1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 namespace { 103 104 /// These are manifest constants used by the bitcode writer. They do not need to 105 /// be kept in sync with the reader, but need to be consistent within this file. 106 enum { 107 // VALUE_SYMTAB_BLOCK abbrev id's. 108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 VST_ENTRY_7_ABBREV, 110 VST_ENTRY_6_ABBREV, 111 VST_BBENTRY_6_ABBREV, 112 113 // CONSTANTS_BLOCK abbrev id's. 114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 CONSTANTS_INTEGER_ABBREV, 116 CONSTANTS_CE_CAST_Abbrev, 117 CONSTANTS_NULL_Abbrev, 118 119 // FUNCTION_BLOCK abbrev id's. 120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 FUNCTION_INST_UNOP_ABBREV, 122 FUNCTION_INST_UNOP_FLAGS_ABBREV, 123 FUNCTION_INST_BINOP_ABBREV, 124 FUNCTION_INST_BINOP_FLAGS_ABBREV, 125 FUNCTION_INST_CAST_ABBREV, 126 FUNCTION_INST_CAST_FLAGS_ABBREV, 127 FUNCTION_INST_RET_VOID_ABBREV, 128 FUNCTION_INST_RET_VAL_ABBREV, 129 FUNCTION_INST_UNREACHABLE_ABBREV, 130 FUNCTION_INST_GEP_ABBREV, 131 }; 132 133 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 134 /// file type. 135 class BitcodeWriterBase { 136 protected: 137 /// The stream created and owned by the client. 138 BitstreamWriter &Stream; 139 140 StringTableBuilder &StrtabBuilder; 141 142 public: 143 /// Constructs a BitcodeWriterBase object that writes to the provided 144 /// \p Stream. 145 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 146 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 147 148 protected: 149 void writeModuleVersion(); 150 }; 151 152 void BitcodeWriterBase::writeModuleVersion() { 153 // VERSION: [version#] 154 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 155 } 156 157 /// Base class to manage the module bitcode writing, currently subclassed for 158 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 159 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 160 protected: 161 /// The Module to write to bitcode. 162 const Module &M; 163 164 /// Enumerates ids for all values in the module. 165 ValueEnumerator VE; 166 167 /// Optional per-module index to write for ThinLTO. 168 const ModuleSummaryIndex *Index; 169 170 /// Map that holds the correspondence between GUIDs in the summary index, 171 /// that came from indirect call profiles, and a value id generated by this 172 /// class to use in the VST and summary block records. 173 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 174 175 /// Tracks the last value id recorded in the GUIDToValueMap. 176 unsigned GlobalValueId; 177 178 /// Saves the offset of the VSTOffset record that must eventually be 179 /// backpatched with the offset of the actual VST. 180 uint64_t VSTOffsetPlaceholder = 0; 181 182 public: 183 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 184 /// writing to the provided \p Buffer. 185 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 186 BitstreamWriter &Stream, 187 bool ShouldPreserveUseListOrder, 188 const ModuleSummaryIndex *Index) 189 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 190 VE(M, ShouldPreserveUseListOrder), Index(Index) { 191 // Assign ValueIds to any callee values in the index that came from 192 // indirect call profiles and were recorded as a GUID not a Value* 193 // (which would have been assigned an ID by the ValueEnumerator). 194 // The starting ValueId is just after the number of values in the 195 // ValueEnumerator, so that they can be emitted in the VST. 196 GlobalValueId = VE.getValues().size(); 197 if (!Index) 198 return; 199 for (const auto &GUIDSummaryLists : *Index) 200 // Examine all summaries for this GUID. 201 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 202 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 203 // For each call in the function summary, see if the call 204 // is to a GUID (which means it is for an indirect call, 205 // otherwise we would have a Value for it). If so, synthesize 206 // a value id. 207 for (auto &CallEdge : FS->calls()) 208 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 209 assignValueId(CallEdge.first.getGUID()); 210 } 211 212 protected: 213 void writePerModuleGlobalValueSummary(); 214 215 private: 216 void writePerModuleFunctionSummaryRecord( 217 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 218 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 219 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIGlobalVariable(const DIGlobalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDILocalVariable(const DILocalVariable *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDILabel(const DILabel *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIExpression(const DIExpression *N, 358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 359 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 360 SmallVectorImpl<uint64_t> &Record, 361 unsigned Abbrev); 362 void writeDIObjCProperty(const DIObjCProperty *N, 363 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 364 void writeDIImportedEntity(const DIImportedEntity *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 unsigned createNamedMetadataAbbrev(); 368 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 369 unsigned createMetadataStringsAbbrev(); 370 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 371 SmallVectorImpl<uint64_t> &Record); 372 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 373 SmallVectorImpl<uint64_t> &Record, 374 std::vector<unsigned> *MDAbbrevs = nullptr, 375 std::vector<uint64_t> *IndexPos = nullptr); 376 void writeModuleMetadata(); 377 void writeFunctionMetadata(const Function &F); 378 void writeFunctionMetadataAttachment(const Function &F); 379 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 380 const GlobalObject &GO); 381 void writeModuleMetadataKinds(); 382 void writeOperandBundleTags(); 383 void writeSyncScopeNames(); 384 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 385 void writeModuleConstants(); 386 bool pushValueAndType(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void writeOperandBundles(const CallBase &CB, unsigned InstID); 389 void pushValue(const Value *V, unsigned InstID, 390 SmallVectorImpl<unsigned> &Vals); 391 void pushValueSigned(const Value *V, unsigned InstID, 392 SmallVectorImpl<uint64_t> &Vals); 393 void writeInstruction(const Instruction &I, unsigned InstID, 394 SmallVectorImpl<unsigned> &Vals); 395 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 396 void writeGlobalValueSymbolTable( 397 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 398 void writeUseList(UseListOrder &&Order); 399 void writeUseListBlock(const Function *F); 400 void 401 writeFunction(const Function &F, 402 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 403 void writeBlockInfo(); 404 void writeModuleHash(size_t BlockStartPos); 405 406 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 407 return unsigned(SSID); 408 } 409 410 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 411 }; 412 413 /// Class to manage the bitcode writing for a combined index. 414 class IndexBitcodeWriter : public BitcodeWriterBase { 415 /// The combined index to write to bitcode. 416 const ModuleSummaryIndex &Index; 417 418 /// When writing a subset of the index for distributed backends, client 419 /// provides a map of modules to the corresponding GUIDs/summaries to write. 420 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 421 422 /// Map that holds the correspondence between the GUID used in the combined 423 /// index and a value id generated by this class to use in references. 424 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 425 426 // The sorted stack id indices actually used in the summary entries being 427 // written, which will be a subset of those in the full index in the case of 428 // distributed indexes. 429 std::vector<unsigned> StackIdIndices; 430 431 /// Tracks the last value id recorded in the GUIDToValueMap. 432 unsigned GlobalValueId = 0; 433 434 /// Tracks the assignment of module paths in the module path string table to 435 /// an id assigned for use in summary references to the module path. 436 DenseMap<StringRef, uint64_t> ModuleIdMap; 437 438 public: 439 /// Constructs a IndexBitcodeWriter object for the given combined index, 440 /// writing to the provided \p Buffer. When writing a subset of the index 441 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 442 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 443 const ModuleSummaryIndex &Index, 444 const std::map<std::string, GVSummaryMapTy> 445 *ModuleToSummariesForIndex = nullptr) 446 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 447 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 448 // Assign unique value ids to all summaries to be written, for use 449 // in writing out the call graph edges. Save the mapping from GUID 450 // to the new global value id to use when writing those edges, which 451 // are currently saved in the index in terms of GUID. 452 forEachSummary([&](GVInfo I, bool IsAliasee) { 453 GUIDToValueIdMap[I.first] = ++GlobalValueId; 454 if (IsAliasee) 455 return; 456 auto *FS = dyn_cast<FunctionSummary>(I.second); 457 if (!FS) 458 return; 459 // Record all stack id indices actually used in the summary entries being 460 // written, so that we can compact them in the case of distributed ThinLTO 461 // indexes. 462 for (auto &CI : FS->callsites()) { 463 // If the stack id list is empty, this callsite info was synthesized for 464 // a missing tail call frame. Ensure that the callee's GUID gets a value 465 // id. Normally we only generate these for defined summaries, which in 466 // the case of distributed ThinLTO is only the functions already defined 467 // in the module or that we want to import. We don't bother to include 468 // all the callee symbols as they aren't normally needed in the backend. 469 // However, for the synthesized callsite infos we do need the callee 470 // GUID in the backend so that we can correlate the identified callee 471 // with this callsite info (which for non-tail calls is done by the 472 // ordering of the callsite infos and verified via stack ids). 473 if (CI.StackIdIndices.empty()) { 474 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 475 continue; 476 } 477 for (auto Idx : CI.StackIdIndices) 478 StackIdIndices.push_back(Idx); 479 } 480 for (auto &AI : FS->allocs()) 481 for (auto &MIB : AI.MIBs) 482 for (auto Idx : MIB.StackIdIndices) 483 StackIdIndices.push_back(Idx); 484 }); 485 llvm::sort(StackIdIndices); 486 StackIdIndices.erase( 487 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 488 StackIdIndices.end()); 489 } 490 491 /// The below iterator returns the GUID and associated summary. 492 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 493 494 /// Calls the callback for each value GUID and summary to be written to 495 /// bitcode. This hides the details of whether they are being pulled from the 496 /// entire index or just those in a provided ModuleToSummariesForIndex map. 497 template<typename Functor> 498 void forEachSummary(Functor Callback) { 499 if (ModuleToSummariesForIndex) { 500 for (auto &M : *ModuleToSummariesForIndex) 501 for (auto &Summary : M.second) { 502 Callback(Summary, false); 503 // Ensure aliasee is handled, e.g. for assigning a valueId, 504 // even if we are not importing the aliasee directly (the 505 // imported alias will contain a copy of aliasee). 506 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 507 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 508 } 509 } else { 510 for (auto &Summaries : Index) 511 for (auto &Summary : Summaries.second.SummaryList) 512 Callback({Summaries.first, Summary.get()}, false); 513 } 514 } 515 516 /// Calls the callback for each entry in the modulePaths StringMap that 517 /// should be written to the module path string table. This hides the details 518 /// of whether they are being pulled from the entire index or just those in a 519 /// provided ModuleToSummariesForIndex map. 520 template <typename Functor> void forEachModule(Functor Callback) { 521 if (ModuleToSummariesForIndex) { 522 for (const auto &M : *ModuleToSummariesForIndex) { 523 const auto &MPI = Index.modulePaths().find(M.first); 524 if (MPI == Index.modulePaths().end()) { 525 // This should only happen if the bitcode file was empty, in which 526 // case we shouldn't be importing (the ModuleToSummariesForIndex 527 // would only include the module we are writing and index for). 528 assert(ModuleToSummariesForIndex->size() == 1); 529 continue; 530 } 531 Callback(*MPI); 532 } 533 } else { 534 // Since StringMap iteration order isn't guaranteed, order by path string 535 // first. 536 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 537 // map lookup. 538 std::vector<StringRef> ModulePaths; 539 for (auto &[ModPath, _] : Index.modulePaths()) 540 ModulePaths.push_back(ModPath); 541 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 542 for (auto &ModPath : ModulePaths) 543 Callback(*Index.modulePaths().find(ModPath)); 544 } 545 } 546 547 /// Main entry point for writing a combined index to bitcode. 548 void write(); 549 550 private: 551 void writeModStrings(); 552 void writeCombinedGlobalValueSummary(); 553 554 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 555 auto VMI = GUIDToValueIdMap.find(ValGUID); 556 if (VMI == GUIDToValueIdMap.end()) 557 return std::nullopt; 558 return VMI->second; 559 } 560 561 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 562 }; 563 564 } // end anonymous namespace 565 566 static unsigned getEncodedCastOpcode(unsigned Opcode) { 567 switch (Opcode) { 568 default: llvm_unreachable("Unknown cast instruction!"); 569 case Instruction::Trunc : return bitc::CAST_TRUNC; 570 case Instruction::ZExt : return bitc::CAST_ZEXT; 571 case Instruction::SExt : return bitc::CAST_SEXT; 572 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 573 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 574 case Instruction::UIToFP : return bitc::CAST_UITOFP; 575 case Instruction::SIToFP : return bitc::CAST_SITOFP; 576 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 577 case Instruction::FPExt : return bitc::CAST_FPEXT; 578 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 579 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 580 case Instruction::BitCast : return bitc::CAST_BITCAST; 581 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 582 } 583 } 584 585 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 586 switch (Opcode) { 587 default: llvm_unreachable("Unknown binary instruction!"); 588 case Instruction::FNeg: return bitc::UNOP_FNEG; 589 } 590 } 591 592 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 593 switch (Opcode) { 594 default: llvm_unreachable("Unknown binary instruction!"); 595 case Instruction::Add: 596 case Instruction::FAdd: return bitc::BINOP_ADD; 597 case Instruction::Sub: 598 case Instruction::FSub: return bitc::BINOP_SUB; 599 case Instruction::Mul: 600 case Instruction::FMul: return bitc::BINOP_MUL; 601 case Instruction::UDiv: return bitc::BINOP_UDIV; 602 case Instruction::FDiv: 603 case Instruction::SDiv: return bitc::BINOP_SDIV; 604 case Instruction::URem: return bitc::BINOP_UREM; 605 case Instruction::FRem: 606 case Instruction::SRem: return bitc::BINOP_SREM; 607 case Instruction::Shl: return bitc::BINOP_SHL; 608 case Instruction::LShr: return bitc::BINOP_LSHR; 609 case Instruction::AShr: return bitc::BINOP_ASHR; 610 case Instruction::And: return bitc::BINOP_AND; 611 case Instruction::Or: return bitc::BINOP_OR; 612 case Instruction::Xor: return bitc::BINOP_XOR; 613 } 614 } 615 616 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 617 switch (Op) { 618 default: llvm_unreachable("Unknown RMW operation!"); 619 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 620 case AtomicRMWInst::Add: return bitc::RMW_ADD; 621 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 622 case AtomicRMWInst::And: return bitc::RMW_AND; 623 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 624 case AtomicRMWInst::Or: return bitc::RMW_OR; 625 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 626 case AtomicRMWInst::Max: return bitc::RMW_MAX; 627 case AtomicRMWInst::Min: return bitc::RMW_MIN; 628 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 629 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 630 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 631 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 632 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 633 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 634 case AtomicRMWInst::UIncWrap: 635 return bitc::RMW_UINC_WRAP; 636 case AtomicRMWInst::UDecWrap: 637 return bitc::RMW_UDEC_WRAP; 638 } 639 } 640 641 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 642 switch (Ordering) { 643 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 644 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 645 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 646 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 647 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 648 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 649 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 650 } 651 llvm_unreachable("Invalid ordering"); 652 } 653 654 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 655 StringRef Str, unsigned AbbrevToUse) { 656 SmallVector<unsigned, 64> Vals; 657 658 // Code: [strchar x N] 659 for (char C : Str) { 660 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 661 AbbrevToUse = 0; 662 Vals.push_back(C); 663 } 664 665 // Emit the finished record. 666 Stream.EmitRecord(Code, Vals, AbbrevToUse); 667 } 668 669 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 670 switch (Kind) { 671 case Attribute::Alignment: 672 return bitc::ATTR_KIND_ALIGNMENT; 673 case Attribute::AllocAlign: 674 return bitc::ATTR_KIND_ALLOC_ALIGN; 675 case Attribute::AllocSize: 676 return bitc::ATTR_KIND_ALLOC_SIZE; 677 case Attribute::AlwaysInline: 678 return bitc::ATTR_KIND_ALWAYS_INLINE; 679 case Attribute::Builtin: 680 return bitc::ATTR_KIND_BUILTIN; 681 case Attribute::ByVal: 682 return bitc::ATTR_KIND_BY_VAL; 683 case Attribute::Convergent: 684 return bitc::ATTR_KIND_CONVERGENT; 685 case Attribute::InAlloca: 686 return bitc::ATTR_KIND_IN_ALLOCA; 687 case Attribute::Cold: 688 return bitc::ATTR_KIND_COLD; 689 case Attribute::DisableSanitizerInstrumentation: 690 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 691 case Attribute::FnRetThunkExtern: 692 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 693 case Attribute::Hot: 694 return bitc::ATTR_KIND_HOT; 695 case Attribute::ElementType: 696 return bitc::ATTR_KIND_ELEMENTTYPE; 697 case Attribute::InlineHint: 698 return bitc::ATTR_KIND_INLINE_HINT; 699 case Attribute::InReg: 700 return bitc::ATTR_KIND_IN_REG; 701 case Attribute::JumpTable: 702 return bitc::ATTR_KIND_JUMP_TABLE; 703 case Attribute::MinSize: 704 return bitc::ATTR_KIND_MIN_SIZE; 705 case Attribute::AllocatedPointer: 706 return bitc::ATTR_KIND_ALLOCATED_POINTER; 707 case Attribute::AllocKind: 708 return bitc::ATTR_KIND_ALLOC_KIND; 709 case Attribute::Memory: 710 return bitc::ATTR_KIND_MEMORY; 711 case Attribute::NoFPClass: 712 return bitc::ATTR_KIND_NOFPCLASS; 713 case Attribute::Naked: 714 return bitc::ATTR_KIND_NAKED; 715 case Attribute::Nest: 716 return bitc::ATTR_KIND_NEST; 717 case Attribute::NoAlias: 718 return bitc::ATTR_KIND_NO_ALIAS; 719 case Attribute::NoBuiltin: 720 return bitc::ATTR_KIND_NO_BUILTIN; 721 case Attribute::NoCallback: 722 return bitc::ATTR_KIND_NO_CALLBACK; 723 case Attribute::NoCapture: 724 return bitc::ATTR_KIND_NO_CAPTURE; 725 case Attribute::NoDuplicate: 726 return bitc::ATTR_KIND_NO_DUPLICATE; 727 case Attribute::NoFree: 728 return bitc::ATTR_KIND_NOFREE; 729 case Attribute::NoImplicitFloat: 730 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 731 case Attribute::NoInline: 732 return bitc::ATTR_KIND_NO_INLINE; 733 case Attribute::NoRecurse: 734 return bitc::ATTR_KIND_NO_RECURSE; 735 case Attribute::NoMerge: 736 return bitc::ATTR_KIND_NO_MERGE; 737 case Attribute::NonLazyBind: 738 return bitc::ATTR_KIND_NON_LAZY_BIND; 739 case Attribute::NonNull: 740 return bitc::ATTR_KIND_NON_NULL; 741 case Attribute::Dereferenceable: 742 return bitc::ATTR_KIND_DEREFERENCEABLE; 743 case Attribute::DereferenceableOrNull: 744 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 745 case Attribute::NoRedZone: 746 return bitc::ATTR_KIND_NO_RED_ZONE; 747 case Attribute::NoReturn: 748 return bitc::ATTR_KIND_NO_RETURN; 749 case Attribute::NoSync: 750 return bitc::ATTR_KIND_NOSYNC; 751 case Attribute::NoCfCheck: 752 return bitc::ATTR_KIND_NOCF_CHECK; 753 case Attribute::NoProfile: 754 return bitc::ATTR_KIND_NO_PROFILE; 755 case Attribute::SkipProfile: 756 return bitc::ATTR_KIND_SKIP_PROFILE; 757 case Attribute::NoUnwind: 758 return bitc::ATTR_KIND_NO_UNWIND; 759 case Attribute::NoSanitizeBounds: 760 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 761 case Attribute::NoSanitizeCoverage: 762 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 763 case Attribute::NullPointerIsValid: 764 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 765 case Attribute::OptimizeForDebugging: 766 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 767 case Attribute::OptForFuzzing: 768 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 769 case Attribute::OptimizeForSize: 770 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 771 case Attribute::OptimizeNone: 772 return bitc::ATTR_KIND_OPTIMIZE_NONE; 773 case Attribute::ReadNone: 774 return bitc::ATTR_KIND_READ_NONE; 775 case Attribute::ReadOnly: 776 return bitc::ATTR_KIND_READ_ONLY; 777 case Attribute::Returned: 778 return bitc::ATTR_KIND_RETURNED; 779 case Attribute::ReturnsTwice: 780 return bitc::ATTR_KIND_RETURNS_TWICE; 781 case Attribute::SExt: 782 return bitc::ATTR_KIND_S_EXT; 783 case Attribute::Speculatable: 784 return bitc::ATTR_KIND_SPECULATABLE; 785 case Attribute::StackAlignment: 786 return bitc::ATTR_KIND_STACK_ALIGNMENT; 787 case Attribute::StackProtect: 788 return bitc::ATTR_KIND_STACK_PROTECT; 789 case Attribute::StackProtectReq: 790 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 791 case Attribute::StackProtectStrong: 792 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 793 case Attribute::SafeStack: 794 return bitc::ATTR_KIND_SAFESTACK; 795 case Attribute::ShadowCallStack: 796 return bitc::ATTR_KIND_SHADOWCALLSTACK; 797 case Attribute::StrictFP: 798 return bitc::ATTR_KIND_STRICT_FP; 799 case Attribute::StructRet: 800 return bitc::ATTR_KIND_STRUCT_RET; 801 case Attribute::SanitizeAddress: 802 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 803 case Attribute::SanitizeHWAddress: 804 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 805 case Attribute::SanitizeThread: 806 return bitc::ATTR_KIND_SANITIZE_THREAD; 807 case Attribute::SanitizeMemory: 808 return bitc::ATTR_KIND_SANITIZE_MEMORY; 809 case Attribute::SpeculativeLoadHardening: 810 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 811 case Attribute::SwiftError: 812 return bitc::ATTR_KIND_SWIFT_ERROR; 813 case Attribute::SwiftSelf: 814 return bitc::ATTR_KIND_SWIFT_SELF; 815 case Attribute::SwiftAsync: 816 return bitc::ATTR_KIND_SWIFT_ASYNC; 817 case Attribute::UWTable: 818 return bitc::ATTR_KIND_UW_TABLE; 819 case Attribute::VScaleRange: 820 return bitc::ATTR_KIND_VSCALE_RANGE; 821 case Attribute::WillReturn: 822 return bitc::ATTR_KIND_WILLRETURN; 823 case Attribute::WriteOnly: 824 return bitc::ATTR_KIND_WRITEONLY; 825 case Attribute::ZExt: 826 return bitc::ATTR_KIND_Z_EXT; 827 case Attribute::ImmArg: 828 return bitc::ATTR_KIND_IMMARG; 829 case Attribute::SanitizeMemTag: 830 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 831 case Attribute::Preallocated: 832 return bitc::ATTR_KIND_PREALLOCATED; 833 case Attribute::NoUndef: 834 return bitc::ATTR_KIND_NOUNDEF; 835 case Attribute::ByRef: 836 return bitc::ATTR_KIND_BYREF; 837 case Attribute::MustProgress: 838 return bitc::ATTR_KIND_MUSTPROGRESS; 839 case Attribute::PresplitCoroutine: 840 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 841 case Attribute::Writable: 842 return bitc::ATTR_KIND_WRITABLE; 843 case Attribute::CoroDestroyOnlyWhenComplete: 844 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 845 case Attribute::DeadOnUnwind: 846 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 847 case Attribute::Range: 848 return bitc::ATTR_KIND_RANGE; 849 case Attribute::EndAttrKinds: 850 llvm_unreachable("Can not encode end-attribute kinds marker."); 851 case Attribute::None: 852 llvm_unreachable("Can not encode none-attribute."); 853 case Attribute::EmptyKey: 854 case Attribute::TombstoneKey: 855 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 856 } 857 858 llvm_unreachable("Trying to encode unknown attribute"); 859 } 860 861 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 862 if ((int64_t)V >= 0) 863 Vals.push_back(V << 1); 864 else 865 Vals.push_back((-V << 1) | 1); 866 } 867 868 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 869 // We have an arbitrary precision integer value to write whose 870 // bit width is > 64. However, in canonical unsigned integer 871 // format it is likely that the high bits are going to be zero. 872 // So, we only write the number of active words. 873 unsigned NumWords = A.getActiveWords(); 874 const uint64_t *RawData = A.getRawData(); 875 for (unsigned i = 0; i < NumWords; i++) 876 emitSignedInt64(Vals, RawData[i]); 877 } 878 879 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 880 const ConstantRange &CR) { 881 unsigned BitWidth = CR.getBitWidth(); 882 Record.push_back(BitWidth); 883 if (BitWidth > 64) { 884 Record.push_back(CR.getLower().getActiveWords() | 885 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 886 emitWideAPInt(Record, CR.getLower()); 887 emitWideAPInt(Record, CR.getUpper()); 888 } else { 889 emitSignedInt64(Record, CR.getLower().getSExtValue()); 890 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 891 } 892 } 893 894 void ModuleBitcodeWriter::writeAttributeGroupTable() { 895 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 896 VE.getAttributeGroups(); 897 if (AttrGrps.empty()) return; 898 899 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 900 901 SmallVector<uint64_t, 64> Record; 902 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 903 unsigned AttrListIndex = Pair.first; 904 AttributeSet AS = Pair.second; 905 Record.push_back(VE.getAttributeGroupID(Pair)); 906 Record.push_back(AttrListIndex); 907 908 for (Attribute Attr : AS) { 909 if (Attr.isEnumAttribute()) { 910 Record.push_back(0); 911 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 912 } else if (Attr.isIntAttribute()) { 913 Record.push_back(1); 914 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 915 Record.push_back(Attr.getValueAsInt()); 916 } else if (Attr.isStringAttribute()) { 917 StringRef Kind = Attr.getKindAsString(); 918 StringRef Val = Attr.getValueAsString(); 919 920 Record.push_back(Val.empty() ? 3 : 4); 921 Record.append(Kind.begin(), Kind.end()); 922 Record.push_back(0); 923 if (!Val.empty()) { 924 Record.append(Val.begin(), Val.end()); 925 Record.push_back(0); 926 } 927 } else if (Attr.isTypeAttribute()) { 928 Type *Ty = Attr.getValueAsType(); 929 Record.push_back(Ty ? 6 : 5); 930 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 931 if (Ty) 932 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 933 } else { 934 assert(Attr.isConstantRangeAttribute()); 935 Record.push_back(7); 936 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 937 emitConstantRange(Record, Attr.getValueAsConstantRange()); 938 } 939 } 940 941 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 942 Record.clear(); 943 } 944 945 Stream.ExitBlock(); 946 } 947 948 void ModuleBitcodeWriter::writeAttributeTable() { 949 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 950 if (Attrs.empty()) return; 951 952 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 953 954 SmallVector<uint64_t, 64> Record; 955 for (const AttributeList &AL : Attrs) { 956 for (unsigned i : AL.indexes()) { 957 AttributeSet AS = AL.getAttributes(i); 958 if (AS.hasAttributes()) 959 Record.push_back(VE.getAttributeGroupID({i, AS})); 960 } 961 962 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 963 Record.clear(); 964 } 965 966 Stream.ExitBlock(); 967 } 968 969 /// WriteTypeTable - Write out the type table for a module. 970 void ModuleBitcodeWriter::writeTypeTable() { 971 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 972 973 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 974 SmallVector<uint64_t, 64> TypeVals; 975 976 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 977 978 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 979 auto Abbv = std::make_shared<BitCodeAbbrev>(); 980 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 981 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 982 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 983 984 // Abbrev for TYPE_CODE_FUNCTION. 985 Abbv = std::make_shared<BitCodeAbbrev>(); 986 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 990 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 991 992 // Abbrev for TYPE_CODE_STRUCT_ANON. 993 Abbv = std::make_shared<BitCodeAbbrev>(); 994 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 998 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 999 1000 // Abbrev for TYPE_CODE_STRUCT_NAME. 1001 Abbv = std::make_shared<BitCodeAbbrev>(); 1002 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1005 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1006 1007 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1008 Abbv = std::make_shared<BitCodeAbbrev>(); 1009 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1013 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1014 1015 // Abbrev for TYPE_CODE_ARRAY. 1016 Abbv = std::make_shared<BitCodeAbbrev>(); 1017 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1020 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1021 1022 // Emit an entry count so the reader can reserve space. 1023 TypeVals.push_back(TypeList.size()); 1024 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1025 TypeVals.clear(); 1026 1027 // Loop over all of the types, emitting each in turn. 1028 for (Type *T : TypeList) { 1029 int AbbrevToUse = 0; 1030 unsigned Code = 0; 1031 1032 switch (T->getTypeID()) { 1033 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1034 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1035 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1036 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1037 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1038 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1039 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1040 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1041 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1042 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 1043 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 1044 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1045 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1046 case Type::IntegerTyID: 1047 // INTEGER: [width] 1048 Code = bitc::TYPE_CODE_INTEGER; 1049 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1050 break; 1051 case Type::PointerTyID: { 1052 PointerType *PTy = cast<PointerType>(T); 1053 unsigned AddressSpace = PTy->getAddressSpace(); 1054 // OPAQUE_POINTER: [address space] 1055 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1056 TypeVals.push_back(AddressSpace); 1057 if (AddressSpace == 0) 1058 AbbrevToUse = OpaquePtrAbbrev; 1059 break; 1060 } 1061 case Type::FunctionTyID: { 1062 FunctionType *FT = cast<FunctionType>(T); 1063 // FUNCTION: [isvararg, retty, paramty x N] 1064 Code = bitc::TYPE_CODE_FUNCTION; 1065 TypeVals.push_back(FT->isVarArg()); 1066 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1067 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1068 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1069 AbbrevToUse = FunctionAbbrev; 1070 break; 1071 } 1072 case Type::StructTyID: { 1073 StructType *ST = cast<StructType>(T); 1074 // STRUCT: [ispacked, eltty x N] 1075 TypeVals.push_back(ST->isPacked()); 1076 // Output all of the element types. 1077 for (Type *ET : ST->elements()) 1078 TypeVals.push_back(VE.getTypeID(ET)); 1079 1080 if (ST->isLiteral()) { 1081 Code = bitc::TYPE_CODE_STRUCT_ANON; 1082 AbbrevToUse = StructAnonAbbrev; 1083 } else { 1084 if (ST->isOpaque()) { 1085 Code = bitc::TYPE_CODE_OPAQUE; 1086 } else { 1087 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1088 AbbrevToUse = StructNamedAbbrev; 1089 } 1090 1091 // Emit the name if it is present. 1092 if (!ST->getName().empty()) 1093 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1094 StructNameAbbrev); 1095 } 1096 break; 1097 } 1098 case Type::ArrayTyID: { 1099 ArrayType *AT = cast<ArrayType>(T); 1100 // ARRAY: [numelts, eltty] 1101 Code = bitc::TYPE_CODE_ARRAY; 1102 TypeVals.push_back(AT->getNumElements()); 1103 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1104 AbbrevToUse = ArrayAbbrev; 1105 break; 1106 } 1107 case Type::FixedVectorTyID: 1108 case Type::ScalableVectorTyID: { 1109 VectorType *VT = cast<VectorType>(T); 1110 // VECTOR [numelts, eltty] or 1111 // [numelts, eltty, scalable] 1112 Code = bitc::TYPE_CODE_VECTOR; 1113 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1114 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1115 if (isa<ScalableVectorType>(VT)) 1116 TypeVals.push_back(true); 1117 break; 1118 } 1119 case Type::TargetExtTyID: { 1120 TargetExtType *TET = cast<TargetExtType>(T); 1121 Code = bitc::TYPE_CODE_TARGET_TYPE; 1122 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1123 StructNameAbbrev); 1124 TypeVals.push_back(TET->getNumTypeParameters()); 1125 for (Type *InnerTy : TET->type_params()) 1126 TypeVals.push_back(VE.getTypeID(InnerTy)); 1127 for (unsigned IntParam : TET->int_params()) 1128 TypeVals.push_back(IntParam); 1129 break; 1130 } 1131 case Type::TypedPointerTyID: 1132 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1133 } 1134 1135 // Emit the finished record. 1136 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1137 TypeVals.clear(); 1138 } 1139 1140 Stream.ExitBlock(); 1141 } 1142 1143 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1144 switch (Linkage) { 1145 case GlobalValue::ExternalLinkage: 1146 return 0; 1147 case GlobalValue::WeakAnyLinkage: 1148 return 16; 1149 case GlobalValue::AppendingLinkage: 1150 return 2; 1151 case GlobalValue::InternalLinkage: 1152 return 3; 1153 case GlobalValue::LinkOnceAnyLinkage: 1154 return 18; 1155 case GlobalValue::ExternalWeakLinkage: 1156 return 7; 1157 case GlobalValue::CommonLinkage: 1158 return 8; 1159 case GlobalValue::PrivateLinkage: 1160 return 9; 1161 case GlobalValue::WeakODRLinkage: 1162 return 17; 1163 case GlobalValue::LinkOnceODRLinkage: 1164 return 19; 1165 case GlobalValue::AvailableExternallyLinkage: 1166 return 12; 1167 } 1168 llvm_unreachable("Invalid linkage"); 1169 } 1170 1171 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1172 return getEncodedLinkage(GV.getLinkage()); 1173 } 1174 1175 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1176 uint64_t RawFlags = 0; 1177 RawFlags |= Flags.ReadNone; 1178 RawFlags |= (Flags.ReadOnly << 1); 1179 RawFlags |= (Flags.NoRecurse << 2); 1180 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1181 RawFlags |= (Flags.NoInline << 4); 1182 RawFlags |= (Flags.AlwaysInline << 5); 1183 RawFlags |= (Flags.NoUnwind << 6); 1184 RawFlags |= (Flags.MayThrow << 7); 1185 RawFlags |= (Flags.HasUnknownCall << 8); 1186 RawFlags |= (Flags.MustBeUnreachable << 9); 1187 return RawFlags; 1188 } 1189 1190 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1191 // in BitcodeReader.cpp. 1192 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1193 uint64_t RawFlags = 0; 1194 1195 RawFlags |= Flags.NotEligibleToImport; // bool 1196 RawFlags |= (Flags.Live << 1); 1197 RawFlags |= (Flags.DSOLocal << 2); 1198 RawFlags |= (Flags.CanAutoHide << 3); 1199 1200 // Linkage don't need to be remapped at that time for the summary. Any future 1201 // change to the getEncodedLinkage() function will need to be taken into 1202 // account here as well. 1203 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1204 1205 RawFlags |= (Flags.Visibility << 8); // 2 bits 1206 1207 return RawFlags; 1208 } 1209 1210 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1211 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1212 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1213 return RawFlags; 1214 } 1215 1216 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1217 uint64_t RawFlags = 0; 1218 1219 RawFlags |= CI.Hotness; // 3 bits 1220 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1221 1222 return RawFlags; 1223 } 1224 1225 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1226 uint64_t RawFlags = 0; 1227 1228 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1229 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1230 1231 return RawFlags; 1232 } 1233 1234 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1235 switch (GV.getVisibility()) { 1236 case GlobalValue::DefaultVisibility: return 0; 1237 case GlobalValue::HiddenVisibility: return 1; 1238 case GlobalValue::ProtectedVisibility: return 2; 1239 } 1240 llvm_unreachable("Invalid visibility"); 1241 } 1242 1243 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1244 switch (GV.getDLLStorageClass()) { 1245 case GlobalValue::DefaultStorageClass: return 0; 1246 case GlobalValue::DLLImportStorageClass: return 1; 1247 case GlobalValue::DLLExportStorageClass: return 2; 1248 } 1249 llvm_unreachable("Invalid DLL storage class"); 1250 } 1251 1252 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1253 switch (GV.getThreadLocalMode()) { 1254 case GlobalVariable::NotThreadLocal: return 0; 1255 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1256 case GlobalVariable::LocalDynamicTLSModel: return 2; 1257 case GlobalVariable::InitialExecTLSModel: return 3; 1258 case GlobalVariable::LocalExecTLSModel: return 4; 1259 } 1260 llvm_unreachable("Invalid TLS model"); 1261 } 1262 1263 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1264 switch (C.getSelectionKind()) { 1265 case Comdat::Any: 1266 return bitc::COMDAT_SELECTION_KIND_ANY; 1267 case Comdat::ExactMatch: 1268 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1269 case Comdat::Largest: 1270 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1271 case Comdat::NoDeduplicate: 1272 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1273 case Comdat::SameSize: 1274 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1275 } 1276 llvm_unreachable("Invalid selection kind"); 1277 } 1278 1279 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1280 switch (GV.getUnnamedAddr()) { 1281 case GlobalValue::UnnamedAddr::None: return 0; 1282 case GlobalValue::UnnamedAddr::Local: return 2; 1283 case GlobalValue::UnnamedAddr::Global: return 1; 1284 } 1285 llvm_unreachable("Invalid unnamed_addr"); 1286 } 1287 1288 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1289 if (GenerateHash) 1290 Hasher.update(Str); 1291 return StrtabBuilder.add(Str); 1292 } 1293 1294 void ModuleBitcodeWriter::writeComdats() { 1295 SmallVector<unsigned, 64> Vals; 1296 for (const Comdat *C : VE.getComdats()) { 1297 // COMDAT: [strtab offset, strtab size, selection_kind] 1298 Vals.push_back(addToStrtab(C->getName())); 1299 Vals.push_back(C->getName().size()); 1300 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1301 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1302 Vals.clear(); 1303 } 1304 } 1305 1306 /// Write a record that will eventually hold the word offset of the 1307 /// module-level VST. For now the offset is 0, which will be backpatched 1308 /// after the real VST is written. Saves the bit offset to backpatch. 1309 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1310 // Write a placeholder value in for the offset of the real VST, 1311 // which is written after the function blocks so that it can include 1312 // the offset of each function. The placeholder offset will be 1313 // updated when the real VST is written. 1314 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1315 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1316 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1317 // hold the real VST offset. Must use fixed instead of VBR as we don't 1318 // know how many VBR chunks to reserve ahead of time. 1319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1320 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1321 1322 // Emit the placeholder 1323 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1324 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1325 1326 // Compute and save the bit offset to the placeholder, which will be 1327 // patched when the real VST is written. We can simply subtract the 32-bit 1328 // fixed size from the current bit number to get the location to backpatch. 1329 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1330 } 1331 1332 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1333 1334 /// Determine the encoding to use for the given string name and length. 1335 static StringEncoding getStringEncoding(StringRef Str) { 1336 bool isChar6 = true; 1337 for (char C : Str) { 1338 if (isChar6) 1339 isChar6 = BitCodeAbbrevOp::isChar6(C); 1340 if ((unsigned char)C & 128) 1341 // don't bother scanning the rest. 1342 return SE_Fixed8; 1343 } 1344 if (isChar6) 1345 return SE_Char6; 1346 return SE_Fixed7; 1347 } 1348 1349 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1350 "Sanitizer Metadata is too large for naive serialization."); 1351 static unsigned 1352 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1353 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1354 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1355 } 1356 1357 /// Emit top-level description of module, including target triple, inline asm, 1358 /// descriptors for global variables, and function prototype info. 1359 /// Returns the bit offset to backpatch with the location of the real VST. 1360 void ModuleBitcodeWriter::writeModuleInfo() { 1361 // Emit various pieces of data attached to a module. 1362 if (!M.getTargetTriple().empty()) 1363 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1364 0 /*TODO*/); 1365 const std::string &DL = M.getDataLayoutStr(); 1366 if (!DL.empty()) 1367 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1368 if (!M.getModuleInlineAsm().empty()) 1369 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1370 0 /*TODO*/); 1371 1372 // Emit information about sections and GC, computing how many there are. Also 1373 // compute the maximum alignment value. 1374 std::map<std::string, unsigned> SectionMap; 1375 std::map<std::string, unsigned> GCMap; 1376 MaybeAlign MaxAlignment; 1377 unsigned MaxGlobalType = 0; 1378 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1379 if (A) 1380 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1381 }; 1382 for (const GlobalVariable &GV : M.globals()) { 1383 UpdateMaxAlignment(GV.getAlign()); 1384 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1385 if (GV.hasSection()) { 1386 // Give section names unique ID's. 1387 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1388 if (!Entry) { 1389 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1390 0 /*TODO*/); 1391 Entry = SectionMap.size(); 1392 } 1393 } 1394 } 1395 for (const Function &F : M) { 1396 UpdateMaxAlignment(F.getAlign()); 1397 if (F.hasSection()) { 1398 // Give section names unique ID's. 1399 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1400 if (!Entry) { 1401 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1402 0 /*TODO*/); 1403 Entry = SectionMap.size(); 1404 } 1405 } 1406 if (F.hasGC()) { 1407 // Same for GC names. 1408 unsigned &Entry = GCMap[F.getGC()]; 1409 if (!Entry) { 1410 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1411 0 /*TODO*/); 1412 Entry = GCMap.size(); 1413 } 1414 } 1415 } 1416 1417 // Emit abbrev for globals, now that we know # sections and max alignment. 1418 unsigned SimpleGVarAbbrev = 0; 1419 if (!M.global_empty()) { 1420 // Add an abbrev for common globals with no visibility or thread localness. 1421 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1422 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1426 Log2_32_Ceil(MaxGlobalType+1))); 1427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1428 //| explicitType << 1 1429 //| constant 1430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1432 if (!MaxAlignment) // Alignment. 1433 Abbv->Add(BitCodeAbbrevOp(0)); 1434 else { 1435 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1437 Log2_32_Ceil(MaxEncAlignment+1))); 1438 } 1439 if (SectionMap.empty()) // Section. 1440 Abbv->Add(BitCodeAbbrevOp(0)); 1441 else 1442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1443 Log2_32_Ceil(SectionMap.size()+1))); 1444 // Don't bother emitting vis + thread local. 1445 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1446 } 1447 1448 SmallVector<unsigned, 64> Vals; 1449 // Emit the module's source file name. 1450 { 1451 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1452 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1453 if (Bits == SE_Char6) 1454 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1455 else if (Bits == SE_Fixed7) 1456 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1457 1458 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1459 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1460 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1462 Abbv->Add(AbbrevOpToUse); 1463 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1464 1465 for (const auto P : M.getSourceFileName()) 1466 Vals.push_back((unsigned char)P); 1467 1468 // Emit the finished record. 1469 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1470 Vals.clear(); 1471 } 1472 1473 // Emit the global variable information. 1474 for (const GlobalVariable &GV : M.globals()) { 1475 unsigned AbbrevToUse = 0; 1476 1477 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1478 // linkage, alignment, section, visibility, threadlocal, 1479 // unnamed_addr, externally_initialized, dllstorageclass, 1480 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1481 Vals.push_back(addToStrtab(GV.getName())); 1482 Vals.push_back(GV.getName().size()); 1483 Vals.push_back(VE.getTypeID(GV.getValueType())); 1484 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1485 Vals.push_back(GV.isDeclaration() ? 0 : 1486 (VE.getValueID(GV.getInitializer()) + 1)); 1487 Vals.push_back(getEncodedLinkage(GV)); 1488 Vals.push_back(getEncodedAlign(GV.getAlign())); 1489 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1490 : 0); 1491 if (GV.isThreadLocal() || 1492 GV.getVisibility() != GlobalValue::DefaultVisibility || 1493 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1494 GV.isExternallyInitialized() || 1495 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1496 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1497 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1498 Vals.push_back(getEncodedVisibility(GV)); 1499 Vals.push_back(getEncodedThreadLocalMode(GV)); 1500 Vals.push_back(getEncodedUnnamedAddr(GV)); 1501 Vals.push_back(GV.isExternallyInitialized()); 1502 Vals.push_back(getEncodedDLLStorageClass(GV)); 1503 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1504 1505 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1506 Vals.push_back(VE.getAttributeListID(AL)); 1507 1508 Vals.push_back(GV.isDSOLocal()); 1509 Vals.push_back(addToStrtab(GV.getPartition())); 1510 Vals.push_back(GV.getPartition().size()); 1511 1512 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1513 GV.getSanitizerMetadata()) 1514 : 0)); 1515 Vals.push_back(GV.getCodeModelRaw()); 1516 } else { 1517 AbbrevToUse = SimpleGVarAbbrev; 1518 } 1519 1520 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1521 Vals.clear(); 1522 } 1523 1524 // Emit the function proto information. 1525 for (const Function &F : M) { 1526 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1527 // linkage, paramattrs, alignment, section, visibility, gc, 1528 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1529 // prefixdata, personalityfn, DSO_Local, addrspace] 1530 Vals.push_back(addToStrtab(F.getName())); 1531 Vals.push_back(F.getName().size()); 1532 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1533 Vals.push_back(F.getCallingConv()); 1534 Vals.push_back(F.isDeclaration()); 1535 Vals.push_back(getEncodedLinkage(F)); 1536 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1537 Vals.push_back(getEncodedAlign(F.getAlign())); 1538 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1539 : 0); 1540 Vals.push_back(getEncodedVisibility(F)); 1541 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1542 Vals.push_back(getEncodedUnnamedAddr(F)); 1543 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1544 : 0); 1545 Vals.push_back(getEncodedDLLStorageClass(F)); 1546 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1547 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1548 : 0); 1549 Vals.push_back( 1550 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1551 1552 Vals.push_back(F.isDSOLocal()); 1553 Vals.push_back(F.getAddressSpace()); 1554 Vals.push_back(addToStrtab(F.getPartition())); 1555 Vals.push_back(F.getPartition().size()); 1556 1557 unsigned AbbrevToUse = 0; 1558 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1559 Vals.clear(); 1560 } 1561 1562 // Emit the alias information. 1563 for (const GlobalAlias &A : M.aliases()) { 1564 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1565 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1566 // DSO_Local] 1567 Vals.push_back(addToStrtab(A.getName())); 1568 Vals.push_back(A.getName().size()); 1569 Vals.push_back(VE.getTypeID(A.getValueType())); 1570 Vals.push_back(A.getType()->getAddressSpace()); 1571 Vals.push_back(VE.getValueID(A.getAliasee())); 1572 Vals.push_back(getEncodedLinkage(A)); 1573 Vals.push_back(getEncodedVisibility(A)); 1574 Vals.push_back(getEncodedDLLStorageClass(A)); 1575 Vals.push_back(getEncodedThreadLocalMode(A)); 1576 Vals.push_back(getEncodedUnnamedAddr(A)); 1577 Vals.push_back(A.isDSOLocal()); 1578 Vals.push_back(addToStrtab(A.getPartition())); 1579 Vals.push_back(A.getPartition().size()); 1580 1581 unsigned AbbrevToUse = 0; 1582 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1583 Vals.clear(); 1584 } 1585 1586 // Emit the ifunc information. 1587 for (const GlobalIFunc &I : M.ifuncs()) { 1588 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1589 // val#, linkage, visibility, DSO_Local] 1590 Vals.push_back(addToStrtab(I.getName())); 1591 Vals.push_back(I.getName().size()); 1592 Vals.push_back(VE.getTypeID(I.getValueType())); 1593 Vals.push_back(I.getType()->getAddressSpace()); 1594 Vals.push_back(VE.getValueID(I.getResolver())); 1595 Vals.push_back(getEncodedLinkage(I)); 1596 Vals.push_back(getEncodedVisibility(I)); 1597 Vals.push_back(I.isDSOLocal()); 1598 Vals.push_back(addToStrtab(I.getPartition())); 1599 Vals.push_back(I.getPartition().size()); 1600 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1601 Vals.clear(); 1602 } 1603 1604 writeValueSymbolTableForwardDecl(); 1605 } 1606 1607 static uint64_t getOptimizationFlags(const Value *V) { 1608 uint64_t Flags = 0; 1609 1610 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1611 if (OBO->hasNoSignedWrap()) 1612 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1613 if (OBO->hasNoUnsignedWrap()) 1614 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1615 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1616 if (PEO->isExact()) 1617 Flags |= 1 << bitc::PEO_EXACT; 1618 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1619 if (PDI->isDisjoint()) 1620 Flags |= 1 << bitc::PDI_DISJOINT; 1621 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1622 if (FPMO->hasAllowReassoc()) 1623 Flags |= bitc::AllowReassoc; 1624 if (FPMO->hasNoNaNs()) 1625 Flags |= bitc::NoNaNs; 1626 if (FPMO->hasNoInfs()) 1627 Flags |= bitc::NoInfs; 1628 if (FPMO->hasNoSignedZeros()) 1629 Flags |= bitc::NoSignedZeros; 1630 if (FPMO->hasAllowReciprocal()) 1631 Flags |= bitc::AllowReciprocal; 1632 if (FPMO->hasAllowContract()) 1633 Flags |= bitc::AllowContract; 1634 if (FPMO->hasApproxFunc()) 1635 Flags |= bitc::ApproxFunc; 1636 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1637 if (NNI->hasNonNeg()) 1638 Flags |= 1 << bitc::PNNI_NON_NEG; 1639 } 1640 1641 return Flags; 1642 } 1643 1644 void ModuleBitcodeWriter::writeValueAsMetadata( 1645 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1646 // Mimic an MDNode with a value as one operand. 1647 Value *V = MD->getValue(); 1648 Record.push_back(VE.getTypeID(V->getType())); 1649 Record.push_back(VE.getValueID(V)); 1650 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1651 Record.clear(); 1652 } 1653 1654 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1655 SmallVectorImpl<uint64_t> &Record, 1656 unsigned Abbrev) { 1657 for (const MDOperand &MDO : N->operands()) { 1658 Metadata *MD = MDO; 1659 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1660 "Unexpected function-local metadata"); 1661 Record.push_back(VE.getMetadataOrNullID(MD)); 1662 } 1663 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1664 : bitc::METADATA_NODE, 1665 Record, Abbrev); 1666 Record.clear(); 1667 } 1668 1669 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1670 // Assume the column is usually under 128, and always output the inlined-at 1671 // location (it's never more expensive than building an array size 1). 1672 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1673 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1680 return Stream.EmitAbbrev(std::move(Abbv)); 1681 } 1682 1683 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1684 SmallVectorImpl<uint64_t> &Record, 1685 unsigned &Abbrev) { 1686 if (!Abbrev) 1687 Abbrev = createDILocationAbbrev(); 1688 1689 Record.push_back(N->isDistinct()); 1690 Record.push_back(N->getLine()); 1691 Record.push_back(N->getColumn()); 1692 Record.push_back(VE.getMetadataID(N->getScope())); 1693 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1694 Record.push_back(N->isImplicitCode()); 1695 1696 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1697 Record.clear(); 1698 } 1699 1700 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1701 // Assume the column is usually under 128, and always output the inlined-at 1702 // location (it's never more expensive than building an array size 1). 1703 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1704 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1711 return Stream.EmitAbbrev(std::move(Abbv)); 1712 } 1713 1714 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1715 SmallVectorImpl<uint64_t> &Record, 1716 unsigned &Abbrev) { 1717 if (!Abbrev) 1718 Abbrev = createGenericDINodeAbbrev(); 1719 1720 Record.push_back(N->isDistinct()); 1721 Record.push_back(N->getTag()); 1722 Record.push_back(0); // Per-tag version field; unused for now. 1723 1724 for (auto &I : N->operands()) 1725 Record.push_back(VE.getMetadataOrNullID(I)); 1726 1727 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1728 Record.clear(); 1729 } 1730 1731 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1732 SmallVectorImpl<uint64_t> &Record, 1733 unsigned Abbrev) { 1734 const uint64_t Version = 2 << 1; 1735 Record.push_back((uint64_t)N->isDistinct() | Version); 1736 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1737 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1738 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1739 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1740 1741 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1742 Record.clear(); 1743 } 1744 1745 void ModuleBitcodeWriter::writeDIGenericSubrange( 1746 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1747 unsigned Abbrev) { 1748 Record.push_back((uint64_t)N->isDistinct()); 1749 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1750 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1753 1754 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1755 Record.clear(); 1756 } 1757 1758 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1759 SmallVectorImpl<uint64_t> &Record, 1760 unsigned Abbrev) { 1761 const uint64_t IsBigInt = 1 << 2; 1762 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1763 Record.push_back(N->getValue().getBitWidth()); 1764 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1765 emitWideAPInt(Record, N->getValue()); 1766 1767 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1768 Record.clear(); 1769 } 1770 1771 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1772 SmallVectorImpl<uint64_t> &Record, 1773 unsigned Abbrev) { 1774 Record.push_back(N->isDistinct()); 1775 Record.push_back(N->getTag()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1777 Record.push_back(N->getSizeInBits()); 1778 Record.push_back(N->getAlignInBits()); 1779 Record.push_back(N->getEncoding()); 1780 Record.push_back(N->getFlags()); 1781 1782 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1783 Record.clear(); 1784 } 1785 1786 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1787 SmallVectorImpl<uint64_t> &Record, 1788 unsigned Abbrev) { 1789 Record.push_back(N->isDistinct()); 1790 Record.push_back(N->getTag()); 1791 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1792 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1793 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1795 Record.push_back(N->getSizeInBits()); 1796 Record.push_back(N->getAlignInBits()); 1797 Record.push_back(N->getEncoding()); 1798 1799 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1800 Record.clear(); 1801 } 1802 1803 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1804 SmallVectorImpl<uint64_t> &Record, 1805 unsigned Abbrev) { 1806 Record.push_back(N->isDistinct()); 1807 Record.push_back(N->getTag()); 1808 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1809 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1810 Record.push_back(N->getLine()); 1811 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1813 Record.push_back(N->getSizeInBits()); 1814 Record.push_back(N->getAlignInBits()); 1815 Record.push_back(N->getOffsetInBits()); 1816 Record.push_back(N->getFlags()); 1817 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1818 1819 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1820 // that there is no DWARF address space associated with DIDerivedType. 1821 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1822 Record.push_back(*DWARFAddressSpace + 1); 1823 else 1824 Record.push_back(0); 1825 1826 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1827 1828 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1829 Record.clear(); 1830 } 1831 1832 void ModuleBitcodeWriter::writeDICompositeType( 1833 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1834 unsigned Abbrev) { 1835 const unsigned IsNotUsedInOldTypeRef = 0x2; 1836 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1837 Record.push_back(N->getTag()); 1838 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1839 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1840 Record.push_back(N->getLine()); 1841 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1842 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1843 Record.push_back(N->getSizeInBits()); 1844 Record.push_back(N->getAlignInBits()); 1845 Record.push_back(N->getOffsetInBits()); 1846 Record.push_back(N->getFlags()); 1847 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1848 Record.push_back(N->getRuntimeLang()); 1849 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1850 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1851 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1852 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1854 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1857 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1858 1859 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1860 Record.clear(); 1861 } 1862 1863 void ModuleBitcodeWriter::writeDISubroutineType( 1864 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1865 unsigned Abbrev) { 1866 const unsigned HasNoOldTypeRefs = 0x2; 1867 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1868 Record.push_back(N->getFlags()); 1869 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1870 Record.push_back(N->getCC()); 1871 1872 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1873 Record.clear(); 1874 } 1875 1876 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1877 SmallVectorImpl<uint64_t> &Record, 1878 unsigned Abbrev) { 1879 Record.push_back(N->isDistinct()); 1880 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1881 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1882 if (N->getRawChecksum()) { 1883 Record.push_back(N->getRawChecksum()->Kind); 1884 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1885 } else { 1886 // Maintain backwards compatibility with the old internal representation of 1887 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1888 Record.push_back(0); 1889 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1890 } 1891 auto Source = N->getRawSource(); 1892 if (Source) 1893 Record.push_back(VE.getMetadataOrNullID(Source)); 1894 1895 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1896 Record.clear(); 1897 } 1898 1899 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1900 SmallVectorImpl<uint64_t> &Record, 1901 unsigned Abbrev) { 1902 assert(N->isDistinct() && "Expected distinct compile units"); 1903 Record.push_back(/* IsDistinct */ true); 1904 Record.push_back(N->getSourceLanguage()); 1905 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1906 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1907 Record.push_back(N->isOptimized()); 1908 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1909 Record.push_back(N->getRuntimeVersion()); 1910 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1911 Record.push_back(N->getEmissionKind()); 1912 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1913 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1914 Record.push_back(/* subprograms */ 0); 1915 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1916 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1917 Record.push_back(N->getDWOId()); 1918 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1919 Record.push_back(N->getSplitDebugInlining()); 1920 Record.push_back(N->getDebugInfoForProfiling()); 1921 Record.push_back((unsigned)N->getNameTableKind()); 1922 Record.push_back(N->getRangesBaseAddress()); 1923 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1924 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1925 1926 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1927 Record.clear(); 1928 } 1929 1930 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1931 SmallVectorImpl<uint64_t> &Record, 1932 unsigned Abbrev) { 1933 const uint64_t HasUnitFlag = 1 << 1; 1934 const uint64_t HasSPFlagsFlag = 1 << 2; 1935 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1936 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1937 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1938 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1939 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1940 Record.push_back(N->getLine()); 1941 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1942 Record.push_back(N->getScopeLine()); 1943 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1944 Record.push_back(N->getSPFlags()); 1945 Record.push_back(N->getVirtualIndex()); 1946 Record.push_back(N->getFlags()); 1947 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1948 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1949 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1950 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1951 Record.push_back(N->getThisAdjustment()); 1952 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1953 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1954 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1955 1956 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1957 Record.clear(); 1958 } 1959 1960 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1961 SmallVectorImpl<uint64_t> &Record, 1962 unsigned Abbrev) { 1963 Record.push_back(N->isDistinct()); 1964 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1965 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1966 Record.push_back(N->getLine()); 1967 Record.push_back(N->getColumn()); 1968 1969 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1970 Record.clear(); 1971 } 1972 1973 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1974 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1975 unsigned Abbrev) { 1976 Record.push_back(N->isDistinct()); 1977 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1978 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1979 Record.push_back(N->getDiscriminator()); 1980 1981 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1982 Record.clear(); 1983 } 1984 1985 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1986 SmallVectorImpl<uint64_t> &Record, 1987 unsigned Abbrev) { 1988 Record.push_back(N->isDistinct()); 1989 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1990 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1991 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1992 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1993 Record.push_back(N->getLineNo()); 1994 1995 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1996 Record.clear(); 1997 } 1998 1999 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2000 SmallVectorImpl<uint64_t> &Record, 2001 unsigned Abbrev) { 2002 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2003 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2004 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2005 2006 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2007 Record.clear(); 2008 } 2009 2010 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2011 SmallVectorImpl<uint64_t> &Record, 2012 unsigned Abbrev) { 2013 Record.push_back(N->isDistinct()); 2014 Record.push_back(N->getMacinfoType()); 2015 Record.push_back(N->getLine()); 2016 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2017 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2018 2019 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2020 Record.clear(); 2021 } 2022 2023 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2024 SmallVectorImpl<uint64_t> &Record, 2025 unsigned Abbrev) { 2026 Record.push_back(N->isDistinct()); 2027 Record.push_back(N->getMacinfoType()); 2028 Record.push_back(N->getLine()); 2029 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2030 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2031 2032 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2033 Record.clear(); 2034 } 2035 2036 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2037 SmallVectorImpl<uint64_t> &Record) { 2038 Record.reserve(N->getArgs().size()); 2039 for (ValueAsMetadata *MD : N->getArgs()) 2040 Record.push_back(VE.getMetadataID(MD)); 2041 2042 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2043 Record.clear(); 2044 } 2045 2046 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2047 SmallVectorImpl<uint64_t> &Record, 2048 unsigned Abbrev) { 2049 Record.push_back(N->isDistinct()); 2050 for (auto &I : N->operands()) 2051 Record.push_back(VE.getMetadataOrNullID(I)); 2052 Record.push_back(N->getLineNo()); 2053 Record.push_back(N->getIsDecl()); 2054 2055 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2056 Record.clear(); 2057 } 2058 2059 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2060 SmallVectorImpl<uint64_t> &Record, 2061 unsigned Abbrev) { 2062 // There are no arguments for this metadata type. 2063 Record.push_back(N->isDistinct()); 2064 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2065 Record.clear(); 2066 } 2067 2068 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2069 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2070 unsigned Abbrev) { 2071 Record.push_back(N->isDistinct()); 2072 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2073 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2074 Record.push_back(N->isDefault()); 2075 2076 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2077 Record.clear(); 2078 } 2079 2080 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2081 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2082 unsigned Abbrev) { 2083 Record.push_back(N->isDistinct()); 2084 Record.push_back(N->getTag()); 2085 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2086 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2087 Record.push_back(N->isDefault()); 2088 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2089 2090 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2091 Record.clear(); 2092 } 2093 2094 void ModuleBitcodeWriter::writeDIGlobalVariable( 2095 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2096 unsigned Abbrev) { 2097 const uint64_t Version = 2 << 1; 2098 Record.push_back((uint64_t)N->isDistinct() | Version); 2099 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2100 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2101 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2102 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2103 Record.push_back(N->getLine()); 2104 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2105 Record.push_back(N->isLocalToUnit()); 2106 Record.push_back(N->isDefinition()); 2107 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2108 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2109 Record.push_back(N->getAlignInBits()); 2110 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2111 2112 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2113 Record.clear(); 2114 } 2115 2116 void ModuleBitcodeWriter::writeDILocalVariable( 2117 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2118 unsigned Abbrev) { 2119 // In order to support all possible bitcode formats in BitcodeReader we need 2120 // to distinguish the following cases: 2121 // 1) Record has no artificial tag (Record[1]), 2122 // has no obsolete inlinedAt field (Record[9]). 2123 // In this case Record size will be 8, HasAlignment flag is false. 2124 // 2) Record has artificial tag (Record[1]), 2125 // has no obsolete inlignedAt field (Record[9]). 2126 // In this case Record size will be 9, HasAlignment flag is false. 2127 // 3) Record has both artificial tag (Record[1]) and 2128 // obsolete inlignedAt field (Record[9]). 2129 // In this case Record size will be 10, HasAlignment flag is false. 2130 // 4) Record has neither artificial tag, nor inlignedAt field, but 2131 // HasAlignment flag is true and Record[8] contains alignment value. 2132 const uint64_t HasAlignmentFlag = 1 << 1; 2133 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2134 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2135 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2136 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2137 Record.push_back(N->getLine()); 2138 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2139 Record.push_back(N->getArg()); 2140 Record.push_back(N->getFlags()); 2141 Record.push_back(N->getAlignInBits()); 2142 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2143 2144 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2145 Record.clear(); 2146 } 2147 2148 void ModuleBitcodeWriter::writeDILabel( 2149 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2150 unsigned Abbrev) { 2151 Record.push_back((uint64_t)N->isDistinct()); 2152 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2153 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2154 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2155 Record.push_back(N->getLine()); 2156 2157 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2158 Record.clear(); 2159 } 2160 2161 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2162 SmallVectorImpl<uint64_t> &Record, 2163 unsigned Abbrev) { 2164 Record.reserve(N->getElements().size() + 1); 2165 const uint64_t Version = 3 << 1; 2166 Record.push_back((uint64_t)N->isDistinct() | Version); 2167 Record.append(N->elements_begin(), N->elements_end()); 2168 2169 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2170 Record.clear(); 2171 } 2172 2173 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2174 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2175 unsigned Abbrev) { 2176 Record.push_back(N->isDistinct()); 2177 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2178 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2179 2180 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2181 Record.clear(); 2182 } 2183 2184 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2185 SmallVectorImpl<uint64_t> &Record, 2186 unsigned Abbrev) { 2187 Record.push_back(N->isDistinct()); 2188 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2189 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2190 Record.push_back(N->getLine()); 2191 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2192 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2193 Record.push_back(N->getAttributes()); 2194 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2195 2196 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2197 Record.clear(); 2198 } 2199 2200 void ModuleBitcodeWriter::writeDIImportedEntity( 2201 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2202 unsigned Abbrev) { 2203 Record.push_back(N->isDistinct()); 2204 Record.push_back(N->getTag()); 2205 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2206 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2207 Record.push_back(N->getLine()); 2208 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2209 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2210 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2211 2212 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2213 Record.clear(); 2214 } 2215 2216 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2217 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2218 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2221 return Stream.EmitAbbrev(std::move(Abbv)); 2222 } 2223 2224 void ModuleBitcodeWriter::writeNamedMetadata( 2225 SmallVectorImpl<uint64_t> &Record) { 2226 if (M.named_metadata_empty()) 2227 return; 2228 2229 unsigned Abbrev = createNamedMetadataAbbrev(); 2230 for (const NamedMDNode &NMD : M.named_metadata()) { 2231 // Write name. 2232 StringRef Str = NMD.getName(); 2233 Record.append(Str.bytes_begin(), Str.bytes_end()); 2234 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2235 Record.clear(); 2236 2237 // Write named metadata operands. 2238 for (const MDNode *N : NMD.operands()) 2239 Record.push_back(VE.getMetadataID(N)); 2240 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2241 Record.clear(); 2242 } 2243 } 2244 2245 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2246 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2247 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2251 return Stream.EmitAbbrev(std::move(Abbv)); 2252 } 2253 2254 /// Write out a record for MDString. 2255 /// 2256 /// All the metadata strings in a metadata block are emitted in a single 2257 /// record. The sizes and strings themselves are shoved into a blob. 2258 void ModuleBitcodeWriter::writeMetadataStrings( 2259 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2260 if (Strings.empty()) 2261 return; 2262 2263 // Start the record with the number of strings. 2264 Record.push_back(bitc::METADATA_STRINGS); 2265 Record.push_back(Strings.size()); 2266 2267 // Emit the sizes of the strings in the blob. 2268 SmallString<256> Blob; 2269 { 2270 BitstreamWriter W(Blob); 2271 for (const Metadata *MD : Strings) 2272 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2273 W.FlushToWord(); 2274 } 2275 2276 // Add the offset to the strings to the record. 2277 Record.push_back(Blob.size()); 2278 2279 // Add the strings to the blob. 2280 for (const Metadata *MD : Strings) 2281 Blob.append(cast<MDString>(MD)->getString()); 2282 2283 // Emit the final record. 2284 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2285 Record.clear(); 2286 } 2287 2288 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2289 enum MetadataAbbrev : unsigned { 2290 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2291 #include "llvm/IR/Metadata.def" 2292 LastPlusOne 2293 }; 2294 2295 void ModuleBitcodeWriter::writeMetadataRecords( 2296 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2297 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2298 if (MDs.empty()) 2299 return; 2300 2301 // Initialize MDNode abbreviations. 2302 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2303 #include "llvm/IR/Metadata.def" 2304 2305 for (const Metadata *MD : MDs) { 2306 if (IndexPos) 2307 IndexPos->push_back(Stream.GetCurrentBitNo()); 2308 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2309 assert(N->isResolved() && "Expected forward references to be resolved"); 2310 2311 switch (N->getMetadataID()) { 2312 default: 2313 llvm_unreachable("Invalid MDNode subclass"); 2314 #define HANDLE_MDNODE_LEAF(CLASS) \ 2315 case Metadata::CLASS##Kind: \ 2316 if (MDAbbrevs) \ 2317 write##CLASS(cast<CLASS>(N), Record, \ 2318 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2319 else \ 2320 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2321 continue; 2322 #include "llvm/IR/Metadata.def" 2323 } 2324 } 2325 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2326 writeDIArgList(AL, Record); 2327 continue; 2328 } 2329 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2330 } 2331 } 2332 2333 void ModuleBitcodeWriter::writeModuleMetadata() { 2334 if (!VE.hasMDs() && M.named_metadata_empty()) 2335 return; 2336 2337 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2338 SmallVector<uint64_t, 64> Record; 2339 2340 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2341 // block and load any metadata. 2342 std::vector<unsigned> MDAbbrevs; 2343 2344 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2345 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2346 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2347 createGenericDINodeAbbrev(); 2348 2349 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2350 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2353 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2354 2355 Abbv = std::make_shared<BitCodeAbbrev>(); 2356 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2359 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2360 2361 // Emit MDStrings together upfront. 2362 writeMetadataStrings(VE.getMDStrings(), Record); 2363 2364 // We only emit an index for the metadata record if we have more than a given 2365 // (naive) threshold of metadatas, otherwise it is not worth it. 2366 if (VE.getNonMDStrings().size() > IndexThreshold) { 2367 // Write a placeholder value in for the offset of the metadata index, 2368 // which is written after the records, so that it can include 2369 // the offset of each entry. The placeholder offset will be 2370 // updated after all records are emitted. 2371 uint64_t Vals[] = {0, 0}; 2372 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2373 } 2374 2375 // Compute and save the bit offset to the current position, which will be 2376 // patched when we emit the index later. We can simply subtract the 64-bit 2377 // fixed size from the current bit number to get the location to backpatch. 2378 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2379 2380 // This index will contain the bitpos for each individual record. 2381 std::vector<uint64_t> IndexPos; 2382 IndexPos.reserve(VE.getNonMDStrings().size()); 2383 2384 // Write all the records 2385 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2386 2387 if (VE.getNonMDStrings().size() > IndexThreshold) { 2388 // Now that we have emitted all the records we will emit the index. But 2389 // first 2390 // backpatch the forward reference so that the reader can skip the records 2391 // efficiently. 2392 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2393 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2394 2395 // Delta encode the index. 2396 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2397 for (auto &Elt : IndexPos) { 2398 auto EltDelta = Elt - PreviousValue; 2399 PreviousValue = Elt; 2400 Elt = EltDelta; 2401 } 2402 // Emit the index record. 2403 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2404 IndexPos.clear(); 2405 } 2406 2407 // Write the named metadata now. 2408 writeNamedMetadata(Record); 2409 2410 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2411 SmallVector<uint64_t, 4> Record; 2412 Record.push_back(VE.getValueID(&GO)); 2413 pushGlobalMetadataAttachment(Record, GO); 2414 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2415 }; 2416 for (const Function &F : M) 2417 if (F.isDeclaration() && F.hasMetadata()) 2418 AddDeclAttachedMetadata(F); 2419 // FIXME: Only store metadata for declarations here, and move data for global 2420 // variable definitions to a separate block (PR28134). 2421 for (const GlobalVariable &GV : M.globals()) 2422 if (GV.hasMetadata()) 2423 AddDeclAttachedMetadata(GV); 2424 2425 Stream.ExitBlock(); 2426 } 2427 2428 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2429 if (!VE.hasMDs()) 2430 return; 2431 2432 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2433 SmallVector<uint64_t, 64> Record; 2434 writeMetadataStrings(VE.getMDStrings(), Record); 2435 writeMetadataRecords(VE.getNonMDStrings(), Record); 2436 Stream.ExitBlock(); 2437 } 2438 2439 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2440 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2441 // [n x [id, mdnode]] 2442 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2443 GO.getAllMetadata(MDs); 2444 for (const auto &I : MDs) { 2445 Record.push_back(I.first); 2446 Record.push_back(VE.getMetadataID(I.second)); 2447 } 2448 } 2449 2450 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2451 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2452 2453 SmallVector<uint64_t, 64> Record; 2454 2455 if (F.hasMetadata()) { 2456 pushGlobalMetadataAttachment(Record, F); 2457 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2458 Record.clear(); 2459 } 2460 2461 // Write metadata attachments 2462 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2463 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2464 for (const BasicBlock &BB : F) 2465 for (const Instruction &I : BB) { 2466 MDs.clear(); 2467 I.getAllMetadataOtherThanDebugLoc(MDs); 2468 2469 // If no metadata, ignore instruction. 2470 if (MDs.empty()) continue; 2471 2472 Record.push_back(VE.getInstructionID(&I)); 2473 2474 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2475 Record.push_back(MDs[i].first); 2476 Record.push_back(VE.getMetadataID(MDs[i].second)); 2477 } 2478 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2479 Record.clear(); 2480 } 2481 2482 Stream.ExitBlock(); 2483 } 2484 2485 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2486 SmallVector<uint64_t, 64> Record; 2487 2488 // Write metadata kinds 2489 // METADATA_KIND - [n x [id, name]] 2490 SmallVector<StringRef, 8> Names; 2491 M.getMDKindNames(Names); 2492 2493 if (Names.empty()) return; 2494 2495 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2496 2497 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2498 Record.push_back(MDKindID); 2499 StringRef KName = Names[MDKindID]; 2500 Record.append(KName.begin(), KName.end()); 2501 2502 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2503 Record.clear(); 2504 } 2505 2506 Stream.ExitBlock(); 2507 } 2508 2509 void ModuleBitcodeWriter::writeOperandBundleTags() { 2510 // Write metadata kinds 2511 // 2512 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2513 // 2514 // OPERAND_BUNDLE_TAG - [strchr x N] 2515 2516 SmallVector<StringRef, 8> Tags; 2517 M.getOperandBundleTags(Tags); 2518 2519 if (Tags.empty()) 2520 return; 2521 2522 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2523 2524 SmallVector<uint64_t, 64> Record; 2525 2526 for (auto Tag : Tags) { 2527 Record.append(Tag.begin(), Tag.end()); 2528 2529 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2530 Record.clear(); 2531 } 2532 2533 Stream.ExitBlock(); 2534 } 2535 2536 void ModuleBitcodeWriter::writeSyncScopeNames() { 2537 SmallVector<StringRef, 8> SSNs; 2538 M.getContext().getSyncScopeNames(SSNs); 2539 if (SSNs.empty()) 2540 return; 2541 2542 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2543 2544 SmallVector<uint64_t, 64> Record; 2545 for (auto SSN : SSNs) { 2546 Record.append(SSN.begin(), SSN.end()); 2547 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2548 Record.clear(); 2549 } 2550 2551 Stream.ExitBlock(); 2552 } 2553 2554 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2555 bool isGlobal) { 2556 if (FirstVal == LastVal) return; 2557 2558 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2559 2560 unsigned AggregateAbbrev = 0; 2561 unsigned String8Abbrev = 0; 2562 unsigned CString7Abbrev = 0; 2563 unsigned CString6Abbrev = 0; 2564 // If this is a constant pool for the module, emit module-specific abbrevs. 2565 if (isGlobal) { 2566 // Abbrev for CST_CODE_AGGREGATE. 2567 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2568 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2571 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2572 2573 // Abbrev for CST_CODE_STRING. 2574 Abbv = std::make_shared<BitCodeAbbrev>(); 2575 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2578 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2579 // Abbrev for CST_CODE_CSTRING. 2580 Abbv = std::make_shared<BitCodeAbbrev>(); 2581 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2584 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2585 // Abbrev for CST_CODE_CSTRING. 2586 Abbv = std::make_shared<BitCodeAbbrev>(); 2587 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2590 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2591 } 2592 2593 SmallVector<uint64_t, 64> Record; 2594 2595 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2596 Type *LastTy = nullptr; 2597 for (unsigned i = FirstVal; i != LastVal; ++i) { 2598 const Value *V = Vals[i].first; 2599 // If we need to switch types, do so now. 2600 if (V->getType() != LastTy) { 2601 LastTy = V->getType(); 2602 Record.push_back(VE.getTypeID(LastTy)); 2603 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2604 CONSTANTS_SETTYPE_ABBREV); 2605 Record.clear(); 2606 } 2607 2608 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2609 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2610 Record.push_back( 2611 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2612 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2613 2614 // Add the asm string. 2615 const std::string &AsmStr = IA->getAsmString(); 2616 Record.push_back(AsmStr.size()); 2617 Record.append(AsmStr.begin(), AsmStr.end()); 2618 2619 // Add the constraint string. 2620 const std::string &ConstraintStr = IA->getConstraintString(); 2621 Record.push_back(ConstraintStr.size()); 2622 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2623 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2624 Record.clear(); 2625 continue; 2626 } 2627 const Constant *C = cast<Constant>(V); 2628 unsigned Code = -1U; 2629 unsigned AbbrevToUse = 0; 2630 if (C->isNullValue()) { 2631 Code = bitc::CST_CODE_NULL; 2632 } else if (isa<PoisonValue>(C)) { 2633 Code = bitc::CST_CODE_POISON; 2634 } else if (isa<UndefValue>(C)) { 2635 Code = bitc::CST_CODE_UNDEF; 2636 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2637 if (IV->getBitWidth() <= 64) { 2638 uint64_t V = IV->getSExtValue(); 2639 emitSignedInt64(Record, V); 2640 Code = bitc::CST_CODE_INTEGER; 2641 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2642 } else { // Wide integers, > 64 bits in size. 2643 emitWideAPInt(Record, IV->getValue()); 2644 Code = bitc::CST_CODE_WIDE_INTEGER; 2645 } 2646 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2647 Code = bitc::CST_CODE_FLOAT; 2648 Type *Ty = CFP->getType()->getScalarType(); 2649 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2650 Ty->isDoubleTy()) { 2651 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2652 } else if (Ty->isX86_FP80Ty()) { 2653 // api needed to prevent premature destruction 2654 // bits are not in the same order as a normal i80 APInt, compensate. 2655 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2656 const uint64_t *p = api.getRawData(); 2657 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2658 Record.push_back(p[0] & 0xffffLL); 2659 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2660 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2661 const uint64_t *p = api.getRawData(); 2662 Record.push_back(p[0]); 2663 Record.push_back(p[1]); 2664 } else { 2665 assert(0 && "Unknown FP type!"); 2666 } 2667 } else if (isa<ConstantDataSequential>(C) && 2668 cast<ConstantDataSequential>(C)->isString()) { 2669 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2670 // Emit constant strings specially. 2671 unsigned NumElts = Str->getNumElements(); 2672 // If this is a null-terminated string, use the denser CSTRING encoding. 2673 if (Str->isCString()) { 2674 Code = bitc::CST_CODE_CSTRING; 2675 --NumElts; // Don't encode the null, which isn't allowed by char6. 2676 } else { 2677 Code = bitc::CST_CODE_STRING; 2678 AbbrevToUse = String8Abbrev; 2679 } 2680 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2681 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2682 for (unsigned i = 0; i != NumElts; ++i) { 2683 unsigned char V = Str->getElementAsInteger(i); 2684 Record.push_back(V); 2685 isCStr7 &= (V & 128) == 0; 2686 if (isCStrChar6) 2687 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2688 } 2689 2690 if (isCStrChar6) 2691 AbbrevToUse = CString6Abbrev; 2692 else if (isCStr7) 2693 AbbrevToUse = CString7Abbrev; 2694 } else if (const ConstantDataSequential *CDS = 2695 dyn_cast<ConstantDataSequential>(C)) { 2696 Code = bitc::CST_CODE_DATA; 2697 Type *EltTy = CDS->getElementType(); 2698 if (isa<IntegerType>(EltTy)) { 2699 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2700 Record.push_back(CDS->getElementAsInteger(i)); 2701 } else { 2702 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2703 Record.push_back( 2704 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2705 } 2706 } else if (isa<ConstantAggregate>(C)) { 2707 Code = bitc::CST_CODE_AGGREGATE; 2708 for (const Value *Op : C->operands()) 2709 Record.push_back(VE.getValueID(Op)); 2710 AbbrevToUse = AggregateAbbrev; 2711 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2712 switch (CE->getOpcode()) { 2713 default: 2714 if (Instruction::isCast(CE->getOpcode())) { 2715 Code = bitc::CST_CODE_CE_CAST; 2716 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2717 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2718 Record.push_back(VE.getValueID(C->getOperand(0))); 2719 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2720 } else { 2721 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2722 Code = bitc::CST_CODE_CE_BINOP; 2723 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2724 Record.push_back(VE.getValueID(C->getOperand(0))); 2725 Record.push_back(VE.getValueID(C->getOperand(1))); 2726 uint64_t Flags = getOptimizationFlags(CE); 2727 if (Flags != 0) 2728 Record.push_back(Flags); 2729 } 2730 break; 2731 case Instruction::FNeg: { 2732 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2733 Code = bitc::CST_CODE_CE_UNOP; 2734 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2735 Record.push_back(VE.getValueID(C->getOperand(0))); 2736 uint64_t Flags = getOptimizationFlags(CE); 2737 if (Flags != 0) 2738 Record.push_back(Flags); 2739 break; 2740 } 2741 case Instruction::GetElementPtr: { 2742 Code = bitc::CST_CODE_CE_GEP; 2743 const auto *GO = cast<GEPOperator>(C); 2744 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2745 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2746 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2747 Record.push_back((*Idx << 1) | GO->isInBounds()); 2748 } else if (GO->isInBounds()) 2749 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2750 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2751 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2752 Record.push_back(VE.getValueID(C->getOperand(i))); 2753 } 2754 break; 2755 } 2756 case Instruction::ExtractElement: 2757 Code = bitc::CST_CODE_CE_EXTRACTELT; 2758 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2759 Record.push_back(VE.getValueID(C->getOperand(0))); 2760 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2761 Record.push_back(VE.getValueID(C->getOperand(1))); 2762 break; 2763 case Instruction::InsertElement: 2764 Code = bitc::CST_CODE_CE_INSERTELT; 2765 Record.push_back(VE.getValueID(C->getOperand(0))); 2766 Record.push_back(VE.getValueID(C->getOperand(1))); 2767 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2768 Record.push_back(VE.getValueID(C->getOperand(2))); 2769 break; 2770 case Instruction::ShuffleVector: 2771 // If the return type and argument types are the same, this is a 2772 // standard shufflevector instruction. If the types are different, 2773 // then the shuffle is widening or truncating the input vectors, and 2774 // the argument type must also be encoded. 2775 if (C->getType() == C->getOperand(0)->getType()) { 2776 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2777 } else { 2778 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2779 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2780 } 2781 Record.push_back(VE.getValueID(C->getOperand(0))); 2782 Record.push_back(VE.getValueID(C->getOperand(1))); 2783 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2784 break; 2785 case Instruction::ICmp: 2786 case Instruction::FCmp: 2787 Code = bitc::CST_CODE_CE_CMP; 2788 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2789 Record.push_back(VE.getValueID(C->getOperand(0))); 2790 Record.push_back(VE.getValueID(C->getOperand(1))); 2791 Record.push_back(CE->getPredicate()); 2792 break; 2793 } 2794 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2795 Code = bitc::CST_CODE_BLOCKADDRESS; 2796 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2797 Record.push_back(VE.getValueID(BA->getFunction())); 2798 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2799 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2800 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2801 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2802 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2803 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2804 Code = bitc::CST_CODE_NO_CFI_VALUE; 2805 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2806 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2807 } else { 2808 #ifndef NDEBUG 2809 C->dump(); 2810 #endif 2811 llvm_unreachable("Unknown constant!"); 2812 } 2813 Stream.EmitRecord(Code, Record, AbbrevToUse); 2814 Record.clear(); 2815 } 2816 2817 Stream.ExitBlock(); 2818 } 2819 2820 void ModuleBitcodeWriter::writeModuleConstants() { 2821 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2822 2823 // Find the first constant to emit, which is the first non-globalvalue value. 2824 // We know globalvalues have been emitted by WriteModuleInfo. 2825 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2826 if (!isa<GlobalValue>(Vals[i].first)) { 2827 writeConstants(i, Vals.size(), true); 2828 return; 2829 } 2830 } 2831 } 2832 2833 /// pushValueAndType - The file has to encode both the value and type id for 2834 /// many values, because we need to know what type to create for forward 2835 /// references. However, most operands are not forward references, so this type 2836 /// field is not needed. 2837 /// 2838 /// This function adds V's value ID to Vals. If the value ID is higher than the 2839 /// instruction ID, then it is a forward reference, and it also includes the 2840 /// type ID. The value ID that is written is encoded relative to the InstID. 2841 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2842 SmallVectorImpl<unsigned> &Vals) { 2843 unsigned ValID = VE.getValueID(V); 2844 // Make encoding relative to the InstID. 2845 Vals.push_back(InstID - ValID); 2846 if (ValID >= InstID) { 2847 Vals.push_back(VE.getTypeID(V->getType())); 2848 return true; 2849 } 2850 return false; 2851 } 2852 2853 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2854 unsigned InstID) { 2855 SmallVector<unsigned, 64> Record; 2856 LLVMContext &C = CS.getContext(); 2857 2858 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2859 const auto &Bundle = CS.getOperandBundleAt(i); 2860 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2861 2862 for (auto &Input : Bundle.Inputs) 2863 pushValueAndType(Input, InstID, Record); 2864 2865 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2866 Record.clear(); 2867 } 2868 } 2869 2870 /// pushValue - Like pushValueAndType, but where the type of the value is 2871 /// omitted (perhaps it was already encoded in an earlier operand). 2872 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2873 SmallVectorImpl<unsigned> &Vals) { 2874 unsigned ValID = VE.getValueID(V); 2875 Vals.push_back(InstID - ValID); 2876 } 2877 2878 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2879 SmallVectorImpl<uint64_t> &Vals) { 2880 unsigned ValID = VE.getValueID(V); 2881 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2882 emitSignedInt64(Vals, diff); 2883 } 2884 2885 /// WriteInstruction - Emit an instruction to the specified stream. 2886 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2887 unsigned InstID, 2888 SmallVectorImpl<unsigned> &Vals) { 2889 unsigned Code = 0; 2890 unsigned AbbrevToUse = 0; 2891 VE.setInstructionID(&I); 2892 switch (I.getOpcode()) { 2893 default: 2894 if (Instruction::isCast(I.getOpcode())) { 2895 Code = bitc::FUNC_CODE_INST_CAST; 2896 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2897 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2898 Vals.push_back(VE.getTypeID(I.getType())); 2899 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2900 uint64_t Flags = getOptimizationFlags(&I); 2901 if (Flags != 0) { 2902 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2903 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2904 Vals.push_back(Flags); 2905 } 2906 } else { 2907 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2908 Code = bitc::FUNC_CODE_INST_BINOP; 2909 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2910 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2911 pushValue(I.getOperand(1), InstID, Vals); 2912 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2913 uint64_t Flags = getOptimizationFlags(&I); 2914 if (Flags != 0) { 2915 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2916 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2917 Vals.push_back(Flags); 2918 } 2919 } 2920 break; 2921 case Instruction::FNeg: { 2922 Code = bitc::FUNC_CODE_INST_UNOP; 2923 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2924 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2925 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2926 uint64_t Flags = getOptimizationFlags(&I); 2927 if (Flags != 0) { 2928 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2929 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2930 Vals.push_back(Flags); 2931 } 2932 break; 2933 } 2934 case Instruction::GetElementPtr: { 2935 Code = bitc::FUNC_CODE_INST_GEP; 2936 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2937 auto &GEPInst = cast<GetElementPtrInst>(I); 2938 Vals.push_back(GEPInst.isInBounds()); 2939 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2940 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2941 pushValueAndType(I.getOperand(i), InstID, Vals); 2942 break; 2943 } 2944 case Instruction::ExtractValue: { 2945 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2946 pushValueAndType(I.getOperand(0), InstID, Vals); 2947 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2948 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2949 break; 2950 } 2951 case Instruction::InsertValue: { 2952 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2953 pushValueAndType(I.getOperand(0), InstID, Vals); 2954 pushValueAndType(I.getOperand(1), InstID, Vals); 2955 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2956 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2957 break; 2958 } 2959 case Instruction::Select: { 2960 Code = bitc::FUNC_CODE_INST_VSELECT; 2961 pushValueAndType(I.getOperand(1), InstID, Vals); 2962 pushValue(I.getOperand(2), InstID, Vals); 2963 pushValueAndType(I.getOperand(0), InstID, Vals); 2964 uint64_t Flags = getOptimizationFlags(&I); 2965 if (Flags != 0) 2966 Vals.push_back(Flags); 2967 break; 2968 } 2969 case Instruction::ExtractElement: 2970 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2971 pushValueAndType(I.getOperand(0), InstID, Vals); 2972 pushValueAndType(I.getOperand(1), InstID, Vals); 2973 break; 2974 case Instruction::InsertElement: 2975 Code = bitc::FUNC_CODE_INST_INSERTELT; 2976 pushValueAndType(I.getOperand(0), InstID, Vals); 2977 pushValue(I.getOperand(1), InstID, Vals); 2978 pushValueAndType(I.getOperand(2), InstID, Vals); 2979 break; 2980 case Instruction::ShuffleVector: 2981 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2982 pushValueAndType(I.getOperand(0), InstID, Vals); 2983 pushValue(I.getOperand(1), InstID, Vals); 2984 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2985 Vals); 2986 break; 2987 case Instruction::ICmp: 2988 case Instruction::FCmp: { 2989 // compare returning Int1Ty or vector of Int1Ty 2990 Code = bitc::FUNC_CODE_INST_CMP2; 2991 pushValueAndType(I.getOperand(0), InstID, Vals); 2992 pushValue(I.getOperand(1), InstID, Vals); 2993 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2994 uint64_t Flags = getOptimizationFlags(&I); 2995 if (Flags != 0) 2996 Vals.push_back(Flags); 2997 break; 2998 } 2999 3000 case Instruction::Ret: 3001 { 3002 Code = bitc::FUNC_CODE_INST_RET; 3003 unsigned NumOperands = I.getNumOperands(); 3004 if (NumOperands == 0) 3005 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3006 else if (NumOperands == 1) { 3007 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3008 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3009 } else { 3010 for (unsigned i = 0, e = NumOperands; i != e; ++i) 3011 pushValueAndType(I.getOperand(i), InstID, Vals); 3012 } 3013 } 3014 break; 3015 case Instruction::Br: 3016 { 3017 Code = bitc::FUNC_CODE_INST_BR; 3018 const BranchInst &II = cast<BranchInst>(I); 3019 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3020 if (II.isConditional()) { 3021 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3022 pushValue(II.getCondition(), InstID, Vals); 3023 } 3024 } 3025 break; 3026 case Instruction::Switch: 3027 { 3028 Code = bitc::FUNC_CODE_INST_SWITCH; 3029 const SwitchInst &SI = cast<SwitchInst>(I); 3030 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3031 pushValue(SI.getCondition(), InstID, Vals); 3032 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3033 for (auto Case : SI.cases()) { 3034 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3035 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3036 } 3037 } 3038 break; 3039 case Instruction::IndirectBr: 3040 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3041 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3042 // Encode the address operand as relative, but not the basic blocks. 3043 pushValue(I.getOperand(0), InstID, Vals); 3044 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 3045 Vals.push_back(VE.getValueID(I.getOperand(i))); 3046 break; 3047 3048 case Instruction::Invoke: { 3049 const InvokeInst *II = cast<InvokeInst>(&I); 3050 const Value *Callee = II->getCalledOperand(); 3051 FunctionType *FTy = II->getFunctionType(); 3052 3053 if (II->hasOperandBundles()) 3054 writeOperandBundles(*II, InstID); 3055 3056 Code = bitc::FUNC_CODE_INST_INVOKE; 3057 3058 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3059 Vals.push_back(II->getCallingConv() | 1 << 13); 3060 Vals.push_back(VE.getValueID(II->getNormalDest())); 3061 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3062 Vals.push_back(VE.getTypeID(FTy)); 3063 pushValueAndType(Callee, InstID, Vals); 3064 3065 // Emit value #'s for the fixed parameters. 3066 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3067 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3068 3069 // Emit type/value pairs for varargs params. 3070 if (FTy->isVarArg()) { 3071 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3072 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3073 } 3074 break; 3075 } 3076 case Instruction::Resume: 3077 Code = bitc::FUNC_CODE_INST_RESUME; 3078 pushValueAndType(I.getOperand(0), InstID, Vals); 3079 break; 3080 case Instruction::CleanupRet: { 3081 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3082 const auto &CRI = cast<CleanupReturnInst>(I); 3083 pushValue(CRI.getCleanupPad(), InstID, Vals); 3084 if (CRI.hasUnwindDest()) 3085 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3086 break; 3087 } 3088 case Instruction::CatchRet: { 3089 Code = bitc::FUNC_CODE_INST_CATCHRET; 3090 const auto &CRI = cast<CatchReturnInst>(I); 3091 pushValue(CRI.getCatchPad(), InstID, Vals); 3092 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3093 break; 3094 } 3095 case Instruction::CleanupPad: 3096 case Instruction::CatchPad: { 3097 const auto &FuncletPad = cast<FuncletPadInst>(I); 3098 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3099 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3100 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3101 3102 unsigned NumArgOperands = FuncletPad.arg_size(); 3103 Vals.push_back(NumArgOperands); 3104 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3105 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3106 break; 3107 } 3108 case Instruction::CatchSwitch: { 3109 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3110 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3111 3112 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3113 3114 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3115 Vals.push_back(NumHandlers); 3116 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3117 Vals.push_back(VE.getValueID(CatchPadBB)); 3118 3119 if (CatchSwitch.hasUnwindDest()) 3120 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3121 break; 3122 } 3123 case Instruction::CallBr: { 3124 const CallBrInst *CBI = cast<CallBrInst>(&I); 3125 const Value *Callee = CBI->getCalledOperand(); 3126 FunctionType *FTy = CBI->getFunctionType(); 3127 3128 if (CBI->hasOperandBundles()) 3129 writeOperandBundles(*CBI, InstID); 3130 3131 Code = bitc::FUNC_CODE_INST_CALLBR; 3132 3133 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3134 3135 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3136 1 << bitc::CALL_EXPLICIT_TYPE); 3137 3138 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3139 Vals.push_back(CBI->getNumIndirectDests()); 3140 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3141 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3142 3143 Vals.push_back(VE.getTypeID(FTy)); 3144 pushValueAndType(Callee, InstID, Vals); 3145 3146 // Emit value #'s for the fixed parameters. 3147 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3148 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3149 3150 // Emit type/value pairs for varargs params. 3151 if (FTy->isVarArg()) { 3152 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3153 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3154 } 3155 break; 3156 } 3157 case Instruction::Unreachable: 3158 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3159 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3160 break; 3161 3162 case Instruction::PHI: { 3163 const PHINode &PN = cast<PHINode>(I); 3164 Code = bitc::FUNC_CODE_INST_PHI; 3165 // With the newer instruction encoding, forward references could give 3166 // negative valued IDs. This is most common for PHIs, so we use 3167 // signed VBRs. 3168 SmallVector<uint64_t, 128> Vals64; 3169 Vals64.push_back(VE.getTypeID(PN.getType())); 3170 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3171 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3172 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3173 } 3174 3175 uint64_t Flags = getOptimizationFlags(&I); 3176 if (Flags != 0) 3177 Vals64.push_back(Flags); 3178 3179 // Emit a Vals64 vector and exit. 3180 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3181 Vals64.clear(); 3182 return; 3183 } 3184 3185 case Instruction::LandingPad: { 3186 const LandingPadInst &LP = cast<LandingPadInst>(I); 3187 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3188 Vals.push_back(VE.getTypeID(LP.getType())); 3189 Vals.push_back(LP.isCleanup()); 3190 Vals.push_back(LP.getNumClauses()); 3191 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3192 if (LP.isCatch(I)) 3193 Vals.push_back(LandingPadInst::Catch); 3194 else 3195 Vals.push_back(LandingPadInst::Filter); 3196 pushValueAndType(LP.getClause(I), InstID, Vals); 3197 } 3198 break; 3199 } 3200 3201 case Instruction::Alloca: { 3202 Code = bitc::FUNC_CODE_INST_ALLOCA; 3203 const AllocaInst &AI = cast<AllocaInst>(I); 3204 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3205 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3206 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3207 using APV = AllocaPackedValues; 3208 unsigned Record = 0; 3209 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3210 Bitfield::set<APV::AlignLower>( 3211 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3212 Bitfield::set<APV::AlignUpper>(Record, 3213 EncodedAlign >> APV::AlignLower::Bits); 3214 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3215 Bitfield::set<APV::ExplicitType>(Record, true); 3216 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3217 Vals.push_back(Record); 3218 3219 unsigned AS = AI.getAddressSpace(); 3220 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3221 Vals.push_back(AS); 3222 break; 3223 } 3224 3225 case Instruction::Load: 3226 if (cast<LoadInst>(I).isAtomic()) { 3227 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3228 pushValueAndType(I.getOperand(0), InstID, Vals); 3229 } else { 3230 Code = bitc::FUNC_CODE_INST_LOAD; 3231 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3232 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3233 } 3234 Vals.push_back(VE.getTypeID(I.getType())); 3235 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3236 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3237 if (cast<LoadInst>(I).isAtomic()) { 3238 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3239 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3240 } 3241 break; 3242 case Instruction::Store: 3243 if (cast<StoreInst>(I).isAtomic()) 3244 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3245 else 3246 Code = bitc::FUNC_CODE_INST_STORE; 3247 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3248 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3249 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3250 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3251 if (cast<StoreInst>(I).isAtomic()) { 3252 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3253 Vals.push_back( 3254 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3255 } 3256 break; 3257 case Instruction::AtomicCmpXchg: 3258 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3259 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3260 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3261 pushValue(I.getOperand(2), InstID, Vals); // newval. 3262 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3263 Vals.push_back( 3264 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3265 Vals.push_back( 3266 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3267 Vals.push_back( 3268 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3269 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3270 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3271 break; 3272 case Instruction::AtomicRMW: 3273 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3274 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3275 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3276 Vals.push_back( 3277 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3278 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3279 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3280 Vals.push_back( 3281 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3282 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3283 break; 3284 case Instruction::Fence: 3285 Code = bitc::FUNC_CODE_INST_FENCE; 3286 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3287 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3288 break; 3289 case Instruction::Call: { 3290 const CallInst &CI = cast<CallInst>(I); 3291 FunctionType *FTy = CI.getFunctionType(); 3292 3293 if (CI.hasOperandBundles()) 3294 writeOperandBundles(CI, InstID); 3295 3296 Code = bitc::FUNC_CODE_INST_CALL; 3297 3298 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3299 3300 unsigned Flags = getOptimizationFlags(&I); 3301 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3302 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3303 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3304 1 << bitc::CALL_EXPLICIT_TYPE | 3305 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3306 unsigned(Flags != 0) << bitc::CALL_FMF); 3307 if (Flags != 0) 3308 Vals.push_back(Flags); 3309 3310 Vals.push_back(VE.getTypeID(FTy)); 3311 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3312 3313 // Emit value #'s for the fixed parameters. 3314 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3315 // Check for labels (can happen with asm labels). 3316 if (FTy->getParamType(i)->isLabelTy()) 3317 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3318 else 3319 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3320 } 3321 3322 // Emit type/value pairs for varargs params. 3323 if (FTy->isVarArg()) { 3324 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3325 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3326 } 3327 break; 3328 } 3329 case Instruction::VAArg: 3330 Code = bitc::FUNC_CODE_INST_VAARG; 3331 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3332 pushValue(I.getOperand(0), InstID, Vals); // valist. 3333 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3334 break; 3335 case Instruction::Freeze: 3336 Code = bitc::FUNC_CODE_INST_FREEZE; 3337 pushValueAndType(I.getOperand(0), InstID, Vals); 3338 break; 3339 } 3340 3341 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3342 Vals.clear(); 3343 } 3344 3345 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3346 /// to allow clients to efficiently find the function body. 3347 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3348 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3349 // Get the offset of the VST we are writing, and backpatch it into 3350 // the VST forward declaration record. 3351 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3352 // The BitcodeStartBit was the stream offset of the identification block. 3353 VSTOffset -= bitcodeStartBit(); 3354 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3355 // Note that we add 1 here because the offset is relative to one word 3356 // before the start of the identification block, which was historically 3357 // always the start of the regular bitcode header. 3358 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3359 3360 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3361 3362 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3363 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3366 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3367 3368 for (const Function &F : M) { 3369 uint64_t Record[2]; 3370 3371 if (F.isDeclaration()) 3372 continue; 3373 3374 Record[0] = VE.getValueID(&F); 3375 3376 // Save the word offset of the function (from the start of the 3377 // actual bitcode written to the stream). 3378 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3379 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3380 // Note that we add 1 here because the offset is relative to one word 3381 // before the start of the identification block, which was historically 3382 // always the start of the regular bitcode header. 3383 Record[1] = BitcodeIndex / 32 + 1; 3384 3385 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3386 } 3387 3388 Stream.ExitBlock(); 3389 } 3390 3391 /// Emit names for arguments, instructions and basic blocks in a function. 3392 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3393 const ValueSymbolTable &VST) { 3394 if (VST.empty()) 3395 return; 3396 3397 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3398 3399 // FIXME: Set up the abbrev, we know how many values there are! 3400 // FIXME: We know if the type names can use 7-bit ascii. 3401 SmallVector<uint64_t, 64> NameVals; 3402 3403 for (const ValueName &Name : VST) { 3404 // Figure out the encoding to use for the name. 3405 StringEncoding Bits = getStringEncoding(Name.getKey()); 3406 3407 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3408 NameVals.push_back(VE.getValueID(Name.getValue())); 3409 3410 // VST_CODE_ENTRY: [valueid, namechar x N] 3411 // VST_CODE_BBENTRY: [bbid, namechar x N] 3412 unsigned Code; 3413 if (isa<BasicBlock>(Name.getValue())) { 3414 Code = bitc::VST_CODE_BBENTRY; 3415 if (Bits == SE_Char6) 3416 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3417 } else { 3418 Code = bitc::VST_CODE_ENTRY; 3419 if (Bits == SE_Char6) 3420 AbbrevToUse = VST_ENTRY_6_ABBREV; 3421 else if (Bits == SE_Fixed7) 3422 AbbrevToUse = VST_ENTRY_7_ABBREV; 3423 } 3424 3425 for (const auto P : Name.getKey()) 3426 NameVals.push_back((unsigned char)P); 3427 3428 // Emit the finished record. 3429 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3430 NameVals.clear(); 3431 } 3432 3433 Stream.ExitBlock(); 3434 } 3435 3436 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3437 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3438 unsigned Code; 3439 if (isa<BasicBlock>(Order.V)) 3440 Code = bitc::USELIST_CODE_BB; 3441 else 3442 Code = bitc::USELIST_CODE_DEFAULT; 3443 3444 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3445 Record.push_back(VE.getValueID(Order.V)); 3446 Stream.EmitRecord(Code, Record); 3447 } 3448 3449 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3450 assert(VE.shouldPreserveUseListOrder() && 3451 "Expected to be preserving use-list order"); 3452 3453 auto hasMore = [&]() { 3454 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3455 }; 3456 if (!hasMore()) 3457 // Nothing to do. 3458 return; 3459 3460 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3461 while (hasMore()) { 3462 writeUseList(std::move(VE.UseListOrders.back())); 3463 VE.UseListOrders.pop_back(); 3464 } 3465 Stream.ExitBlock(); 3466 } 3467 3468 /// Emit a function body to the module stream. 3469 void ModuleBitcodeWriter::writeFunction( 3470 const Function &F, 3471 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3472 // Save the bitcode index of the start of this function block for recording 3473 // in the VST. 3474 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3475 3476 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3477 VE.incorporateFunction(F); 3478 3479 SmallVector<unsigned, 64> Vals; 3480 3481 // Emit the number of basic blocks, so the reader can create them ahead of 3482 // time. 3483 Vals.push_back(VE.getBasicBlocks().size()); 3484 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3485 Vals.clear(); 3486 3487 // If there are function-local constants, emit them now. 3488 unsigned CstStart, CstEnd; 3489 VE.getFunctionConstantRange(CstStart, CstEnd); 3490 writeConstants(CstStart, CstEnd, false); 3491 3492 // If there is function-local metadata, emit it now. 3493 writeFunctionMetadata(F); 3494 3495 // Keep a running idea of what the instruction ID is. 3496 unsigned InstID = CstEnd; 3497 3498 bool NeedsMetadataAttachment = F.hasMetadata(); 3499 3500 DILocation *LastDL = nullptr; 3501 SmallSetVector<Function *, 4> BlockAddressUsers; 3502 3503 // Finally, emit all the instructions, in order. 3504 for (const BasicBlock &BB : F) { 3505 for (const Instruction &I : BB) { 3506 writeInstruction(I, InstID, Vals); 3507 3508 if (!I.getType()->isVoidTy()) 3509 ++InstID; 3510 3511 // If the instruction has metadata, write a metadata attachment later. 3512 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3513 3514 // If the instruction has a debug location, emit it. 3515 DILocation *DL = I.getDebugLoc(); 3516 if (!DL) 3517 continue; 3518 3519 if (DL == LastDL) { 3520 // Just repeat the same debug loc as last time. 3521 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3522 continue; 3523 } 3524 3525 Vals.push_back(DL->getLine()); 3526 Vals.push_back(DL->getColumn()); 3527 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3528 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3529 Vals.push_back(DL->isImplicitCode()); 3530 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3531 Vals.clear(); 3532 3533 LastDL = DL; 3534 } 3535 3536 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3537 SmallVector<Value *> Worklist{BA}; 3538 SmallPtrSet<Value *, 8> Visited{BA}; 3539 while (!Worklist.empty()) { 3540 Value *V = Worklist.pop_back_val(); 3541 for (User *U : V->users()) { 3542 if (auto *I = dyn_cast<Instruction>(U)) { 3543 Function *P = I->getFunction(); 3544 if (P != &F) 3545 BlockAddressUsers.insert(P); 3546 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3547 Visited.insert(U).second) 3548 Worklist.push_back(U); 3549 } 3550 } 3551 } 3552 } 3553 3554 if (!BlockAddressUsers.empty()) { 3555 Vals.resize(BlockAddressUsers.size()); 3556 for (auto I : llvm::enumerate(BlockAddressUsers)) 3557 Vals[I.index()] = VE.getValueID(I.value()); 3558 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3559 Vals.clear(); 3560 } 3561 3562 // Emit names for all the instructions etc. 3563 if (auto *Symtab = F.getValueSymbolTable()) 3564 writeFunctionLevelValueSymbolTable(*Symtab); 3565 3566 if (NeedsMetadataAttachment) 3567 writeFunctionMetadataAttachment(F); 3568 if (VE.shouldPreserveUseListOrder()) 3569 writeUseListBlock(&F); 3570 VE.purgeFunction(); 3571 Stream.ExitBlock(); 3572 } 3573 3574 // Emit blockinfo, which defines the standard abbreviations etc. 3575 void ModuleBitcodeWriter::writeBlockInfo() { 3576 // We only want to emit block info records for blocks that have multiple 3577 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3578 // Other blocks can define their abbrevs inline. 3579 Stream.EnterBlockInfoBlock(); 3580 3581 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3582 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3587 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3588 VST_ENTRY_8_ABBREV) 3589 llvm_unreachable("Unexpected abbrev ordering!"); 3590 } 3591 3592 { // 7-bit fixed width VST_CODE_ENTRY strings. 3593 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3594 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3598 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3599 VST_ENTRY_7_ABBREV) 3600 llvm_unreachable("Unexpected abbrev ordering!"); 3601 } 3602 { // 6-bit char6 VST_CODE_ENTRY strings. 3603 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3604 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3608 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3609 VST_ENTRY_6_ABBREV) 3610 llvm_unreachable("Unexpected abbrev ordering!"); 3611 } 3612 { // 6-bit char6 VST_CODE_BBENTRY strings. 3613 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3614 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3618 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3619 VST_BBENTRY_6_ABBREV) 3620 llvm_unreachable("Unexpected abbrev ordering!"); 3621 } 3622 3623 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3624 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3625 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3627 VE.computeBitsRequiredForTypeIndicies())); 3628 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3629 CONSTANTS_SETTYPE_ABBREV) 3630 llvm_unreachable("Unexpected abbrev ordering!"); 3631 } 3632 3633 { // INTEGER abbrev for CONSTANTS_BLOCK. 3634 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3635 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3637 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3638 CONSTANTS_INTEGER_ABBREV) 3639 llvm_unreachable("Unexpected abbrev ordering!"); 3640 } 3641 3642 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3643 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3644 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3647 VE.computeBitsRequiredForTypeIndicies())); 3648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3649 3650 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3651 CONSTANTS_CE_CAST_Abbrev) 3652 llvm_unreachable("Unexpected abbrev ordering!"); 3653 } 3654 { // NULL abbrev for CONSTANTS_BLOCK. 3655 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3656 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3657 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3658 CONSTANTS_NULL_Abbrev) 3659 llvm_unreachable("Unexpected abbrev ordering!"); 3660 } 3661 3662 // FIXME: This should only use space for first class types! 3663 3664 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3665 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3666 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3669 VE.computeBitsRequiredForTypeIndicies())); 3670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3672 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3673 FUNCTION_INST_LOAD_ABBREV) 3674 llvm_unreachable("Unexpected abbrev ordering!"); 3675 } 3676 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3677 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3678 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3681 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3682 FUNCTION_INST_UNOP_ABBREV) 3683 llvm_unreachable("Unexpected abbrev ordering!"); 3684 } 3685 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3686 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3687 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3691 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3692 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3693 llvm_unreachable("Unexpected abbrev ordering!"); 3694 } 3695 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3696 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3697 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3701 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3702 FUNCTION_INST_BINOP_ABBREV) 3703 llvm_unreachable("Unexpected abbrev ordering!"); 3704 } 3705 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3706 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3707 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3712 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3713 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3714 llvm_unreachable("Unexpected abbrev ordering!"); 3715 } 3716 { // INST_CAST abbrev for FUNCTION_BLOCK. 3717 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3718 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3721 VE.computeBitsRequiredForTypeIndicies())); 3722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3723 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3724 FUNCTION_INST_CAST_ABBREV) 3725 llvm_unreachable("Unexpected abbrev ordering!"); 3726 } 3727 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3728 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3729 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3732 VE.computeBitsRequiredForTypeIndicies())); 3733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3735 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3736 FUNCTION_INST_CAST_FLAGS_ABBREV) 3737 llvm_unreachable("Unexpected abbrev ordering!"); 3738 } 3739 3740 { // INST_RET abbrev for FUNCTION_BLOCK. 3741 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3742 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3743 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3744 FUNCTION_INST_RET_VOID_ABBREV) 3745 llvm_unreachable("Unexpected abbrev ordering!"); 3746 } 3747 { // INST_RET abbrev for FUNCTION_BLOCK. 3748 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3749 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3751 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3752 FUNCTION_INST_RET_VAL_ABBREV) 3753 llvm_unreachable("Unexpected abbrev ordering!"); 3754 } 3755 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3756 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3757 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3758 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3759 FUNCTION_INST_UNREACHABLE_ABBREV) 3760 llvm_unreachable("Unexpected abbrev ordering!"); 3761 } 3762 { 3763 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3764 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3767 Log2_32_Ceil(VE.getTypes().size() + 1))); 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3770 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3771 FUNCTION_INST_GEP_ABBREV) 3772 llvm_unreachable("Unexpected abbrev ordering!"); 3773 } 3774 3775 Stream.ExitBlock(); 3776 } 3777 3778 /// Write the module path strings, currently only used when generating 3779 /// a combined index file. 3780 void IndexBitcodeWriter::writeModStrings() { 3781 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3782 3783 // TODO: See which abbrev sizes we actually need to emit 3784 3785 // 8-bit fixed-width MST_ENTRY strings. 3786 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3787 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3791 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3792 3793 // 7-bit fixed width MST_ENTRY strings. 3794 Abbv = std::make_shared<BitCodeAbbrev>(); 3795 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3799 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3800 3801 // 6-bit char6 MST_ENTRY strings. 3802 Abbv = std::make_shared<BitCodeAbbrev>(); 3803 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3807 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3808 3809 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3810 Abbv = std::make_shared<BitCodeAbbrev>(); 3811 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3817 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3818 3819 SmallVector<unsigned, 64> Vals; 3820 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3821 StringRef Key = MPSE.getKey(); 3822 const auto &Hash = MPSE.getValue(); 3823 StringEncoding Bits = getStringEncoding(Key); 3824 unsigned AbbrevToUse = Abbrev8Bit; 3825 if (Bits == SE_Char6) 3826 AbbrevToUse = Abbrev6Bit; 3827 else if (Bits == SE_Fixed7) 3828 AbbrevToUse = Abbrev7Bit; 3829 3830 auto ModuleId = ModuleIdMap.size(); 3831 ModuleIdMap[Key] = ModuleId; 3832 Vals.push_back(ModuleId); 3833 Vals.append(Key.begin(), Key.end()); 3834 3835 // Emit the finished record. 3836 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3837 3838 // Emit an optional hash for the module now 3839 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3840 Vals.assign(Hash.begin(), Hash.end()); 3841 // Emit the hash record. 3842 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3843 } 3844 3845 Vals.clear(); 3846 }); 3847 Stream.ExitBlock(); 3848 } 3849 3850 /// Write the function type metadata related records that need to appear before 3851 /// a function summary entry (whether per-module or combined). 3852 template <typename Fn> 3853 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3854 FunctionSummary *FS, 3855 Fn GetValueID) { 3856 if (!FS->type_tests().empty()) 3857 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3858 3859 SmallVector<uint64_t, 64> Record; 3860 3861 auto WriteVFuncIdVec = [&](uint64_t Ty, 3862 ArrayRef<FunctionSummary::VFuncId> VFs) { 3863 if (VFs.empty()) 3864 return; 3865 Record.clear(); 3866 for (auto &VF : VFs) { 3867 Record.push_back(VF.GUID); 3868 Record.push_back(VF.Offset); 3869 } 3870 Stream.EmitRecord(Ty, Record); 3871 }; 3872 3873 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3874 FS->type_test_assume_vcalls()); 3875 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3876 FS->type_checked_load_vcalls()); 3877 3878 auto WriteConstVCallVec = [&](uint64_t Ty, 3879 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3880 for (auto &VC : VCs) { 3881 Record.clear(); 3882 Record.push_back(VC.VFunc.GUID); 3883 Record.push_back(VC.VFunc.Offset); 3884 llvm::append_range(Record, VC.Args); 3885 Stream.EmitRecord(Ty, Record); 3886 } 3887 }; 3888 3889 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3890 FS->type_test_assume_const_vcalls()); 3891 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3892 FS->type_checked_load_const_vcalls()); 3893 3894 auto WriteRange = [&](ConstantRange Range) { 3895 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3896 assert(Range.getLower().getNumWords() == 1); 3897 assert(Range.getUpper().getNumWords() == 1); 3898 emitSignedInt64(Record, *Range.getLower().getRawData()); 3899 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3900 }; 3901 3902 if (!FS->paramAccesses().empty()) { 3903 Record.clear(); 3904 for (auto &Arg : FS->paramAccesses()) { 3905 size_t UndoSize = Record.size(); 3906 Record.push_back(Arg.ParamNo); 3907 WriteRange(Arg.Use); 3908 Record.push_back(Arg.Calls.size()); 3909 for (auto &Call : Arg.Calls) { 3910 Record.push_back(Call.ParamNo); 3911 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 3912 if (!ValueID) { 3913 // If ValueID is unknown we can't drop just this call, we must drop 3914 // entire parameter. 3915 Record.resize(UndoSize); 3916 break; 3917 } 3918 Record.push_back(*ValueID); 3919 WriteRange(Call.Offsets); 3920 } 3921 } 3922 if (!Record.empty()) 3923 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3924 } 3925 } 3926 3927 /// Collect type IDs from type tests used by function. 3928 static void 3929 getReferencedTypeIds(FunctionSummary *FS, 3930 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3931 if (!FS->type_tests().empty()) 3932 for (auto &TT : FS->type_tests()) 3933 ReferencedTypeIds.insert(TT); 3934 3935 auto GetReferencedTypesFromVFuncIdVec = 3936 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3937 for (auto &VF : VFs) 3938 ReferencedTypeIds.insert(VF.GUID); 3939 }; 3940 3941 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3942 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3943 3944 auto GetReferencedTypesFromConstVCallVec = 3945 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3946 for (auto &VC : VCs) 3947 ReferencedTypeIds.insert(VC.VFunc.GUID); 3948 }; 3949 3950 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3951 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3952 } 3953 3954 static void writeWholeProgramDevirtResolutionByArg( 3955 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3956 const WholeProgramDevirtResolution::ByArg &ByArg) { 3957 NameVals.push_back(args.size()); 3958 llvm::append_range(NameVals, args); 3959 3960 NameVals.push_back(ByArg.TheKind); 3961 NameVals.push_back(ByArg.Info); 3962 NameVals.push_back(ByArg.Byte); 3963 NameVals.push_back(ByArg.Bit); 3964 } 3965 3966 static void writeWholeProgramDevirtResolution( 3967 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3968 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3969 NameVals.push_back(Id); 3970 3971 NameVals.push_back(Wpd.TheKind); 3972 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3973 NameVals.push_back(Wpd.SingleImplName.size()); 3974 3975 NameVals.push_back(Wpd.ResByArg.size()); 3976 for (auto &A : Wpd.ResByArg) 3977 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3978 } 3979 3980 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3981 StringTableBuilder &StrtabBuilder, 3982 const std::string &Id, 3983 const TypeIdSummary &Summary) { 3984 NameVals.push_back(StrtabBuilder.add(Id)); 3985 NameVals.push_back(Id.size()); 3986 3987 NameVals.push_back(Summary.TTRes.TheKind); 3988 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3989 NameVals.push_back(Summary.TTRes.AlignLog2); 3990 NameVals.push_back(Summary.TTRes.SizeM1); 3991 NameVals.push_back(Summary.TTRes.BitMask); 3992 NameVals.push_back(Summary.TTRes.InlineBits); 3993 3994 for (auto &W : Summary.WPDRes) 3995 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3996 W.second); 3997 } 3998 3999 static void writeTypeIdCompatibleVtableSummaryRecord( 4000 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4001 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 4002 ValueEnumerator &VE) { 4003 NameVals.push_back(StrtabBuilder.add(Id)); 4004 NameVals.push_back(Id.size()); 4005 4006 for (auto &P : Summary) { 4007 NameVals.push_back(P.AddressPointOffset); 4008 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4009 } 4010 } 4011 4012 static void writeFunctionHeapProfileRecords( 4013 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4014 unsigned AllocAbbrev, bool PerModule, 4015 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4016 std::function<unsigned(unsigned)> GetStackIndex) { 4017 SmallVector<uint64_t> Record; 4018 4019 for (auto &CI : FS->callsites()) { 4020 Record.clear(); 4021 // Per module callsite clones should always have a single entry of 4022 // value 0. 4023 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4024 Record.push_back(GetValueID(CI.Callee)); 4025 if (!PerModule) { 4026 Record.push_back(CI.StackIdIndices.size()); 4027 Record.push_back(CI.Clones.size()); 4028 } 4029 for (auto Id : CI.StackIdIndices) 4030 Record.push_back(GetStackIndex(Id)); 4031 if (!PerModule) { 4032 for (auto V : CI.Clones) 4033 Record.push_back(V); 4034 } 4035 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4036 : bitc::FS_COMBINED_CALLSITE_INFO, 4037 Record, CallsiteAbbrev); 4038 } 4039 4040 for (auto &AI : FS->allocs()) { 4041 Record.clear(); 4042 // Per module alloc versions should always have a single entry of 4043 // value 0. 4044 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4045 if (!PerModule) { 4046 Record.push_back(AI.MIBs.size()); 4047 Record.push_back(AI.Versions.size()); 4048 } 4049 for (auto &MIB : AI.MIBs) { 4050 Record.push_back((uint8_t)MIB.AllocType); 4051 Record.push_back(MIB.StackIdIndices.size()); 4052 for (auto Id : MIB.StackIdIndices) 4053 Record.push_back(GetStackIndex(Id)); 4054 } 4055 if (!PerModule) { 4056 for (auto V : AI.Versions) 4057 Record.push_back(V); 4058 } 4059 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4060 : bitc::FS_COMBINED_ALLOC_INFO, 4061 Record, AllocAbbrev); 4062 } 4063 } 4064 4065 // Helper to emit a single function summary record. 4066 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4067 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4068 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4069 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4070 unsigned AllocAbbrev, const Function &F) { 4071 NameVals.push_back(ValueID); 4072 4073 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4074 4075 writeFunctionTypeMetadataRecords( 4076 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4077 return {VE.getValueID(VI.getValue())}; 4078 }); 4079 4080 writeFunctionHeapProfileRecords( 4081 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4082 /*PerModule*/ true, 4083 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4084 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4085 4086 auto SpecialRefCnts = FS->specialRefCounts(); 4087 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4088 NameVals.push_back(FS->instCount()); 4089 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4090 NameVals.push_back(FS->refs().size()); 4091 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4092 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4093 4094 for (auto &RI : FS->refs()) 4095 NameVals.push_back(VE.getValueID(RI.getValue())); 4096 4097 const bool UseRelBFRecord = 4098 WriteRelBFToSummary && !F.hasProfileData() && 4099 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4100 for (auto &ECI : FS->calls()) { 4101 NameVals.push_back(getValueId(ECI.first)); 4102 if (UseRelBFRecord) 4103 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4104 else 4105 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4106 } 4107 4108 unsigned FSAbbrev = 4109 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4110 unsigned Code = 4111 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4112 4113 // Emit the finished record. 4114 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4115 NameVals.clear(); 4116 } 4117 4118 // Collect the global value references in the given variable's initializer, 4119 // and emit them in a summary record. 4120 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4121 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4122 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4123 auto VI = Index->getValueInfo(V.getGUID()); 4124 if (!VI || VI.getSummaryList().empty()) { 4125 // Only declarations should not have a summary (a declaration might however 4126 // have a summary if the def was in module level asm). 4127 assert(V.isDeclaration()); 4128 return; 4129 } 4130 auto *Summary = VI.getSummaryList()[0].get(); 4131 NameVals.push_back(VE.getValueID(&V)); 4132 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4133 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4134 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4135 4136 auto VTableFuncs = VS->vTableFuncs(); 4137 if (!VTableFuncs.empty()) 4138 NameVals.push_back(VS->refs().size()); 4139 4140 unsigned SizeBeforeRefs = NameVals.size(); 4141 for (auto &RI : VS->refs()) 4142 NameVals.push_back(VE.getValueID(RI.getValue())); 4143 // Sort the refs for determinism output, the vector returned by FS->refs() has 4144 // been initialized from a DenseSet. 4145 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4146 4147 if (VTableFuncs.empty()) 4148 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4149 FSModRefsAbbrev); 4150 else { 4151 // VTableFuncs pairs should already be sorted by offset. 4152 for (auto &P : VTableFuncs) { 4153 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4154 NameVals.push_back(P.VTableOffset); 4155 } 4156 4157 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4158 FSModVTableRefsAbbrev); 4159 } 4160 NameVals.clear(); 4161 } 4162 4163 /// Emit the per-module summary section alongside the rest of 4164 /// the module's bitcode. 4165 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4166 // By default we compile with ThinLTO if the module has a summary, but the 4167 // client can request full LTO with a module flag. 4168 bool IsThinLTO = true; 4169 if (auto *MD = 4170 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4171 IsThinLTO = MD->getZExtValue(); 4172 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4173 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4174 4); 4175 4176 Stream.EmitRecord( 4177 bitc::FS_VERSION, 4178 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4179 4180 // Write the index flags. 4181 uint64_t Flags = 0; 4182 // Bits 1-3 are set only in the combined index, skip them. 4183 if (Index->enableSplitLTOUnit()) 4184 Flags |= 0x8; 4185 if (Index->hasUnifiedLTO()) 4186 Flags |= 0x200; 4187 4188 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4189 4190 if (Index->begin() == Index->end()) { 4191 Stream.ExitBlock(); 4192 return; 4193 } 4194 4195 for (const auto &GVI : valueIds()) { 4196 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4197 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4198 } 4199 4200 if (!Index->stackIds().empty()) { 4201 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4202 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4203 // numids x stackid 4204 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4205 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4206 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4207 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4208 } 4209 4210 // Abbrev for FS_PERMODULE_PROFILE. 4211 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4212 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4220 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4223 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4224 4225 // Abbrev for FS_PERMODULE_RELBF. 4226 Abbv = std::make_shared<BitCodeAbbrev>(); 4227 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4235 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4238 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4239 4240 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4241 Abbv = std::make_shared<BitCodeAbbrev>(); 4242 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4247 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4248 4249 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4250 Abbv = std::make_shared<BitCodeAbbrev>(); 4251 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4255 // numrefs x valueid, n x (valueid , offset) 4256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4258 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4259 4260 // Abbrev for FS_ALIAS. 4261 Abbv = std::make_shared<BitCodeAbbrev>(); 4262 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4266 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4267 4268 // Abbrev for FS_TYPE_ID_METADATA 4269 Abbv = std::make_shared<BitCodeAbbrev>(); 4270 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4273 // n x (valueid , offset) 4274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4276 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4277 4278 Abbv = std::make_shared<BitCodeAbbrev>(); 4279 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4281 // n x stackidindex 4282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4284 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4285 4286 Abbv = std::make_shared<BitCodeAbbrev>(); 4287 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4288 // n x (alloc type, numstackids, numstackids x stackidindex) 4289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4291 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4292 4293 SmallVector<uint64_t, 64> NameVals; 4294 // Iterate over the list of functions instead of the Index to 4295 // ensure the ordering is stable. 4296 for (const Function &F : M) { 4297 // Summary emission does not support anonymous functions, they have to 4298 // renamed using the anonymous function renaming pass. 4299 if (!F.hasName()) 4300 report_fatal_error("Unexpected anonymous function when writing summary"); 4301 4302 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4303 if (!VI || VI.getSummaryList().empty()) { 4304 // Only declarations should not have a summary (a declaration might 4305 // however have a summary if the def was in module level asm). 4306 assert(F.isDeclaration()); 4307 continue; 4308 } 4309 auto *Summary = VI.getSummaryList()[0].get(); 4310 writePerModuleFunctionSummaryRecord( 4311 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4312 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); 4313 } 4314 4315 // Capture references from GlobalVariable initializers, which are outside 4316 // of a function scope. 4317 for (const GlobalVariable &G : M.globals()) 4318 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4319 FSModVTableRefsAbbrev); 4320 4321 for (const GlobalAlias &A : M.aliases()) { 4322 auto *Aliasee = A.getAliaseeObject(); 4323 // Skip ifunc and nameless functions which don't have an entry in the 4324 // summary. 4325 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4326 continue; 4327 auto AliasId = VE.getValueID(&A); 4328 auto AliaseeId = VE.getValueID(Aliasee); 4329 NameVals.push_back(AliasId); 4330 auto *Summary = Index->getGlobalValueSummary(A); 4331 AliasSummary *AS = cast<AliasSummary>(Summary); 4332 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4333 NameVals.push_back(AliaseeId); 4334 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4335 NameVals.clear(); 4336 } 4337 4338 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4339 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4340 S.second, VE); 4341 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4342 TypeIdCompatibleVtableAbbrev); 4343 NameVals.clear(); 4344 } 4345 4346 if (Index->getBlockCount()) 4347 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4348 ArrayRef<uint64_t>{Index->getBlockCount()}); 4349 4350 Stream.ExitBlock(); 4351 } 4352 4353 /// Emit the combined summary section into the combined index file. 4354 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4355 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4356 Stream.EmitRecord( 4357 bitc::FS_VERSION, 4358 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4359 4360 // Write the index flags. 4361 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4362 4363 for (const auto &GVI : valueIds()) { 4364 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4365 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4366 } 4367 4368 if (!StackIdIndices.empty()) { 4369 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4370 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4371 // numids x stackid 4372 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4373 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4374 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4375 // Write the stack ids used by this index, which will be a subset of those in 4376 // the full index in the case of distributed indexes. 4377 std::vector<uint64_t> StackIds; 4378 for (auto &I : StackIdIndices) 4379 StackIds.push_back(Index.getStackIdAtIndex(I)); 4380 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4381 } 4382 4383 // Abbrev for FS_COMBINED_PROFILE. 4384 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4385 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4395 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4398 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4399 4400 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4401 Abbv = std::make_shared<BitCodeAbbrev>(); 4402 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4408 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4409 4410 // Abbrev for FS_COMBINED_ALIAS. 4411 Abbv = std::make_shared<BitCodeAbbrev>(); 4412 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4417 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4418 4419 Abbv = std::make_shared<BitCodeAbbrev>(); 4420 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4424 // numstackindices x stackidindex, numver x version 4425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4427 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4428 4429 Abbv = std::make_shared<BitCodeAbbrev>(); 4430 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4433 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4434 // numver x version 4435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4437 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4438 4439 // The aliases are emitted as a post-pass, and will point to the value 4440 // id of the aliasee. Save them in a vector for post-processing. 4441 SmallVector<AliasSummary *, 64> Aliases; 4442 4443 // Save the value id for each summary for alias emission. 4444 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4445 4446 SmallVector<uint64_t, 64> NameVals; 4447 4448 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4449 // with the type ids referenced by this index file. 4450 std::set<GlobalValue::GUID> ReferencedTypeIds; 4451 4452 // For local linkage, we also emit the original name separately 4453 // immediately after the record. 4454 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4455 // We don't need to emit the original name if we are writing the index for 4456 // distributed backends (in which case ModuleToSummariesForIndex is 4457 // non-null). The original name is only needed during the thin link, since 4458 // for SamplePGO the indirect call targets for local functions have 4459 // have the original name annotated in profile. 4460 // Continue to emit it when writing out the entire combined index, which is 4461 // used in testing the thin link via llvm-lto. 4462 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4463 return; 4464 NameVals.push_back(S.getOriginalName()); 4465 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4466 NameVals.clear(); 4467 }; 4468 4469 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4470 forEachSummary([&](GVInfo I, bool IsAliasee) { 4471 GlobalValueSummary *S = I.second; 4472 assert(S); 4473 DefOrUseGUIDs.insert(I.first); 4474 for (const ValueInfo &VI : S->refs()) 4475 DefOrUseGUIDs.insert(VI.getGUID()); 4476 4477 auto ValueId = getValueId(I.first); 4478 assert(ValueId); 4479 SummaryToValueIdMap[S] = *ValueId; 4480 4481 // If this is invoked for an aliasee, we want to record the above 4482 // mapping, but then not emit a summary entry (if the aliasee is 4483 // to be imported, we will invoke this separately with IsAliasee=false). 4484 if (IsAliasee) 4485 return; 4486 4487 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4488 // Will process aliases as a post-pass because the reader wants all 4489 // global to be loaded first. 4490 Aliases.push_back(AS); 4491 return; 4492 } 4493 4494 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4495 NameVals.push_back(*ValueId); 4496 assert(ModuleIdMap.count(VS->modulePath())); 4497 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4498 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4499 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4500 for (auto &RI : VS->refs()) { 4501 auto RefValueId = getValueId(RI.getGUID()); 4502 if (!RefValueId) 4503 continue; 4504 NameVals.push_back(*RefValueId); 4505 } 4506 4507 // Emit the finished record. 4508 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4509 FSModRefsAbbrev); 4510 NameVals.clear(); 4511 MaybeEmitOriginalName(*S); 4512 return; 4513 } 4514 4515 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4516 if (!VI) 4517 return std::nullopt; 4518 return getValueId(VI.getGUID()); 4519 }; 4520 4521 auto *FS = cast<FunctionSummary>(S); 4522 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4523 getReferencedTypeIds(FS, ReferencedTypeIds); 4524 4525 writeFunctionHeapProfileRecords( 4526 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4527 /*PerModule*/ false, 4528 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4529 std::optional<unsigned> ValueID = GetValueId(VI); 4530 // This can happen in shared index files for distributed ThinLTO if 4531 // the callee function summary is not included. Record 0 which we 4532 // will have to deal with conservatively when doing any kind of 4533 // validation in the ThinLTO backends. 4534 if (!ValueID) 4535 return 0; 4536 return *ValueID; 4537 }, 4538 /*GetStackIndex*/ [&](unsigned I) { 4539 // Get the corresponding index into the list of StackIdIndices 4540 // actually being written for this combined index (which may be a 4541 // subset in the case of distributed indexes). 4542 auto Lower = llvm::lower_bound(StackIdIndices, I); 4543 return std::distance(StackIdIndices.begin(), Lower); 4544 }); 4545 4546 NameVals.push_back(*ValueId); 4547 assert(ModuleIdMap.count(FS->modulePath())); 4548 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4549 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4550 NameVals.push_back(FS->instCount()); 4551 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4552 NameVals.push_back(FS->entryCount()); 4553 4554 // Fill in below 4555 NameVals.push_back(0); // numrefs 4556 NameVals.push_back(0); // rorefcnt 4557 NameVals.push_back(0); // worefcnt 4558 4559 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4560 for (auto &RI : FS->refs()) { 4561 auto RefValueId = getValueId(RI.getGUID()); 4562 if (!RefValueId) 4563 continue; 4564 NameVals.push_back(*RefValueId); 4565 if (RI.isReadOnly()) 4566 RORefCnt++; 4567 else if (RI.isWriteOnly()) 4568 WORefCnt++; 4569 Count++; 4570 } 4571 NameVals[6] = Count; 4572 NameVals[7] = RORefCnt; 4573 NameVals[8] = WORefCnt; 4574 4575 for (auto &EI : FS->calls()) { 4576 // If this GUID doesn't have a value id, it doesn't have a function 4577 // summary and we don't need to record any calls to it. 4578 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4579 if (!CallValueId) 4580 continue; 4581 NameVals.push_back(*CallValueId); 4582 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4583 } 4584 4585 // Emit the finished record. 4586 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4587 FSCallsProfileAbbrev); 4588 NameVals.clear(); 4589 MaybeEmitOriginalName(*S); 4590 }); 4591 4592 for (auto *AS : Aliases) { 4593 auto AliasValueId = SummaryToValueIdMap[AS]; 4594 assert(AliasValueId); 4595 NameVals.push_back(AliasValueId); 4596 assert(ModuleIdMap.count(AS->modulePath())); 4597 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4598 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4599 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4600 assert(AliaseeValueId); 4601 NameVals.push_back(AliaseeValueId); 4602 4603 // Emit the finished record. 4604 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4605 NameVals.clear(); 4606 MaybeEmitOriginalName(*AS); 4607 4608 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4609 getReferencedTypeIds(FS, ReferencedTypeIds); 4610 } 4611 4612 if (!Index.cfiFunctionDefs().empty()) { 4613 for (auto &S : Index.cfiFunctionDefs()) { 4614 if (DefOrUseGUIDs.count( 4615 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4616 NameVals.push_back(StrtabBuilder.add(S)); 4617 NameVals.push_back(S.size()); 4618 } 4619 } 4620 if (!NameVals.empty()) { 4621 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4622 NameVals.clear(); 4623 } 4624 } 4625 4626 if (!Index.cfiFunctionDecls().empty()) { 4627 for (auto &S : Index.cfiFunctionDecls()) { 4628 if (DefOrUseGUIDs.count( 4629 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4630 NameVals.push_back(StrtabBuilder.add(S)); 4631 NameVals.push_back(S.size()); 4632 } 4633 } 4634 if (!NameVals.empty()) { 4635 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4636 NameVals.clear(); 4637 } 4638 } 4639 4640 // Walk the GUIDs that were referenced, and write the 4641 // corresponding type id records. 4642 for (auto &T : ReferencedTypeIds) { 4643 auto TidIter = Index.typeIds().equal_range(T); 4644 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4645 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4646 It->second.second); 4647 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4648 NameVals.clear(); 4649 } 4650 } 4651 4652 if (Index.getBlockCount()) 4653 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4654 ArrayRef<uint64_t>{Index.getBlockCount()}); 4655 4656 Stream.ExitBlock(); 4657 } 4658 4659 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4660 /// current llvm version, and a record for the epoch number. 4661 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4662 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4663 4664 // Write the "user readable" string identifying the bitcode producer 4665 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4666 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4669 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4670 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4671 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4672 4673 // Write the epoch version 4674 Abbv = std::make_shared<BitCodeAbbrev>(); 4675 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4677 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4678 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4679 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4680 Stream.ExitBlock(); 4681 } 4682 4683 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4684 // Emit the module's hash. 4685 // MODULE_CODE_HASH: [5*i32] 4686 if (GenerateHash) { 4687 uint32_t Vals[5]; 4688 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4689 Buffer.size() - BlockStartPos)); 4690 std::array<uint8_t, 20> Hash = Hasher.result(); 4691 for (int Pos = 0; Pos < 20; Pos += 4) { 4692 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4693 } 4694 4695 // Emit the finished record. 4696 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4697 4698 if (ModHash) 4699 // Save the written hash value. 4700 llvm::copy(Vals, std::begin(*ModHash)); 4701 } 4702 } 4703 4704 void ModuleBitcodeWriter::write() { 4705 writeIdentificationBlock(Stream); 4706 4707 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4708 size_t BlockStartPos = Buffer.size(); 4709 4710 writeModuleVersion(); 4711 4712 // Emit blockinfo, which defines the standard abbreviations etc. 4713 writeBlockInfo(); 4714 4715 // Emit information describing all of the types in the module. 4716 writeTypeTable(); 4717 4718 // Emit information about attribute groups. 4719 writeAttributeGroupTable(); 4720 4721 // Emit information about parameter attributes. 4722 writeAttributeTable(); 4723 4724 writeComdats(); 4725 4726 // Emit top-level description of module, including target triple, inline asm, 4727 // descriptors for global variables, and function prototype info. 4728 writeModuleInfo(); 4729 4730 // Emit constants. 4731 writeModuleConstants(); 4732 4733 // Emit metadata kind names. 4734 writeModuleMetadataKinds(); 4735 4736 // Emit metadata. 4737 writeModuleMetadata(); 4738 4739 // Emit module-level use-lists. 4740 if (VE.shouldPreserveUseListOrder()) 4741 writeUseListBlock(nullptr); 4742 4743 writeOperandBundleTags(); 4744 writeSyncScopeNames(); 4745 4746 // Emit function bodies. 4747 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4748 for (const Function &F : M) 4749 if (!F.isDeclaration()) 4750 writeFunction(F, FunctionToBitcodeIndex); 4751 4752 // Need to write after the above call to WriteFunction which populates 4753 // the summary information in the index. 4754 if (Index) 4755 writePerModuleGlobalValueSummary(); 4756 4757 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4758 4759 writeModuleHash(BlockStartPos); 4760 4761 Stream.ExitBlock(); 4762 } 4763 4764 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4765 uint32_t &Position) { 4766 support::endian::write32le(&Buffer[Position], Value); 4767 Position += 4; 4768 } 4769 4770 /// If generating a bc file on darwin, we have to emit a 4771 /// header and trailer to make it compatible with the system archiver. To do 4772 /// this we emit the following header, and then emit a trailer that pads the 4773 /// file out to be a multiple of 16 bytes. 4774 /// 4775 /// struct bc_header { 4776 /// uint32_t Magic; // 0x0B17C0DE 4777 /// uint32_t Version; // Version, currently always 0. 4778 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4779 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4780 /// uint32_t CPUType; // CPU specifier. 4781 /// ... potentially more later ... 4782 /// }; 4783 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4784 const Triple &TT) { 4785 unsigned CPUType = ~0U; 4786 4787 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4788 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4789 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4790 // specific constants here because they are implicitly part of the Darwin ABI. 4791 enum { 4792 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4793 DARWIN_CPU_TYPE_X86 = 7, 4794 DARWIN_CPU_TYPE_ARM = 12, 4795 DARWIN_CPU_TYPE_POWERPC = 18 4796 }; 4797 4798 Triple::ArchType Arch = TT.getArch(); 4799 if (Arch == Triple::x86_64) 4800 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4801 else if (Arch == Triple::x86) 4802 CPUType = DARWIN_CPU_TYPE_X86; 4803 else if (Arch == Triple::ppc) 4804 CPUType = DARWIN_CPU_TYPE_POWERPC; 4805 else if (Arch == Triple::ppc64) 4806 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4807 else if (Arch == Triple::arm || Arch == Triple::thumb) 4808 CPUType = DARWIN_CPU_TYPE_ARM; 4809 4810 // Traditional Bitcode starts after header. 4811 assert(Buffer.size() >= BWH_HeaderSize && 4812 "Expected header size to be reserved"); 4813 unsigned BCOffset = BWH_HeaderSize; 4814 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4815 4816 // Write the magic and version. 4817 unsigned Position = 0; 4818 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4819 writeInt32ToBuffer(0, Buffer, Position); // Version. 4820 writeInt32ToBuffer(BCOffset, Buffer, Position); 4821 writeInt32ToBuffer(BCSize, Buffer, Position); 4822 writeInt32ToBuffer(CPUType, Buffer, Position); 4823 4824 // If the file is not a multiple of 16 bytes, insert dummy padding. 4825 while (Buffer.size() & 15) 4826 Buffer.push_back(0); 4827 } 4828 4829 /// Helper to write the header common to all bitcode files. 4830 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4831 // Emit the file header. 4832 Stream.Emit((unsigned)'B', 8); 4833 Stream.Emit((unsigned)'C', 8); 4834 Stream.Emit(0x0, 4); 4835 Stream.Emit(0xC, 4); 4836 Stream.Emit(0xE, 4); 4837 Stream.Emit(0xD, 4); 4838 } 4839 4840 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4841 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4842 writeBitcodeHeader(*Stream); 4843 } 4844 4845 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4846 4847 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4848 Stream->EnterSubblock(Block, 3); 4849 4850 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4851 Abbv->Add(BitCodeAbbrevOp(Record)); 4852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4853 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4854 4855 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4856 4857 Stream->ExitBlock(); 4858 } 4859 4860 void BitcodeWriter::writeSymtab() { 4861 assert(!WroteStrtab && !WroteSymtab); 4862 4863 // If any module has module-level inline asm, we will require a registered asm 4864 // parser for the target so that we can create an accurate symbol table for 4865 // the module. 4866 for (Module *M : Mods) { 4867 if (M->getModuleInlineAsm().empty()) 4868 continue; 4869 4870 std::string Err; 4871 const Triple TT(M->getTargetTriple()); 4872 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4873 if (!T || !T->hasMCAsmParser()) 4874 return; 4875 } 4876 4877 WroteSymtab = true; 4878 SmallVector<char, 0> Symtab; 4879 // The irsymtab::build function may be unable to create a symbol table if the 4880 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4881 // table is not required for correctness, but we still want to be able to 4882 // write malformed modules to bitcode files, so swallow the error. 4883 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4884 consumeError(std::move(E)); 4885 return; 4886 } 4887 4888 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4889 {Symtab.data(), Symtab.size()}); 4890 } 4891 4892 void BitcodeWriter::writeStrtab() { 4893 assert(!WroteStrtab); 4894 4895 std::vector<char> Strtab; 4896 StrtabBuilder.finalizeInOrder(); 4897 Strtab.resize(StrtabBuilder.getSize()); 4898 StrtabBuilder.write((uint8_t *)Strtab.data()); 4899 4900 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4901 {Strtab.data(), Strtab.size()}); 4902 4903 WroteStrtab = true; 4904 } 4905 4906 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4907 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4908 WroteStrtab = true; 4909 } 4910 4911 void BitcodeWriter::writeModule(const Module &M, 4912 bool ShouldPreserveUseListOrder, 4913 const ModuleSummaryIndex *Index, 4914 bool GenerateHash, ModuleHash *ModHash) { 4915 assert(!WroteStrtab); 4916 4917 // The Mods vector is used by irsymtab::build, which requires non-const 4918 // Modules in case it needs to materialize metadata. But the bitcode writer 4919 // requires that the module is materialized, so we can cast to non-const here, 4920 // after checking that it is in fact materialized. 4921 assert(M.isMaterialized()); 4922 Mods.push_back(const_cast<Module *>(&M)); 4923 4924 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4925 ShouldPreserveUseListOrder, Index, 4926 GenerateHash, ModHash); 4927 ModuleWriter.write(); 4928 } 4929 4930 void BitcodeWriter::writeIndex( 4931 const ModuleSummaryIndex *Index, 4932 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4933 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4934 ModuleToSummariesForIndex); 4935 IndexWriter.write(); 4936 } 4937 4938 /// Write the specified module to the specified output stream. 4939 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4940 bool ShouldPreserveUseListOrder, 4941 const ModuleSummaryIndex *Index, 4942 bool GenerateHash, ModuleHash *ModHash) { 4943 SmallVector<char, 0> Buffer; 4944 Buffer.reserve(256*1024); 4945 4946 // If this is darwin or another generic macho target, reserve space for the 4947 // header. 4948 Triple TT(M.getTargetTriple()); 4949 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4950 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4951 4952 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4953 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4954 ModHash); 4955 Writer.writeSymtab(); 4956 Writer.writeStrtab(); 4957 4958 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4959 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4960 4961 // Write the generated bitstream to "Out". 4962 if (!Buffer.empty()) 4963 Out.write((char *)&Buffer.front(), Buffer.size()); 4964 } 4965 4966 void IndexBitcodeWriter::write() { 4967 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4968 4969 writeModuleVersion(); 4970 4971 // Write the module paths in the combined index. 4972 writeModStrings(); 4973 4974 // Write the summary combined index records. 4975 writeCombinedGlobalValueSummary(); 4976 4977 Stream.ExitBlock(); 4978 } 4979 4980 // Write the specified module summary index to the given raw output stream, 4981 // where it will be written in a new bitcode block. This is used when 4982 // writing the combined index file for ThinLTO. When writing a subset of the 4983 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4984 void llvm::writeIndexToFile( 4985 const ModuleSummaryIndex &Index, raw_ostream &Out, 4986 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4987 SmallVector<char, 0> Buffer; 4988 Buffer.reserve(256 * 1024); 4989 4990 BitcodeWriter Writer(Buffer); 4991 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4992 Writer.writeStrtab(); 4993 4994 Out.write((char *)&Buffer.front(), Buffer.size()); 4995 } 4996 4997 namespace { 4998 4999 /// Class to manage the bitcode writing for a thin link bitcode file. 5000 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5001 /// ModHash is for use in ThinLTO incremental build, generated while writing 5002 /// the module bitcode file. 5003 const ModuleHash *ModHash; 5004 5005 public: 5006 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5007 BitstreamWriter &Stream, 5008 const ModuleSummaryIndex &Index, 5009 const ModuleHash &ModHash) 5010 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5011 /*ShouldPreserveUseListOrder=*/false, &Index), 5012 ModHash(&ModHash) {} 5013 5014 void write(); 5015 5016 private: 5017 void writeSimplifiedModuleInfo(); 5018 }; 5019 5020 } // end anonymous namespace 5021 5022 // This function writes a simpilified module info for thin link bitcode file. 5023 // It only contains the source file name along with the name(the offset and 5024 // size in strtab) and linkage for global values. For the global value info 5025 // entry, in order to keep linkage at offset 5, there are three zeros used 5026 // as padding. 5027 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5028 SmallVector<unsigned, 64> Vals; 5029 // Emit the module's source file name. 5030 { 5031 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5032 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5033 if (Bits == SE_Char6) 5034 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5035 else if (Bits == SE_Fixed7) 5036 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5037 5038 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5039 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5040 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5042 Abbv->Add(AbbrevOpToUse); 5043 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5044 5045 for (const auto P : M.getSourceFileName()) 5046 Vals.push_back((unsigned char)P); 5047 5048 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5049 Vals.clear(); 5050 } 5051 5052 // Emit the global variable information. 5053 for (const GlobalVariable &GV : M.globals()) { 5054 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5055 Vals.push_back(StrtabBuilder.add(GV.getName())); 5056 Vals.push_back(GV.getName().size()); 5057 Vals.push_back(0); 5058 Vals.push_back(0); 5059 Vals.push_back(0); 5060 Vals.push_back(getEncodedLinkage(GV)); 5061 5062 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5063 Vals.clear(); 5064 } 5065 5066 // Emit the function proto information. 5067 for (const Function &F : M) { 5068 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5069 Vals.push_back(StrtabBuilder.add(F.getName())); 5070 Vals.push_back(F.getName().size()); 5071 Vals.push_back(0); 5072 Vals.push_back(0); 5073 Vals.push_back(0); 5074 Vals.push_back(getEncodedLinkage(F)); 5075 5076 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5077 Vals.clear(); 5078 } 5079 5080 // Emit the alias information. 5081 for (const GlobalAlias &A : M.aliases()) { 5082 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5083 Vals.push_back(StrtabBuilder.add(A.getName())); 5084 Vals.push_back(A.getName().size()); 5085 Vals.push_back(0); 5086 Vals.push_back(0); 5087 Vals.push_back(0); 5088 Vals.push_back(getEncodedLinkage(A)); 5089 5090 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5091 Vals.clear(); 5092 } 5093 5094 // Emit the ifunc information. 5095 for (const GlobalIFunc &I : M.ifuncs()) { 5096 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5097 Vals.push_back(StrtabBuilder.add(I.getName())); 5098 Vals.push_back(I.getName().size()); 5099 Vals.push_back(0); 5100 Vals.push_back(0); 5101 Vals.push_back(0); 5102 Vals.push_back(getEncodedLinkage(I)); 5103 5104 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5105 Vals.clear(); 5106 } 5107 } 5108 5109 void ThinLinkBitcodeWriter::write() { 5110 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5111 5112 writeModuleVersion(); 5113 5114 writeSimplifiedModuleInfo(); 5115 5116 writePerModuleGlobalValueSummary(); 5117 5118 // Write module hash. 5119 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5120 5121 Stream.ExitBlock(); 5122 } 5123 5124 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5125 const ModuleSummaryIndex &Index, 5126 const ModuleHash &ModHash) { 5127 assert(!WroteStrtab); 5128 5129 // The Mods vector is used by irsymtab::build, which requires non-const 5130 // Modules in case it needs to materialize metadata. But the bitcode writer 5131 // requires that the module is materialized, so we can cast to non-const here, 5132 // after checking that it is in fact materialized. 5133 assert(M.isMaterialized()); 5134 Mods.push_back(const_cast<Module *>(&M)); 5135 5136 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5137 ModHash); 5138 ThinLinkWriter.write(); 5139 } 5140 5141 // Write the specified thin link bitcode file to the given raw output stream, 5142 // where it will be written in a new bitcode block. This is used when 5143 // writing the per-module index file for ThinLTO. 5144 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5145 const ModuleSummaryIndex &Index, 5146 const ModuleHash &ModHash) { 5147 SmallVector<char, 0> Buffer; 5148 Buffer.reserve(256 * 1024); 5149 5150 BitcodeWriter Writer(Buffer); 5151 Writer.writeThinLinkBitcode(M, Index, ModHash); 5152 Writer.writeSymtab(); 5153 Writer.writeStrtab(); 5154 5155 Out.write((char *)&Buffer.front(), Buffer.size()); 5156 } 5157 5158 static const char *getSectionNameForBitcode(const Triple &T) { 5159 switch (T.getObjectFormat()) { 5160 case Triple::MachO: 5161 return "__LLVM,__bitcode"; 5162 case Triple::COFF: 5163 case Triple::ELF: 5164 case Triple::Wasm: 5165 case Triple::UnknownObjectFormat: 5166 return ".llvmbc"; 5167 case Triple::GOFF: 5168 llvm_unreachable("GOFF is not yet implemented"); 5169 break; 5170 case Triple::SPIRV: 5171 llvm_unreachable("SPIRV is not yet implemented"); 5172 break; 5173 case Triple::XCOFF: 5174 llvm_unreachable("XCOFF is not yet implemented"); 5175 break; 5176 case Triple::DXContainer: 5177 llvm_unreachable("DXContainer is not yet implemented"); 5178 break; 5179 } 5180 llvm_unreachable("Unimplemented ObjectFormatType"); 5181 } 5182 5183 static const char *getSectionNameForCommandline(const Triple &T) { 5184 switch (T.getObjectFormat()) { 5185 case Triple::MachO: 5186 return "__LLVM,__cmdline"; 5187 case Triple::COFF: 5188 case Triple::ELF: 5189 case Triple::Wasm: 5190 case Triple::UnknownObjectFormat: 5191 return ".llvmcmd"; 5192 case Triple::GOFF: 5193 llvm_unreachable("GOFF is not yet implemented"); 5194 break; 5195 case Triple::SPIRV: 5196 llvm_unreachable("SPIRV is not yet implemented"); 5197 break; 5198 case Triple::XCOFF: 5199 llvm_unreachable("XCOFF is not yet implemented"); 5200 break; 5201 case Triple::DXContainer: 5202 llvm_unreachable("DXC is not yet implemented"); 5203 break; 5204 } 5205 llvm_unreachable("Unimplemented ObjectFormatType"); 5206 } 5207 5208 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5209 bool EmbedBitcode, bool EmbedCmdline, 5210 const std::vector<uint8_t> &CmdArgs) { 5211 // Save llvm.compiler.used and remove it. 5212 SmallVector<Constant *, 2> UsedArray; 5213 SmallVector<GlobalValue *, 4> UsedGlobals; 5214 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5215 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5216 for (auto *GV : UsedGlobals) { 5217 if (GV->getName() != "llvm.embedded.module" && 5218 GV->getName() != "llvm.cmdline") 5219 UsedArray.push_back( 5220 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5221 } 5222 if (Used) 5223 Used->eraseFromParent(); 5224 5225 // Embed the bitcode for the llvm module. 5226 std::string Data; 5227 ArrayRef<uint8_t> ModuleData; 5228 Triple T(M.getTargetTriple()); 5229 5230 if (EmbedBitcode) { 5231 if (Buf.getBufferSize() == 0 || 5232 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5233 (const unsigned char *)Buf.getBufferEnd())) { 5234 // If the input is LLVM Assembly, bitcode is produced by serializing 5235 // the module. Use-lists order need to be preserved in this case. 5236 llvm::raw_string_ostream OS(Data); 5237 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5238 ModuleData = 5239 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5240 } else 5241 // If the input is LLVM bitcode, write the input byte stream directly. 5242 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5243 Buf.getBufferSize()); 5244 } 5245 llvm::Constant *ModuleConstant = 5246 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5247 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5248 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5249 ModuleConstant); 5250 GV->setSection(getSectionNameForBitcode(T)); 5251 // Set alignment to 1 to prevent padding between two contributions from input 5252 // sections after linking. 5253 GV->setAlignment(Align(1)); 5254 UsedArray.push_back( 5255 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5256 if (llvm::GlobalVariable *Old = 5257 M.getGlobalVariable("llvm.embedded.module", true)) { 5258 assert(Old->hasZeroLiveUses() && 5259 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5260 GV->takeName(Old); 5261 Old->eraseFromParent(); 5262 } else { 5263 GV->setName("llvm.embedded.module"); 5264 } 5265 5266 // Skip if only bitcode needs to be embedded. 5267 if (EmbedCmdline) { 5268 // Embed command-line options. 5269 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5270 CmdArgs.size()); 5271 llvm::Constant *CmdConstant = 5272 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5273 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5274 llvm::GlobalValue::PrivateLinkage, 5275 CmdConstant); 5276 GV->setSection(getSectionNameForCommandline(T)); 5277 GV->setAlignment(Align(1)); 5278 UsedArray.push_back( 5279 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5280 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5281 assert(Old->hasZeroLiveUses() && 5282 "llvm.cmdline can only be used once in llvm.compiler.used"); 5283 GV->takeName(Old); 5284 Old->eraseFromParent(); 5285 } else { 5286 GV->setName("llvm.cmdline"); 5287 } 5288 } 5289 5290 if (UsedArray.empty()) 5291 return; 5292 5293 // Recreate llvm.compiler.used. 5294 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5295 auto *NewUsed = new GlobalVariable( 5296 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5297 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5298 NewUsed->setSection("llvm.metadata"); 5299 } 5300