1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeModuleVersion(); 146 }; 147 148 void BitcodeWriterBase::writeModuleVersion() { 149 // VERSION: [version#] 150 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 151 } 152 153 /// Base class to manage the module bitcode writing, currently subclassed for 154 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 155 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 156 protected: 157 /// The Module to write to bitcode. 158 const Module &M; 159 160 /// Enumerates ids for all values in the module. 161 ValueEnumerator VE; 162 163 /// Optional per-module index to write for ThinLTO. 164 const ModuleSummaryIndex *Index; 165 166 /// Map that holds the correspondence between GUIDs in the summary index, 167 /// that came from indirect call profiles, and a value id generated by this 168 /// class to use in the VST and summary block records. 169 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 170 171 /// Tracks the last value id recorded in the GUIDToValueMap. 172 unsigned GlobalValueId; 173 174 /// Saves the offset of the VSTOffset record that must eventually be 175 /// backpatched with the offset of the actual VST. 176 uint64_t VSTOffsetPlaceholder = 0; 177 178 public: 179 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 180 /// writing to the provided \p Buffer. 181 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 182 BitstreamWriter &Stream, 183 bool ShouldPreserveUseListOrder, 184 const ModuleSummaryIndex *Index) 185 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 186 VE(M, ShouldPreserveUseListOrder), Index(Index) { 187 // Assign ValueIds to any callee values in the index that came from 188 // indirect call profiles and were recorded as a GUID not a Value* 189 // (which would have been assigned an ID by the ValueEnumerator). 190 // The starting ValueId is just after the number of values in the 191 // ValueEnumerator, so that they can be emitted in the VST. 192 GlobalValueId = VE.getValues().size(); 193 if (!Index) 194 return; 195 for (const auto &GUIDSummaryLists : *Index) 196 // Examine all summaries for this GUID. 197 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 198 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 199 // For each call in the function summary, see if the call 200 // is to a GUID (which means it is for an indirect call, 201 // otherwise we would have a Value for it). If so, synthesize 202 // a value id. 203 for (auto &CallEdge : FS->calls()) 204 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 205 assignValueId(CallEdge.first.getGUID()); 206 } 207 208 protected: 209 void writePerModuleGlobalValueSummary(); 210 211 private: 212 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 213 GlobalValueSummary *Summary, 214 unsigned ValueID, 215 unsigned FSCallsAbbrev, 216 unsigned FSCallsProfileAbbrev, 217 const Function &F); 218 void writeModuleLevelReferences(const GlobalVariable &V, 219 SmallVector<uint64_t, 64> &NameVals, 220 unsigned FSModRefsAbbrev, 221 unsigned FSModVTableRefsAbbrev); 222 223 void assignValueId(GlobalValue::GUID ValGUID) { 224 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 225 } 226 227 unsigned getValueId(GlobalValue::GUID ValGUID) { 228 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 229 // Expect that any GUID value had a value Id assigned by an 230 // earlier call to assignValueId. 231 assert(VMI != GUIDToValueIdMap.end() && 232 "GUID does not have assigned value Id"); 233 return VMI->second; 234 } 235 236 // Helper to get the valueId for the type of value recorded in VI. 237 unsigned getValueId(ValueInfo VI) { 238 if (!VI.haveGVs() || !VI.getValue()) 239 return getValueId(VI.getGUID()); 240 return VE.getValueID(VI.getValue()); 241 } 242 243 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 244 }; 245 246 /// Class to manage the bitcode writing for a module. 247 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 248 /// Pointer to the buffer allocated by caller for bitcode writing. 249 const SmallVectorImpl<char> &Buffer; 250 251 /// True if a module hash record should be written. 252 bool GenerateHash; 253 254 /// If non-null, when GenerateHash is true, the resulting hash is written 255 /// into ModHash. 256 ModuleHash *ModHash; 257 258 SHA1 Hasher; 259 260 /// The start bit of the identification block. 261 uint64_t BitcodeStartBit; 262 263 public: 264 /// Constructs a ModuleBitcodeWriter object for the given Module, 265 /// writing to the provided \p Buffer. 266 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 267 StringTableBuilder &StrtabBuilder, 268 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 269 const ModuleSummaryIndex *Index, bool GenerateHash, 270 ModuleHash *ModHash = nullptr) 271 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 272 ShouldPreserveUseListOrder, Index), 273 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 274 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 275 276 /// Emit the current module to the bitstream. 277 void write(); 278 279 private: 280 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 281 282 size_t addToStrtab(StringRef Str); 283 284 void writeAttributeGroupTable(); 285 void writeAttributeTable(); 286 void writeTypeTable(); 287 void writeComdats(); 288 void writeValueSymbolTableForwardDecl(); 289 void writeModuleInfo(); 290 void writeValueAsMetadata(const ValueAsMetadata *MD, 291 SmallVectorImpl<uint64_t> &Record); 292 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 unsigned createDILocationAbbrev(); 295 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned &Abbrev); 297 unsigned createGenericDINodeAbbrev(); 298 void writeGenericDINode(const GenericDINode *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 300 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIGenericSubrange(const DIGenericSubrange *N, 303 SmallVectorImpl<uint64_t> &Record, 304 unsigned Abbrev); 305 void writeDIEnumerator(const DIEnumerator *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIStringType(const DIStringType *N, 310 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 311 void writeDIDerivedType(const DIDerivedType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDICompositeType(const DICompositeType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubroutineType(const DISubroutineType *N, 316 SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICompileUnit(const DICompileUnit *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDISubprogram(const DISubprogram *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDILexicalBlock(const DILexicalBlock *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDICommonBlock(const DICommonBlock *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 342 SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIGlobalVariable(const DIGlobalVariable *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDILocalVariable(const DILocalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDILabel(const DILabel *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDIExpression(const DIExpression *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 357 SmallVectorImpl<uint64_t> &Record, 358 unsigned Abbrev); 359 void writeDIObjCProperty(const DIObjCProperty *N, 360 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 361 void writeDIImportedEntity(const DIImportedEntity *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 unsigned createNamedMetadataAbbrev(); 365 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 366 unsigned createMetadataStringsAbbrev(); 367 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 368 SmallVectorImpl<uint64_t> &Record); 369 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 370 SmallVectorImpl<uint64_t> &Record, 371 std::vector<unsigned> *MDAbbrevs = nullptr, 372 std::vector<uint64_t> *IndexPos = nullptr); 373 void writeModuleMetadata(); 374 void writeFunctionMetadata(const Function &F); 375 void writeFunctionMetadataAttachment(const Function &F); 376 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 377 const GlobalObject &GO); 378 void writeModuleMetadataKinds(); 379 void writeOperandBundleTags(); 380 void writeSyncScopeNames(); 381 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 382 void writeModuleConstants(); 383 bool pushValueAndType(const Value *V, unsigned InstID, 384 SmallVectorImpl<unsigned> &Vals); 385 void writeOperandBundles(const CallBase &CB, unsigned InstID); 386 void pushValue(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void pushValueSigned(const Value *V, unsigned InstID, 389 SmallVectorImpl<uint64_t> &Vals); 390 void writeInstruction(const Instruction &I, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 393 void writeGlobalValueSymbolTable( 394 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 395 void writeUseList(UseListOrder &&Order); 396 void writeUseListBlock(const Function *F); 397 void 398 writeFunction(const Function &F, 399 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 400 void writeBlockInfo(); 401 void writeModuleHash(size_t BlockStartPos); 402 403 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 404 return unsigned(SSID); 405 } 406 407 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 408 }; 409 410 /// Class to manage the bitcode writing for a combined index. 411 class IndexBitcodeWriter : public BitcodeWriterBase { 412 /// The combined index to write to bitcode. 413 const ModuleSummaryIndex &Index; 414 415 /// When writing a subset of the index for distributed backends, client 416 /// provides a map of modules to the corresponding GUIDs/summaries to write. 417 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 418 419 /// Map that holds the correspondence between the GUID used in the combined 420 /// index and a value id generated by this class to use in references. 421 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 422 423 /// Tracks the last value id recorded in the GUIDToValueMap. 424 unsigned GlobalValueId = 0; 425 426 public: 427 /// Constructs a IndexBitcodeWriter object for the given combined index, 428 /// writing to the provided \p Buffer. When writing a subset of the index 429 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 430 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 431 const ModuleSummaryIndex &Index, 432 const std::map<std::string, GVSummaryMapTy> 433 *ModuleToSummariesForIndex = nullptr) 434 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 435 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 436 // Assign unique value ids to all summaries to be written, for use 437 // in writing out the call graph edges. Save the mapping from GUID 438 // to the new global value id to use when writing those edges, which 439 // are currently saved in the index in terms of GUID. 440 forEachSummary([&](GVInfo I, bool) { 441 GUIDToValueIdMap[I.first] = ++GlobalValueId; 442 }); 443 } 444 445 /// The below iterator returns the GUID and associated summary. 446 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 447 448 /// Calls the callback for each value GUID and summary to be written to 449 /// bitcode. This hides the details of whether they are being pulled from the 450 /// entire index or just those in a provided ModuleToSummariesForIndex map. 451 template<typename Functor> 452 void forEachSummary(Functor Callback) { 453 if (ModuleToSummariesForIndex) { 454 for (auto &M : *ModuleToSummariesForIndex) 455 for (auto &Summary : M.second) { 456 Callback(Summary, false); 457 // Ensure aliasee is handled, e.g. for assigning a valueId, 458 // even if we are not importing the aliasee directly (the 459 // imported alias will contain a copy of aliasee). 460 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 461 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 462 } 463 } else { 464 for (auto &Summaries : Index) 465 for (auto &Summary : Summaries.second.SummaryList) 466 Callback({Summaries.first, Summary.get()}, false); 467 } 468 } 469 470 /// Calls the callback for each entry in the modulePaths StringMap that 471 /// should be written to the module path string table. This hides the details 472 /// of whether they are being pulled from the entire index or just those in a 473 /// provided ModuleToSummariesForIndex map. 474 template <typename Functor> void forEachModule(Functor Callback) { 475 if (ModuleToSummariesForIndex) { 476 for (const auto &M : *ModuleToSummariesForIndex) { 477 const auto &MPI = Index.modulePaths().find(M.first); 478 if (MPI == Index.modulePaths().end()) { 479 // This should only happen if the bitcode file was empty, in which 480 // case we shouldn't be importing (the ModuleToSummariesForIndex 481 // would only include the module we are writing and index for). 482 assert(ModuleToSummariesForIndex->size() == 1); 483 continue; 484 } 485 Callback(*MPI); 486 } 487 } else { 488 for (const auto &MPSE : Index.modulePaths()) 489 Callback(MPSE); 490 } 491 } 492 493 /// Main entry point for writing a combined index to bitcode. 494 void write(); 495 496 private: 497 void writeModStrings(); 498 void writeCombinedGlobalValueSummary(); 499 500 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 501 auto VMI = GUIDToValueIdMap.find(ValGUID); 502 if (VMI == GUIDToValueIdMap.end()) 503 return None; 504 return VMI->second; 505 } 506 507 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 508 }; 509 510 } // end anonymous namespace 511 512 static unsigned getEncodedCastOpcode(unsigned Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Unknown cast instruction!"); 515 case Instruction::Trunc : return bitc::CAST_TRUNC; 516 case Instruction::ZExt : return bitc::CAST_ZEXT; 517 case Instruction::SExt : return bitc::CAST_SEXT; 518 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 519 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 520 case Instruction::UIToFP : return bitc::CAST_UITOFP; 521 case Instruction::SIToFP : return bitc::CAST_SITOFP; 522 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 523 case Instruction::FPExt : return bitc::CAST_FPEXT; 524 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 525 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 526 case Instruction::BitCast : return bitc::CAST_BITCAST; 527 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 528 } 529 } 530 531 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 532 switch (Opcode) { 533 default: llvm_unreachable("Unknown binary instruction!"); 534 case Instruction::FNeg: return bitc::UNOP_FNEG; 535 } 536 } 537 538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: llvm_unreachable("Unknown binary instruction!"); 541 case Instruction::Add: 542 case Instruction::FAdd: return bitc::BINOP_ADD; 543 case Instruction::Sub: 544 case Instruction::FSub: return bitc::BINOP_SUB; 545 case Instruction::Mul: 546 case Instruction::FMul: return bitc::BINOP_MUL; 547 case Instruction::UDiv: return bitc::BINOP_UDIV; 548 case Instruction::FDiv: 549 case Instruction::SDiv: return bitc::BINOP_SDIV; 550 case Instruction::URem: return bitc::BINOP_UREM; 551 case Instruction::FRem: 552 case Instruction::SRem: return bitc::BINOP_SREM; 553 case Instruction::Shl: return bitc::BINOP_SHL; 554 case Instruction::LShr: return bitc::BINOP_LSHR; 555 case Instruction::AShr: return bitc::BINOP_ASHR; 556 case Instruction::And: return bitc::BINOP_AND; 557 case Instruction::Or: return bitc::BINOP_OR; 558 case Instruction::Xor: return bitc::BINOP_XOR; 559 } 560 } 561 562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 563 switch (Op) { 564 default: llvm_unreachable("Unknown RMW operation!"); 565 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 566 case AtomicRMWInst::Add: return bitc::RMW_ADD; 567 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 568 case AtomicRMWInst::And: return bitc::RMW_AND; 569 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 570 case AtomicRMWInst::Or: return bitc::RMW_OR; 571 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 572 case AtomicRMWInst::Max: return bitc::RMW_MAX; 573 case AtomicRMWInst::Min: return bitc::RMW_MIN; 574 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 575 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 576 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 577 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 578 } 579 } 580 581 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 582 switch (Ordering) { 583 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 584 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 586 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 587 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 588 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 589 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 590 } 591 llvm_unreachable("Invalid ordering"); 592 } 593 594 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 595 StringRef Str, unsigned AbbrevToUse) { 596 SmallVector<unsigned, 64> Vals; 597 598 // Code: [strchar x N] 599 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 600 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 601 AbbrevToUse = 0; 602 Vals.push_back(Str[i]); 603 } 604 605 // Emit the finished record. 606 Stream.EmitRecord(Code, Vals, AbbrevToUse); 607 } 608 609 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 610 switch (Kind) { 611 case Attribute::Alignment: 612 return bitc::ATTR_KIND_ALIGNMENT; 613 case Attribute::AllocSize: 614 return bitc::ATTR_KIND_ALLOC_SIZE; 615 case Attribute::AlwaysInline: 616 return bitc::ATTR_KIND_ALWAYS_INLINE; 617 case Attribute::ArgMemOnly: 618 return bitc::ATTR_KIND_ARGMEMONLY; 619 case Attribute::Builtin: 620 return bitc::ATTR_KIND_BUILTIN; 621 case Attribute::ByVal: 622 return bitc::ATTR_KIND_BY_VAL; 623 case Attribute::Convergent: 624 return bitc::ATTR_KIND_CONVERGENT; 625 case Attribute::InAlloca: 626 return bitc::ATTR_KIND_IN_ALLOCA; 627 case Attribute::Cold: 628 return bitc::ATTR_KIND_COLD; 629 case Attribute::DisableSanitizerInstrumentation: 630 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 631 case Attribute::Hot: 632 return bitc::ATTR_KIND_HOT; 633 case Attribute::ElementType: 634 return bitc::ATTR_KIND_ELEMENTTYPE; 635 case Attribute::InaccessibleMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 637 case Attribute::InaccessibleMemOrArgMemOnly: 638 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 639 case Attribute::InlineHint: 640 return bitc::ATTR_KIND_INLINE_HINT; 641 case Attribute::InReg: 642 return bitc::ATTR_KIND_IN_REG; 643 case Attribute::JumpTable: 644 return bitc::ATTR_KIND_JUMP_TABLE; 645 case Attribute::MinSize: 646 return bitc::ATTR_KIND_MIN_SIZE; 647 case Attribute::Naked: 648 return bitc::ATTR_KIND_NAKED; 649 case Attribute::Nest: 650 return bitc::ATTR_KIND_NEST; 651 case Attribute::NoAlias: 652 return bitc::ATTR_KIND_NO_ALIAS; 653 case Attribute::NoBuiltin: 654 return bitc::ATTR_KIND_NO_BUILTIN; 655 case Attribute::NoCallback: 656 return bitc::ATTR_KIND_NO_CALLBACK; 657 case Attribute::NoCapture: 658 return bitc::ATTR_KIND_NO_CAPTURE; 659 case Attribute::NoDuplicate: 660 return bitc::ATTR_KIND_NO_DUPLICATE; 661 case Attribute::NoFree: 662 return bitc::ATTR_KIND_NOFREE; 663 case Attribute::NoImplicitFloat: 664 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 665 case Attribute::NoInline: 666 return bitc::ATTR_KIND_NO_INLINE; 667 case Attribute::NoRecurse: 668 return bitc::ATTR_KIND_NO_RECURSE; 669 case Attribute::NoMerge: 670 return bitc::ATTR_KIND_NO_MERGE; 671 case Attribute::NonLazyBind: 672 return bitc::ATTR_KIND_NON_LAZY_BIND; 673 case Attribute::NonNull: 674 return bitc::ATTR_KIND_NON_NULL; 675 case Attribute::Dereferenceable: 676 return bitc::ATTR_KIND_DEREFERENCEABLE; 677 case Attribute::DereferenceableOrNull: 678 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 679 case Attribute::NoRedZone: 680 return bitc::ATTR_KIND_NO_RED_ZONE; 681 case Attribute::NoReturn: 682 return bitc::ATTR_KIND_NO_RETURN; 683 case Attribute::NoSync: 684 return bitc::ATTR_KIND_NOSYNC; 685 case Attribute::NoCfCheck: 686 return bitc::ATTR_KIND_NOCF_CHECK; 687 case Attribute::NoProfile: 688 return bitc::ATTR_KIND_NO_PROFILE; 689 case Attribute::NoUnwind: 690 return bitc::ATTR_KIND_NO_UNWIND; 691 case Attribute::NoSanitizeCoverage: 692 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 693 case Attribute::NullPointerIsValid: 694 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 695 case Attribute::OptForFuzzing: 696 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 697 case Attribute::OptimizeForSize: 698 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 699 case Attribute::OptimizeNone: 700 return bitc::ATTR_KIND_OPTIMIZE_NONE; 701 case Attribute::ReadNone: 702 return bitc::ATTR_KIND_READ_NONE; 703 case Attribute::ReadOnly: 704 return bitc::ATTR_KIND_READ_ONLY; 705 case Attribute::Returned: 706 return bitc::ATTR_KIND_RETURNED; 707 case Attribute::ReturnsTwice: 708 return bitc::ATTR_KIND_RETURNS_TWICE; 709 case Attribute::SExt: 710 return bitc::ATTR_KIND_S_EXT; 711 case Attribute::Speculatable: 712 return bitc::ATTR_KIND_SPECULATABLE; 713 case Attribute::StackAlignment: 714 return bitc::ATTR_KIND_STACK_ALIGNMENT; 715 case Attribute::StackProtect: 716 return bitc::ATTR_KIND_STACK_PROTECT; 717 case Attribute::StackProtectReq: 718 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 719 case Attribute::StackProtectStrong: 720 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 721 case Attribute::SafeStack: 722 return bitc::ATTR_KIND_SAFESTACK; 723 case Attribute::ShadowCallStack: 724 return bitc::ATTR_KIND_SHADOWCALLSTACK; 725 case Attribute::StrictFP: 726 return bitc::ATTR_KIND_STRICT_FP; 727 case Attribute::StructRet: 728 return bitc::ATTR_KIND_STRUCT_RET; 729 case Attribute::SanitizeAddress: 730 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 731 case Attribute::SanitizeHWAddress: 732 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 733 case Attribute::SanitizeThread: 734 return bitc::ATTR_KIND_SANITIZE_THREAD; 735 case Attribute::SanitizeMemory: 736 return bitc::ATTR_KIND_SANITIZE_MEMORY; 737 case Attribute::SpeculativeLoadHardening: 738 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 739 case Attribute::SwiftError: 740 return bitc::ATTR_KIND_SWIFT_ERROR; 741 case Attribute::SwiftSelf: 742 return bitc::ATTR_KIND_SWIFT_SELF; 743 case Attribute::SwiftAsync: 744 return bitc::ATTR_KIND_SWIFT_ASYNC; 745 case Attribute::UWTable: 746 return bitc::ATTR_KIND_UW_TABLE; 747 case Attribute::VScaleRange: 748 return bitc::ATTR_KIND_VSCALE_RANGE; 749 case Attribute::WillReturn: 750 return bitc::ATTR_KIND_WILLRETURN; 751 case Attribute::WriteOnly: 752 return bitc::ATTR_KIND_WRITEONLY; 753 case Attribute::ZExt: 754 return bitc::ATTR_KIND_Z_EXT; 755 case Attribute::ImmArg: 756 return bitc::ATTR_KIND_IMMARG; 757 case Attribute::SanitizeMemTag: 758 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 759 case Attribute::Preallocated: 760 return bitc::ATTR_KIND_PREALLOCATED; 761 case Attribute::NoUndef: 762 return bitc::ATTR_KIND_NOUNDEF; 763 case Attribute::ByRef: 764 return bitc::ATTR_KIND_BYREF; 765 case Attribute::MustProgress: 766 return bitc::ATTR_KIND_MUSTPROGRESS; 767 case Attribute::EndAttrKinds: 768 llvm_unreachable("Can not encode end-attribute kinds marker."); 769 case Attribute::None: 770 llvm_unreachable("Can not encode none-attribute."); 771 case Attribute::EmptyKey: 772 case Attribute::TombstoneKey: 773 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 774 } 775 776 llvm_unreachable("Trying to encode unknown attribute"); 777 } 778 779 void ModuleBitcodeWriter::writeAttributeGroupTable() { 780 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 781 VE.getAttributeGroups(); 782 if (AttrGrps.empty()) return; 783 784 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 785 786 SmallVector<uint64_t, 64> Record; 787 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 788 unsigned AttrListIndex = Pair.first; 789 AttributeSet AS = Pair.second; 790 Record.push_back(VE.getAttributeGroupID(Pair)); 791 Record.push_back(AttrListIndex); 792 793 for (Attribute Attr : AS) { 794 if (Attr.isEnumAttribute()) { 795 Record.push_back(0); 796 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 797 } else if (Attr.isIntAttribute()) { 798 Record.push_back(1); 799 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 800 Record.push_back(Attr.getValueAsInt()); 801 } else if (Attr.isStringAttribute()) { 802 StringRef Kind = Attr.getKindAsString(); 803 StringRef Val = Attr.getValueAsString(); 804 805 Record.push_back(Val.empty() ? 3 : 4); 806 Record.append(Kind.begin(), Kind.end()); 807 Record.push_back(0); 808 if (!Val.empty()) { 809 Record.append(Val.begin(), Val.end()); 810 Record.push_back(0); 811 } 812 } else { 813 assert(Attr.isTypeAttribute()); 814 Type *Ty = Attr.getValueAsType(); 815 Record.push_back(Ty ? 6 : 5); 816 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 817 if (Ty) 818 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 819 } 820 } 821 822 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 823 Record.clear(); 824 } 825 826 Stream.ExitBlock(); 827 } 828 829 void ModuleBitcodeWriter::writeAttributeTable() { 830 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 831 if (Attrs.empty()) return; 832 833 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 834 835 SmallVector<uint64_t, 64> Record; 836 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 837 AttributeList AL = Attrs[i]; 838 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 839 AttributeSet AS = AL.getAttributes(i); 840 if (AS.hasAttributes()) 841 Record.push_back(VE.getAttributeGroupID({i, AS})); 842 } 843 844 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 845 Record.clear(); 846 } 847 848 Stream.ExitBlock(); 849 } 850 851 /// WriteTypeTable - Write out the type table for a module. 852 void ModuleBitcodeWriter::writeTypeTable() { 853 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 854 855 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 856 SmallVector<uint64_t, 64> TypeVals; 857 858 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 859 860 // Abbrev for TYPE_CODE_POINTER. 861 auto Abbv = std::make_shared<BitCodeAbbrev>(); 862 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 864 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 865 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 866 867 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 868 Abbv = std::make_shared<BitCodeAbbrev>(); 869 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 870 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 871 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 872 873 // Abbrev for TYPE_CODE_FUNCTION. 874 Abbv = std::make_shared<BitCodeAbbrev>(); 875 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 879 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 880 881 // Abbrev for TYPE_CODE_STRUCT_ANON. 882 Abbv = std::make_shared<BitCodeAbbrev>(); 883 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 887 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 888 889 // Abbrev for TYPE_CODE_STRUCT_NAME. 890 Abbv = std::make_shared<BitCodeAbbrev>(); 891 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 894 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 895 896 // Abbrev for TYPE_CODE_STRUCT_NAMED. 897 Abbv = std::make_shared<BitCodeAbbrev>(); 898 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 902 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 903 904 // Abbrev for TYPE_CODE_ARRAY. 905 Abbv = std::make_shared<BitCodeAbbrev>(); 906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 909 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 910 911 // Emit an entry count so the reader can reserve space. 912 TypeVals.push_back(TypeList.size()); 913 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 914 TypeVals.clear(); 915 916 // Loop over all of the types, emitting each in turn. 917 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 918 Type *T = TypeList[i]; 919 int AbbrevToUse = 0; 920 unsigned Code = 0; 921 922 switch (T->getTypeID()) { 923 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 924 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 925 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 926 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 927 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 928 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 929 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 930 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 931 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 932 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 933 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 934 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 935 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 936 case Type::IntegerTyID: 937 // INTEGER: [width] 938 Code = bitc::TYPE_CODE_INTEGER; 939 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 940 break; 941 case Type::PointerTyID: { 942 PointerType *PTy = cast<PointerType>(T); 943 unsigned AddressSpace = PTy->getAddressSpace(); 944 if (PTy->isOpaque()) { 945 // OPAQUE_POINTER: [address space] 946 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 947 TypeVals.push_back(AddressSpace); 948 if (AddressSpace == 0) 949 AbbrevToUse = OpaquePtrAbbrev; 950 } else { 951 // POINTER: [pointee type, address space] 952 Code = bitc::TYPE_CODE_POINTER; 953 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 954 TypeVals.push_back(AddressSpace); 955 if (AddressSpace == 0) 956 AbbrevToUse = PtrAbbrev; 957 } 958 break; 959 } 960 case Type::FunctionTyID: { 961 FunctionType *FT = cast<FunctionType>(T); 962 // FUNCTION: [isvararg, retty, paramty x N] 963 Code = bitc::TYPE_CODE_FUNCTION; 964 TypeVals.push_back(FT->isVarArg()); 965 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 966 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 967 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 968 AbbrevToUse = FunctionAbbrev; 969 break; 970 } 971 case Type::StructTyID: { 972 StructType *ST = cast<StructType>(T); 973 // STRUCT: [ispacked, eltty x N] 974 TypeVals.push_back(ST->isPacked()); 975 // Output all of the element types. 976 for (StructType::element_iterator I = ST->element_begin(), 977 E = ST->element_end(); I != E; ++I) 978 TypeVals.push_back(VE.getTypeID(*I)); 979 980 if (ST->isLiteral()) { 981 Code = bitc::TYPE_CODE_STRUCT_ANON; 982 AbbrevToUse = StructAnonAbbrev; 983 } else { 984 if (ST->isOpaque()) { 985 Code = bitc::TYPE_CODE_OPAQUE; 986 } else { 987 Code = bitc::TYPE_CODE_STRUCT_NAMED; 988 AbbrevToUse = StructNamedAbbrev; 989 } 990 991 // Emit the name if it is present. 992 if (!ST->getName().empty()) 993 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 994 StructNameAbbrev); 995 } 996 break; 997 } 998 case Type::ArrayTyID: { 999 ArrayType *AT = cast<ArrayType>(T); 1000 // ARRAY: [numelts, eltty] 1001 Code = bitc::TYPE_CODE_ARRAY; 1002 TypeVals.push_back(AT->getNumElements()); 1003 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1004 AbbrevToUse = ArrayAbbrev; 1005 break; 1006 } 1007 case Type::FixedVectorTyID: 1008 case Type::ScalableVectorTyID: { 1009 VectorType *VT = cast<VectorType>(T); 1010 // VECTOR [numelts, eltty] or 1011 // [numelts, eltty, scalable] 1012 Code = bitc::TYPE_CODE_VECTOR; 1013 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1014 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1015 if (isa<ScalableVectorType>(VT)) 1016 TypeVals.push_back(true); 1017 break; 1018 } 1019 } 1020 1021 // Emit the finished record. 1022 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1023 TypeVals.clear(); 1024 } 1025 1026 Stream.ExitBlock(); 1027 } 1028 1029 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1030 switch (Linkage) { 1031 case GlobalValue::ExternalLinkage: 1032 return 0; 1033 case GlobalValue::WeakAnyLinkage: 1034 return 16; 1035 case GlobalValue::AppendingLinkage: 1036 return 2; 1037 case GlobalValue::InternalLinkage: 1038 return 3; 1039 case GlobalValue::LinkOnceAnyLinkage: 1040 return 18; 1041 case GlobalValue::ExternalWeakLinkage: 1042 return 7; 1043 case GlobalValue::CommonLinkage: 1044 return 8; 1045 case GlobalValue::PrivateLinkage: 1046 return 9; 1047 case GlobalValue::WeakODRLinkage: 1048 return 17; 1049 case GlobalValue::LinkOnceODRLinkage: 1050 return 19; 1051 case GlobalValue::AvailableExternallyLinkage: 1052 return 12; 1053 } 1054 llvm_unreachable("Invalid linkage"); 1055 } 1056 1057 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1058 return getEncodedLinkage(GV.getLinkage()); 1059 } 1060 1061 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1062 uint64_t RawFlags = 0; 1063 RawFlags |= Flags.ReadNone; 1064 RawFlags |= (Flags.ReadOnly << 1); 1065 RawFlags |= (Flags.NoRecurse << 2); 1066 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1067 RawFlags |= (Flags.NoInline << 4); 1068 RawFlags |= (Flags.AlwaysInline << 5); 1069 return RawFlags; 1070 } 1071 1072 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1073 // in BitcodeReader.cpp. 1074 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1075 uint64_t RawFlags = 0; 1076 1077 RawFlags |= Flags.NotEligibleToImport; // bool 1078 RawFlags |= (Flags.Live << 1); 1079 RawFlags |= (Flags.DSOLocal << 2); 1080 RawFlags |= (Flags.CanAutoHide << 3); 1081 1082 // Linkage don't need to be remapped at that time for the summary. Any future 1083 // change to the getEncodedLinkage() function will need to be taken into 1084 // account here as well. 1085 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1086 1087 RawFlags |= (Flags.Visibility << 8); // 2 bits 1088 1089 return RawFlags; 1090 } 1091 1092 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1093 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1094 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1095 return RawFlags; 1096 } 1097 1098 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1099 switch (GV.getVisibility()) { 1100 case GlobalValue::DefaultVisibility: return 0; 1101 case GlobalValue::HiddenVisibility: return 1; 1102 case GlobalValue::ProtectedVisibility: return 2; 1103 } 1104 llvm_unreachable("Invalid visibility"); 1105 } 1106 1107 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1108 switch (GV.getDLLStorageClass()) { 1109 case GlobalValue::DefaultStorageClass: return 0; 1110 case GlobalValue::DLLImportStorageClass: return 1; 1111 case GlobalValue::DLLExportStorageClass: return 2; 1112 } 1113 llvm_unreachable("Invalid DLL storage class"); 1114 } 1115 1116 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1117 switch (GV.getThreadLocalMode()) { 1118 case GlobalVariable::NotThreadLocal: return 0; 1119 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1120 case GlobalVariable::LocalDynamicTLSModel: return 2; 1121 case GlobalVariable::InitialExecTLSModel: return 3; 1122 case GlobalVariable::LocalExecTLSModel: return 4; 1123 } 1124 llvm_unreachable("Invalid TLS model"); 1125 } 1126 1127 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1128 switch (C.getSelectionKind()) { 1129 case Comdat::Any: 1130 return bitc::COMDAT_SELECTION_KIND_ANY; 1131 case Comdat::ExactMatch: 1132 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1133 case Comdat::Largest: 1134 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1135 case Comdat::NoDeduplicate: 1136 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1137 case Comdat::SameSize: 1138 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1139 } 1140 llvm_unreachable("Invalid selection kind"); 1141 } 1142 1143 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1144 switch (GV.getUnnamedAddr()) { 1145 case GlobalValue::UnnamedAddr::None: return 0; 1146 case GlobalValue::UnnamedAddr::Local: return 2; 1147 case GlobalValue::UnnamedAddr::Global: return 1; 1148 } 1149 llvm_unreachable("Invalid unnamed_addr"); 1150 } 1151 1152 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1153 if (GenerateHash) 1154 Hasher.update(Str); 1155 return StrtabBuilder.add(Str); 1156 } 1157 1158 void ModuleBitcodeWriter::writeComdats() { 1159 SmallVector<unsigned, 64> Vals; 1160 for (const Comdat *C : VE.getComdats()) { 1161 // COMDAT: [strtab offset, strtab size, selection_kind] 1162 Vals.push_back(addToStrtab(C->getName())); 1163 Vals.push_back(C->getName().size()); 1164 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1165 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1166 Vals.clear(); 1167 } 1168 } 1169 1170 /// Write a record that will eventually hold the word offset of the 1171 /// module-level VST. For now the offset is 0, which will be backpatched 1172 /// after the real VST is written. Saves the bit offset to backpatch. 1173 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1174 // Write a placeholder value in for the offset of the real VST, 1175 // which is written after the function blocks so that it can include 1176 // the offset of each function. The placeholder offset will be 1177 // updated when the real VST is written. 1178 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1179 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1180 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1181 // hold the real VST offset. Must use fixed instead of VBR as we don't 1182 // know how many VBR chunks to reserve ahead of time. 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1184 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1185 1186 // Emit the placeholder 1187 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1188 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1189 1190 // Compute and save the bit offset to the placeholder, which will be 1191 // patched when the real VST is written. We can simply subtract the 32-bit 1192 // fixed size from the current bit number to get the location to backpatch. 1193 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1194 } 1195 1196 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1197 1198 /// Determine the encoding to use for the given string name and length. 1199 static StringEncoding getStringEncoding(StringRef Str) { 1200 bool isChar6 = true; 1201 for (char C : Str) { 1202 if (isChar6) 1203 isChar6 = BitCodeAbbrevOp::isChar6(C); 1204 if ((unsigned char)C & 128) 1205 // don't bother scanning the rest. 1206 return SE_Fixed8; 1207 } 1208 if (isChar6) 1209 return SE_Char6; 1210 return SE_Fixed7; 1211 } 1212 1213 /// Emit top-level description of module, including target triple, inline asm, 1214 /// descriptors for global variables, and function prototype info. 1215 /// Returns the bit offset to backpatch with the location of the real VST. 1216 void ModuleBitcodeWriter::writeModuleInfo() { 1217 // Emit various pieces of data attached to a module. 1218 if (!M.getTargetTriple().empty()) 1219 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1220 0 /*TODO*/); 1221 const std::string &DL = M.getDataLayoutStr(); 1222 if (!DL.empty()) 1223 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1224 if (!M.getModuleInlineAsm().empty()) 1225 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1226 0 /*TODO*/); 1227 1228 // Emit information about sections and GC, computing how many there are. Also 1229 // compute the maximum alignment value. 1230 std::map<std::string, unsigned> SectionMap; 1231 std::map<std::string, unsigned> GCMap; 1232 MaybeAlign MaxAlignment; 1233 unsigned MaxGlobalType = 0; 1234 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1235 if (A) 1236 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1237 }; 1238 for (const GlobalVariable &GV : M.globals()) { 1239 UpdateMaxAlignment(GV.getAlign()); 1240 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1241 if (GV.hasSection()) { 1242 // Give section names unique ID's. 1243 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1244 if (!Entry) { 1245 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1246 0 /*TODO*/); 1247 Entry = SectionMap.size(); 1248 } 1249 } 1250 } 1251 for (const Function &F : M) { 1252 UpdateMaxAlignment(F.getAlign()); 1253 if (F.hasSection()) { 1254 // Give section names unique ID's. 1255 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1256 if (!Entry) { 1257 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1258 0 /*TODO*/); 1259 Entry = SectionMap.size(); 1260 } 1261 } 1262 if (F.hasGC()) { 1263 // Same for GC names. 1264 unsigned &Entry = GCMap[F.getGC()]; 1265 if (!Entry) { 1266 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1267 0 /*TODO*/); 1268 Entry = GCMap.size(); 1269 } 1270 } 1271 } 1272 1273 // Emit abbrev for globals, now that we know # sections and max alignment. 1274 unsigned SimpleGVarAbbrev = 0; 1275 if (!M.global_empty()) { 1276 // Add an abbrev for common globals with no visibility or thread localness. 1277 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1278 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1282 Log2_32_Ceil(MaxGlobalType+1))); 1283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1284 //| explicitType << 1 1285 //| constant 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1288 if (!MaxAlignment) // Alignment. 1289 Abbv->Add(BitCodeAbbrevOp(0)); 1290 else { 1291 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1293 Log2_32_Ceil(MaxEncAlignment+1))); 1294 } 1295 if (SectionMap.empty()) // Section. 1296 Abbv->Add(BitCodeAbbrevOp(0)); 1297 else 1298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1299 Log2_32_Ceil(SectionMap.size()+1))); 1300 // Don't bother emitting vis + thread local. 1301 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1302 } 1303 1304 SmallVector<unsigned, 64> Vals; 1305 // Emit the module's source file name. 1306 { 1307 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1308 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1309 if (Bits == SE_Char6) 1310 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1311 else if (Bits == SE_Fixed7) 1312 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1313 1314 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1315 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1316 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1318 Abbv->Add(AbbrevOpToUse); 1319 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1320 1321 for (const auto P : M.getSourceFileName()) 1322 Vals.push_back((unsigned char)P); 1323 1324 // Emit the finished record. 1325 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1326 Vals.clear(); 1327 } 1328 1329 // Emit the global variable information. 1330 for (const GlobalVariable &GV : M.globals()) { 1331 unsigned AbbrevToUse = 0; 1332 1333 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1334 // linkage, alignment, section, visibility, threadlocal, 1335 // unnamed_addr, externally_initialized, dllstorageclass, 1336 // comdat, attributes, DSO_Local] 1337 Vals.push_back(addToStrtab(GV.getName())); 1338 Vals.push_back(GV.getName().size()); 1339 Vals.push_back(VE.getTypeID(GV.getValueType())); 1340 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1341 Vals.push_back(GV.isDeclaration() ? 0 : 1342 (VE.getValueID(GV.getInitializer()) + 1)); 1343 Vals.push_back(getEncodedLinkage(GV)); 1344 Vals.push_back(getEncodedAlign(GV.getAlign())); 1345 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1346 : 0); 1347 if (GV.isThreadLocal() || 1348 GV.getVisibility() != GlobalValue::DefaultVisibility || 1349 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1350 GV.isExternallyInitialized() || 1351 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1352 GV.hasComdat() || 1353 GV.hasAttributes() || 1354 GV.isDSOLocal() || 1355 GV.hasPartition()) { 1356 Vals.push_back(getEncodedVisibility(GV)); 1357 Vals.push_back(getEncodedThreadLocalMode(GV)); 1358 Vals.push_back(getEncodedUnnamedAddr(GV)); 1359 Vals.push_back(GV.isExternallyInitialized()); 1360 Vals.push_back(getEncodedDLLStorageClass(GV)); 1361 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1362 1363 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1364 Vals.push_back(VE.getAttributeListID(AL)); 1365 1366 Vals.push_back(GV.isDSOLocal()); 1367 Vals.push_back(addToStrtab(GV.getPartition())); 1368 Vals.push_back(GV.getPartition().size()); 1369 } else { 1370 AbbrevToUse = SimpleGVarAbbrev; 1371 } 1372 1373 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1374 Vals.clear(); 1375 } 1376 1377 // Emit the function proto information. 1378 for (const Function &F : M) { 1379 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1380 // linkage, paramattrs, alignment, section, visibility, gc, 1381 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1382 // prefixdata, personalityfn, DSO_Local, addrspace] 1383 Vals.push_back(addToStrtab(F.getName())); 1384 Vals.push_back(F.getName().size()); 1385 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1386 Vals.push_back(F.getCallingConv()); 1387 Vals.push_back(F.isDeclaration()); 1388 Vals.push_back(getEncodedLinkage(F)); 1389 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1390 Vals.push_back(getEncodedAlign(F.getAlign())); 1391 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1392 : 0); 1393 Vals.push_back(getEncodedVisibility(F)); 1394 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1395 Vals.push_back(getEncodedUnnamedAddr(F)); 1396 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1397 : 0); 1398 Vals.push_back(getEncodedDLLStorageClass(F)); 1399 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1400 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1401 : 0); 1402 Vals.push_back( 1403 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1404 1405 Vals.push_back(F.isDSOLocal()); 1406 Vals.push_back(F.getAddressSpace()); 1407 Vals.push_back(addToStrtab(F.getPartition())); 1408 Vals.push_back(F.getPartition().size()); 1409 1410 unsigned AbbrevToUse = 0; 1411 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1412 Vals.clear(); 1413 } 1414 1415 // Emit the alias information. 1416 for (const GlobalAlias &A : M.aliases()) { 1417 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1418 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1419 // DSO_Local] 1420 Vals.push_back(addToStrtab(A.getName())); 1421 Vals.push_back(A.getName().size()); 1422 Vals.push_back(VE.getTypeID(A.getValueType())); 1423 Vals.push_back(A.getType()->getAddressSpace()); 1424 Vals.push_back(VE.getValueID(A.getAliasee())); 1425 Vals.push_back(getEncodedLinkage(A)); 1426 Vals.push_back(getEncodedVisibility(A)); 1427 Vals.push_back(getEncodedDLLStorageClass(A)); 1428 Vals.push_back(getEncodedThreadLocalMode(A)); 1429 Vals.push_back(getEncodedUnnamedAddr(A)); 1430 Vals.push_back(A.isDSOLocal()); 1431 Vals.push_back(addToStrtab(A.getPartition())); 1432 Vals.push_back(A.getPartition().size()); 1433 1434 unsigned AbbrevToUse = 0; 1435 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1436 Vals.clear(); 1437 } 1438 1439 // Emit the ifunc information. 1440 for (const GlobalIFunc &I : M.ifuncs()) { 1441 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1442 // val#, linkage, visibility, DSO_Local] 1443 Vals.push_back(addToStrtab(I.getName())); 1444 Vals.push_back(I.getName().size()); 1445 Vals.push_back(VE.getTypeID(I.getValueType())); 1446 Vals.push_back(I.getType()->getAddressSpace()); 1447 Vals.push_back(VE.getValueID(I.getResolver())); 1448 Vals.push_back(getEncodedLinkage(I)); 1449 Vals.push_back(getEncodedVisibility(I)); 1450 Vals.push_back(I.isDSOLocal()); 1451 Vals.push_back(addToStrtab(I.getPartition())); 1452 Vals.push_back(I.getPartition().size()); 1453 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1454 Vals.clear(); 1455 } 1456 1457 writeValueSymbolTableForwardDecl(); 1458 } 1459 1460 static uint64_t getOptimizationFlags(const Value *V) { 1461 uint64_t Flags = 0; 1462 1463 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1464 if (OBO->hasNoSignedWrap()) 1465 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1466 if (OBO->hasNoUnsignedWrap()) 1467 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1468 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1469 if (PEO->isExact()) 1470 Flags |= 1 << bitc::PEO_EXACT; 1471 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1472 if (FPMO->hasAllowReassoc()) 1473 Flags |= bitc::AllowReassoc; 1474 if (FPMO->hasNoNaNs()) 1475 Flags |= bitc::NoNaNs; 1476 if (FPMO->hasNoInfs()) 1477 Flags |= bitc::NoInfs; 1478 if (FPMO->hasNoSignedZeros()) 1479 Flags |= bitc::NoSignedZeros; 1480 if (FPMO->hasAllowReciprocal()) 1481 Flags |= bitc::AllowReciprocal; 1482 if (FPMO->hasAllowContract()) 1483 Flags |= bitc::AllowContract; 1484 if (FPMO->hasApproxFunc()) 1485 Flags |= bitc::ApproxFunc; 1486 } 1487 1488 return Flags; 1489 } 1490 1491 void ModuleBitcodeWriter::writeValueAsMetadata( 1492 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1493 // Mimic an MDNode with a value as one operand. 1494 Value *V = MD->getValue(); 1495 Record.push_back(VE.getTypeID(V->getType())); 1496 Record.push_back(VE.getValueID(V)); 1497 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1498 Record.clear(); 1499 } 1500 1501 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1502 SmallVectorImpl<uint64_t> &Record, 1503 unsigned Abbrev) { 1504 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1505 Metadata *MD = N->getOperand(i); 1506 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1507 "Unexpected function-local metadata"); 1508 Record.push_back(VE.getMetadataOrNullID(MD)); 1509 } 1510 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1511 : bitc::METADATA_NODE, 1512 Record, Abbrev); 1513 Record.clear(); 1514 } 1515 1516 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1517 // Assume the column is usually under 128, and always output the inlined-at 1518 // location (it's never more expensive than building an array size 1). 1519 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1520 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1527 return Stream.EmitAbbrev(std::move(Abbv)); 1528 } 1529 1530 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1531 SmallVectorImpl<uint64_t> &Record, 1532 unsigned &Abbrev) { 1533 if (!Abbrev) 1534 Abbrev = createDILocationAbbrev(); 1535 1536 Record.push_back(N->isDistinct()); 1537 Record.push_back(N->getLine()); 1538 Record.push_back(N->getColumn()); 1539 Record.push_back(VE.getMetadataID(N->getScope())); 1540 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1541 Record.push_back(N->isImplicitCode()); 1542 1543 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1544 Record.clear(); 1545 } 1546 1547 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1548 // Assume the column is usually under 128, and always output the inlined-at 1549 // location (it's never more expensive than building an array size 1). 1550 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1551 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1558 return Stream.EmitAbbrev(std::move(Abbv)); 1559 } 1560 1561 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1562 SmallVectorImpl<uint64_t> &Record, 1563 unsigned &Abbrev) { 1564 if (!Abbrev) 1565 Abbrev = createGenericDINodeAbbrev(); 1566 1567 Record.push_back(N->isDistinct()); 1568 Record.push_back(N->getTag()); 1569 Record.push_back(0); // Per-tag version field; unused for now. 1570 1571 for (auto &I : N->operands()) 1572 Record.push_back(VE.getMetadataOrNullID(I)); 1573 1574 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1575 Record.clear(); 1576 } 1577 1578 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1579 SmallVectorImpl<uint64_t> &Record, 1580 unsigned Abbrev) { 1581 const uint64_t Version = 2 << 1; 1582 Record.push_back((uint64_t)N->isDistinct() | Version); 1583 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1587 1588 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1589 Record.clear(); 1590 } 1591 1592 void ModuleBitcodeWriter::writeDIGenericSubrange( 1593 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1594 unsigned Abbrev) { 1595 Record.push_back((uint64_t)N->isDistinct()); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1600 1601 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1602 Record.clear(); 1603 } 1604 1605 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1606 if ((int64_t)V >= 0) 1607 Vals.push_back(V << 1); 1608 else 1609 Vals.push_back((-V << 1) | 1); 1610 } 1611 1612 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1613 // We have an arbitrary precision integer value to write whose 1614 // bit width is > 64. However, in canonical unsigned integer 1615 // format it is likely that the high bits are going to be zero. 1616 // So, we only write the number of active words. 1617 unsigned NumWords = A.getActiveWords(); 1618 const uint64_t *RawData = A.getRawData(); 1619 for (unsigned i = 0; i < NumWords; i++) 1620 emitSignedInt64(Vals, RawData[i]); 1621 } 1622 1623 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1624 SmallVectorImpl<uint64_t> &Record, 1625 unsigned Abbrev) { 1626 const uint64_t IsBigInt = 1 << 2; 1627 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1628 Record.push_back(N->getValue().getBitWidth()); 1629 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1630 emitWideAPInt(Record, N->getValue()); 1631 1632 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1633 Record.clear(); 1634 } 1635 1636 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1637 SmallVectorImpl<uint64_t> &Record, 1638 unsigned Abbrev) { 1639 Record.push_back(N->isDistinct()); 1640 Record.push_back(N->getTag()); 1641 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1642 Record.push_back(N->getSizeInBits()); 1643 Record.push_back(N->getAlignInBits()); 1644 Record.push_back(N->getEncoding()); 1645 Record.push_back(N->getFlags()); 1646 1647 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1648 Record.clear(); 1649 } 1650 1651 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1652 SmallVectorImpl<uint64_t> &Record, 1653 unsigned Abbrev) { 1654 Record.push_back(N->isDistinct()); 1655 Record.push_back(N->getTag()); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1659 Record.push_back(N->getSizeInBits()); 1660 Record.push_back(N->getAlignInBits()); 1661 Record.push_back(N->getEncoding()); 1662 1663 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1668 SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 Record.push_back(N->isDistinct()); 1671 Record.push_back(N->getTag()); 1672 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1673 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1674 Record.push_back(N->getLine()); 1675 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1677 Record.push_back(N->getSizeInBits()); 1678 Record.push_back(N->getAlignInBits()); 1679 Record.push_back(N->getOffsetInBits()); 1680 Record.push_back(N->getFlags()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1682 1683 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1684 // that there is no DWARF address space associated with DIDerivedType. 1685 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1686 Record.push_back(*DWARFAddressSpace + 1); 1687 else 1688 Record.push_back(0); 1689 1690 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1691 1692 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1693 Record.clear(); 1694 } 1695 1696 void ModuleBitcodeWriter::writeDICompositeType( 1697 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1698 unsigned Abbrev) { 1699 const unsigned IsNotUsedInOldTypeRef = 0x2; 1700 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1701 Record.push_back(N->getTag()); 1702 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1703 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1704 Record.push_back(N->getLine()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1707 Record.push_back(N->getSizeInBits()); 1708 Record.push_back(N->getAlignInBits()); 1709 Record.push_back(N->getOffsetInBits()); 1710 Record.push_back(N->getFlags()); 1711 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1712 Record.push_back(N->getRuntimeLang()); 1713 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1714 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1715 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1722 1723 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1724 Record.clear(); 1725 } 1726 1727 void ModuleBitcodeWriter::writeDISubroutineType( 1728 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1729 unsigned Abbrev) { 1730 const unsigned HasNoOldTypeRefs = 0x2; 1731 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1732 Record.push_back(N->getFlags()); 1733 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1734 Record.push_back(N->getCC()); 1735 1736 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1737 Record.clear(); 1738 } 1739 1740 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1741 SmallVectorImpl<uint64_t> &Record, 1742 unsigned Abbrev) { 1743 Record.push_back(N->isDistinct()); 1744 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1745 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1746 if (N->getRawChecksum()) { 1747 Record.push_back(N->getRawChecksum()->Kind); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1749 } else { 1750 // Maintain backwards compatibility with the old internal representation of 1751 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1752 Record.push_back(0); 1753 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1754 } 1755 auto Source = N->getRawSource(); 1756 if (Source) 1757 Record.push_back(VE.getMetadataOrNullID(*Source)); 1758 1759 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1760 Record.clear(); 1761 } 1762 1763 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1764 SmallVectorImpl<uint64_t> &Record, 1765 unsigned Abbrev) { 1766 assert(N->isDistinct() && "Expected distinct compile units"); 1767 Record.push_back(/* IsDistinct */ true); 1768 Record.push_back(N->getSourceLanguage()); 1769 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1771 Record.push_back(N->isOptimized()); 1772 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1773 Record.push_back(N->getRuntimeVersion()); 1774 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1775 Record.push_back(N->getEmissionKind()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1778 Record.push_back(/* subprograms */ 0); 1779 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1781 Record.push_back(N->getDWOId()); 1782 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1783 Record.push_back(N->getSplitDebugInlining()); 1784 Record.push_back(N->getDebugInfoForProfiling()); 1785 Record.push_back((unsigned)N->getNameTableKind()); 1786 Record.push_back(N->getRangesBaseAddress()); 1787 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1788 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1789 1790 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1791 Record.clear(); 1792 } 1793 1794 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1795 SmallVectorImpl<uint64_t> &Record, 1796 unsigned Abbrev) { 1797 const uint64_t HasUnitFlag = 1 << 1; 1798 const uint64_t HasSPFlagsFlag = 1 << 2; 1799 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1800 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1804 Record.push_back(N->getLine()); 1805 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1806 Record.push_back(N->getScopeLine()); 1807 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1808 Record.push_back(N->getSPFlags()); 1809 Record.push_back(N->getVirtualIndex()); 1810 Record.push_back(N->getFlags()); 1811 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1813 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1815 Record.push_back(N->getThisAdjustment()); 1816 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1817 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1818 1819 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1820 Record.clear(); 1821 } 1822 1823 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1824 SmallVectorImpl<uint64_t> &Record, 1825 unsigned Abbrev) { 1826 Record.push_back(N->isDistinct()); 1827 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1828 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1829 Record.push_back(N->getLine()); 1830 Record.push_back(N->getColumn()); 1831 1832 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1833 Record.clear(); 1834 } 1835 1836 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1837 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1838 unsigned Abbrev) { 1839 Record.push_back(N->isDistinct()); 1840 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1841 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1842 Record.push_back(N->getDiscriminator()); 1843 1844 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1845 Record.clear(); 1846 } 1847 1848 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1849 SmallVectorImpl<uint64_t> &Record, 1850 unsigned Abbrev) { 1851 Record.push_back(N->isDistinct()); 1852 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1854 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1856 Record.push_back(N->getLineNo()); 1857 1858 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1859 Record.clear(); 1860 } 1861 1862 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1863 SmallVectorImpl<uint64_t> &Record, 1864 unsigned Abbrev) { 1865 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1866 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1867 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1868 1869 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1870 Record.clear(); 1871 } 1872 1873 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1874 SmallVectorImpl<uint64_t> &Record, 1875 unsigned Abbrev) { 1876 Record.push_back(N->isDistinct()); 1877 Record.push_back(N->getMacinfoType()); 1878 Record.push_back(N->getLine()); 1879 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1880 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1881 1882 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1883 Record.clear(); 1884 } 1885 1886 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1887 SmallVectorImpl<uint64_t> &Record, 1888 unsigned Abbrev) { 1889 Record.push_back(N->isDistinct()); 1890 Record.push_back(N->getMacinfoType()); 1891 Record.push_back(N->getLine()); 1892 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1893 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1894 1895 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1896 Record.clear(); 1897 } 1898 1899 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1900 SmallVectorImpl<uint64_t> &Record, 1901 unsigned Abbrev) { 1902 Record.reserve(N->getArgs().size()); 1903 for (ValueAsMetadata *MD : N->getArgs()) 1904 Record.push_back(VE.getMetadataID(MD)); 1905 1906 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1907 Record.clear(); 1908 } 1909 1910 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1911 SmallVectorImpl<uint64_t> &Record, 1912 unsigned Abbrev) { 1913 Record.push_back(N->isDistinct()); 1914 for (auto &I : N->operands()) 1915 Record.push_back(VE.getMetadataOrNullID(I)); 1916 Record.push_back(N->getLineNo()); 1917 Record.push_back(N->getIsDecl()); 1918 1919 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1920 Record.clear(); 1921 } 1922 1923 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1924 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1925 unsigned Abbrev) { 1926 Record.push_back(N->isDistinct()); 1927 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1928 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1929 Record.push_back(N->isDefault()); 1930 1931 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1932 Record.clear(); 1933 } 1934 1935 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1936 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1937 unsigned Abbrev) { 1938 Record.push_back(N->isDistinct()); 1939 Record.push_back(N->getTag()); 1940 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1941 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1942 Record.push_back(N->isDefault()); 1943 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1944 1945 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1946 Record.clear(); 1947 } 1948 1949 void ModuleBitcodeWriter::writeDIGlobalVariable( 1950 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1951 unsigned Abbrev) { 1952 const uint64_t Version = 2 << 1; 1953 Record.push_back((uint64_t)N->isDistinct() | Version); 1954 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1955 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1956 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1957 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1958 Record.push_back(N->getLine()); 1959 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1960 Record.push_back(N->isLocalToUnit()); 1961 Record.push_back(N->isDefinition()); 1962 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1963 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1964 Record.push_back(N->getAlignInBits()); 1965 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1966 1967 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1968 Record.clear(); 1969 } 1970 1971 void ModuleBitcodeWriter::writeDILocalVariable( 1972 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1973 unsigned Abbrev) { 1974 // In order to support all possible bitcode formats in BitcodeReader we need 1975 // to distinguish the following cases: 1976 // 1) Record has no artificial tag (Record[1]), 1977 // has no obsolete inlinedAt field (Record[9]). 1978 // In this case Record size will be 8, HasAlignment flag is false. 1979 // 2) Record has artificial tag (Record[1]), 1980 // has no obsolete inlignedAt field (Record[9]). 1981 // In this case Record size will be 9, HasAlignment flag is false. 1982 // 3) Record has both artificial tag (Record[1]) and 1983 // obsolete inlignedAt field (Record[9]). 1984 // In this case Record size will be 10, HasAlignment flag is false. 1985 // 4) Record has neither artificial tag, nor inlignedAt field, but 1986 // HasAlignment flag is true and Record[8] contains alignment value. 1987 const uint64_t HasAlignmentFlag = 1 << 1; 1988 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1989 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1990 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1991 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1992 Record.push_back(N->getLine()); 1993 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1994 Record.push_back(N->getArg()); 1995 Record.push_back(N->getFlags()); 1996 Record.push_back(N->getAlignInBits()); 1997 1998 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1999 Record.clear(); 2000 } 2001 2002 void ModuleBitcodeWriter::writeDILabel( 2003 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2004 unsigned Abbrev) { 2005 Record.push_back((uint64_t)N->isDistinct()); 2006 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2007 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2008 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2009 Record.push_back(N->getLine()); 2010 2011 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2012 Record.clear(); 2013 } 2014 2015 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2016 SmallVectorImpl<uint64_t> &Record, 2017 unsigned Abbrev) { 2018 Record.reserve(N->getElements().size() + 1); 2019 const uint64_t Version = 3 << 1; 2020 Record.push_back((uint64_t)N->isDistinct() | Version); 2021 Record.append(N->elements_begin(), N->elements_end()); 2022 2023 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2024 Record.clear(); 2025 } 2026 2027 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2028 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2029 unsigned Abbrev) { 2030 Record.push_back(N->isDistinct()); 2031 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2032 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2033 2034 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2035 Record.clear(); 2036 } 2037 2038 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2039 SmallVectorImpl<uint64_t> &Record, 2040 unsigned Abbrev) { 2041 Record.push_back(N->isDistinct()); 2042 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2043 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2044 Record.push_back(N->getLine()); 2045 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2046 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2047 Record.push_back(N->getAttributes()); 2048 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2049 2050 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2051 Record.clear(); 2052 } 2053 2054 void ModuleBitcodeWriter::writeDIImportedEntity( 2055 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2056 unsigned Abbrev) { 2057 Record.push_back(N->isDistinct()); 2058 Record.push_back(N->getTag()); 2059 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2060 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2061 Record.push_back(N->getLine()); 2062 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2063 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2064 2065 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2066 Record.clear(); 2067 } 2068 2069 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2070 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2071 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2074 return Stream.EmitAbbrev(std::move(Abbv)); 2075 } 2076 2077 void ModuleBitcodeWriter::writeNamedMetadata( 2078 SmallVectorImpl<uint64_t> &Record) { 2079 if (M.named_metadata_empty()) 2080 return; 2081 2082 unsigned Abbrev = createNamedMetadataAbbrev(); 2083 for (const NamedMDNode &NMD : M.named_metadata()) { 2084 // Write name. 2085 StringRef Str = NMD.getName(); 2086 Record.append(Str.bytes_begin(), Str.bytes_end()); 2087 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2088 Record.clear(); 2089 2090 // Write named metadata operands. 2091 for (const MDNode *N : NMD.operands()) 2092 Record.push_back(VE.getMetadataID(N)); 2093 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2094 Record.clear(); 2095 } 2096 } 2097 2098 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2099 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2100 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2104 return Stream.EmitAbbrev(std::move(Abbv)); 2105 } 2106 2107 /// Write out a record for MDString. 2108 /// 2109 /// All the metadata strings in a metadata block are emitted in a single 2110 /// record. The sizes and strings themselves are shoved into a blob. 2111 void ModuleBitcodeWriter::writeMetadataStrings( 2112 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2113 if (Strings.empty()) 2114 return; 2115 2116 // Start the record with the number of strings. 2117 Record.push_back(bitc::METADATA_STRINGS); 2118 Record.push_back(Strings.size()); 2119 2120 // Emit the sizes of the strings in the blob. 2121 SmallString<256> Blob; 2122 { 2123 BitstreamWriter W(Blob); 2124 for (const Metadata *MD : Strings) 2125 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2126 W.FlushToWord(); 2127 } 2128 2129 // Add the offset to the strings to the record. 2130 Record.push_back(Blob.size()); 2131 2132 // Add the strings to the blob. 2133 for (const Metadata *MD : Strings) 2134 Blob.append(cast<MDString>(MD)->getString()); 2135 2136 // Emit the final record. 2137 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2138 Record.clear(); 2139 } 2140 2141 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2142 enum MetadataAbbrev : unsigned { 2143 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2144 #include "llvm/IR/Metadata.def" 2145 LastPlusOne 2146 }; 2147 2148 void ModuleBitcodeWriter::writeMetadataRecords( 2149 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2150 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2151 if (MDs.empty()) 2152 return; 2153 2154 // Initialize MDNode abbreviations. 2155 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2156 #include "llvm/IR/Metadata.def" 2157 2158 for (const Metadata *MD : MDs) { 2159 if (IndexPos) 2160 IndexPos->push_back(Stream.GetCurrentBitNo()); 2161 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2162 assert(N->isResolved() && "Expected forward references to be resolved"); 2163 2164 switch (N->getMetadataID()) { 2165 default: 2166 llvm_unreachable("Invalid MDNode subclass"); 2167 #define HANDLE_MDNODE_LEAF(CLASS) \ 2168 case Metadata::CLASS##Kind: \ 2169 if (MDAbbrevs) \ 2170 write##CLASS(cast<CLASS>(N), Record, \ 2171 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2172 else \ 2173 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2174 continue; 2175 #include "llvm/IR/Metadata.def" 2176 } 2177 } 2178 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2179 } 2180 } 2181 2182 void ModuleBitcodeWriter::writeModuleMetadata() { 2183 if (!VE.hasMDs() && M.named_metadata_empty()) 2184 return; 2185 2186 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2187 SmallVector<uint64_t, 64> Record; 2188 2189 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2190 // block and load any metadata. 2191 std::vector<unsigned> MDAbbrevs; 2192 2193 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2194 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2195 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2196 createGenericDINodeAbbrev(); 2197 2198 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2199 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2202 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2203 2204 Abbv = std::make_shared<BitCodeAbbrev>(); 2205 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2208 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2209 2210 // Emit MDStrings together upfront. 2211 writeMetadataStrings(VE.getMDStrings(), Record); 2212 2213 // We only emit an index for the metadata record if we have more than a given 2214 // (naive) threshold of metadatas, otherwise it is not worth it. 2215 if (VE.getNonMDStrings().size() > IndexThreshold) { 2216 // Write a placeholder value in for the offset of the metadata index, 2217 // which is written after the records, so that it can include 2218 // the offset of each entry. The placeholder offset will be 2219 // updated after all records are emitted. 2220 uint64_t Vals[] = {0, 0}; 2221 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2222 } 2223 2224 // Compute and save the bit offset to the current position, which will be 2225 // patched when we emit the index later. We can simply subtract the 64-bit 2226 // fixed size from the current bit number to get the location to backpatch. 2227 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2228 2229 // This index will contain the bitpos for each individual record. 2230 std::vector<uint64_t> IndexPos; 2231 IndexPos.reserve(VE.getNonMDStrings().size()); 2232 2233 // Write all the records 2234 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2235 2236 if (VE.getNonMDStrings().size() > IndexThreshold) { 2237 // Now that we have emitted all the records we will emit the index. But 2238 // first 2239 // backpatch the forward reference so that the reader can skip the records 2240 // efficiently. 2241 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2242 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2243 2244 // Delta encode the index. 2245 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2246 for (auto &Elt : IndexPos) { 2247 auto EltDelta = Elt - PreviousValue; 2248 PreviousValue = Elt; 2249 Elt = EltDelta; 2250 } 2251 // Emit the index record. 2252 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2253 IndexPos.clear(); 2254 } 2255 2256 // Write the named metadata now. 2257 writeNamedMetadata(Record); 2258 2259 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2260 SmallVector<uint64_t, 4> Record; 2261 Record.push_back(VE.getValueID(&GO)); 2262 pushGlobalMetadataAttachment(Record, GO); 2263 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2264 }; 2265 for (const Function &F : M) 2266 if (F.isDeclaration() && F.hasMetadata()) 2267 AddDeclAttachedMetadata(F); 2268 // FIXME: Only store metadata for declarations here, and move data for global 2269 // variable definitions to a separate block (PR28134). 2270 for (const GlobalVariable &GV : M.globals()) 2271 if (GV.hasMetadata()) 2272 AddDeclAttachedMetadata(GV); 2273 2274 Stream.ExitBlock(); 2275 } 2276 2277 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2278 if (!VE.hasMDs()) 2279 return; 2280 2281 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2282 SmallVector<uint64_t, 64> Record; 2283 writeMetadataStrings(VE.getMDStrings(), Record); 2284 writeMetadataRecords(VE.getNonMDStrings(), Record); 2285 Stream.ExitBlock(); 2286 } 2287 2288 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2289 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2290 // [n x [id, mdnode]] 2291 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2292 GO.getAllMetadata(MDs); 2293 for (const auto &I : MDs) { 2294 Record.push_back(I.first); 2295 Record.push_back(VE.getMetadataID(I.second)); 2296 } 2297 } 2298 2299 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2300 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2301 2302 SmallVector<uint64_t, 64> Record; 2303 2304 if (F.hasMetadata()) { 2305 pushGlobalMetadataAttachment(Record, F); 2306 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2307 Record.clear(); 2308 } 2309 2310 // Write metadata attachments 2311 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2312 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2313 for (const BasicBlock &BB : F) 2314 for (const Instruction &I : BB) { 2315 MDs.clear(); 2316 I.getAllMetadataOtherThanDebugLoc(MDs); 2317 2318 // If no metadata, ignore instruction. 2319 if (MDs.empty()) continue; 2320 2321 Record.push_back(VE.getInstructionID(&I)); 2322 2323 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2324 Record.push_back(MDs[i].first); 2325 Record.push_back(VE.getMetadataID(MDs[i].second)); 2326 } 2327 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2328 Record.clear(); 2329 } 2330 2331 Stream.ExitBlock(); 2332 } 2333 2334 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2335 SmallVector<uint64_t, 64> Record; 2336 2337 // Write metadata kinds 2338 // METADATA_KIND - [n x [id, name]] 2339 SmallVector<StringRef, 8> Names; 2340 M.getMDKindNames(Names); 2341 2342 if (Names.empty()) return; 2343 2344 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2345 2346 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2347 Record.push_back(MDKindID); 2348 StringRef KName = Names[MDKindID]; 2349 Record.append(KName.begin(), KName.end()); 2350 2351 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2352 Record.clear(); 2353 } 2354 2355 Stream.ExitBlock(); 2356 } 2357 2358 void ModuleBitcodeWriter::writeOperandBundleTags() { 2359 // Write metadata kinds 2360 // 2361 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2362 // 2363 // OPERAND_BUNDLE_TAG - [strchr x N] 2364 2365 SmallVector<StringRef, 8> Tags; 2366 M.getOperandBundleTags(Tags); 2367 2368 if (Tags.empty()) 2369 return; 2370 2371 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2372 2373 SmallVector<uint64_t, 64> Record; 2374 2375 for (auto Tag : Tags) { 2376 Record.append(Tag.begin(), Tag.end()); 2377 2378 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2379 Record.clear(); 2380 } 2381 2382 Stream.ExitBlock(); 2383 } 2384 2385 void ModuleBitcodeWriter::writeSyncScopeNames() { 2386 SmallVector<StringRef, 8> SSNs; 2387 M.getContext().getSyncScopeNames(SSNs); 2388 if (SSNs.empty()) 2389 return; 2390 2391 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2392 2393 SmallVector<uint64_t, 64> Record; 2394 for (auto SSN : SSNs) { 2395 Record.append(SSN.begin(), SSN.end()); 2396 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2397 Record.clear(); 2398 } 2399 2400 Stream.ExitBlock(); 2401 } 2402 2403 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2404 bool isGlobal) { 2405 if (FirstVal == LastVal) return; 2406 2407 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2408 2409 unsigned AggregateAbbrev = 0; 2410 unsigned String8Abbrev = 0; 2411 unsigned CString7Abbrev = 0; 2412 unsigned CString6Abbrev = 0; 2413 // If this is a constant pool for the module, emit module-specific abbrevs. 2414 if (isGlobal) { 2415 // Abbrev for CST_CODE_AGGREGATE. 2416 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2417 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2420 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2421 2422 // Abbrev for CST_CODE_STRING. 2423 Abbv = std::make_shared<BitCodeAbbrev>(); 2424 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2427 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2428 // Abbrev for CST_CODE_CSTRING. 2429 Abbv = std::make_shared<BitCodeAbbrev>(); 2430 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2433 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2434 // Abbrev for CST_CODE_CSTRING. 2435 Abbv = std::make_shared<BitCodeAbbrev>(); 2436 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2439 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2440 } 2441 2442 SmallVector<uint64_t, 64> Record; 2443 2444 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2445 Type *LastTy = nullptr; 2446 for (unsigned i = FirstVal; i != LastVal; ++i) { 2447 const Value *V = Vals[i].first; 2448 // If we need to switch types, do so now. 2449 if (V->getType() != LastTy) { 2450 LastTy = V->getType(); 2451 Record.push_back(VE.getTypeID(LastTy)); 2452 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2453 CONSTANTS_SETTYPE_ABBREV); 2454 Record.clear(); 2455 } 2456 2457 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2458 Record.push_back( 2459 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2460 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2461 2462 // Add the asm string. 2463 const std::string &AsmStr = IA->getAsmString(); 2464 Record.push_back(AsmStr.size()); 2465 Record.append(AsmStr.begin(), AsmStr.end()); 2466 2467 // Add the constraint string. 2468 const std::string &ConstraintStr = IA->getConstraintString(); 2469 Record.push_back(ConstraintStr.size()); 2470 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2471 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2472 Record.clear(); 2473 continue; 2474 } 2475 const Constant *C = cast<Constant>(V); 2476 unsigned Code = -1U; 2477 unsigned AbbrevToUse = 0; 2478 if (C->isNullValue()) { 2479 Code = bitc::CST_CODE_NULL; 2480 } else if (isa<PoisonValue>(C)) { 2481 Code = bitc::CST_CODE_POISON; 2482 } else if (isa<UndefValue>(C)) { 2483 Code = bitc::CST_CODE_UNDEF; 2484 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2485 if (IV->getBitWidth() <= 64) { 2486 uint64_t V = IV->getSExtValue(); 2487 emitSignedInt64(Record, V); 2488 Code = bitc::CST_CODE_INTEGER; 2489 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2490 } else { // Wide integers, > 64 bits in size. 2491 emitWideAPInt(Record, IV->getValue()); 2492 Code = bitc::CST_CODE_WIDE_INTEGER; 2493 } 2494 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2495 Code = bitc::CST_CODE_FLOAT; 2496 Type *Ty = CFP->getType(); 2497 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2498 Ty->isDoubleTy()) { 2499 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2500 } else if (Ty->isX86_FP80Ty()) { 2501 // api needed to prevent premature destruction 2502 // bits are not in the same order as a normal i80 APInt, compensate. 2503 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2504 const uint64_t *p = api.getRawData(); 2505 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2506 Record.push_back(p[0] & 0xffffLL); 2507 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2508 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2509 const uint64_t *p = api.getRawData(); 2510 Record.push_back(p[0]); 2511 Record.push_back(p[1]); 2512 } else { 2513 assert(0 && "Unknown FP type!"); 2514 } 2515 } else if (isa<ConstantDataSequential>(C) && 2516 cast<ConstantDataSequential>(C)->isString()) { 2517 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2518 // Emit constant strings specially. 2519 unsigned NumElts = Str->getNumElements(); 2520 // If this is a null-terminated string, use the denser CSTRING encoding. 2521 if (Str->isCString()) { 2522 Code = bitc::CST_CODE_CSTRING; 2523 --NumElts; // Don't encode the null, which isn't allowed by char6. 2524 } else { 2525 Code = bitc::CST_CODE_STRING; 2526 AbbrevToUse = String8Abbrev; 2527 } 2528 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2529 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2530 for (unsigned i = 0; i != NumElts; ++i) { 2531 unsigned char V = Str->getElementAsInteger(i); 2532 Record.push_back(V); 2533 isCStr7 &= (V & 128) == 0; 2534 if (isCStrChar6) 2535 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2536 } 2537 2538 if (isCStrChar6) 2539 AbbrevToUse = CString6Abbrev; 2540 else if (isCStr7) 2541 AbbrevToUse = CString7Abbrev; 2542 } else if (const ConstantDataSequential *CDS = 2543 dyn_cast<ConstantDataSequential>(C)) { 2544 Code = bitc::CST_CODE_DATA; 2545 Type *EltTy = CDS->getElementType(); 2546 if (isa<IntegerType>(EltTy)) { 2547 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2548 Record.push_back(CDS->getElementAsInteger(i)); 2549 } else { 2550 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2551 Record.push_back( 2552 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2553 } 2554 } else if (isa<ConstantAggregate>(C)) { 2555 Code = bitc::CST_CODE_AGGREGATE; 2556 for (const Value *Op : C->operands()) 2557 Record.push_back(VE.getValueID(Op)); 2558 AbbrevToUse = AggregateAbbrev; 2559 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2560 switch (CE->getOpcode()) { 2561 default: 2562 if (Instruction::isCast(CE->getOpcode())) { 2563 Code = bitc::CST_CODE_CE_CAST; 2564 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2565 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2566 Record.push_back(VE.getValueID(C->getOperand(0))); 2567 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2568 } else { 2569 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2570 Code = bitc::CST_CODE_CE_BINOP; 2571 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2572 Record.push_back(VE.getValueID(C->getOperand(0))); 2573 Record.push_back(VE.getValueID(C->getOperand(1))); 2574 uint64_t Flags = getOptimizationFlags(CE); 2575 if (Flags != 0) 2576 Record.push_back(Flags); 2577 } 2578 break; 2579 case Instruction::FNeg: { 2580 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2581 Code = bitc::CST_CODE_CE_UNOP; 2582 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2583 Record.push_back(VE.getValueID(C->getOperand(0))); 2584 uint64_t Flags = getOptimizationFlags(CE); 2585 if (Flags != 0) 2586 Record.push_back(Flags); 2587 break; 2588 } 2589 case Instruction::GetElementPtr: { 2590 Code = bitc::CST_CODE_CE_GEP; 2591 const auto *GO = cast<GEPOperator>(C); 2592 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2593 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2594 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2595 Record.push_back((*Idx << 1) | GO->isInBounds()); 2596 } else if (GO->isInBounds()) 2597 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2598 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2599 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2600 Record.push_back(VE.getValueID(C->getOperand(i))); 2601 } 2602 break; 2603 } 2604 case Instruction::Select: 2605 Code = bitc::CST_CODE_CE_SELECT; 2606 Record.push_back(VE.getValueID(C->getOperand(0))); 2607 Record.push_back(VE.getValueID(C->getOperand(1))); 2608 Record.push_back(VE.getValueID(C->getOperand(2))); 2609 break; 2610 case Instruction::ExtractElement: 2611 Code = bitc::CST_CODE_CE_EXTRACTELT; 2612 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2613 Record.push_back(VE.getValueID(C->getOperand(0))); 2614 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2615 Record.push_back(VE.getValueID(C->getOperand(1))); 2616 break; 2617 case Instruction::InsertElement: 2618 Code = bitc::CST_CODE_CE_INSERTELT; 2619 Record.push_back(VE.getValueID(C->getOperand(0))); 2620 Record.push_back(VE.getValueID(C->getOperand(1))); 2621 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2622 Record.push_back(VE.getValueID(C->getOperand(2))); 2623 break; 2624 case Instruction::ShuffleVector: 2625 // If the return type and argument types are the same, this is a 2626 // standard shufflevector instruction. If the types are different, 2627 // then the shuffle is widening or truncating the input vectors, and 2628 // the argument type must also be encoded. 2629 if (C->getType() == C->getOperand(0)->getType()) { 2630 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2631 } else { 2632 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2633 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2634 } 2635 Record.push_back(VE.getValueID(C->getOperand(0))); 2636 Record.push_back(VE.getValueID(C->getOperand(1))); 2637 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2638 break; 2639 case Instruction::ICmp: 2640 case Instruction::FCmp: 2641 Code = bitc::CST_CODE_CE_CMP; 2642 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2643 Record.push_back(VE.getValueID(C->getOperand(0))); 2644 Record.push_back(VE.getValueID(C->getOperand(1))); 2645 Record.push_back(CE->getPredicate()); 2646 break; 2647 } 2648 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2649 Code = bitc::CST_CODE_BLOCKADDRESS; 2650 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2651 Record.push_back(VE.getValueID(BA->getFunction())); 2652 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2653 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2654 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2655 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2656 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2657 } else { 2658 #ifndef NDEBUG 2659 C->dump(); 2660 #endif 2661 llvm_unreachable("Unknown constant!"); 2662 } 2663 Stream.EmitRecord(Code, Record, AbbrevToUse); 2664 Record.clear(); 2665 } 2666 2667 Stream.ExitBlock(); 2668 } 2669 2670 void ModuleBitcodeWriter::writeModuleConstants() { 2671 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2672 2673 // Find the first constant to emit, which is the first non-globalvalue value. 2674 // We know globalvalues have been emitted by WriteModuleInfo. 2675 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2676 if (!isa<GlobalValue>(Vals[i].first)) { 2677 writeConstants(i, Vals.size(), true); 2678 return; 2679 } 2680 } 2681 } 2682 2683 /// pushValueAndType - The file has to encode both the value and type id for 2684 /// many values, because we need to know what type to create for forward 2685 /// references. However, most operands are not forward references, so this type 2686 /// field is not needed. 2687 /// 2688 /// This function adds V's value ID to Vals. If the value ID is higher than the 2689 /// instruction ID, then it is a forward reference, and it also includes the 2690 /// type ID. The value ID that is written is encoded relative to the InstID. 2691 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2692 SmallVectorImpl<unsigned> &Vals) { 2693 unsigned ValID = VE.getValueID(V); 2694 // Make encoding relative to the InstID. 2695 Vals.push_back(InstID - ValID); 2696 if (ValID >= InstID) { 2697 Vals.push_back(VE.getTypeID(V->getType())); 2698 return true; 2699 } 2700 return false; 2701 } 2702 2703 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2704 unsigned InstID) { 2705 SmallVector<unsigned, 64> Record; 2706 LLVMContext &C = CS.getContext(); 2707 2708 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2709 const auto &Bundle = CS.getOperandBundleAt(i); 2710 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2711 2712 for (auto &Input : Bundle.Inputs) 2713 pushValueAndType(Input, InstID, Record); 2714 2715 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2716 Record.clear(); 2717 } 2718 } 2719 2720 /// pushValue - Like pushValueAndType, but where the type of the value is 2721 /// omitted (perhaps it was already encoded in an earlier operand). 2722 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2723 SmallVectorImpl<unsigned> &Vals) { 2724 unsigned ValID = VE.getValueID(V); 2725 Vals.push_back(InstID - ValID); 2726 } 2727 2728 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2729 SmallVectorImpl<uint64_t> &Vals) { 2730 unsigned ValID = VE.getValueID(V); 2731 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2732 emitSignedInt64(Vals, diff); 2733 } 2734 2735 /// WriteInstruction - Emit an instruction to the specified stream. 2736 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2737 unsigned InstID, 2738 SmallVectorImpl<unsigned> &Vals) { 2739 unsigned Code = 0; 2740 unsigned AbbrevToUse = 0; 2741 VE.setInstructionID(&I); 2742 switch (I.getOpcode()) { 2743 default: 2744 if (Instruction::isCast(I.getOpcode())) { 2745 Code = bitc::FUNC_CODE_INST_CAST; 2746 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2747 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2748 Vals.push_back(VE.getTypeID(I.getType())); 2749 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2750 } else { 2751 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2752 Code = bitc::FUNC_CODE_INST_BINOP; 2753 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2754 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2755 pushValue(I.getOperand(1), InstID, Vals); 2756 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2757 uint64_t Flags = getOptimizationFlags(&I); 2758 if (Flags != 0) { 2759 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2760 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2761 Vals.push_back(Flags); 2762 } 2763 } 2764 break; 2765 case Instruction::FNeg: { 2766 Code = bitc::FUNC_CODE_INST_UNOP; 2767 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2768 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2769 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2770 uint64_t Flags = getOptimizationFlags(&I); 2771 if (Flags != 0) { 2772 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2773 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2774 Vals.push_back(Flags); 2775 } 2776 break; 2777 } 2778 case Instruction::GetElementPtr: { 2779 Code = bitc::FUNC_CODE_INST_GEP; 2780 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2781 auto &GEPInst = cast<GetElementPtrInst>(I); 2782 Vals.push_back(GEPInst.isInBounds()); 2783 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2784 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2785 pushValueAndType(I.getOperand(i), InstID, Vals); 2786 break; 2787 } 2788 case Instruction::ExtractValue: { 2789 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2790 pushValueAndType(I.getOperand(0), InstID, Vals); 2791 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2792 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2793 break; 2794 } 2795 case Instruction::InsertValue: { 2796 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2797 pushValueAndType(I.getOperand(0), InstID, Vals); 2798 pushValueAndType(I.getOperand(1), InstID, Vals); 2799 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2800 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2801 break; 2802 } 2803 case Instruction::Select: { 2804 Code = bitc::FUNC_CODE_INST_VSELECT; 2805 pushValueAndType(I.getOperand(1), InstID, Vals); 2806 pushValue(I.getOperand(2), InstID, Vals); 2807 pushValueAndType(I.getOperand(0), InstID, Vals); 2808 uint64_t Flags = getOptimizationFlags(&I); 2809 if (Flags != 0) 2810 Vals.push_back(Flags); 2811 break; 2812 } 2813 case Instruction::ExtractElement: 2814 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2815 pushValueAndType(I.getOperand(0), InstID, Vals); 2816 pushValueAndType(I.getOperand(1), InstID, Vals); 2817 break; 2818 case Instruction::InsertElement: 2819 Code = bitc::FUNC_CODE_INST_INSERTELT; 2820 pushValueAndType(I.getOperand(0), InstID, Vals); 2821 pushValue(I.getOperand(1), InstID, Vals); 2822 pushValueAndType(I.getOperand(2), InstID, Vals); 2823 break; 2824 case Instruction::ShuffleVector: 2825 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2826 pushValueAndType(I.getOperand(0), InstID, Vals); 2827 pushValue(I.getOperand(1), InstID, Vals); 2828 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2829 Vals); 2830 break; 2831 case Instruction::ICmp: 2832 case Instruction::FCmp: { 2833 // compare returning Int1Ty or vector of Int1Ty 2834 Code = bitc::FUNC_CODE_INST_CMP2; 2835 pushValueAndType(I.getOperand(0), InstID, Vals); 2836 pushValue(I.getOperand(1), InstID, Vals); 2837 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2838 uint64_t Flags = getOptimizationFlags(&I); 2839 if (Flags != 0) 2840 Vals.push_back(Flags); 2841 break; 2842 } 2843 2844 case Instruction::Ret: 2845 { 2846 Code = bitc::FUNC_CODE_INST_RET; 2847 unsigned NumOperands = I.getNumOperands(); 2848 if (NumOperands == 0) 2849 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2850 else if (NumOperands == 1) { 2851 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2852 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2853 } else { 2854 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2855 pushValueAndType(I.getOperand(i), InstID, Vals); 2856 } 2857 } 2858 break; 2859 case Instruction::Br: 2860 { 2861 Code = bitc::FUNC_CODE_INST_BR; 2862 const BranchInst &II = cast<BranchInst>(I); 2863 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2864 if (II.isConditional()) { 2865 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2866 pushValue(II.getCondition(), InstID, Vals); 2867 } 2868 } 2869 break; 2870 case Instruction::Switch: 2871 { 2872 Code = bitc::FUNC_CODE_INST_SWITCH; 2873 const SwitchInst &SI = cast<SwitchInst>(I); 2874 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2875 pushValue(SI.getCondition(), InstID, Vals); 2876 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2877 for (auto Case : SI.cases()) { 2878 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2879 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2880 } 2881 } 2882 break; 2883 case Instruction::IndirectBr: 2884 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2885 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2886 // Encode the address operand as relative, but not the basic blocks. 2887 pushValue(I.getOperand(0), InstID, Vals); 2888 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2889 Vals.push_back(VE.getValueID(I.getOperand(i))); 2890 break; 2891 2892 case Instruction::Invoke: { 2893 const InvokeInst *II = cast<InvokeInst>(&I); 2894 const Value *Callee = II->getCalledOperand(); 2895 FunctionType *FTy = II->getFunctionType(); 2896 2897 if (II->hasOperandBundles()) 2898 writeOperandBundles(*II, InstID); 2899 2900 Code = bitc::FUNC_CODE_INST_INVOKE; 2901 2902 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2903 Vals.push_back(II->getCallingConv() | 1 << 13); 2904 Vals.push_back(VE.getValueID(II->getNormalDest())); 2905 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2906 Vals.push_back(VE.getTypeID(FTy)); 2907 pushValueAndType(Callee, InstID, Vals); 2908 2909 // Emit value #'s for the fixed parameters. 2910 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2911 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2912 2913 // Emit type/value pairs for varargs params. 2914 if (FTy->isVarArg()) { 2915 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2916 i != e; ++i) 2917 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2918 } 2919 break; 2920 } 2921 case Instruction::Resume: 2922 Code = bitc::FUNC_CODE_INST_RESUME; 2923 pushValueAndType(I.getOperand(0), InstID, Vals); 2924 break; 2925 case Instruction::CleanupRet: { 2926 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2927 const auto &CRI = cast<CleanupReturnInst>(I); 2928 pushValue(CRI.getCleanupPad(), InstID, Vals); 2929 if (CRI.hasUnwindDest()) 2930 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2931 break; 2932 } 2933 case Instruction::CatchRet: { 2934 Code = bitc::FUNC_CODE_INST_CATCHRET; 2935 const auto &CRI = cast<CatchReturnInst>(I); 2936 pushValue(CRI.getCatchPad(), InstID, Vals); 2937 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2938 break; 2939 } 2940 case Instruction::CleanupPad: 2941 case Instruction::CatchPad: { 2942 const auto &FuncletPad = cast<FuncletPadInst>(I); 2943 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2944 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2945 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2946 2947 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2948 Vals.push_back(NumArgOperands); 2949 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2950 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2951 break; 2952 } 2953 case Instruction::CatchSwitch: { 2954 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2955 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2956 2957 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2958 2959 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2960 Vals.push_back(NumHandlers); 2961 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2962 Vals.push_back(VE.getValueID(CatchPadBB)); 2963 2964 if (CatchSwitch.hasUnwindDest()) 2965 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2966 break; 2967 } 2968 case Instruction::CallBr: { 2969 const CallBrInst *CBI = cast<CallBrInst>(&I); 2970 const Value *Callee = CBI->getCalledOperand(); 2971 FunctionType *FTy = CBI->getFunctionType(); 2972 2973 if (CBI->hasOperandBundles()) 2974 writeOperandBundles(*CBI, InstID); 2975 2976 Code = bitc::FUNC_CODE_INST_CALLBR; 2977 2978 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2979 2980 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2981 1 << bitc::CALL_EXPLICIT_TYPE); 2982 2983 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2984 Vals.push_back(CBI->getNumIndirectDests()); 2985 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2986 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2987 2988 Vals.push_back(VE.getTypeID(FTy)); 2989 pushValueAndType(Callee, InstID, Vals); 2990 2991 // Emit value #'s for the fixed parameters. 2992 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2993 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2994 2995 // Emit type/value pairs for varargs params. 2996 if (FTy->isVarArg()) { 2997 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2998 i != e; ++i) 2999 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3000 } 3001 break; 3002 } 3003 case Instruction::Unreachable: 3004 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3005 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3006 break; 3007 3008 case Instruction::PHI: { 3009 const PHINode &PN = cast<PHINode>(I); 3010 Code = bitc::FUNC_CODE_INST_PHI; 3011 // With the newer instruction encoding, forward references could give 3012 // negative valued IDs. This is most common for PHIs, so we use 3013 // signed VBRs. 3014 SmallVector<uint64_t, 128> Vals64; 3015 Vals64.push_back(VE.getTypeID(PN.getType())); 3016 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3017 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3018 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3019 } 3020 3021 uint64_t Flags = getOptimizationFlags(&I); 3022 if (Flags != 0) 3023 Vals64.push_back(Flags); 3024 3025 // Emit a Vals64 vector and exit. 3026 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3027 Vals64.clear(); 3028 return; 3029 } 3030 3031 case Instruction::LandingPad: { 3032 const LandingPadInst &LP = cast<LandingPadInst>(I); 3033 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3034 Vals.push_back(VE.getTypeID(LP.getType())); 3035 Vals.push_back(LP.isCleanup()); 3036 Vals.push_back(LP.getNumClauses()); 3037 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3038 if (LP.isCatch(I)) 3039 Vals.push_back(LandingPadInst::Catch); 3040 else 3041 Vals.push_back(LandingPadInst::Filter); 3042 pushValueAndType(LP.getClause(I), InstID, Vals); 3043 } 3044 break; 3045 } 3046 3047 case Instruction::Alloca: { 3048 Code = bitc::FUNC_CODE_INST_ALLOCA; 3049 const AllocaInst &AI = cast<AllocaInst>(I); 3050 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3051 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3052 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3053 using APV = AllocaPackedValues; 3054 unsigned Record = 0; 3055 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 3056 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3057 Bitfield::set<APV::ExplicitType>(Record, true); 3058 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3059 Vals.push_back(Record); 3060 break; 3061 } 3062 3063 case Instruction::Load: 3064 if (cast<LoadInst>(I).isAtomic()) { 3065 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3066 pushValueAndType(I.getOperand(0), InstID, Vals); 3067 } else { 3068 Code = bitc::FUNC_CODE_INST_LOAD; 3069 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3070 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3071 } 3072 Vals.push_back(VE.getTypeID(I.getType())); 3073 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3074 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3075 if (cast<LoadInst>(I).isAtomic()) { 3076 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3077 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3078 } 3079 break; 3080 case Instruction::Store: 3081 if (cast<StoreInst>(I).isAtomic()) 3082 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3083 else 3084 Code = bitc::FUNC_CODE_INST_STORE; 3085 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3086 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3087 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3088 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3089 if (cast<StoreInst>(I).isAtomic()) { 3090 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3091 Vals.push_back( 3092 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3093 } 3094 break; 3095 case Instruction::AtomicCmpXchg: 3096 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3097 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3098 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3099 pushValue(I.getOperand(2), InstID, Vals); // newval. 3100 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3101 Vals.push_back( 3102 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3103 Vals.push_back( 3104 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3105 Vals.push_back( 3106 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3107 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3108 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3109 break; 3110 case Instruction::AtomicRMW: 3111 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3112 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3113 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3114 Vals.push_back( 3115 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3116 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3117 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3118 Vals.push_back( 3119 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3120 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3121 break; 3122 case Instruction::Fence: 3123 Code = bitc::FUNC_CODE_INST_FENCE; 3124 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3125 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3126 break; 3127 case Instruction::Call: { 3128 const CallInst &CI = cast<CallInst>(I); 3129 FunctionType *FTy = CI.getFunctionType(); 3130 3131 if (CI.hasOperandBundles()) 3132 writeOperandBundles(CI, InstID); 3133 3134 Code = bitc::FUNC_CODE_INST_CALL; 3135 3136 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3137 3138 unsigned Flags = getOptimizationFlags(&I); 3139 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3140 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3141 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3142 1 << bitc::CALL_EXPLICIT_TYPE | 3143 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3144 unsigned(Flags != 0) << bitc::CALL_FMF); 3145 if (Flags != 0) 3146 Vals.push_back(Flags); 3147 3148 Vals.push_back(VE.getTypeID(FTy)); 3149 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3150 3151 // Emit value #'s for the fixed parameters. 3152 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3153 // Check for labels (can happen with asm labels). 3154 if (FTy->getParamType(i)->isLabelTy()) 3155 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3156 else 3157 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3158 } 3159 3160 // Emit type/value pairs for varargs params. 3161 if (FTy->isVarArg()) { 3162 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3163 i != e; ++i) 3164 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3165 } 3166 break; 3167 } 3168 case Instruction::VAArg: 3169 Code = bitc::FUNC_CODE_INST_VAARG; 3170 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3171 pushValue(I.getOperand(0), InstID, Vals); // valist. 3172 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3173 break; 3174 case Instruction::Freeze: 3175 Code = bitc::FUNC_CODE_INST_FREEZE; 3176 pushValueAndType(I.getOperand(0), InstID, Vals); 3177 break; 3178 } 3179 3180 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3181 Vals.clear(); 3182 } 3183 3184 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3185 /// to allow clients to efficiently find the function body. 3186 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3187 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3188 // Get the offset of the VST we are writing, and backpatch it into 3189 // the VST forward declaration record. 3190 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3191 // The BitcodeStartBit was the stream offset of the identification block. 3192 VSTOffset -= bitcodeStartBit(); 3193 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3194 // Note that we add 1 here because the offset is relative to one word 3195 // before the start of the identification block, which was historically 3196 // always the start of the regular bitcode header. 3197 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3198 3199 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3200 3201 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3202 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3205 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3206 3207 for (const Function &F : M) { 3208 uint64_t Record[2]; 3209 3210 if (F.isDeclaration()) 3211 continue; 3212 3213 Record[0] = VE.getValueID(&F); 3214 3215 // Save the word offset of the function (from the start of the 3216 // actual bitcode written to the stream). 3217 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3218 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3219 // Note that we add 1 here because the offset is relative to one word 3220 // before the start of the identification block, which was historically 3221 // always the start of the regular bitcode header. 3222 Record[1] = BitcodeIndex / 32 + 1; 3223 3224 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3225 } 3226 3227 Stream.ExitBlock(); 3228 } 3229 3230 /// Emit names for arguments, instructions and basic blocks in a function. 3231 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3232 const ValueSymbolTable &VST) { 3233 if (VST.empty()) 3234 return; 3235 3236 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3237 3238 // FIXME: Set up the abbrev, we know how many values there are! 3239 // FIXME: We know if the type names can use 7-bit ascii. 3240 SmallVector<uint64_t, 64> NameVals; 3241 3242 for (const ValueName &Name : VST) { 3243 // Figure out the encoding to use for the name. 3244 StringEncoding Bits = getStringEncoding(Name.getKey()); 3245 3246 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3247 NameVals.push_back(VE.getValueID(Name.getValue())); 3248 3249 // VST_CODE_ENTRY: [valueid, namechar x N] 3250 // VST_CODE_BBENTRY: [bbid, namechar x N] 3251 unsigned Code; 3252 if (isa<BasicBlock>(Name.getValue())) { 3253 Code = bitc::VST_CODE_BBENTRY; 3254 if (Bits == SE_Char6) 3255 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3256 } else { 3257 Code = bitc::VST_CODE_ENTRY; 3258 if (Bits == SE_Char6) 3259 AbbrevToUse = VST_ENTRY_6_ABBREV; 3260 else if (Bits == SE_Fixed7) 3261 AbbrevToUse = VST_ENTRY_7_ABBREV; 3262 } 3263 3264 for (const auto P : Name.getKey()) 3265 NameVals.push_back((unsigned char)P); 3266 3267 // Emit the finished record. 3268 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3269 NameVals.clear(); 3270 } 3271 3272 Stream.ExitBlock(); 3273 } 3274 3275 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3276 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3277 unsigned Code; 3278 if (isa<BasicBlock>(Order.V)) 3279 Code = bitc::USELIST_CODE_BB; 3280 else 3281 Code = bitc::USELIST_CODE_DEFAULT; 3282 3283 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3284 Record.push_back(VE.getValueID(Order.V)); 3285 Stream.EmitRecord(Code, Record); 3286 } 3287 3288 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3289 assert(VE.shouldPreserveUseListOrder() && 3290 "Expected to be preserving use-list order"); 3291 3292 auto hasMore = [&]() { 3293 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3294 }; 3295 if (!hasMore()) 3296 // Nothing to do. 3297 return; 3298 3299 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3300 while (hasMore()) { 3301 writeUseList(std::move(VE.UseListOrders.back())); 3302 VE.UseListOrders.pop_back(); 3303 } 3304 Stream.ExitBlock(); 3305 } 3306 3307 /// Emit a function body to the module stream. 3308 void ModuleBitcodeWriter::writeFunction( 3309 const Function &F, 3310 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3311 // Save the bitcode index of the start of this function block for recording 3312 // in the VST. 3313 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3314 3315 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3316 VE.incorporateFunction(F); 3317 3318 SmallVector<unsigned, 64> Vals; 3319 3320 // Emit the number of basic blocks, so the reader can create them ahead of 3321 // time. 3322 Vals.push_back(VE.getBasicBlocks().size()); 3323 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3324 Vals.clear(); 3325 3326 // If there are function-local constants, emit them now. 3327 unsigned CstStart, CstEnd; 3328 VE.getFunctionConstantRange(CstStart, CstEnd); 3329 writeConstants(CstStart, CstEnd, false); 3330 3331 // If there is function-local metadata, emit it now. 3332 writeFunctionMetadata(F); 3333 3334 // Keep a running idea of what the instruction ID is. 3335 unsigned InstID = CstEnd; 3336 3337 bool NeedsMetadataAttachment = F.hasMetadata(); 3338 3339 DILocation *LastDL = nullptr; 3340 // Finally, emit all the instructions, in order. 3341 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3342 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3343 I != E; ++I) { 3344 writeInstruction(*I, InstID, Vals); 3345 3346 if (!I->getType()->isVoidTy()) 3347 ++InstID; 3348 3349 // If the instruction has metadata, write a metadata attachment later. 3350 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3351 3352 // If the instruction has a debug location, emit it. 3353 DILocation *DL = I->getDebugLoc(); 3354 if (!DL) 3355 continue; 3356 3357 if (DL == LastDL) { 3358 // Just repeat the same debug loc as last time. 3359 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3360 continue; 3361 } 3362 3363 Vals.push_back(DL->getLine()); 3364 Vals.push_back(DL->getColumn()); 3365 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3366 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3367 Vals.push_back(DL->isImplicitCode()); 3368 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3369 Vals.clear(); 3370 3371 LastDL = DL; 3372 } 3373 3374 // Emit names for all the instructions etc. 3375 if (auto *Symtab = F.getValueSymbolTable()) 3376 writeFunctionLevelValueSymbolTable(*Symtab); 3377 3378 if (NeedsMetadataAttachment) 3379 writeFunctionMetadataAttachment(F); 3380 if (VE.shouldPreserveUseListOrder()) 3381 writeUseListBlock(&F); 3382 VE.purgeFunction(); 3383 Stream.ExitBlock(); 3384 } 3385 3386 // Emit blockinfo, which defines the standard abbreviations etc. 3387 void ModuleBitcodeWriter::writeBlockInfo() { 3388 // We only want to emit block info records for blocks that have multiple 3389 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3390 // Other blocks can define their abbrevs inline. 3391 Stream.EnterBlockInfoBlock(); 3392 3393 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3394 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3399 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3400 VST_ENTRY_8_ABBREV) 3401 llvm_unreachable("Unexpected abbrev ordering!"); 3402 } 3403 3404 { // 7-bit fixed width VST_CODE_ENTRY strings. 3405 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3406 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3410 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3411 VST_ENTRY_7_ABBREV) 3412 llvm_unreachable("Unexpected abbrev ordering!"); 3413 } 3414 { // 6-bit char6 VST_CODE_ENTRY strings. 3415 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3416 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3420 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3421 VST_ENTRY_6_ABBREV) 3422 llvm_unreachable("Unexpected abbrev ordering!"); 3423 } 3424 { // 6-bit char6 VST_CODE_BBENTRY strings. 3425 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3426 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3430 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3431 VST_BBENTRY_6_ABBREV) 3432 llvm_unreachable("Unexpected abbrev ordering!"); 3433 } 3434 3435 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3436 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3437 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3439 VE.computeBitsRequiredForTypeIndicies())); 3440 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3441 CONSTANTS_SETTYPE_ABBREV) 3442 llvm_unreachable("Unexpected abbrev ordering!"); 3443 } 3444 3445 { // INTEGER abbrev for CONSTANTS_BLOCK. 3446 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3447 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3449 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3450 CONSTANTS_INTEGER_ABBREV) 3451 llvm_unreachable("Unexpected abbrev ordering!"); 3452 } 3453 3454 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3455 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3456 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3459 VE.computeBitsRequiredForTypeIndicies())); 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3461 3462 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3463 CONSTANTS_CE_CAST_Abbrev) 3464 llvm_unreachable("Unexpected abbrev ordering!"); 3465 } 3466 { // NULL abbrev for CONSTANTS_BLOCK. 3467 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3468 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3469 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3470 CONSTANTS_NULL_Abbrev) 3471 llvm_unreachable("Unexpected abbrev ordering!"); 3472 } 3473 3474 // FIXME: This should only use space for first class types! 3475 3476 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3477 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3478 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3481 VE.computeBitsRequiredForTypeIndicies())); 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3484 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3485 FUNCTION_INST_LOAD_ABBREV) 3486 llvm_unreachable("Unexpected abbrev ordering!"); 3487 } 3488 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3489 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3490 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3493 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3494 FUNCTION_INST_UNOP_ABBREV) 3495 llvm_unreachable("Unexpected abbrev ordering!"); 3496 } 3497 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3498 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3499 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3503 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3504 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3505 llvm_unreachable("Unexpected abbrev ordering!"); 3506 } 3507 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3508 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3509 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3513 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3514 FUNCTION_INST_BINOP_ABBREV) 3515 llvm_unreachable("Unexpected abbrev ordering!"); 3516 } 3517 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3518 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3519 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3524 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3525 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3526 llvm_unreachable("Unexpected abbrev ordering!"); 3527 } 3528 { // INST_CAST abbrev for FUNCTION_BLOCK. 3529 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3530 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3533 VE.computeBitsRequiredForTypeIndicies())); 3534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3535 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3536 FUNCTION_INST_CAST_ABBREV) 3537 llvm_unreachable("Unexpected abbrev ordering!"); 3538 } 3539 3540 { // INST_RET abbrev for FUNCTION_BLOCK. 3541 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3542 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3543 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3544 FUNCTION_INST_RET_VOID_ABBREV) 3545 llvm_unreachable("Unexpected abbrev ordering!"); 3546 } 3547 { // INST_RET abbrev for FUNCTION_BLOCK. 3548 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3549 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3551 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3552 FUNCTION_INST_RET_VAL_ABBREV) 3553 llvm_unreachable("Unexpected abbrev ordering!"); 3554 } 3555 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3556 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3557 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3558 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3559 FUNCTION_INST_UNREACHABLE_ABBREV) 3560 llvm_unreachable("Unexpected abbrev ordering!"); 3561 } 3562 { 3563 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3564 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3567 Log2_32_Ceil(VE.getTypes().size() + 1))); 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3570 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3571 FUNCTION_INST_GEP_ABBREV) 3572 llvm_unreachable("Unexpected abbrev ordering!"); 3573 } 3574 3575 Stream.ExitBlock(); 3576 } 3577 3578 /// Write the module path strings, currently only used when generating 3579 /// a combined index file. 3580 void IndexBitcodeWriter::writeModStrings() { 3581 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3582 3583 // TODO: See which abbrev sizes we actually need to emit 3584 3585 // 8-bit fixed-width MST_ENTRY strings. 3586 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3587 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3591 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3592 3593 // 7-bit fixed width MST_ENTRY strings. 3594 Abbv = std::make_shared<BitCodeAbbrev>(); 3595 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3599 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3600 3601 // 6-bit char6 MST_ENTRY strings. 3602 Abbv = std::make_shared<BitCodeAbbrev>(); 3603 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3607 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3608 3609 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3610 Abbv = std::make_shared<BitCodeAbbrev>(); 3611 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3617 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3618 3619 SmallVector<unsigned, 64> Vals; 3620 forEachModule( 3621 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3622 StringRef Key = MPSE.getKey(); 3623 const auto &Value = MPSE.getValue(); 3624 StringEncoding Bits = getStringEncoding(Key); 3625 unsigned AbbrevToUse = Abbrev8Bit; 3626 if (Bits == SE_Char6) 3627 AbbrevToUse = Abbrev6Bit; 3628 else if (Bits == SE_Fixed7) 3629 AbbrevToUse = Abbrev7Bit; 3630 3631 Vals.push_back(Value.first); 3632 Vals.append(Key.begin(), Key.end()); 3633 3634 // Emit the finished record. 3635 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3636 3637 // Emit an optional hash for the module now 3638 const auto &Hash = Value.second; 3639 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3640 Vals.assign(Hash.begin(), Hash.end()); 3641 // Emit the hash record. 3642 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3643 } 3644 3645 Vals.clear(); 3646 }); 3647 Stream.ExitBlock(); 3648 } 3649 3650 /// Write the function type metadata related records that need to appear before 3651 /// a function summary entry (whether per-module or combined). 3652 template <typename Fn> 3653 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3654 FunctionSummary *FS, 3655 Fn GetValueID) { 3656 if (!FS->type_tests().empty()) 3657 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3658 3659 SmallVector<uint64_t, 64> Record; 3660 3661 auto WriteVFuncIdVec = [&](uint64_t Ty, 3662 ArrayRef<FunctionSummary::VFuncId> VFs) { 3663 if (VFs.empty()) 3664 return; 3665 Record.clear(); 3666 for (auto &VF : VFs) { 3667 Record.push_back(VF.GUID); 3668 Record.push_back(VF.Offset); 3669 } 3670 Stream.EmitRecord(Ty, Record); 3671 }; 3672 3673 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3674 FS->type_test_assume_vcalls()); 3675 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3676 FS->type_checked_load_vcalls()); 3677 3678 auto WriteConstVCallVec = [&](uint64_t Ty, 3679 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3680 for (auto &VC : VCs) { 3681 Record.clear(); 3682 Record.push_back(VC.VFunc.GUID); 3683 Record.push_back(VC.VFunc.Offset); 3684 llvm::append_range(Record, VC.Args); 3685 Stream.EmitRecord(Ty, Record); 3686 } 3687 }; 3688 3689 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3690 FS->type_test_assume_const_vcalls()); 3691 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3692 FS->type_checked_load_const_vcalls()); 3693 3694 auto WriteRange = [&](ConstantRange Range) { 3695 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3696 assert(Range.getLower().getNumWords() == 1); 3697 assert(Range.getUpper().getNumWords() == 1); 3698 emitSignedInt64(Record, *Range.getLower().getRawData()); 3699 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3700 }; 3701 3702 if (!FS->paramAccesses().empty()) { 3703 Record.clear(); 3704 for (auto &Arg : FS->paramAccesses()) { 3705 size_t UndoSize = Record.size(); 3706 Record.push_back(Arg.ParamNo); 3707 WriteRange(Arg.Use); 3708 Record.push_back(Arg.Calls.size()); 3709 for (auto &Call : Arg.Calls) { 3710 Record.push_back(Call.ParamNo); 3711 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3712 if (!ValueID) { 3713 // If ValueID is unknown we can't drop just this call, we must drop 3714 // entire parameter. 3715 Record.resize(UndoSize); 3716 break; 3717 } 3718 Record.push_back(*ValueID); 3719 WriteRange(Call.Offsets); 3720 } 3721 } 3722 if (!Record.empty()) 3723 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3724 } 3725 } 3726 3727 /// Collect type IDs from type tests used by function. 3728 static void 3729 getReferencedTypeIds(FunctionSummary *FS, 3730 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3731 if (!FS->type_tests().empty()) 3732 for (auto &TT : FS->type_tests()) 3733 ReferencedTypeIds.insert(TT); 3734 3735 auto GetReferencedTypesFromVFuncIdVec = 3736 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3737 for (auto &VF : VFs) 3738 ReferencedTypeIds.insert(VF.GUID); 3739 }; 3740 3741 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3742 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3743 3744 auto GetReferencedTypesFromConstVCallVec = 3745 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3746 for (auto &VC : VCs) 3747 ReferencedTypeIds.insert(VC.VFunc.GUID); 3748 }; 3749 3750 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3751 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3752 } 3753 3754 static void writeWholeProgramDevirtResolutionByArg( 3755 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3756 const WholeProgramDevirtResolution::ByArg &ByArg) { 3757 NameVals.push_back(args.size()); 3758 llvm::append_range(NameVals, args); 3759 3760 NameVals.push_back(ByArg.TheKind); 3761 NameVals.push_back(ByArg.Info); 3762 NameVals.push_back(ByArg.Byte); 3763 NameVals.push_back(ByArg.Bit); 3764 } 3765 3766 static void writeWholeProgramDevirtResolution( 3767 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3768 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3769 NameVals.push_back(Id); 3770 3771 NameVals.push_back(Wpd.TheKind); 3772 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3773 NameVals.push_back(Wpd.SingleImplName.size()); 3774 3775 NameVals.push_back(Wpd.ResByArg.size()); 3776 for (auto &A : Wpd.ResByArg) 3777 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3778 } 3779 3780 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3781 StringTableBuilder &StrtabBuilder, 3782 const std::string &Id, 3783 const TypeIdSummary &Summary) { 3784 NameVals.push_back(StrtabBuilder.add(Id)); 3785 NameVals.push_back(Id.size()); 3786 3787 NameVals.push_back(Summary.TTRes.TheKind); 3788 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3789 NameVals.push_back(Summary.TTRes.AlignLog2); 3790 NameVals.push_back(Summary.TTRes.SizeM1); 3791 NameVals.push_back(Summary.TTRes.BitMask); 3792 NameVals.push_back(Summary.TTRes.InlineBits); 3793 3794 for (auto &W : Summary.WPDRes) 3795 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3796 W.second); 3797 } 3798 3799 static void writeTypeIdCompatibleVtableSummaryRecord( 3800 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3801 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3802 ValueEnumerator &VE) { 3803 NameVals.push_back(StrtabBuilder.add(Id)); 3804 NameVals.push_back(Id.size()); 3805 3806 for (auto &P : Summary) { 3807 NameVals.push_back(P.AddressPointOffset); 3808 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3809 } 3810 } 3811 3812 // Helper to emit a single function summary record. 3813 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3814 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3815 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3816 const Function &F) { 3817 NameVals.push_back(ValueID); 3818 3819 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3820 3821 writeFunctionTypeMetadataRecords( 3822 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3823 return {VE.getValueID(VI.getValue())}; 3824 }); 3825 3826 auto SpecialRefCnts = FS->specialRefCounts(); 3827 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3828 NameVals.push_back(FS->instCount()); 3829 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3830 NameVals.push_back(FS->refs().size()); 3831 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3832 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3833 3834 for (auto &RI : FS->refs()) 3835 NameVals.push_back(VE.getValueID(RI.getValue())); 3836 3837 bool HasProfileData = 3838 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3839 for (auto &ECI : FS->calls()) { 3840 NameVals.push_back(getValueId(ECI.first)); 3841 if (HasProfileData) 3842 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3843 else if (WriteRelBFToSummary) 3844 NameVals.push_back(ECI.second.RelBlockFreq); 3845 } 3846 3847 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3848 unsigned Code = 3849 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3850 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3851 : bitc::FS_PERMODULE)); 3852 3853 // Emit the finished record. 3854 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3855 NameVals.clear(); 3856 } 3857 3858 // Collect the global value references in the given variable's initializer, 3859 // and emit them in a summary record. 3860 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3861 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3862 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3863 auto VI = Index->getValueInfo(V.getGUID()); 3864 if (!VI || VI.getSummaryList().empty()) { 3865 // Only declarations should not have a summary (a declaration might however 3866 // have a summary if the def was in module level asm). 3867 assert(V.isDeclaration()); 3868 return; 3869 } 3870 auto *Summary = VI.getSummaryList()[0].get(); 3871 NameVals.push_back(VE.getValueID(&V)); 3872 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3873 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3874 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3875 3876 auto VTableFuncs = VS->vTableFuncs(); 3877 if (!VTableFuncs.empty()) 3878 NameVals.push_back(VS->refs().size()); 3879 3880 unsigned SizeBeforeRefs = NameVals.size(); 3881 for (auto &RI : VS->refs()) 3882 NameVals.push_back(VE.getValueID(RI.getValue())); 3883 // Sort the refs for determinism output, the vector returned by FS->refs() has 3884 // been initialized from a DenseSet. 3885 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3886 3887 if (VTableFuncs.empty()) 3888 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3889 FSModRefsAbbrev); 3890 else { 3891 // VTableFuncs pairs should already be sorted by offset. 3892 for (auto &P : VTableFuncs) { 3893 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3894 NameVals.push_back(P.VTableOffset); 3895 } 3896 3897 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3898 FSModVTableRefsAbbrev); 3899 } 3900 NameVals.clear(); 3901 } 3902 3903 /// Emit the per-module summary section alongside the rest of 3904 /// the module's bitcode. 3905 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3906 // By default we compile with ThinLTO if the module has a summary, but the 3907 // client can request full LTO with a module flag. 3908 bool IsThinLTO = true; 3909 if (auto *MD = 3910 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3911 IsThinLTO = MD->getZExtValue(); 3912 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3913 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3914 4); 3915 3916 Stream.EmitRecord( 3917 bitc::FS_VERSION, 3918 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3919 3920 // Write the index flags. 3921 uint64_t Flags = 0; 3922 // Bits 1-3 are set only in the combined index, skip them. 3923 if (Index->enableSplitLTOUnit()) 3924 Flags |= 0x8; 3925 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3926 3927 if (Index->begin() == Index->end()) { 3928 Stream.ExitBlock(); 3929 return; 3930 } 3931 3932 for (const auto &GVI : valueIds()) { 3933 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3934 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3935 } 3936 3937 // Abbrev for FS_PERMODULE_PROFILE. 3938 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3939 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3947 // numrefs x valueid, n x (valueid, hotness) 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3950 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3951 3952 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3953 Abbv = std::make_shared<BitCodeAbbrev>(); 3954 if (WriteRelBFToSummary) 3955 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3956 else 3957 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3965 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3968 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3969 3970 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3971 Abbv = std::make_shared<BitCodeAbbrev>(); 3972 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3977 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3978 3979 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3980 Abbv = std::make_shared<BitCodeAbbrev>(); 3981 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3985 // numrefs x valueid, n x (valueid , offset) 3986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3988 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3989 3990 // Abbrev for FS_ALIAS. 3991 Abbv = std::make_shared<BitCodeAbbrev>(); 3992 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3996 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3997 3998 // Abbrev for FS_TYPE_ID_METADATA 3999 Abbv = std::make_shared<BitCodeAbbrev>(); 4000 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4003 // n x (valueid , offset) 4004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4006 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4007 4008 SmallVector<uint64_t, 64> NameVals; 4009 // Iterate over the list of functions instead of the Index to 4010 // ensure the ordering is stable. 4011 for (const Function &F : M) { 4012 // Summary emission does not support anonymous functions, they have to 4013 // renamed using the anonymous function renaming pass. 4014 if (!F.hasName()) 4015 report_fatal_error("Unexpected anonymous function when writing summary"); 4016 4017 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4018 if (!VI || VI.getSummaryList().empty()) { 4019 // Only declarations should not have a summary (a declaration might 4020 // however have a summary if the def was in module level asm). 4021 assert(F.isDeclaration()); 4022 continue; 4023 } 4024 auto *Summary = VI.getSummaryList()[0].get(); 4025 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4026 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4027 } 4028 4029 // Capture references from GlobalVariable initializers, which are outside 4030 // of a function scope. 4031 for (const GlobalVariable &G : M.globals()) 4032 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4033 FSModVTableRefsAbbrev); 4034 4035 for (const GlobalAlias &A : M.aliases()) { 4036 auto *Aliasee = A.getBaseObject(); 4037 if (!Aliasee->hasName()) 4038 // Nameless function don't have an entry in the summary, skip it. 4039 continue; 4040 auto AliasId = VE.getValueID(&A); 4041 auto AliaseeId = VE.getValueID(Aliasee); 4042 NameVals.push_back(AliasId); 4043 auto *Summary = Index->getGlobalValueSummary(A); 4044 AliasSummary *AS = cast<AliasSummary>(Summary); 4045 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4046 NameVals.push_back(AliaseeId); 4047 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4048 NameVals.clear(); 4049 } 4050 4051 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4052 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4053 S.second, VE); 4054 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4055 TypeIdCompatibleVtableAbbrev); 4056 NameVals.clear(); 4057 } 4058 4059 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4060 ArrayRef<uint64_t>{Index->getBlockCount()}); 4061 4062 Stream.ExitBlock(); 4063 } 4064 4065 /// Emit the combined summary section into the combined index file. 4066 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4067 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4068 Stream.EmitRecord( 4069 bitc::FS_VERSION, 4070 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4071 4072 // Write the index flags. 4073 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4074 4075 for (const auto &GVI : valueIds()) { 4076 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4077 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4078 } 4079 4080 // Abbrev for FS_COMBINED. 4081 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4082 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4092 // numrefs x valueid, n x (valueid) 4093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4095 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4096 4097 // Abbrev for FS_COMBINED_PROFILE. 4098 Abbv = std::make_shared<BitCodeAbbrev>(); 4099 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4109 // numrefs x valueid, n x (valueid, hotness) 4110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4112 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4113 4114 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4115 Abbv = std::make_shared<BitCodeAbbrev>(); 4116 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4122 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4123 4124 // Abbrev for FS_COMBINED_ALIAS. 4125 Abbv = std::make_shared<BitCodeAbbrev>(); 4126 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4131 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4132 4133 // The aliases are emitted as a post-pass, and will point to the value 4134 // id of the aliasee. Save them in a vector for post-processing. 4135 SmallVector<AliasSummary *, 64> Aliases; 4136 4137 // Save the value id for each summary for alias emission. 4138 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4139 4140 SmallVector<uint64_t, 64> NameVals; 4141 4142 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4143 // with the type ids referenced by this index file. 4144 std::set<GlobalValue::GUID> ReferencedTypeIds; 4145 4146 // For local linkage, we also emit the original name separately 4147 // immediately after the record. 4148 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4149 if (!GlobalValue::isLocalLinkage(S.linkage())) 4150 return; 4151 NameVals.push_back(S.getOriginalName()); 4152 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4153 NameVals.clear(); 4154 }; 4155 4156 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4157 forEachSummary([&](GVInfo I, bool IsAliasee) { 4158 GlobalValueSummary *S = I.second; 4159 assert(S); 4160 DefOrUseGUIDs.insert(I.first); 4161 for (const ValueInfo &VI : S->refs()) 4162 DefOrUseGUIDs.insert(VI.getGUID()); 4163 4164 auto ValueId = getValueId(I.first); 4165 assert(ValueId); 4166 SummaryToValueIdMap[S] = *ValueId; 4167 4168 // If this is invoked for an aliasee, we want to record the above 4169 // mapping, but then not emit a summary entry (if the aliasee is 4170 // to be imported, we will invoke this separately with IsAliasee=false). 4171 if (IsAliasee) 4172 return; 4173 4174 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4175 // Will process aliases as a post-pass because the reader wants all 4176 // global to be loaded first. 4177 Aliases.push_back(AS); 4178 return; 4179 } 4180 4181 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4182 NameVals.push_back(*ValueId); 4183 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4184 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4185 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4186 for (auto &RI : VS->refs()) { 4187 auto RefValueId = getValueId(RI.getGUID()); 4188 if (!RefValueId) 4189 continue; 4190 NameVals.push_back(*RefValueId); 4191 } 4192 4193 // Emit the finished record. 4194 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4195 FSModRefsAbbrev); 4196 NameVals.clear(); 4197 MaybeEmitOriginalName(*S); 4198 return; 4199 } 4200 4201 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4202 GlobalValue::GUID GUID = VI.getGUID(); 4203 Optional<unsigned> CallValueId = getValueId(GUID); 4204 if (CallValueId) 4205 return CallValueId; 4206 // For SamplePGO, the indirect call targets for local functions will 4207 // have its original name annotated in profile. We try to find the 4208 // corresponding PGOFuncName as the GUID. 4209 GUID = Index.getGUIDFromOriginalID(GUID); 4210 if (!GUID) 4211 return None; 4212 CallValueId = getValueId(GUID); 4213 if (!CallValueId) 4214 return None; 4215 // The mapping from OriginalId to GUID may return a GUID 4216 // that corresponds to a static variable. Filter it out here. 4217 // This can happen when 4218 // 1) There is a call to a library function which does not have 4219 // a CallValidId; 4220 // 2) There is a static variable with the OriginalGUID identical 4221 // to the GUID of the library function in 1); 4222 // When this happens, the logic for SamplePGO kicks in and 4223 // the static variable in 2) will be found, which needs to be 4224 // filtered out. 4225 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4226 if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4227 return None; 4228 return CallValueId; 4229 }; 4230 4231 auto *FS = cast<FunctionSummary>(S); 4232 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4233 getReferencedTypeIds(FS, ReferencedTypeIds); 4234 4235 NameVals.push_back(*ValueId); 4236 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4237 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4238 NameVals.push_back(FS->instCount()); 4239 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4240 NameVals.push_back(FS->entryCount()); 4241 4242 // Fill in below 4243 NameVals.push_back(0); // numrefs 4244 NameVals.push_back(0); // rorefcnt 4245 NameVals.push_back(0); // worefcnt 4246 4247 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4248 for (auto &RI : FS->refs()) { 4249 auto RefValueId = getValueId(RI.getGUID()); 4250 if (!RefValueId) 4251 continue; 4252 NameVals.push_back(*RefValueId); 4253 if (RI.isReadOnly()) 4254 RORefCnt++; 4255 else if (RI.isWriteOnly()) 4256 WORefCnt++; 4257 Count++; 4258 } 4259 NameVals[6] = Count; 4260 NameVals[7] = RORefCnt; 4261 NameVals[8] = WORefCnt; 4262 4263 bool HasProfileData = false; 4264 for (auto &EI : FS->calls()) { 4265 HasProfileData |= 4266 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4267 if (HasProfileData) 4268 break; 4269 } 4270 4271 for (auto &EI : FS->calls()) { 4272 // If this GUID doesn't have a value id, it doesn't have a function 4273 // summary and we don't need to record any calls to it. 4274 Optional<unsigned> CallValueId = GetValueId(EI.first); 4275 if (!CallValueId) 4276 continue; 4277 NameVals.push_back(*CallValueId); 4278 if (HasProfileData) 4279 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4280 } 4281 4282 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4283 unsigned Code = 4284 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4285 4286 // Emit the finished record. 4287 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4288 NameVals.clear(); 4289 MaybeEmitOriginalName(*S); 4290 }); 4291 4292 for (auto *AS : Aliases) { 4293 auto AliasValueId = SummaryToValueIdMap[AS]; 4294 assert(AliasValueId); 4295 NameVals.push_back(AliasValueId); 4296 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4297 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4298 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4299 assert(AliaseeValueId); 4300 NameVals.push_back(AliaseeValueId); 4301 4302 // Emit the finished record. 4303 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4304 NameVals.clear(); 4305 MaybeEmitOriginalName(*AS); 4306 4307 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4308 getReferencedTypeIds(FS, ReferencedTypeIds); 4309 } 4310 4311 if (!Index.cfiFunctionDefs().empty()) { 4312 for (auto &S : Index.cfiFunctionDefs()) { 4313 if (DefOrUseGUIDs.count( 4314 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4315 NameVals.push_back(StrtabBuilder.add(S)); 4316 NameVals.push_back(S.size()); 4317 } 4318 } 4319 if (!NameVals.empty()) { 4320 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4321 NameVals.clear(); 4322 } 4323 } 4324 4325 if (!Index.cfiFunctionDecls().empty()) { 4326 for (auto &S : Index.cfiFunctionDecls()) { 4327 if (DefOrUseGUIDs.count( 4328 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4329 NameVals.push_back(StrtabBuilder.add(S)); 4330 NameVals.push_back(S.size()); 4331 } 4332 } 4333 if (!NameVals.empty()) { 4334 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4335 NameVals.clear(); 4336 } 4337 } 4338 4339 // Walk the GUIDs that were referenced, and write the 4340 // corresponding type id records. 4341 for (auto &T : ReferencedTypeIds) { 4342 auto TidIter = Index.typeIds().equal_range(T); 4343 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4344 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4345 It->second.second); 4346 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4347 NameVals.clear(); 4348 } 4349 } 4350 4351 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4352 ArrayRef<uint64_t>{Index.getBlockCount()}); 4353 4354 Stream.ExitBlock(); 4355 } 4356 4357 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4358 /// current llvm version, and a record for the epoch number. 4359 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4360 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4361 4362 // Write the "user readable" string identifying the bitcode producer 4363 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4364 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4367 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4368 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4369 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4370 4371 // Write the epoch version 4372 Abbv = std::make_shared<BitCodeAbbrev>(); 4373 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4375 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4376 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4377 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4378 Stream.ExitBlock(); 4379 } 4380 4381 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4382 // Emit the module's hash. 4383 // MODULE_CODE_HASH: [5*i32] 4384 if (GenerateHash) { 4385 uint32_t Vals[5]; 4386 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4387 Buffer.size() - BlockStartPos)); 4388 StringRef Hash = Hasher.result(); 4389 for (int Pos = 0; Pos < 20; Pos += 4) { 4390 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4391 } 4392 4393 // Emit the finished record. 4394 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4395 4396 if (ModHash) 4397 // Save the written hash value. 4398 llvm::copy(Vals, std::begin(*ModHash)); 4399 } 4400 } 4401 4402 void ModuleBitcodeWriter::write() { 4403 writeIdentificationBlock(Stream); 4404 4405 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4406 size_t BlockStartPos = Buffer.size(); 4407 4408 writeModuleVersion(); 4409 4410 // Emit blockinfo, which defines the standard abbreviations etc. 4411 writeBlockInfo(); 4412 4413 // Emit information describing all of the types in the module. 4414 writeTypeTable(); 4415 4416 // Emit information about attribute groups. 4417 writeAttributeGroupTable(); 4418 4419 // Emit information about parameter attributes. 4420 writeAttributeTable(); 4421 4422 writeComdats(); 4423 4424 // Emit top-level description of module, including target triple, inline asm, 4425 // descriptors for global variables, and function prototype info. 4426 writeModuleInfo(); 4427 4428 // Emit constants. 4429 writeModuleConstants(); 4430 4431 // Emit metadata kind names. 4432 writeModuleMetadataKinds(); 4433 4434 // Emit metadata. 4435 writeModuleMetadata(); 4436 4437 // Emit module-level use-lists. 4438 if (VE.shouldPreserveUseListOrder()) 4439 writeUseListBlock(nullptr); 4440 4441 writeOperandBundleTags(); 4442 writeSyncScopeNames(); 4443 4444 // Emit function bodies. 4445 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4446 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4447 if (!F->isDeclaration()) 4448 writeFunction(*F, FunctionToBitcodeIndex); 4449 4450 // Need to write after the above call to WriteFunction which populates 4451 // the summary information in the index. 4452 if (Index) 4453 writePerModuleGlobalValueSummary(); 4454 4455 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4456 4457 writeModuleHash(BlockStartPos); 4458 4459 Stream.ExitBlock(); 4460 } 4461 4462 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4463 uint32_t &Position) { 4464 support::endian::write32le(&Buffer[Position], Value); 4465 Position += 4; 4466 } 4467 4468 /// If generating a bc file on darwin, we have to emit a 4469 /// header and trailer to make it compatible with the system archiver. To do 4470 /// this we emit the following header, and then emit a trailer that pads the 4471 /// file out to be a multiple of 16 bytes. 4472 /// 4473 /// struct bc_header { 4474 /// uint32_t Magic; // 0x0B17C0DE 4475 /// uint32_t Version; // Version, currently always 0. 4476 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4477 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4478 /// uint32_t CPUType; // CPU specifier. 4479 /// ... potentially more later ... 4480 /// }; 4481 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4482 const Triple &TT) { 4483 unsigned CPUType = ~0U; 4484 4485 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4486 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4487 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4488 // specific constants here because they are implicitly part of the Darwin ABI. 4489 enum { 4490 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4491 DARWIN_CPU_TYPE_X86 = 7, 4492 DARWIN_CPU_TYPE_ARM = 12, 4493 DARWIN_CPU_TYPE_POWERPC = 18 4494 }; 4495 4496 Triple::ArchType Arch = TT.getArch(); 4497 if (Arch == Triple::x86_64) 4498 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4499 else if (Arch == Triple::x86) 4500 CPUType = DARWIN_CPU_TYPE_X86; 4501 else if (Arch == Triple::ppc) 4502 CPUType = DARWIN_CPU_TYPE_POWERPC; 4503 else if (Arch == Triple::ppc64) 4504 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4505 else if (Arch == Triple::arm || Arch == Triple::thumb) 4506 CPUType = DARWIN_CPU_TYPE_ARM; 4507 4508 // Traditional Bitcode starts after header. 4509 assert(Buffer.size() >= BWH_HeaderSize && 4510 "Expected header size to be reserved"); 4511 unsigned BCOffset = BWH_HeaderSize; 4512 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4513 4514 // Write the magic and version. 4515 unsigned Position = 0; 4516 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4517 writeInt32ToBuffer(0, Buffer, Position); // Version. 4518 writeInt32ToBuffer(BCOffset, Buffer, Position); 4519 writeInt32ToBuffer(BCSize, Buffer, Position); 4520 writeInt32ToBuffer(CPUType, Buffer, Position); 4521 4522 // If the file is not a multiple of 16 bytes, insert dummy padding. 4523 while (Buffer.size() & 15) 4524 Buffer.push_back(0); 4525 } 4526 4527 /// Helper to write the header common to all bitcode files. 4528 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4529 // Emit the file header. 4530 Stream.Emit((unsigned)'B', 8); 4531 Stream.Emit((unsigned)'C', 8); 4532 Stream.Emit(0x0, 4); 4533 Stream.Emit(0xC, 4); 4534 Stream.Emit(0xE, 4); 4535 Stream.Emit(0xD, 4); 4536 } 4537 4538 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4539 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4540 writeBitcodeHeader(*Stream); 4541 } 4542 4543 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4544 4545 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4546 Stream->EnterSubblock(Block, 3); 4547 4548 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4549 Abbv->Add(BitCodeAbbrevOp(Record)); 4550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4551 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4552 4553 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4554 4555 Stream->ExitBlock(); 4556 } 4557 4558 void BitcodeWriter::writeSymtab() { 4559 assert(!WroteStrtab && !WroteSymtab); 4560 4561 // If any module has module-level inline asm, we will require a registered asm 4562 // parser for the target so that we can create an accurate symbol table for 4563 // the module. 4564 for (Module *M : Mods) { 4565 if (M->getModuleInlineAsm().empty()) 4566 continue; 4567 4568 std::string Err; 4569 const Triple TT(M->getTargetTriple()); 4570 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4571 if (!T || !T->hasMCAsmParser()) 4572 return; 4573 } 4574 4575 WroteSymtab = true; 4576 SmallVector<char, 0> Symtab; 4577 // The irsymtab::build function may be unable to create a symbol table if the 4578 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4579 // table is not required for correctness, but we still want to be able to 4580 // write malformed modules to bitcode files, so swallow the error. 4581 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4582 consumeError(std::move(E)); 4583 return; 4584 } 4585 4586 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4587 {Symtab.data(), Symtab.size()}); 4588 } 4589 4590 void BitcodeWriter::writeStrtab() { 4591 assert(!WroteStrtab); 4592 4593 std::vector<char> Strtab; 4594 StrtabBuilder.finalizeInOrder(); 4595 Strtab.resize(StrtabBuilder.getSize()); 4596 StrtabBuilder.write((uint8_t *)Strtab.data()); 4597 4598 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4599 {Strtab.data(), Strtab.size()}); 4600 4601 WroteStrtab = true; 4602 } 4603 4604 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4605 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4606 WroteStrtab = true; 4607 } 4608 4609 void BitcodeWriter::writeModule(const Module &M, 4610 bool ShouldPreserveUseListOrder, 4611 const ModuleSummaryIndex *Index, 4612 bool GenerateHash, ModuleHash *ModHash) { 4613 assert(!WroteStrtab); 4614 4615 // The Mods vector is used by irsymtab::build, which requires non-const 4616 // Modules in case it needs to materialize metadata. But the bitcode writer 4617 // requires that the module is materialized, so we can cast to non-const here, 4618 // after checking that it is in fact materialized. 4619 assert(M.isMaterialized()); 4620 Mods.push_back(const_cast<Module *>(&M)); 4621 4622 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4623 ShouldPreserveUseListOrder, Index, 4624 GenerateHash, ModHash); 4625 ModuleWriter.write(); 4626 } 4627 4628 void BitcodeWriter::writeIndex( 4629 const ModuleSummaryIndex *Index, 4630 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4631 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4632 ModuleToSummariesForIndex); 4633 IndexWriter.write(); 4634 } 4635 4636 /// Write the specified module to the specified output stream. 4637 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4638 bool ShouldPreserveUseListOrder, 4639 const ModuleSummaryIndex *Index, 4640 bool GenerateHash, ModuleHash *ModHash) { 4641 SmallVector<char, 0> Buffer; 4642 Buffer.reserve(256*1024); 4643 4644 // If this is darwin or another generic macho target, reserve space for the 4645 // header. 4646 Triple TT(M.getTargetTriple()); 4647 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4648 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4649 4650 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4651 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4652 ModHash); 4653 Writer.writeSymtab(); 4654 Writer.writeStrtab(); 4655 4656 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4657 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4658 4659 // Write the generated bitstream to "Out". 4660 if (!Buffer.empty()) 4661 Out.write((char *)&Buffer.front(), Buffer.size()); 4662 } 4663 4664 void IndexBitcodeWriter::write() { 4665 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4666 4667 writeModuleVersion(); 4668 4669 // Write the module paths in the combined index. 4670 writeModStrings(); 4671 4672 // Write the summary combined index records. 4673 writeCombinedGlobalValueSummary(); 4674 4675 Stream.ExitBlock(); 4676 } 4677 4678 // Write the specified module summary index to the given raw output stream, 4679 // where it will be written in a new bitcode block. This is used when 4680 // writing the combined index file for ThinLTO. When writing a subset of the 4681 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4682 void llvm::WriteIndexToFile( 4683 const ModuleSummaryIndex &Index, raw_ostream &Out, 4684 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4685 SmallVector<char, 0> Buffer; 4686 Buffer.reserve(256 * 1024); 4687 4688 BitcodeWriter Writer(Buffer); 4689 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4690 Writer.writeStrtab(); 4691 4692 Out.write((char *)&Buffer.front(), Buffer.size()); 4693 } 4694 4695 namespace { 4696 4697 /// Class to manage the bitcode writing for a thin link bitcode file. 4698 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4699 /// ModHash is for use in ThinLTO incremental build, generated while writing 4700 /// the module bitcode file. 4701 const ModuleHash *ModHash; 4702 4703 public: 4704 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4705 BitstreamWriter &Stream, 4706 const ModuleSummaryIndex &Index, 4707 const ModuleHash &ModHash) 4708 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4709 /*ShouldPreserveUseListOrder=*/false, &Index), 4710 ModHash(&ModHash) {} 4711 4712 void write(); 4713 4714 private: 4715 void writeSimplifiedModuleInfo(); 4716 }; 4717 4718 } // end anonymous namespace 4719 4720 // This function writes a simpilified module info for thin link bitcode file. 4721 // It only contains the source file name along with the name(the offset and 4722 // size in strtab) and linkage for global values. For the global value info 4723 // entry, in order to keep linkage at offset 5, there are three zeros used 4724 // as padding. 4725 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4726 SmallVector<unsigned, 64> Vals; 4727 // Emit the module's source file name. 4728 { 4729 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4730 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4731 if (Bits == SE_Char6) 4732 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4733 else if (Bits == SE_Fixed7) 4734 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4735 4736 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4737 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4738 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4740 Abbv->Add(AbbrevOpToUse); 4741 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4742 4743 for (const auto P : M.getSourceFileName()) 4744 Vals.push_back((unsigned char)P); 4745 4746 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4747 Vals.clear(); 4748 } 4749 4750 // Emit the global variable information. 4751 for (const GlobalVariable &GV : M.globals()) { 4752 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4753 Vals.push_back(StrtabBuilder.add(GV.getName())); 4754 Vals.push_back(GV.getName().size()); 4755 Vals.push_back(0); 4756 Vals.push_back(0); 4757 Vals.push_back(0); 4758 Vals.push_back(getEncodedLinkage(GV)); 4759 4760 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4761 Vals.clear(); 4762 } 4763 4764 // Emit the function proto information. 4765 for (const Function &F : M) { 4766 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4767 Vals.push_back(StrtabBuilder.add(F.getName())); 4768 Vals.push_back(F.getName().size()); 4769 Vals.push_back(0); 4770 Vals.push_back(0); 4771 Vals.push_back(0); 4772 Vals.push_back(getEncodedLinkage(F)); 4773 4774 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4775 Vals.clear(); 4776 } 4777 4778 // Emit the alias information. 4779 for (const GlobalAlias &A : M.aliases()) { 4780 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4781 Vals.push_back(StrtabBuilder.add(A.getName())); 4782 Vals.push_back(A.getName().size()); 4783 Vals.push_back(0); 4784 Vals.push_back(0); 4785 Vals.push_back(0); 4786 Vals.push_back(getEncodedLinkage(A)); 4787 4788 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4789 Vals.clear(); 4790 } 4791 4792 // Emit the ifunc information. 4793 for (const GlobalIFunc &I : M.ifuncs()) { 4794 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4795 Vals.push_back(StrtabBuilder.add(I.getName())); 4796 Vals.push_back(I.getName().size()); 4797 Vals.push_back(0); 4798 Vals.push_back(0); 4799 Vals.push_back(0); 4800 Vals.push_back(getEncodedLinkage(I)); 4801 4802 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4803 Vals.clear(); 4804 } 4805 } 4806 4807 void ThinLinkBitcodeWriter::write() { 4808 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4809 4810 writeModuleVersion(); 4811 4812 writeSimplifiedModuleInfo(); 4813 4814 writePerModuleGlobalValueSummary(); 4815 4816 // Write module hash. 4817 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4818 4819 Stream.ExitBlock(); 4820 } 4821 4822 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4823 const ModuleSummaryIndex &Index, 4824 const ModuleHash &ModHash) { 4825 assert(!WroteStrtab); 4826 4827 // The Mods vector is used by irsymtab::build, which requires non-const 4828 // Modules in case it needs to materialize metadata. But the bitcode writer 4829 // requires that the module is materialized, so we can cast to non-const here, 4830 // after checking that it is in fact materialized. 4831 assert(M.isMaterialized()); 4832 Mods.push_back(const_cast<Module *>(&M)); 4833 4834 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4835 ModHash); 4836 ThinLinkWriter.write(); 4837 } 4838 4839 // Write the specified thin link bitcode file to the given raw output stream, 4840 // where it will be written in a new bitcode block. This is used when 4841 // writing the per-module index file for ThinLTO. 4842 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4843 const ModuleSummaryIndex &Index, 4844 const ModuleHash &ModHash) { 4845 SmallVector<char, 0> Buffer; 4846 Buffer.reserve(256 * 1024); 4847 4848 BitcodeWriter Writer(Buffer); 4849 Writer.writeThinLinkBitcode(M, Index, ModHash); 4850 Writer.writeSymtab(); 4851 Writer.writeStrtab(); 4852 4853 Out.write((char *)&Buffer.front(), Buffer.size()); 4854 } 4855 4856 static const char *getSectionNameForBitcode(const Triple &T) { 4857 switch (T.getObjectFormat()) { 4858 case Triple::MachO: 4859 return "__LLVM,__bitcode"; 4860 case Triple::COFF: 4861 case Triple::ELF: 4862 case Triple::Wasm: 4863 case Triple::UnknownObjectFormat: 4864 return ".llvmbc"; 4865 case Triple::GOFF: 4866 llvm_unreachable("GOFF is not yet implemented"); 4867 break; 4868 case Triple::XCOFF: 4869 llvm_unreachable("XCOFF is not yet implemented"); 4870 break; 4871 } 4872 llvm_unreachable("Unimplemented ObjectFormatType"); 4873 } 4874 4875 static const char *getSectionNameForCommandline(const Triple &T) { 4876 switch (T.getObjectFormat()) { 4877 case Triple::MachO: 4878 return "__LLVM,__cmdline"; 4879 case Triple::COFF: 4880 case Triple::ELF: 4881 case Triple::Wasm: 4882 case Triple::UnknownObjectFormat: 4883 return ".llvmcmd"; 4884 case Triple::GOFF: 4885 llvm_unreachable("GOFF is not yet implemented"); 4886 break; 4887 case Triple::XCOFF: 4888 llvm_unreachable("XCOFF is not yet implemented"); 4889 break; 4890 } 4891 llvm_unreachable("Unimplemented ObjectFormatType"); 4892 } 4893 4894 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4895 bool EmbedBitcode, bool EmbedCmdline, 4896 const std::vector<uint8_t> &CmdArgs) { 4897 // Save llvm.compiler.used and remove it. 4898 SmallVector<Constant *, 2> UsedArray; 4899 SmallVector<GlobalValue *, 4> UsedGlobals; 4900 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4901 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4902 for (auto *GV : UsedGlobals) { 4903 if (GV->getName() != "llvm.embedded.module" && 4904 GV->getName() != "llvm.cmdline") 4905 UsedArray.push_back( 4906 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4907 } 4908 if (Used) 4909 Used->eraseFromParent(); 4910 4911 // Embed the bitcode for the llvm module. 4912 std::string Data; 4913 ArrayRef<uint8_t> ModuleData; 4914 Triple T(M.getTargetTriple()); 4915 4916 if (EmbedBitcode) { 4917 if (Buf.getBufferSize() == 0 || 4918 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4919 (const unsigned char *)Buf.getBufferEnd())) { 4920 // If the input is LLVM Assembly, bitcode is produced by serializing 4921 // the module. Use-lists order need to be preserved in this case. 4922 llvm::raw_string_ostream OS(Data); 4923 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4924 ModuleData = 4925 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4926 } else 4927 // If the input is LLVM bitcode, write the input byte stream directly. 4928 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4929 Buf.getBufferSize()); 4930 } 4931 llvm::Constant *ModuleConstant = 4932 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4933 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4934 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4935 ModuleConstant); 4936 GV->setSection(getSectionNameForBitcode(T)); 4937 // Set alignment to 1 to prevent padding between two contributions from input 4938 // sections after linking. 4939 GV->setAlignment(Align(1)); 4940 UsedArray.push_back( 4941 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4942 if (llvm::GlobalVariable *Old = 4943 M.getGlobalVariable("llvm.embedded.module", true)) { 4944 assert(Old->hasOneUse() && 4945 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4946 GV->takeName(Old); 4947 Old->eraseFromParent(); 4948 } else { 4949 GV->setName("llvm.embedded.module"); 4950 } 4951 4952 // Skip if only bitcode needs to be embedded. 4953 if (EmbedCmdline) { 4954 // Embed command-line options. 4955 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4956 CmdArgs.size()); 4957 llvm::Constant *CmdConstant = 4958 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4959 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4960 llvm::GlobalValue::PrivateLinkage, 4961 CmdConstant); 4962 GV->setSection(getSectionNameForCommandline(T)); 4963 GV->setAlignment(Align(1)); 4964 UsedArray.push_back( 4965 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4966 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4967 assert(Old->hasOneUse() && 4968 "llvm.cmdline can only be used once in llvm.compiler.used"); 4969 GV->takeName(Old); 4970 Old->eraseFromParent(); 4971 } else { 4972 GV->setName("llvm.cmdline"); 4973 } 4974 } 4975 4976 if (UsedArray.empty()) 4977 return; 4978 4979 // Recreate llvm.compiler.used. 4980 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4981 auto *NewUsed = new GlobalVariable( 4982 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4983 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4984 NewUsed->setSection("llvm.metadata"); 4985 } 4986