1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/Program.h" 34 #include "llvm/Support/SHA1.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cctype> 37 #include <map> 38 using namespace llvm; 39 40 namespace { 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV, 64 FUNCTION_INST_GEP_ABBREV, 65 }; 66 67 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 68 /// file type. 69 class BitcodeWriterBase { 70 protected: 71 /// The stream created and owned by the client. 72 BitstreamWriter &Stream; 73 74 /// Saves the offset of the VSTOffset record that must eventually be 75 /// backpatched with the offset of the actual VST. 76 uint64_t VSTOffsetPlaceholder = 0; 77 78 public: 79 /// Constructs a BitcodeWriterBase object that writes to the provided 80 /// \p Stream. 81 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 82 83 protected: 84 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; } 85 void writeValueSymbolTableForwardDecl(); 86 void writeBitcodeHeader(); 87 }; 88 89 /// Class to manage the bitcode writing for a module. 90 class ModuleBitcodeWriter : public BitcodeWriterBase { 91 /// Pointer to the buffer allocated by caller for bitcode writing. 92 const SmallVectorImpl<char> &Buffer; 93 94 /// The Module to write to bitcode. 95 const Module &M; 96 97 /// Enumerates ids for all values in the module. 98 ValueEnumerator VE; 99 100 /// Optional per-module index to write for ThinLTO. 101 const ModuleSummaryIndex *Index; 102 103 /// True if a module hash record should be written. 104 bool GenerateHash; 105 106 /// The start bit of the identification block. 107 uint64_t BitcodeStartBit; 108 109 /// Map that holds the correspondence between GUIDs in the summary index, 110 /// that came from indirect call profiles, and a value id generated by this 111 /// class to use in the VST and summary block records. 112 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 113 114 /// Tracks the last value id recorded in the GUIDToValueMap. 115 unsigned GlobalValueId; 116 117 public: 118 /// Constructs a ModuleBitcodeWriter object for the given Module, 119 /// writing to the provided \p Buffer. 120 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 121 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 122 const ModuleSummaryIndex *Index, bool GenerateHash) 123 : BitcodeWriterBase(Stream), Buffer(Buffer), M(*M), 124 VE(*M, ShouldPreserveUseListOrder), Index(Index), 125 GenerateHash(GenerateHash), BitcodeStartBit(Stream.GetCurrentBitNo()) { 126 // Assign ValueIds to any callee values in the index that came from 127 // indirect call profiles and were recorded as a GUID not a Value* 128 // (which would have been assigned an ID by the ValueEnumerator). 129 // The starting ValueId is just after the number of values in the 130 // ValueEnumerator, so that they can be emitted in the VST. 131 GlobalValueId = VE.getValues().size(); 132 if (!Index) 133 return; 134 for (const auto &GUIDSummaryLists : *Index) 135 // Examine all summaries for this GUID. 136 for (auto &Summary : GUIDSummaryLists.second) 137 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 138 // For each call in the function summary, see if the call 139 // is to a GUID (which means it is for an indirect call, 140 // otherwise we would have a Value for it). If so, synthesize 141 // a value id. 142 for (auto &CallEdge : FS->calls()) 143 if (CallEdge.first.isGUID()) 144 assignValueId(CallEdge.first.getGUID()); 145 } 146 147 /// Emit the current module to the bitstream. 148 void write(); 149 150 private: 151 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 152 153 void writeAttributeGroupTable(); 154 void writeAttributeTable(); 155 void writeTypeTable(); 156 void writeComdats(); 157 void writeModuleInfo(); 158 void writeValueAsMetadata(const ValueAsMetadata *MD, 159 SmallVectorImpl<uint64_t> &Record); 160 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 161 unsigned Abbrev); 162 unsigned createDILocationAbbrev(); 163 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 164 unsigned &Abbrev); 165 unsigned createGenericDINodeAbbrev(); 166 void writeGenericDINode(const GenericDINode *N, 167 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 168 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 169 unsigned Abbrev); 170 void writeDIEnumerator(const DIEnumerator *N, 171 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 172 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 173 unsigned Abbrev); 174 void writeDIDerivedType(const DIDerivedType *N, 175 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 176 void writeDICompositeType(const DICompositeType *N, 177 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 178 void writeDISubroutineType(const DISubroutineType *N, 179 SmallVectorImpl<uint64_t> &Record, 180 unsigned Abbrev); 181 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 182 unsigned Abbrev); 183 void writeDICompileUnit(const DICompileUnit *N, 184 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 185 void writeDISubprogram(const DISubprogram *N, 186 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 187 void writeDILexicalBlock(const DILexicalBlock *N, 188 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 189 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 190 SmallVectorImpl<uint64_t> &Record, 191 unsigned Abbrev); 192 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 193 unsigned Abbrev); 194 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 195 unsigned Abbrev); 196 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 199 unsigned Abbrev); 200 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 201 SmallVectorImpl<uint64_t> &Record, 202 unsigned Abbrev); 203 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 204 SmallVectorImpl<uint64_t> &Record, 205 unsigned Abbrev); 206 void writeDIGlobalVariable(const DIGlobalVariable *N, 207 SmallVectorImpl<uint64_t> &Record, 208 unsigned Abbrev); 209 void writeDILocalVariable(const DILocalVariable *N, 210 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 211 void writeDIExpression(const DIExpression *N, 212 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 213 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 214 SmallVectorImpl<uint64_t> &Record, 215 unsigned Abbrev); 216 void writeDIObjCProperty(const DIObjCProperty *N, 217 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 218 void writeDIImportedEntity(const DIImportedEntity *N, 219 SmallVectorImpl<uint64_t> &Record, 220 unsigned Abbrev); 221 unsigned createNamedMetadataAbbrev(); 222 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 223 unsigned createMetadataStringsAbbrev(); 224 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 225 SmallVectorImpl<uint64_t> &Record); 226 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 227 SmallVectorImpl<uint64_t> &Record, 228 std::vector<unsigned> *MDAbbrevs = nullptr, 229 std::vector<uint64_t> *IndexPos = nullptr); 230 void writeModuleMetadata(); 231 void writeFunctionMetadata(const Function &F); 232 void writeFunctionMetadataAttachment(const Function &F); 233 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 234 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 235 const GlobalObject &GO); 236 void writeModuleMetadataKinds(); 237 void writeOperandBundleTags(); 238 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 239 void writeModuleConstants(); 240 bool pushValueAndType(const Value *V, unsigned InstID, 241 SmallVectorImpl<unsigned> &Vals); 242 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 243 void pushValue(const Value *V, unsigned InstID, 244 SmallVectorImpl<unsigned> &Vals); 245 void pushValueSigned(const Value *V, unsigned InstID, 246 SmallVectorImpl<uint64_t> &Vals); 247 void writeInstruction(const Instruction &I, unsigned InstID, 248 SmallVectorImpl<unsigned> &Vals); 249 void writeValueSymbolTable( 250 const ValueSymbolTable &VST, bool IsModuleLevel = false, 251 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr); 252 void writeUseList(UseListOrder &&Order); 253 void writeUseListBlock(const Function *F); 254 void 255 writeFunction(const Function &F, 256 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 257 void writeBlockInfo(); 258 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 259 GlobalValueSummary *Summary, 260 unsigned ValueID, 261 unsigned FSCallsAbbrev, 262 unsigned FSCallsProfileAbbrev, 263 const Function &F); 264 void writeModuleLevelReferences(const GlobalVariable &V, 265 SmallVector<uint64_t, 64> &NameVals, 266 unsigned FSModRefsAbbrev); 267 void writePerModuleGlobalValueSummary(); 268 void writeModuleHash(size_t BlockStartPos); 269 270 void assignValueId(GlobalValue::GUID ValGUID) { 271 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 272 } 273 unsigned getValueId(GlobalValue::GUID ValGUID) { 274 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 275 // Expect that any GUID value had a value Id assigned by an 276 // earlier call to assignValueId. 277 assert(VMI != GUIDToValueIdMap.end() && 278 "GUID does not have assigned value Id"); 279 return VMI->second; 280 } 281 // Helper to get the valueId for the type of value recorded in VI. 282 unsigned getValueId(ValueInfo VI) { 283 if (VI.isGUID()) 284 return getValueId(VI.getGUID()); 285 return VE.getValueID(VI.getValue()); 286 } 287 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 288 }; 289 290 /// Class to manage the bitcode writing for a combined index. 291 class IndexBitcodeWriter : public BitcodeWriterBase { 292 /// The combined index to write to bitcode. 293 const ModuleSummaryIndex &Index; 294 295 /// When writing a subset of the index for distributed backends, client 296 /// provides a map of modules to the corresponding GUIDs/summaries to write. 297 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 298 299 /// Map that holds the correspondence between the GUID used in the combined 300 /// index and a value id generated by this class to use in references. 301 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 302 303 /// Tracks the last value id recorded in the GUIDToValueMap. 304 unsigned GlobalValueId = 0; 305 306 public: 307 /// Constructs a IndexBitcodeWriter object for the given combined index, 308 /// writing to the provided \p Buffer. When writing a subset of the index 309 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 310 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 311 const std::map<std::string, GVSummaryMapTy> 312 *ModuleToSummariesForIndex = nullptr) 313 : BitcodeWriterBase(Stream), Index(Index), 314 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 315 // Assign unique value ids to all summaries to be written, for use 316 // in writing out the call graph edges. Save the mapping from GUID 317 // to the new global value id to use when writing those edges, which 318 // are currently saved in the index in terms of GUID. 319 for (const auto &I : *this) 320 GUIDToValueIdMap[I.first] = ++GlobalValueId; 321 } 322 323 /// The below iterator returns the GUID and associated summary. 324 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 325 326 /// Iterator over the value GUID and summaries to be written to bitcode, 327 /// hides the details of whether they are being pulled from the entire 328 /// index or just those in a provided ModuleToSummariesForIndex map. 329 class iterator 330 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 331 GVInfo> { 332 /// Enables access to parent class. 333 const IndexBitcodeWriter &Writer; 334 335 // Iterators used when writing only those summaries in a provided 336 // ModuleToSummariesForIndex map: 337 338 /// Points to the last element in outer ModuleToSummariesForIndex map. 339 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack; 340 /// Iterator on outer ModuleToSummariesForIndex map. 341 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter; 342 /// Iterator on an inner global variable summary map. 343 GVSummaryMapTy::const_iterator ModuleGVSummariesIter; 344 345 // Iterators used when writing all summaries in the index: 346 347 /// Points to the last element in the Index outer GlobalValueMap. 348 const_gvsummary_iterator IndexSummariesBack; 349 /// Iterator on outer GlobalValueMap. 350 const_gvsummary_iterator IndexSummariesIter; 351 /// Iterator on an inner GlobalValueSummaryList. 352 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 353 354 public: 355 /// Construct iterator from parent \p Writer and indicate if we are 356 /// constructing the end iterator. 357 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 358 // Set up the appropriate set of iterators given whether we are writing 359 // the full index or just a subset. 360 // Can't setup the Back or inner iterators if the corresponding map 361 // is empty. This will be handled specially in operator== as well. 362 if (Writer.ModuleToSummariesForIndex && 363 !Writer.ModuleToSummariesForIndex->empty()) { 364 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 365 std::next(ModuleSummariesBack) != 366 Writer.ModuleToSummariesForIndex->end(); 367 ModuleSummariesBack++) 368 ; 369 ModuleSummariesIter = !IsAtEnd 370 ? Writer.ModuleToSummariesForIndex->begin() 371 : ModuleSummariesBack; 372 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 373 : ModuleSummariesBack->second.end(); 374 } else if (!Writer.ModuleToSummariesForIndex && 375 Writer.Index.begin() != Writer.Index.end()) { 376 for (IndexSummariesBack = Writer.Index.begin(); 377 std::next(IndexSummariesBack) != Writer.Index.end(); 378 IndexSummariesBack++) 379 ; 380 IndexSummariesIter = 381 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 382 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 383 : IndexSummariesBack->second.end(); 384 } 385 } 386 387 /// Increment the appropriate set of iterators. 388 iterator &operator++() { 389 // First the inner iterator is incremented, then if it is at the end 390 // and there are more outer iterations to go, the inner is reset to 391 // the start of the next inner list. 392 if (Writer.ModuleToSummariesForIndex) { 393 ++ModuleGVSummariesIter; 394 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 395 ModuleSummariesIter != ModuleSummariesBack) { 396 ++ModuleSummariesIter; 397 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 398 } 399 } else { 400 ++IndexGVSummariesIter; 401 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 402 IndexSummariesIter != IndexSummariesBack) { 403 ++IndexSummariesIter; 404 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 405 } 406 } 407 return *this; 408 } 409 410 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 411 /// outer and inner iterator positions. 412 GVInfo operator*() { 413 if (Writer.ModuleToSummariesForIndex) 414 return std::make_pair(ModuleGVSummariesIter->first, 415 ModuleGVSummariesIter->second); 416 return std::make_pair(IndexSummariesIter->first, 417 IndexGVSummariesIter->get()); 418 } 419 420 /// Checks if the iterators are equal, with special handling for empty 421 /// indexes. 422 bool operator==(const iterator &RHS) const { 423 if (Writer.ModuleToSummariesForIndex) { 424 // First ensure that both are writing the same subset. 425 if (Writer.ModuleToSummariesForIndex != 426 RHS.Writer.ModuleToSummariesForIndex) 427 return false; 428 // Already determined above that maps are the same, so if one is 429 // empty, they both are. 430 if (Writer.ModuleToSummariesForIndex->empty()) 431 return true; 432 // Ensure the ModuleGVSummariesIter are iterating over the same 433 // container before checking them below. 434 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 435 return false; 436 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 437 } 438 // First ensure RHS also writing the full index, and that both are 439 // writing the same full index. 440 if (RHS.Writer.ModuleToSummariesForIndex || 441 &Writer.Index != &RHS.Writer.Index) 442 return false; 443 // Already determined above that maps are the same, so if one is 444 // empty, they both are. 445 if (Writer.Index.begin() == Writer.Index.end()) 446 return true; 447 // Ensure the IndexGVSummariesIter are iterating over the same 448 // container before checking them below. 449 if (IndexSummariesIter != RHS.IndexSummariesIter) 450 return false; 451 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 452 } 453 }; 454 455 /// Obtain the start iterator over the summaries to be written. 456 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 457 /// Obtain the end iterator over the summaries to be written. 458 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 459 460 /// Main entry point for writing a combined index to bitcode. 461 void write(); 462 463 private: 464 void writeIndex(); 465 void writeModStrings(); 466 void writeCombinedValueSymbolTable(); 467 void writeCombinedGlobalValueSummary(); 468 469 /// Indicates whether the provided \p ModulePath should be written into 470 /// the module string table, e.g. if full index written or if it is in 471 /// the provided subset. 472 bool doIncludeModule(StringRef ModulePath) { 473 return !ModuleToSummariesForIndex || 474 ModuleToSummariesForIndex->count(ModulePath); 475 } 476 477 bool hasValueId(GlobalValue::GUID ValGUID) { 478 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 479 return VMI != GUIDToValueIdMap.end(); 480 } 481 unsigned getValueId(GlobalValue::GUID ValGUID) { 482 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 483 // If this GUID doesn't have an entry, assign one. 484 if (VMI == GUIDToValueIdMap.end()) { 485 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 486 return GlobalValueId; 487 } else { 488 return VMI->second; 489 } 490 } 491 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 492 }; 493 } // end anonymous namespace 494 495 static unsigned getEncodedCastOpcode(unsigned Opcode) { 496 switch (Opcode) { 497 default: llvm_unreachable("Unknown cast instruction!"); 498 case Instruction::Trunc : return bitc::CAST_TRUNC; 499 case Instruction::ZExt : return bitc::CAST_ZEXT; 500 case Instruction::SExt : return bitc::CAST_SEXT; 501 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 502 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 503 case Instruction::UIToFP : return bitc::CAST_UITOFP; 504 case Instruction::SIToFP : return bitc::CAST_SITOFP; 505 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 506 case Instruction::FPExt : return bitc::CAST_FPEXT; 507 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 508 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 509 case Instruction::BitCast : return bitc::CAST_BITCAST; 510 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 511 } 512 } 513 514 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Unknown binary instruction!"); 517 case Instruction::Add: 518 case Instruction::FAdd: return bitc::BINOP_ADD; 519 case Instruction::Sub: 520 case Instruction::FSub: return bitc::BINOP_SUB; 521 case Instruction::Mul: 522 case Instruction::FMul: return bitc::BINOP_MUL; 523 case Instruction::UDiv: return bitc::BINOP_UDIV; 524 case Instruction::FDiv: 525 case Instruction::SDiv: return bitc::BINOP_SDIV; 526 case Instruction::URem: return bitc::BINOP_UREM; 527 case Instruction::FRem: 528 case Instruction::SRem: return bitc::BINOP_SREM; 529 case Instruction::Shl: return bitc::BINOP_SHL; 530 case Instruction::LShr: return bitc::BINOP_LSHR; 531 case Instruction::AShr: return bitc::BINOP_ASHR; 532 case Instruction::And: return bitc::BINOP_AND; 533 case Instruction::Or: return bitc::BINOP_OR; 534 case Instruction::Xor: return bitc::BINOP_XOR; 535 } 536 } 537 538 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 539 switch (Op) { 540 default: llvm_unreachable("Unknown RMW operation!"); 541 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 542 case AtomicRMWInst::Add: return bitc::RMW_ADD; 543 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 544 case AtomicRMWInst::And: return bitc::RMW_AND; 545 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 546 case AtomicRMWInst::Or: return bitc::RMW_OR; 547 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 548 case AtomicRMWInst::Max: return bitc::RMW_MAX; 549 case AtomicRMWInst::Min: return bitc::RMW_MIN; 550 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 551 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 552 } 553 } 554 555 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 556 switch (Ordering) { 557 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 558 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 559 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 560 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 561 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 562 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 563 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 564 } 565 llvm_unreachable("Invalid ordering"); 566 } 567 568 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 569 switch (SynchScope) { 570 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 571 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 572 } 573 llvm_unreachable("Invalid synch scope"); 574 } 575 576 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 577 StringRef Str, unsigned AbbrevToUse) { 578 SmallVector<unsigned, 64> Vals; 579 580 // Code: [strchar x N] 581 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 582 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 583 AbbrevToUse = 0; 584 Vals.push_back(Str[i]); 585 } 586 587 // Emit the finished record. 588 Stream.EmitRecord(Code, Vals, AbbrevToUse); 589 } 590 591 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 592 switch (Kind) { 593 case Attribute::Alignment: 594 return bitc::ATTR_KIND_ALIGNMENT; 595 case Attribute::AllocSize: 596 return bitc::ATTR_KIND_ALLOC_SIZE; 597 case Attribute::AlwaysInline: 598 return bitc::ATTR_KIND_ALWAYS_INLINE; 599 case Attribute::ArgMemOnly: 600 return bitc::ATTR_KIND_ARGMEMONLY; 601 case Attribute::Builtin: 602 return bitc::ATTR_KIND_BUILTIN; 603 case Attribute::ByVal: 604 return bitc::ATTR_KIND_BY_VAL; 605 case Attribute::Convergent: 606 return bitc::ATTR_KIND_CONVERGENT; 607 case Attribute::InAlloca: 608 return bitc::ATTR_KIND_IN_ALLOCA; 609 case Attribute::Cold: 610 return bitc::ATTR_KIND_COLD; 611 case Attribute::InaccessibleMemOnly: 612 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 613 case Attribute::InaccessibleMemOrArgMemOnly: 614 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 615 case Attribute::InlineHint: 616 return bitc::ATTR_KIND_INLINE_HINT; 617 case Attribute::InReg: 618 return bitc::ATTR_KIND_IN_REG; 619 case Attribute::JumpTable: 620 return bitc::ATTR_KIND_JUMP_TABLE; 621 case Attribute::MinSize: 622 return bitc::ATTR_KIND_MIN_SIZE; 623 case Attribute::Naked: 624 return bitc::ATTR_KIND_NAKED; 625 case Attribute::Nest: 626 return bitc::ATTR_KIND_NEST; 627 case Attribute::NoAlias: 628 return bitc::ATTR_KIND_NO_ALIAS; 629 case Attribute::NoBuiltin: 630 return bitc::ATTR_KIND_NO_BUILTIN; 631 case Attribute::NoCapture: 632 return bitc::ATTR_KIND_NO_CAPTURE; 633 case Attribute::NoDuplicate: 634 return bitc::ATTR_KIND_NO_DUPLICATE; 635 case Attribute::NoImplicitFloat: 636 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 637 case Attribute::NoInline: 638 return bitc::ATTR_KIND_NO_INLINE; 639 case Attribute::NoRecurse: 640 return bitc::ATTR_KIND_NO_RECURSE; 641 case Attribute::NonLazyBind: 642 return bitc::ATTR_KIND_NON_LAZY_BIND; 643 case Attribute::NonNull: 644 return bitc::ATTR_KIND_NON_NULL; 645 case Attribute::Dereferenceable: 646 return bitc::ATTR_KIND_DEREFERENCEABLE; 647 case Attribute::DereferenceableOrNull: 648 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 649 case Attribute::NoRedZone: 650 return bitc::ATTR_KIND_NO_RED_ZONE; 651 case Attribute::NoReturn: 652 return bitc::ATTR_KIND_NO_RETURN; 653 case Attribute::NoUnwind: 654 return bitc::ATTR_KIND_NO_UNWIND; 655 case Attribute::OptimizeForSize: 656 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 657 case Attribute::OptimizeNone: 658 return bitc::ATTR_KIND_OPTIMIZE_NONE; 659 case Attribute::ReadNone: 660 return bitc::ATTR_KIND_READ_NONE; 661 case Attribute::ReadOnly: 662 return bitc::ATTR_KIND_READ_ONLY; 663 case Attribute::Returned: 664 return bitc::ATTR_KIND_RETURNED; 665 case Attribute::ReturnsTwice: 666 return bitc::ATTR_KIND_RETURNS_TWICE; 667 case Attribute::SExt: 668 return bitc::ATTR_KIND_S_EXT; 669 case Attribute::StackAlignment: 670 return bitc::ATTR_KIND_STACK_ALIGNMENT; 671 case Attribute::StackProtect: 672 return bitc::ATTR_KIND_STACK_PROTECT; 673 case Attribute::StackProtectReq: 674 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 675 case Attribute::StackProtectStrong: 676 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 677 case Attribute::SafeStack: 678 return bitc::ATTR_KIND_SAFESTACK; 679 case Attribute::StructRet: 680 return bitc::ATTR_KIND_STRUCT_RET; 681 case Attribute::SanitizeAddress: 682 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 683 case Attribute::SanitizeThread: 684 return bitc::ATTR_KIND_SANITIZE_THREAD; 685 case Attribute::SanitizeMemory: 686 return bitc::ATTR_KIND_SANITIZE_MEMORY; 687 case Attribute::SwiftError: 688 return bitc::ATTR_KIND_SWIFT_ERROR; 689 case Attribute::SwiftSelf: 690 return bitc::ATTR_KIND_SWIFT_SELF; 691 case Attribute::UWTable: 692 return bitc::ATTR_KIND_UW_TABLE; 693 case Attribute::WriteOnly: 694 return bitc::ATTR_KIND_WRITEONLY; 695 case Attribute::ZExt: 696 return bitc::ATTR_KIND_Z_EXT; 697 case Attribute::EndAttrKinds: 698 llvm_unreachable("Can not encode end-attribute kinds marker."); 699 case Attribute::None: 700 llvm_unreachable("Can not encode none-attribute."); 701 } 702 703 llvm_unreachable("Trying to encode unknown attribute"); 704 } 705 706 void ModuleBitcodeWriter::writeAttributeGroupTable() { 707 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 708 if (AttrGrps.empty()) return; 709 710 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 711 712 SmallVector<uint64_t, 64> Record; 713 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 714 AttributeSet AS = AttrGrps[i]; 715 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 716 AttributeSet A = AS.getSlotAttributes(i); 717 718 Record.push_back(VE.getAttributeGroupID(A)); 719 Record.push_back(AS.getSlotIndex(i)); 720 721 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 722 I != E; ++I) { 723 Attribute Attr = *I; 724 if (Attr.isEnumAttribute()) { 725 Record.push_back(0); 726 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 727 } else if (Attr.isIntAttribute()) { 728 Record.push_back(1); 729 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 730 Record.push_back(Attr.getValueAsInt()); 731 } else { 732 StringRef Kind = Attr.getKindAsString(); 733 StringRef Val = Attr.getValueAsString(); 734 735 Record.push_back(Val.empty() ? 3 : 4); 736 Record.append(Kind.begin(), Kind.end()); 737 Record.push_back(0); 738 if (!Val.empty()) { 739 Record.append(Val.begin(), Val.end()); 740 Record.push_back(0); 741 } 742 } 743 } 744 745 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 746 Record.clear(); 747 } 748 } 749 750 Stream.ExitBlock(); 751 } 752 753 void ModuleBitcodeWriter::writeAttributeTable() { 754 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 755 if (Attrs.empty()) return; 756 757 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 758 759 SmallVector<uint64_t, 64> Record; 760 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 761 const AttributeSet &A = Attrs[i]; 762 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 763 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 764 765 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 766 Record.clear(); 767 } 768 769 Stream.ExitBlock(); 770 } 771 772 /// WriteTypeTable - Write out the type table for a module. 773 void ModuleBitcodeWriter::writeTypeTable() { 774 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 775 776 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 777 SmallVector<uint64_t, 64> TypeVals; 778 779 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 780 781 // Abbrev for TYPE_CODE_POINTER. 782 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 783 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 785 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 786 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 787 788 // Abbrev for TYPE_CODE_FUNCTION. 789 Abbv = new BitCodeAbbrev(); 790 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 794 795 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 796 797 // Abbrev for TYPE_CODE_STRUCT_ANON. 798 Abbv = new BitCodeAbbrev(); 799 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 803 804 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 805 806 // Abbrev for TYPE_CODE_STRUCT_NAME. 807 Abbv = new BitCodeAbbrev(); 808 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 811 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 812 813 // Abbrev for TYPE_CODE_STRUCT_NAMED. 814 Abbv = new BitCodeAbbrev(); 815 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 819 820 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 821 822 // Abbrev for TYPE_CODE_ARRAY. 823 Abbv = new BitCodeAbbrev(); 824 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 827 828 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 829 830 // Emit an entry count so the reader can reserve space. 831 TypeVals.push_back(TypeList.size()); 832 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 833 TypeVals.clear(); 834 835 // Loop over all of the types, emitting each in turn. 836 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 837 Type *T = TypeList[i]; 838 int AbbrevToUse = 0; 839 unsigned Code = 0; 840 841 switch (T->getTypeID()) { 842 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 843 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 844 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 845 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 846 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 847 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 848 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 849 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 850 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 851 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 852 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 853 case Type::IntegerTyID: 854 // INTEGER: [width] 855 Code = bitc::TYPE_CODE_INTEGER; 856 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 857 break; 858 case Type::PointerTyID: { 859 PointerType *PTy = cast<PointerType>(T); 860 // POINTER: [pointee type, address space] 861 Code = bitc::TYPE_CODE_POINTER; 862 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 863 unsigned AddressSpace = PTy->getAddressSpace(); 864 TypeVals.push_back(AddressSpace); 865 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 866 break; 867 } 868 case Type::FunctionTyID: { 869 FunctionType *FT = cast<FunctionType>(T); 870 // FUNCTION: [isvararg, retty, paramty x N] 871 Code = bitc::TYPE_CODE_FUNCTION; 872 TypeVals.push_back(FT->isVarArg()); 873 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 874 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 875 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 876 AbbrevToUse = FunctionAbbrev; 877 break; 878 } 879 case Type::StructTyID: { 880 StructType *ST = cast<StructType>(T); 881 // STRUCT: [ispacked, eltty x N] 882 TypeVals.push_back(ST->isPacked()); 883 // Output all of the element types. 884 for (StructType::element_iterator I = ST->element_begin(), 885 E = ST->element_end(); I != E; ++I) 886 TypeVals.push_back(VE.getTypeID(*I)); 887 888 if (ST->isLiteral()) { 889 Code = bitc::TYPE_CODE_STRUCT_ANON; 890 AbbrevToUse = StructAnonAbbrev; 891 } else { 892 if (ST->isOpaque()) { 893 Code = bitc::TYPE_CODE_OPAQUE; 894 } else { 895 Code = bitc::TYPE_CODE_STRUCT_NAMED; 896 AbbrevToUse = StructNamedAbbrev; 897 } 898 899 // Emit the name if it is present. 900 if (!ST->getName().empty()) 901 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 902 StructNameAbbrev); 903 } 904 break; 905 } 906 case Type::ArrayTyID: { 907 ArrayType *AT = cast<ArrayType>(T); 908 // ARRAY: [numelts, eltty] 909 Code = bitc::TYPE_CODE_ARRAY; 910 TypeVals.push_back(AT->getNumElements()); 911 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 912 AbbrevToUse = ArrayAbbrev; 913 break; 914 } 915 case Type::VectorTyID: { 916 VectorType *VT = cast<VectorType>(T); 917 // VECTOR [numelts, eltty] 918 Code = bitc::TYPE_CODE_VECTOR; 919 TypeVals.push_back(VT->getNumElements()); 920 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 921 break; 922 } 923 } 924 925 // Emit the finished record. 926 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 927 TypeVals.clear(); 928 } 929 930 Stream.ExitBlock(); 931 } 932 933 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 934 switch (Linkage) { 935 case GlobalValue::ExternalLinkage: 936 return 0; 937 case GlobalValue::WeakAnyLinkage: 938 return 16; 939 case GlobalValue::AppendingLinkage: 940 return 2; 941 case GlobalValue::InternalLinkage: 942 return 3; 943 case GlobalValue::LinkOnceAnyLinkage: 944 return 18; 945 case GlobalValue::ExternalWeakLinkage: 946 return 7; 947 case GlobalValue::CommonLinkage: 948 return 8; 949 case GlobalValue::PrivateLinkage: 950 return 9; 951 case GlobalValue::WeakODRLinkage: 952 return 17; 953 case GlobalValue::LinkOnceODRLinkage: 954 return 19; 955 case GlobalValue::AvailableExternallyLinkage: 956 return 12; 957 } 958 llvm_unreachable("Invalid linkage"); 959 } 960 961 static unsigned getEncodedLinkage(const GlobalValue &GV) { 962 return getEncodedLinkage(GV.getLinkage()); 963 } 964 965 // Decode the flags for GlobalValue in the summary 966 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 967 uint64_t RawFlags = 0; 968 969 RawFlags |= Flags.NoRename; // bool 970 RawFlags |= (Flags.IsNotViableToInline << 1); 971 RawFlags |= (Flags.HasInlineAsmMaybeReferencingInternal << 2); 972 // Linkage don't need to be remapped at that time for the summary. Any future 973 // change to the getEncodedLinkage() function will need to be taken into 974 // account here as well. 975 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 976 977 return RawFlags; 978 } 979 980 static unsigned getEncodedVisibility(const GlobalValue &GV) { 981 switch (GV.getVisibility()) { 982 case GlobalValue::DefaultVisibility: return 0; 983 case GlobalValue::HiddenVisibility: return 1; 984 case GlobalValue::ProtectedVisibility: return 2; 985 } 986 llvm_unreachable("Invalid visibility"); 987 } 988 989 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 990 switch (GV.getDLLStorageClass()) { 991 case GlobalValue::DefaultStorageClass: return 0; 992 case GlobalValue::DLLImportStorageClass: return 1; 993 case GlobalValue::DLLExportStorageClass: return 2; 994 } 995 llvm_unreachable("Invalid DLL storage class"); 996 } 997 998 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 999 switch (GV.getThreadLocalMode()) { 1000 case GlobalVariable::NotThreadLocal: return 0; 1001 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1002 case GlobalVariable::LocalDynamicTLSModel: return 2; 1003 case GlobalVariable::InitialExecTLSModel: return 3; 1004 case GlobalVariable::LocalExecTLSModel: return 4; 1005 } 1006 llvm_unreachable("Invalid TLS model"); 1007 } 1008 1009 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1010 switch (C.getSelectionKind()) { 1011 case Comdat::Any: 1012 return bitc::COMDAT_SELECTION_KIND_ANY; 1013 case Comdat::ExactMatch: 1014 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1015 case Comdat::Largest: 1016 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1017 case Comdat::NoDuplicates: 1018 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1019 case Comdat::SameSize: 1020 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1021 } 1022 llvm_unreachable("Invalid selection kind"); 1023 } 1024 1025 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1026 switch (GV.getUnnamedAddr()) { 1027 case GlobalValue::UnnamedAddr::None: return 0; 1028 case GlobalValue::UnnamedAddr::Local: return 2; 1029 case GlobalValue::UnnamedAddr::Global: return 1; 1030 } 1031 llvm_unreachable("Invalid unnamed_addr"); 1032 } 1033 1034 void ModuleBitcodeWriter::writeComdats() { 1035 SmallVector<unsigned, 64> Vals; 1036 for (const Comdat *C : VE.getComdats()) { 1037 // COMDAT: [selection_kind, name] 1038 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1039 size_t Size = C->getName().size(); 1040 assert(isUInt<32>(Size)); 1041 Vals.push_back(Size); 1042 for (char Chr : C->getName()) 1043 Vals.push_back((unsigned char)Chr); 1044 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1045 Vals.clear(); 1046 } 1047 } 1048 1049 /// Write a record that will eventually hold the word offset of the 1050 /// module-level VST. For now the offset is 0, which will be backpatched 1051 /// after the real VST is written. Saves the bit offset to backpatch. 1052 void BitcodeWriterBase::writeValueSymbolTableForwardDecl() { 1053 // Write a placeholder value in for the offset of the real VST, 1054 // which is written after the function blocks so that it can include 1055 // the offset of each function. The placeholder offset will be 1056 // updated when the real VST is written. 1057 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1058 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1059 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1060 // hold the real VST offset. Must use fixed instead of VBR as we don't 1061 // know how many VBR chunks to reserve ahead of time. 1062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1063 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 1064 1065 // Emit the placeholder 1066 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1067 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1068 1069 // Compute and save the bit offset to the placeholder, which will be 1070 // patched when the real VST is written. We can simply subtract the 32-bit 1071 // fixed size from the current bit number to get the location to backpatch. 1072 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1073 } 1074 1075 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1076 1077 /// Determine the encoding to use for the given string name and length. 1078 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1079 bool isChar6 = true; 1080 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1081 if (isChar6) 1082 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1083 if ((unsigned char)*C & 128) 1084 // don't bother scanning the rest. 1085 return SE_Fixed8; 1086 } 1087 if (isChar6) 1088 return SE_Char6; 1089 else 1090 return SE_Fixed7; 1091 } 1092 1093 /// Emit top-level description of module, including target triple, inline asm, 1094 /// descriptors for global variables, and function prototype info. 1095 /// Returns the bit offset to backpatch with the location of the real VST. 1096 void ModuleBitcodeWriter::writeModuleInfo() { 1097 // Emit various pieces of data attached to a module. 1098 if (!M.getTargetTriple().empty()) 1099 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1100 0 /*TODO*/); 1101 const std::string &DL = M.getDataLayoutStr(); 1102 if (!DL.empty()) 1103 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1104 if (!M.getModuleInlineAsm().empty()) 1105 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1106 0 /*TODO*/); 1107 1108 // Emit information about sections and GC, computing how many there are. Also 1109 // compute the maximum alignment value. 1110 std::map<std::string, unsigned> SectionMap; 1111 std::map<std::string, unsigned> GCMap; 1112 unsigned MaxAlignment = 0; 1113 unsigned MaxGlobalType = 0; 1114 for (const GlobalValue &GV : M.globals()) { 1115 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1116 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1117 if (GV.hasSection()) { 1118 // Give section names unique ID's. 1119 unsigned &Entry = SectionMap[GV.getSection()]; 1120 if (!Entry) { 1121 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1122 0 /*TODO*/); 1123 Entry = SectionMap.size(); 1124 } 1125 } 1126 } 1127 for (const Function &F : M) { 1128 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1129 if (F.hasSection()) { 1130 // Give section names unique ID's. 1131 unsigned &Entry = SectionMap[F.getSection()]; 1132 if (!Entry) { 1133 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1134 0 /*TODO*/); 1135 Entry = SectionMap.size(); 1136 } 1137 } 1138 if (F.hasGC()) { 1139 // Same for GC names. 1140 unsigned &Entry = GCMap[F.getGC()]; 1141 if (!Entry) { 1142 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1143 0 /*TODO*/); 1144 Entry = GCMap.size(); 1145 } 1146 } 1147 } 1148 1149 // Emit abbrev for globals, now that we know # sections and max alignment. 1150 unsigned SimpleGVarAbbrev = 0; 1151 if (!M.global_empty()) { 1152 // Add an abbrev for common globals with no visibility or thread localness. 1153 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1154 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1156 Log2_32_Ceil(MaxGlobalType+1))); 1157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1158 //| explicitType << 1 1159 //| constant 1160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1162 if (MaxAlignment == 0) // Alignment. 1163 Abbv->Add(BitCodeAbbrevOp(0)); 1164 else { 1165 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1167 Log2_32_Ceil(MaxEncAlignment+1))); 1168 } 1169 if (SectionMap.empty()) // Section. 1170 Abbv->Add(BitCodeAbbrevOp(0)); 1171 else 1172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1173 Log2_32_Ceil(SectionMap.size()+1))); 1174 // Don't bother emitting vis + thread local. 1175 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 1176 } 1177 1178 // Emit the global variable information. 1179 SmallVector<unsigned, 64> Vals; 1180 for (const GlobalVariable &GV : M.globals()) { 1181 unsigned AbbrevToUse = 0; 1182 1183 // GLOBALVAR: [type, isconst, initid, 1184 // linkage, alignment, section, visibility, threadlocal, 1185 // unnamed_addr, externally_initialized, dllstorageclass, 1186 // comdat] 1187 Vals.push_back(VE.getTypeID(GV.getValueType())); 1188 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1189 Vals.push_back(GV.isDeclaration() ? 0 : 1190 (VE.getValueID(GV.getInitializer()) + 1)); 1191 Vals.push_back(getEncodedLinkage(GV)); 1192 Vals.push_back(Log2_32(GV.getAlignment())+1); 1193 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1194 if (GV.isThreadLocal() || 1195 GV.getVisibility() != GlobalValue::DefaultVisibility || 1196 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1197 GV.isExternallyInitialized() || 1198 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1199 GV.hasComdat()) { 1200 Vals.push_back(getEncodedVisibility(GV)); 1201 Vals.push_back(getEncodedThreadLocalMode(GV)); 1202 Vals.push_back(getEncodedUnnamedAddr(GV)); 1203 Vals.push_back(GV.isExternallyInitialized()); 1204 Vals.push_back(getEncodedDLLStorageClass(GV)); 1205 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1206 } else { 1207 AbbrevToUse = SimpleGVarAbbrev; 1208 } 1209 1210 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1211 Vals.clear(); 1212 } 1213 1214 // Emit the function proto information. 1215 for (const Function &F : M) { 1216 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1217 // section, visibility, gc, unnamed_addr, prologuedata, 1218 // dllstorageclass, comdat, prefixdata, personalityfn] 1219 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1220 Vals.push_back(F.getCallingConv()); 1221 Vals.push_back(F.isDeclaration()); 1222 Vals.push_back(getEncodedLinkage(F)); 1223 Vals.push_back(VE.getAttributeID(F.getAttributes())); 1224 Vals.push_back(Log2_32(F.getAlignment())+1); 1225 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1226 Vals.push_back(getEncodedVisibility(F)); 1227 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1228 Vals.push_back(getEncodedUnnamedAddr(F)); 1229 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1230 : 0); 1231 Vals.push_back(getEncodedDLLStorageClass(F)); 1232 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1233 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1234 : 0); 1235 Vals.push_back( 1236 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1237 1238 unsigned AbbrevToUse = 0; 1239 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1240 Vals.clear(); 1241 } 1242 1243 // Emit the alias information. 1244 for (const GlobalAlias &A : M.aliases()) { 1245 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass, 1246 // threadlocal, unnamed_addr] 1247 Vals.push_back(VE.getTypeID(A.getValueType())); 1248 Vals.push_back(A.getType()->getAddressSpace()); 1249 Vals.push_back(VE.getValueID(A.getAliasee())); 1250 Vals.push_back(getEncodedLinkage(A)); 1251 Vals.push_back(getEncodedVisibility(A)); 1252 Vals.push_back(getEncodedDLLStorageClass(A)); 1253 Vals.push_back(getEncodedThreadLocalMode(A)); 1254 Vals.push_back(getEncodedUnnamedAddr(A)); 1255 unsigned AbbrevToUse = 0; 1256 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1257 Vals.clear(); 1258 } 1259 1260 // Emit the ifunc information. 1261 for (const GlobalIFunc &I : M.ifuncs()) { 1262 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 1263 Vals.push_back(VE.getTypeID(I.getValueType())); 1264 Vals.push_back(I.getType()->getAddressSpace()); 1265 Vals.push_back(VE.getValueID(I.getResolver())); 1266 Vals.push_back(getEncodedLinkage(I)); 1267 Vals.push_back(getEncodedVisibility(I)); 1268 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1269 Vals.clear(); 1270 } 1271 1272 // Emit the module's source file name. 1273 { 1274 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1275 M.getSourceFileName().size()); 1276 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1277 if (Bits == SE_Char6) 1278 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1279 else if (Bits == SE_Fixed7) 1280 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1281 1282 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1283 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1284 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1286 Abbv->Add(AbbrevOpToUse); 1287 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 1288 1289 for (const auto P : M.getSourceFileName()) 1290 Vals.push_back((unsigned char)P); 1291 1292 // Emit the finished record. 1293 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1294 Vals.clear(); 1295 } 1296 1297 // If we have a VST, write the VSTOFFSET record placeholder. 1298 if (M.getValueSymbolTable().empty()) 1299 return; 1300 writeValueSymbolTableForwardDecl(); 1301 } 1302 1303 static uint64_t getOptimizationFlags(const Value *V) { 1304 uint64_t Flags = 0; 1305 1306 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1307 if (OBO->hasNoSignedWrap()) 1308 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1309 if (OBO->hasNoUnsignedWrap()) 1310 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1311 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1312 if (PEO->isExact()) 1313 Flags |= 1 << bitc::PEO_EXACT; 1314 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1315 if (FPMO->hasUnsafeAlgebra()) 1316 Flags |= FastMathFlags::UnsafeAlgebra; 1317 if (FPMO->hasNoNaNs()) 1318 Flags |= FastMathFlags::NoNaNs; 1319 if (FPMO->hasNoInfs()) 1320 Flags |= FastMathFlags::NoInfs; 1321 if (FPMO->hasNoSignedZeros()) 1322 Flags |= FastMathFlags::NoSignedZeros; 1323 if (FPMO->hasAllowReciprocal()) 1324 Flags |= FastMathFlags::AllowReciprocal; 1325 } 1326 1327 return Flags; 1328 } 1329 1330 void ModuleBitcodeWriter::writeValueAsMetadata( 1331 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1332 // Mimic an MDNode with a value as one operand. 1333 Value *V = MD->getValue(); 1334 Record.push_back(VE.getTypeID(V->getType())); 1335 Record.push_back(VE.getValueID(V)); 1336 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1337 Record.clear(); 1338 } 1339 1340 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1341 SmallVectorImpl<uint64_t> &Record, 1342 unsigned Abbrev) { 1343 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1344 Metadata *MD = N->getOperand(i); 1345 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1346 "Unexpected function-local metadata"); 1347 Record.push_back(VE.getMetadataOrNullID(MD)); 1348 } 1349 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1350 : bitc::METADATA_NODE, 1351 Record, Abbrev); 1352 Record.clear(); 1353 } 1354 1355 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1356 // Assume the column is usually under 128, and always output the inlined-at 1357 // location (it's never more expensive than building an array size 1). 1358 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1359 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1365 return Stream.EmitAbbrev(Abbv); 1366 } 1367 1368 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1369 SmallVectorImpl<uint64_t> &Record, 1370 unsigned &Abbrev) { 1371 if (!Abbrev) 1372 Abbrev = createDILocationAbbrev(); 1373 1374 Record.push_back(N->isDistinct()); 1375 Record.push_back(N->getLine()); 1376 Record.push_back(N->getColumn()); 1377 Record.push_back(VE.getMetadataID(N->getScope())); 1378 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1379 1380 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1381 Record.clear(); 1382 } 1383 1384 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1385 // Assume the column is usually under 128, and always output the inlined-at 1386 // location (it's never more expensive than building an array size 1). 1387 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1388 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1395 return Stream.EmitAbbrev(Abbv); 1396 } 1397 1398 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1399 SmallVectorImpl<uint64_t> &Record, 1400 unsigned &Abbrev) { 1401 if (!Abbrev) 1402 Abbrev = createGenericDINodeAbbrev(); 1403 1404 Record.push_back(N->isDistinct()); 1405 Record.push_back(N->getTag()); 1406 Record.push_back(0); // Per-tag version field; unused for now. 1407 1408 for (auto &I : N->operands()) 1409 Record.push_back(VE.getMetadataOrNullID(I)); 1410 1411 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1412 Record.clear(); 1413 } 1414 1415 static uint64_t rotateSign(int64_t I) { 1416 uint64_t U = I; 1417 return I < 0 ? ~(U << 1) : U << 1; 1418 } 1419 1420 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1421 SmallVectorImpl<uint64_t> &Record, 1422 unsigned Abbrev) { 1423 Record.push_back(N->isDistinct()); 1424 Record.push_back(N->getCount()); 1425 Record.push_back(rotateSign(N->getLowerBound())); 1426 1427 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1428 Record.clear(); 1429 } 1430 1431 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1432 SmallVectorImpl<uint64_t> &Record, 1433 unsigned Abbrev) { 1434 Record.push_back(N->isDistinct()); 1435 Record.push_back(rotateSign(N->getValue())); 1436 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1437 1438 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1439 Record.clear(); 1440 } 1441 1442 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1443 SmallVectorImpl<uint64_t> &Record, 1444 unsigned Abbrev) { 1445 Record.push_back(N->isDistinct()); 1446 Record.push_back(N->getTag()); 1447 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1448 Record.push_back(N->getSizeInBits()); 1449 Record.push_back(N->getAlignInBits()); 1450 Record.push_back(N->getEncoding()); 1451 1452 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1453 Record.clear(); 1454 } 1455 1456 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1457 SmallVectorImpl<uint64_t> &Record, 1458 unsigned Abbrev) { 1459 Record.push_back(N->isDistinct()); 1460 Record.push_back(N->getTag()); 1461 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1462 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1463 Record.push_back(N->getLine()); 1464 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1465 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1466 Record.push_back(N->getSizeInBits()); 1467 Record.push_back(N->getAlignInBits()); 1468 Record.push_back(N->getOffsetInBits()); 1469 Record.push_back(N->getFlags()); 1470 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1471 1472 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1473 Record.clear(); 1474 } 1475 1476 void ModuleBitcodeWriter::writeDICompositeType( 1477 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1478 unsigned Abbrev) { 1479 const unsigned IsNotUsedInOldTypeRef = 0x2; 1480 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1481 Record.push_back(N->getTag()); 1482 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1483 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1484 Record.push_back(N->getLine()); 1485 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1486 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1487 Record.push_back(N->getSizeInBits()); 1488 Record.push_back(N->getAlignInBits()); 1489 Record.push_back(N->getOffsetInBits()); 1490 Record.push_back(N->getFlags()); 1491 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1492 Record.push_back(N->getRuntimeLang()); 1493 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1494 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1495 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1496 1497 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1498 Record.clear(); 1499 } 1500 1501 void ModuleBitcodeWriter::writeDISubroutineType( 1502 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1503 unsigned Abbrev) { 1504 const unsigned HasNoOldTypeRefs = 0x2; 1505 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1506 Record.push_back(N->getFlags()); 1507 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1508 Record.push_back(N->getCC()); 1509 1510 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1511 Record.clear(); 1512 } 1513 1514 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1515 SmallVectorImpl<uint64_t> &Record, 1516 unsigned Abbrev) { 1517 Record.push_back(N->isDistinct()); 1518 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1519 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1520 Record.push_back(N->getChecksumKind()); 1521 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1522 1523 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1524 Record.clear(); 1525 } 1526 1527 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1528 SmallVectorImpl<uint64_t> &Record, 1529 unsigned Abbrev) { 1530 assert(N->isDistinct() && "Expected distinct compile units"); 1531 Record.push_back(/* IsDistinct */ true); 1532 Record.push_back(N->getSourceLanguage()); 1533 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1534 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1535 Record.push_back(N->isOptimized()); 1536 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1537 Record.push_back(N->getRuntimeVersion()); 1538 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1539 Record.push_back(N->getEmissionKind()); 1540 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1541 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1542 Record.push_back(/* subprograms */ 0); 1543 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1544 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1545 Record.push_back(N->getDWOId()); 1546 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1547 Record.push_back(N->getSplitDebugInlining()); 1548 1549 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1550 Record.clear(); 1551 } 1552 1553 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1554 SmallVectorImpl<uint64_t> &Record, 1555 unsigned Abbrev) { 1556 uint64_t HasUnitFlag = 1 << 1; 1557 Record.push_back(N->isDistinct() | HasUnitFlag); 1558 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1559 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1560 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1561 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1562 Record.push_back(N->getLine()); 1563 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1564 Record.push_back(N->isLocalToUnit()); 1565 Record.push_back(N->isDefinition()); 1566 Record.push_back(N->getScopeLine()); 1567 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1568 Record.push_back(N->getVirtuality()); 1569 Record.push_back(N->getVirtualIndex()); 1570 Record.push_back(N->getFlags()); 1571 Record.push_back(N->isOptimized()); 1572 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1573 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1574 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1575 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1576 Record.push_back(N->getThisAdjustment()); 1577 1578 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1579 Record.clear(); 1580 } 1581 1582 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1583 SmallVectorImpl<uint64_t> &Record, 1584 unsigned Abbrev) { 1585 Record.push_back(N->isDistinct()); 1586 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1587 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1588 Record.push_back(N->getLine()); 1589 Record.push_back(N->getColumn()); 1590 1591 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1592 Record.clear(); 1593 } 1594 1595 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1596 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1597 unsigned Abbrev) { 1598 Record.push_back(N->isDistinct()); 1599 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1600 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1601 Record.push_back(N->getDiscriminator()); 1602 1603 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1604 Record.clear(); 1605 } 1606 1607 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1608 SmallVectorImpl<uint64_t> &Record, 1609 unsigned Abbrev) { 1610 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1611 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1612 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1613 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1614 Record.push_back(N->getLine()); 1615 1616 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1617 Record.clear(); 1618 } 1619 1620 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1621 SmallVectorImpl<uint64_t> &Record, 1622 unsigned Abbrev) { 1623 Record.push_back(N->isDistinct()); 1624 Record.push_back(N->getMacinfoType()); 1625 Record.push_back(N->getLine()); 1626 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1627 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1628 1629 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1630 Record.clear(); 1631 } 1632 1633 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1634 SmallVectorImpl<uint64_t> &Record, 1635 unsigned Abbrev) { 1636 Record.push_back(N->isDistinct()); 1637 Record.push_back(N->getMacinfoType()); 1638 Record.push_back(N->getLine()); 1639 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1640 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1641 1642 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1643 Record.clear(); 1644 } 1645 1646 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1647 SmallVectorImpl<uint64_t> &Record, 1648 unsigned Abbrev) { 1649 Record.push_back(N->isDistinct()); 1650 for (auto &I : N->operands()) 1651 Record.push_back(VE.getMetadataOrNullID(I)); 1652 1653 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1654 Record.clear(); 1655 } 1656 1657 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1658 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1659 unsigned Abbrev) { 1660 Record.push_back(N->isDistinct()); 1661 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1662 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1663 1664 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1665 Record.clear(); 1666 } 1667 1668 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1669 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1670 unsigned Abbrev) { 1671 Record.push_back(N->isDistinct()); 1672 Record.push_back(N->getTag()); 1673 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1674 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1675 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1676 1677 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1678 Record.clear(); 1679 } 1680 1681 void ModuleBitcodeWriter::writeDIGlobalVariable( 1682 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1683 unsigned Abbrev) { 1684 const uint64_t Version = 1 << 1; 1685 Record.push_back((uint64_t)N->isDistinct() | Version); 1686 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1688 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1689 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1690 Record.push_back(N->getLine()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1692 Record.push_back(N->isLocalToUnit()); 1693 Record.push_back(N->isDefinition()); 1694 Record.push_back(/* expr */ 0); 1695 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1696 Record.push_back(N->getAlignInBits()); 1697 1698 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1699 Record.clear(); 1700 } 1701 1702 void ModuleBitcodeWriter::writeDILocalVariable( 1703 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1704 unsigned Abbrev) { 1705 // In order to support all possible bitcode formats in BitcodeReader we need 1706 // to distinguish the following cases: 1707 // 1) Record has no artificial tag (Record[1]), 1708 // has no obsolete inlinedAt field (Record[9]). 1709 // In this case Record size will be 8, HasAlignment flag is false. 1710 // 2) Record has artificial tag (Record[1]), 1711 // has no obsolete inlignedAt field (Record[9]). 1712 // In this case Record size will be 9, HasAlignment flag is false. 1713 // 3) Record has both artificial tag (Record[1]) and 1714 // obsolete inlignedAt field (Record[9]). 1715 // In this case Record size will be 10, HasAlignment flag is false. 1716 // 4) Record has neither artificial tag, nor inlignedAt field, but 1717 // HasAlignment flag is true and Record[8] contains alignment value. 1718 const uint64_t HasAlignmentFlag = 1 << 1; 1719 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1720 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1723 Record.push_back(N->getLine()); 1724 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1725 Record.push_back(N->getArg()); 1726 Record.push_back(N->getFlags()); 1727 Record.push_back(N->getAlignInBits()); 1728 1729 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1730 Record.clear(); 1731 } 1732 1733 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1734 SmallVectorImpl<uint64_t> &Record, 1735 unsigned Abbrev) { 1736 Record.reserve(N->getElements().size() + 1); 1737 1738 const uint64_t HasOpFragmentFlag = 1 << 1; 1739 Record.push_back((uint64_t)N->isDistinct() | HasOpFragmentFlag); 1740 Record.append(N->elements_begin(), N->elements_end()); 1741 1742 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1743 Record.clear(); 1744 } 1745 1746 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1747 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1748 unsigned Abbrev) { 1749 Record.push_back(N->isDistinct()); 1750 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1751 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1752 1753 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1754 Record.clear(); 1755 } 1756 1757 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1758 SmallVectorImpl<uint64_t> &Record, 1759 unsigned Abbrev) { 1760 Record.push_back(N->isDistinct()); 1761 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1762 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1763 Record.push_back(N->getLine()); 1764 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1765 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1766 Record.push_back(N->getAttributes()); 1767 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1768 1769 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1770 Record.clear(); 1771 } 1772 1773 void ModuleBitcodeWriter::writeDIImportedEntity( 1774 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1775 unsigned Abbrev) { 1776 Record.push_back(N->isDistinct()); 1777 Record.push_back(N->getTag()); 1778 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1780 Record.push_back(N->getLine()); 1781 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1782 1783 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1784 Record.clear(); 1785 } 1786 1787 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1788 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1789 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1792 return Stream.EmitAbbrev(Abbv); 1793 } 1794 1795 void ModuleBitcodeWriter::writeNamedMetadata( 1796 SmallVectorImpl<uint64_t> &Record) { 1797 if (M.named_metadata_empty()) 1798 return; 1799 1800 unsigned Abbrev = createNamedMetadataAbbrev(); 1801 for (const NamedMDNode &NMD : M.named_metadata()) { 1802 // Write name. 1803 StringRef Str = NMD.getName(); 1804 Record.append(Str.bytes_begin(), Str.bytes_end()); 1805 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1806 Record.clear(); 1807 1808 // Write named metadata operands. 1809 for (const MDNode *N : NMD.operands()) 1810 Record.push_back(VE.getMetadataID(N)); 1811 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1812 Record.clear(); 1813 } 1814 } 1815 1816 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1817 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1818 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1822 return Stream.EmitAbbrev(Abbv); 1823 } 1824 1825 /// Write out a record for MDString. 1826 /// 1827 /// All the metadata strings in a metadata block are emitted in a single 1828 /// record. The sizes and strings themselves are shoved into a blob. 1829 void ModuleBitcodeWriter::writeMetadataStrings( 1830 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1831 if (Strings.empty()) 1832 return; 1833 1834 // Start the record with the number of strings. 1835 Record.push_back(bitc::METADATA_STRINGS); 1836 Record.push_back(Strings.size()); 1837 1838 // Emit the sizes of the strings in the blob. 1839 SmallString<256> Blob; 1840 { 1841 BitstreamWriter W(Blob); 1842 for (const Metadata *MD : Strings) 1843 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1844 W.FlushToWord(); 1845 } 1846 1847 // Add the offset to the strings to the record. 1848 Record.push_back(Blob.size()); 1849 1850 // Add the strings to the blob. 1851 for (const Metadata *MD : Strings) 1852 Blob.append(cast<MDString>(MD)->getString()); 1853 1854 // Emit the final record. 1855 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1856 Record.clear(); 1857 } 1858 1859 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1860 enum MetadataAbbrev : unsigned { 1861 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1862 #include "llvm/IR/Metadata.def" 1863 LastPlusOne 1864 }; 1865 1866 void ModuleBitcodeWriter::writeMetadataRecords( 1867 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1868 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1869 if (MDs.empty()) 1870 return; 1871 1872 // Initialize MDNode abbreviations. 1873 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1874 #include "llvm/IR/Metadata.def" 1875 1876 for (const Metadata *MD : MDs) { 1877 if (IndexPos) 1878 IndexPos->push_back(Stream.GetCurrentBitNo()); 1879 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1880 assert(N->isResolved() && "Expected forward references to be resolved"); 1881 1882 switch (N->getMetadataID()) { 1883 default: 1884 llvm_unreachable("Invalid MDNode subclass"); 1885 #define HANDLE_MDNODE_LEAF(CLASS) \ 1886 case Metadata::CLASS##Kind: \ 1887 if (MDAbbrevs) \ 1888 write##CLASS(cast<CLASS>(N), Record, \ 1889 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1890 else \ 1891 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1892 continue; 1893 #include "llvm/IR/Metadata.def" 1894 } 1895 } 1896 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1897 } 1898 } 1899 1900 void ModuleBitcodeWriter::writeModuleMetadata() { 1901 if (!VE.hasMDs() && M.named_metadata_empty()) 1902 return; 1903 1904 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1905 SmallVector<uint64_t, 64> Record; 1906 1907 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1908 // block and load any metadata. 1909 std::vector<unsigned> MDAbbrevs; 1910 1911 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1912 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1913 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1914 createGenericDINodeAbbrev(); 1915 1916 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1917 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 64)); 1919 unsigned OffsetAbbrev = Stream.EmitAbbrev(Abbv); 1920 1921 Abbv = new BitCodeAbbrev(); 1922 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1925 unsigned IndexAbbrev = Stream.EmitAbbrev(Abbv); 1926 1927 // Emit MDStrings together upfront. 1928 writeMetadataStrings(VE.getMDStrings(), Record); 1929 1930 // Write a placeholder value in for the offset of the metadata index, 1931 // which is written after the records, so that it can include 1932 // the offset of each entry. The placeholder offset will be 1933 // updated after all records are emitted. 1934 uint64_t Vals[] = {0}; 1935 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1936 1937 // Compute and save the bit offset to the current position, which will be 1938 // patched when we emit the index later. We can simply subtract the 64-bit 1939 // fixed size from the current bit number to get the location to backpatch. 1940 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1941 1942 // This index will contain the bitpos for each individual record. 1943 std::vector<uint64_t> IndexPos; 1944 IndexPos.reserve(VE.getNonMDStrings().size()); 1945 1946 // Write all the records 1947 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1948 1949 // Now that we have emitted all the records we will emit the index. But first 1950 // backpatch the forward reference so that the reader can skip the records 1951 // efficiently. 1952 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1953 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1954 1955 // Delta encode the index. 1956 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1957 for (auto &Elt : IndexPos) { 1958 auto EltDelta = Elt - PreviousValue; 1959 PreviousValue = Elt; 1960 Elt = EltDelta; 1961 } 1962 // Emit the index record. 1963 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1964 IndexPos.clear(); 1965 1966 // Write the named metadata now. 1967 writeNamedMetadata(Record); 1968 1969 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1970 SmallVector<uint64_t, 4> Record; 1971 Record.push_back(VE.getValueID(&GO)); 1972 pushGlobalMetadataAttachment(Record, GO); 1973 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1974 }; 1975 for (const Function &F : M) 1976 if (F.isDeclaration() && F.hasMetadata()) 1977 AddDeclAttachedMetadata(F); 1978 // FIXME: Only store metadata for declarations here, and move data for global 1979 // variable definitions to a separate block (PR28134). 1980 for (const GlobalVariable &GV : M.globals()) 1981 if (GV.hasMetadata()) 1982 AddDeclAttachedMetadata(GV); 1983 1984 Stream.ExitBlock(); 1985 } 1986 1987 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1988 if (!VE.hasMDs()) 1989 return; 1990 1991 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1992 SmallVector<uint64_t, 64> Record; 1993 writeMetadataStrings(VE.getMDStrings(), Record); 1994 writeMetadataRecords(VE.getNonMDStrings(), Record); 1995 Stream.ExitBlock(); 1996 } 1997 1998 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1999 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2000 // [n x [id, mdnode]] 2001 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2002 GO.getAllMetadata(MDs); 2003 for (const auto &I : MDs) { 2004 Record.push_back(I.first); 2005 Record.push_back(VE.getMetadataID(I.second)); 2006 } 2007 } 2008 2009 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2010 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2011 2012 SmallVector<uint64_t, 64> Record; 2013 2014 if (F.hasMetadata()) { 2015 pushGlobalMetadataAttachment(Record, F); 2016 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2017 Record.clear(); 2018 } 2019 2020 // Write metadata attachments 2021 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2022 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2023 for (const BasicBlock &BB : F) 2024 for (const Instruction &I : BB) { 2025 MDs.clear(); 2026 I.getAllMetadataOtherThanDebugLoc(MDs); 2027 2028 // If no metadata, ignore instruction. 2029 if (MDs.empty()) continue; 2030 2031 Record.push_back(VE.getInstructionID(&I)); 2032 2033 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2034 Record.push_back(MDs[i].first); 2035 Record.push_back(VE.getMetadataID(MDs[i].second)); 2036 } 2037 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2038 Record.clear(); 2039 } 2040 2041 Stream.ExitBlock(); 2042 } 2043 2044 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2045 SmallVector<uint64_t, 64> Record; 2046 2047 // Write metadata kinds 2048 // METADATA_KIND - [n x [id, name]] 2049 SmallVector<StringRef, 8> Names; 2050 M.getMDKindNames(Names); 2051 2052 if (Names.empty()) return; 2053 2054 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2055 2056 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2057 Record.push_back(MDKindID); 2058 StringRef KName = Names[MDKindID]; 2059 Record.append(KName.begin(), KName.end()); 2060 2061 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2062 Record.clear(); 2063 } 2064 2065 Stream.ExitBlock(); 2066 } 2067 2068 void ModuleBitcodeWriter::writeOperandBundleTags() { 2069 // Write metadata kinds 2070 // 2071 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2072 // 2073 // OPERAND_BUNDLE_TAG - [strchr x N] 2074 2075 SmallVector<StringRef, 8> Tags; 2076 M.getOperandBundleTags(Tags); 2077 2078 if (Tags.empty()) 2079 return; 2080 2081 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2082 2083 SmallVector<uint64_t, 64> Record; 2084 2085 for (auto Tag : Tags) { 2086 Record.append(Tag.begin(), Tag.end()); 2087 2088 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2089 Record.clear(); 2090 } 2091 2092 Stream.ExitBlock(); 2093 } 2094 2095 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2096 if ((int64_t)V >= 0) 2097 Vals.push_back(V << 1); 2098 else 2099 Vals.push_back((-V << 1) | 1); 2100 } 2101 2102 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2103 bool isGlobal) { 2104 if (FirstVal == LastVal) return; 2105 2106 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2107 2108 unsigned AggregateAbbrev = 0; 2109 unsigned String8Abbrev = 0; 2110 unsigned CString7Abbrev = 0; 2111 unsigned CString6Abbrev = 0; 2112 // If this is a constant pool for the module, emit module-specific abbrevs. 2113 if (isGlobal) { 2114 // Abbrev for CST_CODE_AGGREGATE. 2115 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2116 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2119 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 2120 2121 // Abbrev for CST_CODE_STRING. 2122 Abbv = new BitCodeAbbrev(); 2123 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2126 String8Abbrev = Stream.EmitAbbrev(Abbv); 2127 // Abbrev for CST_CODE_CSTRING. 2128 Abbv = new BitCodeAbbrev(); 2129 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2132 CString7Abbrev = Stream.EmitAbbrev(Abbv); 2133 // Abbrev for CST_CODE_CSTRING. 2134 Abbv = new BitCodeAbbrev(); 2135 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2138 CString6Abbrev = Stream.EmitAbbrev(Abbv); 2139 } 2140 2141 SmallVector<uint64_t, 64> Record; 2142 2143 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2144 Type *LastTy = nullptr; 2145 for (unsigned i = FirstVal; i != LastVal; ++i) { 2146 const Value *V = Vals[i].first; 2147 // If we need to switch types, do so now. 2148 if (V->getType() != LastTy) { 2149 LastTy = V->getType(); 2150 Record.push_back(VE.getTypeID(LastTy)); 2151 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2152 CONSTANTS_SETTYPE_ABBREV); 2153 Record.clear(); 2154 } 2155 2156 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2157 Record.push_back(unsigned(IA->hasSideEffects()) | 2158 unsigned(IA->isAlignStack()) << 1 | 2159 unsigned(IA->getDialect()&1) << 2); 2160 2161 // Add the asm string. 2162 const std::string &AsmStr = IA->getAsmString(); 2163 Record.push_back(AsmStr.size()); 2164 Record.append(AsmStr.begin(), AsmStr.end()); 2165 2166 // Add the constraint string. 2167 const std::string &ConstraintStr = IA->getConstraintString(); 2168 Record.push_back(ConstraintStr.size()); 2169 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2170 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2171 Record.clear(); 2172 continue; 2173 } 2174 const Constant *C = cast<Constant>(V); 2175 unsigned Code = -1U; 2176 unsigned AbbrevToUse = 0; 2177 if (C->isNullValue()) { 2178 Code = bitc::CST_CODE_NULL; 2179 } else if (isa<UndefValue>(C)) { 2180 Code = bitc::CST_CODE_UNDEF; 2181 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2182 if (IV->getBitWidth() <= 64) { 2183 uint64_t V = IV->getSExtValue(); 2184 emitSignedInt64(Record, V); 2185 Code = bitc::CST_CODE_INTEGER; 2186 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2187 } else { // Wide integers, > 64 bits in size. 2188 // We have an arbitrary precision integer value to write whose 2189 // bit width is > 64. However, in canonical unsigned integer 2190 // format it is likely that the high bits are going to be zero. 2191 // So, we only write the number of active words. 2192 unsigned NWords = IV->getValue().getActiveWords(); 2193 const uint64_t *RawWords = IV->getValue().getRawData(); 2194 for (unsigned i = 0; i != NWords; ++i) { 2195 emitSignedInt64(Record, RawWords[i]); 2196 } 2197 Code = bitc::CST_CODE_WIDE_INTEGER; 2198 } 2199 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2200 Code = bitc::CST_CODE_FLOAT; 2201 Type *Ty = CFP->getType(); 2202 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2203 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2204 } else if (Ty->isX86_FP80Ty()) { 2205 // api needed to prevent premature destruction 2206 // bits are not in the same order as a normal i80 APInt, compensate. 2207 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2208 const uint64_t *p = api.getRawData(); 2209 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2210 Record.push_back(p[0] & 0xffffLL); 2211 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2212 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2213 const uint64_t *p = api.getRawData(); 2214 Record.push_back(p[0]); 2215 Record.push_back(p[1]); 2216 } else { 2217 assert (0 && "Unknown FP type!"); 2218 } 2219 } else if (isa<ConstantDataSequential>(C) && 2220 cast<ConstantDataSequential>(C)->isString()) { 2221 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2222 // Emit constant strings specially. 2223 unsigned NumElts = Str->getNumElements(); 2224 // If this is a null-terminated string, use the denser CSTRING encoding. 2225 if (Str->isCString()) { 2226 Code = bitc::CST_CODE_CSTRING; 2227 --NumElts; // Don't encode the null, which isn't allowed by char6. 2228 } else { 2229 Code = bitc::CST_CODE_STRING; 2230 AbbrevToUse = String8Abbrev; 2231 } 2232 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2233 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2234 for (unsigned i = 0; i != NumElts; ++i) { 2235 unsigned char V = Str->getElementAsInteger(i); 2236 Record.push_back(V); 2237 isCStr7 &= (V & 128) == 0; 2238 if (isCStrChar6) 2239 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2240 } 2241 2242 if (isCStrChar6) 2243 AbbrevToUse = CString6Abbrev; 2244 else if (isCStr7) 2245 AbbrevToUse = CString7Abbrev; 2246 } else if (const ConstantDataSequential *CDS = 2247 dyn_cast<ConstantDataSequential>(C)) { 2248 Code = bitc::CST_CODE_DATA; 2249 Type *EltTy = CDS->getType()->getElementType(); 2250 if (isa<IntegerType>(EltTy)) { 2251 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2252 Record.push_back(CDS->getElementAsInteger(i)); 2253 } else { 2254 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2255 Record.push_back( 2256 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2257 } 2258 } else if (isa<ConstantAggregate>(C)) { 2259 Code = bitc::CST_CODE_AGGREGATE; 2260 for (const Value *Op : C->operands()) 2261 Record.push_back(VE.getValueID(Op)); 2262 AbbrevToUse = AggregateAbbrev; 2263 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2264 switch (CE->getOpcode()) { 2265 default: 2266 if (Instruction::isCast(CE->getOpcode())) { 2267 Code = bitc::CST_CODE_CE_CAST; 2268 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2269 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2270 Record.push_back(VE.getValueID(C->getOperand(0))); 2271 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2272 } else { 2273 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2274 Code = bitc::CST_CODE_CE_BINOP; 2275 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2276 Record.push_back(VE.getValueID(C->getOperand(0))); 2277 Record.push_back(VE.getValueID(C->getOperand(1))); 2278 uint64_t Flags = getOptimizationFlags(CE); 2279 if (Flags != 0) 2280 Record.push_back(Flags); 2281 } 2282 break; 2283 case Instruction::GetElementPtr: { 2284 Code = bitc::CST_CODE_CE_GEP; 2285 const auto *GO = cast<GEPOperator>(C); 2286 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2287 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2288 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2289 Record.push_back((*Idx << 1) | GO->isInBounds()); 2290 } else if (GO->isInBounds()) 2291 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2292 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2293 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2294 Record.push_back(VE.getValueID(C->getOperand(i))); 2295 } 2296 break; 2297 } 2298 case Instruction::Select: 2299 Code = bitc::CST_CODE_CE_SELECT; 2300 Record.push_back(VE.getValueID(C->getOperand(0))); 2301 Record.push_back(VE.getValueID(C->getOperand(1))); 2302 Record.push_back(VE.getValueID(C->getOperand(2))); 2303 break; 2304 case Instruction::ExtractElement: 2305 Code = bitc::CST_CODE_CE_EXTRACTELT; 2306 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2307 Record.push_back(VE.getValueID(C->getOperand(0))); 2308 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2309 Record.push_back(VE.getValueID(C->getOperand(1))); 2310 break; 2311 case Instruction::InsertElement: 2312 Code = bitc::CST_CODE_CE_INSERTELT; 2313 Record.push_back(VE.getValueID(C->getOperand(0))); 2314 Record.push_back(VE.getValueID(C->getOperand(1))); 2315 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2316 Record.push_back(VE.getValueID(C->getOperand(2))); 2317 break; 2318 case Instruction::ShuffleVector: 2319 // If the return type and argument types are the same, this is a 2320 // standard shufflevector instruction. If the types are different, 2321 // then the shuffle is widening or truncating the input vectors, and 2322 // the argument type must also be encoded. 2323 if (C->getType() == C->getOperand(0)->getType()) { 2324 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2325 } else { 2326 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2327 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2328 } 2329 Record.push_back(VE.getValueID(C->getOperand(0))); 2330 Record.push_back(VE.getValueID(C->getOperand(1))); 2331 Record.push_back(VE.getValueID(C->getOperand(2))); 2332 break; 2333 case Instruction::ICmp: 2334 case Instruction::FCmp: 2335 Code = bitc::CST_CODE_CE_CMP; 2336 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2337 Record.push_back(VE.getValueID(C->getOperand(0))); 2338 Record.push_back(VE.getValueID(C->getOperand(1))); 2339 Record.push_back(CE->getPredicate()); 2340 break; 2341 } 2342 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2343 Code = bitc::CST_CODE_BLOCKADDRESS; 2344 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2345 Record.push_back(VE.getValueID(BA->getFunction())); 2346 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2347 } else { 2348 #ifndef NDEBUG 2349 C->dump(); 2350 #endif 2351 llvm_unreachable("Unknown constant!"); 2352 } 2353 Stream.EmitRecord(Code, Record, AbbrevToUse); 2354 Record.clear(); 2355 } 2356 2357 Stream.ExitBlock(); 2358 } 2359 2360 void ModuleBitcodeWriter::writeModuleConstants() { 2361 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2362 2363 // Find the first constant to emit, which is the first non-globalvalue value. 2364 // We know globalvalues have been emitted by WriteModuleInfo. 2365 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2366 if (!isa<GlobalValue>(Vals[i].first)) { 2367 writeConstants(i, Vals.size(), true); 2368 return; 2369 } 2370 } 2371 } 2372 2373 /// pushValueAndType - The file has to encode both the value and type id for 2374 /// many values, because we need to know what type to create for forward 2375 /// references. However, most operands are not forward references, so this type 2376 /// field is not needed. 2377 /// 2378 /// This function adds V's value ID to Vals. If the value ID is higher than the 2379 /// instruction ID, then it is a forward reference, and it also includes the 2380 /// type ID. The value ID that is written is encoded relative to the InstID. 2381 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2382 SmallVectorImpl<unsigned> &Vals) { 2383 unsigned ValID = VE.getValueID(V); 2384 // Make encoding relative to the InstID. 2385 Vals.push_back(InstID - ValID); 2386 if (ValID >= InstID) { 2387 Vals.push_back(VE.getTypeID(V->getType())); 2388 return true; 2389 } 2390 return false; 2391 } 2392 2393 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2394 unsigned InstID) { 2395 SmallVector<unsigned, 64> Record; 2396 LLVMContext &C = CS.getInstruction()->getContext(); 2397 2398 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2399 const auto &Bundle = CS.getOperandBundleAt(i); 2400 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2401 2402 for (auto &Input : Bundle.Inputs) 2403 pushValueAndType(Input, InstID, Record); 2404 2405 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2406 Record.clear(); 2407 } 2408 } 2409 2410 /// pushValue - Like pushValueAndType, but where the type of the value is 2411 /// omitted (perhaps it was already encoded in an earlier operand). 2412 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2413 SmallVectorImpl<unsigned> &Vals) { 2414 unsigned ValID = VE.getValueID(V); 2415 Vals.push_back(InstID - ValID); 2416 } 2417 2418 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2419 SmallVectorImpl<uint64_t> &Vals) { 2420 unsigned ValID = VE.getValueID(V); 2421 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2422 emitSignedInt64(Vals, diff); 2423 } 2424 2425 /// WriteInstruction - Emit an instruction to the specified stream. 2426 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2427 unsigned InstID, 2428 SmallVectorImpl<unsigned> &Vals) { 2429 unsigned Code = 0; 2430 unsigned AbbrevToUse = 0; 2431 VE.setInstructionID(&I); 2432 switch (I.getOpcode()) { 2433 default: 2434 if (Instruction::isCast(I.getOpcode())) { 2435 Code = bitc::FUNC_CODE_INST_CAST; 2436 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2437 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2438 Vals.push_back(VE.getTypeID(I.getType())); 2439 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2440 } else { 2441 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2442 Code = bitc::FUNC_CODE_INST_BINOP; 2443 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2444 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2445 pushValue(I.getOperand(1), InstID, Vals); 2446 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2447 uint64_t Flags = getOptimizationFlags(&I); 2448 if (Flags != 0) { 2449 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2450 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2451 Vals.push_back(Flags); 2452 } 2453 } 2454 break; 2455 2456 case Instruction::GetElementPtr: { 2457 Code = bitc::FUNC_CODE_INST_GEP; 2458 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2459 auto &GEPInst = cast<GetElementPtrInst>(I); 2460 Vals.push_back(GEPInst.isInBounds()); 2461 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2462 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2463 pushValueAndType(I.getOperand(i), InstID, Vals); 2464 break; 2465 } 2466 case Instruction::ExtractValue: { 2467 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2468 pushValueAndType(I.getOperand(0), InstID, Vals); 2469 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2470 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2471 break; 2472 } 2473 case Instruction::InsertValue: { 2474 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2475 pushValueAndType(I.getOperand(0), InstID, Vals); 2476 pushValueAndType(I.getOperand(1), InstID, Vals); 2477 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2478 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2479 break; 2480 } 2481 case Instruction::Select: 2482 Code = bitc::FUNC_CODE_INST_VSELECT; 2483 pushValueAndType(I.getOperand(1), InstID, Vals); 2484 pushValue(I.getOperand(2), InstID, Vals); 2485 pushValueAndType(I.getOperand(0), InstID, Vals); 2486 break; 2487 case Instruction::ExtractElement: 2488 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2489 pushValueAndType(I.getOperand(0), InstID, Vals); 2490 pushValueAndType(I.getOperand(1), InstID, Vals); 2491 break; 2492 case Instruction::InsertElement: 2493 Code = bitc::FUNC_CODE_INST_INSERTELT; 2494 pushValueAndType(I.getOperand(0), InstID, Vals); 2495 pushValue(I.getOperand(1), InstID, Vals); 2496 pushValueAndType(I.getOperand(2), InstID, Vals); 2497 break; 2498 case Instruction::ShuffleVector: 2499 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2500 pushValueAndType(I.getOperand(0), InstID, Vals); 2501 pushValue(I.getOperand(1), InstID, Vals); 2502 pushValue(I.getOperand(2), InstID, Vals); 2503 break; 2504 case Instruction::ICmp: 2505 case Instruction::FCmp: { 2506 // compare returning Int1Ty or vector of Int1Ty 2507 Code = bitc::FUNC_CODE_INST_CMP2; 2508 pushValueAndType(I.getOperand(0), InstID, Vals); 2509 pushValue(I.getOperand(1), InstID, Vals); 2510 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2511 uint64_t Flags = getOptimizationFlags(&I); 2512 if (Flags != 0) 2513 Vals.push_back(Flags); 2514 break; 2515 } 2516 2517 case Instruction::Ret: 2518 { 2519 Code = bitc::FUNC_CODE_INST_RET; 2520 unsigned NumOperands = I.getNumOperands(); 2521 if (NumOperands == 0) 2522 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2523 else if (NumOperands == 1) { 2524 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2525 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2526 } else { 2527 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2528 pushValueAndType(I.getOperand(i), InstID, Vals); 2529 } 2530 } 2531 break; 2532 case Instruction::Br: 2533 { 2534 Code = bitc::FUNC_CODE_INST_BR; 2535 const BranchInst &II = cast<BranchInst>(I); 2536 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2537 if (II.isConditional()) { 2538 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2539 pushValue(II.getCondition(), InstID, Vals); 2540 } 2541 } 2542 break; 2543 case Instruction::Switch: 2544 { 2545 Code = bitc::FUNC_CODE_INST_SWITCH; 2546 const SwitchInst &SI = cast<SwitchInst>(I); 2547 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2548 pushValue(SI.getCondition(), InstID, Vals); 2549 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2550 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2551 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2552 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2553 } 2554 } 2555 break; 2556 case Instruction::IndirectBr: 2557 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2558 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2559 // Encode the address operand as relative, but not the basic blocks. 2560 pushValue(I.getOperand(0), InstID, Vals); 2561 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2562 Vals.push_back(VE.getValueID(I.getOperand(i))); 2563 break; 2564 2565 case Instruction::Invoke: { 2566 const InvokeInst *II = cast<InvokeInst>(&I); 2567 const Value *Callee = II->getCalledValue(); 2568 FunctionType *FTy = II->getFunctionType(); 2569 2570 if (II->hasOperandBundles()) 2571 writeOperandBundles(II, InstID); 2572 2573 Code = bitc::FUNC_CODE_INST_INVOKE; 2574 2575 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2576 Vals.push_back(II->getCallingConv() | 1 << 13); 2577 Vals.push_back(VE.getValueID(II->getNormalDest())); 2578 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2579 Vals.push_back(VE.getTypeID(FTy)); 2580 pushValueAndType(Callee, InstID, Vals); 2581 2582 // Emit value #'s for the fixed parameters. 2583 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2584 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2585 2586 // Emit type/value pairs for varargs params. 2587 if (FTy->isVarArg()) { 2588 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2589 i != e; ++i) 2590 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2591 } 2592 break; 2593 } 2594 case Instruction::Resume: 2595 Code = bitc::FUNC_CODE_INST_RESUME; 2596 pushValueAndType(I.getOperand(0), InstID, Vals); 2597 break; 2598 case Instruction::CleanupRet: { 2599 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2600 const auto &CRI = cast<CleanupReturnInst>(I); 2601 pushValue(CRI.getCleanupPad(), InstID, Vals); 2602 if (CRI.hasUnwindDest()) 2603 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2604 break; 2605 } 2606 case Instruction::CatchRet: { 2607 Code = bitc::FUNC_CODE_INST_CATCHRET; 2608 const auto &CRI = cast<CatchReturnInst>(I); 2609 pushValue(CRI.getCatchPad(), InstID, Vals); 2610 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2611 break; 2612 } 2613 case Instruction::CleanupPad: 2614 case Instruction::CatchPad: { 2615 const auto &FuncletPad = cast<FuncletPadInst>(I); 2616 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2617 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2618 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2619 2620 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2621 Vals.push_back(NumArgOperands); 2622 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2623 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2624 break; 2625 } 2626 case Instruction::CatchSwitch: { 2627 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2628 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2629 2630 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2631 2632 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2633 Vals.push_back(NumHandlers); 2634 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2635 Vals.push_back(VE.getValueID(CatchPadBB)); 2636 2637 if (CatchSwitch.hasUnwindDest()) 2638 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2639 break; 2640 } 2641 case Instruction::Unreachable: 2642 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2643 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2644 break; 2645 2646 case Instruction::PHI: { 2647 const PHINode &PN = cast<PHINode>(I); 2648 Code = bitc::FUNC_CODE_INST_PHI; 2649 // With the newer instruction encoding, forward references could give 2650 // negative valued IDs. This is most common for PHIs, so we use 2651 // signed VBRs. 2652 SmallVector<uint64_t, 128> Vals64; 2653 Vals64.push_back(VE.getTypeID(PN.getType())); 2654 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2655 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2656 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2657 } 2658 // Emit a Vals64 vector and exit. 2659 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2660 Vals64.clear(); 2661 return; 2662 } 2663 2664 case Instruction::LandingPad: { 2665 const LandingPadInst &LP = cast<LandingPadInst>(I); 2666 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2667 Vals.push_back(VE.getTypeID(LP.getType())); 2668 Vals.push_back(LP.isCleanup()); 2669 Vals.push_back(LP.getNumClauses()); 2670 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2671 if (LP.isCatch(I)) 2672 Vals.push_back(LandingPadInst::Catch); 2673 else 2674 Vals.push_back(LandingPadInst::Filter); 2675 pushValueAndType(LP.getClause(I), InstID, Vals); 2676 } 2677 break; 2678 } 2679 2680 case Instruction::Alloca: { 2681 Code = bitc::FUNC_CODE_INST_ALLOCA; 2682 const AllocaInst &AI = cast<AllocaInst>(I); 2683 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2684 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2685 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2686 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2687 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2688 "not enough bits for maximum alignment"); 2689 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2690 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2691 AlignRecord |= 1 << 6; 2692 AlignRecord |= AI.isSwiftError() << 7; 2693 Vals.push_back(AlignRecord); 2694 break; 2695 } 2696 2697 case Instruction::Load: 2698 if (cast<LoadInst>(I).isAtomic()) { 2699 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2700 pushValueAndType(I.getOperand(0), InstID, Vals); 2701 } else { 2702 Code = bitc::FUNC_CODE_INST_LOAD; 2703 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2704 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2705 } 2706 Vals.push_back(VE.getTypeID(I.getType())); 2707 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2708 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2709 if (cast<LoadInst>(I).isAtomic()) { 2710 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2711 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2712 } 2713 break; 2714 case Instruction::Store: 2715 if (cast<StoreInst>(I).isAtomic()) 2716 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2717 else 2718 Code = bitc::FUNC_CODE_INST_STORE; 2719 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2720 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2721 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2722 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2723 if (cast<StoreInst>(I).isAtomic()) { 2724 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2725 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2726 } 2727 break; 2728 case Instruction::AtomicCmpXchg: 2729 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2730 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2731 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2732 pushValue(I.getOperand(2), InstID, Vals); // newval. 2733 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2734 Vals.push_back( 2735 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2736 Vals.push_back( 2737 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2738 Vals.push_back( 2739 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2740 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2741 break; 2742 case Instruction::AtomicRMW: 2743 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2744 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2745 pushValue(I.getOperand(1), InstID, Vals); // val. 2746 Vals.push_back( 2747 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2748 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2749 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2750 Vals.push_back( 2751 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2752 break; 2753 case Instruction::Fence: 2754 Code = bitc::FUNC_CODE_INST_FENCE; 2755 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2756 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2757 break; 2758 case Instruction::Call: { 2759 const CallInst &CI = cast<CallInst>(I); 2760 FunctionType *FTy = CI.getFunctionType(); 2761 2762 if (CI.hasOperandBundles()) 2763 writeOperandBundles(&CI, InstID); 2764 2765 Code = bitc::FUNC_CODE_INST_CALL; 2766 2767 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2768 2769 unsigned Flags = getOptimizationFlags(&I); 2770 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2771 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2772 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2773 1 << bitc::CALL_EXPLICIT_TYPE | 2774 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2775 unsigned(Flags != 0) << bitc::CALL_FMF); 2776 if (Flags != 0) 2777 Vals.push_back(Flags); 2778 2779 Vals.push_back(VE.getTypeID(FTy)); 2780 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2781 2782 // Emit value #'s for the fixed parameters. 2783 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2784 // Check for labels (can happen with asm labels). 2785 if (FTy->getParamType(i)->isLabelTy()) 2786 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2787 else 2788 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2789 } 2790 2791 // Emit type/value pairs for varargs params. 2792 if (FTy->isVarArg()) { 2793 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2794 i != e; ++i) 2795 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2796 } 2797 break; 2798 } 2799 case Instruction::VAArg: 2800 Code = bitc::FUNC_CODE_INST_VAARG; 2801 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2802 pushValue(I.getOperand(0), InstID, Vals); // valist. 2803 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2804 break; 2805 } 2806 2807 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2808 Vals.clear(); 2809 } 2810 2811 /// Emit names for globals/functions etc. \p IsModuleLevel is true when 2812 /// we are writing the module-level VST, where we are including a function 2813 /// bitcode index and need to backpatch the VST forward declaration record. 2814 void ModuleBitcodeWriter::writeValueSymbolTable( 2815 const ValueSymbolTable &VST, bool IsModuleLevel, 2816 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) { 2817 if (VST.empty()) { 2818 // writeValueSymbolTableForwardDecl should have returned early as 2819 // well. Ensure this handling remains in sync by asserting that 2820 // the placeholder offset is not set. 2821 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder()); 2822 return; 2823 } 2824 2825 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2826 // Get the offset of the VST we are writing, and backpatch it into 2827 // the VST forward declaration record. 2828 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2829 // The BitcodeStartBit was the stream offset of the identification block. 2830 VSTOffset -= bitcodeStartBit(); 2831 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2832 // Note that we add 1 here because the offset is relative to one word 2833 // before the start of the identification block, which was historically 2834 // always the start of the regular bitcode header. 2835 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2836 } 2837 2838 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2839 2840 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2841 // records, which are not used in the per-function VSTs. 2842 unsigned FnEntry8BitAbbrev; 2843 unsigned FnEntry7BitAbbrev; 2844 unsigned FnEntry6BitAbbrev; 2845 unsigned GUIDEntryAbbrev; 2846 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2847 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2848 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2849 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2854 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2855 2856 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2857 Abbv = new BitCodeAbbrev(); 2858 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2863 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2864 2865 // 6-bit char6 VST_CODE_FNENTRY function strings. 2866 Abbv = new BitCodeAbbrev(); 2867 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2869 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2872 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2873 2874 // FIXME: Change the name of this record as it is now used by 2875 // the per-module index as well. 2876 Abbv = new BitCodeAbbrev(); 2877 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2880 GUIDEntryAbbrev = Stream.EmitAbbrev(Abbv); 2881 } 2882 2883 // FIXME: Set up the abbrev, we know how many values there are! 2884 // FIXME: We know if the type names can use 7-bit ascii. 2885 SmallVector<uint64_t, 64> NameVals; 2886 2887 for (const ValueName &Name : VST) { 2888 // Figure out the encoding to use for the name. 2889 StringEncoding Bits = 2890 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2891 2892 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2893 NameVals.push_back(VE.getValueID(Name.getValue())); 2894 2895 Function *F = dyn_cast<Function>(Name.getValue()); 2896 if (!F) { 2897 // If value is an alias, need to get the aliased base object to 2898 // see if it is a function. 2899 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2900 if (GA && GA->getBaseObject()) 2901 F = dyn_cast<Function>(GA->getBaseObject()); 2902 } 2903 2904 // VST_CODE_ENTRY: [valueid, namechar x N] 2905 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2906 // VST_CODE_BBENTRY: [bbid, namechar x N] 2907 unsigned Code; 2908 if (isa<BasicBlock>(Name.getValue())) { 2909 Code = bitc::VST_CODE_BBENTRY; 2910 if (Bits == SE_Char6) 2911 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2912 } else if (F && !F->isDeclaration()) { 2913 // Must be the module-level VST, where we pass in the Index and 2914 // have a VSTOffsetPlaceholder. The function-level VST should not 2915 // contain any Function symbols. 2916 assert(FunctionToBitcodeIndex); 2917 assert(hasVSTOffsetPlaceholder()); 2918 2919 // Save the word offset of the function (from the start of the 2920 // actual bitcode written to the stream). 2921 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit(); 2922 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2923 // Note that we add 1 here because the offset is relative to one word 2924 // before the start of the identification block, which was historically 2925 // always the start of the regular bitcode header. 2926 NameVals.push_back(BitcodeIndex / 32 + 1); 2927 2928 Code = bitc::VST_CODE_FNENTRY; 2929 AbbrevToUse = FnEntry8BitAbbrev; 2930 if (Bits == SE_Char6) 2931 AbbrevToUse = FnEntry6BitAbbrev; 2932 else if (Bits == SE_Fixed7) 2933 AbbrevToUse = FnEntry7BitAbbrev; 2934 } else { 2935 Code = bitc::VST_CODE_ENTRY; 2936 if (Bits == SE_Char6) 2937 AbbrevToUse = VST_ENTRY_6_ABBREV; 2938 else if (Bits == SE_Fixed7) 2939 AbbrevToUse = VST_ENTRY_7_ABBREV; 2940 } 2941 2942 for (const auto P : Name.getKey()) 2943 NameVals.push_back((unsigned char)P); 2944 2945 // Emit the finished record. 2946 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2947 NameVals.clear(); 2948 } 2949 // Emit any GUID valueIDs created for indirect call edges into the 2950 // module-level VST. 2951 if (IsModuleLevel && hasVSTOffsetPlaceholder()) 2952 for (const auto &GI : valueIds()) { 2953 NameVals.push_back(GI.second); 2954 NameVals.push_back(GI.first); 2955 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, 2956 GUIDEntryAbbrev); 2957 NameVals.clear(); 2958 } 2959 Stream.ExitBlock(); 2960 } 2961 2962 /// Emit function names and summary offsets for the combined index 2963 /// used by ThinLTO. 2964 void IndexBitcodeWriter::writeCombinedValueSymbolTable() { 2965 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"); 2966 // Get the offset of the VST we are writing, and backpatch it into 2967 // the VST forward declaration record. 2968 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2969 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2970 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2971 2972 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2973 2974 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2975 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2978 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2979 2980 SmallVector<uint64_t, 64> NameVals; 2981 for (const auto &GVI : valueIds()) { 2982 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2983 NameVals.push_back(GVI.second); 2984 NameVals.push_back(GVI.first); 2985 2986 // Emit the finished record. 2987 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2988 NameVals.clear(); 2989 } 2990 Stream.ExitBlock(); 2991 } 2992 2993 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2994 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2995 unsigned Code; 2996 if (isa<BasicBlock>(Order.V)) 2997 Code = bitc::USELIST_CODE_BB; 2998 else 2999 Code = bitc::USELIST_CODE_DEFAULT; 3000 3001 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3002 Record.push_back(VE.getValueID(Order.V)); 3003 Stream.EmitRecord(Code, Record); 3004 } 3005 3006 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3007 assert(VE.shouldPreserveUseListOrder() && 3008 "Expected to be preserving use-list order"); 3009 3010 auto hasMore = [&]() { 3011 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3012 }; 3013 if (!hasMore()) 3014 // Nothing to do. 3015 return; 3016 3017 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3018 while (hasMore()) { 3019 writeUseList(std::move(VE.UseListOrders.back())); 3020 VE.UseListOrders.pop_back(); 3021 } 3022 Stream.ExitBlock(); 3023 } 3024 3025 /// Emit a function body to the module stream. 3026 void ModuleBitcodeWriter::writeFunction( 3027 const Function &F, 3028 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3029 // Save the bitcode index of the start of this function block for recording 3030 // in the VST. 3031 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3032 3033 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3034 VE.incorporateFunction(F); 3035 3036 SmallVector<unsigned, 64> Vals; 3037 3038 // Emit the number of basic blocks, so the reader can create them ahead of 3039 // time. 3040 Vals.push_back(VE.getBasicBlocks().size()); 3041 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3042 Vals.clear(); 3043 3044 // If there are function-local constants, emit them now. 3045 unsigned CstStart, CstEnd; 3046 VE.getFunctionConstantRange(CstStart, CstEnd); 3047 writeConstants(CstStart, CstEnd, false); 3048 3049 // If there is function-local metadata, emit it now. 3050 writeFunctionMetadata(F); 3051 3052 // Keep a running idea of what the instruction ID is. 3053 unsigned InstID = CstEnd; 3054 3055 bool NeedsMetadataAttachment = F.hasMetadata(); 3056 3057 DILocation *LastDL = nullptr; 3058 // Finally, emit all the instructions, in order. 3059 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3060 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3061 I != E; ++I) { 3062 writeInstruction(*I, InstID, Vals); 3063 3064 if (!I->getType()->isVoidTy()) 3065 ++InstID; 3066 3067 // If the instruction has metadata, write a metadata attachment later. 3068 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3069 3070 // If the instruction has a debug location, emit it. 3071 DILocation *DL = I->getDebugLoc(); 3072 if (!DL) 3073 continue; 3074 3075 if (DL == LastDL) { 3076 // Just repeat the same debug loc as last time. 3077 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3078 continue; 3079 } 3080 3081 Vals.push_back(DL->getLine()); 3082 Vals.push_back(DL->getColumn()); 3083 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3084 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3085 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3086 Vals.clear(); 3087 3088 LastDL = DL; 3089 } 3090 3091 // Emit names for all the instructions etc. 3092 if (auto *Symtab = F.getValueSymbolTable()) 3093 writeValueSymbolTable(*Symtab); 3094 3095 if (NeedsMetadataAttachment) 3096 writeFunctionMetadataAttachment(F); 3097 if (VE.shouldPreserveUseListOrder()) 3098 writeUseListBlock(&F); 3099 VE.purgeFunction(); 3100 Stream.ExitBlock(); 3101 } 3102 3103 // Emit blockinfo, which defines the standard abbreviations etc. 3104 void ModuleBitcodeWriter::writeBlockInfo() { 3105 // We only want to emit block info records for blocks that have multiple 3106 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3107 // Other blocks can define their abbrevs inline. 3108 Stream.EnterBlockInfoBlock(); 3109 3110 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3111 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3116 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3117 VST_ENTRY_8_ABBREV) 3118 llvm_unreachable("Unexpected abbrev ordering!"); 3119 } 3120 3121 { // 7-bit fixed width VST_CODE_ENTRY strings. 3122 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3123 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3127 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3128 VST_ENTRY_7_ABBREV) 3129 llvm_unreachable("Unexpected abbrev ordering!"); 3130 } 3131 { // 6-bit char6 VST_CODE_ENTRY strings. 3132 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3133 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3137 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3138 VST_ENTRY_6_ABBREV) 3139 llvm_unreachable("Unexpected abbrev ordering!"); 3140 } 3141 { // 6-bit char6 VST_CODE_BBENTRY strings. 3142 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3143 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3147 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3148 VST_BBENTRY_6_ABBREV) 3149 llvm_unreachable("Unexpected abbrev ordering!"); 3150 } 3151 3152 3153 3154 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3155 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3156 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3158 VE.computeBitsRequiredForTypeIndicies())); 3159 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3160 CONSTANTS_SETTYPE_ABBREV) 3161 llvm_unreachable("Unexpected abbrev ordering!"); 3162 } 3163 3164 { // INTEGER abbrev for CONSTANTS_BLOCK. 3165 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3166 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3168 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3169 CONSTANTS_INTEGER_ABBREV) 3170 llvm_unreachable("Unexpected abbrev ordering!"); 3171 } 3172 3173 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3174 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3175 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3178 VE.computeBitsRequiredForTypeIndicies())); 3179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3180 3181 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3182 CONSTANTS_CE_CAST_Abbrev) 3183 llvm_unreachable("Unexpected abbrev ordering!"); 3184 } 3185 { // NULL abbrev for CONSTANTS_BLOCK. 3186 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3187 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3188 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3189 CONSTANTS_NULL_Abbrev) 3190 llvm_unreachable("Unexpected abbrev ordering!"); 3191 } 3192 3193 // FIXME: This should only use space for first class types! 3194 3195 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3196 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3197 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3200 VE.computeBitsRequiredForTypeIndicies())); 3201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3203 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3204 FUNCTION_INST_LOAD_ABBREV) 3205 llvm_unreachable("Unexpected abbrev ordering!"); 3206 } 3207 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3208 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3209 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3213 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3214 FUNCTION_INST_BINOP_ABBREV) 3215 llvm_unreachable("Unexpected abbrev ordering!"); 3216 } 3217 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3218 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3219 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3224 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3225 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3226 llvm_unreachable("Unexpected abbrev ordering!"); 3227 } 3228 { // INST_CAST abbrev for FUNCTION_BLOCK. 3229 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3230 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3233 VE.computeBitsRequiredForTypeIndicies())); 3234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3235 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3236 FUNCTION_INST_CAST_ABBREV) 3237 llvm_unreachable("Unexpected abbrev ordering!"); 3238 } 3239 3240 { // INST_RET abbrev for FUNCTION_BLOCK. 3241 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3242 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3243 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3244 FUNCTION_INST_RET_VOID_ABBREV) 3245 llvm_unreachable("Unexpected abbrev ordering!"); 3246 } 3247 { // INST_RET abbrev for FUNCTION_BLOCK. 3248 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3249 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3251 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3252 FUNCTION_INST_RET_VAL_ABBREV) 3253 llvm_unreachable("Unexpected abbrev ordering!"); 3254 } 3255 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3256 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3257 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3258 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3259 FUNCTION_INST_UNREACHABLE_ABBREV) 3260 llvm_unreachable("Unexpected abbrev ordering!"); 3261 } 3262 { 3263 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3264 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3267 Log2_32_Ceil(VE.getTypes().size() + 1))); 3268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3270 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3271 FUNCTION_INST_GEP_ABBREV) 3272 llvm_unreachable("Unexpected abbrev ordering!"); 3273 } 3274 3275 Stream.ExitBlock(); 3276 } 3277 3278 /// Write the module path strings, currently only used when generating 3279 /// a combined index file. 3280 void IndexBitcodeWriter::writeModStrings() { 3281 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3282 3283 // TODO: See which abbrev sizes we actually need to emit 3284 3285 // 8-bit fixed-width MST_ENTRY strings. 3286 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3287 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3291 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 3292 3293 // 7-bit fixed width MST_ENTRY strings. 3294 Abbv = new BitCodeAbbrev(); 3295 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3299 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 3300 3301 // 6-bit char6 MST_ENTRY strings. 3302 Abbv = new BitCodeAbbrev(); 3303 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3307 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 3308 3309 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3310 Abbv = new BitCodeAbbrev(); 3311 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3317 unsigned AbbrevHash = Stream.EmitAbbrev(Abbv); 3318 3319 SmallVector<unsigned, 64> Vals; 3320 for (const auto &MPSE : Index.modulePaths()) { 3321 if (!doIncludeModule(MPSE.getKey())) 3322 continue; 3323 StringEncoding Bits = 3324 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3325 unsigned AbbrevToUse = Abbrev8Bit; 3326 if (Bits == SE_Char6) 3327 AbbrevToUse = Abbrev6Bit; 3328 else if (Bits == SE_Fixed7) 3329 AbbrevToUse = Abbrev7Bit; 3330 3331 Vals.push_back(MPSE.getValue().first); 3332 3333 for (const auto P : MPSE.getKey()) 3334 Vals.push_back((unsigned char)P); 3335 3336 // Emit the finished record. 3337 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3338 3339 Vals.clear(); 3340 // Emit an optional hash for the module now 3341 auto &Hash = MPSE.getValue().second; 3342 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3343 for (auto Val : Hash) { 3344 if (Val) 3345 AllZero = false; 3346 Vals.push_back(Val); 3347 } 3348 if (!AllZero) { 3349 // Emit the hash record. 3350 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3351 } 3352 3353 Vals.clear(); 3354 } 3355 Stream.ExitBlock(); 3356 } 3357 3358 // Helper to emit a single function summary record. 3359 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3360 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3361 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3362 const Function &F) { 3363 NameVals.push_back(ValueID); 3364 3365 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3366 if (!FS->type_tests().empty()) 3367 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3368 3369 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3370 NameVals.push_back(FS->instCount()); 3371 NameVals.push_back(FS->refs().size()); 3372 3373 for (auto &RI : FS->refs()) 3374 NameVals.push_back(VE.getValueID(RI.getValue())); 3375 3376 bool HasProfileData = F.getEntryCount().hasValue(); 3377 for (auto &ECI : FS->calls()) { 3378 NameVals.push_back(getValueId(ECI.first)); 3379 if (HasProfileData) 3380 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3381 } 3382 3383 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3384 unsigned Code = 3385 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3386 3387 // Emit the finished record. 3388 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3389 NameVals.clear(); 3390 } 3391 3392 // Collect the global value references in the given variable's initializer, 3393 // and emit them in a summary record. 3394 void ModuleBitcodeWriter::writeModuleLevelReferences( 3395 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3396 unsigned FSModRefsAbbrev) { 3397 auto Summaries = 3398 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName())); 3399 if (Summaries == Index->end()) { 3400 // Only declarations should not have a summary (a declaration might however 3401 // have a summary if the def was in module level asm). 3402 assert(V.isDeclaration()); 3403 return; 3404 } 3405 auto *Summary = Summaries->second.front().get(); 3406 NameVals.push_back(VE.getValueID(&V)); 3407 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3408 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3409 3410 unsigned SizeBeforeRefs = NameVals.size(); 3411 for (auto &RI : VS->refs()) 3412 NameVals.push_back(VE.getValueID(RI.getValue())); 3413 // Sort the refs for determinism output, the vector returned by FS->refs() has 3414 // been initialized from a DenseSet. 3415 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3416 3417 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3418 FSModRefsAbbrev); 3419 NameVals.clear(); 3420 } 3421 3422 // Current version for the summary. 3423 // This is bumped whenever we introduce changes in the way some record are 3424 // interpreted, like flags for instance. 3425 static const uint64_t INDEX_VERSION = 2; 3426 3427 /// Emit the per-module summary section alongside the rest of 3428 /// the module's bitcode. 3429 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3430 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3431 3432 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3433 3434 if (Index->begin() == Index->end()) { 3435 Stream.ExitBlock(); 3436 return; 3437 } 3438 3439 // Abbrev for FS_PERMODULE. 3440 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3441 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3446 // numrefs x valueid, n x (valueid) 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3449 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3450 3451 // Abbrev for FS_PERMODULE_PROFILE. 3452 Abbv = new BitCodeAbbrev(); 3453 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3458 // numrefs x valueid, n x (valueid, hotness) 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3461 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3462 3463 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3464 Abbv = new BitCodeAbbrev(); 3465 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3470 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3471 3472 // Abbrev for FS_ALIAS. 3473 Abbv = new BitCodeAbbrev(); 3474 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3478 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3479 3480 SmallVector<uint64_t, 64> NameVals; 3481 // Iterate over the list of functions instead of the Index to 3482 // ensure the ordering is stable. 3483 for (const Function &F : M) { 3484 // Summary emission does not support anonymous functions, they have to 3485 // renamed using the anonymous function renaming pass. 3486 if (!F.hasName()) 3487 report_fatal_error("Unexpected anonymous function when writing summary"); 3488 3489 auto Summaries = 3490 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName())); 3491 if (Summaries == Index->end()) { 3492 // Only declarations should not have a summary (a declaration might 3493 // however have a summary if the def was in module level asm). 3494 assert(F.isDeclaration()); 3495 continue; 3496 } 3497 auto *Summary = Summaries->second.front().get(); 3498 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3499 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3500 } 3501 3502 // Capture references from GlobalVariable initializers, which are outside 3503 // of a function scope. 3504 for (const GlobalVariable &G : M.globals()) 3505 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3506 3507 for (const GlobalAlias &A : M.aliases()) { 3508 auto *Aliasee = A.getBaseObject(); 3509 if (!Aliasee->hasName()) 3510 // Nameless function don't have an entry in the summary, skip it. 3511 continue; 3512 auto AliasId = VE.getValueID(&A); 3513 auto AliaseeId = VE.getValueID(Aliasee); 3514 NameVals.push_back(AliasId); 3515 auto *Summary = Index->getGlobalValueSummary(A); 3516 AliasSummary *AS = cast<AliasSummary>(Summary); 3517 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3518 NameVals.push_back(AliaseeId); 3519 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3520 NameVals.clear(); 3521 } 3522 3523 Stream.ExitBlock(); 3524 } 3525 3526 /// Emit the combined summary section into the combined index file. 3527 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3528 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3529 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3530 3531 // Abbrev for FS_COMBINED. 3532 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3533 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3539 // numrefs x valueid, n x (valueid) 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3542 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3543 3544 // Abbrev for FS_COMBINED_PROFILE. 3545 Abbv = new BitCodeAbbrev(); 3546 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3552 // numrefs x valueid, n x (valueid, hotness) 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3555 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3556 3557 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3558 Abbv = new BitCodeAbbrev(); 3559 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3565 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3566 3567 // Abbrev for FS_COMBINED_ALIAS. 3568 Abbv = new BitCodeAbbrev(); 3569 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3574 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3575 3576 // The aliases are emitted as a post-pass, and will point to the value 3577 // id of the aliasee. Save them in a vector for post-processing. 3578 SmallVector<AliasSummary *, 64> Aliases; 3579 3580 // Save the value id for each summary for alias emission. 3581 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3582 3583 SmallVector<uint64_t, 64> NameVals; 3584 3585 // For local linkage, we also emit the original name separately 3586 // immediately after the record. 3587 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3588 if (!GlobalValue::isLocalLinkage(S.linkage())) 3589 return; 3590 NameVals.push_back(S.getOriginalName()); 3591 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3592 NameVals.clear(); 3593 }; 3594 3595 for (const auto &I : *this) { 3596 GlobalValueSummary *S = I.second; 3597 assert(S); 3598 3599 assert(hasValueId(I.first)); 3600 unsigned ValueId = getValueId(I.first); 3601 SummaryToValueIdMap[S] = ValueId; 3602 3603 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3604 // Will process aliases as a post-pass because the reader wants all 3605 // global to be loaded first. 3606 Aliases.push_back(AS); 3607 continue; 3608 } 3609 3610 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3611 NameVals.push_back(ValueId); 3612 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3613 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3614 for (auto &RI : VS->refs()) { 3615 NameVals.push_back(getValueId(RI.getGUID())); 3616 } 3617 3618 // Emit the finished record. 3619 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3620 FSModRefsAbbrev); 3621 NameVals.clear(); 3622 MaybeEmitOriginalName(*S); 3623 continue; 3624 } 3625 3626 auto *FS = cast<FunctionSummary>(S); 3627 if (!FS->type_tests().empty()) 3628 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3629 3630 NameVals.push_back(ValueId); 3631 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3632 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3633 NameVals.push_back(FS->instCount()); 3634 NameVals.push_back(FS->refs().size()); 3635 3636 for (auto &RI : FS->refs()) { 3637 NameVals.push_back(getValueId(RI.getGUID())); 3638 } 3639 3640 bool HasProfileData = false; 3641 for (auto &EI : FS->calls()) { 3642 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3643 if (HasProfileData) 3644 break; 3645 } 3646 3647 for (auto &EI : FS->calls()) { 3648 // If this GUID doesn't have a value id, it doesn't have a function 3649 // summary and we don't need to record any calls to it. 3650 if (!hasValueId(EI.first.getGUID())) 3651 continue; 3652 NameVals.push_back(getValueId(EI.first.getGUID())); 3653 if (HasProfileData) 3654 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3655 } 3656 3657 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3658 unsigned Code = 3659 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3660 3661 // Emit the finished record. 3662 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3663 NameVals.clear(); 3664 MaybeEmitOriginalName(*S); 3665 } 3666 3667 for (auto *AS : Aliases) { 3668 auto AliasValueId = SummaryToValueIdMap[AS]; 3669 assert(AliasValueId); 3670 NameVals.push_back(AliasValueId); 3671 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3672 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3673 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3674 assert(AliaseeValueId); 3675 NameVals.push_back(AliaseeValueId); 3676 3677 // Emit the finished record. 3678 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3679 NameVals.clear(); 3680 MaybeEmitOriginalName(*AS); 3681 } 3682 3683 Stream.ExitBlock(); 3684 } 3685 3686 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3687 /// current llvm version, and a record for the epoch number. 3688 void writeIdentificationBlock(BitstreamWriter &Stream) { 3689 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3690 3691 // Write the "user readable" string identifying the bitcode producer 3692 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3693 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3696 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3697 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3698 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3699 3700 // Write the epoch version 3701 Abbv = new BitCodeAbbrev(); 3702 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3704 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3705 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3706 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3707 Stream.ExitBlock(); 3708 } 3709 3710 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3711 // Emit the module's hash. 3712 // MODULE_CODE_HASH: [5*i32] 3713 SHA1 Hasher; 3714 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3715 Buffer.size() - BlockStartPos)); 3716 StringRef Hash = Hasher.result(); 3717 uint32_t Vals[5]; 3718 for (int Pos = 0; Pos < 20; Pos += 4) { 3719 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3720 } 3721 3722 // Emit the finished record. 3723 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3724 } 3725 3726 void ModuleBitcodeWriter::write() { 3727 writeIdentificationBlock(Stream); 3728 3729 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3730 size_t BlockStartPos = Buffer.size(); 3731 3732 SmallVector<unsigned, 1> Vals; 3733 unsigned CurVersion = 1; 3734 Vals.push_back(CurVersion); 3735 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3736 3737 // Emit blockinfo, which defines the standard abbreviations etc. 3738 writeBlockInfo(); 3739 3740 // Emit information about attribute groups. 3741 writeAttributeGroupTable(); 3742 3743 // Emit information about parameter attributes. 3744 writeAttributeTable(); 3745 3746 // Emit information describing all of the types in the module. 3747 writeTypeTable(); 3748 3749 writeComdats(); 3750 3751 // Emit top-level description of module, including target triple, inline asm, 3752 // descriptors for global variables, and function prototype info. 3753 writeModuleInfo(); 3754 3755 // Emit constants. 3756 writeModuleConstants(); 3757 3758 // Emit metadata kind names. 3759 writeModuleMetadataKinds(); 3760 3761 // Emit metadata. 3762 writeModuleMetadata(); 3763 3764 // Emit module-level use-lists. 3765 if (VE.shouldPreserveUseListOrder()) 3766 writeUseListBlock(nullptr); 3767 3768 writeOperandBundleTags(); 3769 3770 // Emit function bodies. 3771 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3772 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3773 if (!F->isDeclaration()) 3774 writeFunction(*F, FunctionToBitcodeIndex); 3775 3776 // Need to write after the above call to WriteFunction which populates 3777 // the summary information in the index. 3778 if (Index) 3779 writePerModuleGlobalValueSummary(); 3780 3781 writeValueSymbolTable(M.getValueSymbolTable(), 3782 /* IsModuleLevel */ true, &FunctionToBitcodeIndex); 3783 3784 if (GenerateHash) { 3785 writeModuleHash(BlockStartPos); 3786 } 3787 3788 Stream.ExitBlock(); 3789 } 3790 3791 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3792 uint32_t &Position) { 3793 support::endian::write32le(&Buffer[Position], Value); 3794 Position += 4; 3795 } 3796 3797 /// If generating a bc file on darwin, we have to emit a 3798 /// header and trailer to make it compatible with the system archiver. To do 3799 /// this we emit the following header, and then emit a trailer that pads the 3800 /// file out to be a multiple of 16 bytes. 3801 /// 3802 /// struct bc_header { 3803 /// uint32_t Magic; // 0x0B17C0DE 3804 /// uint32_t Version; // Version, currently always 0. 3805 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3806 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3807 /// uint32_t CPUType; // CPU specifier. 3808 /// ... potentially more later ... 3809 /// }; 3810 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3811 const Triple &TT) { 3812 unsigned CPUType = ~0U; 3813 3814 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3815 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3816 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3817 // specific constants here because they are implicitly part of the Darwin ABI. 3818 enum { 3819 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3820 DARWIN_CPU_TYPE_X86 = 7, 3821 DARWIN_CPU_TYPE_ARM = 12, 3822 DARWIN_CPU_TYPE_POWERPC = 18 3823 }; 3824 3825 Triple::ArchType Arch = TT.getArch(); 3826 if (Arch == Triple::x86_64) 3827 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3828 else if (Arch == Triple::x86) 3829 CPUType = DARWIN_CPU_TYPE_X86; 3830 else if (Arch == Triple::ppc) 3831 CPUType = DARWIN_CPU_TYPE_POWERPC; 3832 else if (Arch == Triple::ppc64) 3833 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3834 else if (Arch == Triple::arm || Arch == Triple::thumb) 3835 CPUType = DARWIN_CPU_TYPE_ARM; 3836 3837 // Traditional Bitcode starts after header. 3838 assert(Buffer.size() >= BWH_HeaderSize && 3839 "Expected header size to be reserved"); 3840 unsigned BCOffset = BWH_HeaderSize; 3841 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3842 3843 // Write the magic and version. 3844 unsigned Position = 0; 3845 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3846 writeInt32ToBuffer(0, Buffer, Position); // Version. 3847 writeInt32ToBuffer(BCOffset, Buffer, Position); 3848 writeInt32ToBuffer(BCSize, Buffer, Position); 3849 writeInt32ToBuffer(CPUType, Buffer, Position); 3850 3851 // If the file is not a multiple of 16 bytes, insert dummy padding. 3852 while (Buffer.size() & 15) 3853 Buffer.push_back(0); 3854 } 3855 3856 /// Helper to write the header common to all bitcode files. 3857 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3858 // Emit the file header. 3859 Stream.Emit((unsigned)'B', 8); 3860 Stream.Emit((unsigned)'C', 8); 3861 Stream.Emit(0x0, 4); 3862 Stream.Emit(0xC, 4); 3863 Stream.Emit(0xE, 4); 3864 Stream.Emit(0xD, 4); 3865 } 3866 3867 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3868 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3869 writeBitcodeHeader(*Stream); 3870 } 3871 3872 BitcodeWriter::~BitcodeWriter() = default; 3873 3874 void BitcodeWriter::writeModule(const Module *M, 3875 bool ShouldPreserveUseListOrder, 3876 const ModuleSummaryIndex *Index, 3877 bool GenerateHash) { 3878 ModuleBitcodeWriter ModuleWriter( 3879 M, Buffer, *Stream, ShouldPreserveUseListOrder, Index, GenerateHash); 3880 ModuleWriter.write(); 3881 } 3882 3883 /// WriteBitcodeToFile - Write the specified module to the specified output 3884 /// stream. 3885 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3886 bool ShouldPreserveUseListOrder, 3887 const ModuleSummaryIndex *Index, 3888 bool GenerateHash) { 3889 SmallVector<char, 0> Buffer; 3890 Buffer.reserve(256*1024); 3891 3892 // If this is darwin or another generic macho target, reserve space for the 3893 // header. 3894 Triple TT(M->getTargetTriple()); 3895 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3896 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3897 3898 BitcodeWriter Writer(Buffer); 3899 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash); 3900 3901 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3902 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3903 3904 // Write the generated bitstream to "Out". 3905 Out.write((char*)&Buffer.front(), Buffer.size()); 3906 } 3907 3908 void IndexBitcodeWriter::write() { 3909 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3910 3911 SmallVector<unsigned, 1> Vals; 3912 unsigned CurVersion = 1; 3913 Vals.push_back(CurVersion); 3914 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3915 3916 // If we have a VST, write the VSTOFFSET record placeholder. 3917 writeValueSymbolTableForwardDecl(); 3918 3919 // Write the module paths in the combined index. 3920 writeModStrings(); 3921 3922 // Write the summary combined index records. 3923 writeCombinedGlobalValueSummary(); 3924 3925 // Need a special VST writer for the combined index (we don't have a 3926 // real VST and real values when this is invoked). 3927 writeCombinedValueSymbolTable(); 3928 3929 Stream.ExitBlock(); 3930 } 3931 3932 // Write the specified module summary index to the given raw output stream, 3933 // where it will be written in a new bitcode block. This is used when 3934 // writing the combined index file for ThinLTO. When writing a subset of the 3935 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3936 void llvm::WriteIndexToFile( 3937 const ModuleSummaryIndex &Index, raw_ostream &Out, 3938 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3939 SmallVector<char, 0> Buffer; 3940 Buffer.reserve(256 * 1024); 3941 3942 BitstreamWriter Stream(Buffer); 3943 writeBitcodeHeader(Stream); 3944 3945 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 3946 IndexWriter.write(); 3947 3948 Out.write((char *)&Buffer.front(), Buffer.size()); 3949 } 3950