1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 static cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev, 218 unsigned FSModVTableRefsAbbrev); 219 220 void assignValueId(GlobalValue::GUID ValGUID) { 221 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 222 } 223 224 unsigned getValueId(GlobalValue::GUID ValGUID) { 225 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 226 // Expect that any GUID value had a value Id assigned by an 227 // earlier call to assignValueId. 228 assert(VMI != GUIDToValueIdMap.end() && 229 "GUID does not have assigned value Id"); 230 return VMI->second; 231 } 232 233 // Helper to get the valueId for the type of value recorded in VI. 234 unsigned getValueId(ValueInfo VI) { 235 if (!VI.haveGVs() || !VI.getValue()) 236 return getValueId(VI.getGUID()); 237 return VE.getValueID(VI.getValue()); 238 } 239 240 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 241 }; 242 243 /// Class to manage the bitcode writing for a module. 244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 245 /// Pointer to the buffer allocated by caller for bitcode writing. 246 const SmallVectorImpl<char> &Buffer; 247 248 /// True if a module hash record should be written. 249 bool GenerateHash; 250 251 /// If non-null, when GenerateHash is true, the resulting hash is written 252 /// into ModHash. 253 ModuleHash *ModHash; 254 255 SHA1 Hasher; 256 257 /// The start bit of the identification block. 258 uint64_t BitcodeStartBit; 259 260 public: 261 /// Constructs a ModuleBitcodeWriter object for the given Module, 262 /// writing to the provided \p Buffer. 263 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 264 StringTableBuilder &StrtabBuilder, 265 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 266 const ModuleSummaryIndex *Index, bool GenerateHash, 267 ModuleHash *ModHash = nullptr) 268 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 269 ShouldPreserveUseListOrder, Index), 270 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 271 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 272 273 /// Emit the current module to the bitstream. 274 void write(); 275 276 private: 277 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 278 279 size_t addToStrtab(StringRef Str); 280 281 void writeAttributeGroupTable(); 282 void writeAttributeTable(); 283 void writeTypeTable(); 284 void writeComdats(); 285 void writeValueSymbolTableForwardDecl(); 286 void writeModuleInfo(); 287 void writeValueAsMetadata(const ValueAsMetadata *MD, 288 SmallVectorImpl<uint64_t> &Record); 289 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 290 unsigned Abbrev); 291 unsigned createDILocationAbbrev(); 292 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned &Abbrev); 294 unsigned createGenericDINodeAbbrev(); 295 void writeGenericDINode(const GenericDINode *N, 296 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 297 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned Abbrev); 299 void writeDIEnumerator(const DIEnumerator *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 301 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIDerivedType(const DIDerivedType *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDICompositeType(const DICompositeType *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDISubroutineType(const DISubroutineType *N, 308 SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDICompileUnit(const DICompileUnit *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDISubprogram(const DISubprogram *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDILexicalBlock(const DILexicalBlock *N, 317 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 318 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICommonBlock(const DICommonBlock *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 335 SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIGlobalVariable(const DIGlobalVariable *N, 338 SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDILocalVariable(const DILocalVariable *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILabel(const DILabel *N, 343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 344 void writeDIExpression(const DIExpression *N, 345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIObjCProperty(const DIObjCProperty *N, 350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 351 void writeDIImportedEntity(const DIImportedEntity *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 unsigned createNamedMetadataAbbrev(); 355 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 356 unsigned createMetadataStringsAbbrev(); 357 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 358 SmallVectorImpl<uint64_t> &Record); 359 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 360 SmallVectorImpl<uint64_t> &Record, 361 std::vector<unsigned> *MDAbbrevs = nullptr, 362 std::vector<uint64_t> *IndexPos = nullptr); 363 void writeModuleMetadata(); 364 void writeFunctionMetadata(const Function &F); 365 void writeFunctionMetadataAttachment(const Function &F); 366 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 367 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 368 const GlobalObject &GO); 369 void writeModuleMetadataKinds(); 370 void writeOperandBundleTags(); 371 void writeSyncScopeNames(); 372 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 373 void writeModuleConstants(); 374 bool pushValueAndType(const Value *V, unsigned InstID, 375 SmallVectorImpl<unsigned> &Vals); 376 void writeOperandBundles(const CallBase &CB, unsigned InstID); 377 void pushValue(const Value *V, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void pushValueSigned(const Value *V, unsigned InstID, 380 SmallVectorImpl<uint64_t> &Vals); 381 void writeInstruction(const Instruction &I, unsigned InstID, 382 SmallVectorImpl<unsigned> &Vals); 383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 384 void writeGlobalValueSymbolTable( 385 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 386 void writeUseList(UseListOrder &&Order); 387 void writeUseListBlock(const Function *F); 388 void 389 writeFunction(const Function &F, 390 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 391 void writeBlockInfo(); 392 void writeModuleHash(size_t BlockStartPos); 393 394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 395 return unsigned(SSID); 396 } 397 }; 398 399 /// Class to manage the bitcode writing for a combined index. 400 class IndexBitcodeWriter : public BitcodeWriterBase { 401 /// The combined index to write to bitcode. 402 const ModuleSummaryIndex &Index; 403 404 /// When writing a subset of the index for distributed backends, client 405 /// provides a map of modules to the corresponding GUIDs/summaries to write. 406 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 407 408 /// Map that holds the correspondence between the GUID used in the combined 409 /// index and a value id generated by this class to use in references. 410 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 411 412 /// Tracks the last value id recorded in the GUIDToValueMap. 413 unsigned GlobalValueId = 0; 414 415 public: 416 /// Constructs a IndexBitcodeWriter object for the given combined index, 417 /// writing to the provided \p Buffer. When writing a subset of the index 418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 419 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 420 const ModuleSummaryIndex &Index, 421 const std::map<std::string, GVSummaryMapTy> 422 *ModuleToSummariesForIndex = nullptr) 423 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 424 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 425 // Assign unique value ids to all summaries to be written, for use 426 // in writing out the call graph edges. Save the mapping from GUID 427 // to the new global value id to use when writing those edges, which 428 // are currently saved in the index in terms of GUID. 429 forEachSummary([&](GVInfo I, bool) { 430 GUIDToValueIdMap[I.first] = ++GlobalValueId; 431 }); 432 } 433 434 /// The below iterator returns the GUID and associated summary. 435 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 436 437 /// Calls the callback for each value GUID and summary to be written to 438 /// bitcode. This hides the details of whether they are being pulled from the 439 /// entire index or just those in a provided ModuleToSummariesForIndex map. 440 template<typename Functor> 441 void forEachSummary(Functor Callback) { 442 if (ModuleToSummariesForIndex) { 443 for (auto &M : *ModuleToSummariesForIndex) 444 for (auto &Summary : M.second) { 445 Callback(Summary, false); 446 // Ensure aliasee is handled, e.g. for assigning a valueId, 447 // even if we are not importing the aliasee directly (the 448 // imported alias will contain a copy of aliasee). 449 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 450 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 451 } 452 } else { 453 for (auto &Summaries : Index) 454 for (auto &Summary : Summaries.second.SummaryList) 455 Callback({Summaries.first, Summary.get()}, false); 456 } 457 } 458 459 /// Calls the callback for each entry in the modulePaths StringMap that 460 /// should be written to the module path string table. This hides the details 461 /// of whether they are being pulled from the entire index or just those in a 462 /// provided ModuleToSummariesForIndex map. 463 template <typename Functor> void forEachModule(Functor Callback) { 464 if (ModuleToSummariesForIndex) { 465 for (const auto &M : *ModuleToSummariesForIndex) { 466 const auto &MPI = Index.modulePaths().find(M.first); 467 if (MPI == Index.modulePaths().end()) { 468 // This should only happen if the bitcode file was empty, in which 469 // case we shouldn't be importing (the ModuleToSummariesForIndex 470 // would only include the module we are writing and index for). 471 assert(ModuleToSummariesForIndex->size() == 1); 472 continue; 473 } 474 Callback(*MPI); 475 } 476 } else { 477 for (const auto &MPSE : Index.modulePaths()) 478 Callback(MPSE); 479 } 480 } 481 482 /// Main entry point for writing a combined index to bitcode. 483 void write(); 484 485 private: 486 void writeModStrings(); 487 void writeCombinedGlobalValueSummary(); 488 489 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 490 auto VMI = GUIDToValueIdMap.find(ValGUID); 491 if (VMI == GUIDToValueIdMap.end()) 492 return None; 493 return VMI->second; 494 } 495 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 499 } // end anonymous namespace 500 501 static unsigned getEncodedCastOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown cast instruction!"); 504 case Instruction::Trunc : return bitc::CAST_TRUNC; 505 case Instruction::ZExt : return bitc::CAST_ZEXT; 506 case Instruction::SExt : return bitc::CAST_SEXT; 507 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 508 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 509 case Instruction::UIToFP : return bitc::CAST_UITOFP; 510 case Instruction::SIToFP : return bitc::CAST_SITOFP; 511 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 512 case Instruction::FPExt : return bitc::CAST_FPEXT; 513 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 514 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 515 case Instruction::BitCast : return bitc::CAST_BITCAST; 516 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 517 } 518 } 519 520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 521 switch (Opcode) { 522 default: llvm_unreachable("Unknown binary instruction!"); 523 case Instruction::FNeg: return bitc::UNOP_FNEG; 524 } 525 } 526 527 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 528 switch (Opcode) { 529 default: llvm_unreachable("Unknown binary instruction!"); 530 case Instruction::Add: 531 case Instruction::FAdd: return bitc::BINOP_ADD; 532 case Instruction::Sub: 533 case Instruction::FSub: return bitc::BINOP_SUB; 534 case Instruction::Mul: 535 case Instruction::FMul: return bitc::BINOP_MUL; 536 case Instruction::UDiv: return bitc::BINOP_UDIV; 537 case Instruction::FDiv: 538 case Instruction::SDiv: return bitc::BINOP_SDIV; 539 case Instruction::URem: return bitc::BINOP_UREM; 540 case Instruction::FRem: 541 case Instruction::SRem: return bitc::BINOP_SREM; 542 case Instruction::Shl: return bitc::BINOP_SHL; 543 case Instruction::LShr: return bitc::BINOP_LSHR; 544 case Instruction::AShr: return bitc::BINOP_ASHR; 545 case Instruction::And: return bitc::BINOP_AND; 546 case Instruction::Or: return bitc::BINOP_OR; 547 case Instruction::Xor: return bitc::BINOP_XOR; 548 } 549 } 550 551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 552 switch (Op) { 553 default: llvm_unreachable("Unknown RMW operation!"); 554 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 555 case AtomicRMWInst::Add: return bitc::RMW_ADD; 556 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 557 case AtomicRMWInst::And: return bitc::RMW_AND; 558 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 559 case AtomicRMWInst::Or: return bitc::RMW_OR; 560 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 561 case AtomicRMWInst::Max: return bitc::RMW_MAX; 562 case AtomicRMWInst::Min: return bitc::RMW_MIN; 563 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 564 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 565 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 566 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 567 } 568 } 569 570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 571 switch (Ordering) { 572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 579 } 580 llvm_unreachable("Invalid ordering"); 581 } 582 583 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 584 StringRef Str, unsigned AbbrevToUse) { 585 SmallVector<unsigned, 64> Vals; 586 587 // Code: [strchar x N] 588 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 589 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 590 AbbrevToUse = 0; 591 Vals.push_back(Str[i]); 592 } 593 594 // Emit the finished record. 595 Stream.EmitRecord(Code, Vals, AbbrevToUse); 596 } 597 598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 599 switch (Kind) { 600 case Attribute::Alignment: 601 return bitc::ATTR_KIND_ALIGNMENT; 602 case Attribute::AllocSize: 603 return bitc::ATTR_KIND_ALLOC_SIZE; 604 case Attribute::AlwaysInline: 605 return bitc::ATTR_KIND_ALWAYS_INLINE; 606 case Attribute::ArgMemOnly: 607 return bitc::ATTR_KIND_ARGMEMONLY; 608 case Attribute::Builtin: 609 return bitc::ATTR_KIND_BUILTIN; 610 case Attribute::ByVal: 611 return bitc::ATTR_KIND_BY_VAL; 612 case Attribute::Convergent: 613 return bitc::ATTR_KIND_CONVERGENT; 614 case Attribute::InAlloca: 615 return bitc::ATTR_KIND_IN_ALLOCA; 616 case Attribute::Cold: 617 return bitc::ATTR_KIND_COLD; 618 case Attribute::InaccessibleMemOnly: 619 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 620 case Attribute::InaccessibleMemOrArgMemOnly: 621 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 622 case Attribute::InlineHint: 623 return bitc::ATTR_KIND_INLINE_HINT; 624 case Attribute::InReg: 625 return bitc::ATTR_KIND_IN_REG; 626 case Attribute::JumpTable: 627 return bitc::ATTR_KIND_JUMP_TABLE; 628 case Attribute::MinSize: 629 return bitc::ATTR_KIND_MIN_SIZE; 630 case Attribute::Naked: 631 return bitc::ATTR_KIND_NAKED; 632 case Attribute::Nest: 633 return bitc::ATTR_KIND_NEST; 634 case Attribute::NoAlias: 635 return bitc::ATTR_KIND_NO_ALIAS; 636 case Attribute::NoBuiltin: 637 return bitc::ATTR_KIND_NO_BUILTIN; 638 case Attribute::NoCapture: 639 return bitc::ATTR_KIND_NO_CAPTURE; 640 case Attribute::NoDuplicate: 641 return bitc::ATTR_KIND_NO_DUPLICATE; 642 case Attribute::NoFree: 643 return bitc::ATTR_KIND_NOFREE; 644 case Attribute::NoImplicitFloat: 645 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 646 case Attribute::NoInline: 647 return bitc::ATTR_KIND_NO_INLINE; 648 case Attribute::NoRecurse: 649 return bitc::ATTR_KIND_NO_RECURSE; 650 case Attribute::NonLazyBind: 651 return bitc::ATTR_KIND_NON_LAZY_BIND; 652 case Attribute::NonNull: 653 return bitc::ATTR_KIND_NON_NULL; 654 case Attribute::Dereferenceable: 655 return bitc::ATTR_KIND_DEREFERENCEABLE; 656 case Attribute::DereferenceableOrNull: 657 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 658 case Attribute::NoRedZone: 659 return bitc::ATTR_KIND_NO_RED_ZONE; 660 case Attribute::NoReturn: 661 return bitc::ATTR_KIND_NO_RETURN; 662 case Attribute::NoSync: 663 return bitc::ATTR_KIND_NOSYNC; 664 case Attribute::NoCfCheck: 665 return bitc::ATTR_KIND_NOCF_CHECK; 666 case Attribute::NoUnwind: 667 return bitc::ATTR_KIND_NO_UNWIND; 668 case Attribute::OptForFuzzing: 669 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 670 case Attribute::OptimizeForSize: 671 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 672 case Attribute::OptimizeNone: 673 return bitc::ATTR_KIND_OPTIMIZE_NONE; 674 case Attribute::ReadNone: 675 return bitc::ATTR_KIND_READ_NONE; 676 case Attribute::ReadOnly: 677 return bitc::ATTR_KIND_READ_ONLY; 678 case Attribute::Returned: 679 return bitc::ATTR_KIND_RETURNED; 680 case Attribute::ReturnsTwice: 681 return bitc::ATTR_KIND_RETURNS_TWICE; 682 case Attribute::SExt: 683 return bitc::ATTR_KIND_S_EXT; 684 case Attribute::Speculatable: 685 return bitc::ATTR_KIND_SPECULATABLE; 686 case Attribute::StackAlignment: 687 return bitc::ATTR_KIND_STACK_ALIGNMENT; 688 case Attribute::StackProtect: 689 return bitc::ATTR_KIND_STACK_PROTECT; 690 case Attribute::StackProtectReq: 691 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 692 case Attribute::StackProtectStrong: 693 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 694 case Attribute::SafeStack: 695 return bitc::ATTR_KIND_SAFESTACK; 696 case Attribute::ShadowCallStack: 697 return bitc::ATTR_KIND_SHADOWCALLSTACK; 698 case Attribute::StrictFP: 699 return bitc::ATTR_KIND_STRICT_FP; 700 case Attribute::StructRet: 701 return bitc::ATTR_KIND_STRUCT_RET; 702 case Attribute::SanitizeAddress: 703 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 704 case Attribute::SanitizeHWAddress: 705 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 706 case Attribute::SanitizeThread: 707 return bitc::ATTR_KIND_SANITIZE_THREAD; 708 case Attribute::SanitizeMemory: 709 return bitc::ATTR_KIND_SANITIZE_MEMORY; 710 case Attribute::SpeculativeLoadHardening: 711 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 712 case Attribute::SwiftError: 713 return bitc::ATTR_KIND_SWIFT_ERROR; 714 case Attribute::SwiftSelf: 715 return bitc::ATTR_KIND_SWIFT_SELF; 716 case Attribute::UWTable: 717 return bitc::ATTR_KIND_UW_TABLE; 718 case Attribute::WillReturn: 719 return bitc::ATTR_KIND_WILLRETURN; 720 case Attribute::WriteOnly: 721 return bitc::ATTR_KIND_WRITEONLY; 722 case Attribute::ZExt: 723 return bitc::ATTR_KIND_Z_EXT; 724 case Attribute::ImmArg: 725 return bitc::ATTR_KIND_IMMARG; 726 case Attribute::SanitizeMemTag: 727 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 728 case Attribute::Preallocated: 729 return bitc::ATTR_KIND_PREALLOCATED; 730 case Attribute::EndAttrKinds: 731 llvm_unreachable("Can not encode end-attribute kinds marker."); 732 case Attribute::None: 733 llvm_unreachable("Can not encode none-attribute."); 734 case Attribute::EmptyKey: 735 case Attribute::TombstoneKey: 736 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 737 } 738 739 llvm_unreachable("Trying to encode unknown attribute"); 740 } 741 742 void ModuleBitcodeWriter::writeAttributeGroupTable() { 743 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 744 VE.getAttributeGroups(); 745 if (AttrGrps.empty()) return; 746 747 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 748 749 SmallVector<uint64_t, 64> Record; 750 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 751 unsigned AttrListIndex = Pair.first; 752 AttributeSet AS = Pair.second; 753 Record.push_back(VE.getAttributeGroupID(Pair)); 754 Record.push_back(AttrListIndex); 755 756 for (Attribute Attr : AS) { 757 if (Attr.isEnumAttribute()) { 758 Record.push_back(0); 759 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 760 } else if (Attr.isIntAttribute()) { 761 Record.push_back(1); 762 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 763 Record.push_back(Attr.getValueAsInt()); 764 } else if (Attr.isStringAttribute()) { 765 StringRef Kind = Attr.getKindAsString(); 766 StringRef Val = Attr.getValueAsString(); 767 768 Record.push_back(Val.empty() ? 3 : 4); 769 Record.append(Kind.begin(), Kind.end()); 770 Record.push_back(0); 771 if (!Val.empty()) { 772 Record.append(Val.begin(), Val.end()); 773 Record.push_back(0); 774 } 775 } else { 776 assert(Attr.isTypeAttribute()); 777 Type *Ty = Attr.getValueAsType(); 778 Record.push_back(Ty ? 6 : 5); 779 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 780 if (Ty) 781 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 782 } 783 } 784 785 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 786 Record.clear(); 787 } 788 789 Stream.ExitBlock(); 790 } 791 792 void ModuleBitcodeWriter::writeAttributeTable() { 793 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 794 if (Attrs.empty()) return; 795 796 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 797 798 SmallVector<uint64_t, 64> Record; 799 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 800 AttributeList AL = Attrs[i]; 801 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 802 AttributeSet AS = AL.getAttributes(i); 803 if (AS.hasAttributes()) 804 Record.push_back(VE.getAttributeGroupID({i, AS})); 805 } 806 807 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 808 Record.clear(); 809 } 810 811 Stream.ExitBlock(); 812 } 813 814 /// WriteTypeTable - Write out the type table for a module. 815 void ModuleBitcodeWriter::writeTypeTable() { 816 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 817 818 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 819 SmallVector<uint64_t, 64> TypeVals; 820 821 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 822 823 // Abbrev for TYPE_CODE_POINTER. 824 auto Abbv = std::make_shared<BitCodeAbbrev>(); 825 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 827 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 828 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 829 830 // Abbrev for TYPE_CODE_FUNCTION. 831 Abbv = std::make_shared<BitCodeAbbrev>(); 832 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 836 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 837 838 // Abbrev for TYPE_CODE_STRUCT_ANON. 839 Abbv = std::make_shared<BitCodeAbbrev>(); 840 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 844 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 845 846 // Abbrev for TYPE_CODE_STRUCT_NAME. 847 Abbv = std::make_shared<BitCodeAbbrev>(); 848 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 851 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 852 853 // Abbrev for TYPE_CODE_STRUCT_NAMED. 854 Abbv = std::make_shared<BitCodeAbbrev>(); 855 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 859 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 860 861 // Abbrev for TYPE_CODE_ARRAY. 862 Abbv = std::make_shared<BitCodeAbbrev>(); 863 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 866 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 867 868 // Emit an entry count so the reader can reserve space. 869 TypeVals.push_back(TypeList.size()); 870 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 871 TypeVals.clear(); 872 873 // Loop over all of the types, emitting each in turn. 874 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 875 Type *T = TypeList[i]; 876 int AbbrevToUse = 0; 877 unsigned Code = 0; 878 879 switch (T->getTypeID()) { 880 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 881 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 882 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 883 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 884 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 885 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 886 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 887 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 888 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 889 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 890 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 891 case Type::IntegerTyID: 892 // INTEGER: [width] 893 Code = bitc::TYPE_CODE_INTEGER; 894 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 895 break; 896 case Type::PointerTyID: { 897 PointerType *PTy = cast<PointerType>(T); 898 // POINTER: [pointee type, address space] 899 Code = bitc::TYPE_CODE_POINTER; 900 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 901 unsigned AddressSpace = PTy->getAddressSpace(); 902 TypeVals.push_back(AddressSpace); 903 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 904 break; 905 } 906 case Type::FunctionTyID: { 907 FunctionType *FT = cast<FunctionType>(T); 908 // FUNCTION: [isvararg, retty, paramty x N] 909 Code = bitc::TYPE_CODE_FUNCTION; 910 TypeVals.push_back(FT->isVarArg()); 911 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 912 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 913 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 914 AbbrevToUse = FunctionAbbrev; 915 break; 916 } 917 case Type::StructTyID: { 918 StructType *ST = cast<StructType>(T); 919 // STRUCT: [ispacked, eltty x N] 920 TypeVals.push_back(ST->isPacked()); 921 // Output all of the element types. 922 for (StructType::element_iterator I = ST->element_begin(), 923 E = ST->element_end(); I != E; ++I) 924 TypeVals.push_back(VE.getTypeID(*I)); 925 926 if (ST->isLiteral()) { 927 Code = bitc::TYPE_CODE_STRUCT_ANON; 928 AbbrevToUse = StructAnonAbbrev; 929 } else { 930 if (ST->isOpaque()) { 931 Code = bitc::TYPE_CODE_OPAQUE; 932 } else { 933 Code = bitc::TYPE_CODE_STRUCT_NAMED; 934 AbbrevToUse = StructNamedAbbrev; 935 } 936 937 // Emit the name if it is present. 938 if (!ST->getName().empty()) 939 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 940 StructNameAbbrev); 941 } 942 break; 943 } 944 case Type::ArrayTyID: { 945 ArrayType *AT = cast<ArrayType>(T); 946 // ARRAY: [numelts, eltty] 947 Code = bitc::TYPE_CODE_ARRAY; 948 TypeVals.push_back(AT->getNumElements()); 949 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 950 AbbrevToUse = ArrayAbbrev; 951 break; 952 } 953 case Type::FixedVectorTyID: 954 case Type::ScalableVectorTyID: { 955 VectorType *VT = cast<VectorType>(T); 956 // VECTOR [numelts, eltty] or 957 // [numelts, eltty, scalable] 958 Code = bitc::TYPE_CODE_VECTOR; 959 TypeVals.push_back(VT->getNumElements()); 960 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 961 if (isa<ScalableVectorType>(VT)) 962 TypeVals.push_back(true); 963 break; 964 } 965 } 966 967 // Emit the finished record. 968 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 969 TypeVals.clear(); 970 } 971 972 Stream.ExitBlock(); 973 } 974 975 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 976 switch (Linkage) { 977 case GlobalValue::ExternalLinkage: 978 return 0; 979 case GlobalValue::WeakAnyLinkage: 980 return 16; 981 case GlobalValue::AppendingLinkage: 982 return 2; 983 case GlobalValue::InternalLinkage: 984 return 3; 985 case GlobalValue::LinkOnceAnyLinkage: 986 return 18; 987 case GlobalValue::ExternalWeakLinkage: 988 return 7; 989 case GlobalValue::CommonLinkage: 990 return 8; 991 case GlobalValue::PrivateLinkage: 992 return 9; 993 case GlobalValue::WeakODRLinkage: 994 return 17; 995 case GlobalValue::LinkOnceODRLinkage: 996 return 19; 997 case GlobalValue::AvailableExternallyLinkage: 998 return 12; 999 } 1000 llvm_unreachable("Invalid linkage"); 1001 } 1002 1003 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1004 return getEncodedLinkage(GV.getLinkage()); 1005 } 1006 1007 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1008 uint64_t RawFlags = 0; 1009 RawFlags |= Flags.ReadNone; 1010 RawFlags |= (Flags.ReadOnly << 1); 1011 RawFlags |= (Flags.NoRecurse << 2); 1012 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1013 RawFlags |= (Flags.NoInline << 4); 1014 RawFlags |= (Flags.AlwaysInline << 5); 1015 return RawFlags; 1016 } 1017 1018 // Decode the flags for GlobalValue in the summary 1019 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1020 uint64_t RawFlags = 0; 1021 1022 RawFlags |= Flags.NotEligibleToImport; // bool 1023 RawFlags |= (Flags.Live << 1); 1024 RawFlags |= (Flags.DSOLocal << 2); 1025 RawFlags |= (Flags.CanAutoHide << 3); 1026 1027 // Linkage don't need to be remapped at that time for the summary. Any future 1028 // change to the getEncodedLinkage() function will need to be taken into 1029 // account here as well. 1030 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1031 1032 return RawFlags; 1033 } 1034 1035 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1036 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1037 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1038 return RawFlags; 1039 } 1040 1041 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1042 switch (GV.getVisibility()) { 1043 case GlobalValue::DefaultVisibility: return 0; 1044 case GlobalValue::HiddenVisibility: return 1; 1045 case GlobalValue::ProtectedVisibility: return 2; 1046 } 1047 llvm_unreachable("Invalid visibility"); 1048 } 1049 1050 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1051 switch (GV.getDLLStorageClass()) { 1052 case GlobalValue::DefaultStorageClass: return 0; 1053 case GlobalValue::DLLImportStorageClass: return 1; 1054 case GlobalValue::DLLExportStorageClass: return 2; 1055 } 1056 llvm_unreachable("Invalid DLL storage class"); 1057 } 1058 1059 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1060 switch (GV.getThreadLocalMode()) { 1061 case GlobalVariable::NotThreadLocal: return 0; 1062 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1063 case GlobalVariable::LocalDynamicTLSModel: return 2; 1064 case GlobalVariable::InitialExecTLSModel: return 3; 1065 case GlobalVariable::LocalExecTLSModel: return 4; 1066 } 1067 llvm_unreachable("Invalid TLS model"); 1068 } 1069 1070 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1071 switch (C.getSelectionKind()) { 1072 case Comdat::Any: 1073 return bitc::COMDAT_SELECTION_KIND_ANY; 1074 case Comdat::ExactMatch: 1075 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1076 case Comdat::Largest: 1077 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1078 case Comdat::NoDuplicates: 1079 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1080 case Comdat::SameSize: 1081 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1082 } 1083 llvm_unreachable("Invalid selection kind"); 1084 } 1085 1086 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1087 switch (GV.getUnnamedAddr()) { 1088 case GlobalValue::UnnamedAddr::None: return 0; 1089 case GlobalValue::UnnamedAddr::Local: return 2; 1090 case GlobalValue::UnnamedAddr::Global: return 1; 1091 } 1092 llvm_unreachable("Invalid unnamed_addr"); 1093 } 1094 1095 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1096 if (GenerateHash) 1097 Hasher.update(Str); 1098 return StrtabBuilder.add(Str); 1099 } 1100 1101 void ModuleBitcodeWriter::writeComdats() { 1102 SmallVector<unsigned, 64> Vals; 1103 for (const Comdat *C : VE.getComdats()) { 1104 // COMDAT: [strtab offset, strtab size, selection_kind] 1105 Vals.push_back(addToStrtab(C->getName())); 1106 Vals.push_back(C->getName().size()); 1107 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1108 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1109 Vals.clear(); 1110 } 1111 } 1112 1113 /// Write a record that will eventually hold the word offset of the 1114 /// module-level VST. For now the offset is 0, which will be backpatched 1115 /// after the real VST is written. Saves the bit offset to backpatch. 1116 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1117 // Write a placeholder value in for the offset of the real VST, 1118 // which is written after the function blocks so that it can include 1119 // the offset of each function. The placeholder offset will be 1120 // updated when the real VST is written. 1121 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1122 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1123 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1124 // hold the real VST offset. Must use fixed instead of VBR as we don't 1125 // know how many VBR chunks to reserve ahead of time. 1126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1127 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1128 1129 // Emit the placeholder 1130 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1131 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1132 1133 // Compute and save the bit offset to the placeholder, which will be 1134 // patched when the real VST is written. We can simply subtract the 32-bit 1135 // fixed size from the current bit number to get the location to backpatch. 1136 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1137 } 1138 1139 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1140 1141 /// Determine the encoding to use for the given string name and length. 1142 static StringEncoding getStringEncoding(StringRef Str) { 1143 bool isChar6 = true; 1144 for (char C : Str) { 1145 if (isChar6) 1146 isChar6 = BitCodeAbbrevOp::isChar6(C); 1147 if ((unsigned char)C & 128) 1148 // don't bother scanning the rest. 1149 return SE_Fixed8; 1150 } 1151 if (isChar6) 1152 return SE_Char6; 1153 return SE_Fixed7; 1154 } 1155 1156 /// Emit top-level description of module, including target triple, inline asm, 1157 /// descriptors for global variables, and function prototype info. 1158 /// Returns the bit offset to backpatch with the location of the real VST. 1159 void ModuleBitcodeWriter::writeModuleInfo() { 1160 // Emit various pieces of data attached to a module. 1161 if (!M.getTargetTriple().empty()) 1162 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1163 0 /*TODO*/); 1164 const std::string &DL = M.getDataLayoutStr(); 1165 if (!DL.empty()) 1166 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1167 if (!M.getModuleInlineAsm().empty()) 1168 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1169 0 /*TODO*/); 1170 1171 // Emit information about sections and GC, computing how many there are. Also 1172 // compute the maximum alignment value. 1173 std::map<std::string, unsigned> SectionMap; 1174 std::map<std::string, unsigned> GCMap; 1175 unsigned MaxAlignment = 0; 1176 unsigned MaxGlobalType = 0; 1177 for (const GlobalValue &GV : M.globals()) { 1178 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1179 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1180 if (GV.hasSection()) { 1181 // Give section names unique ID's. 1182 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1183 if (!Entry) { 1184 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1185 0 /*TODO*/); 1186 Entry = SectionMap.size(); 1187 } 1188 } 1189 } 1190 for (const Function &F : M) { 1191 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1192 if (F.hasSection()) { 1193 // Give section names unique ID's. 1194 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1195 if (!Entry) { 1196 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1197 0 /*TODO*/); 1198 Entry = SectionMap.size(); 1199 } 1200 } 1201 if (F.hasGC()) { 1202 // Same for GC names. 1203 unsigned &Entry = GCMap[F.getGC()]; 1204 if (!Entry) { 1205 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1206 0 /*TODO*/); 1207 Entry = GCMap.size(); 1208 } 1209 } 1210 } 1211 1212 // Emit abbrev for globals, now that we know # sections and max alignment. 1213 unsigned SimpleGVarAbbrev = 0; 1214 if (!M.global_empty()) { 1215 // Add an abbrev for common globals with no visibility or thread localness. 1216 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1217 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1221 Log2_32_Ceil(MaxGlobalType+1))); 1222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1223 //| explicitType << 1 1224 //| constant 1225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1227 if (MaxAlignment == 0) // Alignment. 1228 Abbv->Add(BitCodeAbbrevOp(0)); 1229 else { 1230 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1232 Log2_32_Ceil(MaxEncAlignment+1))); 1233 } 1234 if (SectionMap.empty()) // Section. 1235 Abbv->Add(BitCodeAbbrevOp(0)); 1236 else 1237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1238 Log2_32_Ceil(SectionMap.size()+1))); 1239 // Don't bother emitting vis + thread local. 1240 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1241 } 1242 1243 SmallVector<unsigned, 64> Vals; 1244 // Emit the module's source file name. 1245 { 1246 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1247 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1248 if (Bits == SE_Char6) 1249 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1250 else if (Bits == SE_Fixed7) 1251 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1252 1253 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1254 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1255 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1257 Abbv->Add(AbbrevOpToUse); 1258 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1259 1260 for (const auto P : M.getSourceFileName()) 1261 Vals.push_back((unsigned char)P); 1262 1263 // Emit the finished record. 1264 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1265 Vals.clear(); 1266 } 1267 1268 // Emit the global variable information. 1269 for (const GlobalVariable &GV : M.globals()) { 1270 unsigned AbbrevToUse = 0; 1271 1272 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1273 // linkage, alignment, section, visibility, threadlocal, 1274 // unnamed_addr, externally_initialized, dllstorageclass, 1275 // comdat, attributes, DSO_Local] 1276 Vals.push_back(addToStrtab(GV.getName())); 1277 Vals.push_back(GV.getName().size()); 1278 Vals.push_back(VE.getTypeID(GV.getValueType())); 1279 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1280 Vals.push_back(GV.isDeclaration() ? 0 : 1281 (VE.getValueID(GV.getInitializer()) + 1)); 1282 Vals.push_back(getEncodedLinkage(GV)); 1283 Vals.push_back(Log2_32(GV.getAlignment())+1); 1284 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1285 : 0); 1286 if (GV.isThreadLocal() || 1287 GV.getVisibility() != GlobalValue::DefaultVisibility || 1288 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1289 GV.isExternallyInitialized() || 1290 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1291 GV.hasComdat() || 1292 GV.hasAttributes() || 1293 GV.isDSOLocal() || 1294 GV.hasPartition()) { 1295 Vals.push_back(getEncodedVisibility(GV)); 1296 Vals.push_back(getEncodedThreadLocalMode(GV)); 1297 Vals.push_back(getEncodedUnnamedAddr(GV)); 1298 Vals.push_back(GV.isExternallyInitialized()); 1299 Vals.push_back(getEncodedDLLStorageClass(GV)); 1300 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1301 1302 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1303 Vals.push_back(VE.getAttributeListID(AL)); 1304 1305 Vals.push_back(GV.isDSOLocal()); 1306 Vals.push_back(addToStrtab(GV.getPartition())); 1307 Vals.push_back(GV.getPartition().size()); 1308 } else { 1309 AbbrevToUse = SimpleGVarAbbrev; 1310 } 1311 1312 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1313 Vals.clear(); 1314 } 1315 1316 // Emit the function proto information. 1317 for (const Function &F : M) { 1318 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1319 // linkage, paramattrs, alignment, section, visibility, gc, 1320 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1321 // prefixdata, personalityfn, DSO_Local, addrspace] 1322 Vals.push_back(addToStrtab(F.getName())); 1323 Vals.push_back(F.getName().size()); 1324 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1325 Vals.push_back(F.getCallingConv()); 1326 Vals.push_back(F.isDeclaration()); 1327 Vals.push_back(getEncodedLinkage(F)); 1328 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1329 Vals.push_back(Log2_32(F.getAlignment())+1); 1330 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1331 : 0); 1332 Vals.push_back(getEncodedVisibility(F)); 1333 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1334 Vals.push_back(getEncodedUnnamedAddr(F)); 1335 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1336 : 0); 1337 Vals.push_back(getEncodedDLLStorageClass(F)); 1338 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1339 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1340 : 0); 1341 Vals.push_back( 1342 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1343 1344 Vals.push_back(F.isDSOLocal()); 1345 Vals.push_back(F.getAddressSpace()); 1346 Vals.push_back(addToStrtab(F.getPartition())); 1347 Vals.push_back(F.getPartition().size()); 1348 1349 unsigned AbbrevToUse = 0; 1350 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1351 Vals.clear(); 1352 } 1353 1354 // Emit the alias information. 1355 for (const GlobalAlias &A : M.aliases()) { 1356 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1357 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1358 // DSO_Local] 1359 Vals.push_back(addToStrtab(A.getName())); 1360 Vals.push_back(A.getName().size()); 1361 Vals.push_back(VE.getTypeID(A.getValueType())); 1362 Vals.push_back(A.getType()->getAddressSpace()); 1363 Vals.push_back(VE.getValueID(A.getAliasee())); 1364 Vals.push_back(getEncodedLinkage(A)); 1365 Vals.push_back(getEncodedVisibility(A)); 1366 Vals.push_back(getEncodedDLLStorageClass(A)); 1367 Vals.push_back(getEncodedThreadLocalMode(A)); 1368 Vals.push_back(getEncodedUnnamedAddr(A)); 1369 Vals.push_back(A.isDSOLocal()); 1370 Vals.push_back(addToStrtab(A.getPartition())); 1371 Vals.push_back(A.getPartition().size()); 1372 1373 unsigned AbbrevToUse = 0; 1374 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1375 Vals.clear(); 1376 } 1377 1378 // Emit the ifunc information. 1379 for (const GlobalIFunc &I : M.ifuncs()) { 1380 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1381 // val#, linkage, visibility, DSO_Local] 1382 Vals.push_back(addToStrtab(I.getName())); 1383 Vals.push_back(I.getName().size()); 1384 Vals.push_back(VE.getTypeID(I.getValueType())); 1385 Vals.push_back(I.getType()->getAddressSpace()); 1386 Vals.push_back(VE.getValueID(I.getResolver())); 1387 Vals.push_back(getEncodedLinkage(I)); 1388 Vals.push_back(getEncodedVisibility(I)); 1389 Vals.push_back(I.isDSOLocal()); 1390 Vals.push_back(addToStrtab(I.getPartition())); 1391 Vals.push_back(I.getPartition().size()); 1392 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1393 Vals.clear(); 1394 } 1395 1396 writeValueSymbolTableForwardDecl(); 1397 } 1398 1399 static uint64_t getOptimizationFlags(const Value *V) { 1400 uint64_t Flags = 0; 1401 1402 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1403 if (OBO->hasNoSignedWrap()) 1404 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1405 if (OBO->hasNoUnsignedWrap()) 1406 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1407 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1408 if (PEO->isExact()) 1409 Flags |= 1 << bitc::PEO_EXACT; 1410 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1411 if (FPMO->hasAllowReassoc()) 1412 Flags |= bitc::AllowReassoc; 1413 if (FPMO->hasNoNaNs()) 1414 Flags |= bitc::NoNaNs; 1415 if (FPMO->hasNoInfs()) 1416 Flags |= bitc::NoInfs; 1417 if (FPMO->hasNoSignedZeros()) 1418 Flags |= bitc::NoSignedZeros; 1419 if (FPMO->hasAllowReciprocal()) 1420 Flags |= bitc::AllowReciprocal; 1421 if (FPMO->hasAllowContract()) 1422 Flags |= bitc::AllowContract; 1423 if (FPMO->hasApproxFunc()) 1424 Flags |= bitc::ApproxFunc; 1425 } 1426 1427 return Flags; 1428 } 1429 1430 void ModuleBitcodeWriter::writeValueAsMetadata( 1431 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1432 // Mimic an MDNode with a value as one operand. 1433 Value *V = MD->getValue(); 1434 Record.push_back(VE.getTypeID(V->getType())); 1435 Record.push_back(VE.getValueID(V)); 1436 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1437 Record.clear(); 1438 } 1439 1440 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1441 SmallVectorImpl<uint64_t> &Record, 1442 unsigned Abbrev) { 1443 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1444 Metadata *MD = N->getOperand(i); 1445 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1446 "Unexpected function-local metadata"); 1447 Record.push_back(VE.getMetadataOrNullID(MD)); 1448 } 1449 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1450 : bitc::METADATA_NODE, 1451 Record, Abbrev); 1452 Record.clear(); 1453 } 1454 1455 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1456 // Assume the column is usually under 128, and always output the inlined-at 1457 // location (it's never more expensive than building an array size 1). 1458 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1459 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1466 return Stream.EmitAbbrev(std::move(Abbv)); 1467 } 1468 1469 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1470 SmallVectorImpl<uint64_t> &Record, 1471 unsigned &Abbrev) { 1472 if (!Abbrev) 1473 Abbrev = createDILocationAbbrev(); 1474 1475 Record.push_back(N->isDistinct()); 1476 Record.push_back(N->getLine()); 1477 Record.push_back(N->getColumn()); 1478 Record.push_back(VE.getMetadataID(N->getScope())); 1479 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1480 Record.push_back(N->isImplicitCode()); 1481 1482 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1483 Record.clear(); 1484 } 1485 1486 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1487 // Assume the column is usually under 128, and always output the inlined-at 1488 // location (it's never more expensive than building an array size 1). 1489 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1490 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1497 return Stream.EmitAbbrev(std::move(Abbv)); 1498 } 1499 1500 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1501 SmallVectorImpl<uint64_t> &Record, 1502 unsigned &Abbrev) { 1503 if (!Abbrev) 1504 Abbrev = createGenericDINodeAbbrev(); 1505 1506 Record.push_back(N->isDistinct()); 1507 Record.push_back(N->getTag()); 1508 Record.push_back(0); // Per-tag version field; unused for now. 1509 1510 for (auto &I : N->operands()) 1511 Record.push_back(VE.getMetadataOrNullID(I)); 1512 1513 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1514 Record.clear(); 1515 } 1516 1517 static uint64_t rotateSign(int64_t I) { 1518 uint64_t U = I; 1519 return I < 0 ? ~(U << 1) : U << 1; 1520 } 1521 1522 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1523 SmallVectorImpl<uint64_t> &Record, 1524 unsigned Abbrev) { 1525 const uint64_t Version = 1 << 1; 1526 Record.push_back((uint64_t)N->isDistinct() | Version); 1527 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1528 Record.push_back(rotateSign(N->getLowerBound())); 1529 1530 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1531 Record.clear(); 1532 } 1533 1534 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1535 if ((int64_t)V >= 0) 1536 Vals.push_back(V << 1); 1537 else 1538 Vals.push_back((-V << 1) | 1); 1539 } 1540 1541 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1542 // We have an arbitrary precision integer value to write whose 1543 // bit width is > 64. However, in canonical unsigned integer 1544 // format it is likely that the high bits are going to be zero. 1545 // So, we only write the number of active words. 1546 unsigned NumWords = A.getActiveWords(); 1547 const uint64_t *RawData = A.getRawData(); 1548 for (unsigned i = 0; i < NumWords; i++) 1549 emitSignedInt64(Vals, RawData[i]); 1550 } 1551 1552 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1553 SmallVectorImpl<uint64_t> &Record, 1554 unsigned Abbrev) { 1555 const uint64_t IsBigInt = 1 << 2; 1556 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1557 Record.push_back(N->getValue().getBitWidth()); 1558 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1559 emitWideAPInt(Record, N->getValue()); 1560 1561 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1562 Record.clear(); 1563 } 1564 1565 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1566 SmallVectorImpl<uint64_t> &Record, 1567 unsigned Abbrev) { 1568 Record.push_back(N->isDistinct()); 1569 Record.push_back(N->getTag()); 1570 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1571 Record.push_back(N->getSizeInBits()); 1572 Record.push_back(N->getAlignInBits()); 1573 Record.push_back(N->getEncoding()); 1574 Record.push_back(N->getFlags()); 1575 1576 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1577 Record.clear(); 1578 } 1579 1580 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1581 SmallVectorImpl<uint64_t> &Record, 1582 unsigned Abbrev) { 1583 Record.push_back(N->isDistinct()); 1584 Record.push_back(N->getTag()); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1587 Record.push_back(N->getLine()); 1588 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1589 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1590 Record.push_back(N->getSizeInBits()); 1591 Record.push_back(N->getAlignInBits()); 1592 Record.push_back(N->getOffsetInBits()); 1593 Record.push_back(N->getFlags()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1595 1596 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1597 // that there is no DWARF address space associated with DIDerivedType. 1598 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1599 Record.push_back(*DWARFAddressSpace + 1); 1600 else 1601 Record.push_back(0); 1602 1603 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1604 Record.clear(); 1605 } 1606 1607 void ModuleBitcodeWriter::writeDICompositeType( 1608 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1609 unsigned Abbrev) { 1610 const unsigned IsNotUsedInOldTypeRef = 0x2; 1611 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1612 Record.push_back(N->getTag()); 1613 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1614 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1615 Record.push_back(N->getLine()); 1616 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1617 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1618 Record.push_back(N->getSizeInBits()); 1619 Record.push_back(N->getAlignInBits()); 1620 Record.push_back(N->getOffsetInBits()); 1621 Record.push_back(N->getFlags()); 1622 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1623 Record.push_back(N->getRuntimeLang()); 1624 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1625 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1626 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1627 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1628 1629 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1630 Record.clear(); 1631 } 1632 1633 void ModuleBitcodeWriter::writeDISubroutineType( 1634 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1635 unsigned Abbrev) { 1636 const unsigned HasNoOldTypeRefs = 0x2; 1637 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1638 Record.push_back(N->getFlags()); 1639 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1640 Record.push_back(N->getCC()); 1641 1642 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1643 Record.clear(); 1644 } 1645 1646 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1647 SmallVectorImpl<uint64_t> &Record, 1648 unsigned Abbrev) { 1649 Record.push_back(N->isDistinct()); 1650 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1651 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1652 if (N->getRawChecksum()) { 1653 Record.push_back(N->getRawChecksum()->Kind); 1654 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1655 } else { 1656 // Maintain backwards compatibility with the old internal representation of 1657 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1658 Record.push_back(0); 1659 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1660 } 1661 auto Source = N->getRawSource(); 1662 if (Source) 1663 Record.push_back(VE.getMetadataOrNullID(*Source)); 1664 1665 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1666 Record.clear(); 1667 } 1668 1669 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1670 SmallVectorImpl<uint64_t> &Record, 1671 unsigned Abbrev) { 1672 assert(N->isDistinct() && "Expected distinct compile units"); 1673 Record.push_back(/* IsDistinct */ true); 1674 Record.push_back(N->getSourceLanguage()); 1675 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1677 Record.push_back(N->isOptimized()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1679 Record.push_back(N->getRuntimeVersion()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1681 Record.push_back(N->getEmissionKind()); 1682 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1684 Record.push_back(/* subprograms */ 0); 1685 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1686 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1687 Record.push_back(N->getDWOId()); 1688 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1689 Record.push_back(N->getSplitDebugInlining()); 1690 Record.push_back(N->getDebugInfoForProfiling()); 1691 Record.push_back((unsigned)N->getNameTableKind()); 1692 Record.push_back(N->getRangesBaseAddress()); 1693 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1694 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1695 1696 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1697 Record.clear(); 1698 } 1699 1700 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1701 SmallVectorImpl<uint64_t> &Record, 1702 unsigned Abbrev) { 1703 const uint64_t HasUnitFlag = 1 << 1; 1704 const uint64_t HasSPFlagsFlag = 1 << 2; 1705 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1706 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1707 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1708 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1710 Record.push_back(N->getLine()); 1711 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1712 Record.push_back(N->getScopeLine()); 1713 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1714 Record.push_back(N->getSPFlags()); 1715 Record.push_back(N->getVirtualIndex()); 1716 Record.push_back(N->getFlags()); 1717 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1721 Record.push_back(N->getThisAdjustment()); 1722 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1723 1724 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1725 Record.clear(); 1726 } 1727 1728 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1729 SmallVectorImpl<uint64_t> &Record, 1730 unsigned Abbrev) { 1731 Record.push_back(N->isDistinct()); 1732 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1733 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1734 Record.push_back(N->getLine()); 1735 Record.push_back(N->getColumn()); 1736 1737 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1738 Record.clear(); 1739 } 1740 1741 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1742 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1743 unsigned Abbrev) { 1744 Record.push_back(N->isDistinct()); 1745 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1746 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1747 Record.push_back(N->getDiscriminator()); 1748 1749 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1750 Record.clear(); 1751 } 1752 1753 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1754 SmallVectorImpl<uint64_t> &Record, 1755 unsigned Abbrev) { 1756 Record.push_back(N->isDistinct()); 1757 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1758 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1759 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1760 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1761 Record.push_back(N->getLineNo()); 1762 1763 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1764 Record.clear(); 1765 } 1766 1767 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1768 SmallVectorImpl<uint64_t> &Record, 1769 unsigned Abbrev) { 1770 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1771 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1772 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1773 1774 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1775 Record.clear(); 1776 } 1777 1778 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1779 SmallVectorImpl<uint64_t> &Record, 1780 unsigned Abbrev) { 1781 Record.push_back(N->isDistinct()); 1782 Record.push_back(N->getMacinfoType()); 1783 Record.push_back(N->getLine()); 1784 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1785 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1786 1787 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1788 Record.clear(); 1789 } 1790 1791 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1792 SmallVectorImpl<uint64_t> &Record, 1793 unsigned Abbrev) { 1794 Record.push_back(N->isDistinct()); 1795 Record.push_back(N->getMacinfoType()); 1796 Record.push_back(N->getLine()); 1797 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1799 1800 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1801 Record.clear(); 1802 } 1803 1804 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1805 SmallVectorImpl<uint64_t> &Record, 1806 unsigned Abbrev) { 1807 Record.push_back(N->isDistinct()); 1808 for (auto &I : N->operands()) 1809 Record.push_back(VE.getMetadataOrNullID(I)); 1810 1811 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1812 Record.clear(); 1813 } 1814 1815 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1816 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1817 unsigned Abbrev) { 1818 Record.push_back(N->isDistinct()); 1819 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1820 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1821 Record.push_back(N->isDefault()); 1822 1823 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1824 Record.clear(); 1825 } 1826 1827 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1828 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1829 unsigned Abbrev) { 1830 Record.push_back(N->isDistinct()); 1831 Record.push_back(N->getTag()); 1832 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1833 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1834 Record.push_back(N->isDefault()); 1835 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1836 1837 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1838 Record.clear(); 1839 } 1840 1841 void ModuleBitcodeWriter::writeDIGlobalVariable( 1842 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1843 unsigned Abbrev) { 1844 const uint64_t Version = 2 << 1; 1845 Record.push_back((uint64_t)N->isDistinct() | Version); 1846 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1847 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1848 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1849 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1850 Record.push_back(N->getLine()); 1851 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1852 Record.push_back(N->isLocalToUnit()); 1853 Record.push_back(N->isDefinition()); 1854 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1856 Record.push_back(N->getAlignInBits()); 1857 1858 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1859 Record.clear(); 1860 } 1861 1862 void ModuleBitcodeWriter::writeDILocalVariable( 1863 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1864 unsigned Abbrev) { 1865 // In order to support all possible bitcode formats in BitcodeReader we need 1866 // to distinguish the following cases: 1867 // 1) Record has no artificial tag (Record[1]), 1868 // has no obsolete inlinedAt field (Record[9]). 1869 // In this case Record size will be 8, HasAlignment flag is false. 1870 // 2) Record has artificial tag (Record[1]), 1871 // has no obsolete inlignedAt field (Record[9]). 1872 // In this case Record size will be 9, HasAlignment flag is false. 1873 // 3) Record has both artificial tag (Record[1]) and 1874 // obsolete inlignedAt field (Record[9]). 1875 // In this case Record size will be 10, HasAlignment flag is false. 1876 // 4) Record has neither artificial tag, nor inlignedAt field, but 1877 // HasAlignment flag is true and Record[8] contains alignment value. 1878 const uint64_t HasAlignmentFlag = 1 << 1; 1879 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1880 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1881 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1882 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1883 Record.push_back(N->getLine()); 1884 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1885 Record.push_back(N->getArg()); 1886 Record.push_back(N->getFlags()); 1887 Record.push_back(N->getAlignInBits()); 1888 1889 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1890 Record.clear(); 1891 } 1892 1893 void ModuleBitcodeWriter::writeDILabel( 1894 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1895 unsigned Abbrev) { 1896 Record.push_back((uint64_t)N->isDistinct()); 1897 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1898 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1899 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1900 Record.push_back(N->getLine()); 1901 1902 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1903 Record.clear(); 1904 } 1905 1906 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1907 SmallVectorImpl<uint64_t> &Record, 1908 unsigned Abbrev) { 1909 Record.reserve(N->getElements().size() + 1); 1910 const uint64_t Version = 3 << 1; 1911 Record.push_back((uint64_t)N->isDistinct() | Version); 1912 Record.append(N->elements_begin(), N->elements_end()); 1913 1914 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1915 Record.clear(); 1916 } 1917 1918 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1919 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1920 unsigned Abbrev) { 1921 Record.push_back(N->isDistinct()); 1922 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1923 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1924 1925 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1926 Record.clear(); 1927 } 1928 1929 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1930 SmallVectorImpl<uint64_t> &Record, 1931 unsigned Abbrev) { 1932 Record.push_back(N->isDistinct()); 1933 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1934 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1935 Record.push_back(N->getLine()); 1936 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1937 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1938 Record.push_back(N->getAttributes()); 1939 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1940 1941 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1942 Record.clear(); 1943 } 1944 1945 void ModuleBitcodeWriter::writeDIImportedEntity( 1946 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1947 unsigned Abbrev) { 1948 Record.push_back(N->isDistinct()); 1949 Record.push_back(N->getTag()); 1950 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1951 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1952 Record.push_back(N->getLine()); 1953 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1954 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1955 1956 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1957 Record.clear(); 1958 } 1959 1960 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1961 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1962 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1965 return Stream.EmitAbbrev(std::move(Abbv)); 1966 } 1967 1968 void ModuleBitcodeWriter::writeNamedMetadata( 1969 SmallVectorImpl<uint64_t> &Record) { 1970 if (M.named_metadata_empty()) 1971 return; 1972 1973 unsigned Abbrev = createNamedMetadataAbbrev(); 1974 for (const NamedMDNode &NMD : M.named_metadata()) { 1975 // Write name. 1976 StringRef Str = NMD.getName(); 1977 Record.append(Str.bytes_begin(), Str.bytes_end()); 1978 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1979 Record.clear(); 1980 1981 // Write named metadata operands. 1982 for (const MDNode *N : NMD.operands()) 1983 Record.push_back(VE.getMetadataID(N)); 1984 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1985 Record.clear(); 1986 } 1987 } 1988 1989 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1990 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1991 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1995 return Stream.EmitAbbrev(std::move(Abbv)); 1996 } 1997 1998 /// Write out a record for MDString. 1999 /// 2000 /// All the metadata strings in a metadata block are emitted in a single 2001 /// record. The sizes and strings themselves are shoved into a blob. 2002 void ModuleBitcodeWriter::writeMetadataStrings( 2003 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2004 if (Strings.empty()) 2005 return; 2006 2007 // Start the record with the number of strings. 2008 Record.push_back(bitc::METADATA_STRINGS); 2009 Record.push_back(Strings.size()); 2010 2011 // Emit the sizes of the strings in the blob. 2012 SmallString<256> Blob; 2013 { 2014 BitstreamWriter W(Blob); 2015 for (const Metadata *MD : Strings) 2016 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2017 W.FlushToWord(); 2018 } 2019 2020 // Add the offset to the strings to the record. 2021 Record.push_back(Blob.size()); 2022 2023 // Add the strings to the blob. 2024 for (const Metadata *MD : Strings) 2025 Blob.append(cast<MDString>(MD)->getString()); 2026 2027 // Emit the final record. 2028 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2029 Record.clear(); 2030 } 2031 2032 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2033 enum MetadataAbbrev : unsigned { 2034 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2035 #include "llvm/IR/Metadata.def" 2036 LastPlusOne 2037 }; 2038 2039 void ModuleBitcodeWriter::writeMetadataRecords( 2040 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2041 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2042 if (MDs.empty()) 2043 return; 2044 2045 // Initialize MDNode abbreviations. 2046 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2047 #include "llvm/IR/Metadata.def" 2048 2049 for (const Metadata *MD : MDs) { 2050 if (IndexPos) 2051 IndexPos->push_back(Stream.GetCurrentBitNo()); 2052 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2053 assert(N->isResolved() && "Expected forward references to be resolved"); 2054 2055 switch (N->getMetadataID()) { 2056 default: 2057 llvm_unreachable("Invalid MDNode subclass"); 2058 #define HANDLE_MDNODE_LEAF(CLASS) \ 2059 case Metadata::CLASS##Kind: \ 2060 if (MDAbbrevs) \ 2061 write##CLASS(cast<CLASS>(N), Record, \ 2062 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2063 else \ 2064 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2065 continue; 2066 #include "llvm/IR/Metadata.def" 2067 } 2068 } 2069 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2070 } 2071 } 2072 2073 void ModuleBitcodeWriter::writeModuleMetadata() { 2074 if (!VE.hasMDs() && M.named_metadata_empty()) 2075 return; 2076 2077 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2078 SmallVector<uint64_t, 64> Record; 2079 2080 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2081 // block and load any metadata. 2082 std::vector<unsigned> MDAbbrevs; 2083 2084 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2085 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2086 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2087 createGenericDINodeAbbrev(); 2088 2089 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2090 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2093 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2094 2095 Abbv = std::make_shared<BitCodeAbbrev>(); 2096 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2099 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2100 2101 // Emit MDStrings together upfront. 2102 writeMetadataStrings(VE.getMDStrings(), Record); 2103 2104 // We only emit an index for the metadata record if we have more than a given 2105 // (naive) threshold of metadatas, otherwise it is not worth it. 2106 if (VE.getNonMDStrings().size() > IndexThreshold) { 2107 // Write a placeholder value in for the offset of the metadata index, 2108 // which is written after the records, so that it can include 2109 // the offset of each entry. The placeholder offset will be 2110 // updated after all records are emitted. 2111 uint64_t Vals[] = {0, 0}; 2112 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2113 } 2114 2115 // Compute and save the bit offset to the current position, which will be 2116 // patched when we emit the index later. We can simply subtract the 64-bit 2117 // fixed size from the current bit number to get the location to backpatch. 2118 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2119 2120 // This index will contain the bitpos for each individual record. 2121 std::vector<uint64_t> IndexPos; 2122 IndexPos.reserve(VE.getNonMDStrings().size()); 2123 2124 // Write all the records 2125 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2126 2127 if (VE.getNonMDStrings().size() > IndexThreshold) { 2128 // Now that we have emitted all the records we will emit the index. But 2129 // first 2130 // backpatch the forward reference so that the reader can skip the records 2131 // efficiently. 2132 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2133 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2134 2135 // Delta encode the index. 2136 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2137 for (auto &Elt : IndexPos) { 2138 auto EltDelta = Elt - PreviousValue; 2139 PreviousValue = Elt; 2140 Elt = EltDelta; 2141 } 2142 // Emit the index record. 2143 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2144 IndexPos.clear(); 2145 } 2146 2147 // Write the named metadata now. 2148 writeNamedMetadata(Record); 2149 2150 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2151 SmallVector<uint64_t, 4> Record; 2152 Record.push_back(VE.getValueID(&GO)); 2153 pushGlobalMetadataAttachment(Record, GO); 2154 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2155 }; 2156 for (const Function &F : M) 2157 if (F.isDeclaration() && F.hasMetadata()) 2158 AddDeclAttachedMetadata(F); 2159 // FIXME: Only store metadata for declarations here, and move data for global 2160 // variable definitions to a separate block (PR28134). 2161 for (const GlobalVariable &GV : M.globals()) 2162 if (GV.hasMetadata()) 2163 AddDeclAttachedMetadata(GV); 2164 2165 Stream.ExitBlock(); 2166 } 2167 2168 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2169 if (!VE.hasMDs()) 2170 return; 2171 2172 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2173 SmallVector<uint64_t, 64> Record; 2174 writeMetadataStrings(VE.getMDStrings(), Record); 2175 writeMetadataRecords(VE.getNonMDStrings(), Record); 2176 Stream.ExitBlock(); 2177 } 2178 2179 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2180 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2181 // [n x [id, mdnode]] 2182 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2183 GO.getAllMetadata(MDs); 2184 for (const auto &I : MDs) { 2185 Record.push_back(I.first); 2186 Record.push_back(VE.getMetadataID(I.second)); 2187 } 2188 } 2189 2190 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2191 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2192 2193 SmallVector<uint64_t, 64> Record; 2194 2195 if (F.hasMetadata()) { 2196 pushGlobalMetadataAttachment(Record, F); 2197 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2198 Record.clear(); 2199 } 2200 2201 // Write metadata attachments 2202 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2203 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2204 for (const BasicBlock &BB : F) 2205 for (const Instruction &I : BB) { 2206 MDs.clear(); 2207 I.getAllMetadataOtherThanDebugLoc(MDs); 2208 2209 // If no metadata, ignore instruction. 2210 if (MDs.empty()) continue; 2211 2212 Record.push_back(VE.getInstructionID(&I)); 2213 2214 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2215 Record.push_back(MDs[i].first); 2216 Record.push_back(VE.getMetadataID(MDs[i].second)); 2217 } 2218 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2219 Record.clear(); 2220 } 2221 2222 Stream.ExitBlock(); 2223 } 2224 2225 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2226 SmallVector<uint64_t, 64> Record; 2227 2228 // Write metadata kinds 2229 // METADATA_KIND - [n x [id, name]] 2230 SmallVector<StringRef, 8> Names; 2231 M.getMDKindNames(Names); 2232 2233 if (Names.empty()) return; 2234 2235 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2236 2237 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2238 Record.push_back(MDKindID); 2239 StringRef KName = Names[MDKindID]; 2240 Record.append(KName.begin(), KName.end()); 2241 2242 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2243 Record.clear(); 2244 } 2245 2246 Stream.ExitBlock(); 2247 } 2248 2249 void ModuleBitcodeWriter::writeOperandBundleTags() { 2250 // Write metadata kinds 2251 // 2252 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2253 // 2254 // OPERAND_BUNDLE_TAG - [strchr x N] 2255 2256 SmallVector<StringRef, 8> Tags; 2257 M.getOperandBundleTags(Tags); 2258 2259 if (Tags.empty()) 2260 return; 2261 2262 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2263 2264 SmallVector<uint64_t, 64> Record; 2265 2266 for (auto Tag : Tags) { 2267 Record.append(Tag.begin(), Tag.end()); 2268 2269 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2270 Record.clear(); 2271 } 2272 2273 Stream.ExitBlock(); 2274 } 2275 2276 void ModuleBitcodeWriter::writeSyncScopeNames() { 2277 SmallVector<StringRef, 8> SSNs; 2278 M.getContext().getSyncScopeNames(SSNs); 2279 if (SSNs.empty()) 2280 return; 2281 2282 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2283 2284 SmallVector<uint64_t, 64> Record; 2285 for (auto SSN : SSNs) { 2286 Record.append(SSN.begin(), SSN.end()); 2287 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2288 Record.clear(); 2289 } 2290 2291 Stream.ExitBlock(); 2292 } 2293 2294 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2295 bool isGlobal) { 2296 if (FirstVal == LastVal) return; 2297 2298 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2299 2300 unsigned AggregateAbbrev = 0; 2301 unsigned String8Abbrev = 0; 2302 unsigned CString7Abbrev = 0; 2303 unsigned CString6Abbrev = 0; 2304 // If this is a constant pool for the module, emit module-specific abbrevs. 2305 if (isGlobal) { 2306 // Abbrev for CST_CODE_AGGREGATE. 2307 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2308 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2311 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2312 2313 // Abbrev for CST_CODE_STRING. 2314 Abbv = std::make_shared<BitCodeAbbrev>(); 2315 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2318 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2319 // Abbrev for CST_CODE_CSTRING. 2320 Abbv = std::make_shared<BitCodeAbbrev>(); 2321 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2324 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2325 // Abbrev for CST_CODE_CSTRING. 2326 Abbv = std::make_shared<BitCodeAbbrev>(); 2327 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2330 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2331 } 2332 2333 SmallVector<uint64_t, 64> Record; 2334 2335 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2336 Type *LastTy = nullptr; 2337 for (unsigned i = FirstVal; i != LastVal; ++i) { 2338 const Value *V = Vals[i].first; 2339 // If we need to switch types, do so now. 2340 if (V->getType() != LastTy) { 2341 LastTy = V->getType(); 2342 Record.push_back(VE.getTypeID(LastTy)); 2343 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2344 CONSTANTS_SETTYPE_ABBREV); 2345 Record.clear(); 2346 } 2347 2348 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2349 Record.push_back(unsigned(IA->hasSideEffects()) | 2350 unsigned(IA->isAlignStack()) << 1 | 2351 unsigned(IA->getDialect()&1) << 2); 2352 2353 // Add the asm string. 2354 const std::string &AsmStr = IA->getAsmString(); 2355 Record.push_back(AsmStr.size()); 2356 Record.append(AsmStr.begin(), AsmStr.end()); 2357 2358 // Add the constraint string. 2359 const std::string &ConstraintStr = IA->getConstraintString(); 2360 Record.push_back(ConstraintStr.size()); 2361 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2362 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2363 Record.clear(); 2364 continue; 2365 } 2366 const Constant *C = cast<Constant>(V); 2367 unsigned Code = -1U; 2368 unsigned AbbrevToUse = 0; 2369 if (C->isNullValue()) { 2370 Code = bitc::CST_CODE_NULL; 2371 } else if (isa<UndefValue>(C)) { 2372 Code = bitc::CST_CODE_UNDEF; 2373 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2374 if (IV->getBitWidth() <= 64) { 2375 uint64_t V = IV->getSExtValue(); 2376 emitSignedInt64(Record, V); 2377 Code = bitc::CST_CODE_INTEGER; 2378 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2379 } else { // Wide integers, > 64 bits in size. 2380 emitWideAPInt(Record, IV->getValue()); 2381 Code = bitc::CST_CODE_WIDE_INTEGER; 2382 } 2383 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2384 Code = bitc::CST_CODE_FLOAT; 2385 Type *Ty = CFP->getType(); 2386 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2387 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2388 } else if (Ty->isX86_FP80Ty()) { 2389 // api needed to prevent premature destruction 2390 // bits are not in the same order as a normal i80 APInt, compensate. 2391 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2392 const uint64_t *p = api.getRawData(); 2393 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2394 Record.push_back(p[0] & 0xffffLL); 2395 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2396 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2397 const uint64_t *p = api.getRawData(); 2398 Record.push_back(p[0]); 2399 Record.push_back(p[1]); 2400 } else { 2401 assert(0 && "Unknown FP type!"); 2402 } 2403 } else if (isa<ConstantDataSequential>(C) && 2404 cast<ConstantDataSequential>(C)->isString()) { 2405 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2406 // Emit constant strings specially. 2407 unsigned NumElts = Str->getNumElements(); 2408 // If this is a null-terminated string, use the denser CSTRING encoding. 2409 if (Str->isCString()) { 2410 Code = bitc::CST_CODE_CSTRING; 2411 --NumElts; // Don't encode the null, which isn't allowed by char6. 2412 } else { 2413 Code = bitc::CST_CODE_STRING; 2414 AbbrevToUse = String8Abbrev; 2415 } 2416 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2417 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2418 for (unsigned i = 0; i != NumElts; ++i) { 2419 unsigned char V = Str->getElementAsInteger(i); 2420 Record.push_back(V); 2421 isCStr7 &= (V & 128) == 0; 2422 if (isCStrChar6) 2423 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2424 } 2425 2426 if (isCStrChar6) 2427 AbbrevToUse = CString6Abbrev; 2428 else if (isCStr7) 2429 AbbrevToUse = CString7Abbrev; 2430 } else if (const ConstantDataSequential *CDS = 2431 dyn_cast<ConstantDataSequential>(C)) { 2432 Code = bitc::CST_CODE_DATA; 2433 Type *EltTy = CDS->getElementType(); 2434 if (isa<IntegerType>(EltTy)) { 2435 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2436 Record.push_back(CDS->getElementAsInteger(i)); 2437 } else { 2438 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2439 Record.push_back( 2440 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2441 } 2442 } else if (isa<ConstantAggregate>(C)) { 2443 Code = bitc::CST_CODE_AGGREGATE; 2444 for (const Value *Op : C->operands()) 2445 Record.push_back(VE.getValueID(Op)); 2446 AbbrevToUse = AggregateAbbrev; 2447 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2448 switch (CE->getOpcode()) { 2449 default: 2450 if (Instruction::isCast(CE->getOpcode())) { 2451 Code = bitc::CST_CODE_CE_CAST; 2452 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2453 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2454 Record.push_back(VE.getValueID(C->getOperand(0))); 2455 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2456 } else { 2457 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2458 Code = bitc::CST_CODE_CE_BINOP; 2459 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2460 Record.push_back(VE.getValueID(C->getOperand(0))); 2461 Record.push_back(VE.getValueID(C->getOperand(1))); 2462 uint64_t Flags = getOptimizationFlags(CE); 2463 if (Flags != 0) 2464 Record.push_back(Flags); 2465 } 2466 break; 2467 case Instruction::FNeg: { 2468 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2469 Code = bitc::CST_CODE_CE_UNOP; 2470 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2471 Record.push_back(VE.getValueID(C->getOperand(0))); 2472 uint64_t Flags = getOptimizationFlags(CE); 2473 if (Flags != 0) 2474 Record.push_back(Flags); 2475 break; 2476 } 2477 case Instruction::GetElementPtr: { 2478 Code = bitc::CST_CODE_CE_GEP; 2479 const auto *GO = cast<GEPOperator>(C); 2480 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2481 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2482 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2483 Record.push_back((*Idx << 1) | GO->isInBounds()); 2484 } else if (GO->isInBounds()) 2485 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2486 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2487 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2488 Record.push_back(VE.getValueID(C->getOperand(i))); 2489 } 2490 break; 2491 } 2492 case Instruction::Select: 2493 Code = bitc::CST_CODE_CE_SELECT; 2494 Record.push_back(VE.getValueID(C->getOperand(0))); 2495 Record.push_back(VE.getValueID(C->getOperand(1))); 2496 Record.push_back(VE.getValueID(C->getOperand(2))); 2497 break; 2498 case Instruction::ExtractElement: 2499 Code = bitc::CST_CODE_CE_EXTRACTELT; 2500 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2501 Record.push_back(VE.getValueID(C->getOperand(0))); 2502 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2503 Record.push_back(VE.getValueID(C->getOperand(1))); 2504 break; 2505 case Instruction::InsertElement: 2506 Code = bitc::CST_CODE_CE_INSERTELT; 2507 Record.push_back(VE.getValueID(C->getOperand(0))); 2508 Record.push_back(VE.getValueID(C->getOperand(1))); 2509 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2510 Record.push_back(VE.getValueID(C->getOperand(2))); 2511 break; 2512 case Instruction::ShuffleVector: 2513 // If the return type and argument types are the same, this is a 2514 // standard shufflevector instruction. If the types are different, 2515 // then the shuffle is widening or truncating the input vectors, and 2516 // the argument type must also be encoded. 2517 if (C->getType() == C->getOperand(0)->getType()) { 2518 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2519 } else { 2520 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2521 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2522 } 2523 Record.push_back(VE.getValueID(C->getOperand(0))); 2524 Record.push_back(VE.getValueID(C->getOperand(1))); 2525 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2526 break; 2527 case Instruction::ICmp: 2528 case Instruction::FCmp: 2529 Code = bitc::CST_CODE_CE_CMP; 2530 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2531 Record.push_back(VE.getValueID(C->getOperand(0))); 2532 Record.push_back(VE.getValueID(C->getOperand(1))); 2533 Record.push_back(CE->getPredicate()); 2534 break; 2535 } 2536 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2537 Code = bitc::CST_CODE_BLOCKADDRESS; 2538 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2539 Record.push_back(VE.getValueID(BA->getFunction())); 2540 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2541 } else { 2542 #ifndef NDEBUG 2543 C->dump(); 2544 #endif 2545 llvm_unreachable("Unknown constant!"); 2546 } 2547 Stream.EmitRecord(Code, Record, AbbrevToUse); 2548 Record.clear(); 2549 } 2550 2551 Stream.ExitBlock(); 2552 } 2553 2554 void ModuleBitcodeWriter::writeModuleConstants() { 2555 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2556 2557 // Find the first constant to emit, which is the first non-globalvalue value. 2558 // We know globalvalues have been emitted by WriteModuleInfo. 2559 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2560 if (!isa<GlobalValue>(Vals[i].first)) { 2561 writeConstants(i, Vals.size(), true); 2562 return; 2563 } 2564 } 2565 } 2566 2567 /// pushValueAndType - The file has to encode both the value and type id for 2568 /// many values, because we need to know what type to create for forward 2569 /// references. However, most operands are not forward references, so this type 2570 /// field is not needed. 2571 /// 2572 /// This function adds V's value ID to Vals. If the value ID is higher than the 2573 /// instruction ID, then it is a forward reference, and it also includes the 2574 /// type ID. The value ID that is written is encoded relative to the InstID. 2575 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2576 SmallVectorImpl<unsigned> &Vals) { 2577 unsigned ValID = VE.getValueID(V); 2578 // Make encoding relative to the InstID. 2579 Vals.push_back(InstID - ValID); 2580 if (ValID >= InstID) { 2581 Vals.push_back(VE.getTypeID(V->getType())); 2582 return true; 2583 } 2584 return false; 2585 } 2586 2587 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2588 unsigned InstID) { 2589 SmallVector<unsigned, 64> Record; 2590 LLVMContext &C = CS.getContext(); 2591 2592 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2593 const auto &Bundle = CS.getOperandBundleAt(i); 2594 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2595 2596 for (auto &Input : Bundle.Inputs) 2597 pushValueAndType(Input, InstID, Record); 2598 2599 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2600 Record.clear(); 2601 } 2602 } 2603 2604 /// pushValue - Like pushValueAndType, but where the type of the value is 2605 /// omitted (perhaps it was already encoded in an earlier operand). 2606 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2607 SmallVectorImpl<unsigned> &Vals) { 2608 unsigned ValID = VE.getValueID(V); 2609 Vals.push_back(InstID - ValID); 2610 } 2611 2612 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2613 SmallVectorImpl<uint64_t> &Vals) { 2614 unsigned ValID = VE.getValueID(V); 2615 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2616 emitSignedInt64(Vals, diff); 2617 } 2618 2619 /// WriteInstruction - Emit an instruction to the specified stream. 2620 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2621 unsigned InstID, 2622 SmallVectorImpl<unsigned> &Vals) { 2623 unsigned Code = 0; 2624 unsigned AbbrevToUse = 0; 2625 VE.setInstructionID(&I); 2626 switch (I.getOpcode()) { 2627 default: 2628 if (Instruction::isCast(I.getOpcode())) { 2629 Code = bitc::FUNC_CODE_INST_CAST; 2630 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2631 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2632 Vals.push_back(VE.getTypeID(I.getType())); 2633 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2634 } else { 2635 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2636 Code = bitc::FUNC_CODE_INST_BINOP; 2637 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2638 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2639 pushValue(I.getOperand(1), InstID, Vals); 2640 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2641 uint64_t Flags = getOptimizationFlags(&I); 2642 if (Flags != 0) { 2643 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2644 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2645 Vals.push_back(Flags); 2646 } 2647 } 2648 break; 2649 case Instruction::FNeg: { 2650 Code = bitc::FUNC_CODE_INST_UNOP; 2651 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2652 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2653 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2654 uint64_t Flags = getOptimizationFlags(&I); 2655 if (Flags != 0) { 2656 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2657 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2658 Vals.push_back(Flags); 2659 } 2660 break; 2661 } 2662 case Instruction::GetElementPtr: { 2663 Code = bitc::FUNC_CODE_INST_GEP; 2664 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2665 auto &GEPInst = cast<GetElementPtrInst>(I); 2666 Vals.push_back(GEPInst.isInBounds()); 2667 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2668 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2669 pushValueAndType(I.getOperand(i), InstID, Vals); 2670 break; 2671 } 2672 case Instruction::ExtractValue: { 2673 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2674 pushValueAndType(I.getOperand(0), InstID, Vals); 2675 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2676 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2677 break; 2678 } 2679 case Instruction::InsertValue: { 2680 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2681 pushValueAndType(I.getOperand(0), InstID, Vals); 2682 pushValueAndType(I.getOperand(1), InstID, Vals); 2683 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2684 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2685 break; 2686 } 2687 case Instruction::Select: { 2688 Code = bitc::FUNC_CODE_INST_VSELECT; 2689 pushValueAndType(I.getOperand(1), InstID, Vals); 2690 pushValue(I.getOperand(2), InstID, Vals); 2691 pushValueAndType(I.getOperand(0), InstID, Vals); 2692 uint64_t Flags = getOptimizationFlags(&I); 2693 if (Flags != 0) 2694 Vals.push_back(Flags); 2695 break; 2696 } 2697 case Instruction::ExtractElement: 2698 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2699 pushValueAndType(I.getOperand(0), InstID, Vals); 2700 pushValueAndType(I.getOperand(1), InstID, Vals); 2701 break; 2702 case Instruction::InsertElement: 2703 Code = bitc::FUNC_CODE_INST_INSERTELT; 2704 pushValueAndType(I.getOperand(0), InstID, Vals); 2705 pushValue(I.getOperand(1), InstID, Vals); 2706 pushValueAndType(I.getOperand(2), InstID, Vals); 2707 break; 2708 case Instruction::ShuffleVector: 2709 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2710 pushValueAndType(I.getOperand(0), InstID, Vals); 2711 pushValue(I.getOperand(1), InstID, Vals); 2712 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2713 Vals); 2714 break; 2715 case Instruction::ICmp: 2716 case Instruction::FCmp: { 2717 // compare returning Int1Ty or vector of Int1Ty 2718 Code = bitc::FUNC_CODE_INST_CMP2; 2719 pushValueAndType(I.getOperand(0), InstID, Vals); 2720 pushValue(I.getOperand(1), InstID, Vals); 2721 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2722 uint64_t Flags = getOptimizationFlags(&I); 2723 if (Flags != 0) 2724 Vals.push_back(Flags); 2725 break; 2726 } 2727 2728 case Instruction::Ret: 2729 { 2730 Code = bitc::FUNC_CODE_INST_RET; 2731 unsigned NumOperands = I.getNumOperands(); 2732 if (NumOperands == 0) 2733 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2734 else if (NumOperands == 1) { 2735 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2736 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2737 } else { 2738 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2739 pushValueAndType(I.getOperand(i), InstID, Vals); 2740 } 2741 } 2742 break; 2743 case Instruction::Br: 2744 { 2745 Code = bitc::FUNC_CODE_INST_BR; 2746 const BranchInst &II = cast<BranchInst>(I); 2747 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2748 if (II.isConditional()) { 2749 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2750 pushValue(II.getCondition(), InstID, Vals); 2751 } 2752 } 2753 break; 2754 case Instruction::Switch: 2755 { 2756 Code = bitc::FUNC_CODE_INST_SWITCH; 2757 const SwitchInst &SI = cast<SwitchInst>(I); 2758 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2759 pushValue(SI.getCondition(), InstID, Vals); 2760 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2761 for (auto Case : SI.cases()) { 2762 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2763 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2764 } 2765 } 2766 break; 2767 case Instruction::IndirectBr: 2768 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2769 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2770 // Encode the address operand as relative, but not the basic blocks. 2771 pushValue(I.getOperand(0), InstID, Vals); 2772 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2773 Vals.push_back(VE.getValueID(I.getOperand(i))); 2774 break; 2775 2776 case Instruction::Invoke: { 2777 const InvokeInst *II = cast<InvokeInst>(&I); 2778 const Value *Callee = II->getCalledValue(); 2779 FunctionType *FTy = II->getFunctionType(); 2780 2781 if (II->hasOperandBundles()) 2782 writeOperandBundles(*II, InstID); 2783 2784 Code = bitc::FUNC_CODE_INST_INVOKE; 2785 2786 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2787 Vals.push_back(II->getCallingConv() | 1 << 13); 2788 Vals.push_back(VE.getValueID(II->getNormalDest())); 2789 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2790 Vals.push_back(VE.getTypeID(FTy)); 2791 pushValueAndType(Callee, InstID, Vals); 2792 2793 // Emit value #'s for the fixed parameters. 2794 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2795 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2796 2797 // Emit type/value pairs for varargs params. 2798 if (FTy->isVarArg()) { 2799 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2800 i != e; ++i) 2801 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2802 } 2803 break; 2804 } 2805 case Instruction::Resume: 2806 Code = bitc::FUNC_CODE_INST_RESUME; 2807 pushValueAndType(I.getOperand(0), InstID, Vals); 2808 break; 2809 case Instruction::CleanupRet: { 2810 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2811 const auto &CRI = cast<CleanupReturnInst>(I); 2812 pushValue(CRI.getCleanupPad(), InstID, Vals); 2813 if (CRI.hasUnwindDest()) 2814 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2815 break; 2816 } 2817 case Instruction::CatchRet: { 2818 Code = bitc::FUNC_CODE_INST_CATCHRET; 2819 const auto &CRI = cast<CatchReturnInst>(I); 2820 pushValue(CRI.getCatchPad(), InstID, Vals); 2821 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2822 break; 2823 } 2824 case Instruction::CleanupPad: 2825 case Instruction::CatchPad: { 2826 const auto &FuncletPad = cast<FuncletPadInst>(I); 2827 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2828 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2829 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2830 2831 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2832 Vals.push_back(NumArgOperands); 2833 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2834 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2835 break; 2836 } 2837 case Instruction::CatchSwitch: { 2838 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2839 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2840 2841 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2842 2843 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2844 Vals.push_back(NumHandlers); 2845 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2846 Vals.push_back(VE.getValueID(CatchPadBB)); 2847 2848 if (CatchSwitch.hasUnwindDest()) 2849 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2850 break; 2851 } 2852 case Instruction::CallBr: { 2853 const CallBrInst *CBI = cast<CallBrInst>(&I); 2854 const Value *Callee = CBI->getCalledValue(); 2855 FunctionType *FTy = CBI->getFunctionType(); 2856 2857 if (CBI->hasOperandBundles()) 2858 writeOperandBundles(*CBI, InstID); 2859 2860 Code = bitc::FUNC_CODE_INST_CALLBR; 2861 2862 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2863 2864 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2865 1 << bitc::CALL_EXPLICIT_TYPE); 2866 2867 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2868 Vals.push_back(CBI->getNumIndirectDests()); 2869 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2870 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2871 2872 Vals.push_back(VE.getTypeID(FTy)); 2873 pushValueAndType(Callee, InstID, Vals); 2874 2875 // Emit value #'s for the fixed parameters. 2876 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2877 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2878 2879 // Emit type/value pairs for varargs params. 2880 if (FTy->isVarArg()) { 2881 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2882 i != e; ++i) 2883 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2884 } 2885 break; 2886 } 2887 case Instruction::Unreachable: 2888 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2889 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2890 break; 2891 2892 case Instruction::PHI: { 2893 const PHINode &PN = cast<PHINode>(I); 2894 Code = bitc::FUNC_CODE_INST_PHI; 2895 // With the newer instruction encoding, forward references could give 2896 // negative valued IDs. This is most common for PHIs, so we use 2897 // signed VBRs. 2898 SmallVector<uint64_t, 128> Vals64; 2899 Vals64.push_back(VE.getTypeID(PN.getType())); 2900 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2901 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2902 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2903 } 2904 2905 uint64_t Flags = getOptimizationFlags(&I); 2906 if (Flags != 0) 2907 Vals64.push_back(Flags); 2908 2909 // Emit a Vals64 vector and exit. 2910 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2911 Vals64.clear(); 2912 return; 2913 } 2914 2915 case Instruction::LandingPad: { 2916 const LandingPadInst &LP = cast<LandingPadInst>(I); 2917 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2918 Vals.push_back(VE.getTypeID(LP.getType())); 2919 Vals.push_back(LP.isCleanup()); 2920 Vals.push_back(LP.getNumClauses()); 2921 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2922 if (LP.isCatch(I)) 2923 Vals.push_back(LandingPadInst::Catch); 2924 else 2925 Vals.push_back(LandingPadInst::Filter); 2926 pushValueAndType(LP.getClause(I), InstID, Vals); 2927 } 2928 break; 2929 } 2930 2931 case Instruction::Alloca: { 2932 Code = bitc::FUNC_CODE_INST_ALLOCA; 2933 const AllocaInst &AI = cast<AllocaInst>(I); 2934 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2935 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2936 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2937 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2938 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2939 "not enough bits for maximum alignment"); 2940 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2941 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2942 AlignRecord |= 1 << 6; 2943 AlignRecord |= AI.isSwiftError() << 7; 2944 Vals.push_back(AlignRecord); 2945 break; 2946 } 2947 2948 case Instruction::Load: 2949 if (cast<LoadInst>(I).isAtomic()) { 2950 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2951 pushValueAndType(I.getOperand(0), InstID, Vals); 2952 } else { 2953 Code = bitc::FUNC_CODE_INST_LOAD; 2954 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2955 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2956 } 2957 Vals.push_back(VE.getTypeID(I.getType())); 2958 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2959 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2960 if (cast<LoadInst>(I).isAtomic()) { 2961 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2962 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2963 } 2964 break; 2965 case Instruction::Store: 2966 if (cast<StoreInst>(I).isAtomic()) 2967 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2968 else 2969 Code = bitc::FUNC_CODE_INST_STORE; 2970 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2971 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2972 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2973 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2974 if (cast<StoreInst>(I).isAtomic()) { 2975 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2976 Vals.push_back( 2977 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2978 } 2979 break; 2980 case Instruction::AtomicCmpXchg: 2981 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2982 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2983 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2984 pushValue(I.getOperand(2), InstID, Vals); // newval. 2985 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2986 Vals.push_back( 2987 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2988 Vals.push_back( 2989 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2990 Vals.push_back( 2991 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2992 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2993 break; 2994 case Instruction::AtomicRMW: 2995 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2996 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2997 pushValue(I.getOperand(1), InstID, Vals); // val. 2998 Vals.push_back( 2999 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3000 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3001 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3002 Vals.push_back( 3003 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3004 break; 3005 case Instruction::Fence: 3006 Code = bitc::FUNC_CODE_INST_FENCE; 3007 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3008 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3009 break; 3010 case Instruction::Call: { 3011 const CallInst &CI = cast<CallInst>(I); 3012 FunctionType *FTy = CI.getFunctionType(); 3013 3014 if (CI.hasOperandBundles()) 3015 writeOperandBundles(CI, InstID); 3016 3017 Code = bitc::FUNC_CODE_INST_CALL; 3018 3019 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3020 3021 unsigned Flags = getOptimizationFlags(&I); 3022 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3023 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3024 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3025 1 << bitc::CALL_EXPLICIT_TYPE | 3026 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3027 unsigned(Flags != 0) << bitc::CALL_FMF); 3028 if (Flags != 0) 3029 Vals.push_back(Flags); 3030 3031 Vals.push_back(VE.getTypeID(FTy)); 3032 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 3033 3034 // Emit value #'s for the fixed parameters. 3035 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3036 // Check for labels (can happen with asm labels). 3037 if (FTy->getParamType(i)->isLabelTy()) 3038 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3039 else 3040 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3041 } 3042 3043 // Emit type/value pairs for varargs params. 3044 if (FTy->isVarArg()) { 3045 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3046 i != e; ++i) 3047 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3048 } 3049 break; 3050 } 3051 case Instruction::VAArg: 3052 Code = bitc::FUNC_CODE_INST_VAARG; 3053 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3054 pushValue(I.getOperand(0), InstID, Vals); // valist. 3055 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3056 break; 3057 case Instruction::Freeze: 3058 Code = bitc::FUNC_CODE_INST_FREEZE; 3059 pushValueAndType(I.getOperand(0), InstID, Vals); 3060 break; 3061 } 3062 3063 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3064 Vals.clear(); 3065 } 3066 3067 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3068 /// to allow clients to efficiently find the function body. 3069 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3070 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3071 // Get the offset of the VST we are writing, and backpatch it into 3072 // the VST forward declaration record. 3073 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3074 // The BitcodeStartBit was the stream offset of the identification block. 3075 VSTOffset -= bitcodeStartBit(); 3076 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3077 // Note that we add 1 here because the offset is relative to one word 3078 // before the start of the identification block, which was historically 3079 // always the start of the regular bitcode header. 3080 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3081 3082 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3083 3084 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3085 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3088 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3089 3090 for (const Function &F : M) { 3091 uint64_t Record[2]; 3092 3093 if (F.isDeclaration()) 3094 continue; 3095 3096 Record[0] = VE.getValueID(&F); 3097 3098 // Save the word offset of the function (from the start of the 3099 // actual bitcode written to the stream). 3100 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3101 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3102 // Note that we add 1 here because the offset is relative to one word 3103 // before the start of the identification block, which was historically 3104 // always the start of the regular bitcode header. 3105 Record[1] = BitcodeIndex / 32 + 1; 3106 3107 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3108 } 3109 3110 Stream.ExitBlock(); 3111 } 3112 3113 /// Emit names for arguments, instructions and basic blocks in a function. 3114 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3115 const ValueSymbolTable &VST) { 3116 if (VST.empty()) 3117 return; 3118 3119 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3120 3121 // FIXME: Set up the abbrev, we know how many values there are! 3122 // FIXME: We know if the type names can use 7-bit ascii. 3123 SmallVector<uint64_t, 64> NameVals; 3124 3125 for (const ValueName &Name : VST) { 3126 // Figure out the encoding to use for the name. 3127 StringEncoding Bits = getStringEncoding(Name.getKey()); 3128 3129 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3130 NameVals.push_back(VE.getValueID(Name.getValue())); 3131 3132 // VST_CODE_ENTRY: [valueid, namechar x N] 3133 // VST_CODE_BBENTRY: [bbid, namechar x N] 3134 unsigned Code; 3135 if (isa<BasicBlock>(Name.getValue())) { 3136 Code = bitc::VST_CODE_BBENTRY; 3137 if (Bits == SE_Char6) 3138 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3139 } else { 3140 Code = bitc::VST_CODE_ENTRY; 3141 if (Bits == SE_Char6) 3142 AbbrevToUse = VST_ENTRY_6_ABBREV; 3143 else if (Bits == SE_Fixed7) 3144 AbbrevToUse = VST_ENTRY_7_ABBREV; 3145 } 3146 3147 for (const auto P : Name.getKey()) 3148 NameVals.push_back((unsigned char)P); 3149 3150 // Emit the finished record. 3151 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3152 NameVals.clear(); 3153 } 3154 3155 Stream.ExitBlock(); 3156 } 3157 3158 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3159 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3160 unsigned Code; 3161 if (isa<BasicBlock>(Order.V)) 3162 Code = bitc::USELIST_CODE_BB; 3163 else 3164 Code = bitc::USELIST_CODE_DEFAULT; 3165 3166 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3167 Record.push_back(VE.getValueID(Order.V)); 3168 Stream.EmitRecord(Code, Record); 3169 } 3170 3171 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3172 assert(VE.shouldPreserveUseListOrder() && 3173 "Expected to be preserving use-list order"); 3174 3175 auto hasMore = [&]() { 3176 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3177 }; 3178 if (!hasMore()) 3179 // Nothing to do. 3180 return; 3181 3182 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3183 while (hasMore()) { 3184 writeUseList(std::move(VE.UseListOrders.back())); 3185 VE.UseListOrders.pop_back(); 3186 } 3187 Stream.ExitBlock(); 3188 } 3189 3190 /// Emit a function body to the module stream. 3191 void ModuleBitcodeWriter::writeFunction( 3192 const Function &F, 3193 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3194 // Save the bitcode index of the start of this function block for recording 3195 // in the VST. 3196 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3197 3198 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3199 VE.incorporateFunction(F); 3200 3201 SmallVector<unsigned, 64> Vals; 3202 3203 // Emit the number of basic blocks, so the reader can create them ahead of 3204 // time. 3205 Vals.push_back(VE.getBasicBlocks().size()); 3206 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3207 Vals.clear(); 3208 3209 // If there are function-local constants, emit them now. 3210 unsigned CstStart, CstEnd; 3211 VE.getFunctionConstantRange(CstStart, CstEnd); 3212 writeConstants(CstStart, CstEnd, false); 3213 3214 // If there is function-local metadata, emit it now. 3215 writeFunctionMetadata(F); 3216 3217 // Keep a running idea of what the instruction ID is. 3218 unsigned InstID = CstEnd; 3219 3220 bool NeedsMetadataAttachment = F.hasMetadata(); 3221 3222 DILocation *LastDL = nullptr; 3223 // Finally, emit all the instructions, in order. 3224 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3225 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3226 I != E; ++I) { 3227 writeInstruction(*I, InstID, Vals); 3228 3229 if (!I->getType()->isVoidTy()) 3230 ++InstID; 3231 3232 // If the instruction has metadata, write a metadata attachment later. 3233 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3234 3235 // If the instruction has a debug location, emit it. 3236 DILocation *DL = I->getDebugLoc(); 3237 if (!DL) 3238 continue; 3239 3240 if (DL == LastDL) { 3241 // Just repeat the same debug loc as last time. 3242 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3243 continue; 3244 } 3245 3246 Vals.push_back(DL->getLine()); 3247 Vals.push_back(DL->getColumn()); 3248 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3249 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3250 Vals.push_back(DL->isImplicitCode()); 3251 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3252 Vals.clear(); 3253 3254 LastDL = DL; 3255 } 3256 3257 // Emit names for all the instructions etc. 3258 if (auto *Symtab = F.getValueSymbolTable()) 3259 writeFunctionLevelValueSymbolTable(*Symtab); 3260 3261 if (NeedsMetadataAttachment) 3262 writeFunctionMetadataAttachment(F); 3263 if (VE.shouldPreserveUseListOrder()) 3264 writeUseListBlock(&F); 3265 VE.purgeFunction(); 3266 Stream.ExitBlock(); 3267 } 3268 3269 // Emit blockinfo, which defines the standard abbreviations etc. 3270 void ModuleBitcodeWriter::writeBlockInfo() { 3271 // We only want to emit block info records for blocks that have multiple 3272 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3273 // Other blocks can define their abbrevs inline. 3274 Stream.EnterBlockInfoBlock(); 3275 3276 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3277 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3282 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3283 VST_ENTRY_8_ABBREV) 3284 llvm_unreachable("Unexpected abbrev ordering!"); 3285 } 3286 3287 { // 7-bit fixed width VST_CODE_ENTRY strings. 3288 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3289 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3293 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3294 VST_ENTRY_7_ABBREV) 3295 llvm_unreachable("Unexpected abbrev ordering!"); 3296 } 3297 { // 6-bit char6 VST_CODE_ENTRY strings. 3298 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3299 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3303 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3304 VST_ENTRY_6_ABBREV) 3305 llvm_unreachable("Unexpected abbrev ordering!"); 3306 } 3307 { // 6-bit char6 VST_CODE_BBENTRY strings. 3308 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3309 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3313 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3314 VST_BBENTRY_6_ABBREV) 3315 llvm_unreachable("Unexpected abbrev ordering!"); 3316 } 3317 3318 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3319 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3320 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3322 VE.computeBitsRequiredForTypeIndicies())); 3323 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3324 CONSTANTS_SETTYPE_ABBREV) 3325 llvm_unreachable("Unexpected abbrev ordering!"); 3326 } 3327 3328 { // INTEGER abbrev for CONSTANTS_BLOCK. 3329 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3330 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3332 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3333 CONSTANTS_INTEGER_ABBREV) 3334 llvm_unreachable("Unexpected abbrev ordering!"); 3335 } 3336 3337 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3338 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3339 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3342 VE.computeBitsRequiredForTypeIndicies())); 3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3344 3345 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3346 CONSTANTS_CE_CAST_Abbrev) 3347 llvm_unreachable("Unexpected abbrev ordering!"); 3348 } 3349 { // NULL abbrev for CONSTANTS_BLOCK. 3350 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3351 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3352 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3353 CONSTANTS_NULL_Abbrev) 3354 llvm_unreachable("Unexpected abbrev ordering!"); 3355 } 3356 3357 // FIXME: This should only use space for first class types! 3358 3359 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3360 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3361 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3364 VE.computeBitsRequiredForTypeIndicies())); 3365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3367 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3368 FUNCTION_INST_LOAD_ABBREV) 3369 llvm_unreachable("Unexpected abbrev ordering!"); 3370 } 3371 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3372 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3373 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3376 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3377 FUNCTION_INST_UNOP_ABBREV) 3378 llvm_unreachable("Unexpected abbrev ordering!"); 3379 } 3380 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3381 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3382 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3386 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3387 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3388 llvm_unreachable("Unexpected abbrev ordering!"); 3389 } 3390 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3391 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3392 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3396 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3397 FUNCTION_INST_BINOP_ABBREV) 3398 llvm_unreachable("Unexpected abbrev ordering!"); 3399 } 3400 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3401 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3402 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3407 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3408 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3409 llvm_unreachable("Unexpected abbrev ordering!"); 3410 } 3411 { // INST_CAST abbrev for FUNCTION_BLOCK. 3412 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3413 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3416 VE.computeBitsRequiredForTypeIndicies())); 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3418 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3419 FUNCTION_INST_CAST_ABBREV) 3420 llvm_unreachable("Unexpected abbrev ordering!"); 3421 } 3422 3423 { // INST_RET abbrev for FUNCTION_BLOCK. 3424 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3425 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3426 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3427 FUNCTION_INST_RET_VOID_ABBREV) 3428 llvm_unreachable("Unexpected abbrev ordering!"); 3429 } 3430 { // INST_RET abbrev for FUNCTION_BLOCK. 3431 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3432 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3434 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3435 FUNCTION_INST_RET_VAL_ABBREV) 3436 llvm_unreachable("Unexpected abbrev ordering!"); 3437 } 3438 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3439 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3440 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3441 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3442 FUNCTION_INST_UNREACHABLE_ABBREV) 3443 llvm_unreachable("Unexpected abbrev ordering!"); 3444 } 3445 { 3446 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3447 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3450 Log2_32_Ceil(VE.getTypes().size() + 1))); 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3453 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3454 FUNCTION_INST_GEP_ABBREV) 3455 llvm_unreachable("Unexpected abbrev ordering!"); 3456 } 3457 3458 Stream.ExitBlock(); 3459 } 3460 3461 /// Write the module path strings, currently only used when generating 3462 /// a combined index file. 3463 void IndexBitcodeWriter::writeModStrings() { 3464 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3465 3466 // TODO: See which abbrev sizes we actually need to emit 3467 3468 // 8-bit fixed-width MST_ENTRY strings. 3469 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3470 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3474 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3475 3476 // 7-bit fixed width MST_ENTRY strings. 3477 Abbv = std::make_shared<BitCodeAbbrev>(); 3478 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3482 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3483 3484 // 6-bit char6 MST_ENTRY strings. 3485 Abbv = std::make_shared<BitCodeAbbrev>(); 3486 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3490 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3491 3492 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3493 Abbv = std::make_shared<BitCodeAbbrev>(); 3494 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3500 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3501 3502 SmallVector<unsigned, 64> Vals; 3503 forEachModule( 3504 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3505 StringRef Key = MPSE.getKey(); 3506 const auto &Value = MPSE.getValue(); 3507 StringEncoding Bits = getStringEncoding(Key); 3508 unsigned AbbrevToUse = Abbrev8Bit; 3509 if (Bits == SE_Char6) 3510 AbbrevToUse = Abbrev6Bit; 3511 else if (Bits == SE_Fixed7) 3512 AbbrevToUse = Abbrev7Bit; 3513 3514 Vals.push_back(Value.first); 3515 Vals.append(Key.begin(), Key.end()); 3516 3517 // Emit the finished record. 3518 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3519 3520 // Emit an optional hash for the module now 3521 const auto &Hash = Value.second; 3522 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3523 Vals.assign(Hash.begin(), Hash.end()); 3524 // Emit the hash record. 3525 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3526 } 3527 3528 Vals.clear(); 3529 }); 3530 Stream.ExitBlock(); 3531 } 3532 3533 /// Write the function type metadata related records that need to appear before 3534 /// a function summary entry (whether per-module or combined). 3535 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3536 FunctionSummary *FS) { 3537 if (!FS->type_tests().empty()) 3538 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3539 3540 SmallVector<uint64_t, 64> Record; 3541 3542 auto WriteVFuncIdVec = [&](uint64_t Ty, 3543 ArrayRef<FunctionSummary::VFuncId> VFs) { 3544 if (VFs.empty()) 3545 return; 3546 Record.clear(); 3547 for (auto &VF : VFs) { 3548 Record.push_back(VF.GUID); 3549 Record.push_back(VF.Offset); 3550 } 3551 Stream.EmitRecord(Ty, Record); 3552 }; 3553 3554 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3555 FS->type_test_assume_vcalls()); 3556 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3557 FS->type_checked_load_vcalls()); 3558 3559 auto WriteConstVCallVec = [&](uint64_t Ty, 3560 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3561 for (auto &VC : VCs) { 3562 Record.clear(); 3563 Record.push_back(VC.VFunc.GUID); 3564 Record.push_back(VC.VFunc.Offset); 3565 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3566 Stream.EmitRecord(Ty, Record); 3567 } 3568 }; 3569 3570 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3571 FS->type_test_assume_const_vcalls()); 3572 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3573 FS->type_checked_load_const_vcalls()); 3574 } 3575 3576 /// Collect type IDs from type tests used by function. 3577 static void 3578 getReferencedTypeIds(FunctionSummary *FS, 3579 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3580 if (!FS->type_tests().empty()) 3581 for (auto &TT : FS->type_tests()) 3582 ReferencedTypeIds.insert(TT); 3583 3584 auto GetReferencedTypesFromVFuncIdVec = 3585 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3586 for (auto &VF : VFs) 3587 ReferencedTypeIds.insert(VF.GUID); 3588 }; 3589 3590 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3591 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3592 3593 auto GetReferencedTypesFromConstVCallVec = 3594 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3595 for (auto &VC : VCs) 3596 ReferencedTypeIds.insert(VC.VFunc.GUID); 3597 }; 3598 3599 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3600 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3601 } 3602 3603 static void writeWholeProgramDevirtResolutionByArg( 3604 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3605 const WholeProgramDevirtResolution::ByArg &ByArg) { 3606 NameVals.push_back(args.size()); 3607 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3608 3609 NameVals.push_back(ByArg.TheKind); 3610 NameVals.push_back(ByArg.Info); 3611 NameVals.push_back(ByArg.Byte); 3612 NameVals.push_back(ByArg.Bit); 3613 } 3614 3615 static void writeWholeProgramDevirtResolution( 3616 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3617 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3618 NameVals.push_back(Id); 3619 3620 NameVals.push_back(Wpd.TheKind); 3621 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3622 NameVals.push_back(Wpd.SingleImplName.size()); 3623 3624 NameVals.push_back(Wpd.ResByArg.size()); 3625 for (auto &A : Wpd.ResByArg) 3626 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3627 } 3628 3629 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3630 StringTableBuilder &StrtabBuilder, 3631 const std::string &Id, 3632 const TypeIdSummary &Summary) { 3633 NameVals.push_back(StrtabBuilder.add(Id)); 3634 NameVals.push_back(Id.size()); 3635 3636 NameVals.push_back(Summary.TTRes.TheKind); 3637 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3638 NameVals.push_back(Summary.TTRes.AlignLog2); 3639 NameVals.push_back(Summary.TTRes.SizeM1); 3640 NameVals.push_back(Summary.TTRes.BitMask); 3641 NameVals.push_back(Summary.TTRes.InlineBits); 3642 3643 for (auto &W : Summary.WPDRes) 3644 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3645 W.second); 3646 } 3647 3648 static void writeTypeIdCompatibleVtableSummaryRecord( 3649 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3650 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3651 ValueEnumerator &VE) { 3652 NameVals.push_back(StrtabBuilder.add(Id)); 3653 NameVals.push_back(Id.size()); 3654 3655 for (auto &P : Summary) { 3656 NameVals.push_back(P.AddressPointOffset); 3657 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3658 } 3659 } 3660 3661 // Helper to emit a single function summary record. 3662 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3663 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3664 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3665 const Function &F) { 3666 NameVals.push_back(ValueID); 3667 3668 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3669 writeFunctionTypeMetadataRecords(Stream, FS); 3670 3671 auto SpecialRefCnts = FS->specialRefCounts(); 3672 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3673 NameVals.push_back(FS->instCount()); 3674 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3675 NameVals.push_back(FS->refs().size()); 3676 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3677 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3678 3679 for (auto &RI : FS->refs()) 3680 NameVals.push_back(VE.getValueID(RI.getValue())); 3681 3682 bool HasProfileData = 3683 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3684 for (auto &ECI : FS->calls()) { 3685 NameVals.push_back(getValueId(ECI.first)); 3686 if (HasProfileData) 3687 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3688 else if (WriteRelBFToSummary) 3689 NameVals.push_back(ECI.second.RelBlockFreq); 3690 } 3691 3692 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3693 unsigned Code = 3694 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3695 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3696 : bitc::FS_PERMODULE)); 3697 3698 // Emit the finished record. 3699 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3700 NameVals.clear(); 3701 } 3702 3703 // Collect the global value references in the given variable's initializer, 3704 // and emit them in a summary record. 3705 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3706 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3707 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3708 auto VI = Index->getValueInfo(V.getGUID()); 3709 if (!VI || VI.getSummaryList().empty()) { 3710 // Only declarations should not have a summary (a declaration might however 3711 // have a summary if the def was in module level asm). 3712 assert(V.isDeclaration()); 3713 return; 3714 } 3715 auto *Summary = VI.getSummaryList()[0].get(); 3716 NameVals.push_back(VE.getValueID(&V)); 3717 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3718 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3719 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3720 3721 auto VTableFuncs = VS->vTableFuncs(); 3722 if (!VTableFuncs.empty()) 3723 NameVals.push_back(VS->refs().size()); 3724 3725 unsigned SizeBeforeRefs = NameVals.size(); 3726 for (auto &RI : VS->refs()) 3727 NameVals.push_back(VE.getValueID(RI.getValue())); 3728 // Sort the refs for determinism output, the vector returned by FS->refs() has 3729 // been initialized from a DenseSet. 3730 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3731 3732 if (VTableFuncs.empty()) 3733 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3734 FSModRefsAbbrev); 3735 else { 3736 // VTableFuncs pairs should already be sorted by offset. 3737 for (auto &P : VTableFuncs) { 3738 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3739 NameVals.push_back(P.VTableOffset); 3740 } 3741 3742 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3743 FSModVTableRefsAbbrev); 3744 } 3745 NameVals.clear(); 3746 } 3747 3748 /// Emit the per-module summary section alongside the rest of 3749 /// the module's bitcode. 3750 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3751 // By default we compile with ThinLTO if the module has a summary, but the 3752 // client can request full LTO with a module flag. 3753 bool IsThinLTO = true; 3754 if (auto *MD = 3755 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3756 IsThinLTO = MD->getZExtValue(); 3757 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3758 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3759 4); 3760 3761 Stream.EmitRecord( 3762 bitc::FS_VERSION, 3763 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3764 3765 // Write the index flags. 3766 uint64_t Flags = 0; 3767 // Bits 1-3 are set only in the combined index, skip them. 3768 if (Index->enableSplitLTOUnit()) 3769 Flags |= 0x8; 3770 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3771 3772 if (Index->begin() == Index->end()) { 3773 Stream.ExitBlock(); 3774 return; 3775 } 3776 3777 for (const auto &GVI : valueIds()) { 3778 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3779 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3780 } 3781 3782 // Abbrev for FS_PERMODULE_PROFILE. 3783 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3784 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3792 // numrefs x valueid, n x (valueid, hotness) 3793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3795 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3796 3797 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3798 Abbv = std::make_shared<BitCodeAbbrev>(); 3799 if (WriteRelBFToSummary) 3800 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3801 else 3802 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3810 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3813 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3814 3815 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3816 Abbv = std::make_shared<BitCodeAbbrev>(); 3817 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3822 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3823 3824 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3825 Abbv = std::make_shared<BitCodeAbbrev>(); 3826 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3830 // numrefs x valueid, n x (valueid , offset) 3831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3833 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3834 3835 // Abbrev for FS_ALIAS. 3836 Abbv = std::make_shared<BitCodeAbbrev>(); 3837 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3841 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3842 3843 // Abbrev for FS_TYPE_ID_METADATA 3844 Abbv = std::make_shared<BitCodeAbbrev>(); 3845 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3848 // n x (valueid , offset) 3849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3851 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3852 3853 SmallVector<uint64_t, 64> NameVals; 3854 // Iterate over the list of functions instead of the Index to 3855 // ensure the ordering is stable. 3856 for (const Function &F : M) { 3857 // Summary emission does not support anonymous functions, they have to 3858 // renamed using the anonymous function renaming pass. 3859 if (!F.hasName()) 3860 report_fatal_error("Unexpected anonymous function when writing summary"); 3861 3862 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3863 if (!VI || VI.getSummaryList().empty()) { 3864 // Only declarations should not have a summary (a declaration might 3865 // however have a summary if the def was in module level asm). 3866 assert(F.isDeclaration()); 3867 continue; 3868 } 3869 auto *Summary = VI.getSummaryList()[0].get(); 3870 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3871 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3872 } 3873 3874 // Capture references from GlobalVariable initializers, which are outside 3875 // of a function scope. 3876 for (const GlobalVariable &G : M.globals()) 3877 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3878 FSModVTableRefsAbbrev); 3879 3880 for (const GlobalAlias &A : M.aliases()) { 3881 auto *Aliasee = A.getBaseObject(); 3882 if (!Aliasee->hasName()) 3883 // Nameless function don't have an entry in the summary, skip it. 3884 continue; 3885 auto AliasId = VE.getValueID(&A); 3886 auto AliaseeId = VE.getValueID(Aliasee); 3887 NameVals.push_back(AliasId); 3888 auto *Summary = Index->getGlobalValueSummary(A); 3889 AliasSummary *AS = cast<AliasSummary>(Summary); 3890 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3891 NameVals.push_back(AliaseeId); 3892 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3893 NameVals.clear(); 3894 } 3895 3896 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3897 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3898 S.second, VE); 3899 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3900 TypeIdCompatibleVtableAbbrev); 3901 NameVals.clear(); 3902 } 3903 3904 Stream.ExitBlock(); 3905 } 3906 3907 /// Emit the combined summary section into the combined index file. 3908 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3909 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3910 Stream.EmitRecord( 3911 bitc::FS_VERSION, 3912 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3913 3914 // Write the index flags. 3915 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 3916 3917 for (const auto &GVI : valueIds()) { 3918 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3919 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3920 } 3921 3922 // Abbrev for FS_COMBINED. 3923 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3924 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3934 // numrefs x valueid, n x (valueid) 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3937 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3938 3939 // Abbrev for FS_COMBINED_PROFILE. 3940 Abbv = std::make_shared<BitCodeAbbrev>(); 3941 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3951 // numrefs x valueid, n x (valueid, hotness) 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3954 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3955 3956 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3957 Abbv = std::make_shared<BitCodeAbbrev>(); 3958 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3964 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3965 3966 // Abbrev for FS_COMBINED_ALIAS. 3967 Abbv = std::make_shared<BitCodeAbbrev>(); 3968 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3973 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3974 3975 // The aliases are emitted as a post-pass, and will point to the value 3976 // id of the aliasee. Save them in a vector for post-processing. 3977 SmallVector<AliasSummary *, 64> Aliases; 3978 3979 // Save the value id for each summary for alias emission. 3980 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3981 3982 SmallVector<uint64_t, 64> NameVals; 3983 3984 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3985 // with the type ids referenced by this index file. 3986 std::set<GlobalValue::GUID> ReferencedTypeIds; 3987 3988 // For local linkage, we also emit the original name separately 3989 // immediately after the record. 3990 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3991 if (!GlobalValue::isLocalLinkage(S.linkage())) 3992 return; 3993 NameVals.push_back(S.getOriginalName()); 3994 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3995 NameVals.clear(); 3996 }; 3997 3998 std::set<GlobalValue::GUID> DefOrUseGUIDs; 3999 forEachSummary([&](GVInfo I, bool IsAliasee) { 4000 GlobalValueSummary *S = I.second; 4001 assert(S); 4002 DefOrUseGUIDs.insert(I.first); 4003 for (const ValueInfo &VI : S->refs()) 4004 DefOrUseGUIDs.insert(VI.getGUID()); 4005 4006 auto ValueId = getValueId(I.first); 4007 assert(ValueId); 4008 SummaryToValueIdMap[S] = *ValueId; 4009 4010 // If this is invoked for an aliasee, we want to record the above 4011 // mapping, but then not emit a summary entry (if the aliasee is 4012 // to be imported, we will invoke this separately with IsAliasee=false). 4013 if (IsAliasee) 4014 return; 4015 4016 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4017 // Will process aliases as a post-pass because the reader wants all 4018 // global to be loaded first. 4019 Aliases.push_back(AS); 4020 return; 4021 } 4022 4023 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4024 NameVals.push_back(*ValueId); 4025 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4026 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4027 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4028 for (auto &RI : VS->refs()) { 4029 auto RefValueId = getValueId(RI.getGUID()); 4030 if (!RefValueId) 4031 continue; 4032 NameVals.push_back(*RefValueId); 4033 } 4034 4035 // Emit the finished record. 4036 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4037 FSModRefsAbbrev); 4038 NameVals.clear(); 4039 MaybeEmitOriginalName(*S); 4040 return; 4041 } 4042 4043 auto *FS = cast<FunctionSummary>(S); 4044 writeFunctionTypeMetadataRecords(Stream, FS); 4045 getReferencedTypeIds(FS, ReferencedTypeIds); 4046 4047 NameVals.push_back(*ValueId); 4048 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4049 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4050 NameVals.push_back(FS->instCount()); 4051 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4052 NameVals.push_back(FS->entryCount()); 4053 4054 // Fill in below 4055 NameVals.push_back(0); // numrefs 4056 NameVals.push_back(0); // rorefcnt 4057 NameVals.push_back(0); // worefcnt 4058 4059 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4060 for (auto &RI : FS->refs()) { 4061 auto RefValueId = getValueId(RI.getGUID()); 4062 if (!RefValueId) 4063 continue; 4064 NameVals.push_back(*RefValueId); 4065 if (RI.isReadOnly()) 4066 RORefCnt++; 4067 else if (RI.isWriteOnly()) 4068 WORefCnt++; 4069 Count++; 4070 } 4071 NameVals[6] = Count; 4072 NameVals[7] = RORefCnt; 4073 NameVals[8] = WORefCnt; 4074 4075 bool HasProfileData = false; 4076 for (auto &EI : FS->calls()) { 4077 HasProfileData |= 4078 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4079 if (HasProfileData) 4080 break; 4081 } 4082 4083 for (auto &EI : FS->calls()) { 4084 // If this GUID doesn't have a value id, it doesn't have a function 4085 // summary and we don't need to record any calls to it. 4086 GlobalValue::GUID GUID = EI.first.getGUID(); 4087 auto CallValueId = getValueId(GUID); 4088 if (!CallValueId) { 4089 // For SamplePGO, the indirect call targets for local functions will 4090 // have its original name annotated in profile. We try to find the 4091 // corresponding PGOFuncName as the GUID. 4092 GUID = Index.getGUIDFromOriginalID(GUID); 4093 if (GUID == 0) 4094 continue; 4095 CallValueId = getValueId(GUID); 4096 if (!CallValueId) 4097 continue; 4098 // The mapping from OriginalId to GUID may return a GUID 4099 // that corresponds to a static variable. Filter it out here. 4100 // This can happen when 4101 // 1) There is a call to a library function which does not have 4102 // a CallValidId; 4103 // 2) There is a static variable with the OriginalGUID identical 4104 // to the GUID of the library function in 1); 4105 // When this happens, the logic for SamplePGO kicks in and 4106 // the static variable in 2) will be found, which needs to be 4107 // filtered out. 4108 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4109 if (GVSum && 4110 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4111 continue; 4112 } 4113 NameVals.push_back(*CallValueId); 4114 if (HasProfileData) 4115 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4116 } 4117 4118 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4119 unsigned Code = 4120 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4121 4122 // Emit the finished record. 4123 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4124 NameVals.clear(); 4125 MaybeEmitOriginalName(*S); 4126 }); 4127 4128 for (auto *AS : Aliases) { 4129 auto AliasValueId = SummaryToValueIdMap[AS]; 4130 assert(AliasValueId); 4131 NameVals.push_back(AliasValueId); 4132 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4133 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4134 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4135 assert(AliaseeValueId); 4136 NameVals.push_back(AliaseeValueId); 4137 4138 // Emit the finished record. 4139 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4140 NameVals.clear(); 4141 MaybeEmitOriginalName(*AS); 4142 4143 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4144 getReferencedTypeIds(FS, ReferencedTypeIds); 4145 } 4146 4147 if (!Index.cfiFunctionDefs().empty()) { 4148 for (auto &S : Index.cfiFunctionDefs()) { 4149 if (DefOrUseGUIDs.count( 4150 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4151 NameVals.push_back(StrtabBuilder.add(S)); 4152 NameVals.push_back(S.size()); 4153 } 4154 } 4155 if (!NameVals.empty()) { 4156 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4157 NameVals.clear(); 4158 } 4159 } 4160 4161 if (!Index.cfiFunctionDecls().empty()) { 4162 for (auto &S : Index.cfiFunctionDecls()) { 4163 if (DefOrUseGUIDs.count( 4164 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4165 NameVals.push_back(StrtabBuilder.add(S)); 4166 NameVals.push_back(S.size()); 4167 } 4168 } 4169 if (!NameVals.empty()) { 4170 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4171 NameVals.clear(); 4172 } 4173 } 4174 4175 // Walk the GUIDs that were referenced, and write the 4176 // corresponding type id records. 4177 for (auto &T : ReferencedTypeIds) { 4178 auto TidIter = Index.typeIds().equal_range(T); 4179 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4180 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4181 It->second.second); 4182 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4183 NameVals.clear(); 4184 } 4185 } 4186 4187 Stream.ExitBlock(); 4188 } 4189 4190 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4191 /// current llvm version, and a record for the epoch number. 4192 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4193 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4194 4195 // Write the "user readable" string identifying the bitcode producer 4196 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4197 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4200 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4201 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4202 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4203 4204 // Write the epoch version 4205 Abbv = std::make_shared<BitCodeAbbrev>(); 4206 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4208 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4209 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4210 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4211 Stream.ExitBlock(); 4212 } 4213 4214 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4215 // Emit the module's hash. 4216 // MODULE_CODE_HASH: [5*i32] 4217 if (GenerateHash) { 4218 uint32_t Vals[5]; 4219 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4220 Buffer.size() - BlockStartPos)); 4221 StringRef Hash = Hasher.result(); 4222 for (int Pos = 0; Pos < 20; Pos += 4) { 4223 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4224 } 4225 4226 // Emit the finished record. 4227 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4228 4229 if (ModHash) 4230 // Save the written hash value. 4231 llvm::copy(Vals, std::begin(*ModHash)); 4232 } 4233 } 4234 4235 void ModuleBitcodeWriter::write() { 4236 writeIdentificationBlock(Stream); 4237 4238 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4239 size_t BlockStartPos = Buffer.size(); 4240 4241 writeModuleVersion(); 4242 4243 // Emit blockinfo, which defines the standard abbreviations etc. 4244 writeBlockInfo(); 4245 4246 // Emit information describing all of the types in the module. 4247 writeTypeTable(); 4248 4249 // Emit information about attribute groups. 4250 writeAttributeGroupTable(); 4251 4252 // Emit information about parameter attributes. 4253 writeAttributeTable(); 4254 4255 writeComdats(); 4256 4257 // Emit top-level description of module, including target triple, inline asm, 4258 // descriptors for global variables, and function prototype info. 4259 writeModuleInfo(); 4260 4261 // Emit constants. 4262 writeModuleConstants(); 4263 4264 // Emit metadata kind names. 4265 writeModuleMetadataKinds(); 4266 4267 // Emit metadata. 4268 writeModuleMetadata(); 4269 4270 // Emit module-level use-lists. 4271 if (VE.shouldPreserveUseListOrder()) 4272 writeUseListBlock(nullptr); 4273 4274 writeOperandBundleTags(); 4275 writeSyncScopeNames(); 4276 4277 // Emit function bodies. 4278 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4279 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4280 if (!F->isDeclaration()) 4281 writeFunction(*F, FunctionToBitcodeIndex); 4282 4283 // Need to write after the above call to WriteFunction which populates 4284 // the summary information in the index. 4285 if (Index) 4286 writePerModuleGlobalValueSummary(); 4287 4288 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4289 4290 writeModuleHash(BlockStartPos); 4291 4292 Stream.ExitBlock(); 4293 } 4294 4295 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4296 uint32_t &Position) { 4297 support::endian::write32le(&Buffer[Position], Value); 4298 Position += 4; 4299 } 4300 4301 /// If generating a bc file on darwin, we have to emit a 4302 /// header and trailer to make it compatible with the system archiver. To do 4303 /// this we emit the following header, and then emit a trailer that pads the 4304 /// file out to be a multiple of 16 bytes. 4305 /// 4306 /// struct bc_header { 4307 /// uint32_t Magic; // 0x0B17C0DE 4308 /// uint32_t Version; // Version, currently always 0. 4309 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4310 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4311 /// uint32_t CPUType; // CPU specifier. 4312 /// ... potentially more later ... 4313 /// }; 4314 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4315 const Triple &TT) { 4316 unsigned CPUType = ~0U; 4317 4318 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4319 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4320 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4321 // specific constants here because they are implicitly part of the Darwin ABI. 4322 enum { 4323 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4324 DARWIN_CPU_TYPE_X86 = 7, 4325 DARWIN_CPU_TYPE_ARM = 12, 4326 DARWIN_CPU_TYPE_POWERPC = 18 4327 }; 4328 4329 Triple::ArchType Arch = TT.getArch(); 4330 if (Arch == Triple::x86_64) 4331 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4332 else if (Arch == Triple::x86) 4333 CPUType = DARWIN_CPU_TYPE_X86; 4334 else if (Arch == Triple::ppc) 4335 CPUType = DARWIN_CPU_TYPE_POWERPC; 4336 else if (Arch == Triple::ppc64) 4337 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4338 else if (Arch == Triple::arm || Arch == Triple::thumb) 4339 CPUType = DARWIN_CPU_TYPE_ARM; 4340 4341 // Traditional Bitcode starts after header. 4342 assert(Buffer.size() >= BWH_HeaderSize && 4343 "Expected header size to be reserved"); 4344 unsigned BCOffset = BWH_HeaderSize; 4345 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4346 4347 // Write the magic and version. 4348 unsigned Position = 0; 4349 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4350 writeInt32ToBuffer(0, Buffer, Position); // Version. 4351 writeInt32ToBuffer(BCOffset, Buffer, Position); 4352 writeInt32ToBuffer(BCSize, Buffer, Position); 4353 writeInt32ToBuffer(CPUType, Buffer, Position); 4354 4355 // If the file is not a multiple of 16 bytes, insert dummy padding. 4356 while (Buffer.size() & 15) 4357 Buffer.push_back(0); 4358 } 4359 4360 /// Helper to write the header common to all bitcode files. 4361 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4362 // Emit the file header. 4363 Stream.Emit((unsigned)'B', 8); 4364 Stream.Emit((unsigned)'C', 8); 4365 Stream.Emit(0x0, 4); 4366 Stream.Emit(0xC, 4); 4367 Stream.Emit(0xE, 4); 4368 Stream.Emit(0xD, 4); 4369 } 4370 4371 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4372 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4373 writeBitcodeHeader(*Stream); 4374 } 4375 4376 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4377 4378 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4379 Stream->EnterSubblock(Block, 3); 4380 4381 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4382 Abbv->Add(BitCodeAbbrevOp(Record)); 4383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4384 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4385 4386 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4387 4388 Stream->ExitBlock(); 4389 } 4390 4391 void BitcodeWriter::writeSymtab() { 4392 assert(!WroteStrtab && !WroteSymtab); 4393 4394 // If any module has module-level inline asm, we will require a registered asm 4395 // parser for the target so that we can create an accurate symbol table for 4396 // the module. 4397 for (Module *M : Mods) { 4398 if (M->getModuleInlineAsm().empty()) 4399 continue; 4400 4401 std::string Err; 4402 const Triple TT(M->getTargetTriple()); 4403 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4404 if (!T || !T->hasMCAsmParser()) 4405 return; 4406 } 4407 4408 WroteSymtab = true; 4409 SmallVector<char, 0> Symtab; 4410 // The irsymtab::build function may be unable to create a symbol table if the 4411 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4412 // table is not required for correctness, but we still want to be able to 4413 // write malformed modules to bitcode files, so swallow the error. 4414 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4415 consumeError(std::move(E)); 4416 return; 4417 } 4418 4419 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4420 {Symtab.data(), Symtab.size()}); 4421 } 4422 4423 void BitcodeWriter::writeStrtab() { 4424 assert(!WroteStrtab); 4425 4426 std::vector<char> Strtab; 4427 StrtabBuilder.finalizeInOrder(); 4428 Strtab.resize(StrtabBuilder.getSize()); 4429 StrtabBuilder.write((uint8_t *)Strtab.data()); 4430 4431 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4432 {Strtab.data(), Strtab.size()}); 4433 4434 WroteStrtab = true; 4435 } 4436 4437 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4438 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4439 WroteStrtab = true; 4440 } 4441 4442 void BitcodeWriter::writeModule(const Module &M, 4443 bool ShouldPreserveUseListOrder, 4444 const ModuleSummaryIndex *Index, 4445 bool GenerateHash, ModuleHash *ModHash) { 4446 assert(!WroteStrtab); 4447 4448 // The Mods vector is used by irsymtab::build, which requires non-const 4449 // Modules in case it needs to materialize metadata. But the bitcode writer 4450 // requires that the module is materialized, so we can cast to non-const here, 4451 // after checking that it is in fact materialized. 4452 assert(M.isMaterialized()); 4453 Mods.push_back(const_cast<Module *>(&M)); 4454 4455 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4456 ShouldPreserveUseListOrder, Index, 4457 GenerateHash, ModHash); 4458 ModuleWriter.write(); 4459 } 4460 4461 void BitcodeWriter::writeIndex( 4462 const ModuleSummaryIndex *Index, 4463 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4464 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4465 ModuleToSummariesForIndex); 4466 IndexWriter.write(); 4467 } 4468 4469 /// Write the specified module to the specified output stream. 4470 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4471 bool ShouldPreserveUseListOrder, 4472 const ModuleSummaryIndex *Index, 4473 bool GenerateHash, ModuleHash *ModHash) { 4474 SmallVector<char, 0> Buffer; 4475 Buffer.reserve(256*1024); 4476 4477 // If this is darwin or another generic macho target, reserve space for the 4478 // header. 4479 Triple TT(M.getTargetTriple()); 4480 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4481 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4482 4483 BitcodeWriter Writer(Buffer); 4484 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4485 ModHash); 4486 Writer.writeSymtab(); 4487 Writer.writeStrtab(); 4488 4489 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4490 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4491 4492 // Write the generated bitstream to "Out". 4493 Out.write((char*)&Buffer.front(), Buffer.size()); 4494 } 4495 4496 void IndexBitcodeWriter::write() { 4497 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4498 4499 writeModuleVersion(); 4500 4501 // Write the module paths in the combined index. 4502 writeModStrings(); 4503 4504 // Write the summary combined index records. 4505 writeCombinedGlobalValueSummary(); 4506 4507 Stream.ExitBlock(); 4508 } 4509 4510 // Write the specified module summary index to the given raw output stream, 4511 // where it will be written in a new bitcode block. This is used when 4512 // writing the combined index file for ThinLTO. When writing a subset of the 4513 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4514 void llvm::WriteIndexToFile( 4515 const ModuleSummaryIndex &Index, raw_ostream &Out, 4516 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4517 SmallVector<char, 0> Buffer; 4518 Buffer.reserve(256 * 1024); 4519 4520 BitcodeWriter Writer(Buffer); 4521 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4522 Writer.writeStrtab(); 4523 4524 Out.write((char *)&Buffer.front(), Buffer.size()); 4525 } 4526 4527 namespace { 4528 4529 /// Class to manage the bitcode writing for a thin link bitcode file. 4530 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4531 /// ModHash is for use in ThinLTO incremental build, generated while writing 4532 /// the module bitcode file. 4533 const ModuleHash *ModHash; 4534 4535 public: 4536 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4537 BitstreamWriter &Stream, 4538 const ModuleSummaryIndex &Index, 4539 const ModuleHash &ModHash) 4540 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4541 /*ShouldPreserveUseListOrder=*/false, &Index), 4542 ModHash(&ModHash) {} 4543 4544 void write(); 4545 4546 private: 4547 void writeSimplifiedModuleInfo(); 4548 }; 4549 4550 } // end anonymous namespace 4551 4552 // This function writes a simpilified module info for thin link bitcode file. 4553 // It only contains the source file name along with the name(the offset and 4554 // size in strtab) and linkage for global values. For the global value info 4555 // entry, in order to keep linkage at offset 5, there are three zeros used 4556 // as padding. 4557 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4558 SmallVector<unsigned, 64> Vals; 4559 // Emit the module's source file name. 4560 { 4561 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4562 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4563 if (Bits == SE_Char6) 4564 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4565 else if (Bits == SE_Fixed7) 4566 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4567 4568 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4569 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4570 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4572 Abbv->Add(AbbrevOpToUse); 4573 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4574 4575 for (const auto P : M.getSourceFileName()) 4576 Vals.push_back((unsigned char)P); 4577 4578 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4579 Vals.clear(); 4580 } 4581 4582 // Emit the global variable information. 4583 for (const GlobalVariable &GV : M.globals()) { 4584 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4585 Vals.push_back(StrtabBuilder.add(GV.getName())); 4586 Vals.push_back(GV.getName().size()); 4587 Vals.push_back(0); 4588 Vals.push_back(0); 4589 Vals.push_back(0); 4590 Vals.push_back(getEncodedLinkage(GV)); 4591 4592 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4593 Vals.clear(); 4594 } 4595 4596 // Emit the function proto information. 4597 for (const Function &F : M) { 4598 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4599 Vals.push_back(StrtabBuilder.add(F.getName())); 4600 Vals.push_back(F.getName().size()); 4601 Vals.push_back(0); 4602 Vals.push_back(0); 4603 Vals.push_back(0); 4604 Vals.push_back(getEncodedLinkage(F)); 4605 4606 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4607 Vals.clear(); 4608 } 4609 4610 // Emit the alias information. 4611 for (const GlobalAlias &A : M.aliases()) { 4612 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4613 Vals.push_back(StrtabBuilder.add(A.getName())); 4614 Vals.push_back(A.getName().size()); 4615 Vals.push_back(0); 4616 Vals.push_back(0); 4617 Vals.push_back(0); 4618 Vals.push_back(getEncodedLinkage(A)); 4619 4620 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4621 Vals.clear(); 4622 } 4623 4624 // Emit the ifunc information. 4625 for (const GlobalIFunc &I : M.ifuncs()) { 4626 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4627 Vals.push_back(StrtabBuilder.add(I.getName())); 4628 Vals.push_back(I.getName().size()); 4629 Vals.push_back(0); 4630 Vals.push_back(0); 4631 Vals.push_back(0); 4632 Vals.push_back(getEncodedLinkage(I)); 4633 4634 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4635 Vals.clear(); 4636 } 4637 } 4638 4639 void ThinLinkBitcodeWriter::write() { 4640 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4641 4642 writeModuleVersion(); 4643 4644 writeSimplifiedModuleInfo(); 4645 4646 writePerModuleGlobalValueSummary(); 4647 4648 // Write module hash. 4649 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4650 4651 Stream.ExitBlock(); 4652 } 4653 4654 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4655 const ModuleSummaryIndex &Index, 4656 const ModuleHash &ModHash) { 4657 assert(!WroteStrtab); 4658 4659 // The Mods vector is used by irsymtab::build, which requires non-const 4660 // Modules in case it needs to materialize metadata. But the bitcode writer 4661 // requires that the module is materialized, so we can cast to non-const here, 4662 // after checking that it is in fact materialized. 4663 assert(M.isMaterialized()); 4664 Mods.push_back(const_cast<Module *>(&M)); 4665 4666 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4667 ModHash); 4668 ThinLinkWriter.write(); 4669 } 4670 4671 // Write the specified thin link bitcode file to the given raw output stream, 4672 // where it will be written in a new bitcode block. This is used when 4673 // writing the per-module index file for ThinLTO. 4674 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4675 const ModuleSummaryIndex &Index, 4676 const ModuleHash &ModHash) { 4677 SmallVector<char, 0> Buffer; 4678 Buffer.reserve(256 * 1024); 4679 4680 BitcodeWriter Writer(Buffer); 4681 Writer.writeThinLinkBitcode(M, Index, ModHash); 4682 Writer.writeSymtab(); 4683 Writer.writeStrtab(); 4684 4685 Out.write((char *)&Buffer.front(), Buffer.size()); 4686 } 4687 4688 static const char *getSectionNameForBitcode(const Triple &T) { 4689 switch (T.getObjectFormat()) { 4690 case Triple::MachO: 4691 return "__LLVM,__bitcode"; 4692 case Triple::COFF: 4693 case Triple::ELF: 4694 case Triple::Wasm: 4695 case Triple::UnknownObjectFormat: 4696 return ".llvmbc"; 4697 case Triple::XCOFF: 4698 llvm_unreachable("XCOFF is not yet implemented"); 4699 break; 4700 } 4701 llvm_unreachable("Unimplemented ObjectFormatType"); 4702 } 4703 4704 static const char *getSectionNameForCommandline(const Triple &T) { 4705 switch (T.getObjectFormat()) { 4706 case Triple::MachO: 4707 return "__LLVM,__cmdline"; 4708 case Triple::COFF: 4709 case Triple::ELF: 4710 case Triple::Wasm: 4711 case Triple::UnknownObjectFormat: 4712 return ".llvmcmd"; 4713 case Triple::XCOFF: 4714 llvm_unreachable("XCOFF is not yet implemented"); 4715 break; 4716 } 4717 llvm_unreachable("Unimplemented ObjectFormatType"); 4718 } 4719 4720 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4721 bool EmbedBitcode, bool EmbedMarker, 4722 const std::vector<uint8_t> *CmdArgs) { 4723 // Save llvm.compiler.used and remove it. 4724 SmallVector<Constant *, 2> UsedArray; 4725 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4726 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4727 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4728 for (auto *GV : UsedGlobals) { 4729 if (GV->getName() != "llvm.embedded.module" && 4730 GV->getName() != "llvm.cmdline") 4731 UsedArray.push_back( 4732 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4733 } 4734 if (Used) 4735 Used->eraseFromParent(); 4736 4737 // Embed the bitcode for the llvm module. 4738 std::string Data; 4739 ArrayRef<uint8_t> ModuleData; 4740 Triple T(M.getTargetTriple()); 4741 // Create a constant that contains the bitcode. 4742 // In case of embedding a marker, ignore the input Buf and use the empty 4743 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 4744 if (EmbedBitcode) { 4745 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 4746 (const unsigned char *)Buf.getBufferEnd())) { 4747 // If the input is LLVM Assembly, bitcode is produced by serializing 4748 // the module. Use-lists order need to be preserved in this case. 4749 llvm::raw_string_ostream OS(Data); 4750 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4751 ModuleData = 4752 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4753 } else 4754 // If the input is LLVM bitcode, write the input byte stream directly. 4755 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4756 Buf.getBufferSize()); 4757 } 4758 llvm::Constant *ModuleConstant = 4759 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4760 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4761 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4762 ModuleConstant); 4763 GV->setSection(getSectionNameForBitcode(T)); 4764 UsedArray.push_back( 4765 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4766 if (llvm::GlobalVariable *Old = 4767 M.getGlobalVariable("llvm.embedded.module", true)) { 4768 assert(Old->hasOneUse() && 4769 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4770 GV->takeName(Old); 4771 Old->eraseFromParent(); 4772 } else { 4773 GV->setName("llvm.embedded.module"); 4774 } 4775 4776 // Skip if only bitcode needs to be embedded. 4777 if (EmbedMarker) { 4778 // Embed command-line options. 4779 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()), 4780 CmdArgs->size()); 4781 llvm::Constant *CmdConstant = 4782 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4783 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4784 llvm::GlobalValue::PrivateLinkage, 4785 CmdConstant); 4786 GV->setSection(getSectionNameForCommandline(T)); 4787 UsedArray.push_back( 4788 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4789 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4790 assert(Old->hasOneUse() && 4791 "llvm.cmdline can only be used once in llvm.compiler.used"); 4792 GV->takeName(Old); 4793 Old->eraseFromParent(); 4794 } else { 4795 GV->setName("llvm.cmdline"); 4796 } 4797 } 4798 4799 if (UsedArray.empty()) 4800 return; 4801 4802 // Recreate llvm.compiler.used. 4803 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4804 auto *NewUsed = new GlobalVariable( 4805 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4806 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4807 NewUsed->setSection("llvm.metadata"); 4808 } 4809