auto Case : SI.cases()) { 3135 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3136 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3137 } 3138 } 3139 break; 3140 case Instruction::IndirectBr: 3141 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3142 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3143 // Encode the address operand as relative, but not the basic blocks. 3144 pushValue(I.getOperand(0), InstID, Vals); 3145 for (const Value *Op : drop_begin(I.operands())) 3146 Vals.push_back(VE.getValueID(Op)); 3147 break; 3148 3149 case Instruction::Invoke: { 3150 const InvokeInst *II = cast<InvokeInst>(&I); 3151 const Value *Callee = II->getCalledOperand(); 3152 FunctionType *FTy = II->getFunctionType(); 3153 3154 if (II->hasOperandBundles()) 3155 writeOperandBundles(*II, InstID); 3156 3157 Code = bitc::FUNC_CODE_INST_INVOKE; 3158 3159 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3160 Vals.push_back(II->getCallingConv() | 1 << 13); 3161 Vals.push_back(VE.getValueID(II->getNormalDest())); 3162 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3163 Vals.push_back(VE.getTypeID(FTy)); 3164 pushValueAndType(Callee, InstID, Vals); 3165 3166 // Emit value #'s for the fixed parameters. 3167 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3168 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3169 3170 // Emit type/value pairs for varargs params. 3171 if (FTy->isVarArg()) { 3172 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3173 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3174 } 3175 break; 3176 } 3177 case Instruction::Resume: 3178 Code = bitc::FUNC_CODE_INST_RESUME; 3179 pushValueAndType(I.getOperand(0), InstID, Vals); 3180 break; 3181 case Instruction::CleanupRet: { 3182 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3183 const auto &CRI = cast<CleanupReturnInst>(I); 3184 pushValue(CRI.getCleanupPad(), InstID, Vals); 3185 if (CRI.hasUnwindDest()) 3186 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3187 break; 3188 } 3189 case Instruction::CatchRet: { 3190 Code = bitc::FUNC_CODE_INST_CATCHRET; 3191 const auto &CRI = cast<CatchReturnInst>(I); 3192 pushValue(CRI.getCatchPad(), InstID, Vals); 3193 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3194 break; 3195 } 3196 case Instruction::CleanupPad: 3197 case Instruction::CatchPad: { 3198 const auto &FuncletPad = cast<FuncletPadInst>(I); 3199 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3200 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3201 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3202 3203 unsigned NumArgOperands = FuncletPad.arg_size(); 3204 Vals.push_back(NumArgOperands); 3205 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3206 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3207 break; 3208 } 3209 case Instruction::CatchSwitch: { 3210 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3211 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3212 3213 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3214 3215 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3216 Vals.push_back(NumHandlers); 3217 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3218 Vals.push_back(VE.getValueID(CatchPadBB)); 3219 3220 if (CatchSwitch.hasUnwindDest()) 3221 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3222 break; 3223 } 3224 case Instruction::CallBr: { 3225 const CallBrInst *CBI = cast<CallBrInst>(&I); 3226 const Value *Callee = CBI->getCalledOperand(); 3227 FunctionType *FTy = CBI->getFunctionType(); 3228 3229 if (CBI->hasOperandBundles()) 3230 writeOperandBundles(*CBI, InstID); 3231 3232 Code = bitc::FUNC_CODE_INST_CALLBR; 3233 3234 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3235 3236 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3237 1 << bitc::CALL_EXPLICIT_TYPE); 3238 3239 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3240 Vals.push_back(CBI->getNumIndirectDests()); 3241 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3242 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3243 3244 Vals.push_back(VE.getTypeID(FTy)); 3245 pushValueAndType(Callee, InstID, Vals); 3246 3247 // Emit value #'s for the fixed parameters. 3248 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3249 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3250 3251 // Emit type/value pairs for varargs params. 3252 if (FTy->isVarArg()) { 3253 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3254 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3255 } 3256 break; 3257 } 3258 case Instruction::Unreachable: 3259 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3260 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3261 break; 3262 3263 case Instruction::PHI: { 3264 const PHINode &PN = cast<PHINode>(I); 3265 Code = bitc::FUNC_CODE_INST_PHI; 3266 // With the newer instruction encoding, forward references could give 3267 // negative valued IDs. This is most common for PHIs, so we use 3268 // signed VBRs. 3269 SmallVector<uint64_t, 128> Vals64; 3270 Vals64.push_back(VE.getTypeID(PN.getType())); 3271 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3272 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3273 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3274 } 3275 3276 uint64_t Flags = getOptimizationFlags(&I); 3277 if (Flags != 0) 3278 Vals64.push_back(Flags); 3279 3280 // Emit a Vals64 vector and exit. 3281 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3282 Vals64.clear(); 3283 return; 3284 } 3285 3286 case Instruction::LandingPad: { 3287 const LandingPadInst &LP = cast<LandingPadInst>(I); 3288 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3289 Vals.push_back(VE.getTypeID(LP.getType())); 3290 Vals.push_back(LP.isCleanup()); 3291 Vals.push_back(LP.getNumClauses()); 3292 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3293 if (LP.isCatch(I)) 3294 Vals.push_back(LandingPadInst::Catch); 3295 else 3296 Vals.push_back(LandingPadInst::Filter); 3297 pushValueAndType(LP.getClause(I), InstID, Vals); 3298 } 3299 break; 3300 } 3301 3302 case Instruction::Alloca: { 3303 Code = bitc::FUNC_CODE_INST_ALLOCA; 3304 const AllocaInst &AI = cast<AllocaInst>(I); 3305 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3306 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3307 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3308 using APV = AllocaPackedValues; 3309 unsigned Record = 0; 3310 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3311 Bitfield::set<APV::AlignLower>( 3312 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3313 Bitfield::set<APV::AlignUpper>(Record, 3314 EncodedAlign >> APV::AlignLower::Bits); 3315 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3316 Bitfield::set<APV::ExplicitType>(Record, true); 3317 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3318 Vals.push_back(Record); 3319 3320 unsigned AS = AI.getAddressSpace(); 3321 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3322 Vals.push_back(AS); 3323 break; 3324 } 3325 3326 case Instruction::Load: 3327 if (cast<LoadInst>(I).isAtomic()) { 3328 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3329 pushValueAndType(I.getOperand(0), InstID, Vals); 3330 } else { 3331 Code = bitc::FUNC_CODE_INST_LOAD; 3332 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3333 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3334 } 3335 Vals.push_back(VE.getTypeID(I.getType())); 3336 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3337 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3338 if (cast<LoadInst>(I).isAtomic()) { 3339 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3340 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3341 } 3342 break; 3343 case Instruction::Store: 3344 if (cast<StoreInst>(I).isAtomic()) 3345 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3346 else 3347 Code = bitc::FUNC_CODE_INST_STORE; 3348 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3349 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3350 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3351 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3352 if (cast<StoreInst>(I).isAtomic()) { 3353 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3354 Vals.push_back( 3355 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3356 } 3357 break; 3358 case Instruction::AtomicCmpXchg: 3359 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3360 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3361 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3362 pushValue(I.getOperand(2), InstID, Vals); // newval. 3363 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3364 Vals.push_back( 3365 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3366 Vals.push_back( 3367 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3368 Vals.push_back( 3369 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3370 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3371 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3372 break; 3373 case Instruction::AtomicRMW: 3374 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3375 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3376 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3377 Vals.push_back( 3378 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3379 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3380 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3381 Vals.push_back( 3382 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3383 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3384 break; 3385 case Instruction::Fence: 3386 Code = bitc::FUNC_CODE_INST_FENCE; 3387 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3388 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3389 break; 3390 case Instruction::Call: { 3391 const CallInst &CI = cast<CallInst>(I); 3392 FunctionType *FTy = CI.getFunctionType(); 3393 3394 if (CI.hasOperandBundles()) 3395 writeOperandBundles(CI, InstID); 3396 3397 Code = bitc::FUNC_CODE_INST_CALL; 3398 3399 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3400 3401 unsigned Flags = getOptimizationFlags(&I); 3402 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3403 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3404 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3405 1 << bitc::CALL_EXPLICIT_TYPE | 3406 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3407 unsigned(Flags != 0) << bitc::CALL_FMF); 3408 if (Flags != 0) 3409 Vals.push_back(Flags); 3410 3411 Vals.push_back(VE.getTypeID(FTy)); 3412 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3413 3414 // Emit value #'s for the fixed parameters. 3415 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3416 // Check for labels (can happen with asm labels). 3417 if (FTy->getParamType(i)->isLabelTy()) 3418 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3419 else 3420 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3421 } 3422 3423 // Emit type/value pairs for varargs params. 3424 if (FTy->isVarArg()) { 3425 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3426 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3427 } 3428 break; 3429 } 3430 case Instruction::VAArg: 3431 Code = bitc::FUNC_CODE_INST_VAARG; 3432 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3433 pushValue(I.getOperand(0), InstID, Vals); // valist. 3434 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3435 break; 3436 case Instruction::Freeze: 3437 Code = bitc::FUNC_CODE_INST_FREEZE; 3438 pushValueAndType(I.getOperand(0), InstID, Vals); 3439 break; 3440 } 3441 3442 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3443 Vals.clear(); 3444 } 3445 3446 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3447 /// to allow clients to efficiently find the function body. 3448 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3449 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3450 // Get the offset of the VST we are writing, and backpatch it into 3451 // the VST forward declaration record. 3452 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3453 // The BitcodeStartBit was the stream offset of the identification block. 3454 VSTOffset -= bitcodeStartBit(); 3455 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3456 // Note that we add 1 here because the offset is relative to one word 3457 // before the start of the identification block, which was historically 3458 // always the start of the regular bitcode header. 3459 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3460 3461 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3462 3463 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3464 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3467 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3468 3469 for (const Function &F : M) { 3470 uint64_t Record[2]; 3471 3472 if (F.isDeclaration()) 3473 continue; 3474 3475 Record[0] = VE.getValueID(&F); 3476 3477 // Save the word offset of the function (from the start of the 3478 // actual bitcode written to the stream). 3479 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3480 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3481 // Note that we add 1 here because the offset is relative to one word 3482 // before the start of the identification block, which was historically 3483 // always the start of the regular bitcode header. 3484 Record[1] = BitcodeIndex / 32 + 1; 3485 3486 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3487 } 3488 3489 Stream.ExitBlock(); 3490 } 3491 3492 /// Emit names for arguments, instructions and basic blocks in a function. 3493 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3494 const ValueSymbolTable &VST) { 3495 if (VST.empty()) 3496 return; 3497 3498 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3499 3500 // FIXME: Set up the abbrev, we know how many values there are! 3501 // FIXME: We know if the type names can use 7-bit ascii. 3502 SmallVector<uint64_t, 64> NameVals; 3503 3504 for (const ValueName &Name : VST) { 3505 // Figure out the encoding to use for the name. 3506 StringEncoding Bits = getStringEncoding(Name.getKey()); 3507 3508 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3509 NameVals.push_back(VE.getValueID(Name.getValue())); 3510 3511 // VST_CODE_ENTRY: [valueid, namechar x N] 3512 // VST_CODE_BBENTRY: [bbid, namechar x N] 3513 unsigned Code; 3514 if (isa<BasicBlock>(Name.getValue())) { 3515 Code = bitc::VST_CODE_BBENTRY; 3516 if (Bits == SE_Char6) 3517 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3518 } else { 3519 Code = bitc::VST_CODE_ENTRY; 3520 if (Bits == SE_Char6) 3521 AbbrevToUse = VST_ENTRY_6_ABBREV; 3522 else if (Bits == SE_Fixed7) 3523 AbbrevToUse = VST_ENTRY_7_ABBREV; 3524 } 3525 3526 for (const auto P : Name.getKey()) 3527 NameVals.push_back((unsigned char)P); 3528 3529 // Emit the finished record. 3530 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3531 NameVals.clear(); 3532 } 3533 3534 Stream.ExitBlock(); 3535 } 3536 3537 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3538 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3539 unsigned Code; 3540 if (isa<BasicBlock>(Order.V)) 3541 Code = bitc::USELIST_CODE_BB; 3542 else 3543 Code = bitc::USELIST_CODE_DEFAULT; 3544 3545 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3546 Record.push_back(VE.getValueID(Order.V)); 3547 Stream.EmitRecord(Code, Record); 3548 } 3549 3550 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3551 assert(VE.shouldPreserveUseListOrder() && 3552 "Expected to be preserving use-list order"); 3553 3554 auto hasMore = [&]() { 3555 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3556 }; 3557 if (!hasMore()) 3558 // Nothing to do. 3559 return; 3560 3561 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3562 while (hasMore()) { 3563 writeUseList(std::move(VE.UseListOrders.back())); 3564 VE.UseListOrders.pop_back(); 3565 } 3566 Stream.ExitBlock(); 3567 } 3568 3569 /// Emit a function body to the module stream. 3570 void ModuleBitcodeWriter::writeFunction( 3571 const Function &F, 3572 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3573 // Save the bitcode index of the start of this function block for recording 3574 // in the VST. 3575 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3576 3577 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3578 VE.incorporateFunction(F); 3579 3580 SmallVector<unsigned, 64> Vals; 3581 3582 // Emit the number of basic blocks, so the reader can create them ahead of 3583 // time. 3584 Vals.push_back(VE.getBasicBlocks().size()); 3585 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3586 Vals.clear(); 3587 3588 // If there are function-local constants, emit them now. 3589 unsigned CstStart, CstEnd; 3590 VE.getFunctionConstantRange(CstStart, CstEnd); 3591 writeConstants(CstStart, CstEnd, false); 3592 3593 // If there is function-local metadata, emit it now. 3594 writeFunctionMetadata(F); 3595 3596 // Keep a running idea of what the instruction ID is. 3597 unsigned InstID = CstEnd; 3598 3599 bool NeedsMetadataAttachment = F.hasMetadata(); 3600 3601 DILocation *LastDL = nullptr; 3602 SmallSetVector<Function *, 4> BlockAddressUsers; 3603 3604 // Finally, emit all the instructions, in order. 3605 for (const BasicBlock &BB : F) { 3606 for (const Instruction &I : BB) { 3607 writeInstruction(I, InstID, Vals); 3608 3609 if (!I.getType()->isVoidTy()) 3610 ++InstID; 3611 3612 // If the instruction has metadata, write a metadata attachment later. 3613 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3614 3615 // If the instruction has a debug location, emit it. 3616 if (DILocation *DL = I.getDebugLoc()) { 3617 if (DL == LastDL) { 3618 // Just repeat the same debug loc as last time. 3619 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3620 } else { 3621 Vals.push_back(DL->getLine()); 3622 Vals.push_back(DL->getColumn()); 3623 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3624 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3625 Vals.push_back(DL->isImplicitCode()); 3626 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3627 Vals.clear(); 3628 LastDL = DL; 3629 } 3630 } 3631 3632 // If the instruction has DbgRecords attached to it, emit them. Note that 3633 // they come after the instruction so that it's easy to attach them again 3634 // when reading the bitcode, even though conceptually the debug locations 3635 // start "before" the instruction. 3636 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3637 /// Try to push the value only (unwrapped), otherwise push the 3638 /// metadata wrapped value. Returns true if the value was pushed 3639 /// without the ValueAsMetadata wrapper. 3640 auto PushValueOrMetadata = [&Vals, InstID, 3641 this](Metadata *RawLocation) { 3642 assert(RawLocation && 3643 "RawLocation unexpectedly null in DbgVariableRecord"); 3644 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3645 SmallVector<unsigned, 2> ValAndType; 3646 // If the value is a fwd-ref the type is also pushed. We don't 3647 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3648 // returns false if the value is pushed without type). 3649 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3650 Vals.push_back(ValAndType[0]); 3651 return true; 3652 } 3653 } 3654 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3655 // fwd-ref. Push the metadata ID. 3656 Vals.push_back(VE.getMetadataID(RawLocation)); 3657 return false; 3658 }; 3659 3660 // Write out non-instruction debug information attached to this 3661 // instruction. Write it after the instruction so that it's easy to 3662 // re-attach to the instruction reading the records in. 3663 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { 3664 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3665 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); 3666 Vals.push_back(VE.getMetadataID(DLR->getLabel())); 3667 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3668 Vals.clear(); 3669 continue; 3670 } 3671 3672 // First 3 fields are common to all kinds: 3673 // DILocation, DILocalVariable, DIExpression 3674 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3675 // ..., LocationMetadata 3676 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3677 // ..., Value 3678 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3679 // ..., LocationMetadata 3680 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3681 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3682 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3683 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3684 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3685 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3686 if (DVR.isDbgValue()) { 3687 if (PushValueOrMetadata(DVR.getRawLocation())) 3688 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3689 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3690 else 3691 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3692 } else if (DVR.isDbgDeclare()) { 3693 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3694 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3695 } else { 3696 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3697 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3698 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3699 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3700 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3701 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3702 } 3703 Vals.clear(); 3704 } 3705 } 3706 } 3707 3708 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3709 SmallVector<Value *> Worklist{BA}; 3710 SmallPtrSet<Value *, 8> Visited{BA}; 3711 while (!Worklist.empty()) { 3712 Value *V = Worklist.pop_back_val(); 3713 for (User *U : V->users()) { 3714 if (auto *I = dyn_cast<Instruction>(U)) { 3715 Function *P = I->getFunction(); 3716 if (P != &F) 3717 BlockAddressUsers.insert(P); 3718 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3719 Visited.insert(U).second) 3720 Worklist.push_back(U); 3721 } 3722 } 3723 } 3724 } 3725 3726 if (!BlockAddressUsers.empty()) { 3727 Vals.resize(BlockAddressUsers.size()); 3728 for (auto I : llvm::enumerate(BlockAddressUsers)) 3729 Vals[I.index()] = VE.getValueID(I.value()); 3730 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3731 Vals.clear(); 3732 } 3733 3734 // Emit names for all the instructions etc. 3735 if (auto *Symtab = F.getValueSymbolTable()) 3736 writeFunctionLevelValueSymbolTable(*Symtab); 3737 3738 if (NeedsMetadataAttachment) 3739 writeFunctionMetadataAttachment(F); 3740 if (VE.shouldPreserveUseListOrder()) 3741 writeUseListBlock(&F); 3742 VE.purgeFunction(); 3743 Stream.ExitBlock(); 3744 } 3745 3746 // Emit blockinfo, which defines the standard abbreviations etc. 3747 void ModuleBitcodeWriter::writeBlockInfo() { 3748 // We only want to emit block info records for blocks that have multiple 3749 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3750 // Other blocks can define their abbrevs inline. 3751 Stream.EnterBlockInfoBlock(); 3752 3753 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3754 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3759 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3760 VST_ENTRY_8_ABBREV) 3761 llvm_unreachable("Unexpected abbrev ordering!"); 3762 } 3763 3764 { // 7-bit fixed width VST_CODE_ENTRY strings. 3765 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3766 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3770 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3771 VST_ENTRY_7_ABBREV) 3772 llvm_unreachable("Unexpected abbrev ordering!"); 3773 } 3774 { // 6-bit char6 VST_CODE_ENTRY strings. 3775 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3776 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3780 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3781 VST_ENTRY_6_ABBREV) 3782 llvm_unreachable("Unexpected abbrev ordering!"); 3783 } 3784 { // 6-bit char6 VST_CODE_BBENTRY strings. 3785 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3786 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3790 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3791 VST_BBENTRY_6_ABBREV) 3792 llvm_unreachable("Unexpected abbrev ordering!"); 3793 } 3794 3795 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3796 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3797 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3799 VE.computeBitsRequiredForTypeIndices())); 3800 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3801 CONSTANTS_SETTYPE_ABBREV) 3802 llvm_unreachable("Unexpected abbrev ordering!"); 3803 } 3804 3805 { // INTEGER abbrev for CONSTANTS_BLOCK. 3806 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3807 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3809 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3810 CONSTANTS_INTEGER_ABBREV) 3811 llvm_unreachable("Unexpected abbrev ordering!"); 3812 } 3813 3814 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3815 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3816 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3819 VE.computeBitsRequiredForTypeIndices())); 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3821 3822 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3823 CONSTANTS_CE_CAST_Abbrev) 3824 llvm_unreachable("Unexpected abbrev ordering!"); 3825 } 3826 { // NULL abbrev for CONSTANTS_BLOCK. 3827 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3828 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3829 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3830 CONSTANTS_NULL_Abbrev) 3831 llvm_unreachable("Unexpected abbrev ordering!"); 3832 } 3833 3834 // FIXME: This should only use space for first class types! 3835 3836 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3837 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3838 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3841 VE.computeBitsRequiredForTypeIndices())); 3842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3844 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3845 FUNCTION_INST_LOAD_ABBREV) 3846 llvm_unreachable("Unexpected abbrev ordering!"); 3847 } 3848 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3849 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3850 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3853 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3854 FUNCTION_INST_UNOP_ABBREV) 3855 llvm_unreachable("Unexpected abbrev ordering!"); 3856 } 3857 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3858 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3859 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3863 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3864 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3865 llvm_unreachable("Unexpected abbrev ordering!"); 3866 } 3867 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3868 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3869 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3873 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3874 FUNCTION_INST_BINOP_ABBREV) 3875 llvm_unreachable("Unexpected abbrev ordering!"); 3876 } 3877 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3878 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3879 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3884 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3885 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3886 llvm_unreachable("Unexpected abbrev ordering!"); 3887 } 3888 { // INST_CAST abbrev for FUNCTION_BLOCK. 3889 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3890 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3893 VE.computeBitsRequiredForTypeIndices())); 3894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3895 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3896 FUNCTION_INST_CAST_ABBREV) 3897 llvm_unreachable("Unexpected abbrev ordering!"); 3898 } 3899 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3900 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3901 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3904 VE.computeBitsRequiredForTypeIndices())); 3905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3907 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3908 FUNCTION_INST_CAST_FLAGS_ABBREV) 3909 llvm_unreachable("Unexpected abbrev ordering!"); 3910 } 3911 3912 { // INST_RET abbrev for FUNCTION_BLOCK. 3913 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3914 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3915 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3916 FUNCTION_INST_RET_VOID_ABBREV) 3917 llvm_unreachable("Unexpected abbrev ordering!"); 3918 } 3919 { // INST_RET abbrev for FUNCTION_BLOCK. 3920 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3921 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3923 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3924 FUNCTION_INST_RET_VAL_ABBREV) 3925 llvm_unreachable("Unexpected abbrev ordering!"); 3926 } 3927 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3928 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3929 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3930 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3931 FUNCTION_INST_UNREACHABLE_ABBREV) 3932 llvm_unreachable("Unexpected abbrev ordering!"); 3933 } 3934 { 3935 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3936 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3939 Log2_32_Ceil(VE.getTypes().size() + 1))); 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3942 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3943 FUNCTION_INST_GEP_ABBREV) 3944 llvm_unreachable("Unexpected abbrev ordering!"); 3945 } 3946 { 3947 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3948 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3953 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3954 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3955 llvm_unreachable("Unexpected abbrev ordering! 1"); 3956 } 3957 Stream.ExitBlock(); 3958 } 3959 3960 /// Write the module path strings, currently only used when generating 3961 /// a combined index file. 3962 void IndexBitcodeWriter::writeModStrings() { 3963 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3964 3965 // TODO: See which abbrev sizes we actually need to emit 3966 3967 // 8-bit fixed-width MST_ENTRY strings. 3968 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3969 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3973 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3974 3975 // 7-bit fixed width MST_ENTRY strings. 3976 Abbv = std::make_shared<BitCodeAbbrev>(); 3977 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3981 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3982 3983 // 6-bit char6 MST_ENTRY strings. 3984 Abbv = std::make_shared<BitCodeAbbrev>(); 3985 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3989 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3990 3991 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3992 Abbv = std::make_shared<BitCodeAbbrev>(); 3993 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3999 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 4000 4001 SmallVector<unsigned, 64> Vals; 4002 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 4003 StringRef Key = MPSE.getKey(); 4004 const auto &Hash = MPSE.getValue(); 4005 StringEncoding Bits = getStringEncoding(Key); 4006 unsigned AbbrevToUse = Abbrev8Bit; 4007 if (Bits == SE_Char6) 4008 AbbrevToUse = Abbrev6Bit; 4009 else if (Bits == SE_Fixed7) 4010 AbbrevToUse = Abbrev7Bit; 4011 4012 auto ModuleId = ModuleIdMap.size(); 4013 ModuleIdMap[Key] = ModuleId; 4014 Vals.push_back(ModuleId); 4015 Vals.append(Key.begin(), Key.end()); 4016 4017 // Emit the finished record. 4018 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 4019 4020 // Emit an optional hash for the module now 4021 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 4022 Vals.assign(Hash.begin(), Hash.end()); 4023 // Emit the hash record. 4024 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 4025 } 4026 4027 Vals.clear(); 4028 }); 4029 Stream.ExitBlock(); 4030 } 4031 4032 /// Write the function type metadata related records that need to appear before 4033 /// a function summary entry (whether per-module or combined). 4034 template <typename Fn> 4035 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 4036 FunctionSummary *FS, 4037 Fn GetValueID) { 4038 if (!FS->type_tests().empty()) 4039 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 4040 4041 SmallVector<uint64_t, 64> Record; 4042 4043 auto WriteVFuncIdVec = [&](uint64_t Ty, 4044 ArrayRef<FunctionSummary::VFuncId> VFs) { 4045 if (VFs.empty()) 4046 return; 4047 Record.clear(); 4048 for (auto &VF : VFs) { 4049 Record.push_back(VF.GUID); 4050 Record.push_back(VF.Offset); 4051 } 4052 Stream.EmitRecord(Ty, Record); 4053 }; 4054 4055 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 4056 FS->type_test_assume_vcalls()); 4057 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 4058 FS->type_checked_load_vcalls()); 4059 4060 auto WriteConstVCallVec = [&](uint64_t Ty, 4061 ArrayRef<FunctionSummary::ConstVCall> VCs) { 4062 for (auto &VC : VCs) { 4063 Record.clear(); 4064 Record.push_back(VC.VFunc.GUID); 4065 Record.push_back(VC.VFunc.Offset); 4066 llvm::append_range(Record, VC.Args); 4067 Stream.EmitRecord(Ty, Record); 4068 } 4069 }; 4070 4071 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 4072 FS->type_test_assume_const_vcalls()); 4073 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 4074 FS->type_checked_load_const_vcalls()); 4075 4076 auto WriteRange = [&](ConstantRange Range) { 4077 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 4078 assert(Range.getLower().getNumWords() == 1); 4079 assert(Range.getUpper().getNumWords() == 1); 4080 emitSignedInt64(Record, *Range.getLower().getRawData()); 4081 emitSignedInt64(Record, *Range.getUpper().getRawData()); 4082 }; 4083 4084 if (!FS->paramAccesses().empty()) { 4085 Record.clear(); 4086 for (auto &Arg : FS->paramAccesses()) { 4087 size_t UndoSize = Record.size(); 4088 Record.push_back(Arg.ParamNo); 4089 WriteRange(Arg.Use); 4090 Record.push_back(Arg.Calls.size()); 4091 for (auto &Call : Arg.Calls) { 4092 Record.push_back(Call.ParamNo); 4093 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4094 if (!ValueID) { 4095 // If ValueID is unknown we can't drop just this call, we must drop 4096 // entire parameter. 4097 Record.resize(UndoSize); 4098 break; 4099 } 4100 Record.push_back(*ValueID); 4101 WriteRange(Call.Offsets); 4102 } 4103 } 4104 if (!Record.empty()) 4105 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4106 } 4107 } 4108 4109 /// Collect type IDs from type tests used by function. 4110 static void 4111 getReferencedTypeIds(FunctionSummary *FS, 4112 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4113 if (!FS->type_tests().empty()) 4114 for (auto &TT : FS->type_tests()) 4115 ReferencedTypeIds.insert(TT); 4116 4117 auto GetReferencedTypesFromVFuncIdVec = 4118 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4119 for (auto &VF : VFs) 4120 ReferencedTypeIds.insert(VF.GUID); 4121 }; 4122 4123 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4124 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4125 4126 auto GetReferencedTypesFromConstVCallVec = 4127 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4128 for (auto &VC : VCs) 4129 ReferencedTypeIds.insert(VC.VFunc.GUID); 4130 }; 4131 4132 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4133 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4134 } 4135 4136 static void writeWholeProgramDevirtResolutionByArg( 4137 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4138 const WholeProgramDevirtResolution::ByArg &ByArg) { 4139 NameVals.push_back(args.size()); 4140 llvm::append_range(NameVals, args); 4141 4142 NameVals.push_back(ByArg.TheKind); 4143 NameVals.push_back(ByArg.Info); 4144 NameVals.push_back(ByArg.Byte); 4145 NameVals.push_back(ByArg.Bit); 4146 } 4147 4148 static void writeWholeProgramDevirtResolution( 4149 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4150 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4151 NameVals.push_back(Id); 4152 4153 NameVals.push_back(Wpd.TheKind); 4154 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4155 NameVals.push_back(Wpd.SingleImplName.size()); 4156 4157 NameVals.push_back(Wpd.ResByArg.size()); 4158 for (auto &A : Wpd.ResByArg) 4159 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4160 } 4161 4162 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4163 StringTableBuilder &StrtabBuilder, 4164 const std::string &Id, 4165 const TypeIdSummary &Summary) { 4166 NameVals.push_back(StrtabBuilder.add(Id)); 4167 NameVals.push_back(Id.size()); 4168 4169 NameVals.push_back(Summary.TTRes.TheKind); 4170 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4171 NameVals.push_back(Summary.TTRes.AlignLog2); 4172 NameVals.push_back(Summary.TTRes.SizeM1); 4173 NameVals.push_back(Summary.TTRes.BitMask); 4174 NameVals.push_back(Summary.TTRes.InlineBits); 4175 4176 for (auto &W : Summary.WPDRes) 4177 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4178 W.second); 4179 } 4180 4181 static void writeTypeIdCompatibleVtableSummaryRecord( 4182 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4183 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 4184 ValueEnumerator &VE) { 4185 NameVals.push_back(StrtabBuilder.add(Id)); 4186 NameVals.push_back(Id.size()); 4187 4188 for (auto &P : Summary) { 4189 NameVals.push_back(P.AddressPointOffset); 4190 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4191 } 4192 } 4193 4194 static void writeFunctionHeapProfileRecords( 4195 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4196 unsigned AllocAbbrev, bool PerModule, 4197 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4198 std::function<unsigned(unsigned)> GetStackIndex) { 4199 SmallVector<uint64_t> Record; 4200 4201 for (auto &CI : FS->callsites()) { 4202 Record.clear(); 4203 // Per module callsite clones should always have a single entry of 4204 // value 0. 4205 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4206 Record.push_back(GetValueID(CI.Callee)); 4207 if (!PerModule) { 4208 Record.push_back(CI.StackIdIndices.size()); 4209 Record.push_back(CI.Clones.size()); 4210 } 4211 for (auto Id : CI.StackIdIndices) 4212 Record.push_back(GetStackIndex(Id)); 4213 if (!PerModule) { 4214 for (auto V : CI.Clones) 4215 Record.push_back(V); 4216 } 4217 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4218 : bitc::FS_COMBINED_CALLSITE_INFO, 4219 Record, CallsiteAbbrev); 4220 } 4221 4222 for (auto &AI : FS->allocs()) { 4223 Record.clear(); 4224 // Per module alloc versions should always have a single entry of 4225 // value 0. 4226 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4227 Record.push_back(AI.MIBs.size()); 4228 if (!PerModule) 4229 Record.push_back(AI.Versions.size()); 4230 for (auto &MIB : AI.MIBs) { 4231 Record.push_back((uint8_t)MIB.AllocType); 4232 Record.push_back(MIB.StackIdIndices.size()); 4233 for (auto Id : MIB.StackIdIndices) 4234 Record.push_back(GetStackIndex(Id)); 4235 } 4236 if (!PerModule) { 4237 for (auto V : AI.Versions) 4238 Record.push_back(V); 4239 } 4240 assert(AI.TotalSizes.empty() || AI.TotalSizes.size() == AI.MIBs.size()); 4241 if (!AI.TotalSizes.empty()) { 4242 for (auto Size : AI.TotalSizes) 4243 Record.push_back(Size); 4244 } 4245 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4246 : bitc::FS_COMBINED_ALLOC_INFO, 4247 Record, AllocAbbrev); 4248 } 4249 } 4250 4251 // Helper to emit a single function summary record. 4252 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4253 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4254 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4255 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4256 unsigned AllocAbbrev, const Function &F) { 4257 NameVals.push_back(ValueID); 4258 4259 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4260 4261 writeFunctionTypeMetadataRecords( 4262 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4263 return {VE.getValueID(VI.getValue())}; 4264 }); 4265 4266 writeFunctionHeapProfileRecords( 4267 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4268 /*PerModule*/ true, 4269 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4270 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4271 4272 auto SpecialRefCnts = FS->specialRefCounts(); 4273 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4274 NameVals.push_back(FS->instCount()); 4275 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4276 NameVals.push_back(FS->refs().size()); 4277 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4278 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4279 4280 for (auto &RI : FS->refs()) 4281 NameVals.push_back(getValueId(RI)); 4282 4283 const bool UseRelBFRecord = 4284 WriteRelBFToSummary && !F.hasProfileData() && 4285 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4286 for (auto &ECI : FS->calls()) { 4287 NameVals.push_back(getValueId(ECI.first)); 4288 if (UseRelBFRecord) 4289 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4290 else 4291 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4292 } 4293 4294 unsigned FSAbbrev = 4295 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4296 unsigned Code = 4297 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4298 4299 // Emit the finished record. 4300 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4301 NameVals.clear(); 4302 } 4303 4304 // Collect the global value references in the given variable's initializer, 4305 // and emit them in a summary record. 4306 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4307 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4308 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4309 auto VI = Index->getValueInfo(V.getGUID()); 4310 if (!VI || VI.getSummaryList().empty()) { 4311 // Only declarations should not have a summary (a declaration might however 4312 // have a summary if the def was in module level asm). 4313 assert(V.isDeclaration()); 4314 return; 4315 } 4316 auto *Summary = VI.getSummaryList()[0].get(); 4317 NameVals.push_back(VE.getValueID(&V)); 4318 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4319 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4320 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4321 4322 auto VTableFuncs = VS->vTableFuncs(); 4323 if (!VTableFuncs.empty()) 4324 NameVals.push_back(VS->refs().size()); 4325 4326 unsigned SizeBeforeRefs = NameVals.size(); 4327 for (auto &RI : VS->refs()) 4328 NameVals.push_back(VE.getValueID(RI.getValue())); 4329 // Sort the refs for determinism output, the vector returned by FS->refs() has 4330 // been initialized from a DenseSet. 4331 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4332 4333 if (VTableFuncs.empty()) 4334 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4335 FSModRefsAbbrev); 4336 else { 4337 // VTableFuncs pairs should already be sorted by offset. 4338 for (auto &P : VTableFuncs) { 4339 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4340 NameVals.push_back(P.VTableOffset); 4341 } 4342 4343 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4344 FSModVTableRefsAbbrev); 4345 } 4346 NameVals.clear(); 4347 } 4348 4349 /// Emit the per-module summary section alongside the rest of 4350 /// the module's bitcode. 4351 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4352 // By default we compile with ThinLTO if the module has a summary, but the 4353 // client can request full LTO with a module flag. 4354 bool IsThinLTO = true; 4355 if (auto *MD = 4356 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4357 IsThinLTO = MD->getZExtValue(); 4358 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4359 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4360 4); 4361 4362 Stream.EmitRecord( 4363 bitc::FS_VERSION, 4364 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4365 4366 // Write the index flags. 4367 uint64_t Flags = 0; 4368 // Bits 1-3 are set only in the combined index, skip them. 4369 if (Index->enableSplitLTOUnit()) 4370 Flags |= 0x8; 4371 if (Index->hasUnifiedLTO()) 4372 Flags |= 0x200; 4373 4374 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4375 4376 if (Index->begin() == Index->end()) { 4377 Stream.ExitBlock(); 4378 return; 4379 } 4380 4381 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4382 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4384 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4387 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4388 4389 for (const auto &GVI : valueIds()) { 4390 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4391 ArrayRef<uint32_t>{GVI.second, 4392 static_cast<uint32_t>(GVI.first >> 32), 4393 static_cast<uint32_t>(GVI.first)}, 4394 ValueGuidAbbrev); 4395 } 4396 4397 if (!Index->stackIds().empty()) { 4398 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4399 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4400 // numids x stackid 4401 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4402 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4403 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4404 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4405 } 4406 4407 // Abbrev for FS_PERMODULE_PROFILE. 4408 Abbv = std::make_shared<BitCodeAbbrev>(); 4409 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4417 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4420 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4421 4422 // Abbrev for FS_PERMODULE_RELBF. 4423 Abbv = std::make_shared<BitCodeAbbrev>(); 4424 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4432 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4435 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4436 4437 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4438 Abbv = std::make_shared<BitCodeAbbrev>(); 4439 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4444 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4445 4446 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4447 Abbv = std::make_shared<BitCodeAbbrev>(); 4448 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4452 // numrefs x valueid, n x (valueid , offset) 4453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4455 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4456 4457 // Abbrev for FS_ALIAS. 4458 Abbv = std::make_shared<BitCodeAbbrev>(); 4459 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4463 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4464 4465 // Abbrev for FS_TYPE_ID_METADATA 4466 Abbv = std::make_shared<BitCodeAbbrev>(); 4467 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4470 // n x (valueid , offset) 4471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4473 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4474 4475 Abbv = std::make_shared<BitCodeAbbrev>(); 4476 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4478 // n x stackidindex 4479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4481 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4482 4483 Abbv = std::make_shared<BitCodeAbbrev>(); 4484 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4486 // n x (alloc type, numstackids, numstackids x stackidindex) 4487 // optional: nummib x total size 4488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4490 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4491 4492 SmallVector<uint64_t, 64> NameVals; 4493 // Iterate over the list of functions instead of the Index to 4494 // ensure the ordering is stable. 4495 for (const Function &F : M) { 4496 // Summary emission does not support anonymous functions, they have to 4497 // renamed using the anonymous function renaming pass. 4498 if (!F.hasName()) 4499 report_fatal_error("Unexpected anonymous function when writing summary"); 4500 4501 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4502 if (!VI || VI.getSummaryList().empty()) { 4503 // Only declarations should not have a summary (a declaration might 4504 // however have a summary if the def was in module level asm). 4505 assert(F.isDeclaration()); 4506 continue; 4507 } 4508 auto *Summary = VI.getSummaryList()[0].get(); 4509 writePerModuleFunctionSummaryRecord( 4510 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4511 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); 4512 } 4513 4514 // Capture references from GlobalVariable initializers, which are outside 4515 // of a function scope. 4516 for (const GlobalVariable &G : M.globals()) 4517 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4518 FSModVTableRefsAbbrev); 4519 4520 for (const GlobalAlias &A : M.aliases()) { 4521 auto *Aliasee = A.getAliaseeObject(); 4522 // Skip ifunc and nameless functions which don't have an entry in the 4523 // summary. 4524 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4525 continue; 4526 auto AliasId = VE.getValueID(&A); 4527 auto AliaseeId = VE.getValueID(Aliasee); 4528 NameVals.push_back(AliasId); 4529 auto *Summary = Index->getGlobalValueSummary(A); 4530 AliasSummary *AS = cast<AliasSummary>(Summary); 4531 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4532 NameVals.push_back(AliaseeId); 4533 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4534 NameVals.clear(); 4535 } 4536 4537 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4538 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4539 S.second, VE); 4540 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4541 TypeIdCompatibleVtableAbbrev); 4542 NameVals.clear(); 4543 } 4544 4545 if (Index->getBlockCount()) 4546 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4547 ArrayRef<uint64_t>{Index->getBlockCount()}); 4548 4549 Stream.ExitBlock(); 4550 } 4551 4552 /// Emit the combined summary section into the combined index file. 4553 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4554 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4555 Stream.EmitRecord( 4556 bitc::FS_VERSION, 4557 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4558 4559 // Write the index flags. 4560 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4561 4562 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4563 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4565 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4568 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4569 4570 for (const auto &GVI : valueIds()) { 4571 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4572 ArrayRef<uint32_t>{GVI.second, 4573 static_cast<uint32_t>(GVI.first >> 32), 4574 static_cast<uint32_t>(GVI.first)}, 4575 ValueGuidAbbrev); 4576 } 4577 4578 // Write the stack ids used by this index, which will be a subset of those in 4579 // the full index in the case of distributed indexes. 4580 if (!StackIds.empty()) { 4581 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4582 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4583 // numids x stackid 4584 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4585 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4586 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4587 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4588 } 4589 4590 // Abbrev for FS_COMBINED_PROFILE. 4591 Abbv = std::make_shared<BitCodeAbbrev>(); 4592 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4602 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4605 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4606 4607 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4608 Abbv = std::make_shared<BitCodeAbbrev>(); 4609 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4615 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4616 4617 // Abbrev for FS_COMBINED_ALIAS. 4618 Abbv = std::make_shared<BitCodeAbbrev>(); 4619 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4624 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4625 4626 Abbv = std::make_shared<BitCodeAbbrev>(); 4627 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4631 // numstackindices x stackidindex, numver x version 4632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4634 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4635 4636 Abbv = std::make_shared<BitCodeAbbrev>(); 4637 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4640 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4641 // numver x version 4642 // optional: nummib x total size 4643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4645 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4646 4647 auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool { 4648 if (DecSummaries == nullptr) 4649 return false; 4650 return DecSummaries->count(GVS); 4651 }; 4652 4653 // The aliases are emitted as a post-pass, and will point to the value 4654 // id of the aliasee. Save them in a vector for post-processing. 4655 SmallVector<AliasSummary *, 64> Aliases; 4656 4657 // Save the value id for each summary for alias emission. 4658 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4659 4660 SmallVector<uint64_t, 64> NameVals; 4661 4662 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4663 // with the type ids referenced by this index file. 4664 std::set<GlobalValue::GUID> ReferencedTypeIds; 4665 4666 // For local linkage, we also emit the original name separately 4667 // immediately after the record. 4668 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4669 // We don't need to emit the original name if we are writing the index for 4670 // distributed backends (in which case ModuleToSummariesForIndex is 4671 // non-null). The original name is only needed during the thin link, since 4672 // for SamplePGO the indirect call targets for local functions have 4673 // have the original name annotated in profile. 4674 // Continue to emit it when writing out the entire combined index, which is 4675 // used in testing the thin link via llvm-lto. 4676 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4677 return; 4678 NameVals.push_back(S.getOriginalName()); 4679 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4680 NameVals.clear(); 4681 }; 4682 4683 DenseSet<GlobalValue::GUID> DefOrUseGUIDs; 4684 forEachSummary([&](GVInfo I, bool IsAliasee) { 4685 GlobalValueSummary *S = I.second; 4686 assert(S); 4687 DefOrUseGUIDs.insert(I.first); 4688 for (const ValueInfo &VI : S->refs()) 4689 DefOrUseGUIDs.insert(VI.getGUID()); 4690 4691 auto ValueId = getValueId(I.first); 4692 assert(ValueId); 4693 SummaryToValueIdMap[S] = *ValueId; 4694 4695 // If this is invoked for an aliasee, we want to record the above 4696 // mapping, but then not emit a summary entry (if the aliasee is 4697 // to be imported, we will invoke this separately with IsAliasee=false). 4698 if (IsAliasee) 4699 return; 4700 4701 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4702 // Will process aliases as a post-pass because the reader wants all 4703 // global to be loaded first. 4704 Aliases.push_back(AS); 4705 return; 4706 } 4707 4708 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4709 NameVals.push_back(*ValueId); 4710 assert(ModuleIdMap.count(VS->modulePath())); 4711 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4712 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4713 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4714 for (auto &RI : VS->refs()) { 4715 auto RefValueId = getValueId(RI.getGUID()); 4716 if (!RefValueId) 4717 continue; 4718 NameVals.push_back(*RefValueId); 4719 } 4720 4721 // Emit the finished record. 4722 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4723 FSModRefsAbbrev); 4724 NameVals.clear(); 4725 MaybeEmitOriginalName(*S); 4726 return; 4727 } 4728 4729 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4730 if (!VI) 4731 return std::nullopt; 4732 return getValueId(VI.getGUID()); 4733 }; 4734 4735 auto *FS = cast<FunctionSummary>(S); 4736 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4737 getReferencedTypeIds(FS, ReferencedTypeIds); 4738 4739 writeFunctionHeapProfileRecords( 4740 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4741 /*PerModule*/ false, 4742 /*GetValueId*/ 4743 [&](const ValueInfo &VI) -> unsigned { 4744 std::optional<unsigned> ValueID = GetValueId(VI); 4745 // This can happen in shared index files for distributed ThinLTO if 4746 // the callee function summary is not included. Record 0 which we 4747 // will have to deal with conservatively when doing any kind of 4748 // validation in the ThinLTO backends. 4749 if (!ValueID) 4750 return 0; 4751 return *ValueID; 4752 }, 4753 /*GetStackIndex*/ 4754 [&](unsigned I) { 4755 // Get the corresponding index into the list of StackIds actually 4756 // being written for this combined index (which may be a subset in 4757 // the case of distributed indexes). 4758 assert(StackIdIndicesToIndex.contains(I)); 4759 return StackIdIndicesToIndex[I]; 4760 }); 4761 4762 NameVals.push_back(*ValueId); 4763 assert(ModuleIdMap.count(FS->modulePath())); 4764 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4765 NameVals.push_back( 4766 getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS))); 4767 NameVals.push_back(FS->instCount()); 4768 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4769 // TODO: Stop writing entry count and bump bitcode version. 4770 NameVals.push_back(0 /* EntryCount */); 4771 4772 // Fill in below 4773 NameVals.push_back(0); // numrefs 4774 NameVals.push_back(0); // rorefcnt 4775 NameVals.push_back(0); // worefcnt 4776 4777 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4778 for (auto &RI : FS->refs()) { 4779 auto RefValueId = getValueId(RI.getGUID()); 4780 if (!RefValueId) 4781 continue; 4782 NameVals.push_back(*RefValueId); 4783 if (RI.isReadOnly()) 4784 RORefCnt++; 4785 else if (RI.isWriteOnly()) 4786 WORefCnt++; 4787 Count++; 4788 } 4789 NameVals[6] = Count; 4790 NameVals[7] = RORefCnt; 4791 NameVals[8] = WORefCnt; 4792 4793 for (auto &EI : FS->calls()) { 4794 // If this GUID doesn't have a value id, it doesn't have a function 4795 // summary and we don't need to record any calls to it. 4796 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4797 if (!CallValueId) 4798 continue; 4799 NameVals.push_back(*CallValueId); 4800 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4801 } 4802 4803 // Emit the finished record. 4804 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4805 FSCallsProfileAbbrev); 4806 NameVals.clear(); 4807 MaybeEmitOriginalName(*S); 4808 }); 4809 4810 for (auto *AS : Aliases) { 4811 auto AliasValueId = SummaryToValueIdMap[AS]; 4812 assert(AliasValueId); 4813 NameVals.push_back(AliasValueId); 4814 assert(ModuleIdMap.count(AS->modulePath())); 4815 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4816 NameVals.push_back( 4817 getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS))); 4818 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4819 assert(AliaseeValueId); 4820 NameVals.push_back(AliaseeValueId); 4821 4822 // Emit the finished record. 4823 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4824 NameVals.clear(); 4825 MaybeEmitOriginalName(*AS); 4826 4827 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4828 getReferencedTypeIds(FS, ReferencedTypeIds); 4829 } 4830 4831 if (!Index.cfiFunctionDefs().empty()) { 4832 for (auto &S : Index.cfiFunctionDefs()) { 4833 if (DefOrUseGUIDs.contains( 4834 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4835 NameVals.push_back(StrtabBuilder.add(S)); 4836 NameVals.push_back(S.size()); 4837 } 4838 } 4839 if (!NameVals.empty()) { 4840 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4841 NameVals.clear(); 4842 } 4843 } 4844 4845 if (!Index.cfiFunctionDecls().empty()) { 4846 for (auto &S : Index.cfiFunctionDecls()) { 4847 if (DefOrUseGUIDs.contains( 4848 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4849 NameVals.push_back(StrtabBuilder.add(S)); 4850 NameVals.push_back(S.size()); 4851 } 4852 } 4853 if (!NameVals.empty()) { 4854 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4855 NameVals.clear(); 4856 } 4857 } 4858 4859 // Walk the GUIDs that were referenced, and write the 4860 // corresponding type id records. 4861 for (auto &T : ReferencedTypeIds) { 4862 auto TidIter = Index.typeIds().equal_range(T); 4863 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) { 4864 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, TypeIdPair.first, 4865 TypeIdPair.second); 4866 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4867 NameVals.clear(); 4868 } 4869 } 4870 4871 if (Index.getBlockCount()) 4872 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4873 ArrayRef<uint64_t>{Index.getBlockCount()}); 4874 4875 Stream.ExitBlock(); 4876 } 4877 4878 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4879 /// current llvm version, and a record for the epoch number. 4880 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4881 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4882 4883 // Write the "user readable" string identifying the bitcode producer 4884 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4885 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4888 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4889 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4890 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4891 4892 // Write the epoch version 4893 Abbv = std::make_shared<BitCodeAbbrev>(); 4894 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4896 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4897 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4898 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4899 Stream.ExitBlock(); 4900 } 4901 4902 void ModuleBitcodeWriter::writeModuleHash(StringRef View) { 4903 // Emit the module's hash. 4904 // MODULE_CODE_HASH: [5*i32] 4905 if (GenerateHash) { 4906 uint32_t Vals[5]; 4907 Hasher.update(ArrayRef<uint8_t>( 4908 reinterpret_cast<const uint8_t *>(View.data()), View.size())); 4909 std::array<uint8_t, 20> Hash = Hasher.result(); 4910 for (int Pos = 0; Pos < 20; Pos += 4) { 4911 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4912 } 4913 4914 // Emit the finished record. 4915 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4916 4917 if (ModHash) 4918 // Save the written hash value. 4919 llvm::copy(Vals, std::begin(*ModHash)); 4920 } 4921 } 4922 4923 void ModuleBitcodeWriter::write() { 4924 writeIdentificationBlock(Stream); 4925 4926 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4927 // We will want to write the module hash at this point. Block any flushing so 4928 // we can have access to the whole underlying data later. 4929 Stream.markAndBlockFlushing(); 4930 4931 writeModuleVersion(); 4932 4933 // Emit blockinfo, which defines the standard abbreviations etc. 4934 writeBlockInfo(); 4935 4936 // Emit information describing all of the types in the module. 4937 writeTypeTable(); 4938 4939 // Emit information about attribute groups. 4940 writeAttributeGroupTable(); 4941 4942 // Emit information about parameter attributes. 4943 writeAttributeTable(); 4944 4945 writeComdats(); 4946 4947 // Emit top-level description of module, including target triple, inline asm, 4948 // descriptors for global variables, and function prototype info. 4949 writeModuleInfo(); 4950 4951 // Emit constants. 4952 writeModuleConstants(); 4953 4954 // Emit metadata kind names. 4955 writeModuleMetadataKinds(); 4956 4957 // Emit metadata. 4958 writeModuleMetadata(); 4959 4960 // Emit module-level use-lists. 4961 if (VE.shouldPreserveUseListOrder()) 4962 writeUseListBlock(nullptr); 4963 4964 writeOperandBundleTags(); 4965 writeSyncScopeNames(); 4966 4967 // Emit function bodies. 4968 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4969 for (const Function &F : M) 4970 if (!F.isDeclaration()) 4971 writeFunction(F, FunctionToBitcodeIndex); 4972 4973 // Need to write after the above call to WriteFunction which populates 4974 // the summary information in the index. 4975 if (Index) 4976 writePerModuleGlobalValueSummary(); 4977 4978 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4979 4980 writeModuleHash(Stream.getMarkedBufferAndResumeFlushing()); 4981 4982 Stream.ExitBlock(); 4983 } 4984 4985 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4986 uint32_t &Position) { 4987 support::endian::write32le(&Buffer[Position], Value); 4988 Position += 4; 4989 } 4990 4991 /// If generating a bc file on darwin, we have to emit a 4992 /// header and trailer to make it compatible with the system archiver. To do 4993 /// this we emit the following header, and then emit a trailer that pads the 4994 /// file out to be a multiple of 16 bytes. 4995 /// 4996 /// struct bc_header { 4997 /// uint32_t Magic; // 0x0B17C0DE 4998 /// uint32_t Version; // Version, currently always 0. 4999 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 5000 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 5001 /// uint32_t CPUType; // CPU specifier. 5002 /// ... potentially more later ... 5003 /// }; 5004 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 5005 const Triple &TT) { 5006 unsigned CPUType = ~0U; 5007 5008 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 5009 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 5010 // number from /usr/include/mach/machine.h. It is ok to reproduce the 5011 // specific constants here because they are implicitly part of the Darwin ABI. 5012 enum { 5013 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 5014 DARWIN_CPU_TYPE_X86 = 7, 5015 DARWIN_CPU_TYPE_ARM = 12, 5016 DARWIN_CPU_TYPE_POWERPC = 18 5017 }; 5018 5019 Triple::ArchType Arch = TT.getArch(); 5020 if (Arch == Triple::x86_64) 5021 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 5022 else if (Arch == Triple::x86) 5023 CPUType = DARWIN_CPU_TYPE_X86; 5024 else if (Arch == Triple::ppc) 5025 CPUType = DARWIN_CPU_TYPE_POWERPC; 5026 else if (Arch == Triple::ppc64) 5027 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 5028 else if (Arch == Triple::arm || Arch == Triple::thumb) 5029 CPUType = DARWIN_CPU_TYPE_ARM; 5030 5031 // Traditional Bitcode starts after header. 5032 assert(Buffer.size() >= BWH_HeaderSize && 5033 "Expected header size to be reserved"); 5034 unsigned BCOffset = BWH_HeaderSize; 5035 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 5036 5037 // Write the magic and version. 5038 unsigned Position = 0; 5039 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 5040 writeInt32ToBuffer(0, Buffer, Position); // Version. 5041 writeInt32ToBuffer(BCOffset, Buffer, Position); 5042 writeInt32ToBuffer(BCSize, Buffer, Position); 5043 writeInt32ToBuffer(CPUType, Buffer, Position); 5044 5045 // If the file is not a multiple of 16 bytes, insert dummy padding. 5046 while (Buffer.size() & 15) 5047 Buffer.push_back(0); 5048 } 5049 5050 /// Helper to write the header common to all bitcode files. 5051 static void writeBitcodeHeader(BitstreamWriter &Stream) { 5052 // Emit the file header. 5053 Stream.Emit((unsigned)'B', 8); 5054 Stream.Emit((unsigned)'C', 8); 5055 Stream.Emit(0x0, 4); 5056 Stream.Emit(0xC, 4); 5057 Stream.Emit(0xE, 4); 5058 Stream.Emit(0xD, 4); 5059 } 5060 5061 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 5062 : Stream(new BitstreamWriter(Buffer)) { 5063 writeBitcodeHeader(*Stream); 5064 } 5065 5066 BitcodeWriter::BitcodeWriter(raw_ostream &FS) 5067 : Stream(new BitstreamWriter(FS, FlushThreshold)) { 5068 writeBitcodeHeader(*Stream); 5069 } 5070 5071 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 5072 5073 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 5074 Stream->EnterSubblock(Block, 3); 5075 5076 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5077 Abbv->Add(BitCodeAbbrevOp(Record)); 5078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 5079 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 5080 5081 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 5082 5083 Stream->ExitBlock(); 5084 } 5085 5086 void BitcodeWriter::writeSymtab() { 5087 assert(!WroteStrtab && !WroteSymtab); 5088 5089 // If any module has module-level inline asm, we will require a registered asm 5090 // parser for the target so that we can create an accurate symbol table for 5091 // the module. 5092 for (Module *M : Mods) { 5093 if (M->getModuleInlineAsm().empty()) 5094 continue; 5095 5096 std::string Err; 5097 const Triple TT(M->getTargetTriple()); 5098 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 5099 if (!T || !T->hasMCAsmParser()) 5100 return; 5101 } 5102 5103 WroteSymtab = true; 5104 SmallVector<char, 0> Symtab; 5105 // The irsymtab::build function may be unable to create a symbol table if the 5106 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 5107 // table is not required for correctness, but we still want to be able to 5108 // write malformed modules to bitcode files, so swallow the error. 5109 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 5110 consumeError(std::move(E)); 5111 return; 5112 } 5113 5114 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 5115 {Symtab.data(), Symtab.size()}); 5116 } 5117 5118 void BitcodeWriter::writeStrtab() { 5119 assert(!WroteStrtab); 5120 5121 std::vector<char> Strtab; 5122 StrtabBuilder.finalizeInOrder(); 5123 Strtab.resize(StrtabBuilder.getSize()); 5124 StrtabBuilder.write((uint8_t *)Strtab.data()); 5125 5126 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 5127 {Strtab.data(), Strtab.size()}); 5128 5129 WroteStrtab = true; 5130 } 5131 5132 void BitcodeWriter::copyStrtab(StringRef Strtab) { 5133 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 5134 WroteStrtab = true; 5135 } 5136 5137 void BitcodeWriter::writeModule(const Module &M, 5138 bool ShouldPreserveUseListOrder, 5139 const ModuleSummaryIndex *Index, 5140 bool GenerateHash, ModuleHash *ModHash) { 5141 assert(!WroteStrtab); 5142 5143 // The Mods vector is used by irsymtab::build, which requires non-const 5144 // Modules in case it needs to materialize metadata. But the bitcode writer 5145 // requires that the module is materialized, so we can cast to non-const here, 5146 // after checking that it is in fact materialized. 5147 assert(M.isMaterialized()); 5148 Mods.push_back(const_cast<Module *>(&M)); 5149 5150 ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream, 5151 ShouldPreserveUseListOrder, Index, 5152 GenerateHash, ModHash); 5153 ModuleWriter.write(); 5154 } 5155 5156 void BitcodeWriter::writeIndex( 5157 const ModuleSummaryIndex *Index, 5158 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5159 const GVSummaryPtrSet *DecSummaries) { 5160 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries, 5161 ModuleToSummariesForIndex); 5162 IndexWriter.write(); 5163 } 5164 5165 /// Write the specified module to the specified output stream. 5166 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5167 bool ShouldPreserveUseListOrder, 5168 const ModuleSummaryIndex *Index, 5169 bool GenerateHash, ModuleHash *ModHash) { 5170 auto Write = [&](BitcodeWriter &Writer) { 5171 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5172 ModHash); 5173 Writer.writeSymtab(); 5174 Writer.writeStrtab(); 5175 }; 5176 Triple TT(M.getTargetTriple()); 5177 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) { 5178 // If this is darwin or another generic macho target, reserve space for the 5179 // header. Note that the header is computed *after* the output is known, so 5180 // we currently explicitly use a buffer, write to it, and then subsequently 5181 // flush to Out. 5182 SmallVector<char, 0> Buffer; 5183 Buffer.reserve(256 * 1024); 5184 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5185 BitcodeWriter Writer(Buffer); 5186 Write(Writer); 5187 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5188 Out.write(Buffer.data(), Buffer.size()); 5189 } else { 5190 BitcodeWriter Writer(Out); 5191 Write(Writer); 5192 } 5193 } 5194 5195 void IndexBitcodeWriter::write() { 5196 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5197 5198 writeModuleVersion(); 5199 5200 // Write the module paths in the combined index. 5201 writeModStrings(); 5202 5203 // Write the summary combined index records. 5204 writeCombinedGlobalValueSummary(); 5205 5206 Stream.ExitBlock(); 5207 } 5208 5209 // Write the specified module summary index to the given raw output stream, 5210 // where it will be written in a new bitcode block. This is used when 5211 // writing the combined index file for ThinLTO. When writing a subset of the 5212 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5213 void llvm::writeIndexToFile( 5214 const ModuleSummaryIndex &Index, raw_ostream &Out, 5215 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5216 const GVSummaryPtrSet *DecSummaries) { 5217 SmallVector<char, 0> Buffer; 5218 Buffer.reserve(256 * 1024); 5219 5220 BitcodeWriter Writer(Buffer); 5221 Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries); 5222 Writer.writeStrtab(); 5223 5224 Out.write((char *)&Buffer.front(), Buffer.size()); 5225 } 5226 5227 namespace { 5228 5229 /// Class to manage the bitcode writing for a thin link bitcode file. 5230 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5231 /// ModHash is for use in ThinLTO incremental build, generated while writing 5232 /// the module bitcode file. 5233 const ModuleHash *ModHash; 5234 5235 public: 5236 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5237 BitstreamWriter &Stream, 5238 const ModuleSummaryIndex &Index, 5239 const ModuleHash &ModHash) 5240 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5241 /*ShouldPreserveUseListOrder=*/false, &Index), 5242 ModHash(&ModHash) {} 5243 5244 void write(); 5245 5246 private: 5247 void writeSimplifiedModuleInfo(); 5248 }; 5249 5250 } // end anonymous namespace 5251 5252 // This function writes a simpilified module info for thin link bitcode file. 5253 // It only contains the source file name along with the name(the offset and 5254 // size in strtab) and linkage for global values. For the global value info 5255 // entry, in order to keep linkage at offset 5, there are three zeros used 5256 // as padding. 5257 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5258 SmallVector<unsigned, 64> Vals; 5259 // Emit the module's source file name. 5260 { 5261 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5262 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5263 if (Bits == SE_Char6) 5264 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5265 else if (Bits == SE_Fixed7) 5266 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5267 5268 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5269 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5270 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5272 Abbv->Add(AbbrevOpToUse); 5273 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5274 5275 for (const auto P : M.getSourceFileName()) 5276 Vals.push_back((unsigned char)P); 5277 5278 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5279 Vals.clear(); 5280 } 5281 5282 // Emit the global variable information. 5283 for (const GlobalVariable &GV : M.globals()) { 5284 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5285 Vals.push_back(StrtabBuilder.add(GV.getName())); 5286 Vals.push_back(GV.getName().size()); 5287 Vals.push_back(0); 5288 Vals.push_back(0); 5289 Vals.push_back(0); 5290 Vals.push_back(getEncodedLinkage(GV)); 5291 5292 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5293 Vals.clear(); 5294 } 5295 5296 // Emit the function proto information. 5297 for (const Function &F : M) { 5298 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5299 Vals.push_back(StrtabBuilder.add(F.getName())); 5300 Vals.push_back(F.getName().size()); 5301 Vals.push_back(0); 5302 Vals.push_back(0); 5303 Vals.push_back(0); 5304 Vals.push_back(getEncodedLinkage(F)); 5305 5306 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5307 Vals.clear(); 5308 } 5309 5310 // Emit the alias information. 5311 for (const GlobalAlias &A : M.aliases()) { 5312 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5313 Vals.push_back(StrtabBuilder.add(A.getName())); 5314 Vals.push_back(A.getName().size()); 5315 Vals.push_back(0); 5316 Vals.push_back(0); 5317 Vals.push_back(0); 5318 Vals.push_back(getEncodedLinkage(A)); 5319 5320 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5321 Vals.clear(); 5322 } 5323 5324 // Emit the ifunc information. 5325 for (const GlobalIFunc &I : M.ifuncs()) { 5326 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5327 Vals.push_back(StrtabBuilder.add(I.getName())); 5328 Vals.push_back(I.getName().size()); 5329 Vals.push_back(0); 5330 Vals.push_back(0); 5331 Vals.push_back(0); 5332 Vals.push_back(getEncodedLinkage(I)); 5333 5334 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5335 Vals.clear(); 5336 } 5337 } 5338 5339 void ThinLinkBitcodeWriter::write() { 5340 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5341 5342 writeModuleVersion(); 5343 5344 writeSimplifiedModuleInfo(); 5345 5346 writePerModuleGlobalValueSummary(); 5347 5348 // Write module hash. 5349 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5350 5351 Stream.ExitBlock(); 5352 } 5353 5354 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5355 const ModuleSummaryIndex &Index, 5356 const ModuleHash &ModHash) { 5357 assert(!WroteStrtab); 5358 5359 // The Mods vector is used by irsymtab::build, which requires non-const 5360 // Modules in case it needs to materialize metadata. But the bitcode writer 5361 // requires that the module is materialized, so we can cast to non-const here, 5362 // after checking that it is in fact materialized. 5363 assert(M.isMaterialized()); 5364 Mods.push_back(const_cast<Module *>(&M)); 5365 5366 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5367 ModHash); 5368 ThinLinkWriter.write(); 5369 } 5370 5371 // Write the specified thin link bitcode file to the given raw output stream, 5372 // where it will be written in a new bitcode block. This is used when 5373 // writing the per-module index file for ThinLTO. 5374 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5375 const ModuleSummaryIndex &Index, 5376 const ModuleHash &ModHash) { 5377 SmallVector<char, 0> Buffer; 5378 Buffer.reserve(256 * 1024); 5379 5380 BitcodeWriter Writer(Buffer); 5381 Writer.writeThinLinkBitcode(M, Index, ModHash); 5382 Writer.writeSymtab(); 5383 Writer.writeStrtab(); 5384 5385 Out.write((char *)&Buffer.front(), Buffer.size()); 5386 } 5387 5388 static const char *getSectionNameForBitcode(const Triple &T) { 5389 switch (T.getObjectFormat()) { 5390 case Triple::MachO: 5391 return "__LLVM,__bitcode"; 5392 case Triple::COFF: 5393 case Triple::ELF: 5394 case Triple::Wasm: 5395 case Triple::UnknownObjectFormat: 5396 return ".llvmbc"; 5397 case Triple::GOFF: 5398 llvm_unreachable("GOFF is not yet implemented"); 5399 break; 5400 case Triple::SPIRV: 5401 if (T.getVendor() == Triple::AMD) 5402 return ".llvmbc"; 5403 llvm_unreachable("SPIRV is not yet implemented"); 5404 break; 5405 case Triple::XCOFF: 5406 llvm_unreachable("XCOFF is not yet implemented"); 5407 break; 5408 case Triple::DXContainer: 5409 llvm_unreachable("DXContainer is not yet implemented"); 5410 break; 5411 } 5412 llvm_unreachable("Unimplemented ObjectFormatType"); 5413 } 5414 5415 static const char *getSectionNameForCommandline(const Triple &T) { 5416 switch (T.getObjectFormat()) { 5417 case Triple::MachO: 5418 return "__LLVM,__cmdline"; 5419 case Triple::COFF: 5420 case Triple::ELF: 5421 case Triple::Wasm: 5422 case Triple::UnknownObjectFormat: 5423 return ".llvmcmd"; 5424 case Triple::GOFF: 5425 llvm_unreachable("GOFF is not yet implemented"); 5426 break; 5427 case Triple::SPIRV: 5428 if (T.getVendor() == Triple::AMD) 5429 return ".llvmcmd"; 5430 llvm_unreachable("SPIRV is not yet implemented"); 5431 break; 5432 case Triple::XCOFF: 5433 llvm_unreachable("XCOFF is not yet implemented"); 5434 break; 5435 case Triple::DXContainer: 5436 llvm_unreachable("DXC is not yet implemented"); 5437 break; 5438 } 5439 llvm_unreachable("Unimplemented ObjectFormatType"); 5440 } 5441 5442 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5443 bool EmbedBitcode, bool EmbedCmdline, 5444 const std::vector<uint8_t> &CmdArgs) { 5445 // Save llvm.compiler.used and remove it. 5446 SmallVector<Constant *, 2> UsedArray; 5447 SmallVector<GlobalValue *, 4> UsedGlobals; 5448 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5449 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5450 for (auto *GV : UsedGlobals) { 5451 if (GV->getName() != "llvm.embedded.module" && 5452 GV->getName() != "llvm.cmdline") 5453 UsedArray.push_back( 5454 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5455 } 5456 if (Used) 5457 Used->eraseFromParent(); 5458 5459 // Embed the bitcode for the llvm module. 5460 std::string Data; 5461 ArrayRef<uint8_t> ModuleData; 5462 Triple T(M.getTargetTriple()); 5463 5464 if (EmbedBitcode) { 5465 if (Buf.getBufferSize() == 0 || 5466 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5467 (const unsigned char *)Buf.getBufferEnd())) { 5468 // If the input is LLVM Assembly, bitcode is produced by serializing 5469 // the module. Use-lists order need to be preserved in this case. 5470 llvm::raw_string_ostream OS(Data); 5471 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5472 ModuleData = 5473 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5474 } else 5475 // If the input is LLVM bitcode, write the input byte stream directly. 5476 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5477 Buf.getBufferSize()); 5478 } 5479 llvm::Constant *ModuleConstant = 5480 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5481 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5482 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5483 ModuleConstant); 5484 GV->setSection(getSectionNameForBitcode(T)); 5485 // Set alignment to 1 to prevent padding between two contributions from input 5486 // sections after linking. 5487 GV->setAlignment(Align(1)); 5488 UsedArray.push_back( 5489 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5490 if (llvm::GlobalVariable *Old = 5491 M.getGlobalVariable("llvm.embedded.module", true)) { 5492 assert(Old->hasZeroLiveUses() && 5493 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5494 GV->takeName(Old); 5495 Old->eraseFromParent(); 5496 } else { 5497 GV->setName("llvm.embedded.module"); 5498 } 5499 5500 // Skip if only bitcode needs to be embedded. 5501 if (EmbedCmdline) { 5502 // Embed command-line options. 5503 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5504 CmdArgs.size()); 5505 llvm::Constant *CmdConstant = 5506 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5507 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5508 llvm::GlobalValue::PrivateLinkage, 5509 CmdConstant); 5510 GV->setSection(getSectionNameForCommandline(T)); 5511 GV->setAlignment(Align(1)); 5512 UsedArray.push_back( 5513 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5514 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5515 assert(Old->hasZeroLiveUses() && 5516 "llvm.cmdline can only be used once in llvm.compiler.used"); 5517 GV->takeName(Old); 5518 Old->eraseFromParent(); 5519 } else { 5520 GV->setName("llvm.cmdline"); 5521 } 5522 } 5523 5524 if (UsedArray.empty()) 5525 return; 5526 5527 // Recreate llvm.compiler.used. 5528 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5529 auto *NewUsed = new GlobalVariable( 5530 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5531 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5532 NewUsed->setSection("llvm.metadata"); 5533 } 5534