1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitCodes.h" 29 #include "llvm/Bitcode/BitstreamWriter.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 namespace { 90 91 /// These are manifest constants used by the bitcode writer. They do not need to 92 /// be kept in sync with the reader, but need to be consistent within this file. 93 enum { 94 // VALUE_SYMTAB_BLOCK abbrev id's. 95 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 96 VST_ENTRY_7_ABBREV, 97 VST_ENTRY_6_ABBREV, 98 VST_BBENTRY_6_ABBREV, 99 100 // CONSTANTS_BLOCK abbrev id's. 101 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 CONSTANTS_INTEGER_ABBREV, 103 CONSTANTS_CE_CAST_Abbrev, 104 CONSTANTS_NULL_Abbrev, 105 106 // FUNCTION_BLOCK abbrev id's. 107 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 FUNCTION_INST_BINOP_ABBREV, 109 FUNCTION_INST_BINOP_FLAGS_ABBREV, 110 FUNCTION_INST_CAST_ABBREV, 111 FUNCTION_INST_RET_VOID_ABBREV, 112 FUNCTION_INST_RET_VAL_ABBREV, 113 FUNCTION_INST_UNREACHABLE_ABBREV, 114 FUNCTION_INST_GEP_ABBREV, 115 }; 116 117 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 118 /// file type. 119 class BitcodeWriterBase { 120 protected: 121 /// The stream created and owned by the client. 122 BitstreamWriter &Stream; 123 124 StringTableBuilder &StrtabBuilder; 125 126 public: 127 /// Constructs a BitcodeWriterBase object that writes to the provided 128 /// \p Stream. 129 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 130 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 131 132 protected: 133 void writeBitcodeHeader(); 134 void writeModuleVersion(); 135 }; 136 137 void BitcodeWriterBase::writeModuleVersion() { 138 // VERSION: [version#] 139 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 140 } 141 142 /// Base class to manage the module bitcode writing, currently subclassed for 143 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 144 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 145 protected: 146 /// The Module to write to bitcode. 147 const Module &M; 148 149 /// Enumerates ids for all values in the module. 150 ValueEnumerator VE; 151 152 /// Optional per-module index to write for ThinLTO. 153 const ModuleSummaryIndex *Index; 154 155 /// Map that holds the correspondence between GUIDs in the summary index, 156 /// that came from indirect call profiles, and a value id generated by this 157 /// class to use in the VST and summary block records. 158 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 159 160 /// Tracks the last value id recorded in the GUIDToValueMap. 161 unsigned GlobalValueId; 162 163 /// Saves the offset of the VSTOffset record that must eventually be 164 /// backpatched with the offset of the actual VST. 165 uint64_t VSTOffsetPlaceholder = 0; 166 167 public: 168 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 169 /// writing to the provided \p Buffer. 170 ModuleBitcodeWriterBase(const Module *M, StringTableBuilder &StrtabBuilder, 171 BitstreamWriter &Stream, 172 bool ShouldPreserveUseListOrder, 173 const ModuleSummaryIndex *Index) 174 : BitcodeWriterBase(Stream, StrtabBuilder), M(*M), 175 VE(*M, ShouldPreserveUseListOrder), Index(Index) { 176 // Assign ValueIds to any callee values in the index that came from 177 // indirect call profiles and were recorded as a GUID not a Value* 178 // (which would have been assigned an ID by the ValueEnumerator). 179 // The starting ValueId is just after the number of values in the 180 // ValueEnumerator, so that they can be emitted in the VST. 181 GlobalValueId = VE.getValues().size(); 182 if (!Index) 183 return; 184 for (const auto &GUIDSummaryLists : *Index) 185 // Examine all summaries for this GUID. 186 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 187 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 188 // For each call in the function summary, see if the call 189 // is to a GUID (which means it is for an indirect call, 190 // otherwise we would have a Value for it). If so, synthesize 191 // a value id. 192 for (auto &CallEdge : FS->calls()) 193 if (!CallEdge.first.getValue()) 194 assignValueId(CallEdge.first.getGUID()); 195 } 196 197 protected: 198 void writePerModuleGlobalValueSummary(); 199 200 private: 201 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 202 GlobalValueSummary *Summary, 203 unsigned ValueID, 204 unsigned FSCallsAbbrev, 205 unsigned FSCallsProfileAbbrev, 206 const Function &F); 207 void writeModuleLevelReferences(const GlobalVariable &V, 208 SmallVector<uint64_t, 64> &NameVals, 209 unsigned FSModRefsAbbrev); 210 211 void assignValueId(GlobalValue::GUID ValGUID) { 212 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 213 } 214 215 unsigned getValueId(GlobalValue::GUID ValGUID) { 216 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 217 // Expect that any GUID value had a value Id assigned by an 218 // earlier call to assignValueId. 219 assert(VMI != GUIDToValueIdMap.end() && 220 "GUID does not have assigned value Id"); 221 return VMI->second; 222 } 223 224 // Helper to get the valueId for the type of value recorded in VI. 225 unsigned getValueId(ValueInfo VI) { 226 if (!VI.getValue()) 227 return getValueId(VI.getGUID()); 228 return VE.getValueID(VI.getValue()); 229 } 230 231 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 232 }; 233 234 /// Class to manage the bitcode writing for a module. 235 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 236 /// Pointer to the buffer allocated by caller for bitcode writing. 237 const SmallVectorImpl<char> &Buffer; 238 239 /// True if a module hash record should be written. 240 bool GenerateHash; 241 242 /// If non-null, when GenerateHash is true, the resulting hash is written 243 /// into ModHash. 244 ModuleHash *ModHash; 245 246 SHA1 Hasher; 247 248 /// The start bit of the identification block. 249 uint64_t BitcodeStartBit; 250 251 public: 252 /// Constructs a ModuleBitcodeWriter object for the given Module, 253 /// writing to the provided \p Buffer. 254 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 255 StringTableBuilder &StrtabBuilder, 256 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 257 const ModuleSummaryIndex *Index, bool GenerateHash, 258 ModuleHash *ModHash = nullptr) 259 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 260 ShouldPreserveUseListOrder, Index), 261 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 262 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 263 264 /// Emit the current module to the bitstream. 265 void write(); 266 267 private: 268 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 269 270 size_t addToStrtab(StringRef Str); 271 272 void writeAttributeGroupTable(); 273 void writeAttributeTable(); 274 void writeTypeTable(); 275 void writeComdats(); 276 void writeValueSymbolTableForwardDecl(); 277 void writeModuleInfo(); 278 void writeValueAsMetadata(const ValueAsMetadata *MD, 279 SmallVectorImpl<uint64_t> &Record); 280 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 281 unsigned Abbrev); 282 unsigned createDILocationAbbrev(); 283 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 284 unsigned &Abbrev); 285 unsigned createGenericDINodeAbbrev(); 286 void writeGenericDINode(const GenericDINode *N, 287 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 288 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 289 unsigned Abbrev); 290 void writeDIEnumerator(const DIEnumerator *N, 291 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 292 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 void writeDIDerivedType(const DIDerivedType *N, 295 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 296 void writeDICompositeType(const DICompositeType *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 298 void writeDISubroutineType(const DISubroutineType *N, 299 SmallVectorImpl<uint64_t> &Record, 300 unsigned Abbrev); 301 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDICompileUnit(const DICompileUnit *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDISubprogram(const DISubprogram *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDILexicalBlock(const DILexicalBlock *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 310 SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 313 unsigned Abbrev); 314 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 315 unsigned Abbrev); 316 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 321 SmallVectorImpl<uint64_t> &Record, 322 unsigned Abbrev); 323 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 324 SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIGlobalVariable(const DIGlobalVariable *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDILocalVariable(const DILocalVariable *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDIExpression(const DIExpression *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 334 SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIObjCProperty(const DIObjCProperty *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDIImportedEntity(const DIImportedEntity *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 unsigned createNamedMetadataAbbrev(); 342 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 343 unsigned createMetadataStringsAbbrev(); 344 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 345 SmallVectorImpl<uint64_t> &Record); 346 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 347 SmallVectorImpl<uint64_t> &Record, 348 std::vector<unsigned> *MDAbbrevs = nullptr, 349 std::vector<uint64_t> *IndexPos = nullptr); 350 void writeModuleMetadata(); 351 void writeFunctionMetadata(const Function &F); 352 void writeFunctionMetadataAttachment(const Function &F); 353 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 354 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 355 const GlobalObject &GO); 356 void writeModuleMetadataKinds(); 357 void writeOperandBundleTags(); 358 void writeSyncScopeNames(); 359 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 360 void writeModuleConstants(); 361 bool pushValueAndType(const Value *V, unsigned InstID, 362 SmallVectorImpl<unsigned> &Vals); 363 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 364 void pushValue(const Value *V, unsigned InstID, 365 SmallVectorImpl<unsigned> &Vals); 366 void pushValueSigned(const Value *V, unsigned InstID, 367 SmallVectorImpl<uint64_t> &Vals); 368 void writeInstruction(const Instruction &I, unsigned InstID, 369 SmallVectorImpl<unsigned> &Vals); 370 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 371 void writeGlobalValueSymbolTable( 372 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 373 void writeUseList(UseListOrder &&Order); 374 void writeUseListBlock(const Function *F); 375 void 376 writeFunction(const Function &F, 377 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 378 void writeBlockInfo(); 379 void writeModuleHash(size_t BlockStartPos); 380 381 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 382 return unsigned(SSID); 383 } 384 }; 385 386 /// Class to manage the bitcode writing for a combined index. 387 class IndexBitcodeWriter : public BitcodeWriterBase { 388 /// The combined index to write to bitcode. 389 const ModuleSummaryIndex &Index; 390 391 /// When writing a subset of the index for distributed backends, client 392 /// provides a map of modules to the corresponding GUIDs/summaries to write. 393 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 394 395 /// Map that holds the correspondence between the GUID used in the combined 396 /// index and a value id generated by this class to use in references. 397 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 398 399 /// Tracks the last value id recorded in the GUIDToValueMap. 400 unsigned GlobalValueId = 0; 401 402 public: 403 /// Constructs a IndexBitcodeWriter object for the given combined index, 404 /// writing to the provided \p Buffer. When writing a subset of the index 405 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 406 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 407 const ModuleSummaryIndex &Index, 408 const std::map<std::string, GVSummaryMapTy> 409 *ModuleToSummariesForIndex = nullptr) 410 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 411 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 412 // Assign unique value ids to all summaries to be written, for use 413 // in writing out the call graph edges. Save the mapping from GUID 414 // to the new global value id to use when writing those edges, which 415 // are currently saved in the index in terms of GUID. 416 forEachSummary([&](GVInfo I, bool) { 417 GUIDToValueIdMap[I.first] = ++GlobalValueId; 418 }); 419 } 420 421 /// The below iterator returns the GUID and associated summary. 422 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 423 424 /// Calls the callback for each value GUID and summary to be written to 425 /// bitcode. This hides the details of whether they are being pulled from the 426 /// entire index or just those in a provided ModuleToSummariesForIndex map. 427 template<typename Functor> 428 void forEachSummary(Functor Callback) { 429 if (ModuleToSummariesForIndex) { 430 for (auto &M : *ModuleToSummariesForIndex) 431 for (auto &Summary : M.second) { 432 Callback(Summary, false); 433 // Ensure aliasee is handled, e.g. for assigning a valueId, 434 // even if we are not importing the aliasee directly (the 435 // imported alias will contain a copy of aliasee). 436 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 437 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 438 } 439 } else { 440 for (auto &Summaries : Index) 441 for (auto &Summary : Summaries.second.SummaryList) 442 Callback({Summaries.first, Summary.get()}, false); 443 } 444 } 445 446 /// Calls the callback for each entry in the modulePaths StringMap that 447 /// should be written to the module path string table. This hides the details 448 /// of whether they are being pulled from the entire index or just those in a 449 /// provided ModuleToSummariesForIndex map. 450 template <typename Functor> void forEachModule(Functor Callback) { 451 if (ModuleToSummariesForIndex) { 452 for (const auto &M : *ModuleToSummariesForIndex) { 453 const auto &MPI = Index.modulePaths().find(M.first); 454 if (MPI == Index.modulePaths().end()) { 455 // This should only happen if the bitcode file was empty, in which 456 // case we shouldn't be importing (the ModuleToSummariesForIndex 457 // would only include the module we are writing and index for). 458 assert(ModuleToSummariesForIndex->size() == 1); 459 continue; 460 } 461 Callback(*MPI); 462 } 463 } else { 464 for (const auto &MPSE : Index.modulePaths()) 465 Callback(MPSE); 466 } 467 } 468 469 /// Main entry point for writing a combined index to bitcode. 470 void write(); 471 472 private: 473 void writeModStrings(); 474 void writeCombinedGlobalValueSummary(); 475 476 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 477 auto VMI = GUIDToValueIdMap.find(ValGUID); 478 if (VMI == GUIDToValueIdMap.end()) 479 return None; 480 return VMI->second; 481 } 482 483 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 484 }; 485 486 } // end anonymous namespace 487 488 static unsigned getEncodedCastOpcode(unsigned Opcode) { 489 switch (Opcode) { 490 default: llvm_unreachable("Unknown cast instruction!"); 491 case Instruction::Trunc : return bitc::CAST_TRUNC; 492 case Instruction::ZExt : return bitc::CAST_ZEXT; 493 case Instruction::SExt : return bitc::CAST_SEXT; 494 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 495 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 496 case Instruction::UIToFP : return bitc::CAST_UITOFP; 497 case Instruction::SIToFP : return bitc::CAST_SITOFP; 498 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 499 case Instruction::FPExt : return bitc::CAST_FPEXT; 500 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 501 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 502 case Instruction::BitCast : return bitc::CAST_BITCAST; 503 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 504 } 505 } 506 507 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 508 switch (Opcode) { 509 default: llvm_unreachable("Unknown binary instruction!"); 510 case Instruction::Add: 511 case Instruction::FAdd: return bitc::BINOP_ADD; 512 case Instruction::Sub: 513 case Instruction::FSub: return bitc::BINOP_SUB; 514 case Instruction::Mul: 515 case Instruction::FMul: return bitc::BINOP_MUL; 516 case Instruction::UDiv: return bitc::BINOP_UDIV; 517 case Instruction::FDiv: 518 case Instruction::SDiv: return bitc::BINOP_SDIV; 519 case Instruction::URem: return bitc::BINOP_UREM; 520 case Instruction::FRem: 521 case Instruction::SRem: return bitc::BINOP_SREM; 522 case Instruction::Shl: return bitc::BINOP_SHL; 523 case Instruction::LShr: return bitc::BINOP_LSHR; 524 case Instruction::AShr: return bitc::BINOP_ASHR; 525 case Instruction::And: return bitc::BINOP_AND; 526 case Instruction::Or: return bitc::BINOP_OR; 527 case Instruction::Xor: return bitc::BINOP_XOR; 528 } 529 } 530 531 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 532 switch (Op) { 533 default: llvm_unreachable("Unknown RMW operation!"); 534 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 535 case AtomicRMWInst::Add: return bitc::RMW_ADD; 536 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 537 case AtomicRMWInst::And: return bitc::RMW_AND; 538 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 539 case AtomicRMWInst::Or: return bitc::RMW_OR; 540 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 541 case AtomicRMWInst::Max: return bitc::RMW_MAX; 542 case AtomicRMWInst::Min: return bitc::RMW_MIN; 543 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 544 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 545 } 546 } 547 548 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 549 switch (Ordering) { 550 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 551 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 552 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 553 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 554 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 555 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 556 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 557 } 558 llvm_unreachable("Invalid ordering"); 559 } 560 561 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 562 StringRef Str, unsigned AbbrevToUse) { 563 SmallVector<unsigned, 64> Vals; 564 565 // Code: [strchar x N] 566 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 567 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 568 AbbrevToUse = 0; 569 Vals.push_back(Str[i]); 570 } 571 572 // Emit the finished record. 573 Stream.EmitRecord(Code, Vals, AbbrevToUse); 574 } 575 576 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 577 switch (Kind) { 578 case Attribute::Alignment: 579 return bitc::ATTR_KIND_ALIGNMENT; 580 case Attribute::AllocSize: 581 return bitc::ATTR_KIND_ALLOC_SIZE; 582 case Attribute::AlwaysInline: 583 return bitc::ATTR_KIND_ALWAYS_INLINE; 584 case Attribute::ArgMemOnly: 585 return bitc::ATTR_KIND_ARGMEMONLY; 586 case Attribute::Builtin: 587 return bitc::ATTR_KIND_BUILTIN; 588 case Attribute::ByVal: 589 return bitc::ATTR_KIND_BY_VAL; 590 case Attribute::Convergent: 591 return bitc::ATTR_KIND_CONVERGENT; 592 case Attribute::InAlloca: 593 return bitc::ATTR_KIND_IN_ALLOCA; 594 case Attribute::Cold: 595 return bitc::ATTR_KIND_COLD; 596 case Attribute::InaccessibleMemOnly: 597 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 598 case Attribute::InaccessibleMemOrArgMemOnly: 599 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 600 case Attribute::InlineHint: 601 return bitc::ATTR_KIND_INLINE_HINT; 602 case Attribute::InReg: 603 return bitc::ATTR_KIND_IN_REG; 604 case Attribute::JumpTable: 605 return bitc::ATTR_KIND_JUMP_TABLE; 606 case Attribute::MinSize: 607 return bitc::ATTR_KIND_MIN_SIZE; 608 case Attribute::Naked: 609 return bitc::ATTR_KIND_NAKED; 610 case Attribute::Nest: 611 return bitc::ATTR_KIND_NEST; 612 case Attribute::NoAlias: 613 return bitc::ATTR_KIND_NO_ALIAS; 614 case Attribute::NoBuiltin: 615 return bitc::ATTR_KIND_NO_BUILTIN; 616 case Attribute::NoCapture: 617 return bitc::ATTR_KIND_NO_CAPTURE; 618 case Attribute::NoDuplicate: 619 return bitc::ATTR_KIND_NO_DUPLICATE; 620 case Attribute::NoImplicitFloat: 621 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 622 case Attribute::NoInline: 623 return bitc::ATTR_KIND_NO_INLINE; 624 case Attribute::NoRecurse: 625 return bitc::ATTR_KIND_NO_RECURSE; 626 case Attribute::NonLazyBind: 627 return bitc::ATTR_KIND_NON_LAZY_BIND; 628 case Attribute::NonNull: 629 return bitc::ATTR_KIND_NON_NULL; 630 case Attribute::Dereferenceable: 631 return bitc::ATTR_KIND_DEREFERENCEABLE; 632 case Attribute::DereferenceableOrNull: 633 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 634 case Attribute::NoRedZone: 635 return bitc::ATTR_KIND_NO_RED_ZONE; 636 case Attribute::NoReturn: 637 return bitc::ATTR_KIND_NO_RETURN; 638 case Attribute::NoUnwind: 639 return bitc::ATTR_KIND_NO_UNWIND; 640 case Attribute::OptimizeForSize: 641 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 642 case Attribute::OptimizeNone: 643 return bitc::ATTR_KIND_OPTIMIZE_NONE; 644 case Attribute::ReadNone: 645 return bitc::ATTR_KIND_READ_NONE; 646 case Attribute::ReadOnly: 647 return bitc::ATTR_KIND_READ_ONLY; 648 case Attribute::Returned: 649 return bitc::ATTR_KIND_RETURNED; 650 case Attribute::ReturnsTwice: 651 return bitc::ATTR_KIND_RETURNS_TWICE; 652 case Attribute::SExt: 653 return bitc::ATTR_KIND_S_EXT; 654 case Attribute::Speculatable: 655 return bitc::ATTR_KIND_SPECULATABLE; 656 case Attribute::StackAlignment: 657 return bitc::ATTR_KIND_STACK_ALIGNMENT; 658 case Attribute::StackProtect: 659 return bitc::ATTR_KIND_STACK_PROTECT; 660 case Attribute::StackProtectReq: 661 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 662 case Attribute::StackProtectStrong: 663 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 664 case Attribute::SafeStack: 665 return bitc::ATTR_KIND_SAFESTACK; 666 case Attribute::StrictFP: 667 return bitc::ATTR_KIND_STRICT_FP; 668 case Attribute::StructRet: 669 return bitc::ATTR_KIND_STRUCT_RET; 670 case Attribute::SanitizeAddress: 671 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 672 case Attribute::SanitizeHWAddress: 673 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 674 case Attribute::SanitizeThread: 675 return bitc::ATTR_KIND_SANITIZE_THREAD; 676 case Attribute::SanitizeMemory: 677 return bitc::ATTR_KIND_SANITIZE_MEMORY; 678 case Attribute::SwiftError: 679 return bitc::ATTR_KIND_SWIFT_ERROR; 680 case Attribute::SwiftSelf: 681 return bitc::ATTR_KIND_SWIFT_SELF; 682 case Attribute::UWTable: 683 return bitc::ATTR_KIND_UW_TABLE; 684 case Attribute::WriteOnly: 685 return bitc::ATTR_KIND_WRITEONLY; 686 case Attribute::ZExt: 687 return bitc::ATTR_KIND_Z_EXT; 688 case Attribute::EndAttrKinds: 689 llvm_unreachable("Can not encode end-attribute kinds marker."); 690 case Attribute::None: 691 llvm_unreachable("Can not encode none-attribute."); 692 } 693 694 llvm_unreachable("Trying to encode unknown attribute"); 695 } 696 697 void ModuleBitcodeWriter::writeAttributeGroupTable() { 698 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 699 VE.getAttributeGroups(); 700 if (AttrGrps.empty()) return; 701 702 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 703 704 SmallVector<uint64_t, 64> Record; 705 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 706 unsigned AttrListIndex = Pair.first; 707 AttributeSet AS = Pair.second; 708 Record.push_back(VE.getAttributeGroupID(Pair)); 709 Record.push_back(AttrListIndex); 710 711 for (Attribute Attr : AS) { 712 if (Attr.isEnumAttribute()) { 713 Record.push_back(0); 714 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 715 } else if (Attr.isIntAttribute()) { 716 Record.push_back(1); 717 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 718 Record.push_back(Attr.getValueAsInt()); 719 } else { 720 StringRef Kind = Attr.getKindAsString(); 721 StringRef Val = Attr.getValueAsString(); 722 723 Record.push_back(Val.empty() ? 3 : 4); 724 Record.append(Kind.begin(), Kind.end()); 725 Record.push_back(0); 726 if (!Val.empty()) { 727 Record.append(Val.begin(), Val.end()); 728 Record.push_back(0); 729 } 730 } 731 } 732 733 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 734 Record.clear(); 735 } 736 737 Stream.ExitBlock(); 738 } 739 740 void ModuleBitcodeWriter::writeAttributeTable() { 741 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 742 if (Attrs.empty()) return; 743 744 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 745 746 SmallVector<uint64_t, 64> Record; 747 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 748 AttributeList AL = Attrs[i]; 749 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 750 AttributeSet AS = AL.getAttributes(i); 751 if (AS.hasAttributes()) 752 Record.push_back(VE.getAttributeGroupID({i, AS})); 753 } 754 755 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 756 Record.clear(); 757 } 758 759 Stream.ExitBlock(); 760 } 761 762 /// WriteTypeTable - Write out the type table for a module. 763 void ModuleBitcodeWriter::writeTypeTable() { 764 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 765 766 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 767 SmallVector<uint64_t, 64> TypeVals; 768 769 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 770 771 // Abbrev for TYPE_CODE_POINTER. 772 auto Abbv = std::make_shared<BitCodeAbbrev>(); 773 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 775 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 776 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 777 778 // Abbrev for TYPE_CODE_FUNCTION. 779 Abbv = std::make_shared<BitCodeAbbrev>(); 780 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 784 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 785 786 // Abbrev for TYPE_CODE_STRUCT_ANON. 787 Abbv = std::make_shared<BitCodeAbbrev>(); 788 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 792 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 793 794 // Abbrev for TYPE_CODE_STRUCT_NAME. 795 Abbv = std::make_shared<BitCodeAbbrev>(); 796 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 799 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 800 801 // Abbrev for TYPE_CODE_STRUCT_NAMED. 802 Abbv = std::make_shared<BitCodeAbbrev>(); 803 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 807 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 808 809 // Abbrev for TYPE_CODE_ARRAY. 810 Abbv = std::make_shared<BitCodeAbbrev>(); 811 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 814 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 815 816 // Emit an entry count so the reader can reserve space. 817 TypeVals.push_back(TypeList.size()); 818 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 819 TypeVals.clear(); 820 821 // Loop over all of the types, emitting each in turn. 822 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 823 Type *T = TypeList[i]; 824 int AbbrevToUse = 0; 825 unsigned Code = 0; 826 827 switch (T->getTypeID()) { 828 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 829 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 830 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 831 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 832 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 833 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 834 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 835 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 836 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 837 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 838 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 839 case Type::IntegerTyID: 840 // INTEGER: [width] 841 Code = bitc::TYPE_CODE_INTEGER; 842 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 843 break; 844 case Type::PointerTyID: { 845 PointerType *PTy = cast<PointerType>(T); 846 // POINTER: [pointee type, address space] 847 Code = bitc::TYPE_CODE_POINTER; 848 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 849 unsigned AddressSpace = PTy->getAddressSpace(); 850 TypeVals.push_back(AddressSpace); 851 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 852 break; 853 } 854 case Type::FunctionTyID: { 855 FunctionType *FT = cast<FunctionType>(T); 856 // FUNCTION: [isvararg, retty, paramty x N] 857 Code = bitc::TYPE_CODE_FUNCTION; 858 TypeVals.push_back(FT->isVarArg()); 859 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 860 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 861 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 862 AbbrevToUse = FunctionAbbrev; 863 break; 864 } 865 case Type::StructTyID: { 866 StructType *ST = cast<StructType>(T); 867 // STRUCT: [ispacked, eltty x N] 868 TypeVals.push_back(ST->isPacked()); 869 // Output all of the element types. 870 for (StructType::element_iterator I = ST->element_begin(), 871 E = ST->element_end(); I != E; ++I) 872 TypeVals.push_back(VE.getTypeID(*I)); 873 874 if (ST->isLiteral()) { 875 Code = bitc::TYPE_CODE_STRUCT_ANON; 876 AbbrevToUse = StructAnonAbbrev; 877 } else { 878 if (ST->isOpaque()) { 879 Code = bitc::TYPE_CODE_OPAQUE; 880 } else { 881 Code = bitc::TYPE_CODE_STRUCT_NAMED; 882 AbbrevToUse = StructNamedAbbrev; 883 } 884 885 // Emit the name if it is present. 886 if (!ST->getName().empty()) 887 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 888 StructNameAbbrev); 889 } 890 break; 891 } 892 case Type::ArrayTyID: { 893 ArrayType *AT = cast<ArrayType>(T); 894 // ARRAY: [numelts, eltty] 895 Code = bitc::TYPE_CODE_ARRAY; 896 TypeVals.push_back(AT->getNumElements()); 897 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 898 AbbrevToUse = ArrayAbbrev; 899 break; 900 } 901 case Type::VectorTyID: { 902 VectorType *VT = cast<VectorType>(T); 903 // VECTOR [numelts, eltty] 904 Code = bitc::TYPE_CODE_VECTOR; 905 TypeVals.push_back(VT->getNumElements()); 906 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 907 break; 908 } 909 } 910 911 // Emit the finished record. 912 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 913 TypeVals.clear(); 914 } 915 916 Stream.ExitBlock(); 917 } 918 919 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 920 switch (Linkage) { 921 case GlobalValue::ExternalLinkage: 922 return 0; 923 case GlobalValue::WeakAnyLinkage: 924 return 16; 925 case GlobalValue::AppendingLinkage: 926 return 2; 927 case GlobalValue::InternalLinkage: 928 return 3; 929 case GlobalValue::LinkOnceAnyLinkage: 930 return 18; 931 case GlobalValue::ExternalWeakLinkage: 932 return 7; 933 case GlobalValue::CommonLinkage: 934 return 8; 935 case GlobalValue::PrivateLinkage: 936 return 9; 937 case GlobalValue::WeakODRLinkage: 938 return 17; 939 case GlobalValue::LinkOnceODRLinkage: 940 return 19; 941 case GlobalValue::AvailableExternallyLinkage: 942 return 12; 943 } 944 llvm_unreachable("Invalid linkage"); 945 } 946 947 static unsigned getEncodedLinkage(const GlobalValue &GV) { 948 return getEncodedLinkage(GV.getLinkage()); 949 } 950 951 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 952 uint64_t RawFlags = 0; 953 RawFlags |= Flags.ReadNone; 954 RawFlags |= (Flags.ReadOnly << 1); 955 RawFlags |= (Flags.NoRecurse << 2); 956 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 957 return RawFlags; 958 } 959 960 // Decode the flags for GlobalValue in the summary 961 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 962 uint64_t RawFlags = 0; 963 964 RawFlags |= Flags.NotEligibleToImport; // bool 965 RawFlags |= (Flags.Live << 1); 966 RawFlags |= (Flags.DSOLocal << 2); 967 968 // Linkage don't need to be remapped at that time for the summary. Any future 969 // change to the getEncodedLinkage() function will need to be taken into 970 // account here as well. 971 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 972 973 return RawFlags; 974 } 975 976 static unsigned getEncodedVisibility(const GlobalValue &GV) { 977 switch (GV.getVisibility()) { 978 case GlobalValue::DefaultVisibility: return 0; 979 case GlobalValue::HiddenVisibility: return 1; 980 case GlobalValue::ProtectedVisibility: return 2; 981 } 982 llvm_unreachable("Invalid visibility"); 983 } 984 985 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 986 switch (GV.getDLLStorageClass()) { 987 case GlobalValue::DefaultStorageClass: return 0; 988 case GlobalValue::DLLImportStorageClass: return 1; 989 case GlobalValue::DLLExportStorageClass: return 2; 990 } 991 llvm_unreachable("Invalid DLL storage class"); 992 } 993 994 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 995 switch (GV.getThreadLocalMode()) { 996 case GlobalVariable::NotThreadLocal: return 0; 997 case GlobalVariable::GeneralDynamicTLSModel: return 1; 998 case GlobalVariable::LocalDynamicTLSModel: return 2; 999 case GlobalVariable::InitialExecTLSModel: return 3; 1000 case GlobalVariable::LocalExecTLSModel: return 4; 1001 } 1002 llvm_unreachable("Invalid TLS model"); 1003 } 1004 1005 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1006 switch (C.getSelectionKind()) { 1007 case Comdat::Any: 1008 return bitc::COMDAT_SELECTION_KIND_ANY; 1009 case Comdat::ExactMatch: 1010 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1011 case Comdat::Largest: 1012 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1013 case Comdat::NoDuplicates: 1014 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1015 case Comdat::SameSize: 1016 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1017 } 1018 llvm_unreachable("Invalid selection kind"); 1019 } 1020 1021 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1022 switch (GV.getUnnamedAddr()) { 1023 case GlobalValue::UnnamedAddr::None: return 0; 1024 case GlobalValue::UnnamedAddr::Local: return 2; 1025 case GlobalValue::UnnamedAddr::Global: return 1; 1026 } 1027 llvm_unreachable("Invalid unnamed_addr"); 1028 } 1029 1030 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1031 if (GenerateHash) 1032 Hasher.update(Str); 1033 return StrtabBuilder.add(Str); 1034 } 1035 1036 void ModuleBitcodeWriter::writeComdats() { 1037 SmallVector<unsigned, 64> Vals; 1038 for (const Comdat *C : VE.getComdats()) { 1039 // COMDAT: [strtab offset, strtab size, selection_kind] 1040 Vals.push_back(addToStrtab(C->getName())); 1041 Vals.push_back(C->getName().size()); 1042 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1043 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1044 Vals.clear(); 1045 } 1046 } 1047 1048 /// Write a record that will eventually hold the word offset of the 1049 /// module-level VST. For now the offset is 0, which will be backpatched 1050 /// after the real VST is written. Saves the bit offset to backpatch. 1051 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1052 // Write a placeholder value in for the offset of the real VST, 1053 // which is written after the function blocks so that it can include 1054 // the offset of each function. The placeholder offset will be 1055 // updated when the real VST is written. 1056 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1057 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1058 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1059 // hold the real VST offset. Must use fixed instead of VBR as we don't 1060 // know how many VBR chunks to reserve ahead of time. 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1062 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1063 1064 // Emit the placeholder 1065 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1066 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1067 1068 // Compute and save the bit offset to the placeholder, which will be 1069 // patched when the real VST is written. We can simply subtract the 32-bit 1070 // fixed size from the current bit number to get the location to backpatch. 1071 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1072 } 1073 1074 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1075 1076 /// Determine the encoding to use for the given string name and length. 1077 static StringEncoding getStringEncoding(StringRef Str) { 1078 bool isChar6 = true; 1079 for (char C : Str) { 1080 if (isChar6) 1081 isChar6 = BitCodeAbbrevOp::isChar6(C); 1082 if ((unsigned char)C & 128) 1083 // don't bother scanning the rest. 1084 return SE_Fixed8; 1085 } 1086 if (isChar6) 1087 return SE_Char6; 1088 return SE_Fixed7; 1089 } 1090 1091 /// Emit top-level description of module, including target triple, inline asm, 1092 /// descriptors for global variables, and function prototype info. 1093 /// Returns the bit offset to backpatch with the location of the real VST. 1094 void ModuleBitcodeWriter::writeModuleInfo() { 1095 // Emit various pieces of data attached to a module. 1096 if (!M.getTargetTriple().empty()) 1097 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1098 0 /*TODO*/); 1099 const std::string &DL = M.getDataLayoutStr(); 1100 if (!DL.empty()) 1101 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1102 if (!M.getModuleInlineAsm().empty()) 1103 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1104 0 /*TODO*/); 1105 1106 // Emit information about sections and GC, computing how many there are. Also 1107 // compute the maximum alignment value. 1108 std::map<std::string, unsigned> SectionMap; 1109 std::map<std::string, unsigned> GCMap; 1110 unsigned MaxAlignment = 0; 1111 unsigned MaxGlobalType = 0; 1112 for (const GlobalValue &GV : M.globals()) { 1113 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1114 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1115 if (GV.hasSection()) { 1116 // Give section names unique ID's. 1117 unsigned &Entry = SectionMap[GV.getSection()]; 1118 if (!Entry) { 1119 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1120 0 /*TODO*/); 1121 Entry = SectionMap.size(); 1122 } 1123 } 1124 } 1125 for (const Function &F : M) { 1126 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1127 if (F.hasSection()) { 1128 // Give section names unique ID's. 1129 unsigned &Entry = SectionMap[F.getSection()]; 1130 if (!Entry) { 1131 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1132 0 /*TODO*/); 1133 Entry = SectionMap.size(); 1134 } 1135 } 1136 if (F.hasGC()) { 1137 // Same for GC names. 1138 unsigned &Entry = GCMap[F.getGC()]; 1139 if (!Entry) { 1140 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1141 0 /*TODO*/); 1142 Entry = GCMap.size(); 1143 } 1144 } 1145 } 1146 1147 // Emit abbrev for globals, now that we know # sections and max alignment. 1148 unsigned SimpleGVarAbbrev = 0; 1149 if (!M.global_empty()) { 1150 // Add an abbrev for common globals with no visibility or thread localness. 1151 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1152 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1156 Log2_32_Ceil(MaxGlobalType+1))); 1157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1158 //| explicitType << 1 1159 //| constant 1160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1162 if (MaxAlignment == 0) // Alignment. 1163 Abbv->Add(BitCodeAbbrevOp(0)); 1164 else { 1165 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1167 Log2_32_Ceil(MaxEncAlignment+1))); 1168 } 1169 if (SectionMap.empty()) // Section. 1170 Abbv->Add(BitCodeAbbrevOp(0)); 1171 else 1172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1173 Log2_32_Ceil(SectionMap.size()+1))); 1174 // Don't bother emitting vis + thread local. 1175 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1176 } 1177 1178 SmallVector<unsigned, 64> Vals; 1179 // Emit the module's source file name. 1180 { 1181 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1182 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1183 if (Bits == SE_Char6) 1184 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1185 else if (Bits == SE_Fixed7) 1186 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1187 1188 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1189 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1190 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1192 Abbv->Add(AbbrevOpToUse); 1193 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1194 1195 for (const auto P : M.getSourceFileName()) 1196 Vals.push_back((unsigned char)P); 1197 1198 // Emit the finished record. 1199 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1200 Vals.clear(); 1201 } 1202 1203 // Emit the global variable information. 1204 for (const GlobalVariable &GV : M.globals()) { 1205 unsigned AbbrevToUse = 0; 1206 1207 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1208 // linkage, alignment, section, visibility, threadlocal, 1209 // unnamed_addr, externally_initialized, dllstorageclass, 1210 // comdat, attributes, DSO_Local] 1211 Vals.push_back(addToStrtab(GV.getName())); 1212 Vals.push_back(GV.getName().size()); 1213 Vals.push_back(VE.getTypeID(GV.getValueType())); 1214 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1215 Vals.push_back(GV.isDeclaration() ? 0 : 1216 (VE.getValueID(GV.getInitializer()) + 1)); 1217 Vals.push_back(getEncodedLinkage(GV)); 1218 Vals.push_back(Log2_32(GV.getAlignment())+1); 1219 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1220 if (GV.isThreadLocal() || 1221 GV.getVisibility() != GlobalValue::DefaultVisibility || 1222 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1223 GV.isExternallyInitialized() || 1224 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1225 GV.hasComdat() || 1226 GV.hasAttributes() || 1227 GV.isDSOLocal()) { 1228 Vals.push_back(getEncodedVisibility(GV)); 1229 Vals.push_back(getEncodedThreadLocalMode(GV)); 1230 Vals.push_back(getEncodedUnnamedAddr(GV)); 1231 Vals.push_back(GV.isExternallyInitialized()); 1232 Vals.push_back(getEncodedDLLStorageClass(GV)); 1233 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1234 1235 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1236 Vals.push_back(VE.getAttributeListID(AL)); 1237 1238 Vals.push_back(GV.isDSOLocal()); 1239 } else { 1240 AbbrevToUse = SimpleGVarAbbrev; 1241 } 1242 1243 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1244 Vals.clear(); 1245 } 1246 1247 // Emit the function proto information. 1248 for (const Function &F : M) { 1249 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1250 // linkage, paramattrs, alignment, section, visibility, gc, 1251 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1252 // prefixdata, personalityfn, DSO_Local] 1253 Vals.push_back(addToStrtab(F.getName())); 1254 Vals.push_back(F.getName().size()); 1255 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1256 Vals.push_back(F.getCallingConv()); 1257 Vals.push_back(F.isDeclaration()); 1258 Vals.push_back(getEncodedLinkage(F)); 1259 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1260 Vals.push_back(Log2_32(F.getAlignment())+1); 1261 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1262 Vals.push_back(getEncodedVisibility(F)); 1263 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1264 Vals.push_back(getEncodedUnnamedAddr(F)); 1265 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1266 : 0); 1267 Vals.push_back(getEncodedDLLStorageClass(F)); 1268 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1269 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1270 : 0); 1271 Vals.push_back( 1272 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1273 1274 Vals.push_back(F.isDSOLocal()); 1275 unsigned AbbrevToUse = 0; 1276 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1277 Vals.clear(); 1278 } 1279 1280 // Emit the alias information. 1281 for (const GlobalAlias &A : M.aliases()) { 1282 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1283 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1284 // DSO_Local] 1285 Vals.push_back(addToStrtab(A.getName())); 1286 Vals.push_back(A.getName().size()); 1287 Vals.push_back(VE.getTypeID(A.getValueType())); 1288 Vals.push_back(A.getType()->getAddressSpace()); 1289 Vals.push_back(VE.getValueID(A.getAliasee())); 1290 Vals.push_back(getEncodedLinkage(A)); 1291 Vals.push_back(getEncodedVisibility(A)); 1292 Vals.push_back(getEncodedDLLStorageClass(A)); 1293 Vals.push_back(getEncodedThreadLocalMode(A)); 1294 Vals.push_back(getEncodedUnnamedAddr(A)); 1295 Vals.push_back(A.isDSOLocal()); 1296 1297 unsigned AbbrevToUse = 0; 1298 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1299 Vals.clear(); 1300 } 1301 1302 // Emit the ifunc information. 1303 for (const GlobalIFunc &I : M.ifuncs()) { 1304 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1305 // val#, linkage, visibility, DSO_Local] 1306 Vals.push_back(addToStrtab(I.getName())); 1307 Vals.push_back(I.getName().size()); 1308 Vals.push_back(VE.getTypeID(I.getValueType())); 1309 Vals.push_back(I.getType()->getAddressSpace()); 1310 Vals.push_back(VE.getValueID(I.getResolver())); 1311 Vals.push_back(getEncodedLinkage(I)); 1312 Vals.push_back(getEncodedVisibility(I)); 1313 Vals.push_back(I.isDSOLocal()); 1314 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1315 Vals.clear(); 1316 } 1317 1318 writeValueSymbolTableForwardDecl(); 1319 } 1320 1321 static uint64_t getOptimizationFlags(const Value *V) { 1322 uint64_t Flags = 0; 1323 1324 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1325 if (OBO->hasNoSignedWrap()) 1326 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1327 if (OBO->hasNoUnsignedWrap()) 1328 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1329 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1330 if (PEO->isExact()) 1331 Flags |= 1 << bitc::PEO_EXACT; 1332 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1333 if (FPMO->hasAllowReassoc()) 1334 Flags |= FastMathFlags::AllowReassoc; 1335 if (FPMO->hasNoNaNs()) 1336 Flags |= FastMathFlags::NoNaNs; 1337 if (FPMO->hasNoInfs()) 1338 Flags |= FastMathFlags::NoInfs; 1339 if (FPMO->hasNoSignedZeros()) 1340 Flags |= FastMathFlags::NoSignedZeros; 1341 if (FPMO->hasAllowReciprocal()) 1342 Flags |= FastMathFlags::AllowReciprocal; 1343 if (FPMO->hasAllowContract()) 1344 Flags |= FastMathFlags::AllowContract; 1345 if (FPMO->hasApproxFunc()) 1346 Flags |= FastMathFlags::ApproxFunc; 1347 } 1348 1349 return Flags; 1350 } 1351 1352 void ModuleBitcodeWriter::writeValueAsMetadata( 1353 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1354 // Mimic an MDNode with a value as one operand. 1355 Value *V = MD->getValue(); 1356 Record.push_back(VE.getTypeID(V->getType())); 1357 Record.push_back(VE.getValueID(V)); 1358 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1359 Record.clear(); 1360 } 1361 1362 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1363 SmallVectorImpl<uint64_t> &Record, 1364 unsigned Abbrev) { 1365 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1366 Metadata *MD = N->getOperand(i); 1367 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1368 "Unexpected function-local metadata"); 1369 Record.push_back(VE.getMetadataOrNullID(MD)); 1370 } 1371 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1372 : bitc::METADATA_NODE, 1373 Record, Abbrev); 1374 Record.clear(); 1375 } 1376 1377 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1378 // Assume the column is usually under 128, and always output the inlined-at 1379 // location (it's never more expensive than building an array size 1). 1380 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1381 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1387 return Stream.EmitAbbrev(std::move(Abbv)); 1388 } 1389 1390 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1391 SmallVectorImpl<uint64_t> &Record, 1392 unsigned &Abbrev) { 1393 if (!Abbrev) 1394 Abbrev = createDILocationAbbrev(); 1395 1396 Record.push_back(N->isDistinct()); 1397 Record.push_back(N->getLine()); 1398 Record.push_back(N->getColumn()); 1399 Record.push_back(VE.getMetadataID(N->getScope())); 1400 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1401 1402 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1403 Record.clear(); 1404 } 1405 1406 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1407 // Assume the column is usually under 128, and always output the inlined-at 1408 // location (it's never more expensive than building an array size 1). 1409 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1410 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1417 return Stream.EmitAbbrev(std::move(Abbv)); 1418 } 1419 1420 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1421 SmallVectorImpl<uint64_t> &Record, 1422 unsigned &Abbrev) { 1423 if (!Abbrev) 1424 Abbrev = createGenericDINodeAbbrev(); 1425 1426 Record.push_back(N->isDistinct()); 1427 Record.push_back(N->getTag()); 1428 Record.push_back(0); // Per-tag version field; unused for now. 1429 1430 for (auto &I : N->operands()) 1431 Record.push_back(VE.getMetadataOrNullID(I)); 1432 1433 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1434 Record.clear(); 1435 } 1436 1437 static uint64_t rotateSign(int64_t I) { 1438 uint64_t U = I; 1439 return I < 0 ? ~(U << 1) : U << 1; 1440 } 1441 1442 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1443 SmallVectorImpl<uint64_t> &Record, 1444 unsigned Abbrev) { 1445 Record.push_back(N->isDistinct()); 1446 Record.push_back(N->getCount()); 1447 Record.push_back(rotateSign(N->getLowerBound())); 1448 1449 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1450 Record.clear(); 1451 } 1452 1453 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1454 SmallVectorImpl<uint64_t> &Record, 1455 unsigned Abbrev) { 1456 Record.push_back(N->isDistinct()); 1457 Record.push_back(rotateSign(N->getValue())); 1458 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1459 1460 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1461 Record.clear(); 1462 } 1463 1464 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1465 SmallVectorImpl<uint64_t> &Record, 1466 unsigned Abbrev) { 1467 Record.push_back(N->isDistinct()); 1468 Record.push_back(N->getTag()); 1469 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1470 Record.push_back(N->getSizeInBits()); 1471 Record.push_back(N->getAlignInBits()); 1472 Record.push_back(N->getEncoding()); 1473 1474 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1475 Record.clear(); 1476 } 1477 1478 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1479 SmallVectorImpl<uint64_t> &Record, 1480 unsigned Abbrev) { 1481 Record.push_back(N->isDistinct()); 1482 Record.push_back(N->getTag()); 1483 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1484 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1485 Record.push_back(N->getLine()); 1486 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1487 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1488 Record.push_back(N->getSizeInBits()); 1489 Record.push_back(N->getAlignInBits()); 1490 Record.push_back(N->getOffsetInBits()); 1491 Record.push_back(N->getFlags()); 1492 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1493 1494 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1495 // that there is no DWARF address space associated with DIDerivedType. 1496 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1497 Record.push_back(*DWARFAddressSpace + 1); 1498 else 1499 Record.push_back(0); 1500 1501 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1502 Record.clear(); 1503 } 1504 1505 void ModuleBitcodeWriter::writeDICompositeType( 1506 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1507 unsigned Abbrev) { 1508 const unsigned IsNotUsedInOldTypeRef = 0x2; 1509 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1510 Record.push_back(N->getTag()); 1511 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1512 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1513 Record.push_back(N->getLine()); 1514 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1515 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1516 Record.push_back(N->getSizeInBits()); 1517 Record.push_back(N->getAlignInBits()); 1518 Record.push_back(N->getOffsetInBits()); 1519 Record.push_back(N->getFlags()); 1520 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1521 Record.push_back(N->getRuntimeLang()); 1522 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1523 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1524 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1525 1526 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1527 Record.clear(); 1528 } 1529 1530 void ModuleBitcodeWriter::writeDISubroutineType( 1531 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1532 unsigned Abbrev) { 1533 const unsigned HasNoOldTypeRefs = 0x2; 1534 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1535 Record.push_back(N->getFlags()); 1536 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1537 Record.push_back(N->getCC()); 1538 1539 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1540 Record.clear(); 1541 } 1542 1543 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1544 SmallVectorImpl<uint64_t> &Record, 1545 unsigned Abbrev) { 1546 Record.push_back(N->isDistinct()); 1547 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1548 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1549 Record.push_back(N->getChecksumKind()); 1550 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1551 1552 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1553 Record.clear(); 1554 } 1555 1556 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1557 SmallVectorImpl<uint64_t> &Record, 1558 unsigned Abbrev) { 1559 assert(N->isDistinct() && "Expected distinct compile units"); 1560 Record.push_back(/* IsDistinct */ true); 1561 Record.push_back(N->getSourceLanguage()); 1562 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1563 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1564 Record.push_back(N->isOptimized()); 1565 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1566 Record.push_back(N->getRuntimeVersion()); 1567 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1568 Record.push_back(N->getEmissionKind()); 1569 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1570 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1571 Record.push_back(/* subprograms */ 0); 1572 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1573 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1574 Record.push_back(N->getDWOId()); 1575 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1576 Record.push_back(N->getSplitDebugInlining()); 1577 Record.push_back(N->getDebugInfoForProfiling()); 1578 Record.push_back(N->getGnuPubnames()); 1579 1580 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1581 Record.clear(); 1582 } 1583 1584 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1585 SmallVectorImpl<uint64_t> &Record, 1586 unsigned Abbrev) { 1587 uint64_t HasUnitFlag = 1 << 1; 1588 Record.push_back(N->isDistinct() | HasUnitFlag); 1589 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1590 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1591 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1593 Record.push_back(N->getLine()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1595 Record.push_back(N->isLocalToUnit()); 1596 Record.push_back(N->isDefinition()); 1597 Record.push_back(N->getScopeLine()); 1598 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1599 Record.push_back(N->getVirtuality()); 1600 Record.push_back(N->getVirtualIndex()); 1601 Record.push_back(N->getFlags()); 1602 Record.push_back(N->isOptimized()); 1603 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1604 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1605 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1606 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1607 Record.push_back(N->getThisAdjustment()); 1608 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1609 1610 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1611 Record.clear(); 1612 } 1613 1614 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1615 SmallVectorImpl<uint64_t> &Record, 1616 unsigned Abbrev) { 1617 Record.push_back(N->isDistinct()); 1618 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1619 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1620 Record.push_back(N->getLine()); 1621 Record.push_back(N->getColumn()); 1622 1623 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1624 Record.clear(); 1625 } 1626 1627 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1628 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1629 unsigned Abbrev) { 1630 Record.push_back(N->isDistinct()); 1631 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1632 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1633 Record.push_back(N->getDiscriminator()); 1634 1635 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1636 Record.clear(); 1637 } 1638 1639 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1640 SmallVectorImpl<uint64_t> &Record, 1641 unsigned Abbrev) { 1642 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1643 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1644 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1645 1646 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1647 Record.clear(); 1648 } 1649 1650 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1651 SmallVectorImpl<uint64_t> &Record, 1652 unsigned Abbrev) { 1653 Record.push_back(N->isDistinct()); 1654 Record.push_back(N->getMacinfoType()); 1655 Record.push_back(N->getLine()); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1658 1659 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1660 Record.clear(); 1661 } 1662 1663 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1664 SmallVectorImpl<uint64_t> &Record, 1665 unsigned Abbrev) { 1666 Record.push_back(N->isDistinct()); 1667 Record.push_back(N->getMacinfoType()); 1668 Record.push_back(N->getLine()); 1669 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1670 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1671 1672 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1673 Record.clear(); 1674 } 1675 1676 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1677 SmallVectorImpl<uint64_t> &Record, 1678 unsigned Abbrev) { 1679 Record.push_back(N->isDistinct()); 1680 for (auto &I : N->operands()) 1681 Record.push_back(VE.getMetadataOrNullID(I)); 1682 1683 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1684 Record.clear(); 1685 } 1686 1687 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1688 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1689 unsigned Abbrev) { 1690 Record.push_back(N->isDistinct()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1693 1694 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1695 Record.clear(); 1696 } 1697 1698 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1699 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1700 unsigned Abbrev) { 1701 Record.push_back(N->isDistinct()); 1702 Record.push_back(N->getTag()); 1703 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1704 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1705 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1706 1707 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1708 Record.clear(); 1709 } 1710 1711 void ModuleBitcodeWriter::writeDIGlobalVariable( 1712 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1713 unsigned Abbrev) { 1714 const uint64_t Version = 1 << 1; 1715 Record.push_back((uint64_t)N->isDistinct() | Version); 1716 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1720 Record.push_back(N->getLine()); 1721 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1722 Record.push_back(N->isLocalToUnit()); 1723 Record.push_back(N->isDefinition()); 1724 Record.push_back(/* expr */ 0); 1725 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1726 Record.push_back(N->getAlignInBits()); 1727 1728 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1729 Record.clear(); 1730 } 1731 1732 void ModuleBitcodeWriter::writeDILocalVariable( 1733 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1734 unsigned Abbrev) { 1735 // In order to support all possible bitcode formats in BitcodeReader we need 1736 // to distinguish the following cases: 1737 // 1) Record has no artificial tag (Record[1]), 1738 // has no obsolete inlinedAt field (Record[9]). 1739 // In this case Record size will be 8, HasAlignment flag is false. 1740 // 2) Record has artificial tag (Record[1]), 1741 // has no obsolete inlignedAt field (Record[9]). 1742 // In this case Record size will be 9, HasAlignment flag is false. 1743 // 3) Record has both artificial tag (Record[1]) and 1744 // obsolete inlignedAt field (Record[9]). 1745 // In this case Record size will be 10, HasAlignment flag is false. 1746 // 4) Record has neither artificial tag, nor inlignedAt field, but 1747 // HasAlignment flag is true and Record[8] contains alignment value. 1748 const uint64_t HasAlignmentFlag = 1 << 1; 1749 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1750 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1753 Record.push_back(N->getLine()); 1754 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1755 Record.push_back(N->getArg()); 1756 Record.push_back(N->getFlags()); 1757 Record.push_back(N->getAlignInBits()); 1758 1759 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1760 Record.clear(); 1761 } 1762 1763 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1764 SmallVectorImpl<uint64_t> &Record, 1765 unsigned Abbrev) { 1766 Record.reserve(N->getElements().size() + 1); 1767 const uint64_t Version = 3 << 1; 1768 Record.push_back((uint64_t)N->isDistinct() | Version); 1769 Record.append(N->elements_begin(), N->elements_end()); 1770 1771 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1772 Record.clear(); 1773 } 1774 1775 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1776 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1777 unsigned Abbrev) { 1778 Record.push_back(N->isDistinct()); 1779 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1781 1782 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1783 Record.clear(); 1784 } 1785 1786 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1787 SmallVectorImpl<uint64_t> &Record, 1788 unsigned Abbrev) { 1789 Record.push_back(N->isDistinct()); 1790 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1791 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1792 Record.push_back(N->getLine()); 1793 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1795 Record.push_back(N->getAttributes()); 1796 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1797 1798 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1799 Record.clear(); 1800 } 1801 1802 void ModuleBitcodeWriter::writeDIImportedEntity( 1803 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1804 unsigned Abbrev) { 1805 Record.push_back(N->isDistinct()); 1806 Record.push_back(N->getTag()); 1807 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1808 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1809 Record.push_back(N->getLine()); 1810 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1811 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1812 1813 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1814 Record.clear(); 1815 } 1816 1817 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1818 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1819 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1822 return Stream.EmitAbbrev(std::move(Abbv)); 1823 } 1824 1825 void ModuleBitcodeWriter::writeNamedMetadata( 1826 SmallVectorImpl<uint64_t> &Record) { 1827 if (M.named_metadata_empty()) 1828 return; 1829 1830 unsigned Abbrev = createNamedMetadataAbbrev(); 1831 for (const NamedMDNode &NMD : M.named_metadata()) { 1832 // Write name. 1833 StringRef Str = NMD.getName(); 1834 Record.append(Str.bytes_begin(), Str.bytes_end()); 1835 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1836 Record.clear(); 1837 1838 // Write named metadata operands. 1839 for (const MDNode *N : NMD.operands()) 1840 Record.push_back(VE.getMetadataID(N)); 1841 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1842 Record.clear(); 1843 } 1844 } 1845 1846 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1847 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1848 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1852 return Stream.EmitAbbrev(std::move(Abbv)); 1853 } 1854 1855 /// Write out a record for MDString. 1856 /// 1857 /// All the metadata strings in a metadata block are emitted in a single 1858 /// record. The sizes and strings themselves are shoved into a blob. 1859 void ModuleBitcodeWriter::writeMetadataStrings( 1860 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1861 if (Strings.empty()) 1862 return; 1863 1864 // Start the record with the number of strings. 1865 Record.push_back(bitc::METADATA_STRINGS); 1866 Record.push_back(Strings.size()); 1867 1868 // Emit the sizes of the strings in the blob. 1869 SmallString<256> Blob; 1870 { 1871 BitstreamWriter W(Blob); 1872 for (const Metadata *MD : Strings) 1873 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1874 W.FlushToWord(); 1875 } 1876 1877 // Add the offset to the strings to the record. 1878 Record.push_back(Blob.size()); 1879 1880 // Add the strings to the blob. 1881 for (const Metadata *MD : Strings) 1882 Blob.append(cast<MDString>(MD)->getString()); 1883 1884 // Emit the final record. 1885 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1886 Record.clear(); 1887 } 1888 1889 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1890 enum MetadataAbbrev : unsigned { 1891 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1892 #include "llvm/IR/Metadata.def" 1893 LastPlusOne 1894 }; 1895 1896 void ModuleBitcodeWriter::writeMetadataRecords( 1897 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1898 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1899 if (MDs.empty()) 1900 return; 1901 1902 // Initialize MDNode abbreviations. 1903 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1904 #include "llvm/IR/Metadata.def" 1905 1906 for (const Metadata *MD : MDs) { 1907 if (IndexPos) 1908 IndexPos->push_back(Stream.GetCurrentBitNo()); 1909 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1910 assert(N->isResolved() && "Expected forward references to be resolved"); 1911 1912 switch (N->getMetadataID()) { 1913 default: 1914 llvm_unreachable("Invalid MDNode subclass"); 1915 #define HANDLE_MDNODE_LEAF(CLASS) \ 1916 case Metadata::CLASS##Kind: \ 1917 if (MDAbbrevs) \ 1918 write##CLASS(cast<CLASS>(N), Record, \ 1919 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1920 else \ 1921 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1922 continue; 1923 #include "llvm/IR/Metadata.def" 1924 } 1925 } 1926 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1927 } 1928 } 1929 1930 void ModuleBitcodeWriter::writeModuleMetadata() { 1931 if (!VE.hasMDs() && M.named_metadata_empty()) 1932 return; 1933 1934 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1935 SmallVector<uint64_t, 64> Record; 1936 1937 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1938 // block and load any metadata. 1939 std::vector<unsigned> MDAbbrevs; 1940 1941 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1942 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1943 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1944 createGenericDINodeAbbrev(); 1945 1946 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1947 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1950 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1951 1952 Abbv = std::make_shared<BitCodeAbbrev>(); 1953 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1956 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1957 1958 // Emit MDStrings together upfront. 1959 writeMetadataStrings(VE.getMDStrings(), Record); 1960 1961 // We only emit an index for the metadata record if we have more than a given 1962 // (naive) threshold of metadatas, otherwise it is not worth it. 1963 if (VE.getNonMDStrings().size() > IndexThreshold) { 1964 // Write a placeholder value in for the offset of the metadata index, 1965 // which is written after the records, so that it can include 1966 // the offset of each entry. The placeholder offset will be 1967 // updated after all records are emitted. 1968 uint64_t Vals[] = {0, 0}; 1969 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1970 } 1971 1972 // Compute and save the bit offset to the current position, which will be 1973 // patched when we emit the index later. We can simply subtract the 64-bit 1974 // fixed size from the current bit number to get the location to backpatch. 1975 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1976 1977 // This index will contain the bitpos for each individual record. 1978 std::vector<uint64_t> IndexPos; 1979 IndexPos.reserve(VE.getNonMDStrings().size()); 1980 1981 // Write all the records 1982 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1983 1984 if (VE.getNonMDStrings().size() > IndexThreshold) { 1985 // Now that we have emitted all the records we will emit the index. But 1986 // first 1987 // backpatch the forward reference so that the reader can skip the records 1988 // efficiently. 1989 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1990 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1991 1992 // Delta encode the index. 1993 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1994 for (auto &Elt : IndexPos) { 1995 auto EltDelta = Elt - PreviousValue; 1996 PreviousValue = Elt; 1997 Elt = EltDelta; 1998 } 1999 // Emit the index record. 2000 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2001 IndexPos.clear(); 2002 } 2003 2004 // Write the named metadata now. 2005 writeNamedMetadata(Record); 2006 2007 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2008 SmallVector<uint64_t, 4> Record; 2009 Record.push_back(VE.getValueID(&GO)); 2010 pushGlobalMetadataAttachment(Record, GO); 2011 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2012 }; 2013 for (const Function &F : M) 2014 if (F.isDeclaration() && F.hasMetadata()) 2015 AddDeclAttachedMetadata(F); 2016 // FIXME: Only store metadata for declarations here, and move data for global 2017 // variable definitions to a separate block (PR28134). 2018 for (const GlobalVariable &GV : M.globals()) 2019 if (GV.hasMetadata()) 2020 AddDeclAttachedMetadata(GV); 2021 2022 Stream.ExitBlock(); 2023 } 2024 2025 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2026 if (!VE.hasMDs()) 2027 return; 2028 2029 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2030 SmallVector<uint64_t, 64> Record; 2031 writeMetadataStrings(VE.getMDStrings(), Record); 2032 writeMetadataRecords(VE.getNonMDStrings(), Record); 2033 Stream.ExitBlock(); 2034 } 2035 2036 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2037 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2038 // [n x [id, mdnode]] 2039 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2040 GO.getAllMetadata(MDs); 2041 for (const auto &I : MDs) { 2042 Record.push_back(I.first); 2043 Record.push_back(VE.getMetadataID(I.second)); 2044 } 2045 } 2046 2047 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2048 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2049 2050 SmallVector<uint64_t, 64> Record; 2051 2052 if (F.hasMetadata()) { 2053 pushGlobalMetadataAttachment(Record, F); 2054 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2055 Record.clear(); 2056 } 2057 2058 // Write metadata attachments 2059 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2060 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2061 for (const BasicBlock &BB : F) 2062 for (const Instruction &I : BB) { 2063 MDs.clear(); 2064 I.getAllMetadataOtherThanDebugLoc(MDs); 2065 2066 // If no metadata, ignore instruction. 2067 if (MDs.empty()) continue; 2068 2069 Record.push_back(VE.getInstructionID(&I)); 2070 2071 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2072 Record.push_back(MDs[i].first); 2073 Record.push_back(VE.getMetadataID(MDs[i].second)); 2074 } 2075 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2076 Record.clear(); 2077 } 2078 2079 Stream.ExitBlock(); 2080 } 2081 2082 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2083 SmallVector<uint64_t, 64> Record; 2084 2085 // Write metadata kinds 2086 // METADATA_KIND - [n x [id, name]] 2087 SmallVector<StringRef, 8> Names; 2088 M.getMDKindNames(Names); 2089 2090 if (Names.empty()) return; 2091 2092 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2093 2094 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2095 Record.push_back(MDKindID); 2096 StringRef KName = Names[MDKindID]; 2097 Record.append(KName.begin(), KName.end()); 2098 2099 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2100 Record.clear(); 2101 } 2102 2103 Stream.ExitBlock(); 2104 } 2105 2106 void ModuleBitcodeWriter::writeOperandBundleTags() { 2107 // Write metadata kinds 2108 // 2109 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2110 // 2111 // OPERAND_BUNDLE_TAG - [strchr x N] 2112 2113 SmallVector<StringRef, 8> Tags; 2114 M.getOperandBundleTags(Tags); 2115 2116 if (Tags.empty()) 2117 return; 2118 2119 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2120 2121 SmallVector<uint64_t, 64> Record; 2122 2123 for (auto Tag : Tags) { 2124 Record.append(Tag.begin(), Tag.end()); 2125 2126 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2127 Record.clear(); 2128 } 2129 2130 Stream.ExitBlock(); 2131 } 2132 2133 void ModuleBitcodeWriter::writeSyncScopeNames() { 2134 SmallVector<StringRef, 8> SSNs; 2135 M.getContext().getSyncScopeNames(SSNs); 2136 if (SSNs.empty()) 2137 return; 2138 2139 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2140 2141 SmallVector<uint64_t, 64> Record; 2142 for (auto SSN : SSNs) { 2143 Record.append(SSN.begin(), SSN.end()); 2144 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2145 Record.clear(); 2146 } 2147 2148 Stream.ExitBlock(); 2149 } 2150 2151 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2152 if ((int64_t)V >= 0) 2153 Vals.push_back(V << 1); 2154 else 2155 Vals.push_back((-V << 1) | 1); 2156 } 2157 2158 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2159 bool isGlobal) { 2160 if (FirstVal == LastVal) return; 2161 2162 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2163 2164 unsigned AggregateAbbrev = 0; 2165 unsigned String8Abbrev = 0; 2166 unsigned CString7Abbrev = 0; 2167 unsigned CString6Abbrev = 0; 2168 // If this is a constant pool for the module, emit module-specific abbrevs. 2169 if (isGlobal) { 2170 // Abbrev for CST_CODE_AGGREGATE. 2171 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2172 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2175 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2176 2177 // Abbrev for CST_CODE_STRING. 2178 Abbv = std::make_shared<BitCodeAbbrev>(); 2179 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2182 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2183 // Abbrev for CST_CODE_CSTRING. 2184 Abbv = std::make_shared<BitCodeAbbrev>(); 2185 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2188 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2189 // Abbrev for CST_CODE_CSTRING. 2190 Abbv = std::make_shared<BitCodeAbbrev>(); 2191 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2194 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2195 } 2196 2197 SmallVector<uint64_t, 64> Record; 2198 2199 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2200 Type *LastTy = nullptr; 2201 for (unsigned i = FirstVal; i != LastVal; ++i) { 2202 const Value *V = Vals[i].first; 2203 // If we need to switch types, do so now. 2204 if (V->getType() != LastTy) { 2205 LastTy = V->getType(); 2206 Record.push_back(VE.getTypeID(LastTy)); 2207 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2208 CONSTANTS_SETTYPE_ABBREV); 2209 Record.clear(); 2210 } 2211 2212 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2213 Record.push_back(unsigned(IA->hasSideEffects()) | 2214 unsigned(IA->isAlignStack()) << 1 | 2215 unsigned(IA->getDialect()&1) << 2); 2216 2217 // Add the asm string. 2218 const std::string &AsmStr = IA->getAsmString(); 2219 Record.push_back(AsmStr.size()); 2220 Record.append(AsmStr.begin(), AsmStr.end()); 2221 2222 // Add the constraint string. 2223 const std::string &ConstraintStr = IA->getConstraintString(); 2224 Record.push_back(ConstraintStr.size()); 2225 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2226 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2227 Record.clear(); 2228 continue; 2229 } 2230 const Constant *C = cast<Constant>(V); 2231 unsigned Code = -1U; 2232 unsigned AbbrevToUse = 0; 2233 if (C->isNullValue()) { 2234 Code = bitc::CST_CODE_NULL; 2235 } else if (isa<UndefValue>(C)) { 2236 Code = bitc::CST_CODE_UNDEF; 2237 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2238 if (IV->getBitWidth() <= 64) { 2239 uint64_t V = IV->getSExtValue(); 2240 emitSignedInt64(Record, V); 2241 Code = bitc::CST_CODE_INTEGER; 2242 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2243 } else { // Wide integers, > 64 bits in size. 2244 // We have an arbitrary precision integer value to write whose 2245 // bit width is > 64. However, in canonical unsigned integer 2246 // format it is likely that the high bits are going to be zero. 2247 // So, we only write the number of active words. 2248 unsigned NWords = IV->getValue().getActiveWords(); 2249 const uint64_t *RawWords = IV->getValue().getRawData(); 2250 for (unsigned i = 0; i != NWords; ++i) { 2251 emitSignedInt64(Record, RawWords[i]); 2252 } 2253 Code = bitc::CST_CODE_WIDE_INTEGER; 2254 } 2255 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2256 Code = bitc::CST_CODE_FLOAT; 2257 Type *Ty = CFP->getType(); 2258 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2259 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2260 } else if (Ty->isX86_FP80Ty()) { 2261 // api needed to prevent premature destruction 2262 // bits are not in the same order as a normal i80 APInt, compensate. 2263 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2264 const uint64_t *p = api.getRawData(); 2265 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2266 Record.push_back(p[0] & 0xffffLL); 2267 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2268 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2269 const uint64_t *p = api.getRawData(); 2270 Record.push_back(p[0]); 2271 Record.push_back(p[1]); 2272 } else { 2273 assert(0 && "Unknown FP type!"); 2274 } 2275 } else if (isa<ConstantDataSequential>(C) && 2276 cast<ConstantDataSequential>(C)->isString()) { 2277 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2278 // Emit constant strings specially. 2279 unsigned NumElts = Str->getNumElements(); 2280 // If this is a null-terminated string, use the denser CSTRING encoding. 2281 if (Str->isCString()) { 2282 Code = bitc::CST_CODE_CSTRING; 2283 --NumElts; // Don't encode the null, which isn't allowed by char6. 2284 } else { 2285 Code = bitc::CST_CODE_STRING; 2286 AbbrevToUse = String8Abbrev; 2287 } 2288 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2289 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2290 for (unsigned i = 0; i != NumElts; ++i) { 2291 unsigned char V = Str->getElementAsInteger(i); 2292 Record.push_back(V); 2293 isCStr7 &= (V & 128) == 0; 2294 if (isCStrChar6) 2295 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2296 } 2297 2298 if (isCStrChar6) 2299 AbbrevToUse = CString6Abbrev; 2300 else if (isCStr7) 2301 AbbrevToUse = CString7Abbrev; 2302 } else if (const ConstantDataSequential *CDS = 2303 dyn_cast<ConstantDataSequential>(C)) { 2304 Code = bitc::CST_CODE_DATA; 2305 Type *EltTy = CDS->getType()->getElementType(); 2306 if (isa<IntegerType>(EltTy)) { 2307 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2308 Record.push_back(CDS->getElementAsInteger(i)); 2309 } else { 2310 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2311 Record.push_back( 2312 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2313 } 2314 } else if (isa<ConstantAggregate>(C)) { 2315 Code = bitc::CST_CODE_AGGREGATE; 2316 for (const Value *Op : C->operands()) 2317 Record.push_back(VE.getValueID(Op)); 2318 AbbrevToUse = AggregateAbbrev; 2319 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2320 switch (CE->getOpcode()) { 2321 default: 2322 if (Instruction::isCast(CE->getOpcode())) { 2323 Code = bitc::CST_CODE_CE_CAST; 2324 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2325 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2326 Record.push_back(VE.getValueID(C->getOperand(0))); 2327 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2328 } else { 2329 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2330 Code = bitc::CST_CODE_CE_BINOP; 2331 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2332 Record.push_back(VE.getValueID(C->getOperand(0))); 2333 Record.push_back(VE.getValueID(C->getOperand(1))); 2334 uint64_t Flags = getOptimizationFlags(CE); 2335 if (Flags != 0) 2336 Record.push_back(Flags); 2337 } 2338 break; 2339 case Instruction::GetElementPtr: { 2340 Code = bitc::CST_CODE_CE_GEP; 2341 const auto *GO = cast<GEPOperator>(C); 2342 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2343 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2344 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2345 Record.push_back((*Idx << 1) | GO->isInBounds()); 2346 } else if (GO->isInBounds()) 2347 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2348 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2349 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2350 Record.push_back(VE.getValueID(C->getOperand(i))); 2351 } 2352 break; 2353 } 2354 case Instruction::Select: 2355 Code = bitc::CST_CODE_CE_SELECT; 2356 Record.push_back(VE.getValueID(C->getOperand(0))); 2357 Record.push_back(VE.getValueID(C->getOperand(1))); 2358 Record.push_back(VE.getValueID(C->getOperand(2))); 2359 break; 2360 case Instruction::ExtractElement: 2361 Code = bitc::CST_CODE_CE_EXTRACTELT; 2362 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2363 Record.push_back(VE.getValueID(C->getOperand(0))); 2364 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2365 Record.push_back(VE.getValueID(C->getOperand(1))); 2366 break; 2367 case Instruction::InsertElement: 2368 Code = bitc::CST_CODE_CE_INSERTELT; 2369 Record.push_back(VE.getValueID(C->getOperand(0))); 2370 Record.push_back(VE.getValueID(C->getOperand(1))); 2371 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2372 Record.push_back(VE.getValueID(C->getOperand(2))); 2373 break; 2374 case Instruction::ShuffleVector: 2375 // If the return type and argument types are the same, this is a 2376 // standard shufflevector instruction. If the types are different, 2377 // then the shuffle is widening or truncating the input vectors, and 2378 // the argument type must also be encoded. 2379 if (C->getType() == C->getOperand(0)->getType()) { 2380 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2381 } else { 2382 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2383 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2384 } 2385 Record.push_back(VE.getValueID(C->getOperand(0))); 2386 Record.push_back(VE.getValueID(C->getOperand(1))); 2387 Record.push_back(VE.getValueID(C->getOperand(2))); 2388 break; 2389 case Instruction::ICmp: 2390 case Instruction::FCmp: 2391 Code = bitc::CST_CODE_CE_CMP; 2392 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2393 Record.push_back(VE.getValueID(C->getOperand(0))); 2394 Record.push_back(VE.getValueID(C->getOperand(1))); 2395 Record.push_back(CE->getPredicate()); 2396 break; 2397 } 2398 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2399 Code = bitc::CST_CODE_BLOCKADDRESS; 2400 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2401 Record.push_back(VE.getValueID(BA->getFunction())); 2402 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2403 } else { 2404 #ifndef NDEBUG 2405 C->dump(); 2406 #endif 2407 llvm_unreachable("Unknown constant!"); 2408 } 2409 Stream.EmitRecord(Code, Record, AbbrevToUse); 2410 Record.clear(); 2411 } 2412 2413 Stream.ExitBlock(); 2414 } 2415 2416 void ModuleBitcodeWriter::writeModuleConstants() { 2417 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2418 2419 // Find the first constant to emit, which is the first non-globalvalue value. 2420 // We know globalvalues have been emitted by WriteModuleInfo. 2421 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2422 if (!isa<GlobalValue>(Vals[i].first)) { 2423 writeConstants(i, Vals.size(), true); 2424 return; 2425 } 2426 } 2427 } 2428 2429 /// pushValueAndType - The file has to encode both the value and type id for 2430 /// many values, because we need to know what type to create for forward 2431 /// references. However, most operands are not forward references, so this type 2432 /// field is not needed. 2433 /// 2434 /// This function adds V's value ID to Vals. If the value ID is higher than the 2435 /// instruction ID, then it is a forward reference, and it also includes the 2436 /// type ID. The value ID that is written is encoded relative to the InstID. 2437 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2438 SmallVectorImpl<unsigned> &Vals) { 2439 unsigned ValID = VE.getValueID(V); 2440 // Make encoding relative to the InstID. 2441 Vals.push_back(InstID - ValID); 2442 if (ValID >= InstID) { 2443 Vals.push_back(VE.getTypeID(V->getType())); 2444 return true; 2445 } 2446 return false; 2447 } 2448 2449 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2450 unsigned InstID) { 2451 SmallVector<unsigned, 64> Record; 2452 LLVMContext &C = CS.getInstruction()->getContext(); 2453 2454 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2455 const auto &Bundle = CS.getOperandBundleAt(i); 2456 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2457 2458 for (auto &Input : Bundle.Inputs) 2459 pushValueAndType(Input, InstID, Record); 2460 2461 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2462 Record.clear(); 2463 } 2464 } 2465 2466 /// pushValue - Like pushValueAndType, but where the type of the value is 2467 /// omitted (perhaps it was already encoded in an earlier operand). 2468 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2469 SmallVectorImpl<unsigned> &Vals) { 2470 unsigned ValID = VE.getValueID(V); 2471 Vals.push_back(InstID - ValID); 2472 } 2473 2474 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2475 SmallVectorImpl<uint64_t> &Vals) { 2476 unsigned ValID = VE.getValueID(V); 2477 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2478 emitSignedInt64(Vals, diff); 2479 } 2480 2481 /// WriteInstruction - Emit an instruction to the specified stream. 2482 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2483 unsigned InstID, 2484 SmallVectorImpl<unsigned> &Vals) { 2485 unsigned Code = 0; 2486 unsigned AbbrevToUse = 0; 2487 VE.setInstructionID(&I); 2488 switch (I.getOpcode()) { 2489 default: 2490 if (Instruction::isCast(I.getOpcode())) { 2491 Code = bitc::FUNC_CODE_INST_CAST; 2492 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2493 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2494 Vals.push_back(VE.getTypeID(I.getType())); 2495 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2496 } else { 2497 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2498 Code = bitc::FUNC_CODE_INST_BINOP; 2499 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2500 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2501 pushValue(I.getOperand(1), InstID, Vals); 2502 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2503 uint64_t Flags = getOptimizationFlags(&I); 2504 if (Flags != 0) { 2505 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2506 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2507 Vals.push_back(Flags); 2508 } 2509 } 2510 break; 2511 2512 case Instruction::GetElementPtr: { 2513 Code = bitc::FUNC_CODE_INST_GEP; 2514 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2515 auto &GEPInst = cast<GetElementPtrInst>(I); 2516 Vals.push_back(GEPInst.isInBounds()); 2517 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2518 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2519 pushValueAndType(I.getOperand(i), InstID, Vals); 2520 break; 2521 } 2522 case Instruction::ExtractValue: { 2523 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2524 pushValueAndType(I.getOperand(0), InstID, Vals); 2525 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2526 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2527 break; 2528 } 2529 case Instruction::InsertValue: { 2530 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2531 pushValueAndType(I.getOperand(0), InstID, Vals); 2532 pushValueAndType(I.getOperand(1), InstID, Vals); 2533 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2534 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2535 break; 2536 } 2537 case Instruction::Select: 2538 Code = bitc::FUNC_CODE_INST_VSELECT; 2539 pushValueAndType(I.getOperand(1), InstID, Vals); 2540 pushValue(I.getOperand(2), InstID, Vals); 2541 pushValueAndType(I.getOperand(0), InstID, Vals); 2542 break; 2543 case Instruction::ExtractElement: 2544 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2545 pushValueAndType(I.getOperand(0), InstID, Vals); 2546 pushValueAndType(I.getOperand(1), InstID, Vals); 2547 break; 2548 case Instruction::InsertElement: 2549 Code = bitc::FUNC_CODE_INST_INSERTELT; 2550 pushValueAndType(I.getOperand(0), InstID, Vals); 2551 pushValue(I.getOperand(1), InstID, Vals); 2552 pushValueAndType(I.getOperand(2), InstID, Vals); 2553 break; 2554 case Instruction::ShuffleVector: 2555 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2556 pushValueAndType(I.getOperand(0), InstID, Vals); 2557 pushValue(I.getOperand(1), InstID, Vals); 2558 pushValue(I.getOperand(2), InstID, Vals); 2559 break; 2560 case Instruction::ICmp: 2561 case Instruction::FCmp: { 2562 // compare returning Int1Ty or vector of Int1Ty 2563 Code = bitc::FUNC_CODE_INST_CMP2; 2564 pushValueAndType(I.getOperand(0), InstID, Vals); 2565 pushValue(I.getOperand(1), InstID, Vals); 2566 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2567 uint64_t Flags = getOptimizationFlags(&I); 2568 if (Flags != 0) 2569 Vals.push_back(Flags); 2570 break; 2571 } 2572 2573 case Instruction::Ret: 2574 { 2575 Code = bitc::FUNC_CODE_INST_RET; 2576 unsigned NumOperands = I.getNumOperands(); 2577 if (NumOperands == 0) 2578 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2579 else if (NumOperands == 1) { 2580 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2581 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2582 } else { 2583 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2584 pushValueAndType(I.getOperand(i), InstID, Vals); 2585 } 2586 } 2587 break; 2588 case Instruction::Br: 2589 { 2590 Code = bitc::FUNC_CODE_INST_BR; 2591 const BranchInst &II = cast<BranchInst>(I); 2592 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2593 if (II.isConditional()) { 2594 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2595 pushValue(II.getCondition(), InstID, Vals); 2596 } 2597 } 2598 break; 2599 case Instruction::Switch: 2600 { 2601 Code = bitc::FUNC_CODE_INST_SWITCH; 2602 const SwitchInst &SI = cast<SwitchInst>(I); 2603 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2604 pushValue(SI.getCondition(), InstID, Vals); 2605 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2606 for (auto Case : SI.cases()) { 2607 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2608 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2609 } 2610 } 2611 break; 2612 case Instruction::IndirectBr: 2613 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2614 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2615 // Encode the address operand as relative, but not the basic blocks. 2616 pushValue(I.getOperand(0), InstID, Vals); 2617 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2618 Vals.push_back(VE.getValueID(I.getOperand(i))); 2619 break; 2620 2621 case Instruction::Invoke: { 2622 const InvokeInst *II = cast<InvokeInst>(&I); 2623 const Value *Callee = II->getCalledValue(); 2624 FunctionType *FTy = II->getFunctionType(); 2625 2626 if (II->hasOperandBundles()) 2627 writeOperandBundles(II, InstID); 2628 2629 Code = bitc::FUNC_CODE_INST_INVOKE; 2630 2631 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2632 Vals.push_back(II->getCallingConv() | 1 << 13); 2633 Vals.push_back(VE.getValueID(II->getNormalDest())); 2634 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2635 Vals.push_back(VE.getTypeID(FTy)); 2636 pushValueAndType(Callee, InstID, Vals); 2637 2638 // Emit value #'s for the fixed parameters. 2639 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2640 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2641 2642 // Emit type/value pairs for varargs params. 2643 if (FTy->isVarArg()) { 2644 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2645 i != e; ++i) 2646 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2647 } 2648 break; 2649 } 2650 case Instruction::Resume: 2651 Code = bitc::FUNC_CODE_INST_RESUME; 2652 pushValueAndType(I.getOperand(0), InstID, Vals); 2653 break; 2654 case Instruction::CleanupRet: { 2655 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2656 const auto &CRI = cast<CleanupReturnInst>(I); 2657 pushValue(CRI.getCleanupPad(), InstID, Vals); 2658 if (CRI.hasUnwindDest()) 2659 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2660 break; 2661 } 2662 case Instruction::CatchRet: { 2663 Code = bitc::FUNC_CODE_INST_CATCHRET; 2664 const auto &CRI = cast<CatchReturnInst>(I); 2665 pushValue(CRI.getCatchPad(), InstID, Vals); 2666 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2667 break; 2668 } 2669 case Instruction::CleanupPad: 2670 case Instruction::CatchPad: { 2671 const auto &FuncletPad = cast<FuncletPadInst>(I); 2672 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2673 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2674 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2675 2676 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2677 Vals.push_back(NumArgOperands); 2678 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2679 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2680 break; 2681 } 2682 case Instruction::CatchSwitch: { 2683 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2684 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2685 2686 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2687 2688 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2689 Vals.push_back(NumHandlers); 2690 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2691 Vals.push_back(VE.getValueID(CatchPadBB)); 2692 2693 if (CatchSwitch.hasUnwindDest()) 2694 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2695 break; 2696 } 2697 case Instruction::Unreachable: 2698 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2699 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2700 break; 2701 2702 case Instruction::PHI: { 2703 const PHINode &PN = cast<PHINode>(I); 2704 Code = bitc::FUNC_CODE_INST_PHI; 2705 // With the newer instruction encoding, forward references could give 2706 // negative valued IDs. This is most common for PHIs, so we use 2707 // signed VBRs. 2708 SmallVector<uint64_t, 128> Vals64; 2709 Vals64.push_back(VE.getTypeID(PN.getType())); 2710 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2711 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2712 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2713 } 2714 // Emit a Vals64 vector and exit. 2715 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2716 Vals64.clear(); 2717 return; 2718 } 2719 2720 case Instruction::LandingPad: { 2721 const LandingPadInst &LP = cast<LandingPadInst>(I); 2722 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2723 Vals.push_back(VE.getTypeID(LP.getType())); 2724 Vals.push_back(LP.isCleanup()); 2725 Vals.push_back(LP.getNumClauses()); 2726 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2727 if (LP.isCatch(I)) 2728 Vals.push_back(LandingPadInst::Catch); 2729 else 2730 Vals.push_back(LandingPadInst::Filter); 2731 pushValueAndType(LP.getClause(I), InstID, Vals); 2732 } 2733 break; 2734 } 2735 2736 case Instruction::Alloca: { 2737 Code = bitc::FUNC_CODE_INST_ALLOCA; 2738 const AllocaInst &AI = cast<AllocaInst>(I); 2739 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2740 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2741 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2742 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2743 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2744 "not enough bits for maximum alignment"); 2745 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2746 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2747 AlignRecord |= 1 << 6; 2748 AlignRecord |= AI.isSwiftError() << 7; 2749 Vals.push_back(AlignRecord); 2750 break; 2751 } 2752 2753 case Instruction::Load: 2754 if (cast<LoadInst>(I).isAtomic()) { 2755 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2756 pushValueAndType(I.getOperand(0), InstID, Vals); 2757 } else { 2758 Code = bitc::FUNC_CODE_INST_LOAD; 2759 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2760 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2761 } 2762 Vals.push_back(VE.getTypeID(I.getType())); 2763 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2764 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2765 if (cast<LoadInst>(I).isAtomic()) { 2766 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2767 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2768 } 2769 break; 2770 case Instruction::Store: 2771 if (cast<StoreInst>(I).isAtomic()) 2772 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2773 else 2774 Code = bitc::FUNC_CODE_INST_STORE; 2775 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2776 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2777 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2778 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2779 if (cast<StoreInst>(I).isAtomic()) { 2780 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2781 Vals.push_back( 2782 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2783 } 2784 break; 2785 case Instruction::AtomicCmpXchg: 2786 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2787 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2788 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2789 pushValue(I.getOperand(2), InstID, Vals); // newval. 2790 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2791 Vals.push_back( 2792 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2793 Vals.push_back( 2794 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2795 Vals.push_back( 2796 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2797 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2798 break; 2799 case Instruction::AtomicRMW: 2800 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2801 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2802 pushValue(I.getOperand(1), InstID, Vals); // val. 2803 Vals.push_back( 2804 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2805 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2806 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2807 Vals.push_back( 2808 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2809 break; 2810 case Instruction::Fence: 2811 Code = bitc::FUNC_CODE_INST_FENCE; 2812 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2813 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2814 break; 2815 case Instruction::Call: { 2816 const CallInst &CI = cast<CallInst>(I); 2817 FunctionType *FTy = CI.getFunctionType(); 2818 2819 if (CI.hasOperandBundles()) 2820 writeOperandBundles(&CI, InstID); 2821 2822 Code = bitc::FUNC_CODE_INST_CALL; 2823 2824 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2825 2826 unsigned Flags = getOptimizationFlags(&I); 2827 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2828 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2829 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2830 1 << bitc::CALL_EXPLICIT_TYPE | 2831 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2832 unsigned(Flags != 0) << bitc::CALL_FMF); 2833 if (Flags != 0) 2834 Vals.push_back(Flags); 2835 2836 Vals.push_back(VE.getTypeID(FTy)); 2837 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2838 2839 // Emit value #'s for the fixed parameters. 2840 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2841 // Check for labels (can happen with asm labels). 2842 if (FTy->getParamType(i)->isLabelTy()) 2843 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2844 else 2845 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2846 } 2847 2848 // Emit type/value pairs for varargs params. 2849 if (FTy->isVarArg()) { 2850 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2851 i != e; ++i) 2852 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2853 } 2854 break; 2855 } 2856 case Instruction::VAArg: 2857 Code = bitc::FUNC_CODE_INST_VAARG; 2858 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2859 pushValue(I.getOperand(0), InstID, Vals); // valist. 2860 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2861 break; 2862 } 2863 2864 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2865 Vals.clear(); 2866 } 2867 2868 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2869 /// to allow clients to efficiently find the function body. 2870 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2871 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2872 // Get the offset of the VST we are writing, and backpatch it into 2873 // the VST forward declaration record. 2874 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2875 // The BitcodeStartBit was the stream offset of the identification block. 2876 VSTOffset -= bitcodeStartBit(); 2877 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2878 // Note that we add 1 here because the offset is relative to one word 2879 // before the start of the identification block, which was historically 2880 // always the start of the regular bitcode header. 2881 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2882 2883 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2884 2885 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2886 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2889 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2890 2891 for (const Function &F : M) { 2892 uint64_t Record[2]; 2893 2894 if (F.isDeclaration()) 2895 continue; 2896 2897 Record[0] = VE.getValueID(&F); 2898 2899 // Save the word offset of the function (from the start of the 2900 // actual bitcode written to the stream). 2901 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2902 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2903 // Note that we add 1 here because the offset is relative to one word 2904 // before the start of the identification block, which was historically 2905 // always the start of the regular bitcode header. 2906 Record[1] = BitcodeIndex / 32 + 1; 2907 2908 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2909 } 2910 2911 Stream.ExitBlock(); 2912 } 2913 2914 /// Emit names for arguments, instructions and basic blocks in a function. 2915 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2916 const ValueSymbolTable &VST) { 2917 if (VST.empty()) 2918 return; 2919 2920 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2921 2922 // FIXME: Set up the abbrev, we know how many values there are! 2923 // FIXME: We know if the type names can use 7-bit ascii. 2924 SmallVector<uint64_t, 64> NameVals; 2925 2926 for (const ValueName &Name : VST) { 2927 // Figure out the encoding to use for the name. 2928 StringEncoding Bits = getStringEncoding(Name.getKey()); 2929 2930 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2931 NameVals.push_back(VE.getValueID(Name.getValue())); 2932 2933 // VST_CODE_ENTRY: [valueid, namechar x N] 2934 // VST_CODE_BBENTRY: [bbid, namechar x N] 2935 unsigned Code; 2936 if (isa<BasicBlock>(Name.getValue())) { 2937 Code = bitc::VST_CODE_BBENTRY; 2938 if (Bits == SE_Char6) 2939 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2940 } else { 2941 Code = bitc::VST_CODE_ENTRY; 2942 if (Bits == SE_Char6) 2943 AbbrevToUse = VST_ENTRY_6_ABBREV; 2944 else if (Bits == SE_Fixed7) 2945 AbbrevToUse = VST_ENTRY_7_ABBREV; 2946 } 2947 2948 for (const auto P : Name.getKey()) 2949 NameVals.push_back((unsigned char)P); 2950 2951 // Emit the finished record. 2952 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2953 NameVals.clear(); 2954 } 2955 2956 Stream.ExitBlock(); 2957 } 2958 2959 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2960 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2961 unsigned Code; 2962 if (isa<BasicBlock>(Order.V)) 2963 Code = bitc::USELIST_CODE_BB; 2964 else 2965 Code = bitc::USELIST_CODE_DEFAULT; 2966 2967 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2968 Record.push_back(VE.getValueID(Order.V)); 2969 Stream.EmitRecord(Code, Record); 2970 } 2971 2972 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2973 assert(VE.shouldPreserveUseListOrder() && 2974 "Expected to be preserving use-list order"); 2975 2976 auto hasMore = [&]() { 2977 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2978 }; 2979 if (!hasMore()) 2980 // Nothing to do. 2981 return; 2982 2983 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2984 while (hasMore()) { 2985 writeUseList(std::move(VE.UseListOrders.back())); 2986 VE.UseListOrders.pop_back(); 2987 } 2988 Stream.ExitBlock(); 2989 } 2990 2991 /// Emit a function body to the module stream. 2992 void ModuleBitcodeWriter::writeFunction( 2993 const Function &F, 2994 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2995 // Save the bitcode index of the start of this function block for recording 2996 // in the VST. 2997 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2998 2999 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3000 VE.incorporateFunction(F); 3001 3002 SmallVector<unsigned, 64> Vals; 3003 3004 // Emit the number of basic blocks, so the reader can create them ahead of 3005 // time. 3006 Vals.push_back(VE.getBasicBlocks().size()); 3007 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3008 Vals.clear(); 3009 3010 // If there are function-local constants, emit them now. 3011 unsigned CstStart, CstEnd; 3012 VE.getFunctionConstantRange(CstStart, CstEnd); 3013 writeConstants(CstStart, CstEnd, false); 3014 3015 // If there is function-local metadata, emit it now. 3016 writeFunctionMetadata(F); 3017 3018 // Keep a running idea of what the instruction ID is. 3019 unsigned InstID = CstEnd; 3020 3021 bool NeedsMetadataAttachment = F.hasMetadata(); 3022 3023 DILocation *LastDL = nullptr; 3024 // Finally, emit all the instructions, in order. 3025 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3026 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3027 I != E; ++I) { 3028 writeInstruction(*I, InstID, Vals); 3029 3030 if (!I->getType()->isVoidTy()) 3031 ++InstID; 3032 3033 // If the instruction has metadata, write a metadata attachment later. 3034 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3035 3036 // If the instruction has a debug location, emit it. 3037 DILocation *DL = I->getDebugLoc(); 3038 if (!DL) 3039 continue; 3040 3041 if (DL == LastDL) { 3042 // Just repeat the same debug loc as last time. 3043 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3044 continue; 3045 } 3046 3047 Vals.push_back(DL->getLine()); 3048 Vals.push_back(DL->getColumn()); 3049 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3050 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3051 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3052 Vals.clear(); 3053 3054 LastDL = DL; 3055 } 3056 3057 // Emit names for all the instructions etc. 3058 if (auto *Symtab = F.getValueSymbolTable()) 3059 writeFunctionLevelValueSymbolTable(*Symtab); 3060 3061 if (NeedsMetadataAttachment) 3062 writeFunctionMetadataAttachment(F); 3063 if (VE.shouldPreserveUseListOrder()) 3064 writeUseListBlock(&F); 3065 VE.purgeFunction(); 3066 Stream.ExitBlock(); 3067 } 3068 3069 // Emit blockinfo, which defines the standard abbreviations etc. 3070 void ModuleBitcodeWriter::writeBlockInfo() { 3071 // We only want to emit block info records for blocks that have multiple 3072 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3073 // Other blocks can define their abbrevs inline. 3074 Stream.EnterBlockInfoBlock(); 3075 3076 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3077 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3082 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3083 VST_ENTRY_8_ABBREV) 3084 llvm_unreachable("Unexpected abbrev ordering!"); 3085 } 3086 3087 { // 7-bit fixed width VST_CODE_ENTRY strings. 3088 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3089 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3093 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3094 VST_ENTRY_7_ABBREV) 3095 llvm_unreachable("Unexpected abbrev ordering!"); 3096 } 3097 { // 6-bit char6 VST_CODE_ENTRY strings. 3098 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3099 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3103 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3104 VST_ENTRY_6_ABBREV) 3105 llvm_unreachable("Unexpected abbrev ordering!"); 3106 } 3107 { // 6-bit char6 VST_CODE_BBENTRY strings. 3108 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3109 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3113 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3114 VST_BBENTRY_6_ABBREV) 3115 llvm_unreachable("Unexpected abbrev ordering!"); 3116 } 3117 3118 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3119 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3120 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3122 VE.computeBitsRequiredForTypeIndicies())); 3123 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3124 CONSTANTS_SETTYPE_ABBREV) 3125 llvm_unreachable("Unexpected abbrev ordering!"); 3126 } 3127 3128 { // INTEGER abbrev for CONSTANTS_BLOCK. 3129 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3130 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3132 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3133 CONSTANTS_INTEGER_ABBREV) 3134 llvm_unreachable("Unexpected abbrev ordering!"); 3135 } 3136 3137 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3138 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3139 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3142 VE.computeBitsRequiredForTypeIndicies())); 3143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3144 3145 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3146 CONSTANTS_CE_CAST_Abbrev) 3147 llvm_unreachable("Unexpected abbrev ordering!"); 3148 } 3149 { // NULL abbrev for CONSTANTS_BLOCK. 3150 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3151 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3152 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3153 CONSTANTS_NULL_Abbrev) 3154 llvm_unreachable("Unexpected abbrev ordering!"); 3155 } 3156 3157 // FIXME: This should only use space for first class types! 3158 3159 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3160 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3161 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3164 VE.computeBitsRequiredForTypeIndicies())); 3165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3167 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3168 FUNCTION_INST_LOAD_ABBREV) 3169 llvm_unreachable("Unexpected abbrev ordering!"); 3170 } 3171 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3172 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3173 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3177 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3178 FUNCTION_INST_BINOP_ABBREV) 3179 llvm_unreachable("Unexpected abbrev ordering!"); 3180 } 3181 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3182 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3183 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3188 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3189 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3190 llvm_unreachable("Unexpected abbrev ordering!"); 3191 } 3192 { // INST_CAST abbrev for FUNCTION_BLOCK. 3193 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3194 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3197 VE.computeBitsRequiredForTypeIndicies())); 3198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3199 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3200 FUNCTION_INST_CAST_ABBREV) 3201 llvm_unreachable("Unexpected abbrev ordering!"); 3202 } 3203 3204 { // INST_RET abbrev for FUNCTION_BLOCK. 3205 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3206 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3207 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3208 FUNCTION_INST_RET_VOID_ABBREV) 3209 llvm_unreachable("Unexpected abbrev ordering!"); 3210 } 3211 { // INST_RET abbrev for FUNCTION_BLOCK. 3212 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3213 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3215 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3216 FUNCTION_INST_RET_VAL_ABBREV) 3217 llvm_unreachable("Unexpected abbrev ordering!"); 3218 } 3219 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3220 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3221 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3222 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3223 FUNCTION_INST_UNREACHABLE_ABBREV) 3224 llvm_unreachable("Unexpected abbrev ordering!"); 3225 } 3226 { 3227 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3228 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3231 Log2_32_Ceil(VE.getTypes().size() + 1))); 3232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3234 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3235 FUNCTION_INST_GEP_ABBREV) 3236 llvm_unreachable("Unexpected abbrev ordering!"); 3237 } 3238 3239 Stream.ExitBlock(); 3240 } 3241 3242 /// Write the module path strings, currently only used when generating 3243 /// a combined index file. 3244 void IndexBitcodeWriter::writeModStrings() { 3245 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3246 3247 // TODO: See which abbrev sizes we actually need to emit 3248 3249 // 8-bit fixed-width MST_ENTRY strings. 3250 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3251 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3255 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3256 3257 // 7-bit fixed width MST_ENTRY strings. 3258 Abbv = std::make_shared<BitCodeAbbrev>(); 3259 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3263 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3264 3265 // 6-bit char6 MST_ENTRY strings. 3266 Abbv = std::make_shared<BitCodeAbbrev>(); 3267 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3271 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3272 3273 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3274 Abbv = std::make_shared<BitCodeAbbrev>(); 3275 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3281 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3282 3283 SmallVector<unsigned, 64> Vals; 3284 forEachModule( 3285 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3286 StringRef Key = MPSE.getKey(); 3287 const auto &Value = MPSE.getValue(); 3288 StringEncoding Bits = getStringEncoding(Key); 3289 unsigned AbbrevToUse = Abbrev8Bit; 3290 if (Bits == SE_Char6) 3291 AbbrevToUse = Abbrev6Bit; 3292 else if (Bits == SE_Fixed7) 3293 AbbrevToUse = Abbrev7Bit; 3294 3295 Vals.push_back(Value.first); 3296 Vals.append(Key.begin(), Key.end()); 3297 3298 // Emit the finished record. 3299 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3300 3301 // Emit an optional hash for the module now 3302 const auto &Hash = Value.second; 3303 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3304 Vals.assign(Hash.begin(), Hash.end()); 3305 // Emit the hash record. 3306 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3307 } 3308 3309 Vals.clear(); 3310 }); 3311 Stream.ExitBlock(); 3312 } 3313 3314 /// Write the function type metadata related records that need to appear before 3315 /// a function summary entry (whether per-module or combined). 3316 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3317 FunctionSummary *FS) { 3318 if (!FS->type_tests().empty()) 3319 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3320 3321 SmallVector<uint64_t, 64> Record; 3322 3323 auto WriteVFuncIdVec = [&](uint64_t Ty, 3324 ArrayRef<FunctionSummary::VFuncId> VFs) { 3325 if (VFs.empty()) 3326 return; 3327 Record.clear(); 3328 for (auto &VF : VFs) { 3329 Record.push_back(VF.GUID); 3330 Record.push_back(VF.Offset); 3331 } 3332 Stream.EmitRecord(Ty, Record); 3333 }; 3334 3335 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3336 FS->type_test_assume_vcalls()); 3337 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3338 FS->type_checked_load_vcalls()); 3339 3340 auto WriteConstVCallVec = [&](uint64_t Ty, 3341 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3342 for (auto &VC : VCs) { 3343 Record.clear(); 3344 Record.push_back(VC.VFunc.GUID); 3345 Record.push_back(VC.VFunc.Offset); 3346 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3347 Stream.EmitRecord(Ty, Record); 3348 } 3349 }; 3350 3351 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3352 FS->type_test_assume_const_vcalls()); 3353 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3354 FS->type_checked_load_const_vcalls()); 3355 } 3356 3357 // Helper to emit a single function summary record. 3358 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3359 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3360 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3361 const Function &F) { 3362 NameVals.push_back(ValueID); 3363 3364 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3365 writeFunctionTypeMetadataRecords(Stream, FS); 3366 3367 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3368 NameVals.push_back(FS->instCount()); 3369 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3370 NameVals.push_back(FS->refs().size()); 3371 3372 for (auto &RI : FS->refs()) 3373 NameVals.push_back(VE.getValueID(RI.getValue())); 3374 3375 bool HasProfileData = F.hasProfileData(); 3376 for (auto &ECI : FS->calls()) { 3377 NameVals.push_back(getValueId(ECI.first)); 3378 if (HasProfileData) 3379 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3380 } 3381 3382 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3383 unsigned Code = 3384 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3385 3386 // Emit the finished record. 3387 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3388 NameVals.clear(); 3389 } 3390 3391 // Collect the global value references in the given variable's initializer, 3392 // and emit them in a summary record. 3393 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3394 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3395 unsigned FSModRefsAbbrev) { 3396 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3397 if (!VI || VI.getSummaryList().empty()) { 3398 // Only declarations should not have a summary (a declaration might however 3399 // have a summary if the def was in module level asm). 3400 assert(V.isDeclaration()); 3401 return; 3402 } 3403 auto *Summary = VI.getSummaryList()[0].get(); 3404 NameVals.push_back(VE.getValueID(&V)); 3405 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3406 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3407 3408 unsigned SizeBeforeRefs = NameVals.size(); 3409 for (auto &RI : VS->refs()) 3410 NameVals.push_back(VE.getValueID(RI.getValue())); 3411 // Sort the refs for determinism output, the vector returned by FS->refs() has 3412 // been initialized from a DenseSet. 3413 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3414 3415 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3416 FSModRefsAbbrev); 3417 NameVals.clear(); 3418 } 3419 3420 // Current version for the summary. 3421 // This is bumped whenever we introduce changes in the way some record are 3422 // interpreted, like flags for instance. 3423 static const uint64_t INDEX_VERSION = 4; 3424 3425 /// Emit the per-module summary section alongside the rest of 3426 /// the module's bitcode. 3427 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3428 // By default we compile with ThinLTO if the module has a summary, but the 3429 // client can request full LTO with a module flag. 3430 bool IsThinLTO = true; 3431 if (auto *MD = 3432 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3433 IsThinLTO = MD->getZExtValue(); 3434 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3435 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3436 4); 3437 3438 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3439 3440 if (Index->begin() == Index->end()) { 3441 Stream.ExitBlock(); 3442 return; 3443 } 3444 3445 for (const auto &GVI : valueIds()) { 3446 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3447 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3448 } 3449 3450 // Abbrev for FS_PERMODULE. 3451 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3452 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3458 // numrefs x valueid, n x (valueid) 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3461 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3462 3463 // Abbrev for FS_PERMODULE_PROFILE. 3464 Abbv = std::make_shared<BitCodeAbbrev>(); 3465 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3471 // numrefs x valueid, n x (valueid, hotness) 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3474 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3475 3476 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3477 Abbv = std::make_shared<BitCodeAbbrev>(); 3478 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3483 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3484 3485 // Abbrev for FS_ALIAS. 3486 Abbv = std::make_shared<BitCodeAbbrev>(); 3487 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3491 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3492 3493 SmallVector<uint64_t, 64> NameVals; 3494 // Iterate over the list of functions instead of the Index to 3495 // ensure the ordering is stable. 3496 for (const Function &F : M) { 3497 // Summary emission does not support anonymous functions, they have to 3498 // renamed using the anonymous function renaming pass. 3499 if (!F.hasName()) 3500 report_fatal_error("Unexpected anonymous function when writing summary"); 3501 3502 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3503 if (!VI || VI.getSummaryList().empty()) { 3504 // Only declarations should not have a summary (a declaration might 3505 // however have a summary if the def was in module level asm). 3506 assert(F.isDeclaration()); 3507 continue; 3508 } 3509 auto *Summary = VI.getSummaryList()[0].get(); 3510 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3511 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3512 } 3513 3514 // Capture references from GlobalVariable initializers, which are outside 3515 // of a function scope. 3516 for (const GlobalVariable &G : M.globals()) 3517 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3518 3519 for (const GlobalAlias &A : M.aliases()) { 3520 auto *Aliasee = A.getBaseObject(); 3521 if (!Aliasee->hasName()) 3522 // Nameless function don't have an entry in the summary, skip it. 3523 continue; 3524 auto AliasId = VE.getValueID(&A); 3525 auto AliaseeId = VE.getValueID(Aliasee); 3526 NameVals.push_back(AliasId); 3527 auto *Summary = Index->getGlobalValueSummary(A); 3528 AliasSummary *AS = cast<AliasSummary>(Summary); 3529 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3530 NameVals.push_back(AliaseeId); 3531 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3532 NameVals.clear(); 3533 } 3534 3535 Stream.ExitBlock(); 3536 } 3537 3538 /// Emit the combined summary section into the combined index file. 3539 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3540 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3541 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3542 3543 for (const auto &GVI : valueIds()) { 3544 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3545 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3546 } 3547 3548 // Abbrev for FS_COMBINED. 3549 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3550 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3557 // numrefs x valueid, n x (valueid) 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3560 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3561 3562 // Abbrev for FS_COMBINED_PROFILE. 3563 Abbv = std::make_shared<BitCodeAbbrev>(); 3564 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3571 // numrefs x valueid, n x (valueid, hotness) 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3574 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3575 3576 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3577 Abbv = std::make_shared<BitCodeAbbrev>(); 3578 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3584 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3585 3586 // Abbrev for FS_COMBINED_ALIAS. 3587 Abbv = std::make_shared<BitCodeAbbrev>(); 3588 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3593 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3594 3595 // The aliases are emitted as a post-pass, and will point to the value 3596 // id of the aliasee. Save them in a vector for post-processing. 3597 SmallVector<AliasSummary *, 64> Aliases; 3598 3599 // Save the value id for each summary for alias emission. 3600 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3601 3602 SmallVector<uint64_t, 64> NameVals; 3603 3604 // For local linkage, we also emit the original name separately 3605 // immediately after the record. 3606 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3607 if (!GlobalValue::isLocalLinkage(S.linkage())) 3608 return; 3609 NameVals.push_back(S.getOriginalName()); 3610 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3611 NameVals.clear(); 3612 }; 3613 3614 forEachSummary([&](GVInfo I, bool IsAliasee) { 3615 GlobalValueSummary *S = I.second; 3616 assert(S); 3617 3618 auto ValueId = getValueId(I.first); 3619 assert(ValueId); 3620 SummaryToValueIdMap[S] = *ValueId; 3621 3622 // If this is invoked for an aliasee, we want to record the above 3623 // mapping, but then not emit a summary entry (if the aliasee is 3624 // to be imported, we will invoke this separately with IsAliasee=false). 3625 if (IsAliasee) 3626 return; 3627 3628 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3629 // Will process aliases as a post-pass because the reader wants all 3630 // global to be loaded first. 3631 Aliases.push_back(AS); 3632 return; 3633 } 3634 3635 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3636 NameVals.push_back(*ValueId); 3637 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3638 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3639 for (auto &RI : VS->refs()) { 3640 auto RefValueId = getValueId(RI.getGUID()); 3641 if (!RefValueId) 3642 continue; 3643 NameVals.push_back(*RefValueId); 3644 } 3645 3646 // Emit the finished record. 3647 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3648 FSModRefsAbbrev); 3649 NameVals.clear(); 3650 MaybeEmitOriginalName(*S); 3651 return; 3652 } 3653 3654 auto *FS = cast<FunctionSummary>(S); 3655 writeFunctionTypeMetadataRecords(Stream, FS); 3656 3657 NameVals.push_back(*ValueId); 3658 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3659 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3660 NameVals.push_back(FS->instCount()); 3661 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3662 // Fill in below 3663 NameVals.push_back(0); 3664 3665 unsigned Count = 0; 3666 for (auto &RI : FS->refs()) { 3667 auto RefValueId = getValueId(RI.getGUID()); 3668 if (!RefValueId) 3669 continue; 3670 NameVals.push_back(*RefValueId); 3671 Count++; 3672 } 3673 NameVals[5] = Count; 3674 3675 bool HasProfileData = false; 3676 for (auto &EI : FS->calls()) { 3677 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3678 if (HasProfileData) 3679 break; 3680 } 3681 3682 for (auto &EI : FS->calls()) { 3683 // If this GUID doesn't have a value id, it doesn't have a function 3684 // summary and we don't need to record any calls to it. 3685 GlobalValue::GUID GUID = EI.first.getGUID(); 3686 auto CallValueId = getValueId(GUID); 3687 if (!CallValueId) { 3688 // For SamplePGO, the indirect call targets for local functions will 3689 // have its original name annotated in profile. We try to find the 3690 // corresponding PGOFuncName as the GUID. 3691 GUID = Index.getGUIDFromOriginalID(GUID); 3692 if (GUID == 0) 3693 continue; 3694 CallValueId = getValueId(GUID); 3695 if (!CallValueId) 3696 continue; 3697 // The mapping from OriginalId to GUID may return a GUID 3698 // that corresponds to a static variable. Filter it out here. 3699 // This can happen when 3700 // 1) There is a call to a library function which does not have 3701 // a CallValidId; 3702 // 2) There is a static variable with the OriginalGUID identical 3703 // to the GUID of the library function in 1); 3704 // When this happens, the logic for SamplePGO kicks in and 3705 // the static variable in 2) will be found, which needs to be 3706 // filtered out. 3707 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3708 if (GVSum && 3709 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 3710 continue; 3711 } 3712 NameVals.push_back(*CallValueId); 3713 if (HasProfileData) 3714 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3715 } 3716 3717 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3718 unsigned Code = 3719 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3720 3721 // Emit the finished record. 3722 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3723 NameVals.clear(); 3724 MaybeEmitOriginalName(*S); 3725 }); 3726 3727 for (auto *AS : Aliases) { 3728 auto AliasValueId = SummaryToValueIdMap[AS]; 3729 assert(AliasValueId); 3730 NameVals.push_back(AliasValueId); 3731 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3732 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3733 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3734 assert(AliaseeValueId); 3735 NameVals.push_back(AliaseeValueId); 3736 3737 // Emit the finished record. 3738 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3739 NameVals.clear(); 3740 MaybeEmitOriginalName(*AS); 3741 } 3742 3743 if (!Index.cfiFunctionDefs().empty()) { 3744 for (auto &S : Index.cfiFunctionDefs()) { 3745 NameVals.push_back(StrtabBuilder.add(S)); 3746 NameVals.push_back(S.size()); 3747 } 3748 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3749 NameVals.clear(); 3750 } 3751 3752 if (!Index.cfiFunctionDecls().empty()) { 3753 for (auto &S : Index.cfiFunctionDecls()) { 3754 NameVals.push_back(StrtabBuilder.add(S)); 3755 NameVals.push_back(S.size()); 3756 } 3757 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3758 NameVals.clear(); 3759 } 3760 3761 Stream.ExitBlock(); 3762 } 3763 3764 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3765 /// current llvm version, and a record for the epoch number. 3766 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3767 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3768 3769 // Write the "user readable" string identifying the bitcode producer 3770 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3771 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3774 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3775 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3776 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3777 3778 // Write the epoch version 3779 Abbv = std::make_shared<BitCodeAbbrev>(); 3780 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3782 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3783 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3784 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3785 Stream.ExitBlock(); 3786 } 3787 3788 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3789 // Emit the module's hash. 3790 // MODULE_CODE_HASH: [5*i32] 3791 if (GenerateHash) { 3792 uint32_t Vals[5]; 3793 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3794 Buffer.size() - BlockStartPos)); 3795 StringRef Hash = Hasher.result(); 3796 for (int Pos = 0; Pos < 20; Pos += 4) { 3797 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3798 } 3799 3800 // Emit the finished record. 3801 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3802 3803 if (ModHash) 3804 // Save the written hash value. 3805 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3806 } 3807 } 3808 3809 void ModuleBitcodeWriter::write() { 3810 writeIdentificationBlock(Stream); 3811 3812 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3813 size_t BlockStartPos = Buffer.size(); 3814 3815 writeModuleVersion(); 3816 3817 // Emit blockinfo, which defines the standard abbreviations etc. 3818 writeBlockInfo(); 3819 3820 // Emit information about attribute groups. 3821 writeAttributeGroupTable(); 3822 3823 // Emit information about parameter attributes. 3824 writeAttributeTable(); 3825 3826 // Emit information describing all of the types in the module. 3827 writeTypeTable(); 3828 3829 writeComdats(); 3830 3831 // Emit top-level description of module, including target triple, inline asm, 3832 // descriptors for global variables, and function prototype info. 3833 writeModuleInfo(); 3834 3835 // Emit constants. 3836 writeModuleConstants(); 3837 3838 // Emit metadata kind names. 3839 writeModuleMetadataKinds(); 3840 3841 // Emit metadata. 3842 writeModuleMetadata(); 3843 3844 // Emit module-level use-lists. 3845 if (VE.shouldPreserveUseListOrder()) 3846 writeUseListBlock(nullptr); 3847 3848 writeOperandBundleTags(); 3849 writeSyncScopeNames(); 3850 3851 // Emit function bodies. 3852 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3853 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3854 if (!F->isDeclaration()) 3855 writeFunction(*F, FunctionToBitcodeIndex); 3856 3857 // Need to write after the above call to WriteFunction which populates 3858 // the summary information in the index. 3859 if (Index) 3860 writePerModuleGlobalValueSummary(); 3861 3862 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3863 3864 writeModuleHash(BlockStartPos); 3865 3866 Stream.ExitBlock(); 3867 } 3868 3869 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3870 uint32_t &Position) { 3871 support::endian::write32le(&Buffer[Position], Value); 3872 Position += 4; 3873 } 3874 3875 /// If generating a bc file on darwin, we have to emit a 3876 /// header and trailer to make it compatible with the system archiver. To do 3877 /// this we emit the following header, and then emit a trailer that pads the 3878 /// file out to be a multiple of 16 bytes. 3879 /// 3880 /// struct bc_header { 3881 /// uint32_t Magic; // 0x0B17C0DE 3882 /// uint32_t Version; // Version, currently always 0. 3883 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3884 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3885 /// uint32_t CPUType; // CPU specifier. 3886 /// ... potentially more later ... 3887 /// }; 3888 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3889 const Triple &TT) { 3890 unsigned CPUType = ~0U; 3891 3892 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3893 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3894 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3895 // specific constants here because they are implicitly part of the Darwin ABI. 3896 enum { 3897 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3898 DARWIN_CPU_TYPE_X86 = 7, 3899 DARWIN_CPU_TYPE_ARM = 12, 3900 DARWIN_CPU_TYPE_POWERPC = 18 3901 }; 3902 3903 Triple::ArchType Arch = TT.getArch(); 3904 if (Arch == Triple::x86_64) 3905 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3906 else if (Arch == Triple::x86) 3907 CPUType = DARWIN_CPU_TYPE_X86; 3908 else if (Arch == Triple::ppc) 3909 CPUType = DARWIN_CPU_TYPE_POWERPC; 3910 else if (Arch == Triple::ppc64) 3911 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3912 else if (Arch == Triple::arm || Arch == Triple::thumb) 3913 CPUType = DARWIN_CPU_TYPE_ARM; 3914 3915 // Traditional Bitcode starts after header. 3916 assert(Buffer.size() >= BWH_HeaderSize && 3917 "Expected header size to be reserved"); 3918 unsigned BCOffset = BWH_HeaderSize; 3919 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3920 3921 // Write the magic and version. 3922 unsigned Position = 0; 3923 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3924 writeInt32ToBuffer(0, Buffer, Position); // Version. 3925 writeInt32ToBuffer(BCOffset, Buffer, Position); 3926 writeInt32ToBuffer(BCSize, Buffer, Position); 3927 writeInt32ToBuffer(CPUType, Buffer, Position); 3928 3929 // If the file is not a multiple of 16 bytes, insert dummy padding. 3930 while (Buffer.size() & 15) 3931 Buffer.push_back(0); 3932 } 3933 3934 /// Helper to write the header common to all bitcode files. 3935 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3936 // Emit the file header. 3937 Stream.Emit((unsigned)'B', 8); 3938 Stream.Emit((unsigned)'C', 8); 3939 Stream.Emit(0x0, 4); 3940 Stream.Emit(0xC, 4); 3941 Stream.Emit(0xE, 4); 3942 Stream.Emit(0xD, 4); 3943 } 3944 3945 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3946 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3947 writeBitcodeHeader(*Stream); 3948 } 3949 3950 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3951 3952 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3953 Stream->EnterSubblock(Block, 3); 3954 3955 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3956 Abbv->Add(BitCodeAbbrevOp(Record)); 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3958 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3959 3960 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3961 3962 Stream->ExitBlock(); 3963 } 3964 3965 void BitcodeWriter::writeSymtab() { 3966 assert(!WroteStrtab && !WroteSymtab); 3967 3968 // If any module has module-level inline asm, we will require a registered asm 3969 // parser for the target so that we can create an accurate symbol table for 3970 // the module. 3971 for (Module *M : Mods) { 3972 if (M->getModuleInlineAsm().empty()) 3973 continue; 3974 3975 std::string Err; 3976 const Triple TT(M->getTargetTriple()); 3977 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 3978 if (!T || !T->hasMCAsmParser()) 3979 return; 3980 } 3981 3982 WroteSymtab = true; 3983 SmallVector<char, 0> Symtab; 3984 // The irsymtab::build function may be unable to create a symbol table if the 3985 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 3986 // table is not required for correctness, but we still want to be able to 3987 // write malformed modules to bitcode files, so swallow the error. 3988 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 3989 consumeError(std::move(E)); 3990 return; 3991 } 3992 3993 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 3994 {Symtab.data(), Symtab.size()}); 3995 } 3996 3997 void BitcodeWriter::writeStrtab() { 3998 assert(!WroteStrtab); 3999 4000 std::vector<char> Strtab; 4001 StrtabBuilder.finalizeInOrder(); 4002 Strtab.resize(StrtabBuilder.getSize()); 4003 StrtabBuilder.write((uint8_t *)Strtab.data()); 4004 4005 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4006 {Strtab.data(), Strtab.size()}); 4007 4008 WroteStrtab = true; 4009 } 4010 4011 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4012 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4013 WroteStrtab = true; 4014 } 4015 4016 void BitcodeWriter::writeModule(const Module *M, 4017 bool ShouldPreserveUseListOrder, 4018 const ModuleSummaryIndex *Index, 4019 bool GenerateHash, ModuleHash *ModHash) { 4020 assert(!WroteStrtab); 4021 4022 // The Mods vector is used by irsymtab::build, which requires non-const 4023 // Modules in case it needs to materialize metadata. But the bitcode writer 4024 // requires that the module is materialized, so we can cast to non-const here, 4025 // after checking that it is in fact materialized. 4026 assert(M->isMaterialized()); 4027 Mods.push_back(const_cast<Module *>(M)); 4028 4029 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4030 ShouldPreserveUseListOrder, Index, 4031 GenerateHash, ModHash); 4032 ModuleWriter.write(); 4033 } 4034 4035 void BitcodeWriter::writeIndex( 4036 const ModuleSummaryIndex *Index, 4037 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4038 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4039 ModuleToSummariesForIndex); 4040 IndexWriter.write(); 4041 } 4042 4043 /// WriteBitcodeToFile - Write the specified module to the specified output 4044 /// stream. 4045 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 4046 bool ShouldPreserveUseListOrder, 4047 const ModuleSummaryIndex *Index, 4048 bool GenerateHash, ModuleHash *ModHash) { 4049 SmallVector<char, 0> Buffer; 4050 Buffer.reserve(256*1024); 4051 4052 // If this is darwin or another generic macho target, reserve space for the 4053 // header. 4054 Triple TT(M->getTargetTriple()); 4055 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4056 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4057 4058 BitcodeWriter Writer(Buffer); 4059 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4060 ModHash); 4061 Writer.writeSymtab(); 4062 Writer.writeStrtab(); 4063 4064 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4065 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4066 4067 // Write the generated bitstream to "Out". 4068 Out.write((char*)&Buffer.front(), Buffer.size()); 4069 } 4070 4071 void IndexBitcodeWriter::write() { 4072 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4073 4074 writeModuleVersion(); 4075 4076 // Write the module paths in the combined index. 4077 writeModStrings(); 4078 4079 // Write the summary combined index records. 4080 writeCombinedGlobalValueSummary(); 4081 4082 Stream.ExitBlock(); 4083 } 4084 4085 // Write the specified module summary index to the given raw output stream, 4086 // where it will be written in a new bitcode block. This is used when 4087 // writing the combined index file for ThinLTO. When writing a subset of the 4088 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4089 void llvm::WriteIndexToFile( 4090 const ModuleSummaryIndex &Index, raw_ostream &Out, 4091 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4092 SmallVector<char, 0> Buffer; 4093 Buffer.reserve(256 * 1024); 4094 4095 BitcodeWriter Writer(Buffer); 4096 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4097 Writer.writeStrtab(); 4098 4099 Out.write((char *)&Buffer.front(), Buffer.size()); 4100 } 4101 4102 namespace { 4103 4104 /// Class to manage the bitcode writing for a thin link bitcode file. 4105 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4106 /// ModHash is for use in ThinLTO incremental build, generated while writing 4107 /// the module bitcode file. 4108 const ModuleHash *ModHash; 4109 4110 public: 4111 ThinLinkBitcodeWriter(const Module *M, StringTableBuilder &StrtabBuilder, 4112 BitstreamWriter &Stream, 4113 const ModuleSummaryIndex &Index, 4114 const ModuleHash &ModHash) 4115 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4116 /*ShouldPreserveUseListOrder=*/false, &Index), 4117 ModHash(&ModHash) {} 4118 4119 void write(); 4120 4121 private: 4122 void writeSimplifiedModuleInfo(); 4123 }; 4124 4125 } // end anonymous namespace 4126 4127 // This function writes a simpilified module info for thin link bitcode file. 4128 // It only contains the source file name along with the name(the offset and 4129 // size in strtab) and linkage for global values. For the global value info 4130 // entry, in order to keep linkage at offset 5, there are three zeros used 4131 // as padding. 4132 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4133 SmallVector<unsigned, 64> Vals; 4134 // Emit the module's source file name. 4135 { 4136 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4137 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4138 if (Bits == SE_Char6) 4139 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4140 else if (Bits == SE_Fixed7) 4141 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4142 4143 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4144 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4145 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4147 Abbv->Add(AbbrevOpToUse); 4148 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4149 4150 for (const auto P : M.getSourceFileName()) 4151 Vals.push_back((unsigned char)P); 4152 4153 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4154 Vals.clear(); 4155 } 4156 4157 // Emit the global variable information. 4158 for (const GlobalVariable &GV : M.globals()) { 4159 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4160 Vals.push_back(StrtabBuilder.add(GV.getName())); 4161 Vals.push_back(GV.getName().size()); 4162 Vals.push_back(0); 4163 Vals.push_back(0); 4164 Vals.push_back(0); 4165 Vals.push_back(getEncodedLinkage(GV)); 4166 4167 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4168 Vals.clear(); 4169 } 4170 4171 // Emit the function proto information. 4172 for (const Function &F : M) { 4173 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4174 Vals.push_back(StrtabBuilder.add(F.getName())); 4175 Vals.push_back(F.getName().size()); 4176 Vals.push_back(0); 4177 Vals.push_back(0); 4178 Vals.push_back(0); 4179 Vals.push_back(getEncodedLinkage(F)); 4180 4181 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4182 Vals.clear(); 4183 } 4184 4185 // Emit the alias information. 4186 for (const GlobalAlias &A : M.aliases()) { 4187 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4188 Vals.push_back(StrtabBuilder.add(A.getName())); 4189 Vals.push_back(A.getName().size()); 4190 Vals.push_back(0); 4191 Vals.push_back(0); 4192 Vals.push_back(0); 4193 Vals.push_back(getEncodedLinkage(A)); 4194 4195 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4196 Vals.clear(); 4197 } 4198 4199 // Emit the ifunc information. 4200 for (const GlobalIFunc &I : M.ifuncs()) { 4201 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4202 Vals.push_back(StrtabBuilder.add(I.getName())); 4203 Vals.push_back(I.getName().size()); 4204 Vals.push_back(0); 4205 Vals.push_back(0); 4206 Vals.push_back(0); 4207 Vals.push_back(getEncodedLinkage(I)); 4208 4209 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4210 Vals.clear(); 4211 } 4212 } 4213 4214 void ThinLinkBitcodeWriter::write() { 4215 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4216 4217 writeModuleVersion(); 4218 4219 writeSimplifiedModuleInfo(); 4220 4221 writePerModuleGlobalValueSummary(); 4222 4223 // Write module hash. 4224 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4225 4226 Stream.ExitBlock(); 4227 } 4228 4229 void BitcodeWriter::writeThinLinkBitcode(const Module *M, 4230 const ModuleSummaryIndex &Index, 4231 const ModuleHash &ModHash) { 4232 assert(!WroteStrtab); 4233 4234 // The Mods vector is used by irsymtab::build, which requires non-const 4235 // Modules in case it needs to materialize metadata. But the bitcode writer 4236 // requires that the module is materialized, so we can cast to non-const here, 4237 // after checking that it is in fact materialized. 4238 assert(M->isMaterialized()); 4239 Mods.push_back(const_cast<Module *>(M)); 4240 4241 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4242 ModHash); 4243 ThinLinkWriter.write(); 4244 } 4245 4246 // Write the specified thin link bitcode file to the given raw output stream, 4247 // where it will be written in a new bitcode block. This is used when 4248 // writing the per-module index file for ThinLTO. 4249 void llvm::WriteThinLinkBitcodeToFile(const Module *M, raw_ostream &Out, 4250 const ModuleSummaryIndex &Index, 4251 const ModuleHash &ModHash) { 4252 SmallVector<char, 0> Buffer; 4253 Buffer.reserve(256 * 1024); 4254 4255 BitcodeWriter Writer(Buffer); 4256 Writer.writeThinLinkBitcode(M, Index, ModHash); 4257 Writer.writeSymtab(); 4258 Writer.writeStrtab(); 4259 4260 Out.write((char *)&Buffer.front(), Buffer.size()); 4261 } 4262