xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 3d5450d809a553872e3c931b5312352889b8e80c)
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/Program.h"
30 #include <cctype>
31 using namespace llvm;
32 
33 /// These are manifest constants used by the bitcode writer. They do not need to
34 /// be kept in sync with the reader, but need to be consistent within this file.
35 enum {
36   CurVersion = 0,
37 
38   // VALUE_SYMTAB_BLOCK abbrev id's.
39   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
40   VST_ENTRY_7_ABBREV,
41   VST_ENTRY_6_ABBREV,
42   VST_BBENTRY_6_ABBREV,
43   VST_LPADENTRY_6_ABBREV,
44 
45   // CONSTANTS_BLOCK abbrev id's.
46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   CONSTANTS_INTEGER_ABBREV,
48   CONSTANTS_CE_CAST_Abbrev,
49   CONSTANTS_NULL_Abbrev,
50 
51   // FUNCTION_BLOCK abbrev id's.
52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53   FUNCTION_INST_BINOP_ABBREV,
54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
55   FUNCTION_INST_CAST_ABBREV,
56   FUNCTION_INST_RET_VOID_ABBREV,
57   FUNCTION_INST_RET_VAL_ABBREV,
58   FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60 
61 
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   }
78 }
79 
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81   switch (Opcode) {
82   default: llvm_unreachable("Unknown binary instruction!");
83   case Instruction::Add:
84   case Instruction::FAdd: return bitc::BINOP_ADD;
85   case Instruction::Sub:
86   case Instruction::FSub: return bitc::BINOP_SUB;
87   case Instruction::Mul:
88   case Instruction::FMul: return bitc::BINOP_MUL;
89   case Instruction::UDiv: return bitc::BINOP_UDIV;
90   case Instruction::FDiv:
91   case Instruction::SDiv: return bitc::BINOP_SDIV;
92   case Instruction::URem: return bitc::BINOP_UREM;
93   case Instruction::FRem:
94   case Instruction::SRem: return bitc::BINOP_SREM;
95   case Instruction::Shl:  return bitc::BINOP_SHL;
96   case Instruction::LShr: return bitc::BINOP_LSHR;
97   case Instruction::AShr: return bitc::BINOP_ASHR;
98   case Instruction::And:  return bitc::BINOP_AND;
99   case Instruction::Or:   return bitc::BINOP_OR;
100   case Instruction::Xor:  return bitc::BINOP_XOR;
101   }
102 }
103 
104 
105 
106 static void WriteStringRecord(unsigned Code, const std::string &Str,
107                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
108   SmallVector<unsigned, 64> Vals;
109 
110   // Code: [strchar x N]
111   for (unsigned i = 0, e = Str.size(); i != e; ++i)
112     Vals.push_back(Str[i]);
113 
114   // Emit the finished record.
115   Stream.EmitRecord(Code, Vals, AbbrevToUse);
116 }
117 
118 // Emit information about parameter attributes.
119 static void WriteAttributeTable(const ValueEnumerator &VE,
120                                 BitstreamWriter &Stream) {
121   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
122   if (Attrs.empty()) return;
123 
124   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
125 
126   SmallVector<uint64_t, 64> Record;
127   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
128     const AttrListPtr &A = Attrs[i];
129     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
130       const AttributeWithIndex &PAWI = A.getSlot(i);
131       Record.push_back(PAWI.Index);
132 
133       // FIXME: remove in LLVM 3.0
134       // Store the alignment in the bitcode as a 16-bit raw value instead of a
135       // 5-bit log2 encoded value. Shift the bits above the alignment up by
136       // 11 bits.
137       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
138       if (PAWI.Attrs & Attribute::Alignment)
139         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
140       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
141 
142       Record.push_back(FauxAttr);
143     }
144 
145     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
146     Record.clear();
147   }
148 
149   Stream.ExitBlock();
150 }
151 
152 /// WriteTypeTable - Write out the type table for a module.
153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
154   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
155 
156   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
157   SmallVector<uint64_t, 64> TypeVals;
158 
159   // Abbrev for TYPE_CODE_POINTER.
160   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
161   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                             Log2_32_Ceil(VE.getTypes().size()+1)));
164   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
165   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
166 
167   // Abbrev for TYPE_CODE_FUNCTION.
168   Abbv = new BitCodeAbbrev();
169   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
171   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
174                             Log2_32_Ceil(VE.getTypes().size()+1)));
175   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
176 
177   // Abbrev for TYPE_CODE_STRUCT.
178   Abbv = new BitCodeAbbrev();
179   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
181   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
183                             Log2_32_Ceil(VE.getTypes().size()+1)));
184   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
185 
186   // Abbrev for TYPE_CODE_ARRAY.
187   Abbv = new BitCodeAbbrev();
188   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
189   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
190   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
191                             Log2_32_Ceil(VE.getTypes().size()+1)));
192   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
193 
194   // Emit an entry count so the reader can reserve space.
195   TypeVals.push_back(TypeList.size());
196   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
197   TypeVals.clear();
198 
199   // Loop over all of the types, emitting each in turn.
200   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
201     const Type *T = TypeList[i];
202     int AbbrevToUse = 0;
203     unsigned Code = 0;
204 
205     switch (T->getTypeID()) {
206     default: llvm_unreachable("Unknown type!");
207     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
208     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
209     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
210     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
211     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
212     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
213     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
214     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
215     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
216     case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
217     case Type::IntegerTyID:
218       // INTEGER: [width]
219       Code = bitc::TYPE_CODE_INTEGER;
220       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
221       break;
222     case Type::PointerTyID: {
223       const PointerType *PTy = cast<PointerType>(T);
224       // POINTER: [pointee type, address space]
225       Code = bitc::TYPE_CODE_POINTER;
226       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
227       unsigned AddressSpace = PTy->getAddressSpace();
228       TypeVals.push_back(AddressSpace);
229       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
230       break;
231     }
232     case Type::FunctionTyID: {
233       const FunctionType *FT = cast<FunctionType>(T);
234       // FUNCTION: [isvararg, attrid, retty, paramty x N]
235       Code = bitc::TYPE_CODE_FUNCTION;
236       TypeVals.push_back(FT->isVarArg());
237       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
238       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
239       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
240         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
241       AbbrevToUse = FunctionAbbrev;
242       break;
243     }
244     case Type::StructTyID: {
245       const StructType *ST = cast<StructType>(T);
246       // STRUCT: [ispacked, eltty x N]
247       Code = bitc::TYPE_CODE_STRUCT;
248       TypeVals.push_back(ST->isPacked());
249       // Output all of the element types.
250       for (StructType::element_iterator I = ST->element_begin(),
251            E = ST->element_end(); I != E; ++I)
252         TypeVals.push_back(VE.getTypeID(*I));
253       AbbrevToUse = StructAbbrev;
254       break;
255     }
256     case Type::ArrayTyID: {
257       const ArrayType *AT = cast<ArrayType>(T);
258       // ARRAY: [numelts, eltty]
259       Code = bitc::TYPE_CODE_ARRAY;
260       TypeVals.push_back(AT->getNumElements());
261       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
262       AbbrevToUse = ArrayAbbrev;
263       break;
264     }
265     case Type::VectorTyID: {
266       const VectorType *VT = cast<VectorType>(T);
267       // VECTOR [numelts, eltty]
268       Code = bitc::TYPE_CODE_VECTOR;
269       TypeVals.push_back(VT->getNumElements());
270       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
271       break;
272     }
273     }
274 
275     // Emit the finished record.
276     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
277     TypeVals.clear();
278   }
279 
280   Stream.ExitBlock();
281 }
282 
283 static unsigned getEncodedLinkage(const GlobalValue *GV) {
284   switch (GV->getLinkage()) {
285   default: llvm_unreachable("Invalid linkage!");
286   case GlobalValue::ExternalLinkage:                 return 0;
287   case GlobalValue::WeakAnyLinkage:                  return 1;
288   case GlobalValue::AppendingLinkage:                return 2;
289   case GlobalValue::InternalLinkage:                 return 3;
290   case GlobalValue::LinkOnceAnyLinkage:              return 4;
291   case GlobalValue::DLLImportLinkage:                return 5;
292   case GlobalValue::DLLExportLinkage:                return 6;
293   case GlobalValue::ExternalWeakLinkage:             return 7;
294   case GlobalValue::CommonLinkage:                   return 8;
295   case GlobalValue::PrivateLinkage:                  return 9;
296   case GlobalValue::WeakODRLinkage:                  return 10;
297   case GlobalValue::LinkOnceODRLinkage:              return 11;
298   case GlobalValue::AvailableExternallyLinkage:      return 12;
299   case GlobalValue::LinkerPrivateLinkage:            return 13;
300   case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
301   case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15;
302   }
303 }
304 
305 static unsigned getEncodedVisibility(const GlobalValue *GV) {
306   switch (GV->getVisibility()) {
307   default: llvm_unreachable("Invalid visibility!");
308   case GlobalValue::DefaultVisibility:   return 0;
309   case GlobalValue::HiddenVisibility:    return 1;
310   case GlobalValue::ProtectedVisibility: return 2;
311   }
312 }
313 
314 // Emit top-level description of module, including target triple, inline asm,
315 // descriptors for global variables, and function prototype info.
316 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
317                             BitstreamWriter &Stream) {
318   // Emit the list of dependent libraries for the Module.
319   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
320     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
321 
322   // Emit various pieces of data attached to a module.
323   if (!M->getTargetTriple().empty())
324     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
325                       0/*TODO*/, Stream);
326   if (!M->getDataLayout().empty())
327     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
328                       0/*TODO*/, Stream);
329   if (!M->getModuleInlineAsm().empty())
330     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
331                       0/*TODO*/, Stream);
332 
333   // Emit information about sections and GC, computing how many there are. Also
334   // compute the maximum alignment value.
335   std::map<std::string, unsigned> SectionMap;
336   std::map<std::string, unsigned> GCMap;
337   unsigned MaxAlignment = 0;
338   unsigned MaxGlobalType = 0;
339   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
340        GV != E; ++GV) {
341     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
342     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
343 
344     if (!GV->hasSection()) continue;
345     // Give section names unique ID's.
346     unsigned &Entry = SectionMap[GV->getSection()];
347     if (Entry != 0) continue;
348     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
349                       0/*TODO*/, Stream);
350     Entry = SectionMap.size();
351   }
352   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
353     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
354     if (F->hasSection()) {
355       // Give section names unique ID's.
356       unsigned &Entry = SectionMap[F->getSection()];
357       if (!Entry) {
358         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
359                           0/*TODO*/, Stream);
360         Entry = SectionMap.size();
361       }
362     }
363     if (F->hasGC()) {
364       // Same for GC names.
365       unsigned &Entry = GCMap[F->getGC()];
366       if (!Entry) {
367         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
368                           0/*TODO*/, Stream);
369         Entry = GCMap.size();
370       }
371     }
372   }
373 
374   // Emit abbrev for globals, now that we know # sections and max alignment.
375   unsigned SimpleGVarAbbrev = 0;
376   if (!M->global_empty()) {
377     // Add an abbrev for common globals with no visibility or thread localness.
378     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
379     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
381                               Log2_32_Ceil(MaxGlobalType+1)));
382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
383     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
384     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
385     if (MaxAlignment == 0)                                      // Alignment.
386       Abbv->Add(BitCodeAbbrevOp(0));
387     else {
388       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
389       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
390                                Log2_32_Ceil(MaxEncAlignment+1)));
391     }
392     if (SectionMap.empty())                                    // Section.
393       Abbv->Add(BitCodeAbbrevOp(0));
394     else
395       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
396                                Log2_32_Ceil(SectionMap.size()+1)));
397     // Don't bother emitting vis + thread local.
398     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
399   }
400 
401   // Emit the global variable information.
402   SmallVector<unsigned, 64> Vals;
403   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
404        GV != E; ++GV) {
405     unsigned AbbrevToUse = 0;
406 
407     // GLOBALVAR: [type, isconst, initid,
408     //             linkage, alignment, section, visibility, threadlocal,
409     //             unnamed_addr]
410     Vals.push_back(VE.getTypeID(GV->getType()));
411     Vals.push_back(GV->isConstant());
412     Vals.push_back(GV->isDeclaration() ? 0 :
413                    (VE.getValueID(GV->getInitializer()) + 1));
414     Vals.push_back(getEncodedLinkage(GV));
415     Vals.push_back(Log2_32(GV->getAlignment())+1);
416     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
417     if (GV->isThreadLocal() ||
418         GV->getVisibility() != GlobalValue::DefaultVisibility ||
419         GV->hasUnnamedAddr()) {
420       Vals.push_back(getEncodedVisibility(GV));
421       Vals.push_back(GV->isThreadLocal());
422       Vals.push_back(GV->hasUnnamedAddr());
423     } else {
424       AbbrevToUse = SimpleGVarAbbrev;
425     }
426 
427     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
428     Vals.clear();
429   }
430 
431   // Emit the function proto information.
432   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
433     // FUNCTION:  [type, callingconv, isproto, paramattr,
434     //             linkage, alignment, section, visibility, gc, unnamed_addr]
435     Vals.push_back(VE.getTypeID(F->getType()));
436     Vals.push_back(F->getCallingConv());
437     Vals.push_back(F->isDeclaration());
438     Vals.push_back(getEncodedLinkage(F));
439     Vals.push_back(VE.getAttributeID(F->getAttributes()));
440     Vals.push_back(Log2_32(F->getAlignment())+1);
441     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
442     Vals.push_back(getEncodedVisibility(F));
443     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
444     Vals.push_back(F->hasUnnamedAddr());
445 
446     unsigned AbbrevToUse = 0;
447     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
448     Vals.clear();
449   }
450 
451 
452   // Emit the alias information.
453   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
454        AI != E; ++AI) {
455     Vals.push_back(VE.getTypeID(AI->getType()));
456     Vals.push_back(VE.getValueID(AI->getAliasee()));
457     Vals.push_back(getEncodedLinkage(AI));
458     Vals.push_back(getEncodedVisibility(AI));
459     unsigned AbbrevToUse = 0;
460     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
461     Vals.clear();
462   }
463 }
464 
465 static uint64_t GetOptimizationFlags(const Value *V) {
466   uint64_t Flags = 0;
467 
468   if (const OverflowingBinaryOperator *OBO =
469         dyn_cast<OverflowingBinaryOperator>(V)) {
470     if (OBO->hasNoSignedWrap())
471       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
472     if (OBO->hasNoUnsignedWrap())
473       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
474   } else if (const PossiblyExactOperator *PEO =
475                dyn_cast<PossiblyExactOperator>(V)) {
476     if (PEO->isExact())
477       Flags |= 1 << bitc::PEO_EXACT;
478   }
479 
480   return Flags;
481 }
482 
483 static void WriteMDNode(const MDNode *N,
484                         const ValueEnumerator &VE,
485                         BitstreamWriter &Stream,
486                         SmallVector<uint64_t, 64> &Record) {
487   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
488     if (N->getOperand(i)) {
489       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
490       Record.push_back(VE.getValueID(N->getOperand(i)));
491     } else {
492       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
493       Record.push_back(0);
494     }
495   }
496   unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE2 :
497                                            bitc::METADATA_NODE2;
498   Stream.EmitRecord(MDCode, Record, 0);
499   Record.clear();
500 }
501 
502 static void WriteModuleMetadata(const Module *M,
503                                 const ValueEnumerator &VE,
504                                 BitstreamWriter &Stream) {
505   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
506   bool StartedMetadataBlock = false;
507   unsigned MDSAbbrev = 0;
508   SmallVector<uint64_t, 64> Record;
509   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
510 
511     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
512       if (!N->isFunctionLocal() || !N->getFunction()) {
513         if (!StartedMetadataBlock) {
514           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
515           StartedMetadataBlock = true;
516         }
517         WriteMDNode(N, VE, Stream, Record);
518       }
519     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
520       if (!StartedMetadataBlock)  {
521         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
522 
523         // Abbrev for METADATA_STRING.
524         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
525         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
526         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
527         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
528         MDSAbbrev = Stream.EmitAbbrev(Abbv);
529         StartedMetadataBlock = true;
530       }
531 
532       // Code: [strchar x N]
533       Record.append(MDS->begin(), MDS->end());
534 
535       // Emit the finished record.
536       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
537       Record.clear();
538     }
539   }
540 
541   // Write named metadata.
542   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
543        E = M->named_metadata_end(); I != E; ++I) {
544     const NamedMDNode *NMD = I;
545     if (!StartedMetadataBlock)  {
546       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
547       StartedMetadataBlock = true;
548     }
549 
550     // Write name.
551     StringRef Str = NMD->getName();
552     for (unsigned i = 0, e = Str.size(); i != e; ++i)
553       Record.push_back(Str[i]);
554     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
555     Record.clear();
556 
557     // Write named metadata operands.
558     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
559       Record.push_back(VE.getValueID(NMD->getOperand(i)));
560     Stream.EmitRecord(bitc::METADATA_NAMED_NODE2, Record, 0);
561     Record.clear();
562   }
563 
564   if (StartedMetadataBlock)
565     Stream.ExitBlock();
566 }
567 
568 static void WriteFunctionLocalMetadata(const Function &F,
569                                        const ValueEnumerator &VE,
570                                        BitstreamWriter &Stream) {
571   bool StartedMetadataBlock = false;
572   SmallVector<uint64_t, 64> Record;
573   const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
574   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
575     if (const MDNode *N = Vals[i])
576       if (N->isFunctionLocal() && N->getFunction() == &F) {
577         if (!StartedMetadataBlock) {
578           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
579           StartedMetadataBlock = true;
580         }
581         WriteMDNode(N, VE, Stream, Record);
582       }
583 
584   if (StartedMetadataBlock)
585     Stream.ExitBlock();
586 }
587 
588 static void WriteMetadataAttachment(const Function &F,
589                                     const ValueEnumerator &VE,
590                                     BitstreamWriter &Stream) {
591   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
592 
593   SmallVector<uint64_t, 64> Record;
594 
595   // Write metadata attachments
596   // METADATA_ATTACHMENT2 - [m x [value, [n x [id, mdnode]]]
597   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
598 
599   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
600     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
601          I != E; ++I) {
602       MDs.clear();
603       I->getAllMetadataOtherThanDebugLoc(MDs);
604 
605       // If no metadata, ignore instruction.
606       if (MDs.empty()) continue;
607 
608       Record.push_back(VE.getInstructionID(I));
609 
610       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
611         Record.push_back(MDs[i].first);
612         Record.push_back(VE.getValueID(MDs[i].second));
613       }
614       Stream.EmitRecord(bitc::METADATA_ATTACHMENT2, Record, 0);
615       Record.clear();
616     }
617 
618   Stream.ExitBlock();
619 }
620 
621 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
622   SmallVector<uint64_t, 64> Record;
623 
624   // Write metadata kinds
625   // METADATA_KIND - [n x [id, name]]
626   SmallVector<StringRef, 4> Names;
627   M->getMDKindNames(Names);
628 
629   if (Names.empty()) return;
630 
631   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
632 
633   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
634     Record.push_back(MDKindID);
635     StringRef KName = Names[MDKindID];
636     Record.append(KName.begin(), KName.end());
637 
638     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
639     Record.clear();
640   }
641 
642   Stream.ExitBlock();
643 }
644 
645 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
646                            const ValueEnumerator &VE,
647                            BitstreamWriter &Stream, bool isGlobal) {
648   if (FirstVal == LastVal) return;
649 
650   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
651 
652   unsigned AggregateAbbrev = 0;
653   unsigned String8Abbrev = 0;
654   unsigned CString7Abbrev = 0;
655   unsigned CString6Abbrev = 0;
656   // If this is a constant pool for the module, emit module-specific abbrevs.
657   if (isGlobal) {
658     // Abbrev for CST_CODE_AGGREGATE.
659     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
660     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
661     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
662     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
663     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
664 
665     // Abbrev for CST_CODE_STRING.
666     Abbv = new BitCodeAbbrev();
667     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
668     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
669     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
670     String8Abbrev = Stream.EmitAbbrev(Abbv);
671     // Abbrev for CST_CODE_CSTRING.
672     Abbv = new BitCodeAbbrev();
673     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
674     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
675     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
676     CString7Abbrev = Stream.EmitAbbrev(Abbv);
677     // Abbrev for CST_CODE_CSTRING.
678     Abbv = new BitCodeAbbrev();
679     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
680     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
681     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
682     CString6Abbrev = Stream.EmitAbbrev(Abbv);
683   }
684 
685   SmallVector<uint64_t, 64> Record;
686 
687   const ValueEnumerator::ValueList &Vals = VE.getValues();
688   const Type *LastTy = 0;
689   for (unsigned i = FirstVal; i != LastVal; ++i) {
690     const Value *V = Vals[i].first;
691     // If we need to switch types, do so now.
692     if (V->getType() != LastTy) {
693       LastTy = V->getType();
694       Record.push_back(VE.getTypeID(LastTy));
695       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
696                         CONSTANTS_SETTYPE_ABBREV);
697       Record.clear();
698     }
699 
700     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
701       Record.push_back(unsigned(IA->hasSideEffects()) |
702                        unsigned(IA->isAlignStack()) << 1);
703 
704       // Add the asm string.
705       const std::string &AsmStr = IA->getAsmString();
706       Record.push_back(AsmStr.size());
707       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
708         Record.push_back(AsmStr[i]);
709 
710       // Add the constraint string.
711       const std::string &ConstraintStr = IA->getConstraintString();
712       Record.push_back(ConstraintStr.size());
713       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
714         Record.push_back(ConstraintStr[i]);
715       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
716       Record.clear();
717       continue;
718     }
719     const Constant *C = cast<Constant>(V);
720     unsigned Code = -1U;
721     unsigned AbbrevToUse = 0;
722     if (C->isNullValue()) {
723       Code = bitc::CST_CODE_NULL;
724     } else if (isa<UndefValue>(C)) {
725       Code = bitc::CST_CODE_UNDEF;
726     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
727       if (IV->getBitWidth() <= 64) {
728         uint64_t V = IV->getSExtValue();
729         if ((int64_t)V >= 0)
730           Record.push_back(V << 1);
731         else
732           Record.push_back((-V << 1) | 1);
733         Code = bitc::CST_CODE_INTEGER;
734         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
735       } else {                             // Wide integers, > 64 bits in size.
736         // We have an arbitrary precision integer value to write whose
737         // bit width is > 64. However, in canonical unsigned integer
738         // format it is likely that the high bits are going to be zero.
739         // So, we only write the number of active words.
740         unsigned NWords = IV->getValue().getActiveWords();
741         const uint64_t *RawWords = IV->getValue().getRawData();
742         for (unsigned i = 0; i != NWords; ++i) {
743           int64_t V = RawWords[i];
744           if (V >= 0)
745             Record.push_back(V << 1);
746           else
747             Record.push_back((-V << 1) | 1);
748         }
749         Code = bitc::CST_CODE_WIDE_INTEGER;
750       }
751     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
752       Code = bitc::CST_CODE_FLOAT;
753       const Type *Ty = CFP->getType();
754       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
755         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
756       } else if (Ty->isX86_FP80Ty()) {
757         // api needed to prevent premature destruction
758         // bits are not in the same order as a normal i80 APInt, compensate.
759         APInt api = CFP->getValueAPF().bitcastToAPInt();
760         const uint64_t *p = api.getRawData();
761         Record.push_back((p[1] << 48) | (p[0] >> 16));
762         Record.push_back(p[0] & 0xffffLL);
763       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
764         APInt api = CFP->getValueAPF().bitcastToAPInt();
765         const uint64_t *p = api.getRawData();
766         Record.push_back(p[0]);
767         Record.push_back(p[1]);
768       } else {
769         assert (0 && "Unknown FP type!");
770       }
771     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
772       const ConstantArray *CA = cast<ConstantArray>(C);
773       // Emit constant strings specially.
774       unsigned NumOps = CA->getNumOperands();
775       // If this is a null-terminated string, use the denser CSTRING encoding.
776       if (CA->getOperand(NumOps-1)->isNullValue()) {
777         Code = bitc::CST_CODE_CSTRING;
778         --NumOps;  // Don't encode the null, which isn't allowed by char6.
779       } else {
780         Code = bitc::CST_CODE_STRING;
781         AbbrevToUse = String8Abbrev;
782       }
783       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
784       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
785       for (unsigned i = 0; i != NumOps; ++i) {
786         unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
787         Record.push_back(V);
788         isCStr7 &= (V & 128) == 0;
789         if (isCStrChar6)
790           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
791       }
792 
793       if (isCStrChar6)
794         AbbrevToUse = CString6Abbrev;
795       else if (isCStr7)
796         AbbrevToUse = CString7Abbrev;
797     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
798                isa<ConstantVector>(V)) {
799       Code = bitc::CST_CODE_AGGREGATE;
800       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
801         Record.push_back(VE.getValueID(C->getOperand(i)));
802       AbbrevToUse = AggregateAbbrev;
803     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
804       switch (CE->getOpcode()) {
805       default:
806         if (Instruction::isCast(CE->getOpcode())) {
807           Code = bitc::CST_CODE_CE_CAST;
808           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
809           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
810           Record.push_back(VE.getValueID(C->getOperand(0)));
811           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
812         } else {
813           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
814           Code = bitc::CST_CODE_CE_BINOP;
815           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
816           Record.push_back(VE.getValueID(C->getOperand(0)));
817           Record.push_back(VE.getValueID(C->getOperand(1)));
818           uint64_t Flags = GetOptimizationFlags(CE);
819           if (Flags != 0)
820             Record.push_back(Flags);
821         }
822         break;
823       case Instruction::GetElementPtr:
824         Code = bitc::CST_CODE_CE_GEP;
825         if (cast<GEPOperator>(C)->isInBounds())
826           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
827         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
828           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
829           Record.push_back(VE.getValueID(C->getOperand(i)));
830         }
831         break;
832       case Instruction::Select:
833         Code = bitc::CST_CODE_CE_SELECT;
834         Record.push_back(VE.getValueID(C->getOperand(0)));
835         Record.push_back(VE.getValueID(C->getOperand(1)));
836         Record.push_back(VE.getValueID(C->getOperand(2)));
837         break;
838       case Instruction::ExtractElement:
839         Code = bitc::CST_CODE_CE_EXTRACTELT;
840         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
841         Record.push_back(VE.getValueID(C->getOperand(0)));
842         Record.push_back(VE.getValueID(C->getOperand(1)));
843         break;
844       case Instruction::InsertElement:
845         Code = bitc::CST_CODE_CE_INSERTELT;
846         Record.push_back(VE.getValueID(C->getOperand(0)));
847         Record.push_back(VE.getValueID(C->getOperand(1)));
848         Record.push_back(VE.getValueID(C->getOperand(2)));
849         break;
850       case Instruction::ShuffleVector:
851         // If the return type and argument types are the same, this is a
852         // standard shufflevector instruction.  If the types are different,
853         // then the shuffle is widening or truncating the input vectors, and
854         // the argument type must also be encoded.
855         if (C->getType() == C->getOperand(0)->getType()) {
856           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
857         } else {
858           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
859           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
860         }
861         Record.push_back(VE.getValueID(C->getOperand(0)));
862         Record.push_back(VE.getValueID(C->getOperand(1)));
863         Record.push_back(VE.getValueID(C->getOperand(2)));
864         break;
865       case Instruction::ICmp:
866       case Instruction::FCmp:
867         Code = bitc::CST_CODE_CE_CMP;
868         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
869         Record.push_back(VE.getValueID(C->getOperand(0)));
870         Record.push_back(VE.getValueID(C->getOperand(1)));
871         Record.push_back(CE->getPredicate());
872         break;
873       }
874     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
875       assert(BA->getFunction() == BA->getBasicBlock()->getParent() &&
876              "Malformed blockaddress");
877       Code = bitc::CST_CODE_BLOCKADDRESS;
878       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
879       Record.push_back(VE.getValueID(BA->getFunction()));
880       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
881     } else {
882 #ifndef NDEBUG
883       C->dump();
884 #endif
885       llvm_unreachable("Unknown constant!");
886     }
887     Stream.EmitRecord(Code, Record, AbbrevToUse);
888     Record.clear();
889   }
890 
891   Stream.ExitBlock();
892 }
893 
894 static void WriteModuleConstants(const ValueEnumerator &VE,
895                                  BitstreamWriter &Stream) {
896   const ValueEnumerator::ValueList &Vals = VE.getValues();
897 
898   // Find the first constant to emit, which is the first non-globalvalue value.
899   // We know globalvalues have been emitted by WriteModuleInfo.
900   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
901     if (!isa<GlobalValue>(Vals[i].first)) {
902       WriteConstants(i, Vals.size(), VE, Stream, true);
903       return;
904     }
905   }
906 }
907 
908 /// PushValueAndType - The file has to encode both the value and type id for
909 /// many values, because we need to know what type to create for forward
910 /// references.  However, most operands are not forward references, so this type
911 /// field is not needed.
912 ///
913 /// This function adds V's value ID to Vals.  If the value ID is higher than the
914 /// instruction ID, then it is a forward reference, and it also includes the
915 /// type ID.
916 static bool PushValueAndType(const Value *V, unsigned InstID,
917                              SmallVector<unsigned, 64> &Vals,
918                              ValueEnumerator &VE) {
919   unsigned ValID = VE.getValueID(V);
920   Vals.push_back(ValID);
921   if (ValID >= InstID) {
922     Vals.push_back(VE.getTypeID(V->getType()));
923     return true;
924   }
925   return false;
926 }
927 
928 /// WriteInstruction - Emit an instruction to the specified stream.
929 static void WriteInstruction(const Instruction &I, unsigned InstID,
930                              ValueEnumerator &VE, BitstreamWriter &Stream,
931                              SmallVector<unsigned, 64> &Vals) {
932   unsigned Code = 0;
933   unsigned AbbrevToUse = 0;
934   VE.setInstructionID(&I);
935   switch (I.getOpcode()) {
936   default:
937     if (Instruction::isCast(I.getOpcode())) {
938       Code = bitc::FUNC_CODE_INST_CAST;
939       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
940         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
941       Vals.push_back(VE.getTypeID(I.getType()));
942       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
943     } else {
944       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
945       Code = bitc::FUNC_CODE_INST_BINOP;
946       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
947         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
948       Vals.push_back(VE.getValueID(I.getOperand(1)));
949       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
950       uint64_t Flags = GetOptimizationFlags(&I);
951       if (Flags != 0) {
952         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
953           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
954         Vals.push_back(Flags);
955       }
956     }
957     break;
958 
959   case Instruction::GetElementPtr:
960     Code = bitc::FUNC_CODE_INST_GEP;
961     if (cast<GEPOperator>(&I)->isInBounds())
962       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
963     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
964       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
965     break;
966   case Instruction::ExtractValue: {
967     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
968     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
969     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
970     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
971       Vals.push_back(*i);
972     break;
973   }
974   case Instruction::InsertValue: {
975     Code = bitc::FUNC_CODE_INST_INSERTVAL;
976     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
977     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
978     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
979     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
980       Vals.push_back(*i);
981     break;
982   }
983   case Instruction::Select:
984     Code = bitc::FUNC_CODE_INST_VSELECT;
985     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
986     Vals.push_back(VE.getValueID(I.getOperand(2)));
987     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
988     break;
989   case Instruction::ExtractElement:
990     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
991     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
992     Vals.push_back(VE.getValueID(I.getOperand(1)));
993     break;
994   case Instruction::InsertElement:
995     Code = bitc::FUNC_CODE_INST_INSERTELT;
996     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
997     Vals.push_back(VE.getValueID(I.getOperand(1)));
998     Vals.push_back(VE.getValueID(I.getOperand(2)));
999     break;
1000   case Instruction::ShuffleVector:
1001     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1002     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1003     Vals.push_back(VE.getValueID(I.getOperand(1)));
1004     Vals.push_back(VE.getValueID(I.getOperand(2)));
1005     break;
1006   case Instruction::ICmp:
1007   case Instruction::FCmp:
1008     // compare returning Int1Ty or vector of Int1Ty
1009     Code = bitc::FUNC_CODE_INST_CMP2;
1010     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1011     Vals.push_back(VE.getValueID(I.getOperand(1)));
1012     Vals.push_back(cast<CmpInst>(I).getPredicate());
1013     break;
1014 
1015   case Instruction::Ret:
1016     {
1017       Code = bitc::FUNC_CODE_INST_RET;
1018       unsigned NumOperands = I.getNumOperands();
1019       if (NumOperands == 0)
1020         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1021       else if (NumOperands == 1) {
1022         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1023           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1024       } else {
1025         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1026           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1027       }
1028     }
1029     break;
1030   case Instruction::Br:
1031     {
1032       Code = bitc::FUNC_CODE_INST_BR;
1033       BranchInst &II = cast<BranchInst>(I);
1034       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1035       if (II.isConditional()) {
1036         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1037         Vals.push_back(VE.getValueID(II.getCondition()));
1038       }
1039     }
1040     break;
1041   case Instruction::Switch:
1042     Code = bitc::FUNC_CODE_INST_SWITCH;
1043     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1044     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1045       Vals.push_back(VE.getValueID(I.getOperand(i)));
1046     break;
1047   case Instruction::IndirectBr:
1048     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1049     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1050     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1051       Vals.push_back(VE.getValueID(I.getOperand(i)));
1052     break;
1053 
1054   case Instruction::Invoke: {
1055     const InvokeInst *II = cast<InvokeInst>(&I);
1056     const Value *Callee(II->getCalledValue());
1057     const PointerType *PTy = cast<PointerType>(Callee->getType());
1058     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1059     Code = bitc::FUNC_CODE_INST_INVOKE;
1060 
1061     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1062     Vals.push_back(II->getCallingConv());
1063     Vals.push_back(VE.getValueID(II->getNormalDest()));
1064     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1065     PushValueAndType(Callee, InstID, Vals, VE);
1066 
1067     // Emit value #'s for the fixed parameters.
1068     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1069       Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1070 
1071     // Emit type/value pairs for varargs params.
1072     if (FTy->isVarArg()) {
1073       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1074            i != e; ++i)
1075         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1076     }
1077     break;
1078   }
1079   case Instruction::Unwind:
1080     Code = bitc::FUNC_CODE_INST_UNWIND;
1081     break;
1082   case Instruction::Unreachable:
1083     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1084     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1085     break;
1086 
1087   case Instruction::PHI:
1088     Code = bitc::FUNC_CODE_INST_PHI;
1089     Vals.push_back(VE.getTypeID(I.getType()));
1090     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1091       Vals.push_back(VE.getValueID(I.getOperand(i)));
1092     break;
1093 
1094   case Instruction::Alloca:
1095     Code = bitc::FUNC_CODE_INST_ALLOCA;
1096     Vals.push_back(VE.getTypeID(I.getType()));
1097     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1098     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1099     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1100     break;
1101 
1102   case Instruction::Load:
1103     Code = bitc::FUNC_CODE_INST_LOAD;
1104     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1105       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1106 
1107     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1108     Vals.push_back(cast<LoadInst>(I).isVolatile());
1109     break;
1110   case Instruction::Store:
1111     Code = bitc::FUNC_CODE_INST_STORE2;
1112     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1113     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1114     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1115     Vals.push_back(cast<StoreInst>(I).isVolatile());
1116     break;
1117   case Instruction::Call: {
1118     const CallInst &CI = cast<CallInst>(I);
1119     const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1120     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1121 
1122     Code = bitc::FUNC_CODE_INST_CALL2;
1123 
1124     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1125     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1126     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1127 
1128     // Emit value #'s for the fixed parameters.
1129     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1130       Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1131 
1132     // Emit type/value pairs for varargs params.
1133     if (FTy->isVarArg()) {
1134       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1135            i != e; ++i)
1136         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1137     }
1138     break;
1139   }
1140   case Instruction::VAArg:
1141     Code = bitc::FUNC_CODE_INST_VAARG;
1142     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1143     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1144     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1145     break;
1146   }
1147 
1148   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1149   Vals.clear();
1150 }
1151 
1152 // Emit names for globals/functions etc.
1153 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1154                                   const ValueEnumerator &VE,
1155                                   BitstreamWriter &Stream) {
1156   if (VST.empty()) return;
1157   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1158 
1159   // FIXME: Set up the abbrev, we know how many values there are!
1160   // FIXME: We know if the type names can use 7-bit ascii.
1161   SmallVector<unsigned, 64> NameVals;
1162 
1163   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1164        SI != SE; ++SI) {
1165 
1166     const ValueName &Name = *SI;
1167 
1168     // Figure out the encoding to use for the name.
1169     bool is7Bit = true;
1170     bool isChar6 = true;
1171     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1172          C != E; ++C) {
1173       if (isChar6)
1174         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1175       if ((unsigned char)*C & 128) {
1176         is7Bit = false;
1177         break;  // don't bother scanning the rest.
1178       }
1179     }
1180 
1181     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1182 
1183     // VST_ENTRY:     [valueid, namechar x N]
1184     // VST_BBENTRY:   [bbid, namechar x N]
1185     // VST_LPADENTRY: [lpadid, namechar x N]
1186     unsigned Code;
1187     if (const BasicBlock *BB = dyn_cast<BasicBlock>(SI->getValue())) {
1188       if (BB->isLandingPad()) {
1189         Code = bitc::VST_CODE_LPADENTRY;
1190         if (isChar6)
1191           AbbrevToUse = VST_LPADENTRY_6_ABBREV;
1192       } else {
1193         Code = bitc::VST_CODE_BBENTRY;
1194         if (isChar6)
1195           AbbrevToUse = VST_BBENTRY_6_ABBREV;
1196       }
1197     } else {
1198       Code = bitc::VST_CODE_ENTRY;
1199       if (isChar6)
1200         AbbrevToUse = VST_ENTRY_6_ABBREV;
1201       else if (is7Bit)
1202         AbbrevToUse = VST_ENTRY_7_ABBREV;
1203     }
1204 
1205     NameVals.push_back(VE.getValueID(SI->getValue()));
1206     for (const char *P = Name.getKeyData(),
1207          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1208       NameVals.push_back((unsigned char)*P);
1209 
1210     // Emit the finished record.
1211     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1212     NameVals.clear();
1213   }
1214   Stream.ExitBlock();
1215 }
1216 
1217 /// WriteFunction - Emit a function body to the module stream.
1218 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1219                           BitstreamWriter &Stream) {
1220   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1221   VE.incorporateFunction(F);
1222 
1223   SmallVector<unsigned, 64> Vals;
1224 
1225   // Emit the number of basic blocks, so the reader can create them ahead of
1226   // time.
1227   Vals.push_back(VE.getBasicBlocks().size());
1228   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1229   Vals.clear();
1230 
1231   // If there are function-local constants, emit them now.
1232   unsigned CstStart, CstEnd;
1233   VE.getFunctionConstantRange(CstStart, CstEnd);
1234   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1235 
1236   // If there is function-local metadata, emit it now.
1237   WriteFunctionLocalMetadata(F, VE, Stream);
1238 
1239   // Keep a running idea of what the instruction ID is.
1240   unsigned InstID = CstEnd;
1241 
1242   bool NeedsMetadataAttachment = false;
1243 
1244   DebugLoc LastDL;
1245 
1246   // Finally, emit all the instructions, in order.
1247   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1248     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1249          I != E; ++I) {
1250       WriteInstruction(*I, InstID, VE, Stream, Vals);
1251 
1252       if (!I->getType()->isVoidTy())
1253         ++InstID;
1254 
1255       // If the instruction has metadata, write a metadata attachment later.
1256       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1257 
1258       // If the instruction has a debug location, emit it.
1259       DebugLoc DL = I->getDebugLoc();
1260       if (DL.isUnknown()) {
1261         // nothing todo.
1262       } else if (DL == LastDL) {
1263         // Just repeat the same debug loc as last time.
1264         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1265       } else {
1266         MDNode *Scope, *IA;
1267         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1268 
1269         Vals.push_back(DL.getLine());
1270         Vals.push_back(DL.getCol());
1271         Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1272         Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1273         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC2, Vals);
1274         Vals.clear();
1275 
1276         LastDL = DL;
1277       }
1278     }
1279 
1280   // Emit names for all the instructions etc.
1281   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1282 
1283   if (NeedsMetadataAttachment)
1284     WriteMetadataAttachment(F, VE, Stream);
1285   VE.purgeFunction();
1286   Stream.ExitBlock();
1287 }
1288 
1289 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1290 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1291                                  const ValueEnumerator &VE,
1292                                  BitstreamWriter &Stream) {
1293   if (TST.empty()) return;
1294 
1295   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1296 
1297   // 7-bit fixed width VST_CODE_ENTRY strings.
1298   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1299   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1300   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1301                             Log2_32_Ceil(VE.getTypes().size()+1)));
1302   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1303   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1304   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1305 
1306   SmallVector<unsigned, 64> NameVals;
1307 
1308   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1309        TI != TE; ++TI) {
1310     // TST_ENTRY: [typeid, namechar x N]
1311     NameVals.push_back(VE.getTypeID(TI->second));
1312 
1313     const std::string &Str = TI->first;
1314     bool is7Bit = true;
1315     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1316       NameVals.push_back((unsigned char)Str[i]);
1317       if (Str[i] & 128)
1318         is7Bit = false;
1319     }
1320 
1321     // Emit the finished record.
1322     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1323     NameVals.clear();
1324   }
1325 
1326   Stream.ExitBlock();
1327 }
1328 
1329 // Emit blockinfo, which defines the standard abbreviations etc.
1330 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1331   // We only want to emit block info records for blocks that have multiple
1332   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1333   // blocks can defined their abbrevs inline.
1334   Stream.EnterBlockInfoBlock(2);
1335 
1336   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1337     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1338     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1339     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1340     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1341     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1342     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1343                                    Abbv) != VST_ENTRY_8_ABBREV)
1344       llvm_unreachable("Unexpected abbrev ordering!");
1345   }
1346 
1347   { // 7-bit fixed width VST_ENTRY strings.
1348     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1349     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1350     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1351     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1352     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1353     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1354                                    Abbv) != VST_ENTRY_7_ABBREV)
1355       llvm_unreachable("Unexpected abbrev ordering!");
1356   }
1357   { // 6-bit char6 VST_ENTRY strings.
1358     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1359     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1360     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1361     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1362     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1363     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1364                                    Abbv) != VST_ENTRY_6_ABBREV)
1365       llvm_unreachable("Unexpected abbrev ordering!");
1366   }
1367   { // 6-bit char6 VST_BBENTRY strings.
1368     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1369     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1370     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1371     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1372     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1373     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1374                                    Abbv) != VST_BBENTRY_6_ABBREV)
1375       llvm_unreachable("Unexpected abbrev ordering!");
1376   }
1377   { // 6-bit char6 VST_LPADENTRY strings.
1378     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1379     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_LPADENTRY));
1380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1383     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1384                                    Abbv) != VST_LPADENTRY_6_ABBREV)
1385       llvm_unreachable("Unexpected abbrev ordering!");
1386   }
1387 
1388   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1389     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1390     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1391     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1392                               Log2_32_Ceil(VE.getTypes().size()+1)));
1393     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1394                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1395       llvm_unreachable("Unexpected abbrev ordering!");
1396   }
1397 
1398   { // INTEGER abbrev for CONSTANTS_BLOCK.
1399     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1400     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1401     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1402     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1403                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1404       llvm_unreachable("Unexpected abbrev ordering!");
1405   }
1406 
1407   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1408     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1409     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1410     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1411     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1412                               Log2_32_Ceil(VE.getTypes().size()+1)));
1413     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1414 
1415     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1416                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1417       llvm_unreachable("Unexpected abbrev ordering!");
1418   }
1419   { // NULL abbrev for CONSTANTS_BLOCK.
1420     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1421     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1422     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1423                                    Abbv) != CONSTANTS_NULL_Abbrev)
1424       llvm_unreachable("Unexpected abbrev ordering!");
1425   }
1426 
1427   // FIXME: This should only use space for first class types!
1428 
1429   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1430     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1431     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1432     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1433     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1434     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1435     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1436                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1437       llvm_unreachable("Unexpected abbrev ordering!");
1438   }
1439   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1440     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1441     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1442     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1443     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1444     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1445     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1446                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1447       llvm_unreachable("Unexpected abbrev ordering!");
1448   }
1449   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1450     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1451     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1452     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1453     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1454     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1455     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1456     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1457                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1458       llvm_unreachable("Unexpected abbrev ordering!");
1459   }
1460   { // INST_CAST abbrev for FUNCTION_BLOCK.
1461     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1462     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1463     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1464     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1465                               Log2_32_Ceil(VE.getTypes().size()+1)));
1466     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1467     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1468                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1469       llvm_unreachable("Unexpected abbrev ordering!");
1470   }
1471 
1472   { // INST_RET abbrev for FUNCTION_BLOCK.
1473     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1474     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1475     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1476                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1477       llvm_unreachable("Unexpected abbrev ordering!");
1478   }
1479   { // INST_RET abbrev for FUNCTION_BLOCK.
1480     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1481     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1482     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1483     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1484                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1485       llvm_unreachable("Unexpected abbrev ordering!");
1486   }
1487   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1488     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1489     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1490     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1491                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1492       llvm_unreachable("Unexpected abbrev ordering!");
1493   }
1494 
1495   Stream.ExitBlock();
1496 }
1497 
1498 
1499 /// WriteModule - Emit the specified module to the bitstream.
1500 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1501   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1502 
1503   // Emit the version number if it is non-zero.
1504   if (CurVersion) {
1505     SmallVector<unsigned, 1> Vals;
1506     Vals.push_back(CurVersion);
1507     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1508   }
1509 
1510   // Analyze the module, enumerating globals, functions, etc.
1511   ValueEnumerator VE(M);
1512 
1513   // Emit blockinfo, which defines the standard abbreviations etc.
1514   WriteBlockInfo(VE, Stream);
1515 
1516   // Emit information about parameter attributes.
1517   WriteAttributeTable(VE, Stream);
1518 
1519   // Emit information describing all of the types in the module.
1520   WriteTypeTable(VE, Stream);
1521 
1522   // Emit top-level description of module, including target triple, inline asm,
1523   // descriptors for global variables, and function prototype info.
1524   WriteModuleInfo(M, VE, Stream);
1525 
1526   // Emit constants.
1527   WriteModuleConstants(VE, Stream);
1528 
1529   // Emit metadata.
1530   WriteModuleMetadata(M, VE, Stream);
1531 
1532   // Emit function bodies.
1533   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1534     if (!I->isDeclaration())
1535       WriteFunction(*I, VE, Stream);
1536 
1537   // Emit metadata.
1538   WriteModuleMetadataStore(M, Stream);
1539 
1540   // Emit the type symbol table information.
1541   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1542 
1543   // Emit names for globals/functions etc.
1544   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1545 
1546   Stream.ExitBlock();
1547 }
1548 
1549 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1550 /// header and trailer to make it compatible with the system archiver.  To do
1551 /// this we emit the following header, and then emit a trailer that pads the
1552 /// file out to be a multiple of 16 bytes.
1553 ///
1554 /// struct bc_header {
1555 ///   uint32_t Magic;         // 0x0B17C0DE
1556 ///   uint32_t Version;       // Version, currently always 0.
1557 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1558 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1559 ///   uint32_t CPUType;       // CPU specifier.
1560 ///   ... potentially more later ...
1561 /// };
1562 enum {
1563   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1564   DarwinBCHeaderSize = 5*4
1565 };
1566 
1567 /// isARMTriplet - Return true if the triplet looks like:
1568 /// arm-*, thumb-*, armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*.
1569 static bool isARMTriplet(const std::string &TT) {
1570   size_t Pos = 0;
1571   size_t Size = TT.size();
1572   if (Size >= 6 &&
1573       TT[0] == 't' && TT[1] == 'h' && TT[2] == 'u' &&
1574       TT[3] == 'm' && TT[4] == 'b')
1575     Pos = 5;
1576   else if (Size >= 4 && TT[0] == 'a' && TT[1] == 'r' && TT[2] == 'm')
1577     Pos = 3;
1578   else
1579     return false;
1580 
1581   if (TT[Pos] == '-')
1582     return true;
1583   else if (TT[Pos] == 'v') {
1584     if (Size >= Pos+4 &&
1585         TT[Pos+1] == '6' && TT[Pos+2] == 't' && TT[Pos+3] == '2')
1586       return true;
1587     else if (Size >= Pos+4 &&
1588              TT[Pos+1] == '5' && TT[Pos+2] == 't' && TT[Pos+3] == 'e')
1589       return true;
1590   } else
1591     return false;
1592   while (++Pos < Size && TT[Pos] != '-') {
1593     if (!isdigit(TT[Pos]))
1594       return false;
1595   }
1596   return true;
1597 }
1598 
1599 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1600                                const std::string &TT) {
1601   unsigned CPUType = ~0U;
1602 
1603   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1604   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1605   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1606   // specific constants here because they are implicitly part of the Darwin ABI.
1607   enum {
1608     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1609     DARWIN_CPU_TYPE_X86        = 7,
1610     DARWIN_CPU_TYPE_ARM        = 12,
1611     DARWIN_CPU_TYPE_POWERPC    = 18
1612   };
1613 
1614   if (TT.find("x86_64-") == 0)
1615     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1616   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1617            TT[4] == '-' && TT[1] - '3' < 6)
1618     CPUType = DARWIN_CPU_TYPE_X86;
1619   else if (TT.find("powerpc-") == 0)
1620     CPUType = DARWIN_CPU_TYPE_POWERPC;
1621   else if (TT.find("powerpc64-") == 0)
1622     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1623   else if (isARMTriplet(TT))
1624     CPUType = DARWIN_CPU_TYPE_ARM;
1625 
1626   // Traditional Bitcode starts after header.
1627   unsigned BCOffset = DarwinBCHeaderSize;
1628 
1629   Stream.Emit(0x0B17C0DE, 32);
1630   Stream.Emit(0         , 32);  // Version.
1631   Stream.Emit(BCOffset  , 32);
1632   Stream.Emit(0         , 32);  // Filled in later.
1633   Stream.Emit(CPUType   , 32);
1634 }
1635 
1636 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1637 /// finalize the header.
1638 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1639   // Update the size field in the header.
1640   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1641 
1642   // If the file is not a multiple of 16 bytes, insert dummy padding.
1643   while (BufferSize & 15) {
1644     Stream.Emit(0, 8);
1645     ++BufferSize;
1646   }
1647 }
1648 
1649 
1650 /// WriteBitcodeToFile - Write the specified module to the specified output
1651 /// stream.
1652 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1653   std::vector<unsigned char> Buffer;
1654   BitstreamWriter Stream(Buffer);
1655 
1656   Buffer.reserve(256*1024);
1657 
1658   WriteBitcodeToStream( M, Stream );
1659 
1660   // Write the generated bitstream to "Out".
1661   Out.write((char*)&Buffer.front(), Buffer.size());
1662 }
1663 
1664 /// WriteBitcodeToStream - Write the specified module to the specified output
1665 /// stream.
1666 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1667   // If this is darwin or another generic macho target, emit a file header and
1668   // trailer if needed.
1669   bool isMacho =
1670     M->getTargetTriple().find("-darwin") != std::string::npos ||
1671     M->getTargetTriple().find("-macho") != std::string::npos;
1672   if (isMacho)
1673     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1674 
1675   // Emit the file header.
1676   Stream.Emit((unsigned)'B', 8);
1677   Stream.Emit((unsigned)'C', 8);
1678   Stream.Emit(0x0, 4);
1679   Stream.Emit(0xC, 4);
1680   Stream.Emit(0xE, 4);
1681   Stream.Emit(0xD, 4);
1682 
1683   // Emit the module.
1684   WriteModule(M, Stream);
1685 
1686   if (isMacho)
1687     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1688 }
1689