1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitCodes.h" 28 #include "llvm/Bitcode/BitstreamWriter.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev); 218 219 void assignValueId(GlobalValue::GUID ValGUID) { 220 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 221 } 222 223 unsigned getValueId(GlobalValue::GUID ValGUID) { 224 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 225 // Expect that any GUID value had a value Id assigned by an 226 // earlier call to assignValueId. 227 assert(VMI != GUIDToValueIdMap.end() && 228 "GUID does not have assigned value Id"); 229 return VMI->second; 230 } 231 232 // Helper to get the valueId for the type of value recorded in VI. 233 unsigned getValueId(ValueInfo VI) { 234 if (!VI.haveGVs() || !VI.getValue()) 235 return getValueId(VI.getGUID()); 236 return VE.getValueID(VI.getValue()); 237 } 238 239 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 240 }; 241 242 /// Class to manage the bitcode writing for a module. 243 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 244 /// Pointer to the buffer allocated by caller for bitcode writing. 245 const SmallVectorImpl<char> &Buffer; 246 247 /// True if a module hash record should be written. 248 bool GenerateHash; 249 250 /// If non-null, when GenerateHash is true, the resulting hash is written 251 /// into ModHash. 252 ModuleHash *ModHash; 253 254 SHA1 Hasher; 255 256 /// The start bit of the identification block. 257 uint64_t BitcodeStartBit; 258 259 public: 260 /// Constructs a ModuleBitcodeWriter object for the given Module, 261 /// writing to the provided \p Buffer. 262 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 263 StringTableBuilder &StrtabBuilder, 264 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 265 const ModuleSummaryIndex *Index, bool GenerateHash, 266 ModuleHash *ModHash = nullptr) 267 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 268 ShouldPreserveUseListOrder, Index), 269 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 270 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 271 272 /// Emit the current module to the bitstream. 273 void write(); 274 275 private: 276 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 277 278 size_t addToStrtab(StringRef Str); 279 280 void writeAttributeGroupTable(); 281 void writeAttributeTable(); 282 void writeTypeTable(); 283 void writeComdats(); 284 void writeValueSymbolTableForwardDecl(); 285 void writeModuleInfo(); 286 void writeValueAsMetadata(const ValueAsMetadata *MD, 287 SmallVectorImpl<uint64_t> &Record); 288 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 289 unsigned Abbrev); 290 unsigned createDILocationAbbrev(); 291 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 292 unsigned &Abbrev); 293 unsigned createGenericDINodeAbbrev(); 294 void writeGenericDINode(const GenericDINode *N, 295 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 296 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned Abbrev); 298 void writeDIEnumerator(const DIEnumerator *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 300 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIDerivedType(const DIDerivedType *N, 303 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 304 void writeDICompositeType(const DICompositeType *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDISubroutineType(const DISubroutineType *N, 307 SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDICompileUnit(const DICompileUnit *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDISubprogram(const DISubprogram *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDILexicalBlock(const DILexicalBlock *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICommonBlock(const DICommonBlock *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 323 unsigned Abbrev); 324 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 327 unsigned Abbrev); 328 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 331 SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 334 SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIGlobalVariable(const DIGlobalVariable *N, 337 SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDILocalVariable(const DILocalVariable *N, 340 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 341 void writeDILabel(const DILabel *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDIExpression(const DIExpression *N, 344 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 345 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDIObjCProperty(const DIObjCProperty *N, 349 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 350 void writeDIImportedEntity(const DIImportedEntity *N, 351 SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 unsigned createNamedMetadataAbbrev(); 354 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 355 unsigned createMetadataStringsAbbrev(); 356 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 357 SmallVectorImpl<uint64_t> &Record); 358 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 359 SmallVectorImpl<uint64_t> &Record, 360 std::vector<unsigned> *MDAbbrevs = nullptr, 361 std::vector<uint64_t> *IndexPos = nullptr); 362 void writeModuleMetadata(); 363 void writeFunctionMetadata(const Function &F); 364 void writeFunctionMetadataAttachment(const Function &F); 365 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 366 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 367 const GlobalObject &GO); 368 void writeModuleMetadataKinds(); 369 void writeOperandBundleTags(); 370 void writeSyncScopeNames(); 371 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 372 void writeModuleConstants(); 373 bool pushValueAndType(const Value *V, unsigned InstID, 374 SmallVectorImpl<unsigned> &Vals); 375 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 376 void pushValue(const Value *V, unsigned InstID, 377 SmallVectorImpl<unsigned> &Vals); 378 void pushValueSigned(const Value *V, unsigned InstID, 379 SmallVectorImpl<uint64_t> &Vals); 380 void writeInstruction(const Instruction &I, unsigned InstID, 381 SmallVectorImpl<unsigned> &Vals); 382 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 383 void writeGlobalValueSymbolTable( 384 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 385 void writeUseList(UseListOrder &&Order); 386 void writeUseListBlock(const Function *F); 387 void 388 writeFunction(const Function &F, 389 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 390 void writeBlockInfo(); 391 void writeModuleHash(size_t BlockStartPos); 392 393 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 394 return unsigned(SSID); 395 } 396 }; 397 398 /// Class to manage the bitcode writing for a combined index. 399 class IndexBitcodeWriter : public BitcodeWriterBase { 400 /// The combined index to write to bitcode. 401 const ModuleSummaryIndex &Index; 402 403 /// When writing a subset of the index for distributed backends, client 404 /// provides a map of modules to the corresponding GUIDs/summaries to write. 405 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 406 407 /// Map that holds the correspondence between the GUID used in the combined 408 /// index and a value id generated by this class to use in references. 409 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 410 411 /// Tracks the last value id recorded in the GUIDToValueMap. 412 unsigned GlobalValueId = 0; 413 414 public: 415 /// Constructs a IndexBitcodeWriter object for the given combined index, 416 /// writing to the provided \p Buffer. When writing a subset of the index 417 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 418 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 419 const ModuleSummaryIndex &Index, 420 const std::map<std::string, GVSummaryMapTy> 421 *ModuleToSummariesForIndex = nullptr) 422 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 423 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 424 // Assign unique value ids to all summaries to be written, for use 425 // in writing out the call graph edges. Save the mapping from GUID 426 // to the new global value id to use when writing those edges, which 427 // are currently saved in the index in terms of GUID. 428 forEachSummary([&](GVInfo I, bool) { 429 GUIDToValueIdMap[I.first] = ++GlobalValueId; 430 }); 431 } 432 433 /// The below iterator returns the GUID and associated summary. 434 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 435 436 /// Calls the callback for each value GUID and summary to be written to 437 /// bitcode. This hides the details of whether they are being pulled from the 438 /// entire index or just those in a provided ModuleToSummariesForIndex map. 439 template<typename Functor> 440 void forEachSummary(Functor Callback) { 441 if (ModuleToSummariesForIndex) { 442 for (auto &M : *ModuleToSummariesForIndex) 443 for (auto &Summary : M.second) { 444 Callback(Summary, false); 445 // Ensure aliasee is handled, e.g. for assigning a valueId, 446 // even if we are not importing the aliasee directly (the 447 // imported alias will contain a copy of aliasee). 448 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 449 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 450 } 451 } else { 452 for (auto &Summaries : Index) 453 for (auto &Summary : Summaries.second.SummaryList) 454 Callback({Summaries.first, Summary.get()}, false); 455 } 456 } 457 458 /// Calls the callback for each entry in the modulePaths StringMap that 459 /// should be written to the module path string table. This hides the details 460 /// of whether they are being pulled from the entire index or just those in a 461 /// provided ModuleToSummariesForIndex map. 462 template <typename Functor> void forEachModule(Functor Callback) { 463 if (ModuleToSummariesForIndex) { 464 for (const auto &M : *ModuleToSummariesForIndex) { 465 const auto &MPI = Index.modulePaths().find(M.first); 466 if (MPI == Index.modulePaths().end()) { 467 // This should only happen if the bitcode file was empty, in which 468 // case we shouldn't be importing (the ModuleToSummariesForIndex 469 // would only include the module we are writing and index for). 470 assert(ModuleToSummariesForIndex->size() == 1); 471 continue; 472 } 473 Callback(*MPI); 474 } 475 } else { 476 for (const auto &MPSE : Index.modulePaths()) 477 Callback(MPSE); 478 } 479 } 480 481 /// Main entry point for writing a combined index to bitcode. 482 void write(); 483 484 private: 485 void writeModStrings(); 486 void writeCombinedGlobalValueSummary(); 487 488 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 489 auto VMI = GUIDToValueIdMap.find(ValGUID); 490 if (VMI == GUIDToValueIdMap.end()) 491 return None; 492 return VMI->second; 493 } 494 495 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 496 }; 497 498 } // end anonymous namespace 499 500 static unsigned getEncodedCastOpcode(unsigned Opcode) { 501 switch (Opcode) { 502 default: llvm_unreachable("Unknown cast instruction!"); 503 case Instruction::Trunc : return bitc::CAST_TRUNC; 504 case Instruction::ZExt : return bitc::CAST_ZEXT; 505 case Instruction::SExt : return bitc::CAST_SEXT; 506 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 507 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 508 case Instruction::UIToFP : return bitc::CAST_UITOFP; 509 case Instruction::SIToFP : return bitc::CAST_SITOFP; 510 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 511 case Instruction::FPExt : return bitc::CAST_FPEXT; 512 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 513 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 514 case Instruction::BitCast : return bitc::CAST_BITCAST; 515 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 516 } 517 } 518 519 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 520 switch (Opcode) { 521 default: llvm_unreachable("Unknown binary instruction!"); 522 case Instruction::FNeg: return bitc::UNOP_NEG; 523 } 524 } 525 526 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 527 switch (Opcode) { 528 default: llvm_unreachable("Unknown binary instruction!"); 529 case Instruction::Add: 530 case Instruction::FAdd: return bitc::BINOP_ADD; 531 case Instruction::Sub: 532 case Instruction::FSub: return bitc::BINOP_SUB; 533 case Instruction::Mul: 534 case Instruction::FMul: return bitc::BINOP_MUL; 535 case Instruction::UDiv: return bitc::BINOP_UDIV; 536 case Instruction::FDiv: 537 case Instruction::SDiv: return bitc::BINOP_SDIV; 538 case Instruction::URem: return bitc::BINOP_UREM; 539 case Instruction::FRem: 540 case Instruction::SRem: return bitc::BINOP_SREM; 541 case Instruction::Shl: return bitc::BINOP_SHL; 542 case Instruction::LShr: return bitc::BINOP_LSHR; 543 case Instruction::AShr: return bitc::BINOP_ASHR; 544 case Instruction::And: return bitc::BINOP_AND; 545 case Instruction::Or: return bitc::BINOP_OR; 546 case Instruction::Xor: return bitc::BINOP_XOR; 547 } 548 } 549 550 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 551 switch (Op) { 552 default: llvm_unreachable("Unknown RMW operation!"); 553 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 554 case AtomicRMWInst::Add: return bitc::RMW_ADD; 555 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 556 case AtomicRMWInst::And: return bitc::RMW_AND; 557 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 558 case AtomicRMWInst::Or: return bitc::RMW_OR; 559 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 560 case AtomicRMWInst::Max: return bitc::RMW_MAX; 561 case AtomicRMWInst::Min: return bitc::RMW_MIN; 562 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 563 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 564 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 565 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 566 } 567 } 568 569 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 570 switch (Ordering) { 571 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 572 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 573 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 574 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 575 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 576 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 577 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 578 } 579 llvm_unreachable("Invalid ordering"); 580 } 581 582 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 583 StringRef Str, unsigned AbbrevToUse) { 584 SmallVector<unsigned, 64> Vals; 585 586 // Code: [strchar x N] 587 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 588 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 589 AbbrevToUse = 0; 590 Vals.push_back(Str[i]); 591 } 592 593 // Emit the finished record. 594 Stream.EmitRecord(Code, Vals, AbbrevToUse); 595 } 596 597 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 598 switch (Kind) { 599 case Attribute::Alignment: 600 return bitc::ATTR_KIND_ALIGNMENT; 601 case Attribute::AllocSize: 602 return bitc::ATTR_KIND_ALLOC_SIZE; 603 case Attribute::AlwaysInline: 604 return bitc::ATTR_KIND_ALWAYS_INLINE; 605 case Attribute::ArgMemOnly: 606 return bitc::ATTR_KIND_ARGMEMONLY; 607 case Attribute::Builtin: 608 return bitc::ATTR_KIND_BUILTIN; 609 case Attribute::ByVal: 610 return bitc::ATTR_KIND_BY_VAL; 611 case Attribute::Convergent: 612 return bitc::ATTR_KIND_CONVERGENT; 613 case Attribute::InAlloca: 614 return bitc::ATTR_KIND_IN_ALLOCA; 615 case Attribute::Cold: 616 return bitc::ATTR_KIND_COLD; 617 case Attribute::InaccessibleMemOnly: 618 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 619 case Attribute::InaccessibleMemOrArgMemOnly: 620 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 621 case Attribute::InlineHint: 622 return bitc::ATTR_KIND_INLINE_HINT; 623 case Attribute::InReg: 624 return bitc::ATTR_KIND_IN_REG; 625 case Attribute::JumpTable: 626 return bitc::ATTR_KIND_JUMP_TABLE; 627 case Attribute::MinSize: 628 return bitc::ATTR_KIND_MIN_SIZE; 629 case Attribute::Naked: 630 return bitc::ATTR_KIND_NAKED; 631 case Attribute::Nest: 632 return bitc::ATTR_KIND_NEST; 633 case Attribute::NoAlias: 634 return bitc::ATTR_KIND_NO_ALIAS; 635 case Attribute::NoBuiltin: 636 return bitc::ATTR_KIND_NO_BUILTIN; 637 case Attribute::NoCapture: 638 return bitc::ATTR_KIND_NO_CAPTURE; 639 case Attribute::NoDuplicate: 640 return bitc::ATTR_KIND_NO_DUPLICATE; 641 case Attribute::NoImplicitFloat: 642 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 643 case Attribute::NoInline: 644 return bitc::ATTR_KIND_NO_INLINE; 645 case Attribute::NoRecurse: 646 return bitc::ATTR_KIND_NO_RECURSE; 647 case Attribute::NonLazyBind: 648 return bitc::ATTR_KIND_NON_LAZY_BIND; 649 case Attribute::NonNull: 650 return bitc::ATTR_KIND_NON_NULL; 651 case Attribute::Dereferenceable: 652 return bitc::ATTR_KIND_DEREFERENCEABLE; 653 case Attribute::DereferenceableOrNull: 654 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 655 case Attribute::NoRedZone: 656 return bitc::ATTR_KIND_NO_RED_ZONE; 657 case Attribute::NoReturn: 658 return bitc::ATTR_KIND_NO_RETURN; 659 case Attribute::NoCfCheck: 660 return bitc::ATTR_KIND_NOCF_CHECK; 661 case Attribute::NoUnwind: 662 return bitc::ATTR_KIND_NO_UNWIND; 663 case Attribute::OptForFuzzing: 664 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 665 case Attribute::OptimizeForSize: 666 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 667 case Attribute::OptimizeNone: 668 return bitc::ATTR_KIND_OPTIMIZE_NONE; 669 case Attribute::ReadNone: 670 return bitc::ATTR_KIND_READ_NONE; 671 case Attribute::ReadOnly: 672 return bitc::ATTR_KIND_READ_ONLY; 673 case Attribute::Returned: 674 return bitc::ATTR_KIND_RETURNED; 675 case Attribute::ReturnsTwice: 676 return bitc::ATTR_KIND_RETURNS_TWICE; 677 case Attribute::SExt: 678 return bitc::ATTR_KIND_S_EXT; 679 case Attribute::Speculatable: 680 return bitc::ATTR_KIND_SPECULATABLE; 681 case Attribute::StackAlignment: 682 return bitc::ATTR_KIND_STACK_ALIGNMENT; 683 case Attribute::StackProtect: 684 return bitc::ATTR_KIND_STACK_PROTECT; 685 case Attribute::StackProtectReq: 686 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 687 case Attribute::StackProtectStrong: 688 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 689 case Attribute::SafeStack: 690 return bitc::ATTR_KIND_SAFESTACK; 691 case Attribute::ShadowCallStack: 692 return bitc::ATTR_KIND_SHADOWCALLSTACK; 693 case Attribute::StrictFP: 694 return bitc::ATTR_KIND_STRICT_FP; 695 case Attribute::StructRet: 696 return bitc::ATTR_KIND_STRUCT_RET; 697 case Attribute::SanitizeAddress: 698 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 699 case Attribute::SanitizeHWAddress: 700 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 701 case Attribute::SanitizeThread: 702 return bitc::ATTR_KIND_SANITIZE_THREAD; 703 case Attribute::SanitizeMemory: 704 return bitc::ATTR_KIND_SANITIZE_MEMORY; 705 case Attribute::SpeculativeLoadHardening: 706 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 707 case Attribute::SwiftError: 708 return bitc::ATTR_KIND_SWIFT_ERROR; 709 case Attribute::SwiftSelf: 710 return bitc::ATTR_KIND_SWIFT_SELF; 711 case Attribute::UWTable: 712 return bitc::ATTR_KIND_UW_TABLE; 713 case Attribute::WriteOnly: 714 return bitc::ATTR_KIND_WRITEONLY; 715 case Attribute::ZExt: 716 return bitc::ATTR_KIND_Z_EXT; 717 case Attribute::ImmArg: 718 return bitc::ATTR_KIND_IMMARG; 719 case Attribute::EndAttrKinds: 720 llvm_unreachable("Can not encode end-attribute kinds marker."); 721 case Attribute::None: 722 llvm_unreachable("Can not encode none-attribute."); 723 } 724 725 llvm_unreachable("Trying to encode unknown attribute"); 726 } 727 728 void ModuleBitcodeWriter::writeAttributeGroupTable() { 729 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 730 VE.getAttributeGroups(); 731 if (AttrGrps.empty()) return; 732 733 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 734 735 SmallVector<uint64_t, 64> Record; 736 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 737 unsigned AttrListIndex = Pair.first; 738 AttributeSet AS = Pair.second; 739 Record.push_back(VE.getAttributeGroupID(Pair)); 740 Record.push_back(AttrListIndex); 741 742 for (Attribute Attr : AS) { 743 if (Attr.isEnumAttribute()) { 744 Record.push_back(0); 745 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 746 } else if (Attr.isIntAttribute()) { 747 Record.push_back(1); 748 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 749 Record.push_back(Attr.getValueAsInt()); 750 } else { 751 StringRef Kind = Attr.getKindAsString(); 752 StringRef Val = Attr.getValueAsString(); 753 754 Record.push_back(Val.empty() ? 3 : 4); 755 Record.append(Kind.begin(), Kind.end()); 756 Record.push_back(0); 757 if (!Val.empty()) { 758 Record.append(Val.begin(), Val.end()); 759 Record.push_back(0); 760 } 761 } 762 } 763 764 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 765 Record.clear(); 766 } 767 768 Stream.ExitBlock(); 769 } 770 771 void ModuleBitcodeWriter::writeAttributeTable() { 772 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 773 if (Attrs.empty()) return; 774 775 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 776 777 SmallVector<uint64_t, 64> Record; 778 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 779 AttributeList AL = Attrs[i]; 780 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 781 AttributeSet AS = AL.getAttributes(i); 782 if (AS.hasAttributes()) 783 Record.push_back(VE.getAttributeGroupID({i, AS})); 784 } 785 786 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 787 Record.clear(); 788 } 789 790 Stream.ExitBlock(); 791 } 792 793 /// WriteTypeTable - Write out the type table for a module. 794 void ModuleBitcodeWriter::writeTypeTable() { 795 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 796 797 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 798 SmallVector<uint64_t, 64> TypeVals; 799 800 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 801 802 // Abbrev for TYPE_CODE_POINTER. 803 auto Abbv = std::make_shared<BitCodeAbbrev>(); 804 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 806 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 807 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 808 809 // Abbrev for TYPE_CODE_FUNCTION. 810 Abbv = std::make_shared<BitCodeAbbrev>(); 811 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 815 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 816 817 // Abbrev for TYPE_CODE_STRUCT_ANON. 818 Abbv = std::make_shared<BitCodeAbbrev>(); 819 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 823 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 824 825 // Abbrev for TYPE_CODE_STRUCT_NAME. 826 Abbv = std::make_shared<BitCodeAbbrev>(); 827 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 830 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 831 832 // Abbrev for TYPE_CODE_STRUCT_NAMED. 833 Abbv = std::make_shared<BitCodeAbbrev>(); 834 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 838 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 839 840 // Abbrev for TYPE_CODE_ARRAY. 841 Abbv = std::make_shared<BitCodeAbbrev>(); 842 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 845 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 846 847 // Emit an entry count so the reader can reserve space. 848 TypeVals.push_back(TypeList.size()); 849 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 850 TypeVals.clear(); 851 852 // Loop over all of the types, emitting each in turn. 853 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 854 Type *T = TypeList[i]; 855 int AbbrevToUse = 0; 856 unsigned Code = 0; 857 858 switch (T->getTypeID()) { 859 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 860 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 861 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 862 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 863 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 864 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 865 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 866 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 867 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 868 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 869 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 870 case Type::IntegerTyID: 871 // INTEGER: [width] 872 Code = bitc::TYPE_CODE_INTEGER; 873 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 874 break; 875 case Type::PointerTyID: { 876 PointerType *PTy = cast<PointerType>(T); 877 // POINTER: [pointee type, address space] 878 Code = bitc::TYPE_CODE_POINTER; 879 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 880 unsigned AddressSpace = PTy->getAddressSpace(); 881 TypeVals.push_back(AddressSpace); 882 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 883 break; 884 } 885 case Type::FunctionTyID: { 886 FunctionType *FT = cast<FunctionType>(T); 887 // FUNCTION: [isvararg, retty, paramty x N] 888 Code = bitc::TYPE_CODE_FUNCTION; 889 TypeVals.push_back(FT->isVarArg()); 890 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 891 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 892 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 893 AbbrevToUse = FunctionAbbrev; 894 break; 895 } 896 case Type::StructTyID: { 897 StructType *ST = cast<StructType>(T); 898 // STRUCT: [ispacked, eltty x N] 899 TypeVals.push_back(ST->isPacked()); 900 // Output all of the element types. 901 for (StructType::element_iterator I = ST->element_begin(), 902 E = ST->element_end(); I != E; ++I) 903 TypeVals.push_back(VE.getTypeID(*I)); 904 905 if (ST->isLiteral()) { 906 Code = bitc::TYPE_CODE_STRUCT_ANON; 907 AbbrevToUse = StructAnonAbbrev; 908 } else { 909 if (ST->isOpaque()) { 910 Code = bitc::TYPE_CODE_OPAQUE; 911 } else { 912 Code = bitc::TYPE_CODE_STRUCT_NAMED; 913 AbbrevToUse = StructNamedAbbrev; 914 } 915 916 // Emit the name if it is present. 917 if (!ST->getName().empty()) 918 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 919 StructNameAbbrev); 920 } 921 break; 922 } 923 case Type::ArrayTyID: { 924 ArrayType *AT = cast<ArrayType>(T); 925 // ARRAY: [numelts, eltty] 926 Code = bitc::TYPE_CODE_ARRAY; 927 TypeVals.push_back(AT->getNumElements()); 928 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 929 AbbrevToUse = ArrayAbbrev; 930 break; 931 } 932 case Type::VectorTyID: { 933 VectorType *VT = cast<VectorType>(T); 934 // VECTOR [numelts, eltty] 935 Code = bitc::TYPE_CODE_VECTOR; 936 TypeVals.push_back(VT->getNumElements()); 937 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 938 break; 939 } 940 } 941 942 // Emit the finished record. 943 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 944 TypeVals.clear(); 945 } 946 947 Stream.ExitBlock(); 948 } 949 950 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 951 switch (Linkage) { 952 case GlobalValue::ExternalLinkage: 953 return 0; 954 case GlobalValue::WeakAnyLinkage: 955 return 16; 956 case GlobalValue::AppendingLinkage: 957 return 2; 958 case GlobalValue::InternalLinkage: 959 return 3; 960 case GlobalValue::LinkOnceAnyLinkage: 961 return 18; 962 case GlobalValue::ExternalWeakLinkage: 963 return 7; 964 case GlobalValue::CommonLinkage: 965 return 8; 966 case GlobalValue::PrivateLinkage: 967 return 9; 968 case GlobalValue::WeakODRLinkage: 969 return 17; 970 case GlobalValue::LinkOnceODRLinkage: 971 return 19; 972 case GlobalValue::AvailableExternallyLinkage: 973 return 12; 974 } 975 llvm_unreachable("Invalid linkage"); 976 } 977 978 static unsigned getEncodedLinkage(const GlobalValue &GV) { 979 return getEncodedLinkage(GV.getLinkage()); 980 } 981 982 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 983 uint64_t RawFlags = 0; 984 RawFlags |= Flags.ReadNone; 985 RawFlags |= (Flags.ReadOnly << 1); 986 RawFlags |= (Flags.NoRecurse << 2); 987 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 988 RawFlags |= (Flags.NoInline << 4); 989 return RawFlags; 990 } 991 992 // Decode the flags for GlobalValue in the summary 993 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 994 uint64_t RawFlags = 0; 995 996 RawFlags |= Flags.NotEligibleToImport; // bool 997 RawFlags |= (Flags.Live << 1); 998 RawFlags |= (Flags.DSOLocal << 2); 999 RawFlags |= (Flags.CanAutoHide << 3); 1000 1001 // Linkage don't need to be remapped at that time for the summary. Any future 1002 // change to the getEncodedLinkage() function will need to be taken into 1003 // account here as well. 1004 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1005 1006 return RawFlags; 1007 } 1008 1009 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1010 uint64_t RawFlags = Flags.ReadOnly; 1011 return RawFlags; 1012 } 1013 1014 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1015 switch (GV.getVisibility()) { 1016 case GlobalValue::DefaultVisibility: return 0; 1017 case GlobalValue::HiddenVisibility: return 1; 1018 case GlobalValue::ProtectedVisibility: return 2; 1019 } 1020 llvm_unreachable("Invalid visibility"); 1021 } 1022 1023 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1024 switch (GV.getDLLStorageClass()) { 1025 case GlobalValue::DefaultStorageClass: return 0; 1026 case GlobalValue::DLLImportStorageClass: return 1; 1027 case GlobalValue::DLLExportStorageClass: return 2; 1028 } 1029 llvm_unreachable("Invalid DLL storage class"); 1030 } 1031 1032 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1033 switch (GV.getThreadLocalMode()) { 1034 case GlobalVariable::NotThreadLocal: return 0; 1035 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1036 case GlobalVariable::LocalDynamicTLSModel: return 2; 1037 case GlobalVariable::InitialExecTLSModel: return 3; 1038 case GlobalVariable::LocalExecTLSModel: return 4; 1039 } 1040 llvm_unreachable("Invalid TLS model"); 1041 } 1042 1043 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1044 switch (C.getSelectionKind()) { 1045 case Comdat::Any: 1046 return bitc::COMDAT_SELECTION_KIND_ANY; 1047 case Comdat::ExactMatch: 1048 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1049 case Comdat::Largest: 1050 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1051 case Comdat::NoDuplicates: 1052 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1053 case Comdat::SameSize: 1054 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1055 } 1056 llvm_unreachable("Invalid selection kind"); 1057 } 1058 1059 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1060 switch (GV.getUnnamedAddr()) { 1061 case GlobalValue::UnnamedAddr::None: return 0; 1062 case GlobalValue::UnnamedAddr::Local: return 2; 1063 case GlobalValue::UnnamedAddr::Global: return 1; 1064 } 1065 llvm_unreachable("Invalid unnamed_addr"); 1066 } 1067 1068 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1069 if (GenerateHash) 1070 Hasher.update(Str); 1071 return StrtabBuilder.add(Str); 1072 } 1073 1074 void ModuleBitcodeWriter::writeComdats() { 1075 SmallVector<unsigned, 64> Vals; 1076 for (const Comdat *C : VE.getComdats()) { 1077 // COMDAT: [strtab offset, strtab size, selection_kind] 1078 Vals.push_back(addToStrtab(C->getName())); 1079 Vals.push_back(C->getName().size()); 1080 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1081 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1082 Vals.clear(); 1083 } 1084 } 1085 1086 /// Write a record that will eventually hold the word offset of the 1087 /// module-level VST. For now the offset is 0, which will be backpatched 1088 /// after the real VST is written. Saves the bit offset to backpatch. 1089 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1090 // Write a placeholder value in for the offset of the real VST, 1091 // which is written after the function blocks so that it can include 1092 // the offset of each function. The placeholder offset will be 1093 // updated when the real VST is written. 1094 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1095 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1096 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1097 // hold the real VST offset. Must use fixed instead of VBR as we don't 1098 // know how many VBR chunks to reserve ahead of time. 1099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1100 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1101 1102 // Emit the placeholder 1103 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1104 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1105 1106 // Compute and save the bit offset to the placeholder, which will be 1107 // patched when the real VST is written. We can simply subtract the 32-bit 1108 // fixed size from the current bit number to get the location to backpatch. 1109 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1110 } 1111 1112 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1113 1114 /// Determine the encoding to use for the given string name and length. 1115 static StringEncoding getStringEncoding(StringRef Str) { 1116 bool isChar6 = true; 1117 for (char C : Str) { 1118 if (isChar6) 1119 isChar6 = BitCodeAbbrevOp::isChar6(C); 1120 if ((unsigned char)C & 128) 1121 // don't bother scanning the rest. 1122 return SE_Fixed8; 1123 } 1124 if (isChar6) 1125 return SE_Char6; 1126 return SE_Fixed7; 1127 } 1128 1129 /// Emit top-level description of module, including target triple, inline asm, 1130 /// descriptors for global variables, and function prototype info. 1131 /// Returns the bit offset to backpatch with the location of the real VST. 1132 void ModuleBitcodeWriter::writeModuleInfo() { 1133 // Emit various pieces of data attached to a module. 1134 if (!M.getTargetTriple().empty()) 1135 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1136 0 /*TODO*/); 1137 const std::string &DL = M.getDataLayoutStr(); 1138 if (!DL.empty()) 1139 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1140 if (!M.getModuleInlineAsm().empty()) 1141 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1142 0 /*TODO*/); 1143 1144 // Emit information about sections and GC, computing how many there are. Also 1145 // compute the maximum alignment value. 1146 std::map<std::string, unsigned> SectionMap; 1147 std::map<std::string, unsigned> GCMap; 1148 unsigned MaxAlignment = 0; 1149 unsigned MaxGlobalType = 0; 1150 for (const GlobalValue &GV : M.globals()) { 1151 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1152 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1153 if (GV.hasSection()) { 1154 // Give section names unique ID's. 1155 unsigned &Entry = SectionMap[GV.getSection()]; 1156 if (!Entry) { 1157 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1158 0 /*TODO*/); 1159 Entry = SectionMap.size(); 1160 } 1161 } 1162 } 1163 for (const Function &F : M) { 1164 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1165 if (F.hasSection()) { 1166 // Give section names unique ID's. 1167 unsigned &Entry = SectionMap[F.getSection()]; 1168 if (!Entry) { 1169 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1170 0 /*TODO*/); 1171 Entry = SectionMap.size(); 1172 } 1173 } 1174 if (F.hasGC()) { 1175 // Same for GC names. 1176 unsigned &Entry = GCMap[F.getGC()]; 1177 if (!Entry) { 1178 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1179 0 /*TODO*/); 1180 Entry = GCMap.size(); 1181 } 1182 } 1183 } 1184 1185 // Emit abbrev for globals, now that we know # sections and max alignment. 1186 unsigned SimpleGVarAbbrev = 0; 1187 if (!M.global_empty()) { 1188 // Add an abbrev for common globals with no visibility or thread localness. 1189 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1190 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1194 Log2_32_Ceil(MaxGlobalType+1))); 1195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1196 //| explicitType << 1 1197 //| constant 1198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1200 if (MaxAlignment == 0) // Alignment. 1201 Abbv->Add(BitCodeAbbrevOp(0)); 1202 else { 1203 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1205 Log2_32_Ceil(MaxEncAlignment+1))); 1206 } 1207 if (SectionMap.empty()) // Section. 1208 Abbv->Add(BitCodeAbbrevOp(0)); 1209 else 1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1211 Log2_32_Ceil(SectionMap.size()+1))); 1212 // Don't bother emitting vis + thread local. 1213 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1214 } 1215 1216 SmallVector<unsigned, 64> Vals; 1217 // Emit the module's source file name. 1218 { 1219 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1220 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1221 if (Bits == SE_Char6) 1222 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1223 else if (Bits == SE_Fixed7) 1224 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1225 1226 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1227 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1228 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1230 Abbv->Add(AbbrevOpToUse); 1231 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1232 1233 for (const auto P : M.getSourceFileName()) 1234 Vals.push_back((unsigned char)P); 1235 1236 // Emit the finished record. 1237 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1238 Vals.clear(); 1239 } 1240 1241 // Emit the global variable information. 1242 for (const GlobalVariable &GV : M.globals()) { 1243 unsigned AbbrevToUse = 0; 1244 1245 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1246 // linkage, alignment, section, visibility, threadlocal, 1247 // unnamed_addr, externally_initialized, dllstorageclass, 1248 // comdat, attributes, DSO_Local] 1249 Vals.push_back(addToStrtab(GV.getName())); 1250 Vals.push_back(GV.getName().size()); 1251 Vals.push_back(VE.getTypeID(GV.getValueType())); 1252 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1253 Vals.push_back(GV.isDeclaration() ? 0 : 1254 (VE.getValueID(GV.getInitializer()) + 1)); 1255 Vals.push_back(getEncodedLinkage(GV)); 1256 Vals.push_back(Log2_32(GV.getAlignment())+1); 1257 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1258 if (GV.isThreadLocal() || 1259 GV.getVisibility() != GlobalValue::DefaultVisibility || 1260 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1261 GV.isExternallyInitialized() || 1262 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1263 GV.hasComdat() || 1264 GV.hasAttributes() || 1265 GV.isDSOLocal() || 1266 GV.hasPartition()) { 1267 Vals.push_back(getEncodedVisibility(GV)); 1268 Vals.push_back(getEncodedThreadLocalMode(GV)); 1269 Vals.push_back(getEncodedUnnamedAddr(GV)); 1270 Vals.push_back(GV.isExternallyInitialized()); 1271 Vals.push_back(getEncodedDLLStorageClass(GV)); 1272 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1273 1274 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1275 Vals.push_back(VE.getAttributeListID(AL)); 1276 1277 Vals.push_back(GV.isDSOLocal()); 1278 Vals.push_back(addToStrtab(GV.getPartition())); 1279 Vals.push_back(GV.getPartition().size()); 1280 } else { 1281 AbbrevToUse = SimpleGVarAbbrev; 1282 } 1283 1284 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1285 Vals.clear(); 1286 } 1287 1288 // Emit the function proto information. 1289 for (const Function &F : M) { 1290 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1291 // linkage, paramattrs, alignment, section, visibility, gc, 1292 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1293 // prefixdata, personalityfn, DSO_Local, addrspace] 1294 Vals.push_back(addToStrtab(F.getName())); 1295 Vals.push_back(F.getName().size()); 1296 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1297 Vals.push_back(F.getCallingConv()); 1298 Vals.push_back(F.isDeclaration()); 1299 Vals.push_back(getEncodedLinkage(F)); 1300 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1301 Vals.push_back(Log2_32(F.getAlignment())+1); 1302 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1303 Vals.push_back(getEncodedVisibility(F)); 1304 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1305 Vals.push_back(getEncodedUnnamedAddr(F)); 1306 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1307 : 0); 1308 Vals.push_back(getEncodedDLLStorageClass(F)); 1309 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1310 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1311 : 0); 1312 Vals.push_back( 1313 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1314 1315 Vals.push_back(F.isDSOLocal()); 1316 Vals.push_back(F.getAddressSpace()); 1317 Vals.push_back(addToStrtab(F.getPartition())); 1318 Vals.push_back(F.getPartition().size()); 1319 1320 unsigned AbbrevToUse = 0; 1321 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1322 Vals.clear(); 1323 } 1324 1325 // Emit the alias information. 1326 for (const GlobalAlias &A : M.aliases()) { 1327 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1328 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1329 // DSO_Local] 1330 Vals.push_back(addToStrtab(A.getName())); 1331 Vals.push_back(A.getName().size()); 1332 Vals.push_back(VE.getTypeID(A.getValueType())); 1333 Vals.push_back(A.getType()->getAddressSpace()); 1334 Vals.push_back(VE.getValueID(A.getAliasee())); 1335 Vals.push_back(getEncodedLinkage(A)); 1336 Vals.push_back(getEncodedVisibility(A)); 1337 Vals.push_back(getEncodedDLLStorageClass(A)); 1338 Vals.push_back(getEncodedThreadLocalMode(A)); 1339 Vals.push_back(getEncodedUnnamedAddr(A)); 1340 Vals.push_back(A.isDSOLocal()); 1341 Vals.push_back(addToStrtab(A.getPartition())); 1342 Vals.push_back(A.getPartition().size()); 1343 1344 unsigned AbbrevToUse = 0; 1345 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1346 Vals.clear(); 1347 } 1348 1349 // Emit the ifunc information. 1350 for (const GlobalIFunc &I : M.ifuncs()) { 1351 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1352 // val#, linkage, visibility, DSO_Local] 1353 Vals.push_back(addToStrtab(I.getName())); 1354 Vals.push_back(I.getName().size()); 1355 Vals.push_back(VE.getTypeID(I.getValueType())); 1356 Vals.push_back(I.getType()->getAddressSpace()); 1357 Vals.push_back(VE.getValueID(I.getResolver())); 1358 Vals.push_back(getEncodedLinkage(I)); 1359 Vals.push_back(getEncodedVisibility(I)); 1360 Vals.push_back(I.isDSOLocal()); 1361 Vals.push_back(addToStrtab(I.getPartition())); 1362 Vals.push_back(I.getPartition().size()); 1363 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1364 Vals.clear(); 1365 } 1366 1367 writeValueSymbolTableForwardDecl(); 1368 } 1369 1370 static uint64_t getOptimizationFlags(const Value *V) { 1371 uint64_t Flags = 0; 1372 1373 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1374 if (OBO->hasNoSignedWrap()) 1375 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1376 if (OBO->hasNoUnsignedWrap()) 1377 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1378 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1379 if (PEO->isExact()) 1380 Flags |= 1 << bitc::PEO_EXACT; 1381 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1382 if (FPMO->hasAllowReassoc()) 1383 Flags |= bitc::AllowReassoc; 1384 if (FPMO->hasNoNaNs()) 1385 Flags |= bitc::NoNaNs; 1386 if (FPMO->hasNoInfs()) 1387 Flags |= bitc::NoInfs; 1388 if (FPMO->hasNoSignedZeros()) 1389 Flags |= bitc::NoSignedZeros; 1390 if (FPMO->hasAllowReciprocal()) 1391 Flags |= bitc::AllowReciprocal; 1392 if (FPMO->hasAllowContract()) 1393 Flags |= bitc::AllowContract; 1394 if (FPMO->hasApproxFunc()) 1395 Flags |= bitc::ApproxFunc; 1396 } 1397 1398 return Flags; 1399 } 1400 1401 void ModuleBitcodeWriter::writeValueAsMetadata( 1402 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1403 // Mimic an MDNode with a value as one operand. 1404 Value *V = MD->getValue(); 1405 Record.push_back(VE.getTypeID(V->getType())); 1406 Record.push_back(VE.getValueID(V)); 1407 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1408 Record.clear(); 1409 } 1410 1411 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1412 SmallVectorImpl<uint64_t> &Record, 1413 unsigned Abbrev) { 1414 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1415 Metadata *MD = N->getOperand(i); 1416 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1417 "Unexpected function-local metadata"); 1418 Record.push_back(VE.getMetadataOrNullID(MD)); 1419 } 1420 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1421 : bitc::METADATA_NODE, 1422 Record, Abbrev); 1423 Record.clear(); 1424 } 1425 1426 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1427 // Assume the column is usually under 128, and always output the inlined-at 1428 // location (it's never more expensive than building an array size 1). 1429 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1430 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1437 return Stream.EmitAbbrev(std::move(Abbv)); 1438 } 1439 1440 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1441 SmallVectorImpl<uint64_t> &Record, 1442 unsigned &Abbrev) { 1443 if (!Abbrev) 1444 Abbrev = createDILocationAbbrev(); 1445 1446 Record.push_back(N->isDistinct()); 1447 Record.push_back(N->getLine()); 1448 Record.push_back(N->getColumn()); 1449 Record.push_back(VE.getMetadataID(N->getScope())); 1450 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1451 Record.push_back(N->isImplicitCode()); 1452 1453 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1454 Record.clear(); 1455 } 1456 1457 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1458 // Assume the column is usually under 128, and always output the inlined-at 1459 // location (it's never more expensive than building an array size 1). 1460 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1461 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1468 return Stream.EmitAbbrev(std::move(Abbv)); 1469 } 1470 1471 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1472 SmallVectorImpl<uint64_t> &Record, 1473 unsigned &Abbrev) { 1474 if (!Abbrev) 1475 Abbrev = createGenericDINodeAbbrev(); 1476 1477 Record.push_back(N->isDistinct()); 1478 Record.push_back(N->getTag()); 1479 Record.push_back(0); // Per-tag version field; unused for now. 1480 1481 for (auto &I : N->operands()) 1482 Record.push_back(VE.getMetadataOrNullID(I)); 1483 1484 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1485 Record.clear(); 1486 } 1487 1488 static uint64_t rotateSign(int64_t I) { 1489 uint64_t U = I; 1490 return I < 0 ? ~(U << 1) : U << 1; 1491 } 1492 1493 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1494 SmallVectorImpl<uint64_t> &Record, 1495 unsigned Abbrev) { 1496 const uint64_t Version = 1 << 1; 1497 Record.push_back((uint64_t)N->isDistinct() | Version); 1498 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1499 Record.push_back(rotateSign(N->getLowerBound())); 1500 1501 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1502 Record.clear(); 1503 } 1504 1505 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1506 SmallVectorImpl<uint64_t> &Record, 1507 unsigned Abbrev) { 1508 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1509 Record.push_back(rotateSign(N->getValue())); 1510 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1511 1512 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1513 Record.clear(); 1514 } 1515 1516 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1517 SmallVectorImpl<uint64_t> &Record, 1518 unsigned Abbrev) { 1519 Record.push_back(N->isDistinct()); 1520 Record.push_back(N->getTag()); 1521 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1522 Record.push_back(N->getSizeInBits()); 1523 Record.push_back(N->getAlignInBits()); 1524 Record.push_back(N->getEncoding()); 1525 Record.push_back(N->getFlags()); 1526 1527 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1528 Record.clear(); 1529 } 1530 1531 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1532 SmallVectorImpl<uint64_t> &Record, 1533 unsigned Abbrev) { 1534 Record.push_back(N->isDistinct()); 1535 Record.push_back(N->getTag()); 1536 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1537 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1538 Record.push_back(N->getLine()); 1539 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1540 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1541 Record.push_back(N->getSizeInBits()); 1542 Record.push_back(N->getAlignInBits()); 1543 Record.push_back(N->getOffsetInBits()); 1544 Record.push_back(N->getFlags()); 1545 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1546 1547 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1548 // that there is no DWARF address space associated with DIDerivedType. 1549 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1550 Record.push_back(*DWARFAddressSpace + 1); 1551 else 1552 Record.push_back(0); 1553 1554 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1555 Record.clear(); 1556 } 1557 1558 void ModuleBitcodeWriter::writeDICompositeType( 1559 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1560 unsigned Abbrev) { 1561 const unsigned IsNotUsedInOldTypeRef = 0x2; 1562 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1563 Record.push_back(N->getTag()); 1564 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1565 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1566 Record.push_back(N->getLine()); 1567 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1568 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1569 Record.push_back(N->getSizeInBits()); 1570 Record.push_back(N->getAlignInBits()); 1571 Record.push_back(N->getOffsetInBits()); 1572 Record.push_back(N->getFlags()); 1573 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1574 Record.push_back(N->getRuntimeLang()); 1575 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1576 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1577 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1578 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1579 1580 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1581 Record.clear(); 1582 } 1583 1584 void ModuleBitcodeWriter::writeDISubroutineType( 1585 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1586 unsigned Abbrev) { 1587 const unsigned HasNoOldTypeRefs = 0x2; 1588 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1589 Record.push_back(N->getFlags()); 1590 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1591 Record.push_back(N->getCC()); 1592 1593 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1594 Record.clear(); 1595 } 1596 1597 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1598 SmallVectorImpl<uint64_t> &Record, 1599 unsigned Abbrev) { 1600 Record.push_back(N->isDistinct()); 1601 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1602 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1603 if (N->getRawChecksum()) { 1604 Record.push_back(N->getRawChecksum()->Kind); 1605 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1606 } else { 1607 // Maintain backwards compatibility with the old internal representation of 1608 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1609 Record.push_back(0); 1610 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1611 } 1612 auto Source = N->getRawSource(); 1613 if (Source) 1614 Record.push_back(VE.getMetadataOrNullID(*Source)); 1615 1616 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1617 Record.clear(); 1618 } 1619 1620 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1621 SmallVectorImpl<uint64_t> &Record, 1622 unsigned Abbrev) { 1623 assert(N->isDistinct() && "Expected distinct compile units"); 1624 Record.push_back(/* IsDistinct */ true); 1625 Record.push_back(N->getSourceLanguage()); 1626 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1627 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1628 Record.push_back(N->isOptimized()); 1629 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1630 Record.push_back(N->getRuntimeVersion()); 1631 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1632 Record.push_back(N->getEmissionKind()); 1633 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1634 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1635 Record.push_back(/* subprograms */ 0); 1636 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1637 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1638 Record.push_back(N->getDWOId()); 1639 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1640 Record.push_back(N->getSplitDebugInlining()); 1641 Record.push_back(N->getDebugInfoForProfiling()); 1642 Record.push_back((unsigned)N->getNameTableKind()); 1643 1644 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1645 Record.clear(); 1646 } 1647 1648 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1649 SmallVectorImpl<uint64_t> &Record, 1650 unsigned Abbrev) { 1651 const uint64_t HasUnitFlag = 1 << 1; 1652 const uint64_t HasSPFlagsFlag = 1 << 2; 1653 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1654 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1655 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1658 Record.push_back(N->getLine()); 1659 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1660 Record.push_back(N->getScopeLine()); 1661 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1662 Record.push_back(N->getSPFlags()); 1663 Record.push_back(N->getVirtualIndex()); 1664 Record.push_back(N->getFlags()); 1665 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1666 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1667 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1668 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1669 Record.push_back(N->getThisAdjustment()); 1670 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1671 1672 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1673 Record.clear(); 1674 } 1675 1676 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1677 SmallVectorImpl<uint64_t> &Record, 1678 unsigned Abbrev) { 1679 Record.push_back(N->isDistinct()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1681 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1682 Record.push_back(N->getLine()); 1683 Record.push_back(N->getColumn()); 1684 1685 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1686 Record.clear(); 1687 } 1688 1689 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1690 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1691 unsigned Abbrev) { 1692 Record.push_back(N->isDistinct()); 1693 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1694 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1695 Record.push_back(N->getDiscriminator()); 1696 1697 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1698 Record.clear(); 1699 } 1700 1701 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1702 SmallVectorImpl<uint64_t> &Record, 1703 unsigned Abbrev) { 1704 Record.push_back(N->isDistinct()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1707 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1708 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1709 Record.push_back(N->getLineNo()); 1710 1711 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1712 Record.clear(); 1713 } 1714 1715 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1716 SmallVectorImpl<uint64_t> &Record, 1717 unsigned Abbrev) { 1718 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1719 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1721 1722 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1723 Record.clear(); 1724 } 1725 1726 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1727 SmallVectorImpl<uint64_t> &Record, 1728 unsigned Abbrev) { 1729 Record.push_back(N->isDistinct()); 1730 Record.push_back(N->getMacinfoType()); 1731 Record.push_back(N->getLine()); 1732 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1733 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1734 1735 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1736 Record.clear(); 1737 } 1738 1739 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1740 SmallVectorImpl<uint64_t> &Record, 1741 unsigned Abbrev) { 1742 Record.push_back(N->isDistinct()); 1743 Record.push_back(N->getMacinfoType()); 1744 Record.push_back(N->getLine()); 1745 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1746 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1747 1748 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1749 Record.clear(); 1750 } 1751 1752 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1753 SmallVectorImpl<uint64_t> &Record, 1754 unsigned Abbrev) { 1755 Record.push_back(N->isDistinct()); 1756 for (auto &I : N->operands()) 1757 Record.push_back(VE.getMetadataOrNullID(I)); 1758 1759 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1760 Record.clear(); 1761 } 1762 1763 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1764 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1765 unsigned Abbrev) { 1766 Record.push_back(N->isDistinct()); 1767 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1768 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1769 1770 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1771 Record.clear(); 1772 } 1773 1774 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1775 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1776 unsigned Abbrev) { 1777 Record.push_back(N->isDistinct()); 1778 Record.push_back(N->getTag()); 1779 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1781 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1782 1783 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1784 Record.clear(); 1785 } 1786 1787 void ModuleBitcodeWriter::writeDIGlobalVariable( 1788 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1789 unsigned Abbrev) { 1790 const uint64_t Version = 2 << 1; 1791 Record.push_back((uint64_t)N->isDistinct() | Version); 1792 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1793 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1795 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1796 Record.push_back(N->getLine()); 1797 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1798 Record.push_back(N->isLocalToUnit()); 1799 Record.push_back(N->isDefinition()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1802 Record.push_back(N->getAlignInBits()); 1803 1804 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1805 Record.clear(); 1806 } 1807 1808 void ModuleBitcodeWriter::writeDILocalVariable( 1809 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1810 unsigned Abbrev) { 1811 // In order to support all possible bitcode formats in BitcodeReader we need 1812 // to distinguish the following cases: 1813 // 1) Record has no artificial tag (Record[1]), 1814 // has no obsolete inlinedAt field (Record[9]). 1815 // In this case Record size will be 8, HasAlignment flag is false. 1816 // 2) Record has artificial tag (Record[1]), 1817 // has no obsolete inlignedAt field (Record[9]). 1818 // In this case Record size will be 9, HasAlignment flag is false. 1819 // 3) Record has both artificial tag (Record[1]) and 1820 // obsolete inlignedAt field (Record[9]). 1821 // In this case Record size will be 10, HasAlignment flag is false. 1822 // 4) Record has neither artificial tag, nor inlignedAt field, but 1823 // HasAlignment flag is true and Record[8] contains alignment value. 1824 const uint64_t HasAlignmentFlag = 1 << 1; 1825 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1826 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1827 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1828 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1829 Record.push_back(N->getLine()); 1830 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1831 Record.push_back(N->getArg()); 1832 Record.push_back(N->getFlags()); 1833 Record.push_back(N->getAlignInBits()); 1834 1835 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1836 Record.clear(); 1837 } 1838 1839 void ModuleBitcodeWriter::writeDILabel( 1840 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1841 unsigned Abbrev) { 1842 Record.push_back((uint64_t)N->isDistinct()); 1843 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1844 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1845 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1846 Record.push_back(N->getLine()); 1847 1848 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1849 Record.clear(); 1850 } 1851 1852 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1853 SmallVectorImpl<uint64_t> &Record, 1854 unsigned Abbrev) { 1855 Record.reserve(N->getElements().size() + 1); 1856 const uint64_t Version = 3 << 1; 1857 Record.push_back((uint64_t)N->isDistinct() | Version); 1858 Record.append(N->elements_begin(), N->elements_end()); 1859 1860 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1861 Record.clear(); 1862 } 1863 1864 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1865 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1866 unsigned Abbrev) { 1867 Record.push_back(N->isDistinct()); 1868 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1869 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1870 1871 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1872 Record.clear(); 1873 } 1874 1875 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1876 SmallVectorImpl<uint64_t> &Record, 1877 unsigned Abbrev) { 1878 Record.push_back(N->isDistinct()); 1879 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1880 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1881 Record.push_back(N->getLine()); 1882 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1883 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1884 Record.push_back(N->getAttributes()); 1885 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1886 1887 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1888 Record.clear(); 1889 } 1890 1891 void ModuleBitcodeWriter::writeDIImportedEntity( 1892 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1893 unsigned Abbrev) { 1894 Record.push_back(N->isDistinct()); 1895 Record.push_back(N->getTag()); 1896 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1897 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1898 Record.push_back(N->getLine()); 1899 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1900 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1901 1902 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1903 Record.clear(); 1904 } 1905 1906 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1907 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1908 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1911 return Stream.EmitAbbrev(std::move(Abbv)); 1912 } 1913 1914 void ModuleBitcodeWriter::writeNamedMetadata( 1915 SmallVectorImpl<uint64_t> &Record) { 1916 if (M.named_metadata_empty()) 1917 return; 1918 1919 unsigned Abbrev = createNamedMetadataAbbrev(); 1920 for (const NamedMDNode &NMD : M.named_metadata()) { 1921 // Write name. 1922 StringRef Str = NMD.getName(); 1923 Record.append(Str.bytes_begin(), Str.bytes_end()); 1924 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1925 Record.clear(); 1926 1927 // Write named metadata operands. 1928 for (const MDNode *N : NMD.operands()) 1929 Record.push_back(VE.getMetadataID(N)); 1930 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1931 Record.clear(); 1932 } 1933 } 1934 1935 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1936 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1937 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1941 return Stream.EmitAbbrev(std::move(Abbv)); 1942 } 1943 1944 /// Write out a record for MDString. 1945 /// 1946 /// All the metadata strings in a metadata block are emitted in a single 1947 /// record. The sizes and strings themselves are shoved into a blob. 1948 void ModuleBitcodeWriter::writeMetadataStrings( 1949 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1950 if (Strings.empty()) 1951 return; 1952 1953 // Start the record with the number of strings. 1954 Record.push_back(bitc::METADATA_STRINGS); 1955 Record.push_back(Strings.size()); 1956 1957 // Emit the sizes of the strings in the blob. 1958 SmallString<256> Blob; 1959 { 1960 BitstreamWriter W(Blob); 1961 for (const Metadata *MD : Strings) 1962 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1963 W.FlushToWord(); 1964 } 1965 1966 // Add the offset to the strings to the record. 1967 Record.push_back(Blob.size()); 1968 1969 // Add the strings to the blob. 1970 for (const Metadata *MD : Strings) 1971 Blob.append(cast<MDString>(MD)->getString()); 1972 1973 // Emit the final record. 1974 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1975 Record.clear(); 1976 } 1977 1978 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1979 enum MetadataAbbrev : unsigned { 1980 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1981 #include "llvm/IR/Metadata.def" 1982 LastPlusOne 1983 }; 1984 1985 void ModuleBitcodeWriter::writeMetadataRecords( 1986 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1987 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1988 if (MDs.empty()) 1989 return; 1990 1991 // Initialize MDNode abbreviations. 1992 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1993 #include "llvm/IR/Metadata.def" 1994 1995 for (const Metadata *MD : MDs) { 1996 if (IndexPos) 1997 IndexPos->push_back(Stream.GetCurrentBitNo()); 1998 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1999 assert(N->isResolved() && "Expected forward references to be resolved"); 2000 2001 switch (N->getMetadataID()) { 2002 default: 2003 llvm_unreachable("Invalid MDNode subclass"); 2004 #define HANDLE_MDNODE_LEAF(CLASS) \ 2005 case Metadata::CLASS##Kind: \ 2006 if (MDAbbrevs) \ 2007 write##CLASS(cast<CLASS>(N), Record, \ 2008 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2009 else \ 2010 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2011 continue; 2012 #include "llvm/IR/Metadata.def" 2013 } 2014 } 2015 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2016 } 2017 } 2018 2019 void ModuleBitcodeWriter::writeModuleMetadata() { 2020 if (!VE.hasMDs() && M.named_metadata_empty()) 2021 return; 2022 2023 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2024 SmallVector<uint64_t, 64> Record; 2025 2026 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2027 // block and load any metadata. 2028 std::vector<unsigned> MDAbbrevs; 2029 2030 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2031 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2032 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2033 createGenericDINodeAbbrev(); 2034 2035 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2036 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2039 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2040 2041 Abbv = std::make_shared<BitCodeAbbrev>(); 2042 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2045 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2046 2047 // Emit MDStrings together upfront. 2048 writeMetadataStrings(VE.getMDStrings(), Record); 2049 2050 // We only emit an index for the metadata record if we have more than a given 2051 // (naive) threshold of metadatas, otherwise it is not worth it. 2052 if (VE.getNonMDStrings().size() > IndexThreshold) { 2053 // Write a placeholder value in for the offset of the metadata index, 2054 // which is written after the records, so that it can include 2055 // the offset of each entry. The placeholder offset will be 2056 // updated after all records are emitted. 2057 uint64_t Vals[] = {0, 0}; 2058 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2059 } 2060 2061 // Compute and save the bit offset to the current position, which will be 2062 // patched when we emit the index later. We can simply subtract the 64-bit 2063 // fixed size from the current bit number to get the location to backpatch. 2064 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2065 2066 // This index will contain the bitpos for each individual record. 2067 std::vector<uint64_t> IndexPos; 2068 IndexPos.reserve(VE.getNonMDStrings().size()); 2069 2070 // Write all the records 2071 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2072 2073 if (VE.getNonMDStrings().size() > IndexThreshold) { 2074 // Now that we have emitted all the records we will emit the index. But 2075 // first 2076 // backpatch the forward reference so that the reader can skip the records 2077 // efficiently. 2078 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2079 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2080 2081 // Delta encode the index. 2082 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2083 for (auto &Elt : IndexPos) { 2084 auto EltDelta = Elt - PreviousValue; 2085 PreviousValue = Elt; 2086 Elt = EltDelta; 2087 } 2088 // Emit the index record. 2089 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2090 IndexPos.clear(); 2091 } 2092 2093 // Write the named metadata now. 2094 writeNamedMetadata(Record); 2095 2096 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2097 SmallVector<uint64_t, 4> Record; 2098 Record.push_back(VE.getValueID(&GO)); 2099 pushGlobalMetadataAttachment(Record, GO); 2100 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2101 }; 2102 for (const Function &F : M) 2103 if (F.isDeclaration() && F.hasMetadata()) 2104 AddDeclAttachedMetadata(F); 2105 // FIXME: Only store metadata for declarations here, and move data for global 2106 // variable definitions to a separate block (PR28134). 2107 for (const GlobalVariable &GV : M.globals()) 2108 if (GV.hasMetadata()) 2109 AddDeclAttachedMetadata(GV); 2110 2111 Stream.ExitBlock(); 2112 } 2113 2114 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2115 if (!VE.hasMDs()) 2116 return; 2117 2118 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2119 SmallVector<uint64_t, 64> Record; 2120 writeMetadataStrings(VE.getMDStrings(), Record); 2121 writeMetadataRecords(VE.getNonMDStrings(), Record); 2122 Stream.ExitBlock(); 2123 } 2124 2125 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2126 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2127 // [n x [id, mdnode]] 2128 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2129 GO.getAllMetadata(MDs); 2130 for (const auto &I : MDs) { 2131 Record.push_back(I.first); 2132 Record.push_back(VE.getMetadataID(I.second)); 2133 } 2134 } 2135 2136 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2137 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2138 2139 SmallVector<uint64_t, 64> Record; 2140 2141 if (F.hasMetadata()) { 2142 pushGlobalMetadataAttachment(Record, F); 2143 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2144 Record.clear(); 2145 } 2146 2147 // Write metadata attachments 2148 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2149 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2150 for (const BasicBlock &BB : F) 2151 for (const Instruction &I : BB) { 2152 MDs.clear(); 2153 I.getAllMetadataOtherThanDebugLoc(MDs); 2154 2155 // If no metadata, ignore instruction. 2156 if (MDs.empty()) continue; 2157 2158 Record.push_back(VE.getInstructionID(&I)); 2159 2160 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2161 Record.push_back(MDs[i].first); 2162 Record.push_back(VE.getMetadataID(MDs[i].second)); 2163 } 2164 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2165 Record.clear(); 2166 } 2167 2168 Stream.ExitBlock(); 2169 } 2170 2171 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2172 SmallVector<uint64_t, 64> Record; 2173 2174 // Write metadata kinds 2175 // METADATA_KIND - [n x [id, name]] 2176 SmallVector<StringRef, 8> Names; 2177 M.getMDKindNames(Names); 2178 2179 if (Names.empty()) return; 2180 2181 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2182 2183 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2184 Record.push_back(MDKindID); 2185 StringRef KName = Names[MDKindID]; 2186 Record.append(KName.begin(), KName.end()); 2187 2188 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2189 Record.clear(); 2190 } 2191 2192 Stream.ExitBlock(); 2193 } 2194 2195 void ModuleBitcodeWriter::writeOperandBundleTags() { 2196 // Write metadata kinds 2197 // 2198 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2199 // 2200 // OPERAND_BUNDLE_TAG - [strchr x N] 2201 2202 SmallVector<StringRef, 8> Tags; 2203 M.getOperandBundleTags(Tags); 2204 2205 if (Tags.empty()) 2206 return; 2207 2208 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2209 2210 SmallVector<uint64_t, 64> Record; 2211 2212 for (auto Tag : Tags) { 2213 Record.append(Tag.begin(), Tag.end()); 2214 2215 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2216 Record.clear(); 2217 } 2218 2219 Stream.ExitBlock(); 2220 } 2221 2222 void ModuleBitcodeWriter::writeSyncScopeNames() { 2223 SmallVector<StringRef, 8> SSNs; 2224 M.getContext().getSyncScopeNames(SSNs); 2225 if (SSNs.empty()) 2226 return; 2227 2228 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2229 2230 SmallVector<uint64_t, 64> Record; 2231 for (auto SSN : SSNs) { 2232 Record.append(SSN.begin(), SSN.end()); 2233 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2234 Record.clear(); 2235 } 2236 2237 Stream.ExitBlock(); 2238 } 2239 2240 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2241 if ((int64_t)V >= 0) 2242 Vals.push_back(V << 1); 2243 else 2244 Vals.push_back((-V << 1) | 1); 2245 } 2246 2247 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2248 bool isGlobal) { 2249 if (FirstVal == LastVal) return; 2250 2251 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2252 2253 unsigned AggregateAbbrev = 0; 2254 unsigned String8Abbrev = 0; 2255 unsigned CString7Abbrev = 0; 2256 unsigned CString6Abbrev = 0; 2257 // If this is a constant pool for the module, emit module-specific abbrevs. 2258 if (isGlobal) { 2259 // Abbrev for CST_CODE_AGGREGATE. 2260 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2261 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2264 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2265 2266 // Abbrev for CST_CODE_STRING. 2267 Abbv = std::make_shared<BitCodeAbbrev>(); 2268 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2271 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2272 // Abbrev for CST_CODE_CSTRING. 2273 Abbv = std::make_shared<BitCodeAbbrev>(); 2274 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2277 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2278 // Abbrev for CST_CODE_CSTRING. 2279 Abbv = std::make_shared<BitCodeAbbrev>(); 2280 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2283 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2284 } 2285 2286 SmallVector<uint64_t, 64> Record; 2287 2288 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2289 Type *LastTy = nullptr; 2290 for (unsigned i = FirstVal; i != LastVal; ++i) { 2291 const Value *V = Vals[i].first; 2292 // If we need to switch types, do so now. 2293 if (V->getType() != LastTy) { 2294 LastTy = V->getType(); 2295 Record.push_back(VE.getTypeID(LastTy)); 2296 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2297 CONSTANTS_SETTYPE_ABBREV); 2298 Record.clear(); 2299 } 2300 2301 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2302 Record.push_back(unsigned(IA->hasSideEffects()) | 2303 unsigned(IA->isAlignStack()) << 1 | 2304 unsigned(IA->getDialect()&1) << 2); 2305 2306 // Add the asm string. 2307 const std::string &AsmStr = IA->getAsmString(); 2308 Record.push_back(AsmStr.size()); 2309 Record.append(AsmStr.begin(), AsmStr.end()); 2310 2311 // Add the constraint string. 2312 const std::string &ConstraintStr = IA->getConstraintString(); 2313 Record.push_back(ConstraintStr.size()); 2314 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2315 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2316 Record.clear(); 2317 continue; 2318 } 2319 const Constant *C = cast<Constant>(V); 2320 unsigned Code = -1U; 2321 unsigned AbbrevToUse = 0; 2322 if (C->isNullValue()) { 2323 Code = bitc::CST_CODE_NULL; 2324 } else if (isa<UndefValue>(C)) { 2325 Code = bitc::CST_CODE_UNDEF; 2326 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2327 if (IV->getBitWidth() <= 64) { 2328 uint64_t V = IV->getSExtValue(); 2329 emitSignedInt64(Record, V); 2330 Code = bitc::CST_CODE_INTEGER; 2331 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2332 } else { // Wide integers, > 64 bits in size. 2333 // We have an arbitrary precision integer value to write whose 2334 // bit width is > 64. However, in canonical unsigned integer 2335 // format it is likely that the high bits are going to be zero. 2336 // So, we only write the number of active words. 2337 unsigned NWords = IV->getValue().getActiveWords(); 2338 const uint64_t *RawWords = IV->getValue().getRawData(); 2339 for (unsigned i = 0; i != NWords; ++i) { 2340 emitSignedInt64(Record, RawWords[i]); 2341 } 2342 Code = bitc::CST_CODE_WIDE_INTEGER; 2343 } 2344 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2345 Code = bitc::CST_CODE_FLOAT; 2346 Type *Ty = CFP->getType(); 2347 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2348 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2349 } else if (Ty->isX86_FP80Ty()) { 2350 // api needed to prevent premature destruction 2351 // bits are not in the same order as a normal i80 APInt, compensate. 2352 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2353 const uint64_t *p = api.getRawData(); 2354 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2355 Record.push_back(p[0] & 0xffffLL); 2356 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2357 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2358 const uint64_t *p = api.getRawData(); 2359 Record.push_back(p[0]); 2360 Record.push_back(p[1]); 2361 } else { 2362 assert(0 && "Unknown FP type!"); 2363 } 2364 } else if (isa<ConstantDataSequential>(C) && 2365 cast<ConstantDataSequential>(C)->isString()) { 2366 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2367 // Emit constant strings specially. 2368 unsigned NumElts = Str->getNumElements(); 2369 // If this is a null-terminated string, use the denser CSTRING encoding. 2370 if (Str->isCString()) { 2371 Code = bitc::CST_CODE_CSTRING; 2372 --NumElts; // Don't encode the null, which isn't allowed by char6. 2373 } else { 2374 Code = bitc::CST_CODE_STRING; 2375 AbbrevToUse = String8Abbrev; 2376 } 2377 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2378 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2379 for (unsigned i = 0; i != NumElts; ++i) { 2380 unsigned char V = Str->getElementAsInteger(i); 2381 Record.push_back(V); 2382 isCStr7 &= (V & 128) == 0; 2383 if (isCStrChar6) 2384 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2385 } 2386 2387 if (isCStrChar6) 2388 AbbrevToUse = CString6Abbrev; 2389 else if (isCStr7) 2390 AbbrevToUse = CString7Abbrev; 2391 } else if (const ConstantDataSequential *CDS = 2392 dyn_cast<ConstantDataSequential>(C)) { 2393 Code = bitc::CST_CODE_DATA; 2394 Type *EltTy = CDS->getType()->getElementType(); 2395 if (isa<IntegerType>(EltTy)) { 2396 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2397 Record.push_back(CDS->getElementAsInteger(i)); 2398 } else { 2399 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2400 Record.push_back( 2401 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2402 } 2403 } else if (isa<ConstantAggregate>(C)) { 2404 Code = bitc::CST_CODE_AGGREGATE; 2405 for (const Value *Op : C->operands()) 2406 Record.push_back(VE.getValueID(Op)); 2407 AbbrevToUse = AggregateAbbrev; 2408 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2409 switch (CE->getOpcode()) { 2410 default: 2411 if (Instruction::isCast(CE->getOpcode())) { 2412 Code = bitc::CST_CODE_CE_CAST; 2413 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2414 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2415 Record.push_back(VE.getValueID(C->getOperand(0))); 2416 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2417 } else { 2418 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2419 Code = bitc::CST_CODE_CE_BINOP; 2420 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2421 Record.push_back(VE.getValueID(C->getOperand(0))); 2422 Record.push_back(VE.getValueID(C->getOperand(1))); 2423 uint64_t Flags = getOptimizationFlags(CE); 2424 if (Flags != 0) 2425 Record.push_back(Flags); 2426 } 2427 break; 2428 case Instruction::FNeg: { 2429 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2430 Code = bitc::CST_CODE_CE_UNOP; 2431 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2432 Record.push_back(VE.getValueID(C->getOperand(0))); 2433 uint64_t Flags = getOptimizationFlags(CE); 2434 if (Flags != 0) 2435 Record.push_back(Flags); 2436 break; 2437 } 2438 case Instruction::GetElementPtr: { 2439 Code = bitc::CST_CODE_CE_GEP; 2440 const auto *GO = cast<GEPOperator>(C); 2441 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2442 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2443 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2444 Record.push_back((*Idx << 1) | GO->isInBounds()); 2445 } else if (GO->isInBounds()) 2446 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2447 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2448 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2449 Record.push_back(VE.getValueID(C->getOperand(i))); 2450 } 2451 break; 2452 } 2453 case Instruction::Select: 2454 Code = bitc::CST_CODE_CE_SELECT; 2455 Record.push_back(VE.getValueID(C->getOperand(0))); 2456 Record.push_back(VE.getValueID(C->getOperand(1))); 2457 Record.push_back(VE.getValueID(C->getOperand(2))); 2458 break; 2459 case Instruction::ExtractElement: 2460 Code = bitc::CST_CODE_CE_EXTRACTELT; 2461 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2462 Record.push_back(VE.getValueID(C->getOperand(0))); 2463 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2464 Record.push_back(VE.getValueID(C->getOperand(1))); 2465 break; 2466 case Instruction::InsertElement: 2467 Code = bitc::CST_CODE_CE_INSERTELT; 2468 Record.push_back(VE.getValueID(C->getOperand(0))); 2469 Record.push_back(VE.getValueID(C->getOperand(1))); 2470 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2471 Record.push_back(VE.getValueID(C->getOperand(2))); 2472 break; 2473 case Instruction::ShuffleVector: 2474 // If the return type and argument types are the same, this is a 2475 // standard shufflevector instruction. If the types are different, 2476 // then the shuffle is widening or truncating the input vectors, and 2477 // the argument type must also be encoded. 2478 if (C->getType() == C->getOperand(0)->getType()) { 2479 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2480 } else { 2481 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2482 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2483 } 2484 Record.push_back(VE.getValueID(C->getOperand(0))); 2485 Record.push_back(VE.getValueID(C->getOperand(1))); 2486 Record.push_back(VE.getValueID(C->getOperand(2))); 2487 break; 2488 case Instruction::ICmp: 2489 case Instruction::FCmp: 2490 Code = bitc::CST_CODE_CE_CMP; 2491 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2492 Record.push_back(VE.getValueID(C->getOperand(0))); 2493 Record.push_back(VE.getValueID(C->getOperand(1))); 2494 Record.push_back(CE->getPredicate()); 2495 break; 2496 } 2497 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2498 Code = bitc::CST_CODE_BLOCKADDRESS; 2499 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2500 Record.push_back(VE.getValueID(BA->getFunction())); 2501 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2502 } else { 2503 #ifndef NDEBUG 2504 C->dump(); 2505 #endif 2506 llvm_unreachable("Unknown constant!"); 2507 } 2508 Stream.EmitRecord(Code, Record, AbbrevToUse); 2509 Record.clear(); 2510 } 2511 2512 Stream.ExitBlock(); 2513 } 2514 2515 void ModuleBitcodeWriter::writeModuleConstants() { 2516 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2517 2518 // Find the first constant to emit, which is the first non-globalvalue value. 2519 // We know globalvalues have been emitted by WriteModuleInfo. 2520 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2521 if (!isa<GlobalValue>(Vals[i].first)) { 2522 writeConstants(i, Vals.size(), true); 2523 return; 2524 } 2525 } 2526 } 2527 2528 /// pushValueAndType - The file has to encode both the value and type id for 2529 /// many values, because we need to know what type to create for forward 2530 /// references. However, most operands are not forward references, so this type 2531 /// field is not needed. 2532 /// 2533 /// This function adds V's value ID to Vals. If the value ID is higher than the 2534 /// instruction ID, then it is a forward reference, and it also includes the 2535 /// type ID. The value ID that is written is encoded relative to the InstID. 2536 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2537 SmallVectorImpl<unsigned> &Vals) { 2538 unsigned ValID = VE.getValueID(V); 2539 // Make encoding relative to the InstID. 2540 Vals.push_back(InstID - ValID); 2541 if (ValID >= InstID) { 2542 Vals.push_back(VE.getTypeID(V->getType())); 2543 return true; 2544 } 2545 return false; 2546 } 2547 2548 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2549 unsigned InstID) { 2550 SmallVector<unsigned, 64> Record; 2551 LLVMContext &C = CS.getInstruction()->getContext(); 2552 2553 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2554 const auto &Bundle = CS.getOperandBundleAt(i); 2555 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2556 2557 for (auto &Input : Bundle.Inputs) 2558 pushValueAndType(Input, InstID, Record); 2559 2560 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2561 Record.clear(); 2562 } 2563 } 2564 2565 /// pushValue - Like pushValueAndType, but where the type of the value is 2566 /// omitted (perhaps it was already encoded in an earlier operand). 2567 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2568 SmallVectorImpl<unsigned> &Vals) { 2569 unsigned ValID = VE.getValueID(V); 2570 Vals.push_back(InstID - ValID); 2571 } 2572 2573 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2574 SmallVectorImpl<uint64_t> &Vals) { 2575 unsigned ValID = VE.getValueID(V); 2576 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2577 emitSignedInt64(Vals, diff); 2578 } 2579 2580 /// WriteInstruction - Emit an instruction to the specified stream. 2581 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2582 unsigned InstID, 2583 SmallVectorImpl<unsigned> &Vals) { 2584 unsigned Code = 0; 2585 unsigned AbbrevToUse = 0; 2586 VE.setInstructionID(&I); 2587 switch (I.getOpcode()) { 2588 default: 2589 if (Instruction::isCast(I.getOpcode())) { 2590 Code = bitc::FUNC_CODE_INST_CAST; 2591 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2592 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2593 Vals.push_back(VE.getTypeID(I.getType())); 2594 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2595 } else { 2596 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2597 Code = bitc::FUNC_CODE_INST_BINOP; 2598 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2599 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2600 pushValue(I.getOperand(1), InstID, Vals); 2601 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2602 uint64_t Flags = getOptimizationFlags(&I); 2603 if (Flags != 0) { 2604 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2605 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2606 Vals.push_back(Flags); 2607 } 2608 } 2609 break; 2610 case Instruction::FNeg: { 2611 Code = bitc::FUNC_CODE_INST_UNOP; 2612 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2613 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2614 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2615 uint64_t Flags = getOptimizationFlags(&I); 2616 if (Flags != 0) { 2617 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2618 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2619 Vals.push_back(Flags); 2620 } 2621 break; 2622 } 2623 case Instruction::GetElementPtr: { 2624 Code = bitc::FUNC_CODE_INST_GEP; 2625 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2626 auto &GEPInst = cast<GetElementPtrInst>(I); 2627 Vals.push_back(GEPInst.isInBounds()); 2628 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2629 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2630 pushValueAndType(I.getOperand(i), InstID, Vals); 2631 break; 2632 } 2633 case Instruction::ExtractValue: { 2634 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2635 pushValueAndType(I.getOperand(0), InstID, Vals); 2636 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2637 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2638 break; 2639 } 2640 case Instruction::InsertValue: { 2641 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2642 pushValueAndType(I.getOperand(0), InstID, Vals); 2643 pushValueAndType(I.getOperand(1), InstID, Vals); 2644 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2645 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2646 break; 2647 } 2648 case Instruction::Select: { 2649 Code = bitc::FUNC_CODE_INST_VSELECT; 2650 pushValueAndType(I.getOperand(1), InstID, Vals); 2651 pushValue(I.getOperand(2), InstID, Vals); 2652 pushValueAndType(I.getOperand(0), InstID, Vals); 2653 uint64_t Flags = getOptimizationFlags(&I); 2654 if (Flags != 0) 2655 Vals.push_back(Flags); 2656 break; 2657 } 2658 case Instruction::ExtractElement: 2659 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2660 pushValueAndType(I.getOperand(0), InstID, Vals); 2661 pushValueAndType(I.getOperand(1), InstID, Vals); 2662 break; 2663 case Instruction::InsertElement: 2664 Code = bitc::FUNC_CODE_INST_INSERTELT; 2665 pushValueAndType(I.getOperand(0), InstID, Vals); 2666 pushValue(I.getOperand(1), InstID, Vals); 2667 pushValueAndType(I.getOperand(2), InstID, Vals); 2668 break; 2669 case Instruction::ShuffleVector: 2670 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2671 pushValueAndType(I.getOperand(0), InstID, Vals); 2672 pushValue(I.getOperand(1), InstID, Vals); 2673 pushValue(I.getOperand(2), InstID, Vals); 2674 break; 2675 case Instruction::ICmp: 2676 case Instruction::FCmp: { 2677 // compare returning Int1Ty or vector of Int1Ty 2678 Code = bitc::FUNC_CODE_INST_CMP2; 2679 pushValueAndType(I.getOperand(0), InstID, Vals); 2680 pushValue(I.getOperand(1), InstID, Vals); 2681 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2682 uint64_t Flags = getOptimizationFlags(&I); 2683 if (Flags != 0) 2684 Vals.push_back(Flags); 2685 break; 2686 } 2687 2688 case Instruction::Ret: 2689 { 2690 Code = bitc::FUNC_CODE_INST_RET; 2691 unsigned NumOperands = I.getNumOperands(); 2692 if (NumOperands == 0) 2693 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2694 else if (NumOperands == 1) { 2695 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2696 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2697 } else { 2698 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2699 pushValueAndType(I.getOperand(i), InstID, Vals); 2700 } 2701 } 2702 break; 2703 case Instruction::Br: 2704 { 2705 Code = bitc::FUNC_CODE_INST_BR; 2706 const BranchInst &II = cast<BranchInst>(I); 2707 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2708 if (II.isConditional()) { 2709 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2710 pushValue(II.getCondition(), InstID, Vals); 2711 } 2712 } 2713 break; 2714 case Instruction::Switch: 2715 { 2716 Code = bitc::FUNC_CODE_INST_SWITCH; 2717 const SwitchInst &SI = cast<SwitchInst>(I); 2718 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2719 pushValue(SI.getCondition(), InstID, Vals); 2720 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2721 for (auto Case : SI.cases()) { 2722 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2723 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2724 } 2725 } 2726 break; 2727 case Instruction::IndirectBr: 2728 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2729 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2730 // Encode the address operand as relative, but not the basic blocks. 2731 pushValue(I.getOperand(0), InstID, Vals); 2732 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2733 Vals.push_back(VE.getValueID(I.getOperand(i))); 2734 break; 2735 2736 case Instruction::Invoke: { 2737 const InvokeInst *II = cast<InvokeInst>(&I); 2738 const Value *Callee = II->getCalledValue(); 2739 FunctionType *FTy = II->getFunctionType(); 2740 2741 if (II->hasOperandBundles()) 2742 writeOperandBundles(II, InstID); 2743 2744 Code = bitc::FUNC_CODE_INST_INVOKE; 2745 2746 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2747 Vals.push_back(II->getCallingConv() | 1 << 13); 2748 Vals.push_back(VE.getValueID(II->getNormalDest())); 2749 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2750 Vals.push_back(VE.getTypeID(FTy)); 2751 pushValueAndType(Callee, InstID, Vals); 2752 2753 // Emit value #'s for the fixed parameters. 2754 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2755 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2756 2757 // Emit type/value pairs for varargs params. 2758 if (FTy->isVarArg()) { 2759 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2760 i != e; ++i) 2761 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2762 } 2763 break; 2764 } 2765 case Instruction::Resume: 2766 Code = bitc::FUNC_CODE_INST_RESUME; 2767 pushValueAndType(I.getOperand(0), InstID, Vals); 2768 break; 2769 case Instruction::CleanupRet: { 2770 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2771 const auto &CRI = cast<CleanupReturnInst>(I); 2772 pushValue(CRI.getCleanupPad(), InstID, Vals); 2773 if (CRI.hasUnwindDest()) 2774 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2775 break; 2776 } 2777 case Instruction::CatchRet: { 2778 Code = bitc::FUNC_CODE_INST_CATCHRET; 2779 const auto &CRI = cast<CatchReturnInst>(I); 2780 pushValue(CRI.getCatchPad(), InstID, Vals); 2781 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2782 break; 2783 } 2784 case Instruction::CleanupPad: 2785 case Instruction::CatchPad: { 2786 const auto &FuncletPad = cast<FuncletPadInst>(I); 2787 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2788 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2789 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2790 2791 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2792 Vals.push_back(NumArgOperands); 2793 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2794 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2795 break; 2796 } 2797 case Instruction::CatchSwitch: { 2798 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2799 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2800 2801 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2802 2803 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2804 Vals.push_back(NumHandlers); 2805 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2806 Vals.push_back(VE.getValueID(CatchPadBB)); 2807 2808 if (CatchSwitch.hasUnwindDest()) 2809 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2810 break; 2811 } 2812 case Instruction::CallBr: { 2813 const CallBrInst *CBI = cast<CallBrInst>(&I); 2814 const Value *Callee = CBI->getCalledValue(); 2815 FunctionType *FTy = CBI->getFunctionType(); 2816 2817 if (CBI->hasOperandBundles()) 2818 writeOperandBundles(CBI, InstID); 2819 2820 Code = bitc::FUNC_CODE_INST_CALLBR; 2821 2822 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2823 2824 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2825 1 << bitc::CALL_EXPLICIT_TYPE); 2826 2827 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2828 Vals.push_back(CBI->getNumIndirectDests()); 2829 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2830 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2831 2832 Vals.push_back(VE.getTypeID(FTy)); 2833 pushValueAndType(Callee, InstID, Vals); 2834 2835 // Emit value #'s for the fixed parameters. 2836 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2837 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2838 2839 // Emit type/value pairs for varargs params. 2840 if (FTy->isVarArg()) { 2841 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2842 i != e; ++i) 2843 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2844 } 2845 break; 2846 } 2847 case Instruction::Unreachable: 2848 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2849 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2850 break; 2851 2852 case Instruction::PHI: { 2853 const PHINode &PN = cast<PHINode>(I); 2854 Code = bitc::FUNC_CODE_INST_PHI; 2855 // With the newer instruction encoding, forward references could give 2856 // negative valued IDs. This is most common for PHIs, so we use 2857 // signed VBRs. 2858 SmallVector<uint64_t, 128> Vals64; 2859 Vals64.push_back(VE.getTypeID(PN.getType())); 2860 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2861 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2862 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2863 } 2864 // Emit a Vals64 vector and exit. 2865 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2866 Vals64.clear(); 2867 return; 2868 } 2869 2870 case Instruction::LandingPad: { 2871 const LandingPadInst &LP = cast<LandingPadInst>(I); 2872 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2873 Vals.push_back(VE.getTypeID(LP.getType())); 2874 Vals.push_back(LP.isCleanup()); 2875 Vals.push_back(LP.getNumClauses()); 2876 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2877 if (LP.isCatch(I)) 2878 Vals.push_back(LandingPadInst::Catch); 2879 else 2880 Vals.push_back(LandingPadInst::Filter); 2881 pushValueAndType(LP.getClause(I), InstID, Vals); 2882 } 2883 break; 2884 } 2885 2886 case Instruction::Alloca: { 2887 Code = bitc::FUNC_CODE_INST_ALLOCA; 2888 const AllocaInst &AI = cast<AllocaInst>(I); 2889 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2890 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2891 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2892 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2893 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2894 "not enough bits for maximum alignment"); 2895 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2896 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2897 AlignRecord |= 1 << 6; 2898 AlignRecord |= AI.isSwiftError() << 7; 2899 Vals.push_back(AlignRecord); 2900 break; 2901 } 2902 2903 case Instruction::Load: 2904 if (cast<LoadInst>(I).isAtomic()) { 2905 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2906 pushValueAndType(I.getOperand(0), InstID, Vals); 2907 } else { 2908 Code = bitc::FUNC_CODE_INST_LOAD; 2909 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2910 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2911 } 2912 Vals.push_back(VE.getTypeID(I.getType())); 2913 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2914 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2915 if (cast<LoadInst>(I).isAtomic()) { 2916 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2917 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2918 } 2919 break; 2920 case Instruction::Store: 2921 if (cast<StoreInst>(I).isAtomic()) 2922 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2923 else 2924 Code = bitc::FUNC_CODE_INST_STORE; 2925 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2926 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2927 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2928 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2929 if (cast<StoreInst>(I).isAtomic()) { 2930 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2931 Vals.push_back( 2932 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2933 } 2934 break; 2935 case Instruction::AtomicCmpXchg: 2936 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2937 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2938 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2939 pushValue(I.getOperand(2), InstID, Vals); // newval. 2940 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2941 Vals.push_back( 2942 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2943 Vals.push_back( 2944 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2945 Vals.push_back( 2946 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2947 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2948 break; 2949 case Instruction::AtomicRMW: 2950 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2951 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2952 pushValue(I.getOperand(1), InstID, Vals); // val. 2953 Vals.push_back( 2954 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2955 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2956 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2957 Vals.push_back( 2958 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2959 break; 2960 case Instruction::Fence: 2961 Code = bitc::FUNC_CODE_INST_FENCE; 2962 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2963 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2964 break; 2965 case Instruction::Call: { 2966 const CallInst &CI = cast<CallInst>(I); 2967 FunctionType *FTy = CI.getFunctionType(); 2968 2969 if (CI.hasOperandBundles()) 2970 writeOperandBundles(&CI, InstID); 2971 2972 Code = bitc::FUNC_CODE_INST_CALL; 2973 2974 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2975 2976 unsigned Flags = getOptimizationFlags(&I); 2977 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2978 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2979 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2980 1 << bitc::CALL_EXPLICIT_TYPE | 2981 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2982 unsigned(Flags != 0) << bitc::CALL_FMF); 2983 if (Flags != 0) 2984 Vals.push_back(Flags); 2985 2986 Vals.push_back(VE.getTypeID(FTy)); 2987 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2988 2989 // Emit value #'s for the fixed parameters. 2990 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2991 // Check for labels (can happen with asm labels). 2992 if (FTy->getParamType(i)->isLabelTy()) 2993 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2994 else 2995 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2996 } 2997 2998 // Emit type/value pairs for varargs params. 2999 if (FTy->isVarArg()) { 3000 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3001 i != e; ++i) 3002 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3003 } 3004 break; 3005 } 3006 case Instruction::VAArg: 3007 Code = bitc::FUNC_CODE_INST_VAARG; 3008 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3009 pushValue(I.getOperand(0), InstID, Vals); // valist. 3010 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3011 break; 3012 } 3013 3014 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3015 Vals.clear(); 3016 } 3017 3018 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3019 /// to allow clients to efficiently find the function body. 3020 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3021 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3022 // Get the offset of the VST we are writing, and backpatch it into 3023 // the VST forward declaration record. 3024 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3025 // The BitcodeStartBit was the stream offset of the identification block. 3026 VSTOffset -= bitcodeStartBit(); 3027 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3028 // Note that we add 1 here because the offset is relative to one word 3029 // before the start of the identification block, which was historically 3030 // always the start of the regular bitcode header. 3031 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3032 3033 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3034 3035 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3036 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3039 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3040 3041 for (const Function &F : M) { 3042 uint64_t Record[2]; 3043 3044 if (F.isDeclaration()) 3045 continue; 3046 3047 Record[0] = VE.getValueID(&F); 3048 3049 // Save the word offset of the function (from the start of the 3050 // actual bitcode written to the stream). 3051 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3052 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3053 // Note that we add 1 here because the offset is relative to one word 3054 // before the start of the identification block, which was historically 3055 // always the start of the regular bitcode header. 3056 Record[1] = BitcodeIndex / 32 + 1; 3057 3058 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3059 } 3060 3061 Stream.ExitBlock(); 3062 } 3063 3064 /// Emit names for arguments, instructions and basic blocks in a function. 3065 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3066 const ValueSymbolTable &VST) { 3067 if (VST.empty()) 3068 return; 3069 3070 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3071 3072 // FIXME: Set up the abbrev, we know how many values there are! 3073 // FIXME: We know if the type names can use 7-bit ascii. 3074 SmallVector<uint64_t, 64> NameVals; 3075 3076 for (const ValueName &Name : VST) { 3077 // Figure out the encoding to use for the name. 3078 StringEncoding Bits = getStringEncoding(Name.getKey()); 3079 3080 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3081 NameVals.push_back(VE.getValueID(Name.getValue())); 3082 3083 // VST_CODE_ENTRY: [valueid, namechar x N] 3084 // VST_CODE_BBENTRY: [bbid, namechar x N] 3085 unsigned Code; 3086 if (isa<BasicBlock>(Name.getValue())) { 3087 Code = bitc::VST_CODE_BBENTRY; 3088 if (Bits == SE_Char6) 3089 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3090 } else { 3091 Code = bitc::VST_CODE_ENTRY; 3092 if (Bits == SE_Char6) 3093 AbbrevToUse = VST_ENTRY_6_ABBREV; 3094 else if (Bits == SE_Fixed7) 3095 AbbrevToUse = VST_ENTRY_7_ABBREV; 3096 } 3097 3098 for (const auto P : Name.getKey()) 3099 NameVals.push_back((unsigned char)P); 3100 3101 // Emit the finished record. 3102 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3103 NameVals.clear(); 3104 } 3105 3106 Stream.ExitBlock(); 3107 } 3108 3109 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3110 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3111 unsigned Code; 3112 if (isa<BasicBlock>(Order.V)) 3113 Code = bitc::USELIST_CODE_BB; 3114 else 3115 Code = bitc::USELIST_CODE_DEFAULT; 3116 3117 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3118 Record.push_back(VE.getValueID(Order.V)); 3119 Stream.EmitRecord(Code, Record); 3120 } 3121 3122 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3123 assert(VE.shouldPreserveUseListOrder() && 3124 "Expected to be preserving use-list order"); 3125 3126 auto hasMore = [&]() { 3127 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3128 }; 3129 if (!hasMore()) 3130 // Nothing to do. 3131 return; 3132 3133 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3134 while (hasMore()) { 3135 writeUseList(std::move(VE.UseListOrders.back())); 3136 VE.UseListOrders.pop_back(); 3137 } 3138 Stream.ExitBlock(); 3139 } 3140 3141 /// Emit a function body to the module stream. 3142 void ModuleBitcodeWriter::writeFunction( 3143 const Function &F, 3144 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3145 // Save the bitcode index of the start of this function block for recording 3146 // in the VST. 3147 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3148 3149 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3150 VE.incorporateFunction(F); 3151 3152 SmallVector<unsigned, 64> Vals; 3153 3154 // Emit the number of basic blocks, so the reader can create them ahead of 3155 // time. 3156 Vals.push_back(VE.getBasicBlocks().size()); 3157 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3158 Vals.clear(); 3159 3160 // If there are function-local constants, emit them now. 3161 unsigned CstStart, CstEnd; 3162 VE.getFunctionConstantRange(CstStart, CstEnd); 3163 writeConstants(CstStart, CstEnd, false); 3164 3165 // If there is function-local metadata, emit it now. 3166 writeFunctionMetadata(F); 3167 3168 // Keep a running idea of what the instruction ID is. 3169 unsigned InstID = CstEnd; 3170 3171 bool NeedsMetadataAttachment = F.hasMetadata(); 3172 3173 DILocation *LastDL = nullptr; 3174 // Finally, emit all the instructions, in order. 3175 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3176 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3177 I != E; ++I) { 3178 writeInstruction(*I, InstID, Vals); 3179 3180 if (!I->getType()->isVoidTy()) 3181 ++InstID; 3182 3183 // If the instruction has metadata, write a metadata attachment later. 3184 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3185 3186 // If the instruction has a debug location, emit it. 3187 DILocation *DL = I->getDebugLoc(); 3188 if (!DL) 3189 continue; 3190 3191 if (DL == LastDL) { 3192 // Just repeat the same debug loc as last time. 3193 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3194 continue; 3195 } 3196 3197 Vals.push_back(DL->getLine()); 3198 Vals.push_back(DL->getColumn()); 3199 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3200 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3201 Vals.push_back(DL->isImplicitCode()); 3202 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3203 Vals.clear(); 3204 3205 LastDL = DL; 3206 } 3207 3208 // Emit names for all the instructions etc. 3209 if (auto *Symtab = F.getValueSymbolTable()) 3210 writeFunctionLevelValueSymbolTable(*Symtab); 3211 3212 if (NeedsMetadataAttachment) 3213 writeFunctionMetadataAttachment(F); 3214 if (VE.shouldPreserveUseListOrder()) 3215 writeUseListBlock(&F); 3216 VE.purgeFunction(); 3217 Stream.ExitBlock(); 3218 } 3219 3220 // Emit blockinfo, which defines the standard abbreviations etc. 3221 void ModuleBitcodeWriter::writeBlockInfo() { 3222 // We only want to emit block info records for blocks that have multiple 3223 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3224 // Other blocks can define their abbrevs inline. 3225 Stream.EnterBlockInfoBlock(); 3226 3227 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3228 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3233 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3234 VST_ENTRY_8_ABBREV) 3235 llvm_unreachable("Unexpected abbrev ordering!"); 3236 } 3237 3238 { // 7-bit fixed width VST_CODE_ENTRY strings. 3239 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3240 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3244 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3245 VST_ENTRY_7_ABBREV) 3246 llvm_unreachable("Unexpected abbrev ordering!"); 3247 } 3248 { // 6-bit char6 VST_CODE_ENTRY strings. 3249 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3250 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3254 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3255 VST_ENTRY_6_ABBREV) 3256 llvm_unreachable("Unexpected abbrev ordering!"); 3257 } 3258 { // 6-bit char6 VST_CODE_BBENTRY strings. 3259 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3260 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3264 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3265 VST_BBENTRY_6_ABBREV) 3266 llvm_unreachable("Unexpected abbrev ordering!"); 3267 } 3268 3269 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3270 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3271 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3273 VE.computeBitsRequiredForTypeIndicies())); 3274 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3275 CONSTANTS_SETTYPE_ABBREV) 3276 llvm_unreachable("Unexpected abbrev ordering!"); 3277 } 3278 3279 { // INTEGER abbrev for CONSTANTS_BLOCK. 3280 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3281 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3283 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3284 CONSTANTS_INTEGER_ABBREV) 3285 llvm_unreachable("Unexpected abbrev ordering!"); 3286 } 3287 3288 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3289 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3290 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3293 VE.computeBitsRequiredForTypeIndicies())); 3294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3295 3296 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3297 CONSTANTS_CE_CAST_Abbrev) 3298 llvm_unreachable("Unexpected abbrev ordering!"); 3299 } 3300 { // NULL abbrev for CONSTANTS_BLOCK. 3301 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3302 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3303 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3304 CONSTANTS_NULL_Abbrev) 3305 llvm_unreachable("Unexpected abbrev ordering!"); 3306 } 3307 3308 // FIXME: This should only use space for first class types! 3309 3310 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3311 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3312 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3315 VE.computeBitsRequiredForTypeIndicies())); 3316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3318 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3319 FUNCTION_INST_LOAD_ABBREV) 3320 llvm_unreachable("Unexpected abbrev ordering!"); 3321 } 3322 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3323 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3324 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3327 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3328 FUNCTION_INST_UNOP_ABBREV) 3329 llvm_unreachable("Unexpected abbrev ordering!"); 3330 } 3331 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3332 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3333 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3337 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3338 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3339 llvm_unreachable("Unexpected abbrev ordering!"); 3340 } 3341 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3342 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3343 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3347 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3348 FUNCTION_INST_BINOP_ABBREV) 3349 llvm_unreachable("Unexpected abbrev ordering!"); 3350 } 3351 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3352 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3353 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3358 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3359 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3360 llvm_unreachable("Unexpected abbrev ordering!"); 3361 } 3362 { // INST_CAST abbrev for FUNCTION_BLOCK. 3363 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3364 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3367 VE.computeBitsRequiredForTypeIndicies())); 3368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3369 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3370 FUNCTION_INST_CAST_ABBREV) 3371 llvm_unreachable("Unexpected abbrev ordering!"); 3372 } 3373 3374 { // INST_RET abbrev for FUNCTION_BLOCK. 3375 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3376 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3377 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3378 FUNCTION_INST_RET_VOID_ABBREV) 3379 llvm_unreachable("Unexpected abbrev ordering!"); 3380 } 3381 { // INST_RET abbrev for FUNCTION_BLOCK. 3382 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3383 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3385 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3386 FUNCTION_INST_RET_VAL_ABBREV) 3387 llvm_unreachable("Unexpected abbrev ordering!"); 3388 } 3389 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3390 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3391 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3392 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3393 FUNCTION_INST_UNREACHABLE_ABBREV) 3394 llvm_unreachable("Unexpected abbrev ordering!"); 3395 } 3396 { 3397 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3398 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3401 Log2_32_Ceil(VE.getTypes().size() + 1))); 3402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3404 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3405 FUNCTION_INST_GEP_ABBREV) 3406 llvm_unreachable("Unexpected abbrev ordering!"); 3407 } 3408 3409 Stream.ExitBlock(); 3410 } 3411 3412 /// Write the module path strings, currently only used when generating 3413 /// a combined index file. 3414 void IndexBitcodeWriter::writeModStrings() { 3415 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3416 3417 // TODO: See which abbrev sizes we actually need to emit 3418 3419 // 8-bit fixed-width MST_ENTRY strings. 3420 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3421 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3425 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3426 3427 // 7-bit fixed width MST_ENTRY strings. 3428 Abbv = std::make_shared<BitCodeAbbrev>(); 3429 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3433 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3434 3435 // 6-bit char6 MST_ENTRY strings. 3436 Abbv = std::make_shared<BitCodeAbbrev>(); 3437 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3441 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3442 3443 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3444 Abbv = std::make_shared<BitCodeAbbrev>(); 3445 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3451 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3452 3453 SmallVector<unsigned, 64> Vals; 3454 forEachModule( 3455 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3456 StringRef Key = MPSE.getKey(); 3457 const auto &Value = MPSE.getValue(); 3458 StringEncoding Bits = getStringEncoding(Key); 3459 unsigned AbbrevToUse = Abbrev8Bit; 3460 if (Bits == SE_Char6) 3461 AbbrevToUse = Abbrev6Bit; 3462 else if (Bits == SE_Fixed7) 3463 AbbrevToUse = Abbrev7Bit; 3464 3465 Vals.push_back(Value.first); 3466 Vals.append(Key.begin(), Key.end()); 3467 3468 // Emit the finished record. 3469 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3470 3471 // Emit an optional hash for the module now 3472 const auto &Hash = Value.second; 3473 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3474 Vals.assign(Hash.begin(), Hash.end()); 3475 // Emit the hash record. 3476 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3477 } 3478 3479 Vals.clear(); 3480 }); 3481 Stream.ExitBlock(); 3482 } 3483 3484 /// Write the function type metadata related records that need to appear before 3485 /// a function summary entry (whether per-module or combined). 3486 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3487 FunctionSummary *FS) { 3488 if (!FS->type_tests().empty()) 3489 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3490 3491 SmallVector<uint64_t, 64> Record; 3492 3493 auto WriteVFuncIdVec = [&](uint64_t Ty, 3494 ArrayRef<FunctionSummary::VFuncId> VFs) { 3495 if (VFs.empty()) 3496 return; 3497 Record.clear(); 3498 for (auto &VF : VFs) { 3499 Record.push_back(VF.GUID); 3500 Record.push_back(VF.Offset); 3501 } 3502 Stream.EmitRecord(Ty, Record); 3503 }; 3504 3505 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3506 FS->type_test_assume_vcalls()); 3507 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3508 FS->type_checked_load_vcalls()); 3509 3510 auto WriteConstVCallVec = [&](uint64_t Ty, 3511 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3512 for (auto &VC : VCs) { 3513 Record.clear(); 3514 Record.push_back(VC.VFunc.GUID); 3515 Record.push_back(VC.VFunc.Offset); 3516 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3517 Stream.EmitRecord(Ty, Record); 3518 } 3519 }; 3520 3521 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3522 FS->type_test_assume_const_vcalls()); 3523 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3524 FS->type_checked_load_const_vcalls()); 3525 } 3526 3527 /// Collect type IDs from type tests used by function. 3528 static void 3529 getReferencedTypeIds(FunctionSummary *FS, 3530 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3531 if (!FS->type_tests().empty()) 3532 for (auto &TT : FS->type_tests()) 3533 ReferencedTypeIds.insert(TT); 3534 3535 auto GetReferencedTypesFromVFuncIdVec = 3536 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3537 for (auto &VF : VFs) 3538 ReferencedTypeIds.insert(VF.GUID); 3539 }; 3540 3541 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3542 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3543 3544 auto GetReferencedTypesFromConstVCallVec = 3545 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3546 for (auto &VC : VCs) 3547 ReferencedTypeIds.insert(VC.VFunc.GUID); 3548 }; 3549 3550 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3551 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3552 } 3553 3554 static void writeWholeProgramDevirtResolutionByArg( 3555 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3556 const WholeProgramDevirtResolution::ByArg &ByArg) { 3557 NameVals.push_back(args.size()); 3558 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3559 3560 NameVals.push_back(ByArg.TheKind); 3561 NameVals.push_back(ByArg.Info); 3562 NameVals.push_back(ByArg.Byte); 3563 NameVals.push_back(ByArg.Bit); 3564 } 3565 3566 static void writeWholeProgramDevirtResolution( 3567 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3568 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3569 NameVals.push_back(Id); 3570 3571 NameVals.push_back(Wpd.TheKind); 3572 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3573 NameVals.push_back(Wpd.SingleImplName.size()); 3574 3575 NameVals.push_back(Wpd.ResByArg.size()); 3576 for (auto &A : Wpd.ResByArg) 3577 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3578 } 3579 3580 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3581 StringTableBuilder &StrtabBuilder, 3582 const std::string &Id, 3583 const TypeIdSummary &Summary) { 3584 NameVals.push_back(StrtabBuilder.add(Id)); 3585 NameVals.push_back(Id.size()); 3586 3587 NameVals.push_back(Summary.TTRes.TheKind); 3588 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3589 NameVals.push_back(Summary.TTRes.AlignLog2); 3590 NameVals.push_back(Summary.TTRes.SizeM1); 3591 NameVals.push_back(Summary.TTRes.BitMask); 3592 NameVals.push_back(Summary.TTRes.InlineBits); 3593 3594 for (auto &W : Summary.WPDRes) 3595 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3596 W.second); 3597 } 3598 3599 // Helper to emit a single function summary record. 3600 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3601 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3602 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3603 const Function &F) { 3604 NameVals.push_back(ValueID); 3605 3606 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3607 writeFunctionTypeMetadataRecords(Stream, FS); 3608 3609 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3610 NameVals.push_back(FS->instCount()); 3611 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3612 NameVals.push_back(FS->refs().size()); 3613 NameVals.push_back(FS->immutableRefCount()); 3614 3615 for (auto &RI : FS->refs()) 3616 NameVals.push_back(VE.getValueID(RI.getValue())); 3617 3618 bool HasProfileData = 3619 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3620 for (auto &ECI : FS->calls()) { 3621 NameVals.push_back(getValueId(ECI.first)); 3622 if (HasProfileData) 3623 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3624 else if (WriteRelBFToSummary) 3625 NameVals.push_back(ECI.second.RelBlockFreq); 3626 } 3627 3628 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3629 unsigned Code = 3630 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3631 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3632 : bitc::FS_PERMODULE)); 3633 3634 // Emit the finished record. 3635 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3636 NameVals.clear(); 3637 } 3638 3639 // Collect the global value references in the given variable's initializer, 3640 // and emit them in a summary record. 3641 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3642 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3643 unsigned FSModRefsAbbrev) { 3644 auto VI = Index->getValueInfo(V.getGUID()); 3645 if (!VI || VI.getSummaryList().empty()) { 3646 // Only declarations should not have a summary (a declaration might however 3647 // have a summary if the def was in module level asm). 3648 assert(V.isDeclaration()); 3649 return; 3650 } 3651 auto *Summary = VI.getSummaryList()[0].get(); 3652 NameVals.push_back(VE.getValueID(&V)); 3653 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3654 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3655 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3656 3657 unsigned SizeBeforeRefs = NameVals.size(); 3658 for (auto &RI : VS->refs()) 3659 NameVals.push_back(VE.getValueID(RI.getValue())); 3660 // Sort the refs for determinism output, the vector returned by FS->refs() has 3661 // been initialized from a DenseSet. 3662 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3663 3664 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3665 FSModRefsAbbrev); 3666 NameVals.clear(); 3667 } 3668 3669 // Current version for the summary. 3670 // This is bumped whenever we introduce changes in the way some record are 3671 // interpreted, like flags for instance. 3672 static const uint64_t INDEX_VERSION = 6; 3673 3674 /// Emit the per-module summary section alongside the rest of 3675 /// the module's bitcode. 3676 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3677 // By default we compile with ThinLTO if the module has a summary, but the 3678 // client can request full LTO with a module flag. 3679 bool IsThinLTO = true; 3680 if (auto *MD = 3681 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3682 IsThinLTO = MD->getZExtValue(); 3683 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3684 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3685 4); 3686 3687 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3688 3689 // Write the index flags. 3690 uint64_t Flags = 0; 3691 // Bits 1-3 are set only in the combined index, skip them. 3692 if (Index->enableSplitLTOUnit()) 3693 Flags |= 0x8; 3694 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3695 3696 if (Index->begin() == Index->end()) { 3697 Stream.ExitBlock(); 3698 return; 3699 } 3700 3701 for (const auto &GVI : valueIds()) { 3702 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3703 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3704 } 3705 3706 // Abbrev for FS_PERMODULE_PROFILE. 3707 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3708 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3715 // numrefs x valueid, n x (valueid, hotness) 3716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3718 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3719 3720 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3721 Abbv = std::make_shared<BitCodeAbbrev>(); 3722 if (WriteRelBFToSummary) 3723 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3724 else 3725 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3732 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3735 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3736 3737 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3738 Abbv = std::make_shared<BitCodeAbbrev>(); 3739 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3744 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3745 3746 // Abbrev for FS_ALIAS. 3747 Abbv = std::make_shared<BitCodeAbbrev>(); 3748 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3752 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3753 3754 SmallVector<uint64_t, 64> NameVals; 3755 // Iterate over the list of functions instead of the Index to 3756 // ensure the ordering is stable. 3757 for (const Function &F : M) { 3758 // Summary emission does not support anonymous functions, they have to 3759 // renamed using the anonymous function renaming pass. 3760 if (!F.hasName()) 3761 report_fatal_error("Unexpected anonymous function when writing summary"); 3762 3763 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3764 if (!VI || VI.getSummaryList().empty()) { 3765 // Only declarations should not have a summary (a declaration might 3766 // however have a summary if the def was in module level asm). 3767 assert(F.isDeclaration()); 3768 continue; 3769 } 3770 auto *Summary = VI.getSummaryList()[0].get(); 3771 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3772 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3773 } 3774 3775 // Capture references from GlobalVariable initializers, which are outside 3776 // of a function scope. 3777 for (const GlobalVariable &G : M.globals()) 3778 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3779 3780 for (const GlobalAlias &A : M.aliases()) { 3781 auto *Aliasee = A.getBaseObject(); 3782 if (!Aliasee->hasName()) 3783 // Nameless function don't have an entry in the summary, skip it. 3784 continue; 3785 auto AliasId = VE.getValueID(&A); 3786 auto AliaseeId = VE.getValueID(Aliasee); 3787 NameVals.push_back(AliasId); 3788 auto *Summary = Index->getGlobalValueSummary(A); 3789 AliasSummary *AS = cast<AliasSummary>(Summary); 3790 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3791 NameVals.push_back(AliaseeId); 3792 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3793 NameVals.clear(); 3794 } 3795 3796 Stream.ExitBlock(); 3797 } 3798 3799 /// Emit the combined summary section into the combined index file. 3800 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3801 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3802 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3803 3804 // Write the index flags. 3805 uint64_t Flags = 0; 3806 if (Index.withGlobalValueDeadStripping()) 3807 Flags |= 0x1; 3808 if (Index.skipModuleByDistributedBackend()) 3809 Flags |= 0x2; 3810 if (Index.hasSyntheticEntryCounts()) 3811 Flags |= 0x4; 3812 if (Index.enableSplitLTOUnit()) 3813 Flags |= 0x8; 3814 if (Index.partiallySplitLTOUnits()) 3815 Flags |= 0x10; 3816 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3817 3818 for (const auto &GVI : valueIds()) { 3819 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3820 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3821 } 3822 3823 // Abbrev for FS_COMBINED. 3824 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3825 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3834 // numrefs x valueid, n x (valueid) 3835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3837 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3838 3839 // Abbrev for FS_COMBINED_PROFILE. 3840 Abbv = std::make_shared<BitCodeAbbrev>(); 3841 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3849 // numrefs x valueid, n x (valueid, hotness) 3850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3852 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3853 3854 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3855 Abbv = std::make_shared<BitCodeAbbrev>(); 3856 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3862 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3863 3864 // Abbrev for FS_COMBINED_ALIAS. 3865 Abbv = std::make_shared<BitCodeAbbrev>(); 3866 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3869 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3871 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3872 3873 // The aliases are emitted as a post-pass, and will point to the value 3874 // id of the aliasee. Save them in a vector for post-processing. 3875 SmallVector<AliasSummary *, 64> Aliases; 3876 3877 // Save the value id for each summary for alias emission. 3878 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3879 3880 SmallVector<uint64_t, 64> NameVals; 3881 3882 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3883 // with the type ids referenced by this index file. 3884 std::set<GlobalValue::GUID> ReferencedTypeIds; 3885 3886 // For local linkage, we also emit the original name separately 3887 // immediately after the record. 3888 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3889 if (!GlobalValue::isLocalLinkage(S.linkage())) 3890 return; 3891 NameVals.push_back(S.getOriginalName()); 3892 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3893 NameVals.clear(); 3894 }; 3895 3896 forEachSummary([&](GVInfo I, bool IsAliasee) { 3897 GlobalValueSummary *S = I.second; 3898 assert(S); 3899 3900 auto ValueId = getValueId(I.first); 3901 assert(ValueId); 3902 SummaryToValueIdMap[S] = *ValueId; 3903 3904 // If this is invoked for an aliasee, we want to record the above 3905 // mapping, but then not emit a summary entry (if the aliasee is 3906 // to be imported, we will invoke this separately with IsAliasee=false). 3907 if (IsAliasee) 3908 return; 3909 3910 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3911 // Will process aliases as a post-pass because the reader wants all 3912 // global to be loaded first. 3913 Aliases.push_back(AS); 3914 return; 3915 } 3916 3917 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3918 NameVals.push_back(*ValueId); 3919 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3920 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3921 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3922 for (auto &RI : VS->refs()) { 3923 auto RefValueId = getValueId(RI.getGUID()); 3924 if (!RefValueId) 3925 continue; 3926 NameVals.push_back(*RefValueId); 3927 } 3928 3929 // Emit the finished record. 3930 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3931 FSModRefsAbbrev); 3932 NameVals.clear(); 3933 MaybeEmitOriginalName(*S); 3934 return; 3935 } 3936 3937 auto *FS = cast<FunctionSummary>(S); 3938 writeFunctionTypeMetadataRecords(Stream, FS); 3939 getReferencedTypeIds(FS, ReferencedTypeIds); 3940 3941 NameVals.push_back(*ValueId); 3942 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3943 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3944 NameVals.push_back(FS->instCount()); 3945 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3946 NameVals.push_back(FS->entryCount()); 3947 3948 // Fill in below 3949 NameVals.push_back(0); // numrefs 3950 NameVals.push_back(0); // immutablerefcnt 3951 3952 unsigned Count = 0, ImmutableRefCnt = 0; 3953 for (auto &RI : FS->refs()) { 3954 auto RefValueId = getValueId(RI.getGUID()); 3955 if (!RefValueId) 3956 continue; 3957 NameVals.push_back(*RefValueId); 3958 if (RI.isReadOnly()) 3959 ImmutableRefCnt++; 3960 Count++; 3961 } 3962 NameVals[6] = Count; 3963 NameVals[7] = ImmutableRefCnt; 3964 3965 bool HasProfileData = false; 3966 for (auto &EI : FS->calls()) { 3967 HasProfileData |= 3968 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 3969 if (HasProfileData) 3970 break; 3971 } 3972 3973 for (auto &EI : FS->calls()) { 3974 // If this GUID doesn't have a value id, it doesn't have a function 3975 // summary and we don't need to record any calls to it. 3976 GlobalValue::GUID GUID = EI.first.getGUID(); 3977 auto CallValueId = getValueId(GUID); 3978 if (!CallValueId) { 3979 // For SamplePGO, the indirect call targets for local functions will 3980 // have its original name annotated in profile. We try to find the 3981 // corresponding PGOFuncName as the GUID. 3982 GUID = Index.getGUIDFromOriginalID(GUID); 3983 if (GUID == 0) 3984 continue; 3985 CallValueId = getValueId(GUID); 3986 if (!CallValueId) 3987 continue; 3988 // The mapping from OriginalId to GUID may return a GUID 3989 // that corresponds to a static variable. Filter it out here. 3990 // This can happen when 3991 // 1) There is a call to a library function which does not have 3992 // a CallValidId; 3993 // 2) There is a static variable with the OriginalGUID identical 3994 // to the GUID of the library function in 1); 3995 // When this happens, the logic for SamplePGO kicks in and 3996 // the static variable in 2) will be found, which needs to be 3997 // filtered out. 3998 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3999 if (GVSum && 4000 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4001 continue; 4002 } 4003 NameVals.push_back(*CallValueId); 4004 if (HasProfileData) 4005 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4006 } 4007 4008 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4009 unsigned Code = 4010 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4011 4012 // Emit the finished record. 4013 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4014 NameVals.clear(); 4015 MaybeEmitOriginalName(*S); 4016 }); 4017 4018 for (auto *AS : Aliases) { 4019 auto AliasValueId = SummaryToValueIdMap[AS]; 4020 assert(AliasValueId); 4021 NameVals.push_back(AliasValueId); 4022 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4023 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4024 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4025 assert(AliaseeValueId); 4026 NameVals.push_back(AliaseeValueId); 4027 4028 // Emit the finished record. 4029 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4030 NameVals.clear(); 4031 MaybeEmitOriginalName(*AS); 4032 4033 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4034 getReferencedTypeIds(FS, ReferencedTypeIds); 4035 } 4036 4037 if (!Index.cfiFunctionDefs().empty()) { 4038 for (auto &S : Index.cfiFunctionDefs()) { 4039 NameVals.push_back(StrtabBuilder.add(S)); 4040 NameVals.push_back(S.size()); 4041 } 4042 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4043 NameVals.clear(); 4044 } 4045 4046 if (!Index.cfiFunctionDecls().empty()) { 4047 for (auto &S : Index.cfiFunctionDecls()) { 4048 NameVals.push_back(StrtabBuilder.add(S)); 4049 NameVals.push_back(S.size()); 4050 } 4051 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4052 NameVals.clear(); 4053 } 4054 4055 // Walk the GUIDs that were referenced, and write the 4056 // corresponding type id records. 4057 for (auto &T : ReferencedTypeIds) { 4058 auto TidIter = Index.typeIds().equal_range(T); 4059 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4060 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4061 It->second.second); 4062 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4063 NameVals.clear(); 4064 } 4065 } 4066 4067 Stream.ExitBlock(); 4068 } 4069 4070 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4071 /// current llvm version, and a record for the epoch number. 4072 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4073 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4074 4075 // Write the "user readable" string identifying the bitcode producer 4076 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4077 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4080 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4081 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4082 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4083 4084 // Write the epoch version 4085 Abbv = std::make_shared<BitCodeAbbrev>(); 4086 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4088 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4089 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 4090 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4091 Stream.ExitBlock(); 4092 } 4093 4094 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4095 // Emit the module's hash. 4096 // MODULE_CODE_HASH: [5*i32] 4097 if (GenerateHash) { 4098 uint32_t Vals[5]; 4099 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4100 Buffer.size() - BlockStartPos)); 4101 StringRef Hash = Hasher.result(); 4102 for (int Pos = 0; Pos < 20; Pos += 4) { 4103 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4104 } 4105 4106 // Emit the finished record. 4107 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4108 4109 if (ModHash) 4110 // Save the written hash value. 4111 llvm::copy(Vals, std::begin(*ModHash)); 4112 } 4113 } 4114 4115 void ModuleBitcodeWriter::write() { 4116 writeIdentificationBlock(Stream); 4117 4118 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4119 size_t BlockStartPos = Buffer.size(); 4120 4121 writeModuleVersion(); 4122 4123 // Emit blockinfo, which defines the standard abbreviations etc. 4124 writeBlockInfo(); 4125 4126 // Emit information about attribute groups. 4127 writeAttributeGroupTable(); 4128 4129 // Emit information about parameter attributes. 4130 writeAttributeTable(); 4131 4132 // Emit information describing all of the types in the module. 4133 writeTypeTable(); 4134 4135 writeComdats(); 4136 4137 // Emit top-level description of module, including target triple, inline asm, 4138 // descriptors for global variables, and function prototype info. 4139 writeModuleInfo(); 4140 4141 // Emit constants. 4142 writeModuleConstants(); 4143 4144 // Emit metadata kind names. 4145 writeModuleMetadataKinds(); 4146 4147 // Emit metadata. 4148 writeModuleMetadata(); 4149 4150 // Emit module-level use-lists. 4151 if (VE.shouldPreserveUseListOrder()) 4152 writeUseListBlock(nullptr); 4153 4154 writeOperandBundleTags(); 4155 writeSyncScopeNames(); 4156 4157 // Emit function bodies. 4158 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4159 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4160 if (!F->isDeclaration()) 4161 writeFunction(*F, FunctionToBitcodeIndex); 4162 4163 // Need to write after the above call to WriteFunction which populates 4164 // the summary information in the index. 4165 if (Index) 4166 writePerModuleGlobalValueSummary(); 4167 4168 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4169 4170 writeModuleHash(BlockStartPos); 4171 4172 Stream.ExitBlock(); 4173 } 4174 4175 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4176 uint32_t &Position) { 4177 support::endian::write32le(&Buffer[Position], Value); 4178 Position += 4; 4179 } 4180 4181 /// If generating a bc file on darwin, we have to emit a 4182 /// header and trailer to make it compatible with the system archiver. To do 4183 /// this we emit the following header, and then emit a trailer that pads the 4184 /// file out to be a multiple of 16 bytes. 4185 /// 4186 /// struct bc_header { 4187 /// uint32_t Magic; // 0x0B17C0DE 4188 /// uint32_t Version; // Version, currently always 0. 4189 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4190 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4191 /// uint32_t CPUType; // CPU specifier. 4192 /// ... potentially more later ... 4193 /// }; 4194 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4195 const Triple &TT) { 4196 unsigned CPUType = ~0U; 4197 4198 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4199 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4200 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4201 // specific constants here because they are implicitly part of the Darwin ABI. 4202 enum { 4203 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4204 DARWIN_CPU_TYPE_X86 = 7, 4205 DARWIN_CPU_TYPE_ARM = 12, 4206 DARWIN_CPU_TYPE_POWERPC = 18 4207 }; 4208 4209 Triple::ArchType Arch = TT.getArch(); 4210 if (Arch == Triple::x86_64) 4211 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4212 else if (Arch == Triple::x86) 4213 CPUType = DARWIN_CPU_TYPE_X86; 4214 else if (Arch == Triple::ppc) 4215 CPUType = DARWIN_CPU_TYPE_POWERPC; 4216 else if (Arch == Triple::ppc64) 4217 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4218 else if (Arch == Triple::arm || Arch == Triple::thumb) 4219 CPUType = DARWIN_CPU_TYPE_ARM; 4220 4221 // Traditional Bitcode starts after header. 4222 assert(Buffer.size() >= BWH_HeaderSize && 4223 "Expected header size to be reserved"); 4224 unsigned BCOffset = BWH_HeaderSize; 4225 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4226 4227 // Write the magic and version. 4228 unsigned Position = 0; 4229 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4230 writeInt32ToBuffer(0, Buffer, Position); // Version. 4231 writeInt32ToBuffer(BCOffset, Buffer, Position); 4232 writeInt32ToBuffer(BCSize, Buffer, Position); 4233 writeInt32ToBuffer(CPUType, Buffer, Position); 4234 4235 // If the file is not a multiple of 16 bytes, insert dummy padding. 4236 while (Buffer.size() & 15) 4237 Buffer.push_back(0); 4238 } 4239 4240 /// Helper to write the header common to all bitcode files. 4241 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4242 // Emit the file header. 4243 Stream.Emit((unsigned)'B', 8); 4244 Stream.Emit((unsigned)'C', 8); 4245 Stream.Emit(0x0, 4); 4246 Stream.Emit(0xC, 4); 4247 Stream.Emit(0xE, 4); 4248 Stream.Emit(0xD, 4); 4249 } 4250 4251 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4252 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4253 writeBitcodeHeader(*Stream); 4254 } 4255 4256 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4257 4258 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4259 Stream->EnterSubblock(Block, 3); 4260 4261 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4262 Abbv->Add(BitCodeAbbrevOp(Record)); 4263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4264 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4265 4266 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4267 4268 Stream->ExitBlock(); 4269 } 4270 4271 void BitcodeWriter::writeSymtab() { 4272 assert(!WroteStrtab && !WroteSymtab); 4273 4274 // If any module has module-level inline asm, we will require a registered asm 4275 // parser for the target so that we can create an accurate symbol table for 4276 // the module. 4277 for (Module *M : Mods) { 4278 if (M->getModuleInlineAsm().empty()) 4279 continue; 4280 4281 std::string Err; 4282 const Triple TT(M->getTargetTriple()); 4283 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4284 if (!T || !T->hasMCAsmParser()) 4285 return; 4286 } 4287 4288 WroteSymtab = true; 4289 SmallVector<char, 0> Symtab; 4290 // The irsymtab::build function may be unable to create a symbol table if the 4291 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4292 // table is not required for correctness, but we still want to be able to 4293 // write malformed modules to bitcode files, so swallow the error. 4294 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4295 consumeError(std::move(E)); 4296 return; 4297 } 4298 4299 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4300 {Symtab.data(), Symtab.size()}); 4301 } 4302 4303 void BitcodeWriter::writeStrtab() { 4304 assert(!WroteStrtab); 4305 4306 std::vector<char> Strtab; 4307 StrtabBuilder.finalizeInOrder(); 4308 Strtab.resize(StrtabBuilder.getSize()); 4309 StrtabBuilder.write((uint8_t *)Strtab.data()); 4310 4311 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4312 {Strtab.data(), Strtab.size()}); 4313 4314 WroteStrtab = true; 4315 } 4316 4317 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4318 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4319 WroteStrtab = true; 4320 } 4321 4322 void BitcodeWriter::writeModule(const Module &M, 4323 bool ShouldPreserveUseListOrder, 4324 const ModuleSummaryIndex *Index, 4325 bool GenerateHash, ModuleHash *ModHash) { 4326 assert(!WroteStrtab); 4327 4328 // The Mods vector is used by irsymtab::build, which requires non-const 4329 // Modules in case it needs to materialize metadata. But the bitcode writer 4330 // requires that the module is materialized, so we can cast to non-const here, 4331 // after checking that it is in fact materialized. 4332 assert(M.isMaterialized()); 4333 Mods.push_back(const_cast<Module *>(&M)); 4334 4335 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4336 ShouldPreserveUseListOrder, Index, 4337 GenerateHash, ModHash); 4338 ModuleWriter.write(); 4339 } 4340 4341 void BitcodeWriter::writeIndex( 4342 const ModuleSummaryIndex *Index, 4343 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4344 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4345 ModuleToSummariesForIndex); 4346 IndexWriter.write(); 4347 } 4348 4349 /// Write the specified module to the specified output stream. 4350 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4351 bool ShouldPreserveUseListOrder, 4352 const ModuleSummaryIndex *Index, 4353 bool GenerateHash, ModuleHash *ModHash) { 4354 SmallVector<char, 0> Buffer; 4355 Buffer.reserve(256*1024); 4356 4357 // If this is darwin or another generic macho target, reserve space for the 4358 // header. 4359 Triple TT(M.getTargetTriple()); 4360 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4361 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4362 4363 BitcodeWriter Writer(Buffer); 4364 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4365 ModHash); 4366 Writer.writeSymtab(); 4367 Writer.writeStrtab(); 4368 4369 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4370 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4371 4372 // Write the generated bitstream to "Out". 4373 Out.write((char*)&Buffer.front(), Buffer.size()); 4374 } 4375 4376 void IndexBitcodeWriter::write() { 4377 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4378 4379 writeModuleVersion(); 4380 4381 // Write the module paths in the combined index. 4382 writeModStrings(); 4383 4384 // Write the summary combined index records. 4385 writeCombinedGlobalValueSummary(); 4386 4387 Stream.ExitBlock(); 4388 } 4389 4390 // Write the specified module summary index to the given raw output stream, 4391 // where it will be written in a new bitcode block. This is used when 4392 // writing the combined index file for ThinLTO. When writing a subset of the 4393 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4394 void llvm::WriteIndexToFile( 4395 const ModuleSummaryIndex &Index, raw_ostream &Out, 4396 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4397 SmallVector<char, 0> Buffer; 4398 Buffer.reserve(256 * 1024); 4399 4400 BitcodeWriter Writer(Buffer); 4401 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4402 Writer.writeStrtab(); 4403 4404 Out.write((char *)&Buffer.front(), Buffer.size()); 4405 } 4406 4407 namespace { 4408 4409 /// Class to manage the bitcode writing for a thin link bitcode file. 4410 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4411 /// ModHash is for use in ThinLTO incremental build, generated while writing 4412 /// the module bitcode file. 4413 const ModuleHash *ModHash; 4414 4415 public: 4416 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4417 BitstreamWriter &Stream, 4418 const ModuleSummaryIndex &Index, 4419 const ModuleHash &ModHash) 4420 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4421 /*ShouldPreserveUseListOrder=*/false, &Index), 4422 ModHash(&ModHash) {} 4423 4424 void write(); 4425 4426 private: 4427 void writeSimplifiedModuleInfo(); 4428 }; 4429 4430 } // end anonymous namespace 4431 4432 // This function writes a simpilified module info for thin link bitcode file. 4433 // It only contains the source file name along with the name(the offset and 4434 // size in strtab) and linkage for global values. For the global value info 4435 // entry, in order to keep linkage at offset 5, there are three zeros used 4436 // as padding. 4437 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4438 SmallVector<unsigned, 64> Vals; 4439 // Emit the module's source file name. 4440 { 4441 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4442 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4443 if (Bits == SE_Char6) 4444 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4445 else if (Bits == SE_Fixed7) 4446 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4447 4448 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4449 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4450 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4452 Abbv->Add(AbbrevOpToUse); 4453 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4454 4455 for (const auto P : M.getSourceFileName()) 4456 Vals.push_back((unsigned char)P); 4457 4458 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4459 Vals.clear(); 4460 } 4461 4462 // Emit the global variable information. 4463 for (const GlobalVariable &GV : M.globals()) { 4464 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4465 Vals.push_back(StrtabBuilder.add(GV.getName())); 4466 Vals.push_back(GV.getName().size()); 4467 Vals.push_back(0); 4468 Vals.push_back(0); 4469 Vals.push_back(0); 4470 Vals.push_back(getEncodedLinkage(GV)); 4471 4472 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4473 Vals.clear(); 4474 } 4475 4476 // Emit the function proto information. 4477 for (const Function &F : M) { 4478 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4479 Vals.push_back(StrtabBuilder.add(F.getName())); 4480 Vals.push_back(F.getName().size()); 4481 Vals.push_back(0); 4482 Vals.push_back(0); 4483 Vals.push_back(0); 4484 Vals.push_back(getEncodedLinkage(F)); 4485 4486 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4487 Vals.clear(); 4488 } 4489 4490 // Emit the alias information. 4491 for (const GlobalAlias &A : M.aliases()) { 4492 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4493 Vals.push_back(StrtabBuilder.add(A.getName())); 4494 Vals.push_back(A.getName().size()); 4495 Vals.push_back(0); 4496 Vals.push_back(0); 4497 Vals.push_back(0); 4498 Vals.push_back(getEncodedLinkage(A)); 4499 4500 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4501 Vals.clear(); 4502 } 4503 4504 // Emit the ifunc information. 4505 for (const GlobalIFunc &I : M.ifuncs()) { 4506 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4507 Vals.push_back(StrtabBuilder.add(I.getName())); 4508 Vals.push_back(I.getName().size()); 4509 Vals.push_back(0); 4510 Vals.push_back(0); 4511 Vals.push_back(0); 4512 Vals.push_back(getEncodedLinkage(I)); 4513 4514 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4515 Vals.clear(); 4516 } 4517 } 4518 4519 void ThinLinkBitcodeWriter::write() { 4520 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4521 4522 writeModuleVersion(); 4523 4524 writeSimplifiedModuleInfo(); 4525 4526 writePerModuleGlobalValueSummary(); 4527 4528 // Write module hash. 4529 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4530 4531 Stream.ExitBlock(); 4532 } 4533 4534 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4535 const ModuleSummaryIndex &Index, 4536 const ModuleHash &ModHash) { 4537 assert(!WroteStrtab); 4538 4539 // The Mods vector is used by irsymtab::build, which requires non-const 4540 // Modules in case it needs to materialize metadata. But the bitcode writer 4541 // requires that the module is materialized, so we can cast to non-const here, 4542 // after checking that it is in fact materialized. 4543 assert(M.isMaterialized()); 4544 Mods.push_back(const_cast<Module *>(&M)); 4545 4546 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4547 ModHash); 4548 ThinLinkWriter.write(); 4549 } 4550 4551 // Write the specified thin link bitcode file to the given raw output stream, 4552 // where it will be written in a new bitcode block. This is used when 4553 // writing the per-module index file for ThinLTO. 4554 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4555 const ModuleSummaryIndex &Index, 4556 const ModuleHash &ModHash) { 4557 SmallVector<char, 0> Buffer; 4558 Buffer.reserve(256 * 1024); 4559 4560 BitcodeWriter Writer(Buffer); 4561 Writer.writeThinLinkBitcode(M, Index, ModHash); 4562 Writer.writeSymtab(); 4563 Writer.writeStrtab(); 4564 4565 Out.write((char *)&Buffer.front(), Buffer.size()); 4566 } 4567