1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueSymbolTable.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Program.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV, 64 65 // SwitchInst Magic 66 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 67 }; 68 69 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 70 switch (Opcode) { 71 default: llvm_unreachable("Unknown cast instruction!"); 72 case Instruction::Trunc : return bitc::CAST_TRUNC; 73 case Instruction::ZExt : return bitc::CAST_ZEXT; 74 case Instruction::SExt : return bitc::CAST_SEXT; 75 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 76 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 77 case Instruction::UIToFP : return bitc::CAST_UITOFP; 78 case Instruction::SIToFP : return bitc::CAST_SITOFP; 79 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 80 case Instruction::FPExt : return bitc::CAST_FPEXT; 81 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 82 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 83 case Instruction::BitCast : return bitc::CAST_BITCAST; 84 } 85 } 86 87 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 88 switch (Opcode) { 89 default: llvm_unreachable("Unknown binary instruction!"); 90 case Instruction::Add: 91 case Instruction::FAdd: return bitc::BINOP_ADD; 92 case Instruction::Sub: 93 case Instruction::FSub: return bitc::BINOP_SUB; 94 case Instruction::Mul: 95 case Instruction::FMul: return bitc::BINOP_MUL; 96 case Instruction::UDiv: return bitc::BINOP_UDIV; 97 case Instruction::FDiv: 98 case Instruction::SDiv: return bitc::BINOP_SDIV; 99 case Instruction::URem: return bitc::BINOP_UREM; 100 case Instruction::FRem: 101 case Instruction::SRem: return bitc::BINOP_SREM; 102 case Instruction::Shl: return bitc::BINOP_SHL; 103 case Instruction::LShr: return bitc::BINOP_LSHR; 104 case Instruction::AShr: return bitc::BINOP_ASHR; 105 case Instruction::And: return bitc::BINOP_AND; 106 case Instruction::Or: return bitc::BINOP_OR; 107 case Instruction::Xor: return bitc::BINOP_XOR; 108 } 109 } 110 111 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 112 switch (Op) { 113 default: llvm_unreachable("Unknown RMW operation!"); 114 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 115 case AtomicRMWInst::Add: return bitc::RMW_ADD; 116 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 117 case AtomicRMWInst::And: return bitc::RMW_AND; 118 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 119 case AtomicRMWInst::Or: return bitc::RMW_OR; 120 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 121 case AtomicRMWInst::Max: return bitc::RMW_MAX; 122 case AtomicRMWInst::Min: return bitc::RMW_MIN; 123 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 124 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 125 } 126 } 127 128 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 129 switch (Ordering) { 130 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 131 case Unordered: return bitc::ORDERING_UNORDERED; 132 case Monotonic: return bitc::ORDERING_MONOTONIC; 133 case Acquire: return bitc::ORDERING_ACQUIRE; 134 case Release: return bitc::ORDERING_RELEASE; 135 case AcquireRelease: return bitc::ORDERING_ACQREL; 136 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 137 } 138 llvm_unreachable("Invalid ordering"); 139 } 140 141 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 142 switch (SynchScope) { 143 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 144 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 145 } 146 llvm_unreachable("Invalid synch scope"); 147 } 148 149 static void WriteStringRecord(unsigned Code, StringRef Str, 150 unsigned AbbrevToUse, BitstreamWriter &Stream) { 151 SmallVector<unsigned, 64> Vals; 152 153 // Code: [strchar x N] 154 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 155 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 156 AbbrevToUse = 0; 157 Vals.push_back(Str[i]); 158 } 159 160 // Emit the finished record. 161 Stream.EmitRecord(Code, Vals, AbbrevToUse); 162 } 163 164 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 165 switch (Kind) { 166 case Attribute::Alignment: 167 return bitc::ATTR_KIND_ALIGNMENT; 168 case Attribute::AlwaysInline: 169 return bitc::ATTR_KIND_ALWAYS_INLINE; 170 case Attribute::Builtin: 171 return bitc::ATTR_KIND_BUILTIN; 172 case Attribute::ByVal: 173 return bitc::ATTR_KIND_BY_VAL; 174 case Attribute::Cold: 175 return bitc::ATTR_KIND_COLD; 176 case Attribute::InlineHint: 177 return bitc::ATTR_KIND_INLINE_HINT; 178 case Attribute::InReg: 179 return bitc::ATTR_KIND_IN_REG; 180 case Attribute::MinSize: 181 return bitc::ATTR_KIND_MIN_SIZE; 182 case Attribute::Naked: 183 return bitc::ATTR_KIND_NAKED; 184 case Attribute::Nest: 185 return bitc::ATTR_KIND_NEST; 186 case Attribute::NoAlias: 187 return bitc::ATTR_KIND_NO_ALIAS; 188 case Attribute::NoBuiltin: 189 return bitc::ATTR_KIND_NO_BUILTIN; 190 case Attribute::NoCapture: 191 return bitc::ATTR_KIND_NO_CAPTURE; 192 case Attribute::NoDuplicate: 193 return bitc::ATTR_KIND_NO_DUPLICATE; 194 case Attribute::NoImplicitFloat: 195 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 196 case Attribute::NoInline: 197 return bitc::ATTR_KIND_NO_INLINE; 198 case Attribute::NonLazyBind: 199 return bitc::ATTR_KIND_NON_LAZY_BIND; 200 case Attribute::NoRedZone: 201 return bitc::ATTR_KIND_NO_RED_ZONE; 202 case Attribute::NoReturn: 203 return bitc::ATTR_KIND_NO_RETURN; 204 case Attribute::NoUnwind: 205 return bitc::ATTR_KIND_NO_UNWIND; 206 case Attribute::OptimizeForSize: 207 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 208 case Attribute::OptimizeNone: 209 return bitc::ATTR_KIND_OPTIMIZE_NONE; 210 case Attribute::ReadNone: 211 return bitc::ATTR_KIND_READ_NONE; 212 case Attribute::ReadOnly: 213 return bitc::ATTR_KIND_READ_ONLY; 214 case Attribute::Returned: 215 return bitc::ATTR_KIND_RETURNED; 216 case Attribute::ReturnsTwice: 217 return bitc::ATTR_KIND_RETURNS_TWICE; 218 case Attribute::SExt: 219 return bitc::ATTR_KIND_S_EXT; 220 case Attribute::StackAlignment: 221 return bitc::ATTR_KIND_STACK_ALIGNMENT; 222 case Attribute::StackProtect: 223 return bitc::ATTR_KIND_STACK_PROTECT; 224 case Attribute::StackProtectReq: 225 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 226 case Attribute::StackProtectStrong: 227 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 228 case Attribute::StructRet: 229 return bitc::ATTR_KIND_STRUCT_RET; 230 case Attribute::SanitizeAddress: 231 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 232 case Attribute::SanitizeThread: 233 return bitc::ATTR_KIND_SANITIZE_THREAD; 234 case Attribute::SanitizeMemory: 235 return bitc::ATTR_KIND_SANITIZE_MEMORY; 236 case Attribute::UWTable: 237 return bitc::ATTR_KIND_UW_TABLE; 238 case Attribute::ZExt: 239 return bitc::ATTR_KIND_Z_EXT; 240 case Attribute::EndAttrKinds: 241 llvm_unreachable("Can not encode end-attribute kinds marker."); 242 case Attribute::None: 243 llvm_unreachable("Can not encode none-attribute."); 244 } 245 246 llvm_unreachable("Trying to encode unknown attribute"); 247 } 248 249 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 250 BitstreamWriter &Stream) { 251 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 252 if (AttrGrps.empty()) return; 253 254 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 255 256 SmallVector<uint64_t, 64> Record; 257 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 258 AttributeSet AS = AttrGrps[i]; 259 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 260 AttributeSet A = AS.getSlotAttributes(i); 261 262 Record.push_back(VE.getAttributeGroupID(A)); 263 Record.push_back(AS.getSlotIndex(i)); 264 265 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 266 I != E; ++I) { 267 Attribute Attr = *I; 268 if (Attr.isEnumAttribute()) { 269 Record.push_back(0); 270 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 271 } else if (Attr.isAlignAttribute()) { 272 Record.push_back(1); 273 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 274 Record.push_back(Attr.getValueAsInt()); 275 } else { 276 StringRef Kind = Attr.getKindAsString(); 277 StringRef Val = Attr.getValueAsString(); 278 279 Record.push_back(Val.empty() ? 3 : 4); 280 Record.append(Kind.begin(), Kind.end()); 281 Record.push_back(0); 282 if (!Val.empty()) { 283 Record.append(Val.begin(), Val.end()); 284 Record.push_back(0); 285 } 286 } 287 } 288 289 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 290 Record.clear(); 291 } 292 } 293 294 Stream.ExitBlock(); 295 } 296 297 static void WriteAttributeTable(const ValueEnumerator &VE, 298 BitstreamWriter &Stream) { 299 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 300 if (Attrs.empty()) return; 301 302 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 303 304 SmallVector<uint64_t, 64> Record; 305 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 306 const AttributeSet &A = Attrs[i]; 307 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 308 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 309 310 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 311 Record.clear(); 312 } 313 314 Stream.ExitBlock(); 315 } 316 317 /// WriteTypeTable - Write out the type table for a module. 318 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 319 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 320 321 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 322 SmallVector<uint64_t, 64> TypeVals; 323 324 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 325 326 // Abbrev for TYPE_CODE_POINTER. 327 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 328 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 330 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 331 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 332 333 // Abbrev for TYPE_CODE_FUNCTION. 334 Abbv = new BitCodeAbbrev(); 335 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 339 340 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 341 342 // Abbrev for TYPE_CODE_STRUCT_ANON. 343 Abbv = new BitCodeAbbrev(); 344 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 348 349 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 350 351 // Abbrev for TYPE_CODE_STRUCT_NAME. 352 Abbv = new BitCodeAbbrev(); 353 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 356 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 357 358 // Abbrev for TYPE_CODE_STRUCT_NAMED. 359 Abbv = new BitCodeAbbrev(); 360 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 364 365 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 366 367 // Abbrev for TYPE_CODE_ARRAY. 368 Abbv = new BitCodeAbbrev(); 369 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 372 373 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 374 375 // Emit an entry count so the reader can reserve space. 376 TypeVals.push_back(TypeList.size()); 377 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 378 TypeVals.clear(); 379 380 // Loop over all of the types, emitting each in turn. 381 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 382 Type *T = TypeList[i]; 383 int AbbrevToUse = 0; 384 unsigned Code = 0; 385 386 switch (T->getTypeID()) { 387 default: llvm_unreachable("Unknown type!"); 388 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 389 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 390 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 391 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 392 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 393 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 394 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 395 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 396 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 397 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 398 case Type::IntegerTyID: 399 // INTEGER: [width] 400 Code = bitc::TYPE_CODE_INTEGER; 401 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 402 break; 403 case Type::PointerTyID: { 404 PointerType *PTy = cast<PointerType>(T); 405 // POINTER: [pointee type, address space] 406 Code = bitc::TYPE_CODE_POINTER; 407 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 408 unsigned AddressSpace = PTy->getAddressSpace(); 409 TypeVals.push_back(AddressSpace); 410 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 411 break; 412 } 413 case Type::FunctionTyID: { 414 FunctionType *FT = cast<FunctionType>(T); 415 // FUNCTION: [isvararg, retty, paramty x N] 416 Code = bitc::TYPE_CODE_FUNCTION; 417 TypeVals.push_back(FT->isVarArg()); 418 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 419 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 420 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 421 AbbrevToUse = FunctionAbbrev; 422 break; 423 } 424 case Type::StructTyID: { 425 StructType *ST = cast<StructType>(T); 426 // STRUCT: [ispacked, eltty x N] 427 TypeVals.push_back(ST->isPacked()); 428 // Output all of the element types. 429 for (StructType::element_iterator I = ST->element_begin(), 430 E = ST->element_end(); I != E; ++I) 431 TypeVals.push_back(VE.getTypeID(*I)); 432 433 if (ST->isLiteral()) { 434 Code = bitc::TYPE_CODE_STRUCT_ANON; 435 AbbrevToUse = StructAnonAbbrev; 436 } else { 437 if (ST->isOpaque()) { 438 Code = bitc::TYPE_CODE_OPAQUE; 439 } else { 440 Code = bitc::TYPE_CODE_STRUCT_NAMED; 441 AbbrevToUse = StructNamedAbbrev; 442 } 443 444 // Emit the name if it is present. 445 if (!ST->getName().empty()) 446 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 447 StructNameAbbrev, Stream); 448 } 449 break; 450 } 451 case Type::ArrayTyID: { 452 ArrayType *AT = cast<ArrayType>(T); 453 // ARRAY: [numelts, eltty] 454 Code = bitc::TYPE_CODE_ARRAY; 455 TypeVals.push_back(AT->getNumElements()); 456 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 457 AbbrevToUse = ArrayAbbrev; 458 break; 459 } 460 case Type::VectorTyID: { 461 VectorType *VT = cast<VectorType>(T); 462 // VECTOR [numelts, eltty] 463 Code = bitc::TYPE_CODE_VECTOR; 464 TypeVals.push_back(VT->getNumElements()); 465 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 466 break; 467 } 468 } 469 470 // Emit the finished record. 471 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 472 TypeVals.clear(); 473 } 474 475 Stream.ExitBlock(); 476 } 477 478 static unsigned getEncodedLinkage(const GlobalValue *GV) { 479 switch (GV->getLinkage()) { 480 case GlobalValue::ExternalLinkage: return 0; 481 case GlobalValue::WeakAnyLinkage: return 1; 482 case GlobalValue::AppendingLinkage: return 2; 483 case GlobalValue::InternalLinkage: return 3; 484 case GlobalValue::LinkOnceAnyLinkage: return 4; 485 case GlobalValue::DLLImportLinkage: return 5; 486 case GlobalValue::DLLExportLinkage: return 6; 487 case GlobalValue::ExternalWeakLinkage: return 7; 488 case GlobalValue::CommonLinkage: return 8; 489 case GlobalValue::PrivateLinkage: return 9; 490 case GlobalValue::WeakODRLinkage: return 10; 491 case GlobalValue::LinkOnceODRLinkage: return 11; 492 case GlobalValue::AvailableExternallyLinkage: return 12; 493 case GlobalValue::LinkerPrivateLinkage: return 13; 494 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 495 case GlobalValue::LinkOnceODRAutoHideLinkage: return 15; 496 } 497 llvm_unreachable("Invalid linkage"); 498 } 499 500 static unsigned getEncodedVisibility(const GlobalValue *GV) { 501 switch (GV->getVisibility()) { 502 case GlobalValue::DefaultVisibility: return 0; 503 case GlobalValue::HiddenVisibility: return 1; 504 case GlobalValue::ProtectedVisibility: return 2; 505 } 506 llvm_unreachable("Invalid visibility"); 507 } 508 509 static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) { 510 switch (GV->getThreadLocalMode()) { 511 case GlobalVariable::NotThreadLocal: return 0; 512 case GlobalVariable::GeneralDynamicTLSModel: return 1; 513 case GlobalVariable::LocalDynamicTLSModel: return 2; 514 case GlobalVariable::InitialExecTLSModel: return 3; 515 case GlobalVariable::LocalExecTLSModel: return 4; 516 } 517 llvm_unreachable("Invalid TLS model"); 518 } 519 520 // Emit top-level description of module, including target triple, inline asm, 521 // descriptors for global variables, and function prototype info. 522 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 523 BitstreamWriter &Stream) { 524 // Emit various pieces of data attached to a module. 525 if (!M->getTargetTriple().empty()) 526 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 527 0/*TODO*/, Stream); 528 if (!M->getDataLayout().empty()) 529 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 530 0/*TODO*/, Stream); 531 if (!M->getModuleInlineAsm().empty()) 532 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 533 0/*TODO*/, Stream); 534 535 // Emit information about sections and GC, computing how many there are. Also 536 // compute the maximum alignment value. 537 std::map<std::string, unsigned> SectionMap; 538 std::map<std::string, unsigned> GCMap; 539 unsigned MaxAlignment = 0; 540 unsigned MaxGlobalType = 0; 541 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 542 GV != E; ++GV) { 543 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 544 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 545 if (GV->hasSection()) { 546 // Give section names unique ID's. 547 unsigned &Entry = SectionMap[GV->getSection()]; 548 if (!Entry) { 549 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 550 0/*TODO*/, Stream); 551 Entry = SectionMap.size(); 552 } 553 } 554 } 555 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 556 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 557 if (F->hasSection()) { 558 // Give section names unique ID's. 559 unsigned &Entry = SectionMap[F->getSection()]; 560 if (!Entry) { 561 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 562 0/*TODO*/, Stream); 563 Entry = SectionMap.size(); 564 } 565 } 566 if (F->hasGC()) { 567 // Same for GC names. 568 unsigned &Entry = GCMap[F->getGC()]; 569 if (!Entry) { 570 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 571 0/*TODO*/, Stream); 572 Entry = GCMap.size(); 573 } 574 } 575 } 576 577 // Emit abbrev for globals, now that we know # sections and max alignment. 578 unsigned SimpleGVarAbbrev = 0; 579 if (!M->global_empty()) { 580 // Add an abbrev for common globals with no visibility or thread localness. 581 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 582 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 584 Log2_32_Ceil(MaxGlobalType+1))); 585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 588 if (MaxAlignment == 0) // Alignment. 589 Abbv->Add(BitCodeAbbrevOp(0)); 590 else { 591 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 593 Log2_32_Ceil(MaxEncAlignment+1))); 594 } 595 if (SectionMap.empty()) // Section. 596 Abbv->Add(BitCodeAbbrevOp(0)); 597 else 598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 599 Log2_32_Ceil(SectionMap.size()+1))); 600 // Don't bother emitting vis + thread local. 601 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 602 } 603 604 // Emit the global variable information. 605 SmallVector<unsigned, 64> Vals; 606 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 607 GV != E; ++GV) { 608 unsigned AbbrevToUse = 0; 609 610 // GLOBALVAR: [type, isconst, initid, 611 // linkage, alignment, section, visibility, threadlocal, 612 // unnamed_addr] 613 Vals.push_back(VE.getTypeID(GV->getType())); 614 Vals.push_back(GV->isConstant()); 615 Vals.push_back(GV->isDeclaration() ? 0 : 616 (VE.getValueID(GV->getInitializer()) + 1)); 617 Vals.push_back(getEncodedLinkage(GV)); 618 Vals.push_back(Log2_32(GV->getAlignment())+1); 619 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 620 if (GV->isThreadLocal() || 621 GV->getVisibility() != GlobalValue::DefaultVisibility || 622 GV->hasUnnamedAddr() || GV->isExternallyInitialized()) { 623 Vals.push_back(getEncodedVisibility(GV)); 624 Vals.push_back(getEncodedThreadLocalMode(GV)); 625 Vals.push_back(GV->hasUnnamedAddr()); 626 Vals.push_back(GV->isExternallyInitialized()); 627 } else { 628 AbbrevToUse = SimpleGVarAbbrev; 629 } 630 631 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 632 Vals.clear(); 633 } 634 635 // Emit the function proto information. 636 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 637 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 638 // section, visibility, gc, unnamed_addr] 639 Vals.push_back(VE.getTypeID(F->getType())); 640 Vals.push_back(F->getCallingConv()); 641 Vals.push_back(F->isDeclaration()); 642 Vals.push_back(getEncodedLinkage(F)); 643 Vals.push_back(VE.getAttributeID(F->getAttributes())); 644 Vals.push_back(Log2_32(F->getAlignment())+1); 645 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 646 Vals.push_back(getEncodedVisibility(F)); 647 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 648 Vals.push_back(F->hasUnnamedAddr()); 649 650 unsigned AbbrevToUse = 0; 651 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 652 Vals.clear(); 653 } 654 655 // Emit the alias information. 656 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 657 AI != E; ++AI) { 658 // ALIAS: [alias type, aliasee val#, linkage, visibility] 659 Vals.push_back(VE.getTypeID(AI->getType())); 660 Vals.push_back(VE.getValueID(AI->getAliasee())); 661 Vals.push_back(getEncodedLinkage(AI)); 662 Vals.push_back(getEncodedVisibility(AI)); 663 unsigned AbbrevToUse = 0; 664 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 665 Vals.clear(); 666 } 667 } 668 669 static uint64_t GetOptimizationFlags(const Value *V) { 670 uint64_t Flags = 0; 671 672 if (const OverflowingBinaryOperator *OBO = 673 dyn_cast<OverflowingBinaryOperator>(V)) { 674 if (OBO->hasNoSignedWrap()) 675 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 676 if (OBO->hasNoUnsignedWrap()) 677 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 678 } else if (const PossiblyExactOperator *PEO = 679 dyn_cast<PossiblyExactOperator>(V)) { 680 if (PEO->isExact()) 681 Flags |= 1 << bitc::PEO_EXACT; 682 } else if (const FPMathOperator *FPMO = 683 dyn_cast<const FPMathOperator>(V)) { 684 if (FPMO->hasUnsafeAlgebra()) 685 Flags |= FastMathFlags::UnsafeAlgebra; 686 if (FPMO->hasNoNaNs()) 687 Flags |= FastMathFlags::NoNaNs; 688 if (FPMO->hasNoInfs()) 689 Flags |= FastMathFlags::NoInfs; 690 if (FPMO->hasNoSignedZeros()) 691 Flags |= FastMathFlags::NoSignedZeros; 692 if (FPMO->hasAllowReciprocal()) 693 Flags |= FastMathFlags::AllowReciprocal; 694 } 695 696 return Flags; 697 } 698 699 static void WriteMDNode(const MDNode *N, 700 const ValueEnumerator &VE, 701 BitstreamWriter &Stream, 702 SmallVectorImpl<uint64_t> &Record) { 703 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 704 if (N->getOperand(i)) { 705 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 706 Record.push_back(VE.getValueID(N->getOperand(i))); 707 } else { 708 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 709 Record.push_back(0); 710 } 711 } 712 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 713 bitc::METADATA_NODE; 714 Stream.EmitRecord(MDCode, Record, 0); 715 Record.clear(); 716 } 717 718 static void WriteModuleMetadata(const Module *M, 719 const ValueEnumerator &VE, 720 BitstreamWriter &Stream) { 721 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 722 bool StartedMetadataBlock = false; 723 unsigned MDSAbbrev = 0; 724 SmallVector<uint64_t, 64> Record; 725 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 726 727 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 728 if (!N->isFunctionLocal() || !N->getFunction()) { 729 if (!StartedMetadataBlock) { 730 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 731 StartedMetadataBlock = true; 732 } 733 WriteMDNode(N, VE, Stream, Record); 734 } 735 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 736 if (!StartedMetadataBlock) { 737 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 738 739 // Abbrev for METADATA_STRING. 740 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 741 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 744 MDSAbbrev = Stream.EmitAbbrev(Abbv); 745 StartedMetadataBlock = true; 746 } 747 748 // Code: [strchar x N] 749 Record.append(MDS->begin(), MDS->end()); 750 751 // Emit the finished record. 752 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 753 Record.clear(); 754 } 755 } 756 757 // Write named metadata. 758 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 759 E = M->named_metadata_end(); I != E; ++I) { 760 const NamedMDNode *NMD = I; 761 if (!StartedMetadataBlock) { 762 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 763 StartedMetadataBlock = true; 764 } 765 766 // Write name. 767 StringRef Str = NMD->getName(); 768 for (unsigned i = 0, e = Str.size(); i != e; ++i) 769 Record.push_back(Str[i]); 770 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 771 Record.clear(); 772 773 // Write named metadata operands. 774 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 775 Record.push_back(VE.getValueID(NMD->getOperand(i))); 776 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 777 Record.clear(); 778 } 779 780 if (StartedMetadataBlock) 781 Stream.ExitBlock(); 782 } 783 784 static void WriteFunctionLocalMetadata(const Function &F, 785 const ValueEnumerator &VE, 786 BitstreamWriter &Stream) { 787 bool StartedMetadataBlock = false; 788 SmallVector<uint64_t, 64> Record; 789 const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues(); 790 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 791 if (const MDNode *N = Vals[i]) 792 if (N->isFunctionLocal() && N->getFunction() == &F) { 793 if (!StartedMetadataBlock) { 794 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 795 StartedMetadataBlock = true; 796 } 797 WriteMDNode(N, VE, Stream, Record); 798 } 799 800 if (StartedMetadataBlock) 801 Stream.ExitBlock(); 802 } 803 804 static void WriteMetadataAttachment(const Function &F, 805 const ValueEnumerator &VE, 806 BitstreamWriter &Stream) { 807 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 808 809 SmallVector<uint64_t, 64> Record; 810 811 // Write metadata attachments 812 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 813 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 814 815 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 816 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 817 I != E; ++I) { 818 MDs.clear(); 819 I->getAllMetadataOtherThanDebugLoc(MDs); 820 821 // If no metadata, ignore instruction. 822 if (MDs.empty()) continue; 823 824 Record.push_back(VE.getInstructionID(I)); 825 826 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 827 Record.push_back(MDs[i].first); 828 Record.push_back(VE.getValueID(MDs[i].second)); 829 } 830 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 831 Record.clear(); 832 } 833 834 Stream.ExitBlock(); 835 } 836 837 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 838 SmallVector<uint64_t, 64> Record; 839 840 // Write metadata kinds 841 // METADATA_KIND - [n x [id, name]] 842 SmallVector<StringRef, 8> Names; 843 M->getMDKindNames(Names); 844 845 if (Names.empty()) return; 846 847 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 848 849 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 850 Record.push_back(MDKindID); 851 StringRef KName = Names[MDKindID]; 852 Record.append(KName.begin(), KName.end()); 853 854 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 855 Record.clear(); 856 } 857 858 Stream.ExitBlock(); 859 } 860 861 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 862 if ((int64_t)V >= 0) 863 Vals.push_back(V << 1); 864 else 865 Vals.push_back((-V << 1) | 1); 866 } 867 868 static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals, 869 unsigned &Code, unsigned &AbbrevToUse, const APInt &Val, 870 bool EmitSizeForWideNumbers = false 871 ) { 872 if (Val.getBitWidth() <= 64) { 873 uint64_t V = Val.getSExtValue(); 874 emitSignedInt64(Vals, V); 875 Code = bitc::CST_CODE_INTEGER; 876 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 877 } else { 878 // Wide integers, > 64 bits in size. 879 // We have an arbitrary precision integer value to write whose 880 // bit width is > 64. However, in canonical unsigned integer 881 // format it is likely that the high bits are going to be zero. 882 // So, we only write the number of active words. 883 unsigned NWords = Val.getActiveWords(); 884 885 if (EmitSizeForWideNumbers) 886 Vals.push_back(NWords); 887 888 const uint64_t *RawWords = Val.getRawData(); 889 for (unsigned i = 0; i != NWords; ++i) { 890 emitSignedInt64(Vals, RawWords[i]); 891 } 892 Code = bitc::CST_CODE_WIDE_INTEGER; 893 } 894 } 895 896 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 897 const ValueEnumerator &VE, 898 BitstreamWriter &Stream, bool isGlobal) { 899 if (FirstVal == LastVal) return; 900 901 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 902 903 unsigned AggregateAbbrev = 0; 904 unsigned String8Abbrev = 0; 905 unsigned CString7Abbrev = 0; 906 unsigned CString6Abbrev = 0; 907 // If this is a constant pool for the module, emit module-specific abbrevs. 908 if (isGlobal) { 909 // Abbrev for CST_CODE_AGGREGATE. 910 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 911 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 914 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 915 916 // Abbrev for CST_CODE_STRING. 917 Abbv = new BitCodeAbbrev(); 918 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 921 String8Abbrev = Stream.EmitAbbrev(Abbv); 922 // Abbrev for CST_CODE_CSTRING. 923 Abbv = new BitCodeAbbrev(); 924 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 927 CString7Abbrev = Stream.EmitAbbrev(Abbv); 928 // Abbrev for CST_CODE_CSTRING. 929 Abbv = new BitCodeAbbrev(); 930 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 933 CString6Abbrev = Stream.EmitAbbrev(Abbv); 934 } 935 936 SmallVector<uint64_t, 64> Record; 937 938 const ValueEnumerator::ValueList &Vals = VE.getValues(); 939 Type *LastTy = 0; 940 for (unsigned i = FirstVal; i != LastVal; ++i) { 941 const Value *V = Vals[i].first; 942 // If we need to switch types, do so now. 943 if (V->getType() != LastTy) { 944 LastTy = V->getType(); 945 Record.push_back(VE.getTypeID(LastTy)); 946 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 947 CONSTANTS_SETTYPE_ABBREV); 948 Record.clear(); 949 } 950 951 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 952 Record.push_back(unsigned(IA->hasSideEffects()) | 953 unsigned(IA->isAlignStack()) << 1 | 954 unsigned(IA->getDialect()&1) << 2); 955 956 // Add the asm string. 957 const std::string &AsmStr = IA->getAsmString(); 958 Record.push_back(AsmStr.size()); 959 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 960 Record.push_back(AsmStr[i]); 961 962 // Add the constraint string. 963 const std::string &ConstraintStr = IA->getConstraintString(); 964 Record.push_back(ConstraintStr.size()); 965 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 966 Record.push_back(ConstraintStr[i]); 967 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 968 Record.clear(); 969 continue; 970 } 971 const Constant *C = cast<Constant>(V); 972 unsigned Code = -1U; 973 unsigned AbbrevToUse = 0; 974 if (C->isNullValue()) { 975 Code = bitc::CST_CODE_NULL; 976 } else if (isa<UndefValue>(C)) { 977 Code = bitc::CST_CODE_UNDEF; 978 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 979 EmitAPInt(Record, Code, AbbrevToUse, IV->getValue()); 980 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 981 Code = bitc::CST_CODE_FLOAT; 982 Type *Ty = CFP->getType(); 983 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 984 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 985 } else if (Ty->isX86_FP80Ty()) { 986 // api needed to prevent premature destruction 987 // bits are not in the same order as a normal i80 APInt, compensate. 988 APInt api = CFP->getValueAPF().bitcastToAPInt(); 989 const uint64_t *p = api.getRawData(); 990 Record.push_back((p[1] << 48) | (p[0] >> 16)); 991 Record.push_back(p[0] & 0xffffLL); 992 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 993 APInt api = CFP->getValueAPF().bitcastToAPInt(); 994 const uint64_t *p = api.getRawData(); 995 Record.push_back(p[0]); 996 Record.push_back(p[1]); 997 } else { 998 assert (0 && "Unknown FP type!"); 999 } 1000 } else if (isa<ConstantDataSequential>(C) && 1001 cast<ConstantDataSequential>(C)->isString()) { 1002 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1003 // Emit constant strings specially. 1004 unsigned NumElts = Str->getNumElements(); 1005 // If this is a null-terminated string, use the denser CSTRING encoding. 1006 if (Str->isCString()) { 1007 Code = bitc::CST_CODE_CSTRING; 1008 --NumElts; // Don't encode the null, which isn't allowed by char6. 1009 } else { 1010 Code = bitc::CST_CODE_STRING; 1011 AbbrevToUse = String8Abbrev; 1012 } 1013 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1014 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1015 for (unsigned i = 0; i != NumElts; ++i) { 1016 unsigned char V = Str->getElementAsInteger(i); 1017 Record.push_back(V); 1018 isCStr7 &= (V & 128) == 0; 1019 if (isCStrChar6) 1020 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1021 } 1022 1023 if (isCStrChar6) 1024 AbbrevToUse = CString6Abbrev; 1025 else if (isCStr7) 1026 AbbrevToUse = CString7Abbrev; 1027 } else if (const ConstantDataSequential *CDS = 1028 dyn_cast<ConstantDataSequential>(C)) { 1029 Code = bitc::CST_CODE_DATA; 1030 Type *EltTy = CDS->getType()->getElementType(); 1031 if (isa<IntegerType>(EltTy)) { 1032 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1033 Record.push_back(CDS->getElementAsInteger(i)); 1034 } else if (EltTy->isFloatTy()) { 1035 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1036 union { float F; uint32_t I; }; 1037 F = CDS->getElementAsFloat(i); 1038 Record.push_back(I); 1039 } 1040 } else { 1041 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1042 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1043 union { double F; uint64_t I; }; 1044 F = CDS->getElementAsDouble(i); 1045 Record.push_back(I); 1046 } 1047 } 1048 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1049 isa<ConstantVector>(C)) { 1050 Code = bitc::CST_CODE_AGGREGATE; 1051 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1052 Record.push_back(VE.getValueID(C->getOperand(i))); 1053 AbbrevToUse = AggregateAbbrev; 1054 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1055 switch (CE->getOpcode()) { 1056 default: 1057 if (Instruction::isCast(CE->getOpcode())) { 1058 Code = bitc::CST_CODE_CE_CAST; 1059 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1060 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1061 Record.push_back(VE.getValueID(C->getOperand(0))); 1062 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1063 } else { 1064 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1065 Code = bitc::CST_CODE_CE_BINOP; 1066 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1067 Record.push_back(VE.getValueID(C->getOperand(0))); 1068 Record.push_back(VE.getValueID(C->getOperand(1))); 1069 uint64_t Flags = GetOptimizationFlags(CE); 1070 if (Flags != 0) 1071 Record.push_back(Flags); 1072 } 1073 break; 1074 case Instruction::GetElementPtr: 1075 Code = bitc::CST_CODE_CE_GEP; 1076 if (cast<GEPOperator>(C)->isInBounds()) 1077 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1078 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1079 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1080 Record.push_back(VE.getValueID(C->getOperand(i))); 1081 } 1082 break; 1083 case Instruction::Select: 1084 Code = bitc::CST_CODE_CE_SELECT; 1085 Record.push_back(VE.getValueID(C->getOperand(0))); 1086 Record.push_back(VE.getValueID(C->getOperand(1))); 1087 Record.push_back(VE.getValueID(C->getOperand(2))); 1088 break; 1089 case Instruction::ExtractElement: 1090 Code = bitc::CST_CODE_CE_EXTRACTELT; 1091 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1092 Record.push_back(VE.getValueID(C->getOperand(0))); 1093 Record.push_back(VE.getValueID(C->getOperand(1))); 1094 break; 1095 case Instruction::InsertElement: 1096 Code = bitc::CST_CODE_CE_INSERTELT; 1097 Record.push_back(VE.getValueID(C->getOperand(0))); 1098 Record.push_back(VE.getValueID(C->getOperand(1))); 1099 Record.push_back(VE.getValueID(C->getOperand(2))); 1100 break; 1101 case Instruction::ShuffleVector: 1102 // If the return type and argument types are the same, this is a 1103 // standard shufflevector instruction. If the types are different, 1104 // then the shuffle is widening or truncating the input vectors, and 1105 // the argument type must also be encoded. 1106 if (C->getType() == C->getOperand(0)->getType()) { 1107 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1108 } else { 1109 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1110 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1111 } 1112 Record.push_back(VE.getValueID(C->getOperand(0))); 1113 Record.push_back(VE.getValueID(C->getOperand(1))); 1114 Record.push_back(VE.getValueID(C->getOperand(2))); 1115 break; 1116 case Instruction::ICmp: 1117 case Instruction::FCmp: 1118 Code = bitc::CST_CODE_CE_CMP; 1119 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1120 Record.push_back(VE.getValueID(C->getOperand(0))); 1121 Record.push_back(VE.getValueID(C->getOperand(1))); 1122 Record.push_back(CE->getPredicate()); 1123 break; 1124 } 1125 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1126 Code = bitc::CST_CODE_BLOCKADDRESS; 1127 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1128 Record.push_back(VE.getValueID(BA->getFunction())); 1129 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1130 } else { 1131 #ifndef NDEBUG 1132 C->dump(); 1133 #endif 1134 llvm_unreachable("Unknown constant!"); 1135 } 1136 Stream.EmitRecord(Code, Record, AbbrevToUse); 1137 Record.clear(); 1138 } 1139 1140 Stream.ExitBlock(); 1141 } 1142 1143 static void WriteModuleConstants(const ValueEnumerator &VE, 1144 BitstreamWriter &Stream) { 1145 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1146 1147 // Find the first constant to emit, which is the first non-globalvalue value. 1148 // We know globalvalues have been emitted by WriteModuleInfo. 1149 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1150 if (!isa<GlobalValue>(Vals[i].first)) { 1151 WriteConstants(i, Vals.size(), VE, Stream, true); 1152 return; 1153 } 1154 } 1155 } 1156 1157 /// PushValueAndType - The file has to encode both the value and type id for 1158 /// many values, because we need to know what type to create for forward 1159 /// references. However, most operands are not forward references, so this type 1160 /// field is not needed. 1161 /// 1162 /// This function adds V's value ID to Vals. If the value ID is higher than the 1163 /// instruction ID, then it is a forward reference, and it also includes the 1164 /// type ID. The value ID that is written is encoded relative to the InstID. 1165 static bool PushValueAndType(const Value *V, unsigned InstID, 1166 SmallVectorImpl<unsigned> &Vals, 1167 ValueEnumerator &VE) { 1168 unsigned ValID = VE.getValueID(V); 1169 // Make encoding relative to the InstID. 1170 Vals.push_back(InstID - ValID); 1171 if (ValID >= InstID) { 1172 Vals.push_back(VE.getTypeID(V->getType())); 1173 return true; 1174 } 1175 return false; 1176 } 1177 1178 /// pushValue - Like PushValueAndType, but where the type of the value is 1179 /// omitted (perhaps it was already encoded in an earlier operand). 1180 static void pushValue(const Value *V, unsigned InstID, 1181 SmallVectorImpl<unsigned> &Vals, 1182 ValueEnumerator &VE) { 1183 unsigned ValID = VE.getValueID(V); 1184 Vals.push_back(InstID - ValID); 1185 } 1186 1187 static void pushValue64(const Value *V, unsigned InstID, 1188 SmallVectorImpl<uint64_t> &Vals, 1189 ValueEnumerator &VE) { 1190 uint64_t ValID = VE.getValueID(V); 1191 Vals.push_back(InstID - ValID); 1192 } 1193 1194 static void pushValueSigned(const Value *V, unsigned InstID, 1195 SmallVectorImpl<uint64_t> &Vals, 1196 ValueEnumerator &VE) { 1197 unsigned ValID = VE.getValueID(V); 1198 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1199 emitSignedInt64(Vals, diff); 1200 } 1201 1202 /// WriteInstruction - Emit an instruction to the specified stream. 1203 static void WriteInstruction(const Instruction &I, unsigned InstID, 1204 ValueEnumerator &VE, BitstreamWriter &Stream, 1205 SmallVectorImpl<unsigned> &Vals) { 1206 unsigned Code = 0; 1207 unsigned AbbrevToUse = 0; 1208 VE.setInstructionID(&I); 1209 switch (I.getOpcode()) { 1210 default: 1211 if (Instruction::isCast(I.getOpcode())) { 1212 Code = bitc::FUNC_CODE_INST_CAST; 1213 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1214 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1215 Vals.push_back(VE.getTypeID(I.getType())); 1216 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1217 } else { 1218 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1219 Code = bitc::FUNC_CODE_INST_BINOP; 1220 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1221 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1222 pushValue(I.getOperand(1), InstID, Vals, VE); 1223 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1224 uint64_t Flags = GetOptimizationFlags(&I); 1225 if (Flags != 0) { 1226 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1227 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1228 Vals.push_back(Flags); 1229 } 1230 } 1231 break; 1232 1233 case Instruction::GetElementPtr: 1234 Code = bitc::FUNC_CODE_INST_GEP; 1235 if (cast<GEPOperator>(&I)->isInBounds()) 1236 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1237 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1238 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1239 break; 1240 case Instruction::ExtractValue: { 1241 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1242 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1243 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1244 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1245 Vals.push_back(*i); 1246 break; 1247 } 1248 case Instruction::InsertValue: { 1249 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1250 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1251 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1252 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1253 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1254 Vals.push_back(*i); 1255 break; 1256 } 1257 case Instruction::Select: 1258 Code = bitc::FUNC_CODE_INST_VSELECT; 1259 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1260 pushValue(I.getOperand(2), InstID, Vals, VE); 1261 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1262 break; 1263 case Instruction::ExtractElement: 1264 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1265 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1266 pushValue(I.getOperand(1), InstID, Vals, VE); 1267 break; 1268 case Instruction::InsertElement: 1269 Code = bitc::FUNC_CODE_INST_INSERTELT; 1270 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1271 pushValue(I.getOperand(1), InstID, Vals, VE); 1272 pushValue(I.getOperand(2), InstID, Vals, VE); 1273 break; 1274 case Instruction::ShuffleVector: 1275 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1276 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1277 pushValue(I.getOperand(1), InstID, Vals, VE); 1278 pushValue(I.getOperand(2), InstID, Vals, VE); 1279 break; 1280 case Instruction::ICmp: 1281 case Instruction::FCmp: 1282 // compare returning Int1Ty or vector of Int1Ty 1283 Code = bitc::FUNC_CODE_INST_CMP2; 1284 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1285 pushValue(I.getOperand(1), InstID, Vals, VE); 1286 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1287 break; 1288 1289 case Instruction::Ret: 1290 { 1291 Code = bitc::FUNC_CODE_INST_RET; 1292 unsigned NumOperands = I.getNumOperands(); 1293 if (NumOperands == 0) 1294 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1295 else if (NumOperands == 1) { 1296 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1297 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1298 } else { 1299 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1300 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1301 } 1302 } 1303 break; 1304 case Instruction::Br: 1305 { 1306 Code = bitc::FUNC_CODE_INST_BR; 1307 const BranchInst &II = cast<BranchInst>(I); 1308 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1309 if (II.isConditional()) { 1310 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1311 pushValue(II.getCondition(), InstID, Vals, VE); 1312 } 1313 } 1314 break; 1315 case Instruction::Switch: 1316 { 1317 // Redefine Vals, since here we need to use 64 bit values 1318 // explicitly to store large APInt numbers. 1319 SmallVector<uint64_t, 128> Vals64; 1320 1321 Code = bitc::FUNC_CODE_INST_SWITCH; 1322 const SwitchInst &SI = cast<SwitchInst>(I); 1323 1324 uint32_t SwitchRecordHeader = SI.hash() | (SWITCH_INST_MAGIC << 16); 1325 Vals64.push_back(SwitchRecordHeader); 1326 1327 Vals64.push_back(VE.getTypeID(SI.getCondition()->getType())); 1328 pushValue64(SI.getCondition(), InstID, Vals64, VE); 1329 Vals64.push_back(VE.getValueID(SI.getDefaultDest())); 1330 Vals64.push_back(SI.getNumCases()); 1331 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1332 i != e; ++i) { 1333 const IntegersSubset& CaseRanges = i.getCaseValueEx(); 1334 unsigned Code, Abbrev; // will unused. 1335 1336 if (CaseRanges.isSingleNumber()) { 1337 Vals64.push_back(1/*NumItems = 1*/); 1338 Vals64.push_back(true/*IsSingleNumber = true*/); 1339 EmitAPInt(Vals64, Code, Abbrev, CaseRanges.getSingleNumber(0), true); 1340 } else { 1341 1342 Vals64.push_back(CaseRanges.getNumItems()); 1343 1344 if (CaseRanges.isSingleNumbersOnly()) { 1345 for (unsigned ri = 0, rn = CaseRanges.getNumItems(); 1346 ri != rn; ++ri) { 1347 1348 Vals64.push_back(true/*IsSingleNumber = true*/); 1349 1350 EmitAPInt(Vals64, Code, Abbrev, 1351 CaseRanges.getSingleNumber(ri), true); 1352 } 1353 } else 1354 for (unsigned ri = 0, rn = CaseRanges.getNumItems(); 1355 ri != rn; ++ri) { 1356 IntegersSubset::Range r = CaseRanges.getItem(ri); 1357 bool IsSingleNumber = CaseRanges.isSingleNumber(ri); 1358 1359 Vals64.push_back(IsSingleNumber); 1360 1361 EmitAPInt(Vals64, Code, Abbrev, r.getLow(), true); 1362 if (!IsSingleNumber) 1363 EmitAPInt(Vals64, Code, Abbrev, r.getHigh(), true); 1364 } 1365 } 1366 Vals64.push_back(VE.getValueID(i.getCaseSuccessor())); 1367 } 1368 1369 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1370 1371 // Also do expected action - clear external Vals collection: 1372 Vals.clear(); 1373 return; 1374 } 1375 break; 1376 case Instruction::IndirectBr: 1377 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1378 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1379 // Encode the address operand as relative, but not the basic blocks. 1380 pushValue(I.getOperand(0), InstID, Vals, VE); 1381 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1382 Vals.push_back(VE.getValueID(I.getOperand(i))); 1383 break; 1384 1385 case Instruction::Invoke: { 1386 const InvokeInst *II = cast<InvokeInst>(&I); 1387 const Value *Callee(II->getCalledValue()); 1388 PointerType *PTy = cast<PointerType>(Callee->getType()); 1389 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1390 Code = bitc::FUNC_CODE_INST_INVOKE; 1391 1392 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1393 Vals.push_back(II->getCallingConv()); 1394 Vals.push_back(VE.getValueID(II->getNormalDest())); 1395 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1396 PushValueAndType(Callee, InstID, Vals, VE); 1397 1398 // Emit value #'s for the fixed parameters. 1399 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1400 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1401 1402 // Emit type/value pairs for varargs params. 1403 if (FTy->isVarArg()) { 1404 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1405 i != e; ++i) 1406 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1407 } 1408 break; 1409 } 1410 case Instruction::Resume: 1411 Code = bitc::FUNC_CODE_INST_RESUME; 1412 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1413 break; 1414 case Instruction::Unreachable: 1415 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1416 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1417 break; 1418 1419 case Instruction::PHI: { 1420 const PHINode &PN = cast<PHINode>(I); 1421 Code = bitc::FUNC_CODE_INST_PHI; 1422 // With the newer instruction encoding, forward references could give 1423 // negative valued IDs. This is most common for PHIs, so we use 1424 // signed VBRs. 1425 SmallVector<uint64_t, 128> Vals64; 1426 Vals64.push_back(VE.getTypeID(PN.getType())); 1427 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1428 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1429 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1430 } 1431 // Emit a Vals64 vector and exit. 1432 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1433 Vals64.clear(); 1434 return; 1435 } 1436 1437 case Instruction::LandingPad: { 1438 const LandingPadInst &LP = cast<LandingPadInst>(I); 1439 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1440 Vals.push_back(VE.getTypeID(LP.getType())); 1441 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1442 Vals.push_back(LP.isCleanup()); 1443 Vals.push_back(LP.getNumClauses()); 1444 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1445 if (LP.isCatch(I)) 1446 Vals.push_back(LandingPadInst::Catch); 1447 else 1448 Vals.push_back(LandingPadInst::Filter); 1449 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1450 } 1451 break; 1452 } 1453 1454 case Instruction::Alloca: 1455 Code = bitc::FUNC_CODE_INST_ALLOCA; 1456 Vals.push_back(VE.getTypeID(I.getType())); 1457 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1458 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1459 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1460 break; 1461 1462 case Instruction::Load: 1463 if (cast<LoadInst>(I).isAtomic()) { 1464 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1465 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1466 } else { 1467 Code = bitc::FUNC_CODE_INST_LOAD; 1468 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1469 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1470 } 1471 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1472 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1473 if (cast<LoadInst>(I).isAtomic()) { 1474 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1475 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1476 } 1477 break; 1478 case Instruction::Store: 1479 if (cast<StoreInst>(I).isAtomic()) 1480 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1481 else 1482 Code = bitc::FUNC_CODE_INST_STORE; 1483 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1484 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1485 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1486 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1487 if (cast<StoreInst>(I).isAtomic()) { 1488 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1489 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1490 } 1491 break; 1492 case Instruction::AtomicCmpXchg: 1493 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1494 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1495 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1496 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1497 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1498 Vals.push_back(GetEncodedOrdering( 1499 cast<AtomicCmpXchgInst>(I).getOrdering())); 1500 Vals.push_back(GetEncodedSynchScope( 1501 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1502 break; 1503 case Instruction::AtomicRMW: 1504 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1505 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1506 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1507 Vals.push_back(GetEncodedRMWOperation( 1508 cast<AtomicRMWInst>(I).getOperation())); 1509 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1510 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1511 Vals.push_back(GetEncodedSynchScope( 1512 cast<AtomicRMWInst>(I).getSynchScope())); 1513 break; 1514 case Instruction::Fence: 1515 Code = bitc::FUNC_CODE_INST_FENCE; 1516 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1517 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1518 break; 1519 case Instruction::Call: { 1520 const CallInst &CI = cast<CallInst>(I); 1521 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1522 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1523 1524 Code = bitc::FUNC_CODE_INST_CALL; 1525 1526 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1527 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1528 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1529 1530 // Emit value #'s for the fixed parameters. 1531 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1532 // Check for labels (can happen with asm labels). 1533 if (FTy->getParamType(i)->isLabelTy()) 1534 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1535 else 1536 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1537 } 1538 1539 // Emit type/value pairs for varargs params. 1540 if (FTy->isVarArg()) { 1541 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1542 i != e; ++i) 1543 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1544 } 1545 break; 1546 } 1547 case Instruction::VAArg: 1548 Code = bitc::FUNC_CODE_INST_VAARG; 1549 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1550 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1551 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1552 break; 1553 } 1554 1555 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1556 Vals.clear(); 1557 } 1558 1559 // Emit names for globals/functions etc. 1560 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1561 const ValueEnumerator &VE, 1562 BitstreamWriter &Stream) { 1563 if (VST.empty()) return; 1564 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1565 1566 // FIXME: Set up the abbrev, we know how many values there are! 1567 // FIXME: We know if the type names can use 7-bit ascii. 1568 SmallVector<unsigned, 64> NameVals; 1569 1570 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1571 SI != SE; ++SI) { 1572 1573 const ValueName &Name = *SI; 1574 1575 // Figure out the encoding to use for the name. 1576 bool is7Bit = true; 1577 bool isChar6 = true; 1578 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1579 C != E; ++C) { 1580 if (isChar6) 1581 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1582 if ((unsigned char)*C & 128) { 1583 is7Bit = false; 1584 break; // don't bother scanning the rest. 1585 } 1586 } 1587 1588 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1589 1590 // VST_ENTRY: [valueid, namechar x N] 1591 // VST_BBENTRY: [bbid, namechar x N] 1592 unsigned Code; 1593 if (isa<BasicBlock>(SI->getValue())) { 1594 Code = bitc::VST_CODE_BBENTRY; 1595 if (isChar6) 1596 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1597 } else { 1598 Code = bitc::VST_CODE_ENTRY; 1599 if (isChar6) 1600 AbbrevToUse = VST_ENTRY_6_ABBREV; 1601 else if (is7Bit) 1602 AbbrevToUse = VST_ENTRY_7_ABBREV; 1603 } 1604 1605 NameVals.push_back(VE.getValueID(SI->getValue())); 1606 for (const char *P = Name.getKeyData(), 1607 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1608 NameVals.push_back((unsigned char)*P); 1609 1610 // Emit the finished record. 1611 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1612 NameVals.clear(); 1613 } 1614 Stream.ExitBlock(); 1615 } 1616 1617 /// WriteFunction - Emit a function body to the module stream. 1618 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1619 BitstreamWriter &Stream) { 1620 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1621 VE.incorporateFunction(F); 1622 1623 SmallVector<unsigned, 64> Vals; 1624 1625 // Emit the number of basic blocks, so the reader can create them ahead of 1626 // time. 1627 Vals.push_back(VE.getBasicBlocks().size()); 1628 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1629 Vals.clear(); 1630 1631 // If there are function-local constants, emit them now. 1632 unsigned CstStart, CstEnd; 1633 VE.getFunctionConstantRange(CstStart, CstEnd); 1634 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1635 1636 // If there is function-local metadata, emit it now. 1637 WriteFunctionLocalMetadata(F, VE, Stream); 1638 1639 // Keep a running idea of what the instruction ID is. 1640 unsigned InstID = CstEnd; 1641 1642 bool NeedsMetadataAttachment = false; 1643 1644 DebugLoc LastDL; 1645 1646 // Finally, emit all the instructions, in order. 1647 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1648 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1649 I != E; ++I) { 1650 WriteInstruction(*I, InstID, VE, Stream, Vals); 1651 1652 if (!I->getType()->isVoidTy()) 1653 ++InstID; 1654 1655 // If the instruction has metadata, write a metadata attachment later. 1656 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1657 1658 // If the instruction has a debug location, emit it. 1659 DebugLoc DL = I->getDebugLoc(); 1660 if (DL.isUnknown()) { 1661 // nothing todo. 1662 } else if (DL == LastDL) { 1663 // Just repeat the same debug loc as last time. 1664 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1665 } else { 1666 MDNode *Scope, *IA; 1667 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1668 1669 Vals.push_back(DL.getLine()); 1670 Vals.push_back(DL.getCol()); 1671 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1672 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1673 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1674 Vals.clear(); 1675 1676 LastDL = DL; 1677 } 1678 } 1679 1680 // Emit names for all the instructions etc. 1681 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1682 1683 if (NeedsMetadataAttachment) 1684 WriteMetadataAttachment(F, VE, Stream); 1685 VE.purgeFunction(); 1686 Stream.ExitBlock(); 1687 } 1688 1689 // Emit blockinfo, which defines the standard abbreviations etc. 1690 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1691 // We only want to emit block info records for blocks that have multiple 1692 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1693 // Other blocks can define their abbrevs inline. 1694 Stream.EnterBlockInfoBlock(2); 1695 1696 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1697 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1702 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1703 Abbv) != VST_ENTRY_8_ABBREV) 1704 llvm_unreachable("Unexpected abbrev ordering!"); 1705 } 1706 1707 { // 7-bit fixed width VST_ENTRY strings. 1708 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1709 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1713 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1714 Abbv) != VST_ENTRY_7_ABBREV) 1715 llvm_unreachable("Unexpected abbrev ordering!"); 1716 } 1717 { // 6-bit char6 VST_ENTRY strings. 1718 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1719 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1723 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1724 Abbv) != VST_ENTRY_6_ABBREV) 1725 llvm_unreachable("Unexpected abbrev ordering!"); 1726 } 1727 { // 6-bit char6 VST_BBENTRY strings. 1728 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1729 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1733 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1734 Abbv) != VST_BBENTRY_6_ABBREV) 1735 llvm_unreachable("Unexpected abbrev ordering!"); 1736 } 1737 1738 1739 1740 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1741 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1742 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1744 Log2_32_Ceil(VE.getTypes().size()+1))); 1745 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1746 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1747 llvm_unreachable("Unexpected abbrev ordering!"); 1748 } 1749 1750 { // INTEGER abbrev for CONSTANTS_BLOCK. 1751 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1752 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1754 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1755 Abbv) != CONSTANTS_INTEGER_ABBREV) 1756 llvm_unreachable("Unexpected abbrev ordering!"); 1757 } 1758 1759 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1760 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1761 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1764 Log2_32_Ceil(VE.getTypes().size()+1))); 1765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1766 1767 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1768 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1769 llvm_unreachable("Unexpected abbrev ordering!"); 1770 } 1771 { // NULL abbrev for CONSTANTS_BLOCK. 1772 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1773 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1774 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1775 Abbv) != CONSTANTS_NULL_Abbrev) 1776 llvm_unreachable("Unexpected abbrev ordering!"); 1777 } 1778 1779 // FIXME: This should only use space for first class types! 1780 1781 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1782 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1783 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1787 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1788 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1789 llvm_unreachable("Unexpected abbrev ordering!"); 1790 } 1791 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1792 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1793 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1797 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1798 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1799 llvm_unreachable("Unexpected abbrev ordering!"); 1800 } 1801 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1802 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1803 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1808 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1809 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1810 llvm_unreachable("Unexpected abbrev ordering!"); 1811 } 1812 { // INST_CAST abbrev for FUNCTION_BLOCK. 1813 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1814 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1817 Log2_32_Ceil(VE.getTypes().size()+1))); 1818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1819 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1820 Abbv) != FUNCTION_INST_CAST_ABBREV) 1821 llvm_unreachable("Unexpected abbrev ordering!"); 1822 } 1823 1824 { // INST_RET abbrev for FUNCTION_BLOCK. 1825 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1826 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1827 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1828 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1829 llvm_unreachable("Unexpected abbrev ordering!"); 1830 } 1831 { // INST_RET abbrev for FUNCTION_BLOCK. 1832 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1833 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1835 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1836 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1837 llvm_unreachable("Unexpected abbrev ordering!"); 1838 } 1839 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1840 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1841 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1842 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1843 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1844 llvm_unreachable("Unexpected abbrev ordering!"); 1845 } 1846 1847 Stream.ExitBlock(); 1848 } 1849 1850 // Sort the Users based on the order in which the reader parses the bitcode 1851 // file. 1852 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1853 // TODO: Implement. 1854 return true; 1855 } 1856 1857 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1858 BitstreamWriter &Stream) { 1859 1860 // One or zero uses can't get out of order. 1861 if (V->use_empty() || V->hasNUses(1)) 1862 return; 1863 1864 // Make a copy of the in-memory use-list for sorting. 1865 unsigned UseListSize = std::distance(V->use_begin(), V->use_end()); 1866 SmallVector<const User*, 8> UseList; 1867 UseList.reserve(UseListSize); 1868 for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); 1869 I != E; ++I) { 1870 const User *U = *I; 1871 UseList.push_back(U); 1872 } 1873 1874 // Sort the copy based on the order read by the BitcodeReader. 1875 std::sort(UseList.begin(), UseList.end(), bitcodereader_order); 1876 1877 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1878 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1879 1880 // TODO: Emit the USELIST_CODE_ENTRYs. 1881 } 1882 1883 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1884 BitstreamWriter &Stream) { 1885 VE.incorporateFunction(*F); 1886 1887 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1888 AI != AE; ++AI) 1889 WriteUseList(AI, VE, Stream); 1890 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1891 ++BB) { 1892 WriteUseList(BB, VE, Stream); 1893 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1894 ++II) { 1895 WriteUseList(II, VE, Stream); 1896 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1897 OI != E; ++OI) { 1898 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1899 isa<InlineAsm>(*OI)) 1900 WriteUseList(*OI, VE, Stream); 1901 } 1902 } 1903 } 1904 VE.purgeFunction(); 1905 } 1906 1907 // Emit use-lists. 1908 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1909 BitstreamWriter &Stream) { 1910 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1911 1912 // XXX: this modifies the module, but in a way that should never change the 1913 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1914 // contain entries in the use_list that do not exist in the Module and are 1915 // not stored in the .bc file. 1916 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1917 I != E; ++I) 1918 I->removeDeadConstantUsers(); 1919 1920 // Write the global variables. 1921 for (Module::const_global_iterator GI = M->global_begin(), 1922 GE = M->global_end(); GI != GE; ++GI) { 1923 WriteUseList(GI, VE, Stream); 1924 1925 // Write the global variable initializers. 1926 if (GI->hasInitializer()) 1927 WriteUseList(GI->getInitializer(), VE, Stream); 1928 } 1929 1930 // Write the functions. 1931 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1932 WriteUseList(FI, VE, Stream); 1933 if (!FI->isDeclaration()) 1934 WriteFunctionUseList(FI, VE, Stream); 1935 } 1936 1937 // Write the aliases. 1938 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1939 AI != AE; ++AI) { 1940 WriteUseList(AI, VE, Stream); 1941 WriteUseList(AI->getAliasee(), VE, Stream); 1942 } 1943 1944 Stream.ExitBlock(); 1945 } 1946 1947 /// WriteModule - Emit the specified module to the bitstream. 1948 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1949 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1950 1951 SmallVector<unsigned, 1> Vals; 1952 unsigned CurVersion = 1; 1953 Vals.push_back(CurVersion); 1954 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1955 1956 // Analyze the module, enumerating globals, functions, etc. 1957 ValueEnumerator VE(M); 1958 1959 // Emit blockinfo, which defines the standard abbreviations etc. 1960 WriteBlockInfo(VE, Stream); 1961 1962 // Emit information about attribute groups. 1963 WriteAttributeGroupTable(VE, Stream); 1964 1965 // Emit information about parameter attributes. 1966 WriteAttributeTable(VE, Stream); 1967 1968 // Emit information describing all of the types in the module. 1969 WriteTypeTable(VE, Stream); 1970 1971 // Emit top-level description of module, including target triple, inline asm, 1972 // descriptors for global variables, and function prototype info. 1973 WriteModuleInfo(M, VE, Stream); 1974 1975 // Emit constants. 1976 WriteModuleConstants(VE, Stream); 1977 1978 // Emit metadata. 1979 WriteModuleMetadata(M, VE, Stream); 1980 1981 // Emit metadata. 1982 WriteModuleMetadataStore(M, Stream); 1983 1984 // Emit names for globals/functions etc. 1985 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1986 1987 // Emit use-lists. 1988 if (EnablePreserveUseListOrdering) 1989 WriteModuleUseLists(M, VE, Stream); 1990 1991 // Emit function bodies. 1992 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1993 if (!F->isDeclaration()) 1994 WriteFunction(*F, VE, Stream); 1995 1996 Stream.ExitBlock(); 1997 } 1998 1999 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2000 /// header and trailer to make it compatible with the system archiver. To do 2001 /// this we emit the following header, and then emit a trailer that pads the 2002 /// file out to be a multiple of 16 bytes. 2003 /// 2004 /// struct bc_header { 2005 /// uint32_t Magic; // 0x0B17C0DE 2006 /// uint32_t Version; // Version, currently always 0. 2007 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2008 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2009 /// uint32_t CPUType; // CPU specifier. 2010 /// ... potentially more later ... 2011 /// }; 2012 enum { 2013 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2014 DarwinBCHeaderSize = 5*4 2015 }; 2016 2017 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2018 uint32_t &Position) { 2019 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2020 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2021 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2022 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2023 Position += 4; 2024 } 2025 2026 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2027 const Triple &TT) { 2028 unsigned CPUType = ~0U; 2029 2030 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2031 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2032 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2033 // specific constants here because they are implicitly part of the Darwin ABI. 2034 enum { 2035 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2036 DARWIN_CPU_TYPE_X86 = 7, 2037 DARWIN_CPU_TYPE_ARM = 12, 2038 DARWIN_CPU_TYPE_POWERPC = 18 2039 }; 2040 2041 Triple::ArchType Arch = TT.getArch(); 2042 if (Arch == Triple::x86_64) 2043 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2044 else if (Arch == Triple::x86) 2045 CPUType = DARWIN_CPU_TYPE_X86; 2046 else if (Arch == Triple::ppc) 2047 CPUType = DARWIN_CPU_TYPE_POWERPC; 2048 else if (Arch == Triple::ppc64) 2049 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2050 else if (Arch == Triple::arm || Arch == Triple::thumb) 2051 CPUType = DARWIN_CPU_TYPE_ARM; 2052 2053 // Traditional Bitcode starts after header. 2054 assert(Buffer.size() >= DarwinBCHeaderSize && 2055 "Expected header size to be reserved"); 2056 unsigned BCOffset = DarwinBCHeaderSize; 2057 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2058 2059 // Write the magic and version. 2060 unsigned Position = 0; 2061 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2062 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2063 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2064 WriteInt32ToBuffer(BCSize , Buffer, Position); 2065 WriteInt32ToBuffer(CPUType , Buffer, Position); 2066 2067 // If the file is not a multiple of 16 bytes, insert dummy padding. 2068 while (Buffer.size() & 15) 2069 Buffer.push_back(0); 2070 } 2071 2072 /// WriteBitcodeToFile - Write the specified module to the specified output 2073 /// stream. 2074 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2075 SmallVector<char, 0> Buffer; 2076 Buffer.reserve(256*1024); 2077 2078 // If this is darwin or another generic macho target, reserve space for the 2079 // header. 2080 Triple TT(M->getTargetTriple()); 2081 if (TT.isOSDarwin()) 2082 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2083 2084 // Emit the module into the buffer. 2085 { 2086 BitstreamWriter Stream(Buffer); 2087 2088 // Emit the file header. 2089 Stream.Emit((unsigned)'B', 8); 2090 Stream.Emit((unsigned)'C', 8); 2091 Stream.Emit(0x0, 4); 2092 Stream.Emit(0xC, 4); 2093 Stream.Emit(0xE, 4); 2094 Stream.Emit(0xD, 4); 2095 2096 // Emit the module. 2097 WriteModule(M, Stream); 2098 } 2099 2100 if (TT.isOSDarwin()) 2101 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2102 2103 // Write the generated bitstream to "Out". 2104 Out.write((char*)&Buffer.front(), Buffer.size()); 2105 } 2106