1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/TypeSymbolTable.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/Streams.h" 27 #include "llvm/System/Program.h" 28 using namespace llvm; 29 30 /// These are manifest constants used by the bitcode writer. They do not need to 31 /// be kept in sync with the reader, but need to be consistent within this file. 32 enum { 33 CurVersion = 0, 34 35 // VALUE_SYMTAB_BLOCK abbrev id's. 36 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 37 VST_ENTRY_7_ABBREV, 38 VST_ENTRY_6_ABBREV, 39 VST_BBENTRY_6_ABBREV, 40 41 // CONSTANTS_BLOCK abbrev id's. 42 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 43 CONSTANTS_INTEGER_ABBREV, 44 CONSTANTS_CE_CAST_Abbrev, 45 CONSTANTS_NULL_Abbrev, 46 47 // FUNCTION_BLOCK abbrev id's. 48 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 49 FUNCTION_INST_BINOP_ABBREV, 50 FUNCTION_INST_CAST_ABBREV, 51 FUNCTION_INST_RET_VOID_ABBREV, 52 FUNCTION_INST_RET_VAL_ABBREV, 53 FUNCTION_INST_UNREACHABLE_ABBREV 54 }; 55 56 57 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 58 switch (Opcode) { 59 default: assert(0 && "Unknown cast instruction!"); 60 case Instruction::Trunc : return bitc::CAST_TRUNC; 61 case Instruction::ZExt : return bitc::CAST_ZEXT; 62 case Instruction::SExt : return bitc::CAST_SEXT; 63 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 64 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 65 case Instruction::UIToFP : return bitc::CAST_UITOFP; 66 case Instruction::SIToFP : return bitc::CAST_SITOFP; 67 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 68 case Instruction::FPExt : return bitc::CAST_FPEXT; 69 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 70 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 71 case Instruction::BitCast : return bitc::CAST_BITCAST; 72 } 73 } 74 75 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 76 switch (Opcode) { 77 default: assert(0 && "Unknown binary instruction!"); 78 case Instruction::Add: return bitc::BINOP_ADD; 79 case Instruction::Sub: return bitc::BINOP_SUB; 80 case Instruction::Mul: return bitc::BINOP_MUL; 81 case Instruction::UDiv: return bitc::BINOP_UDIV; 82 case Instruction::FDiv: 83 case Instruction::SDiv: return bitc::BINOP_SDIV; 84 case Instruction::URem: return bitc::BINOP_UREM; 85 case Instruction::FRem: 86 case Instruction::SRem: return bitc::BINOP_SREM; 87 case Instruction::Shl: return bitc::BINOP_SHL; 88 case Instruction::LShr: return bitc::BINOP_LSHR; 89 case Instruction::AShr: return bitc::BINOP_ASHR; 90 case Instruction::And: return bitc::BINOP_AND; 91 case Instruction::Or: return bitc::BINOP_OR; 92 case Instruction::Xor: return bitc::BINOP_XOR; 93 } 94 } 95 96 97 98 static void WriteStringRecord(unsigned Code, const std::string &Str, 99 unsigned AbbrevToUse, BitstreamWriter &Stream) { 100 SmallVector<unsigned, 64> Vals; 101 102 // Code: [strchar x N] 103 for (unsigned i = 0, e = Str.size(); i != e; ++i) 104 Vals.push_back(Str[i]); 105 106 // Emit the finished record. 107 Stream.EmitRecord(Code, Vals, AbbrevToUse); 108 } 109 110 // Emit information about parameter attributes. 111 static void WriteParamAttrTable(const ValueEnumerator &VE, 112 BitstreamWriter &Stream) { 113 const std::vector<PAListPtr> &Attrs = VE.getParamAttrs(); 114 if (Attrs.empty()) return; 115 116 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 117 118 SmallVector<uint64_t, 64> Record; 119 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 120 const PAListPtr &A = Attrs[i]; 121 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 122 const ParamAttrsWithIndex &PAWI = A.getSlot(i); 123 Record.push_back(PAWI.Index); 124 Record.push_back(PAWI.Attrs); 125 } 126 127 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 128 Record.clear(); 129 } 130 131 Stream.ExitBlock(); 132 } 133 134 /// WriteTypeTable - Write out the type table for a module. 135 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 136 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 137 138 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 139 SmallVector<uint64_t, 64> TypeVals; 140 141 // Abbrev for TYPE_CODE_POINTER. 142 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 143 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 145 Log2_32_Ceil(VE.getTypes().size()+1))); 146 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 147 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 148 149 // Abbrev for TYPE_CODE_FUNCTION. 150 Abbv = new BitCodeAbbrev(); 151 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 153 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 156 Log2_32_Ceil(VE.getTypes().size()+1))); 157 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 158 159 // Abbrev for TYPE_CODE_STRUCT. 160 Abbv = new BitCodeAbbrev(); 161 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 165 Log2_32_Ceil(VE.getTypes().size()+1))); 166 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 167 168 // Abbrev for TYPE_CODE_ARRAY. 169 Abbv = new BitCodeAbbrev(); 170 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 173 Log2_32_Ceil(VE.getTypes().size()+1))); 174 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 175 176 // Emit an entry count so the reader can reserve space. 177 TypeVals.push_back(TypeList.size()); 178 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 179 TypeVals.clear(); 180 181 // Loop over all of the types, emitting each in turn. 182 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 183 const Type *T = TypeList[i].first; 184 int AbbrevToUse = 0; 185 unsigned Code = 0; 186 187 switch (T->getTypeID()) { 188 default: assert(0 && "Unknown type!"); 189 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 190 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 191 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 192 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 193 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 194 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 195 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 196 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 197 case Type::IntegerTyID: 198 // INTEGER: [width] 199 Code = bitc::TYPE_CODE_INTEGER; 200 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 201 break; 202 case Type::PointerTyID: { 203 const PointerType *PTy = cast<PointerType>(T); 204 // POINTER: [pointee type, address space] 205 Code = bitc::TYPE_CODE_POINTER; 206 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 207 unsigned AddressSpace = PTy->getAddressSpace(); 208 TypeVals.push_back(AddressSpace); 209 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 210 break; 211 } 212 case Type::FunctionTyID: { 213 const FunctionType *FT = cast<FunctionType>(T); 214 // FUNCTION: [isvararg, attrid, retty, paramty x N] 215 Code = bitc::TYPE_CODE_FUNCTION; 216 TypeVals.push_back(FT->isVarArg()); 217 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 218 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 219 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 220 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 221 AbbrevToUse = FunctionAbbrev; 222 break; 223 } 224 case Type::StructTyID: { 225 const StructType *ST = cast<StructType>(T); 226 // STRUCT: [ispacked, eltty x N] 227 Code = bitc::TYPE_CODE_STRUCT; 228 TypeVals.push_back(ST->isPacked()); 229 // Output all of the element types. 230 for (StructType::element_iterator I = ST->element_begin(), 231 E = ST->element_end(); I != E; ++I) 232 TypeVals.push_back(VE.getTypeID(*I)); 233 AbbrevToUse = StructAbbrev; 234 break; 235 } 236 case Type::ArrayTyID: { 237 const ArrayType *AT = cast<ArrayType>(T); 238 // ARRAY: [numelts, eltty] 239 Code = bitc::TYPE_CODE_ARRAY; 240 TypeVals.push_back(AT->getNumElements()); 241 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 242 AbbrevToUse = ArrayAbbrev; 243 break; 244 } 245 case Type::VectorTyID: { 246 const VectorType *VT = cast<VectorType>(T); 247 // VECTOR [numelts, eltty] 248 Code = bitc::TYPE_CODE_VECTOR; 249 TypeVals.push_back(VT->getNumElements()); 250 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 251 break; 252 } 253 } 254 255 // Emit the finished record. 256 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 257 TypeVals.clear(); 258 } 259 260 Stream.ExitBlock(); 261 } 262 263 static unsigned getEncodedLinkage(const GlobalValue *GV) { 264 switch (GV->getLinkage()) { 265 default: assert(0 && "Invalid linkage!"); 266 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 267 case GlobalValue::ExternalLinkage: return 0; 268 case GlobalValue::WeakLinkage: return 1; 269 case GlobalValue::AppendingLinkage: return 2; 270 case GlobalValue::InternalLinkage: return 3; 271 case GlobalValue::LinkOnceLinkage: return 4; 272 case GlobalValue::DLLImportLinkage: return 5; 273 case GlobalValue::DLLExportLinkage: return 6; 274 case GlobalValue::ExternalWeakLinkage: return 7; 275 case GlobalValue::CommonLinkage: return 8; 276 } 277 } 278 279 static unsigned getEncodedVisibility(const GlobalValue *GV) { 280 switch (GV->getVisibility()) { 281 default: assert(0 && "Invalid visibility!"); 282 case GlobalValue::DefaultVisibility: return 0; 283 case GlobalValue::HiddenVisibility: return 1; 284 case GlobalValue::ProtectedVisibility: return 2; 285 } 286 } 287 288 // Emit top-level description of module, including target triple, inline asm, 289 // descriptors for global variables, and function prototype info. 290 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 291 BitstreamWriter &Stream) { 292 // Emit the list of dependent libraries for the Module. 293 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 294 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 295 296 // Emit various pieces of data attached to a module. 297 if (!M->getTargetTriple().empty()) 298 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 299 0/*TODO*/, Stream); 300 if (!M->getDataLayout().empty()) 301 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 302 0/*TODO*/, Stream); 303 if (!M->getModuleInlineAsm().empty()) 304 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 305 0/*TODO*/, Stream); 306 307 // Emit information about sections and GC, computing how many there are. Also 308 // compute the maximum alignment value. 309 std::map<std::string, unsigned> SectionMap; 310 std::map<std::string, unsigned> GCMap; 311 unsigned MaxAlignment = 0; 312 unsigned MaxGlobalType = 0; 313 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 314 GV != E; ++GV) { 315 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 316 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 317 318 if (!GV->hasSection()) continue; 319 // Give section names unique ID's. 320 unsigned &Entry = SectionMap[GV->getSection()]; 321 if (Entry != 0) continue; 322 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 323 0/*TODO*/, Stream); 324 Entry = SectionMap.size(); 325 } 326 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 327 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 328 if (F->hasSection()) { 329 // Give section names unique ID's. 330 unsigned &Entry = SectionMap[F->getSection()]; 331 if (!Entry) { 332 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 333 0/*TODO*/, Stream); 334 Entry = SectionMap.size(); 335 } 336 } 337 if (F->hasGC()) { 338 // Same for GC names. 339 unsigned &Entry = GCMap[F->getGC()]; 340 if (!Entry) { 341 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 342 0/*TODO*/, Stream); 343 Entry = GCMap.size(); 344 } 345 } 346 } 347 348 // Emit abbrev for globals, now that we know # sections and max alignment. 349 unsigned SimpleGVarAbbrev = 0; 350 if (!M->global_empty()) { 351 // Add an abbrev for common globals with no visibility or thread localness. 352 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 353 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 355 Log2_32_Ceil(MaxGlobalType+1))); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 359 if (MaxAlignment == 0) // Alignment. 360 Abbv->Add(BitCodeAbbrevOp(0)); 361 else { 362 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 364 Log2_32_Ceil(MaxEncAlignment+1))); 365 } 366 if (SectionMap.empty()) // Section. 367 Abbv->Add(BitCodeAbbrevOp(0)); 368 else 369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 370 Log2_32_Ceil(SectionMap.size()+1))); 371 // Don't bother emitting vis + thread local. 372 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 373 } 374 375 // Emit the global variable information. 376 SmallVector<unsigned, 64> Vals; 377 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 378 GV != E; ++GV) { 379 unsigned AbbrevToUse = 0; 380 381 // GLOBALVAR: [type, isconst, initid, 382 // linkage, alignment, section, visibility, threadlocal] 383 Vals.push_back(VE.getTypeID(GV->getType())); 384 Vals.push_back(GV->isConstant()); 385 Vals.push_back(GV->isDeclaration() ? 0 : 386 (VE.getValueID(GV->getInitializer()) + 1)); 387 Vals.push_back(getEncodedLinkage(GV)); 388 Vals.push_back(Log2_32(GV->getAlignment())+1); 389 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 390 if (GV->isThreadLocal() || 391 GV->getVisibility() != GlobalValue::DefaultVisibility) { 392 Vals.push_back(getEncodedVisibility(GV)); 393 Vals.push_back(GV->isThreadLocal()); 394 } else { 395 AbbrevToUse = SimpleGVarAbbrev; 396 } 397 398 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 399 Vals.clear(); 400 } 401 402 // Emit the function proto information. 403 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 404 // FUNCTION: [type, callingconv, isproto, paramattr, 405 // linkage, alignment, section, visibility, gc] 406 Vals.push_back(VE.getTypeID(F->getType())); 407 Vals.push_back(F->getCallingConv()); 408 Vals.push_back(F->isDeclaration()); 409 Vals.push_back(getEncodedLinkage(F)); 410 Vals.push_back(VE.getParamAttrID(F->getParamAttrs())); 411 Vals.push_back(Log2_32(F->getAlignment())+1); 412 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 413 Vals.push_back(getEncodedVisibility(F)); 414 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 415 416 unsigned AbbrevToUse = 0; 417 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 418 Vals.clear(); 419 } 420 421 422 // Emit the alias information. 423 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 424 AI != E; ++AI) { 425 Vals.push_back(VE.getTypeID(AI->getType())); 426 Vals.push_back(VE.getValueID(AI->getAliasee())); 427 Vals.push_back(getEncodedLinkage(AI)); 428 Vals.push_back(getEncodedVisibility(AI)); 429 unsigned AbbrevToUse = 0; 430 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 431 Vals.clear(); 432 } 433 } 434 435 436 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 437 const ValueEnumerator &VE, 438 BitstreamWriter &Stream, bool isGlobal) { 439 if (FirstVal == LastVal) return; 440 441 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 442 443 unsigned AggregateAbbrev = 0; 444 unsigned String8Abbrev = 0; 445 unsigned CString7Abbrev = 0; 446 unsigned CString6Abbrev = 0; 447 // If this is a constant pool for the module, emit module-specific abbrevs. 448 if (isGlobal) { 449 // Abbrev for CST_CODE_AGGREGATE. 450 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 451 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 454 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 455 456 // Abbrev for CST_CODE_STRING. 457 Abbv = new BitCodeAbbrev(); 458 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 461 String8Abbrev = Stream.EmitAbbrev(Abbv); 462 // Abbrev for CST_CODE_CSTRING. 463 Abbv = new BitCodeAbbrev(); 464 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 467 CString7Abbrev = Stream.EmitAbbrev(Abbv); 468 // Abbrev for CST_CODE_CSTRING. 469 Abbv = new BitCodeAbbrev(); 470 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 473 CString6Abbrev = Stream.EmitAbbrev(Abbv); 474 } 475 476 SmallVector<uint64_t, 64> Record; 477 478 const ValueEnumerator::ValueList &Vals = VE.getValues(); 479 const Type *LastTy = 0; 480 for (unsigned i = FirstVal; i != LastVal; ++i) { 481 const Value *V = Vals[i].first; 482 // If we need to switch types, do so now. 483 if (V->getType() != LastTy) { 484 LastTy = V->getType(); 485 Record.push_back(VE.getTypeID(LastTy)); 486 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 487 CONSTANTS_SETTYPE_ABBREV); 488 Record.clear(); 489 } 490 491 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 492 Record.push_back(unsigned(IA->hasSideEffects())); 493 494 // Add the asm string. 495 const std::string &AsmStr = IA->getAsmString(); 496 Record.push_back(AsmStr.size()); 497 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 498 Record.push_back(AsmStr[i]); 499 500 // Add the constraint string. 501 const std::string &ConstraintStr = IA->getConstraintString(); 502 Record.push_back(ConstraintStr.size()); 503 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 504 Record.push_back(ConstraintStr[i]); 505 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 506 Record.clear(); 507 continue; 508 } 509 const Constant *C = cast<Constant>(V); 510 unsigned Code = -1U; 511 unsigned AbbrevToUse = 0; 512 if (C->isNullValue()) { 513 Code = bitc::CST_CODE_NULL; 514 } else if (isa<UndefValue>(C)) { 515 Code = bitc::CST_CODE_UNDEF; 516 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 517 if (IV->getBitWidth() <= 64) { 518 int64_t V = IV->getSExtValue(); 519 if (V >= 0) 520 Record.push_back(V << 1); 521 else 522 Record.push_back((-V << 1) | 1); 523 Code = bitc::CST_CODE_INTEGER; 524 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 525 } else { // Wide integers, > 64 bits in size. 526 // We have an arbitrary precision integer value to write whose 527 // bit width is > 64. However, in canonical unsigned integer 528 // format it is likely that the high bits are going to be zero. 529 // So, we only write the number of active words. 530 unsigned NWords = IV->getValue().getActiveWords(); 531 const uint64_t *RawWords = IV->getValue().getRawData(); 532 for (unsigned i = 0; i != NWords; ++i) { 533 int64_t V = RawWords[i]; 534 if (V >= 0) 535 Record.push_back(V << 1); 536 else 537 Record.push_back((-V << 1) | 1); 538 } 539 Code = bitc::CST_CODE_WIDE_INTEGER; 540 } 541 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 542 Code = bitc::CST_CODE_FLOAT; 543 const Type *Ty = CFP->getType(); 544 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 545 Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue()); 546 } else if (Ty == Type::X86_FP80Ty) { 547 // api needed to prevent premature destruction 548 APInt api = CFP->getValueAPF().convertToAPInt(); 549 const uint64_t *p = api.getRawData(); 550 Record.push_back(p[0]); 551 Record.push_back((uint16_t)p[1]); 552 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 553 APInt api = CFP->getValueAPF().convertToAPInt(); 554 const uint64_t *p = api.getRawData(); 555 Record.push_back(p[0]); 556 Record.push_back(p[1]); 557 } else { 558 assert (0 && "Unknown FP type!"); 559 } 560 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 561 // Emit constant strings specially. 562 unsigned NumOps = C->getNumOperands(); 563 // If this is a null-terminated string, use the denser CSTRING encoding. 564 if (C->getOperand(NumOps-1)->isNullValue()) { 565 Code = bitc::CST_CODE_CSTRING; 566 --NumOps; // Don't encode the null, which isn't allowed by char6. 567 } else { 568 Code = bitc::CST_CODE_STRING; 569 AbbrevToUse = String8Abbrev; 570 } 571 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 572 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 573 for (unsigned i = 0; i != NumOps; ++i) { 574 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 575 Record.push_back(V); 576 isCStr7 &= (V & 128) == 0; 577 if (isCStrChar6) 578 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 579 } 580 581 if (isCStrChar6) 582 AbbrevToUse = CString6Abbrev; 583 else if (isCStr7) 584 AbbrevToUse = CString7Abbrev; 585 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 586 isa<ConstantVector>(V)) { 587 Code = bitc::CST_CODE_AGGREGATE; 588 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 589 Record.push_back(VE.getValueID(C->getOperand(i))); 590 AbbrevToUse = AggregateAbbrev; 591 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 592 switch (CE->getOpcode()) { 593 default: 594 if (Instruction::isCast(CE->getOpcode())) { 595 Code = bitc::CST_CODE_CE_CAST; 596 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 597 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 598 Record.push_back(VE.getValueID(C->getOperand(0))); 599 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 600 } else { 601 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 602 Code = bitc::CST_CODE_CE_BINOP; 603 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 604 Record.push_back(VE.getValueID(C->getOperand(0))); 605 Record.push_back(VE.getValueID(C->getOperand(1))); 606 } 607 break; 608 case Instruction::GetElementPtr: 609 Code = bitc::CST_CODE_CE_GEP; 610 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 611 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 612 Record.push_back(VE.getValueID(C->getOperand(i))); 613 } 614 break; 615 case Instruction::Select: 616 Code = bitc::CST_CODE_CE_SELECT; 617 Record.push_back(VE.getValueID(C->getOperand(0))); 618 Record.push_back(VE.getValueID(C->getOperand(1))); 619 Record.push_back(VE.getValueID(C->getOperand(2))); 620 break; 621 case Instruction::ExtractElement: 622 Code = bitc::CST_CODE_CE_EXTRACTELT; 623 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 624 Record.push_back(VE.getValueID(C->getOperand(0))); 625 Record.push_back(VE.getValueID(C->getOperand(1))); 626 break; 627 case Instruction::InsertElement: 628 Code = bitc::CST_CODE_CE_INSERTELT; 629 Record.push_back(VE.getValueID(C->getOperand(0))); 630 Record.push_back(VE.getValueID(C->getOperand(1))); 631 Record.push_back(VE.getValueID(C->getOperand(2))); 632 break; 633 case Instruction::ShuffleVector: 634 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 635 Record.push_back(VE.getValueID(C->getOperand(0))); 636 Record.push_back(VE.getValueID(C->getOperand(1))); 637 Record.push_back(VE.getValueID(C->getOperand(2))); 638 break; 639 case Instruction::ICmp: 640 case Instruction::FCmp: 641 case Instruction::VICmp: 642 case Instruction::VFCmp: 643 Code = bitc::CST_CODE_CE_CMP; 644 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 645 Record.push_back(VE.getValueID(C->getOperand(0))); 646 Record.push_back(VE.getValueID(C->getOperand(1))); 647 Record.push_back(CE->getPredicate()); 648 break; 649 } 650 } else { 651 assert(0 && "Unknown constant!"); 652 } 653 Stream.EmitRecord(Code, Record, AbbrevToUse); 654 Record.clear(); 655 } 656 657 Stream.ExitBlock(); 658 } 659 660 static void WriteModuleConstants(const ValueEnumerator &VE, 661 BitstreamWriter &Stream) { 662 const ValueEnumerator::ValueList &Vals = VE.getValues(); 663 664 // Find the first constant to emit, which is the first non-globalvalue value. 665 // We know globalvalues have been emitted by WriteModuleInfo. 666 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 667 if (!isa<GlobalValue>(Vals[i].first)) { 668 WriteConstants(i, Vals.size(), VE, Stream, true); 669 return; 670 } 671 } 672 } 673 674 /// PushValueAndType - The file has to encode both the value and type id for 675 /// many values, because we need to know what type to create for forward 676 /// references. However, most operands are not forward references, so this type 677 /// field is not needed. 678 /// 679 /// This function adds V's value ID to Vals. If the value ID is higher than the 680 /// instruction ID, then it is a forward reference, and it also includes the 681 /// type ID. 682 static bool PushValueAndType(Value *V, unsigned InstID, 683 SmallVector<unsigned, 64> &Vals, 684 ValueEnumerator &VE) { 685 unsigned ValID = VE.getValueID(V); 686 Vals.push_back(ValID); 687 if (ValID >= InstID) { 688 Vals.push_back(VE.getTypeID(V->getType())); 689 return true; 690 } 691 return false; 692 } 693 694 /// WriteInstruction - Emit an instruction to the specified stream. 695 static void WriteInstruction(const Instruction &I, unsigned InstID, 696 ValueEnumerator &VE, BitstreamWriter &Stream, 697 SmallVector<unsigned, 64> &Vals) { 698 unsigned Code = 0; 699 unsigned AbbrevToUse = 0; 700 switch (I.getOpcode()) { 701 default: 702 if (Instruction::isCast(I.getOpcode())) { 703 Code = bitc::FUNC_CODE_INST_CAST; 704 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 705 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 706 Vals.push_back(VE.getTypeID(I.getType())); 707 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 708 } else { 709 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 710 Code = bitc::FUNC_CODE_INST_BINOP; 711 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 712 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 713 Vals.push_back(VE.getValueID(I.getOperand(1))); 714 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 715 } 716 break; 717 718 case Instruction::GetElementPtr: 719 Code = bitc::FUNC_CODE_INST_GEP; 720 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 721 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 722 break; 723 case Instruction::ExtractValue: { 724 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 725 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 726 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 727 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 728 Vals.push_back(*i); 729 break; 730 } 731 case Instruction::InsertValue: { 732 Code = bitc::FUNC_CODE_INST_INSERTVAL; 733 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 734 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 735 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 736 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 737 Vals.push_back(*i); 738 break; 739 } 740 case Instruction::Select: 741 Code = bitc::FUNC_CODE_INST_SELECT; 742 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 743 Vals.push_back(VE.getValueID(I.getOperand(2))); 744 Vals.push_back(VE.getValueID(I.getOperand(0))); 745 break; 746 case Instruction::ExtractElement: 747 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 748 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 749 Vals.push_back(VE.getValueID(I.getOperand(1))); 750 break; 751 case Instruction::InsertElement: 752 Code = bitc::FUNC_CODE_INST_INSERTELT; 753 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 754 Vals.push_back(VE.getValueID(I.getOperand(1))); 755 Vals.push_back(VE.getValueID(I.getOperand(2))); 756 break; 757 case Instruction::ShuffleVector: 758 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 759 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 760 Vals.push_back(VE.getValueID(I.getOperand(1))); 761 Vals.push_back(VE.getValueID(I.getOperand(2))); 762 break; 763 case Instruction::ICmp: 764 case Instruction::FCmp: 765 case Instruction::VICmp: 766 case Instruction::VFCmp: 767 Code = bitc::FUNC_CODE_INST_CMP; 768 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 769 Vals.push_back(VE.getValueID(I.getOperand(1))); 770 Vals.push_back(cast<CmpInst>(I).getPredicate()); 771 break; 772 773 case Instruction::Ret: 774 { 775 Code = bitc::FUNC_CODE_INST_RET; 776 unsigned NumOperands = I.getNumOperands(); 777 if (NumOperands == 0) 778 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 779 else if (NumOperands == 1) { 780 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 781 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 782 } else { 783 for (unsigned i = 0, e = NumOperands; i != e; ++i) 784 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 785 } 786 } 787 break; 788 case Instruction::Br: 789 Code = bitc::FUNC_CODE_INST_BR; 790 Vals.push_back(VE.getValueID(I.getOperand(0))); 791 if (cast<BranchInst>(I).isConditional()) { 792 Vals.push_back(VE.getValueID(I.getOperand(1))); 793 Vals.push_back(VE.getValueID(I.getOperand(2))); 794 } 795 break; 796 case Instruction::Switch: 797 Code = bitc::FUNC_CODE_INST_SWITCH; 798 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 799 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 800 Vals.push_back(VE.getValueID(I.getOperand(i))); 801 break; 802 case Instruction::Invoke: { 803 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 804 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 805 Code = bitc::FUNC_CODE_INST_INVOKE; 806 807 const InvokeInst *II = cast<InvokeInst>(&I); 808 Vals.push_back(VE.getParamAttrID(II->getParamAttrs())); 809 Vals.push_back(II->getCallingConv()); 810 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 811 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 812 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 813 814 // Emit value #'s for the fixed parameters. 815 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 816 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 817 818 // Emit type/value pairs for varargs params. 819 if (FTy->isVarArg()) { 820 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 821 i != e; ++i) 822 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 823 } 824 break; 825 } 826 case Instruction::Unwind: 827 Code = bitc::FUNC_CODE_INST_UNWIND; 828 break; 829 case Instruction::Unreachable: 830 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 831 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 832 break; 833 834 case Instruction::PHI: 835 Code = bitc::FUNC_CODE_INST_PHI; 836 Vals.push_back(VE.getTypeID(I.getType())); 837 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 838 Vals.push_back(VE.getValueID(I.getOperand(i))); 839 break; 840 841 case Instruction::Malloc: 842 Code = bitc::FUNC_CODE_INST_MALLOC; 843 Vals.push_back(VE.getTypeID(I.getType())); 844 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 845 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 846 break; 847 848 case Instruction::Free: 849 Code = bitc::FUNC_CODE_INST_FREE; 850 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 851 break; 852 853 case Instruction::Alloca: 854 Code = bitc::FUNC_CODE_INST_ALLOCA; 855 Vals.push_back(VE.getTypeID(I.getType())); 856 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 857 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 858 break; 859 860 case Instruction::Load: 861 Code = bitc::FUNC_CODE_INST_LOAD; 862 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 863 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 864 865 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 866 Vals.push_back(cast<LoadInst>(I).isVolatile()); 867 break; 868 case Instruction::Store: 869 Code = bitc::FUNC_CODE_INST_STORE2; 870 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 871 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 872 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 873 Vals.push_back(cast<StoreInst>(I).isVolatile()); 874 break; 875 case Instruction::Call: { 876 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 877 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 878 879 Code = bitc::FUNC_CODE_INST_CALL; 880 881 const CallInst *CI = cast<CallInst>(&I); 882 Vals.push_back(VE.getParamAttrID(CI->getParamAttrs())); 883 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 884 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 885 886 // Emit value #'s for the fixed parameters. 887 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 888 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 889 890 // Emit type/value pairs for varargs params. 891 if (FTy->isVarArg()) { 892 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 893 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 894 i != e; ++i) 895 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 896 } 897 break; 898 } 899 case Instruction::VAArg: 900 Code = bitc::FUNC_CODE_INST_VAARG; 901 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 902 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 903 Vals.push_back(VE.getTypeID(I.getType())); // restype. 904 break; 905 } 906 907 Stream.EmitRecord(Code, Vals, AbbrevToUse); 908 Vals.clear(); 909 } 910 911 // Emit names for globals/functions etc. 912 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 913 const ValueEnumerator &VE, 914 BitstreamWriter &Stream) { 915 if (VST.empty()) return; 916 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 917 918 // FIXME: Set up the abbrev, we know how many values there are! 919 // FIXME: We know if the type names can use 7-bit ascii. 920 SmallVector<unsigned, 64> NameVals; 921 922 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 923 SI != SE; ++SI) { 924 925 const ValueName &Name = *SI; 926 927 // Figure out the encoding to use for the name. 928 bool is7Bit = true; 929 bool isChar6 = true; 930 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 931 C != E; ++C) { 932 if (isChar6) 933 isChar6 = BitCodeAbbrevOp::isChar6(*C); 934 if ((unsigned char)*C & 128) { 935 is7Bit = false; 936 break; // don't bother scanning the rest. 937 } 938 } 939 940 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 941 942 // VST_ENTRY: [valueid, namechar x N] 943 // VST_BBENTRY: [bbid, namechar x N] 944 unsigned Code; 945 if (isa<BasicBlock>(SI->getValue())) { 946 Code = bitc::VST_CODE_BBENTRY; 947 if (isChar6) 948 AbbrevToUse = VST_BBENTRY_6_ABBREV; 949 } else { 950 Code = bitc::VST_CODE_ENTRY; 951 if (isChar6) 952 AbbrevToUse = VST_ENTRY_6_ABBREV; 953 else if (is7Bit) 954 AbbrevToUse = VST_ENTRY_7_ABBREV; 955 } 956 957 NameVals.push_back(VE.getValueID(SI->getValue())); 958 for (const char *P = Name.getKeyData(), 959 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 960 NameVals.push_back((unsigned char)*P); 961 962 // Emit the finished record. 963 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 964 NameVals.clear(); 965 } 966 Stream.ExitBlock(); 967 } 968 969 /// WriteFunction - Emit a function body to the module stream. 970 static void WriteFunction(const Function &F, ValueEnumerator &VE, 971 BitstreamWriter &Stream) { 972 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 973 VE.incorporateFunction(F); 974 975 SmallVector<unsigned, 64> Vals; 976 977 // Emit the number of basic blocks, so the reader can create them ahead of 978 // time. 979 Vals.push_back(VE.getBasicBlocks().size()); 980 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 981 Vals.clear(); 982 983 // If there are function-local constants, emit them now. 984 unsigned CstStart, CstEnd; 985 VE.getFunctionConstantRange(CstStart, CstEnd); 986 WriteConstants(CstStart, CstEnd, VE, Stream, false); 987 988 // Keep a running idea of what the instruction ID is. 989 unsigned InstID = CstEnd; 990 991 // Finally, emit all the instructions, in order. 992 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 993 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 994 I != E; ++I) { 995 WriteInstruction(*I, InstID, VE, Stream, Vals); 996 if (I->getType() != Type::VoidTy) 997 ++InstID; 998 } 999 1000 // Emit names for all the instructions etc. 1001 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1002 1003 VE.purgeFunction(); 1004 Stream.ExitBlock(); 1005 } 1006 1007 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1008 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1009 const ValueEnumerator &VE, 1010 BitstreamWriter &Stream) { 1011 if (TST.empty()) return; 1012 1013 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1014 1015 // 7-bit fixed width VST_CODE_ENTRY strings. 1016 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1017 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1019 Log2_32_Ceil(VE.getTypes().size()+1))); 1020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1022 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1023 1024 SmallVector<unsigned, 64> NameVals; 1025 1026 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1027 TI != TE; ++TI) { 1028 // TST_ENTRY: [typeid, namechar x N] 1029 NameVals.push_back(VE.getTypeID(TI->second)); 1030 1031 const std::string &Str = TI->first; 1032 bool is7Bit = true; 1033 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1034 NameVals.push_back((unsigned char)Str[i]); 1035 if (Str[i] & 128) 1036 is7Bit = false; 1037 } 1038 1039 // Emit the finished record. 1040 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1041 NameVals.clear(); 1042 } 1043 1044 Stream.ExitBlock(); 1045 } 1046 1047 // Emit blockinfo, which defines the standard abbreviations etc. 1048 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1049 // We only want to emit block info records for blocks that have multiple 1050 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1051 // blocks can defined their abbrevs inline. 1052 Stream.EnterBlockInfoBlock(2); 1053 1054 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1055 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1060 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1061 Abbv) != VST_ENTRY_8_ABBREV) 1062 assert(0 && "Unexpected abbrev ordering!"); 1063 } 1064 1065 { // 7-bit fixed width VST_ENTRY strings. 1066 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1067 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1071 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1072 Abbv) != VST_ENTRY_7_ABBREV) 1073 assert(0 && "Unexpected abbrev ordering!"); 1074 } 1075 { // 6-bit char6 VST_ENTRY strings. 1076 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1077 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1081 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1082 Abbv) != VST_ENTRY_6_ABBREV) 1083 assert(0 && "Unexpected abbrev ordering!"); 1084 } 1085 { // 6-bit char6 VST_BBENTRY strings. 1086 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1087 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1091 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1092 Abbv) != VST_BBENTRY_6_ABBREV) 1093 assert(0 && "Unexpected abbrev ordering!"); 1094 } 1095 1096 1097 1098 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1099 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1100 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1102 Log2_32_Ceil(VE.getTypes().size()+1))); 1103 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1104 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1105 assert(0 && "Unexpected abbrev ordering!"); 1106 } 1107 1108 { // INTEGER abbrev for CONSTANTS_BLOCK. 1109 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1110 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1112 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1113 Abbv) != CONSTANTS_INTEGER_ABBREV) 1114 assert(0 && "Unexpected abbrev ordering!"); 1115 } 1116 1117 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1118 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1119 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1122 Log2_32_Ceil(VE.getTypes().size()+1))); 1123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1124 1125 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1126 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1127 assert(0 && "Unexpected abbrev ordering!"); 1128 } 1129 { // NULL abbrev for CONSTANTS_BLOCK. 1130 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1131 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1132 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1133 Abbv) != CONSTANTS_NULL_Abbrev) 1134 assert(0 && "Unexpected abbrev ordering!"); 1135 } 1136 1137 // FIXME: This should only use space for first class types! 1138 1139 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1140 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1141 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1145 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1146 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1147 assert(0 && "Unexpected abbrev ordering!"); 1148 } 1149 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1150 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1151 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1155 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1156 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1157 assert(0 && "Unexpected abbrev ordering!"); 1158 } 1159 { // INST_CAST abbrev for FUNCTION_BLOCK. 1160 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1161 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1164 Log2_32_Ceil(VE.getTypes().size()+1))); 1165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1166 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1167 Abbv) != FUNCTION_INST_CAST_ABBREV) 1168 assert(0 && "Unexpected abbrev ordering!"); 1169 } 1170 1171 { // INST_RET abbrev for FUNCTION_BLOCK. 1172 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1173 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1174 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1175 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1176 assert(0 && "Unexpected abbrev ordering!"); 1177 } 1178 { // INST_RET abbrev for FUNCTION_BLOCK. 1179 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1180 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1182 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1183 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1184 assert(0 && "Unexpected abbrev ordering!"); 1185 } 1186 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1187 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1188 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1189 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1190 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1191 assert(0 && "Unexpected abbrev ordering!"); 1192 } 1193 1194 Stream.ExitBlock(); 1195 } 1196 1197 1198 /// WriteModule - Emit the specified module to the bitstream. 1199 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1200 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1201 1202 // Emit the version number if it is non-zero. 1203 if (CurVersion) { 1204 SmallVector<unsigned, 1> Vals; 1205 Vals.push_back(CurVersion); 1206 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1207 } 1208 1209 // Analyze the module, enumerating globals, functions, etc. 1210 ValueEnumerator VE(M); 1211 1212 // Emit blockinfo, which defines the standard abbreviations etc. 1213 WriteBlockInfo(VE, Stream); 1214 1215 // Emit information about parameter attributes. 1216 WriteParamAttrTable(VE, Stream); 1217 1218 // Emit information describing all of the types in the module. 1219 WriteTypeTable(VE, Stream); 1220 1221 // Emit top-level description of module, including target triple, inline asm, 1222 // descriptors for global variables, and function prototype info. 1223 WriteModuleInfo(M, VE, Stream); 1224 1225 // Emit constants. 1226 WriteModuleConstants(VE, Stream); 1227 1228 // If we have any aggregate values in the value table, purge them - these can 1229 // only be used to initialize global variables. Doing so makes the value 1230 // namespace smaller for code in functions. 1231 int NumNonAggregates = VE.PurgeAggregateValues(); 1232 if (NumNonAggregates != -1) { 1233 SmallVector<unsigned, 1> Vals; 1234 Vals.push_back(NumNonAggregates); 1235 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1236 } 1237 1238 // Emit function bodies. 1239 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1240 if (!I->isDeclaration()) 1241 WriteFunction(*I, VE, Stream); 1242 1243 // Emit the type symbol table information. 1244 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1245 1246 // Emit names for globals/functions etc. 1247 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1248 1249 Stream.ExitBlock(); 1250 } 1251 1252 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1253 /// header and trailer to make it compatible with the system archiver. To do 1254 /// this we emit the following header, and then emit a trailer that pads the 1255 /// file out to be a multiple of 16 bytes. 1256 /// 1257 /// struct bc_header { 1258 /// uint32_t Magic; // 0x0B17C0DE 1259 /// uint32_t Version; // Version, currently always 0. 1260 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1261 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1262 /// uint32_t CPUType; // CPU specifier. 1263 /// ... potentially more later ... 1264 /// }; 1265 enum { 1266 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1267 DarwinBCHeaderSize = 5*4 1268 }; 1269 1270 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1271 const std::string &TT) { 1272 unsigned CPUType = ~0U; 1273 1274 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1275 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1276 // specific constants here because they are implicitly part of the Darwin ABI. 1277 enum { 1278 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1279 DARWIN_CPU_TYPE_X86 = 7, 1280 DARWIN_CPU_TYPE_POWERPC = 18 1281 }; 1282 1283 if (TT.find("x86_64-") == 0) 1284 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1285 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1286 TT[4] == '-' && TT[1] - '3' < 6) 1287 CPUType = DARWIN_CPU_TYPE_X86; 1288 else if (TT.find("powerpc-") == 0) 1289 CPUType = DARWIN_CPU_TYPE_POWERPC; 1290 else if (TT.find("powerpc64-") == 0) 1291 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1292 1293 // Traditional Bitcode starts after header. 1294 unsigned BCOffset = DarwinBCHeaderSize; 1295 1296 Stream.Emit(0x0B17C0DE, 32); 1297 Stream.Emit(0 , 32); // Version. 1298 Stream.Emit(BCOffset , 32); 1299 Stream.Emit(0 , 32); // Filled in later. 1300 Stream.Emit(CPUType , 32); 1301 } 1302 1303 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1304 /// finalize the header. 1305 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1306 // Update the size field in the header. 1307 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1308 1309 // If the file is not a multiple of 16 bytes, insert dummy padding. 1310 while (BufferSize & 15) { 1311 Stream.Emit(0, 8); 1312 ++BufferSize; 1313 } 1314 } 1315 1316 1317 /// WriteBitcodeToFile - Write the specified module to the specified output 1318 /// stream. 1319 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1320 std::vector<unsigned char> Buffer; 1321 BitstreamWriter Stream(Buffer); 1322 1323 Buffer.reserve(256*1024); 1324 1325 // If this is darwin, emit a file header and trailer if needed. 1326 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1327 if (isDarwin) 1328 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1329 1330 // Emit the file header. 1331 Stream.Emit((unsigned)'B', 8); 1332 Stream.Emit((unsigned)'C', 8); 1333 Stream.Emit(0x0, 4); 1334 Stream.Emit(0xC, 4); 1335 Stream.Emit(0xE, 4); 1336 Stream.Emit(0xD, 4); 1337 1338 // Emit the module. 1339 WriteModule(M, Stream); 1340 1341 if (isDarwin) 1342 EmitDarwinBCTrailer(Stream, Buffer.size()); 1343 1344 1345 // If writing to stdout, set binary mode. 1346 if (llvm::cout == Out) 1347 sys::Program::ChangeStdoutToBinary(); 1348 1349 // Write the generated bitstream to "Out". 1350 Out.write((char*)&Buffer.front(), Buffer.size()); 1351 1352 // Make sure it hits disk now. 1353 Out.flush(); 1354 } 1355