1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/Bitcode/BitcodeCommon.h" 30 #include "llvm/Bitcode/BitcodeReader.h" 31 #include "llvm/Bitcode/LLVMBitCodes.h" 32 #include "llvm/Bitstream/BitCodes.h" 33 #include "llvm/Bitstream/BitstreamWriter.h" 34 #include "llvm/Config/llvm-config.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Comdat.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/UseListOrder.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/MC/StringTableBuilder.h" 63 #include "llvm/MC/TargetRegistry.h" 64 #include "llvm/Object/IRSymtab.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Endian.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/SHA1.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <memory> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 101 namespace { 102 103 /// These are manifest constants used by the bitcode writer. They do not need to 104 /// be kept in sync with the reader, but need to be consistent within this file. 105 enum { 106 // VALUE_SYMTAB_BLOCK abbrev id's. 107 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 VST_ENTRY_7_ABBREV, 109 VST_ENTRY_6_ABBREV, 110 VST_BBENTRY_6_ABBREV, 111 112 // CONSTANTS_BLOCK abbrev id's. 113 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 CONSTANTS_INTEGER_ABBREV, 115 CONSTANTS_CE_CAST_Abbrev, 116 CONSTANTS_NULL_Abbrev, 117 118 // FUNCTION_BLOCK abbrev id's. 119 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 120 FUNCTION_INST_UNOP_ABBREV, 121 FUNCTION_INST_UNOP_FLAGS_ABBREV, 122 FUNCTION_INST_BINOP_ABBREV, 123 FUNCTION_INST_BINOP_FLAGS_ABBREV, 124 FUNCTION_INST_CAST_ABBREV, 125 FUNCTION_INST_RET_VOID_ABBREV, 126 FUNCTION_INST_RET_VAL_ABBREV, 127 FUNCTION_INST_UNREACHABLE_ABBREV, 128 FUNCTION_INST_GEP_ABBREV, 129 }; 130 131 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 132 /// file type. 133 class BitcodeWriterBase { 134 protected: 135 /// The stream created and owned by the client. 136 BitstreamWriter &Stream; 137 138 StringTableBuilder &StrtabBuilder; 139 140 public: 141 /// Constructs a BitcodeWriterBase object that writes to the provided 142 /// \p Stream. 143 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 144 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 145 146 protected: 147 void writeModuleVersion(); 148 }; 149 150 void BitcodeWriterBase::writeModuleVersion() { 151 // VERSION: [version#] 152 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 153 } 154 155 /// Base class to manage the module bitcode writing, currently subclassed for 156 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 157 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 158 protected: 159 /// The Module to write to bitcode. 160 const Module &M; 161 162 /// Enumerates ids for all values in the module. 163 ValueEnumerator VE; 164 165 /// Optional per-module index to write for ThinLTO. 166 const ModuleSummaryIndex *Index; 167 168 /// Map that holds the correspondence between GUIDs in the summary index, 169 /// that came from indirect call profiles, and a value id generated by this 170 /// class to use in the VST and summary block records. 171 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 172 173 /// Tracks the last value id recorded in the GUIDToValueMap. 174 unsigned GlobalValueId; 175 176 /// Saves the offset of the VSTOffset record that must eventually be 177 /// backpatched with the offset of the actual VST. 178 uint64_t VSTOffsetPlaceholder = 0; 179 180 public: 181 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 182 /// writing to the provided \p Buffer. 183 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 184 BitstreamWriter &Stream, 185 bool ShouldPreserveUseListOrder, 186 const ModuleSummaryIndex *Index) 187 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 188 VE(M, ShouldPreserveUseListOrder), Index(Index) { 189 // Assign ValueIds to any callee values in the index that came from 190 // indirect call profiles and were recorded as a GUID not a Value* 191 // (which would have been assigned an ID by the ValueEnumerator). 192 // The starting ValueId is just after the number of values in the 193 // ValueEnumerator, so that they can be emitted in the VST. 194 GlobalValueId = VE.getValues().size(); 195 if (!Index) 196 return; 197 for (const auto &GUIDSummaryLists : *Index) 198 // Examine all summaries for this GUID. 199 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 200 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 201 // For each call in the function summary, see if the call 202 // is to a GUID (which means it is for an indirect call, 203 // otherwise we would have a Value for it). If so, synthesize 204 // a value id. 205 for (auto &CallEdge : FS->calls()) 206 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 207 assignValueId(CallEdge.first.getGUID()); 208 } 209 210 protected: 211 void writePerModuleGlobalValueSummary(); 212 213 private: 214 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 215 GlobalValueSummary *Summary, 216 unsigned ValueID, 217 unsigned FSCallsAbbrev, 218 unsigned FSCallsProfileAbbrev, 219 const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 344 SmallVectorImpl<uint64_t> &Record, 345 unsigned Abbrev); 346 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIGlobalVariable(const DIGlobalVariable *N, 350 SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDILocalVariable(const DILocalVariable *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDILabel(const DILabel *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIExpression(const DIExpression *N, 357 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 358 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 359 SmallVectorImpl<uint64_t> &Record, 360 unsigned Abbrev); 361 void writeDIObjCProperty(const DIObjCProperty *N, 362 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 363 void writeDIImportedEntity(const DIImportedEntity *N, 364 SmallVectorImpl<uint64_t> &Record, 365 unsigned Abbrev); 366 unsigned createNamedMetadataAbbrev(); 367 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 368 unsigned createMetadataStringsAbbrev(); 369 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 370 SmallVectorImpl<uint64_t> &Record); 371 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 372 SmallVectorImpl<uint64_t> &Record, 373 std::vector<unsigned> *MDAbbrevs = nullptr, 374 std::vector<uint64_t> *IndexPos = nullptr); 375 void writeModuleMetadata(); 376 void writeFunctionMetadata(const Function &F); 377 void writeFunctionMetadataAttachment(const Function &F); 378 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 379 const GlobalObject &GO); 380 void writeModuleMetadataKinds(); 381 void writeOperandBundleTags(); 382 void writeSyncScopeNames(); 383 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 384 void writeModuleConstants(); 385 bool pushValueAndType(const Value *V, unsigned InstID, 386 SmallVectorImpl<unsigned> &Vals); 387 void writeOperandBundles(const CallBase &CB, unsigned InstID); 388 void pushValue(const Value *V, unsigned InstID, 389 SmallVectorImpl<unsigned> &Vals); 390 void pushValueSigned(const Value *V, unsigned InstID, 391 SmallVectorImpl<uint64_t> &Vals); 392 void writeInstruction(const Instruction &I, unsigned InstID, 393 SmallVectorImpl<unsigned> &Vals); 394 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 395 void writeGlobalValueSymbolTable( 396 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 397 void writeUseList(UseListOrder &&Order); 398 void writeUseListBlock(const Function *F); 399 void 400 writeFunction(const Function &F, 401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 402 void writeBlockInfo(); 403 void writeModuleHash(size_t BlockStartPos); 404 405 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 406 return unsigned(SSID); 407 } 408 409 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 410 }; 411 412 /// Class to manage the bitcode writing for a combined index. 413 class IndexBitcodeWriter : public BitcodeWriterBase { 414 /// The combined index to write to bitcode. 415 const ModuleSummaryIndex &Index; 416 417 /// When writing a subset of the index for distributed backends, client 418 /// provides a map of modules to the corresponding GUIDs/summaries to write. 419 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 420 421 /// Map that holds the correspondence between the GUID used in the combined 422 /// index and a value id generated by this class to use in references. 423 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 424 425 /// Tracks the last value id recorded in the GUIDToValueMap. 426 unsigned GlobalValueId = 0; 427 428 public: 429 /// Constructs a IndexBitcodeWriter object for the given combined index, 430 /// writing to the provided \p Buffer. When writing a subset of the index 431 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 432 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 433 const ModuleSummaryIndex &Index, 434 const std::map<std::string, GVSummaryMapTy> 435 *ModuleToSummariesForIndex = nullptr) 436 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 437 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 438 // Assign unique value ids to all summaries to be written, for use 439 // in writing out the call graph edges. Save the mapping from GUID 440 // to the new global value id to use when writing those edges, which 441 // are currently saved in the index in terms of GUID. 442 forEachSummary([&](GVInfo I, bool) { 443 GUIDToValueIdMap[I.first] = ++GlobalValueId; 444 }); 445 } 446 447 /// The below iterator returns the GUID and associated summary. 448 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 449 450 /// Calls the callback for each value GUID and summary to be written to 451 /// bitcode. This hides the details of whether they are being pulled from the 452 /// entire index or just those in a provided ModuleToSummariesForIndex map. 453 template<typename Functor> 454 void forEachSummary(Functor Callback) { 455 if (ModuleToSummariesForIndex) { 456 for (auto &M : *ModuleToSummariesForIndex) 457 for (auto &Summary : M.second) { 458 Callback(Summary, false); 459 // Ensure aliasee is handled, e.g. for assigning a valueId, 460 // even if we are not importing the aliasee directly (the 461 // imported alias will contain a copy of aliasee). 462 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 463 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 464 } 465 } else { 466 for (auto &Summaries : Index) 467 for (auto &Summary : Summaries.second.SummaryList) 468 Callback({Summaries.first, Summary.get()}, false); 469 } 470 } 471 472 /// Calls the callback for each entry in the modulePaths StringMap that 473 /// should be written to the module path string table. This hides the details 474 /// of whether they are being pulled from the entire index or just those in a 475 /// provided ModuleToSummariesForIndex map. 476 template <typename Functor> void forEachModule(Functor Callback) { 477 if (ModuleToSummariesForIndex) { 478 for (const auto &M : *ModuleToSummariesForIndex) { 479 const auto &MPI = Index.modulePaths().find(M.first); 480 if (MPI == Index.modulePaths().end()) { 481 // This should only happen if the bitcode file was empty, in which 482 // case we shouldn't be importing (the ModuleToSummariesForIndex 483 // would only include the module we are writing and index for). 484 assert(ModuleToSummariesForIndex->size() == 1); 485 continue; 486 } 487 Callback(*MPI); 488 } 489 } else { 490 for (const auto &MPSE : Index.modulePaths()) 491 Callback(MPSE); 492 } 493 } 494 495 /// Main entry point for writing a combined index to bitcode. 496 void write(); 497 498 private: 499 void writeModStrings(); 500 void writeCombinedGlobalValueSummary(); 501 502 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 503 auto VMI = GUIDToValueIdMap.find(ValGUID); 504 if (VMI == GUIDToValueIdMap.end()) 505 return None; 506 return VMI->second; 507 } 508 509 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 510 }; 511 512 } // end anonymous namespace 513 514 static unsigned getEncodedCastOpcode(unsigned Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Unknown cast instruction!"); 517 case Instruction::Trunc : return bitc::CAST_TRUNC; 518 case Instruction::ZExt : return bitc::CAST_ZEXT; 519 case Instruction::SExt : return bitc::CAST_SEXT; 520 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 521 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 522 case Instruction::UIToFP : return bitc::CAST_UITOFP; 523 case Instruction::SIToFP : return bitc::CAST_SITOFP; 524 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 525 case Instruction::FPExt : return bitc::CAST_FPEXT; 526 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 527 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 528 case Instruction::BitCast : return bitc::CAST_BITCAST; 529 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 530 } 531 } 532 533 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 534 switch (Opcode) { 535 default: llvm_unreachable("Unknown binary instruction!"); 536 case Instruction::FNeg: return bitc::UNOP_FNEG; 537 } 538 } 539 540 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 541 switch (Opcode) { 542 default: llvm_unreachable("Unknown binary instruction!"); 543 case Instruction::Add: 544 case Instruction::FAdd: return bitc::BINOP_ADD; 545 case Instruction::Sub: 546 case Instruction::FSub: return bitc::BINOP_SUB; 547 case Instruction::Mul: 548 case Instruction::FMul: return bitc::BINOP_MUL; 549 case Instruction::UDiv: return bitc::BINOP_UDIV; 550 case Instruction::FDiv: 551 case Instruction::SDiv: return bitc::BINOP_SDIV; 552 case Instruction::URem: return bitc::BINOP_UREM; 553 case Instruction::FRem: 554 case Instruction::SRem: return bitc::BINOP_SREM; 555 case Instruction::Shl: return bitc::BINOP_SHL; 556 case Instruction::LShr: return bitc::BINOP_LSHR; 557 case Instruction::AShr: return bitc::BINOP_ASHR; 558 case Instruction::And: return bitc::BINOP_AND; 559 case Instruction::Or: return bitc::BINOP_OR; 560 case Instruction::Xor: return bitc::BINOP_XOR; 561 } 562 } 563 564 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 565 switch (Op) { 566 default: llvm_unreachable("Unknown RMW operation!"); 567 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 568 case AtomicRMWInst::Add: return bitc::RMW_ADD; 569 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 570 case AtomicRMWInst::And: return bitc::RMW_AND; 571 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 572 case AtomicRMWInst::Or: return bitc::RMW_OR; 573 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 574 case AtomicRMWInst::Max: return bitc::RMW_MAX; 575 case AtomicRMWInst::Min: return bitc::RMW_MIN; 576 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 577 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 578 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 579 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 580 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 581 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 582 } 583 } 584 585 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 586 switch (Ordering) { 587 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 588 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 589 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 590 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 591 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 592 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 593 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 594 } 595 llvm_unreachable("Invalid ordering"); 596 } 597 598 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 599 StringRef Str, unsigned AbbrevToUse) { 600 SmallVector<unsigned, 64> Vals; 601 602 // Code: [strchar x N] 603 for (char C : Str) { 604 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 605 AbbrevToUse = 0; 606 Vals.push_back(C); 607 } 608 609 // Emit the finished record. 610 Stream.EmitRecord(Code, Vals, AbbrevToUse); 611 } 612 613 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 614 switch (Kind) { 615 case Attribute::Alignment: 616 return bitc::ATTR_KIND_ALIGNMENT; 617 case Attribute::AllocAlign: 618 return bitc::ATTR_KIND_ALLOC_ALIGN; 619 case Attribute::AllocSize: 620 return bitc::ATTR_KIND_ALLOC_SIZE; 621 case Attribute::AlwaysInline: 622 return bitc::ATTR_KIND_ALWAYS_INLINE; 623 case Attribute::Builtin: 624 return bitc::ATTR_KIND_BUILTIN; 625 case Attribute::ByVal: 626 return bitc::ATTR_KIND_BY_VAL; 627 case Attribute::Convergent: 628 return bitc::ATTR_KIND_CONVERGENT; 629 case Attribute::InAlloca: 630 return bitc::ATTR_KIND_IN_ALLOCA; 631 case Attribute::Cold: 632 return bitc::ATTR_KIND_COLD; 633 case Attribute::DisableSanitizerInstrumentation: 634 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 635 case Attribute::FnRetThunkExtern: 636 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 637 case Attribute::Hot: 638 return bitc::ATTR_KIND_HOT; 639 case Attribute::ElementType: 640 return bitc::ATTR_KIND_ELEMENTTYPE; 641 case Attribute::InlineHint: 642 return bitc::ATTR_KIND_INLINE_HINT; 643 case Attribute::InReg: 644 return bitc::ATTR_KIND_IN_REG; 645 case Attribute::JumpTable: 646 return bitc::ATTR_KIND_JUMP_TABLE; 647 case Attribute::MinSize: 648 return bitc::ATTR_KIND_MIN_SIZE; 649 case Attribute::AllocatedPointer: 650 return bitc::ATTR_KIND_ALLOCATED_POINTER; 651 case Attribute::AllocKind: 652 return bitc::ATTR_KIND_ALLOC_KIND; 653 case Attribute::Memory: 654 return bitc::ATTR_KIND_MEMORY; 655 case Attribute::Naked: 656 return bitc::ATTR_KIND_NAKED; 657 case Attribute::Nest: 658 return bitc::ATTR_KIND_NEST; 659 case Attribute::NoAlias: 660 return bitc::ATTR_KIND_NO_ALIAS; 661 case Attribute::NoBuiltin: 662 return bitc::ATTR_KIND_NO_BUILTIN; 663 case Attribute::NoCallback: 664 return bitc::ATTR_KIND_NO_CALLBACK; 665 case Attribute::NoCapture: 666 return bitc::ATTR_KIND_NO_CAPTURE; 667 case Attribute::NoDuplicate: 668 return bitc::ATTR_KIND_NO_DUPLICATE; 669 case Attribute::NoFree: 670 return bitc::ATTR_KIND_NOFREE; 671 case Attribute::NoImplicitFloat: 672 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 673 case Attribute::NoInline: 674 return bitc::ATTR_KIND_NO_INLINE; 675 case Attribute::NoRecurse: 676 return bitc::ATTR_KIND_NO_RECURSE; 677 case Attribute::NoMerge: 678 return bitc::ATTR_KIND_NO_MERGE; 679 case Attribute::NonLazyBind: 680 return bitc::ATTR_KIND_NON_LAZY_BIND; 681 case Attribute::NonNull: 682 return bitc::ATTR_KIND_NON_NULL; 683 case Attribute::Dereferenceable: 684 return bitc::ATTR_KIND_DEREFERENCEABLE; 685 case Attribute::DereferenceableOrNull: 686 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 687 case Attribute::NoRedZone: 688 return bitc::ATTR_KIND_NO_RED_ZONE; 689 case Attribute::NoReturn: 690 return bitc::ATTR_KIND_NO_RETURN; 691 case Attribute::NoSync: 692 return bitc::ATTR_KIND_NOSYNC; 693 case Attribute::NoCfCheck: 694 return bitc::ATTR_KIND_NOCF_CHECK; 695 case Attribute::NoProfile: 696 return bitc::ATTR_KIND_NO_PROFILE; 697 case Attribute::SkipProfile: 698 return bitc::ATTR_KIND_SKIP_PROFILE; 699 case Attribute::NoUnwind: 700 return bitc::ATTR_KIND_NO_UNWIND; 701 case Attribute::NoSanitizeBounds: 702 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 703 case Attribute::NoSanitizeCoverage: 704 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 705 case Attribute::NullPointerIsValid: 706 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 707 case Attribute::OptForFuzzing: 708 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 709 case Attribute::OptimizeForSize: 710 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 711 case Attribute::OptimizeNone: 712 return bitc::ATTR_KIND_OPTIMIZE_NONE; 713 case Attribute::ReadNone: 714 return bitc::ATTR_KIND_READ_NONE; 715 case Attribute::ReadOnly: 716 return bitc::ATTR_KIND_READ_ONLY; 717 case Attribute::Returned: 718 return bitc::ATTR_KIND_RETURNED; 719 case Attribute::ReturnsTwice: 720 return bitc::ATTR_KIND_RETURNS_TWICE; 721 case Attribute::SExt: 722 return bitc::ATTR_KIND_S_EXT; 723 case Attribute::Speculatable: 724 return bitc::ATTR_KIND_SPECULATABLE; 725 case Attribute::StackAlignment: 726 return bitc::ATTR_KIND_STACK_ALIGNMENT; 727 case Attribute::StackProtect: 728 return bitc::ATTR_KIND_STACK_PROTECT; 729 case Attribute::StackProtectReq: 730 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 731 case Attribute::StackProtectStrong: 732 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 733 case Attribute::SafeStack: 734 return bitc::ATTR_KIND_SAFESTACK; 735 case Attribute::ShadowCallStack: 736 return bitc::ATTR_KIND_SHADOWCALLSTACK; 737 case Attribute::StrictFP: 738 return bitc::ATTR_KIND_STRICT_FP; 739 case Attribute::StructRet: 740 return bitc::ATTR_KIND_STRUCT_RET; 741 case Attribute::SanitizeAddress: 742 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 743 case Attribute::SanitizeHWAddress: 744 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 745 case Attribute::SanitizeThread: 746 return bitc::ATTR_KIND_SANITIZE_THREAD; 747 case Attribute::SanitizeMemory: 748 return bitc::ATTR_KIND_SANITIZE_MEMORY; 749 case Attribute::SpeculativeLoadHardening: 750 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 751 case Attribute::SwiftError: 752 return bitc::ATTR_KIND_SWIFT_ERROR; 753 case Attribute::SwiftSelf: 754 return bitc::ATTR_KIND_SWIFT_SELF; 755 case Attribute::SwiftAsync: 756 return bitc::ATTR_KIND_SWIFT_ASYNC; 757 case Attribute::UWTable: 758 return bitc::ATTR_KIND_UW_TABLE; 759 case Attribute::VScaleRange: 760 return bitc::ATTR_KIND_VSCALE_RANGE; 761 case Attribute::WillReturn: 762 return bitc::ATTR_KIND_WILLRETURN; 763 case Attribute::WriteOnly: 764 return bitc::ATTR_KIND_WRITEONLY; 765 case Attribute::ZExt: 766 return bitc::ATTR_KIND_Z_EXT; 767 case Attribute::ImmArg: 768 return bitc::ATTR_KIND_IMMARG; 769 case Attribute::SanitizeMemTag: 770 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 771 case Attribute::Preallocated: 772 return bitc::ATTR_KIND_PREALLOCATED; 773 case Attribute::NoUndef: 774 return bitc::ATTR_KIND_NOUNDEF; 775 case Attribute::ByRef: 776 return bitc::ATTR_KIND_BYREF; 777 case Attribute::MustProgress: 778 return bitc::ATTR_KIND_MUSTPROGRESS; 779 case Attribute::PresplitCoroutine: 780 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 781 case Attribute::EndAttrKinds: 782 llvm_unreachable("Can not encode end-attribute kinds marker."); 783 case Attribute::None: 784 llvm_unreachable("Can not encode none-attribute."); 785 case Attribute::EmptyKey: 786 case Attribute::TombstoneKey: 787 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 788 } 789 790 llvm_unreachable("Trying to encode unknown attribute"); 791 } 792 793 void ModuleBitcodeWriter::writeAttributeGroupTable() { 794 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 795 VE.getAttributeGroups(); 796 if (AttrGrps.empty()) return; 797 798 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 799 800 SmallVector<uint64_t, 64> Record; 801 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 802 unsigned AttrListIndex = Pair.first; 803 AttributeSet AS = Pair.second; 804 Record.push_back(VE.getAttributeGroupID(Pair)); 805 Record.push_back(AttrListIndex); 806 807 for (Attribute Attr : AS) { 808 if (Attr.isEnumAttribute()) { 809 Record.push_back(0); 810 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 811 } else if (Attr.isIntAttribute()) { 812 Record.push_back(1); 813 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 814 Record.push_back(Attr.getValueAsInt()); 815 } else if (Attr.isStringAttribute()) { 816 StringRef Kind = Attr.getKindAsString(); 817 StringRef Val = Attr.getValueAsString(); 818 819 Record.push_back(Val.empty() ? 3 : 4); 820 Record.append(Kind.begin(), Kind.end()); 821 Record.push_back(0); 822 if (!Val.empty()) { 823 Record.append(Val.begin(), Val.end()); 824 Record.push_back(0); 825 } 826 } else { 827 assert(Attr.isTypeAttribute()); 828 Type *Ty = Attr.getValueAsType(); 829 Record.push_back(Ty ? 6 : 5); 830 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 831 if (Ty) 832 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 833 } 834 } 835 836 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 837 Record.clear(); 838 } 839 840 Stream.ExitBlock(); 841 } 842 843 void ModuleBitcodeWriter::writeAttributeTable() { 844 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 845 if (Attrs.empty()) return; 846 847 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 848 849 SmallVector<uint64_t, 64> Record; 850 for (const AttributeList &AL : Attrs) { 851 for (unsigned i : AL.indexes()) { 852 AttributeSet AS = AL.getAttributes(i); 853 if (AS.hasAttributes()) 854 Record.push_back(VE.getAttributeGroupID({i, AS})); 855 } 856 857 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 858 Record.clear(); 859 } 860 861 Stream.ExitBlock(); 862 } 863 864 /// WriteTypeTable - Write out the type table for a module. 865 void ModuleBitcodeWriter::writeTypeTable() { 866 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 867 868 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 869 SmallVector<uint64_t, 64> TypeVals; 870 871 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 872 873 // Abbrev for TYPE_CODE_POINTER. 874 auto Abbv = std::make_shared<BitCodeAbbrev>(); 875 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 877 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 878 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 879 880 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 881 Abbv = std::make_shared<BitCodeAbbrev>(); 882 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 883 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 884 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 885 886 // Abbrev for TYPE_CODE_FUNCTION. 887 Abbv = std::make_shared<BitCodeAbbrev>(); 888 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 892 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 893 894 // Abbrev for TYPE_CODE_STRUCT_ANON. 895 Abbv = std::make_shared<BitCodeAbbrev>(); 896 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 900 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 901 902 // Abbrev for TYPE_CODE_STRUCT_NAME. 903 Abbv = std::make_shared<BitCodeAbbrev>(); 904 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 907 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 908 909 // Abbrev for TYPE_CODE_STRUCT_NAMED. 910 Abbv = std::make_shared<BitCodeAbbrev>(); 911 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 915 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 916 917 // Abbrev for TYPE_CODE_ARRAY. 918 Abbv = std::make_shared<BitCodeAbbrev>(); 919 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 922 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 923 924 // Emit an entry count so the reader can reserve space. 925 TypeVals.push_back(TypeList.size()); 926 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 927 TypeVals.clear(); 928 929 // Loop over all of the types, emitting each in turn. 930 for (Type *T : TypeList) { 931 int AbbrevToUse = 0; 932 unsigned Code = 0; 933 934 switch (T->getTypeID()) { 935 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 936 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 937 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 938 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 939 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 940 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 941 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 942 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 943 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 944 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 945 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 946 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 947 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 948 case Type::IntegerTyID: 949 // INTEGER: [width] 950 Code = bitc::TYPE_CODE_INTEGER; 951 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 952 break; 953 case Type::PointerTyID: { 954 PointerType *PTy = cast<PointerType>(T); 955 unsigned AddressSpace = PTy->getAddressSpace(); 956 if (PTy->isOpaque()) { 957 // OPAQUE_POINTER: [address space] 958 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 959 TypeVals.push_back(AddressSpace); 960 if (AddressSpace == 0) 961 AbbrevToUse = OpaquePtrAbbrev; 962 } else { 963 // POINTER: [pointee type, address space] 964 Code = bitc::TYPE_CODE_POINTER; 965 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 966 TypeVals.push_back(AddressSpace); 967 if (AddressSpace == 0) 968 AbbrevToUse = PtrAbbrev; 969 } 970 break; 971 } 972 case Type::FunctionTyID: { 973 FunctionType *FT = cast<FunctionType>(T); 974 // FUNCTION: [isvararg, retty, paramty x N] 975 Code = bitc::TYPE_CODE_FUNCTION; 976 TypeVals.push_back(FT->isVarArg()); 977 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 978 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 979 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 980 AbbrevToUse = FunctionAbbrev; 981 break; 982 } 983 case Type::StructTyID: { 984 StructType *ST = cast<StructType>(T); 985 // STRUCT: [ispacked, eltty x N] 986 TypeVals.push_back(ST->isPacked()); 987 // Output all of the element types. 988 for (Type *ET : ST->elements()) 989 TypeVals.push_back(VE.getTypeID(ET)); 990 991 if (ST->isLiteral()) { 992 Code = bitc::TYPE_CODE_STRUCT_ANON; 993 AbbrevToUse = StructAnonAbbrev; 994 } else { 995 if (ST->isOpaque()) { 996 Code = bitc::TYPE_CODE_OPAQUE; 997 } else { 998 Code = bitc::TYPE_CODE_STRUCT_NAMED; 999 AbbrevToUse = StructNamedAbbrev; 1000 } 1001 1002 // Emit the name if it is present. 1003 if (!ST->getName().empty()) 1004 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1005 StructNameAbbrev); 1006 } 1007 break; 1008 } 1009 case Type::ArrayTyID: { 1010 ArrayType *AT = cast<ArrayType>(T); 1011 // ARRAY: [numelts, eltty] 1012 Code = bitc::TYPE_CODE_ARRAY; 1013 TypeVals.push_back(AT->getNumElements()); 1014 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1015 AbbrevToUse = ArrayAbbrev; 1016 break; 1017 } 1018 case Type::FixedVectorTyID: 1019 case Type::ScalableVectorTyID: { 1020 VectorType *VT = cast<VectorType>(T); 1021 // VECTOR [numelts, eltty] or 1022 // [numelts, eltty, scalable] 1023 Code = bitc::TYPE_CODE_VECTOR; 1024 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1025 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1026 if (isa<ScalableVectorType>(VT)) 1027 TypeVals.push_back(true); 1028 break; 1029 } 1030 case Type::TypedPointerTyID: 1031 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1032 } 1033 1034 // Emit the finished record. 1035 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1036 TypeVals.clear(); 1037 } 1038 1039 Stream.ExitBlock(); 1040 } 1041 1042 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1043 switch (Linkage) { 1044 case GlobalValue::ExternalLinkage: 1045 return 0; 1046 case GlobalValue::WeakAnyLinkage: 1047 return 16; 1048 case GlobalValue::AppendingLinkage: 1049 return 2; 1050 case GlobalValue::InternalLinkage: 1051 return 3; 1052 case GlobalValue::LinkOnceAnyLinkage: 1053 return 18; 1054 case GlobalValue::ExternalWeakLinkage: 1055 return 7; 1056 case GlobalValue::CommonLinkage: 1057 return 8; 1058 case GlobalValue::PrivateLinkage: 1059 return 9; 1060 case GlobalValue::WeakODRLinkage: 1061 return 17; 1062 case GlobalValue::LinkOnceODRLinkage: 1063 return 19; 1064 case GlobalValue::AvailableExternallyLinkage: 1065 return 12; 1066 } 1067 llvm_unreachable("Invalid linkage"); 1068 } 1069 1070 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1071 return getEncodedLinkage(GV.getLinkage()); 1072 } 1073 1074 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1075 uint64_t RawFlags = 0; 1076 RawFlags |= Flags.ReadNone; 1077 RawFlags |= (Flags.ReadOnly << 1); 1078 RawFlags |= (Flags.NoRecurse << 2); 1079 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1080 RawFlags |= (Flags.NoInline << 4); 1081 RawFlags |= (Flags.AlwaysInline << 5); 1082 RawFlags |= (Flags.NoUnwind << 6); 1083 RawFlags |= (Flags.MayThrow << 7); 1084 RawFlags |= (Flags.HasUnknownCall << 8); 1085 RawFlags |= (Flags.MustBeUnreachable << 9); 1086 return RawFlags; 1087 } 1088 1089 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1090 // in BitcodeReader.cpp. 1091 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1092 uint64_t RawFlags = 0; 1093 1094 RawFlags |= Flags.NotEligibleToImport; // bool 1095 RawFlags |= (Flags.Live << 1); 1096 RawFlags |= (Flags.DSOLocal << 2); 1097 RawFlags |= (Flags.CanAutoHide << 3); 1098 1099 // Linkage don't need to be remapped at that time for the summary. Any future 1100 // change to the getEncodedLinkage() function will need to be taken into 1101 // account here as well. 1102 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1103 1104 RawFlags |= (Flags.Visibility << 8); // 2 bits 1105 1106 return RawFlags; 1107 } 1108 1109 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1110 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1111 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1112 return RawFlags; 1113 } 1114 1115 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1116 switch (GV.getVisibility()) { 1117 case GlobalValue::DefaultVisibility: return 0; 1118 case GlobalValue::HiddenVisibility: return 1; 1119 case GlobalValue::ProtectedVisibility: return 2; 1120 } 1121 llvm_unreachable("Invalid visibility"); 1122 } 1123 1124 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1125 switch (GV.getDLLStorageClass()) { 1126 case GlobalValue::DefaultStorageClass: return 0; 1127 case GlobalValue::DLLImportStorageClass: return 1; 1128 case GlobalValue::DLLExportStorageClass: return 2; 1129 } 1130 llvm_unreachable("Invalid DLL storage class"); 1131 } 1132 1133 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1134 switch (GV.getThreadLocalMode()) { 1135 case GlobalVariable::NotThreadLocal: return 0; 1136 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1137 case GlobalVariable::LocalDynamicTLSModel: return 2; 1138 case GlobalVariable::InitialExecTLSModel: return 3; 1139 case GlobalVariable::LocalExecTLSModel: return 4; 1140 } 1141 llvm_unreachable("Invalid TLS model"); 1142 } 1143 1144 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1145 switch (C.getSelectionKind()) { 1146 case Comdat::Any: 1147 return bitc::COMDAT_SELECTION_KIND_ANY; 1148 case Comdat::ExactMatch: 1149 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1150 case Comdat::Largest: 1151 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1152 case Comdat::NoDeduplicate: 1153 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1154 case Comdat::SameSize: 1155 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1156 } 1157 llvm_unreachable("Invalid selection kind"); 1158 } 1159 1160 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1161 switch (GV.getUnnamedAddr()) { 1162 case GlobalValue::UnnamedAddr::None: return 0; 1163 case GlobalValue::UnnamedAddr::Local: return 2; 1164 case GlobalValue::UnnamedAddr::Global: return 1; 1165 } 1166 llvm_unreachable("Invalid unnamed_addr"); 1167 } 1168 1169 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1170 if (GenerateHash) 1171 Hasher.update(Str); 1172 return StrtabBuilder.add(Str); 1173 } 1174 1175 void ModuleBitcodeWriter::writeComdats() { 1176 SmallVector<unsigned, 64> Vals; 1177 for (const Comdat *C : VE.getComdats()) { 1178 // COMDAT: [strtab offset, strtab size, selection_kind] 1179 Vals.push_back(addToStrtab(C->getName())); 1180 Vals.push_back(C->getName().size()); 1181 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1182 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1183 Vals.clear(); 1184 } 1185 } 1186 1187 /// Write a record that will eventually hold the word offset of the 1188 /// module-level VST. For now the offset is 0, which will be backpatched 1189 /// after the real VST is written. Saves the bit offset to backpatch. 1190 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1191 // Write a placeholder value in for the offset of the real VST, 1192 // which is written after the function blocks so that it can include 1193 // the offset of each function. The placeholder offset will be 1194 // updated when the real VST is written. 1195 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1196 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1197 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1198 // hold the real VST offset. Must use fixed instead of VBR as we don't 1199 // know how many VBR chunks to reserve ahead of time. 1200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1201 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1202 1203 // Emit the placeholder 1204 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1205 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1206 1207 // Compute and save the bit offset to the placeholder, which will be 1208 // patched when the real VST is written. We can simply subtract the 32-bit 1209 // fixed size from the current bit number to get the location to backpatch. 1210 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1211 } 1212 1213 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1214 1215 /// Determine the encoding to use for the given string name and length. 1216 static StringEncoding getStringEncoding(StringRef Str) { 1217 bool isChar6 = true; 1218 for (char C : Str) { 1219 if (isChar6) 1220 isChar6 = BitCodeAbbrevOp::isChar6(C); 1221 if ((unsigned char)C & 128) 1222 // don't bother scanning the rest. 1223 return SE_Fixed8; 1224 } 1225 if (isChar6) 1226 return SE_Char6; 1227 return SE_Fixed7; 1228 } 1229 1230 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1231 "Sanitizer Metadata is too large for naive serialization."); 1232 static unsigned 1233 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1234 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1235 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1236 } 1237 1238 /// Emit top-level description of module, including target triple, inline asm, 1239 /// descriptors for global variables, and function prototype info. 1240 /// Returns the bit offset to backpatch with the location of the real VST. 1241 void ModuleBitcodeWriter::writeModuleInfo() { 1242 // Emit various pieces of data attached to a module. 1243 if (!M.getTargetTriple().empty()) 1244 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1245 0 /*TODO*/); 1246 const std::string &DL = M.getDataLayoutStr(); 1247 if (!DL.empty()) 1248 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1249 if (!M.getModuleInlineAsm().empty()) 1250 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1251 0 /*TODO*/); 1252 1253 // Emit information about sections and GC, computing how many there are. Also 1254 // compute the maximum alignment value. 1255 std::map<std::string, unsigned> SectionMap; 1256 std::map<std::string, unsigned> GCMap; 1257 MaybeAlign MaxAlignment; 1258 unsigned MaxGlobalType = 0; 1259 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1260 if (A) 1261 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1262 }; 1263 for (const GlobalVariable &GV : M.globals()) { 1264 UpdateMaxAlignment(GV.getAlign()); 1265 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1266 if (GV.hasSection()) { 1267 // Give section names unique ID's. 1268 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1269 if (!Entry) { 1270 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1271 0 /*TODO*/); 1272 Entry = SectionMap.size(); 1273 } 1274 } 1275 } 1276 for (const Function &F : M) { 1277 UpdateMaxAlignment(F.getAlign()); 1278 if (F.hasSection()) { 1279 // Give section names unique ID's. 1280 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1281 if (!Entry) { 1282 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1283 0 /*TODO*/); 1284 Entry = SectionMap.size(); 1285 } 1286 } 1287 if (F.hasGC()) { 1288 // Same for GC names. 1289 unsigned &Entry = GCMap[F.getGC()]; 1290 if (!Entry) { 1291 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1292 0 /*TODO*/); 1293 Entry = GCMap.size(); 1294 } 1295 } 1296 } 1297 1298 // Emit abbrev for globals, now that we know # sections and max alignment. 1299 unsigned SimpleGVarAbbrev = 0; 1300 if (!M.global_empty()) { 1301 // Add an abbrev for common globals with no visibility or thread localness. 1302 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1303 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1307 Log2_32_Ceil(MaxGlobalType+1))); 1308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1309 //| explicitType << 1 1310 //| constant 1311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1313 if (!MaxAlignment) // Alignment. 1314 Abbv->Add(BitCodeAbbrevOp(0)); 1315 else { 1316 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1318 Log2_32_Ceil(MaxEncAlignment+1))); 1319 } 1320 if (SectionMap.empty()) // Section. 1321 Abbv->Add(BitCodeAbbrevOp(0)); 1322 else 1323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1324 Log2_32_Ceil(SectionMap.size()+1))); 1325 // Don't bother emitting vis + thread local. 1326 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1327 } 1328 1329 SmallVector<unsigned, 64> Vals; 1330 // Emit the module's source file name. 1331 { 1332 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1333 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1334 if (Bits == SE_Char6) 1335 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1336 else if (Bits == SE_Fixed7) 1337 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1338 1339 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1340 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1341 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1343 Abbv->Add(AbbrevOpToUse); 1344 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1345 1346 for (const auto P : M.getSourceFileName()) 1347 Vals.push_back((unsigned char)P); 1348 1349 // Emit the finished record. 1350 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1351 Vals.clear(); 1352 } 1353 1354 // Emit the global variable information. 1355 for (const GlobalVariable &GV : M.globals()) { 1356 unsigned AbbrevToUse = 0; 1357 1358 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1359 // linkage, alignment, section, visibility, threadlocal, 1360 // unnamed_addr, externally_initialized, dllstorageclass, 1361 // comdat, attributes, DSO_Local, GlobalSanitizer] 1362 Vals.push_back(addToStrtab(GV.getName())); 1363 Vals.push_back(GV.getName().size()); 1364 Vals.push_back(VE.getTypeID(GV.getValueType())); 1365 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1366 Vals.push_back(GV.isDeclaration() ? 0 : 1367 (VE.getValueID(GV.getInitializer()) + 1)); 1368 Vals.push_back(getEncodedLinkage(GV)); 1369 Vals.push_back(getEncodedAlign(GV.getAlign())); 1370 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1371 : 0); 1372 if (GV.isThreadLocal() || 1373 GV.getVisibility() != GlobalValue::DefaultVisibility || 1374 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1375 GV.isExternallyInitialized() || 1376 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1377 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1378 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1379 Vals.push_back(getEncodedVisibility(GV)); 1380 Vals.push_back(getEncodedThreadLocalMode(GV)); 1381 Vals.push_back(getEncodedUnnamedAddr(GV)); 1382 Vals.push_back(GV.isExternallyInitialized()); 1383 Vals.push_back(getEncodedDLLStorageClass(GV)); 1384 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1385 1386 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1387 Vals.push_back(VE.getAttributeListID(AL)); 1388 1389 Vals.push_back(GV.isDSOLocal()); 1390 Vals.push_back(addToStrtab(GV.getPartition())); 1391 Vals.push_back(GV.getPartition().size()); 1392 1393 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1394 GV.getSanitizerMetadata()) 1395 : 0)); 1396 } else { 1397 AbbrevToUse = SimpleGVarAbbrev; 1398 } 1399 1400 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1401 Vals.clear(); 1402 } 1403 1404 // Emit the function proto information. 1405 for (const Function &F : M) { 1406 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1407 // linkage, paramattrs, alignment, section, visibility, gc, 1408 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1409 // prefixdata, personalityfn, DSO_Local, addrspace] 1410 Vals.push_back(addToStrtab(F.getName())); 1411 Vals.push_back(F.getName().size()); 1412 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1413 Vals.push_back(F.getCallingConv()); 1414 Vals.push_back(F.isDeclaration()); 1415 Vals.push_back(getEncodedLinkage(F)); 1416 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1417 Vals.push_back(getEncodedAlign(F.getAlign())); 1418 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1419 : 0); 1420 Vals.push_back(getEncodedVisibility(F)); 1421 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1422 Vals.push_back(getEncodedUnnamedAddr(F)); 1423 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1424 : 0); 1425 Vals.push_back(getEncodedDLLStorageClass(F)); 1426 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1427 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1428 : 0); 1429 Vals.push_back( 1430 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1431 1432 Vals.push_back(F.isDSOLocal()); 1433 Vals.push_back(F.getAddressSpace()); 1434 Vals.push_back(addToStrtab(F.getPartition())); 1435 Vals.push_back(F.getPartition().size()); 1436 1437 unsigned AbbrevToUse = 0; 1438 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1439 Vals.clear(); 1440 } 1441 1442 // Emit the alias information. 1443 for (const GlobalAlias &A : M.aliases()) { 1444 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1445 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1446 // DSO_Local] 1447 Vals.push_back(addToStrtab(A.getName())); 1448 Vals.push_back(A.getName().size()); 1449 Vals.push_back(VE.getTypeID(A.getValueType())); 1450 Vals.push_back(A.getType()->getAddressSpace()); 1451 Vals.push_back(VE.getValueID(A.getAliasee())); 1452 Vals.push_back(getEncodedLinkage(A)); 1453 Vals.push_back(getEncodedVisibility(A)); 1454 Vals.push_back(getEncodedDLLStorageClass(A)); 1455 Vals.push_back(getEncodedThreadLocalMode(A)); 1456 Vals.push_back(getEncodedUnnamedAddr(A)); 1457 Vals.push_back(A.isDSOLocal()); 1458 Vals.push_back(addToStrtab(A.getPartition())); 1459 Vals.push_back(A.getPartition().size()); 1460 1461 unsigned AbbrevToUse = 0; 1462 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1463 Vals.clear(); 1464 } 1465 1466 // Emit the ifunc information. 1467 for (const GlobalIFunc &I : M.ifuncs()) { 1468 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1469 // val#, linkage, visibility, DSO_Local] 1470 Vals.push_back(addToStrtab(I.getName())); 1471 Vals.push_back(I.getName().size()); 1472 Vals.push_back(VE.getTypeID(I.getValueType())); 1473 Vals.push_back(I.getType()->getAddressSpace()); 1474 Vals.push_back(VE.getValueID(I.getResolver())); 1475 Vals.push_back(getEncodedLinkage(I)); 1476 Vals.push_back(getEncodedVisibility(I)); 1477 Vals.push_back(I.isDSOLocal()); 1478 Vals.push_back(addToStrtab(I.getPartition())); 1479 Vals.push_back(I.getPartition().size()); 1480 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1481 Vals.clear(); 1482 } 1483 1484 writeValueSymbolTableForwardDecl(); 1485 } 1486 1487 static uint64_t getOptimizationFlags(const Value *V) { 1488 uint64_t Flags = 0; 1489 1490 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1491 if (OBO->hasNoSignedWrap()) 1492 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1493 if (OBO->hasNoUnsignedWrap()) 1494 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1495 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1496 if (PEO->isExact()) 1497 Flags |= 1 << bitc::PEO_EXACT; 1498 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1499 if (FPMO->hasAllowReassoc()) 1500 Flags |= bitc::AllowReassoc; 1501 if (FPMO->hasNoNaNs()) 1502 Flags |= bitc::NoNaNs; 1503 if (FPMO->hasNoInfs()) 1504 Flags |= bitc::NoInfs; 1505 if (FPMO->hasNoSignedZeros()) 1506 Flags |= bitc::NoSignedZeros; 1507 if (FPMO->hasAllowReciprocal()) 1508 Flags |= bitc::AllowReciprocal; 1509 if (FPMO->hasAllowContract()) 1510 Flags |= bitc::AllowContract; 1511 if (FPMO->hasApproxFunc()) 1512 Flags |= bitc::ApproxFunc; 1513 } 1514 1515 return Flags; 1516 } 1517 1518 void ModuleBitcodeWriter::writeValueAsMetadata( 1519 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1520 // Mimic an MDNode with a value as one operand. 1521 Value *V = MD->getValue(); 1522 Record.push_back(VE.getTypeID(V->getType())); 1523 Record.push_back(VE.getValueID(V)); 1524 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1525 Record.clear(); 1526 } 1527 1528 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1529 SmallVectorImpl<uint64_t> &Record, 1530 unsigned Abbrev) { 1531 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1532 Metadata *MD = N->getOperand(i); 1533 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1534 "Unexpected function-local metadata"); 1535 Record.push_back(VE.getMetadataOrNullID(MD)); 1536 } 1537 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1538 : bitc::METADATA_NODE, 1539 Record, Abbrev); 1540 Record.clear(); 1541 } 1542 1543 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1544 // Assume the column is usually under 128, and always output the inlined-at 1545 // location (it's never more expensive than building an array size 1). 1546 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1547 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1554 return Stream.EmitAbbrev(std::move(Abbv)); 1555 } 1556 1557 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1558 SmallVectorImpl<uint64_t> &Record, 1559 unsigned &Abbrev) { 1560 if (!Abbrev) 1561 Abbrev = createDILocationAbbrev(); 1562 1563 Record.push_back(N->isDistinct()); 1564 Record.push_back(N->getLine()); 1565 Record.push_back(N->getColumn()); 1566 Record.push_back(VE.getMetadataID(N->getScope())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1568 Record.push_back(N->isImplicitCode()); 1569 1570 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1571 Record.clear(); 1572 } 1573 1574 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1575 // Assume the column is usually under 128, and always output the inlined-at 1576 // location (it's never more expensive than building an array size 1). 1577 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1578 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1585 return Stream.EmitAbbrev(std::move(Abbv)); 1586 } 1587 1588 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1589 SmallVectorImpl<uint64_t> &Record, 1590 unsigned &Abbrev) { 1591 if (!Abbrev) 1592 Abbrev = createGenericDINodeAbbrev(); 1593 1594 Record.push_back(N->isDistinct()); 1595 Record.push_back(N->getTag()); 1596 Record.push_back(0); // Per-tag version field; unused for now. 1597 1598 for (auto &I : N->operands()) 1599 Record.push_back(VE.getMetadataOrNullID(I)); 1600 1601 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1602 Record.clear(); 1603 } 1604 1605 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1606 SmallVectorImpl<uint64_t> &Record, 1607 unsigned Abbrev) { 1608 const uint64_t Version = 2 << 1; 1609 Record.push_back((uint64_t)N->isDistinct() | Version); 1610 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1611 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1612 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1613 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1614 1615 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1616 Record.clear(); 1617 } 1618 1619 void ModuleBitcodeWriter::writeDIGenericSubrange( 1620 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1621 unsigned Abbrev) { 1622 Record.push_back((uint64_t)N->isDistinct()); 1623 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1624 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1625 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1626 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1627 1628 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1629 Record.clear(); 1630 } 1631 1632 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1633 if ((int64_t)V >= 0) 1634 Vals.push_back(V << 1); 1635 else 1636 Vals.push_back((-V << 1) | 1); 1637 } 1638 1639 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1640 // We have an arbitrary precision integer value to write whose 1641 // bit width is > 64. However, in canonical unsigned integer 1642 // format it is likely that the high bits are going to be zero. 1643 // So, we only write the number of active words. 1644 unsigned NumWords = A.getActiveWords(); 1645 const uint64_t *RawData = A.getRawData(); 1646 for (unsigned i = 0; i < NumWords; i++) 1647 emitSignedInt64(Vals, RawData[i]); 1648 } 1649 1650 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1651 SmallVectorImpl<uint64_t> &Record, 1652 unsigned Abbrev) { 1653 const uint64_t IsBigInt = 1 << 2; 1654 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1655 Record.push_back(N->getValue().getBitWidth()); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1657 emitWideAPInt(Record, N->getValue()); 1658 1659 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1660 Record.clear(); 1661 } 1662 1663 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1664 SmallVectorImpl<uint64_t> &Record, 1665 unsigned Abbrev) { 1666 Record.push_back(N->isDistinct()); 1667 Record.push_back(N->getTag()); 1668 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1669 Record.push_back(N->getSizeInBits()); 1670 Record.push_back(N->getAlignInBits()); 1671 Record.push_back(N->getEncoding()); 1672 Record.push_back(N->getFlags()); 1673 1674 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1675 Record.clear(); 1676 } 1677 1678 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1679 SmallVectorImpl<uint64_t> &Record, 1680 unsigned Abbrev) { 1681 Record.push_back(N->isDistinct()); 1682 Record.push_back(N->getTag()); 1683 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1684 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1686 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1687 Record.push_back(N->getSizeInBits()); 1688 Record.push_back(N->getAlignInBits()); 1689 Record.push_back(N->getEncoding()); 1690 1691 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1692 Record.clear(); 1693 } 1694 1695 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1696 SmallVectorImpl<uint64_t> &Record, 1697 unsigned Abbrev) { 1698 Record.push_back(N->isDistinct()); 1699 Record.push_back(N->getTag()); 1700 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1701 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1702 Record.push_back(N->getLine()); 1703 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1704 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1705 Record.push_back(N->getSizeInBits()); 1706 Record.push_back(N->getAlignInBits()); 1707 Record.push_back(N->getOffsetInBits()); 1708 Record.push_back(N->getFlags()); 1709 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1710 1711 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1712 // that there is no DWARF address space associated with DIDerivedType. 1713 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1714 Record.push_back(*DWARFAddressSpace + 1); 1715 else 1716 Record.push_back(0); 1717 1718 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1719 1720 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1721 Record.clear(); 1722 } 1723 1724 void ModuleBitcodeWriter::writeDICompositeType( 1725 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1726 unsigned Abbrev) { 1727 const unsigned IsNotUsedInOldTypeRef = 0x2; 1728 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1729 Record.push_back(N->getTag()); 1730 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1731 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1732 Record.push_back(N->getLine()); 1733 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1734 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1735 Record.push_back(N->getSizeInBits()); 1736 Record.push_back(N->getAlignInBits()); 1737 Record.push_back(N->getOffsetInBits()); 1738 Record.push_back(N->getFlags()); 1739 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1740 Record.push_back(N->getRuntimeLang()); 1741 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1742 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1743 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1744 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1745 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1746 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1747 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1749 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1750 1751 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1752 Record.clear(); 1753 } 1754 1755 void ModuleBitcodeWriter::writeDISubroutineType( 1756 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1757 unsigned Abbrev) { 1758 const unsigned HasNoOldTypeRefs = 0x2; 1759 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1760 Record.push_back(N->getFlags()); 1761 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1762 Record.push_back(N->getCC()); 1763 1764 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1765 Record.clear(); 1766 } 1767 1768 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1769 SmallVectorImpl<uint64_t> &Record, 1770 unsigned Abbrev) { 1771 Record.push_back(N->isDistinct()); 1772 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1773 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1774 if (N->getRawChecksum()) { 1775 Record.push_back(N->getRawChecksum()->Kind); 1776 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1777 } else { 1778 // Maintain backwards compatibility with the old internal representation of 1779 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1780 Record.push_back(0); 1781 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1782 } 1783 auto Source = N->getRawSource(); 1784 if (Source) 1785 Record.push_back(VE.getMetadataOrNullID(*Source)); 1786 1787 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1788 Record.clear(); 1789 } 1790 1791 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1792 SmallVectorImpl<uint64_t> &Record, 1793 unsigned Abbrev) { 1794 assert(N->isDistinct() && "Expected distinct compile units"); 1795 Record.push_back(/* IsDistinct */ true); 1796 Record.push_back(N->getSourceLanguage()); 1797 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1799 Record.push_back(N->isOptimized()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1801 Record.push_back(N->getRuntimeVersion()); 1802 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1803 Record.push_back(N->getEmissionKind()); 1804 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1805 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1806 Record.push_back(/* subprograms */ 0); 1807 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1808 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1809 Record.push_back(N->getDWOId()); 1810 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1811 Record.push_back(N->getSplitDebugInlining()); 1812 Record.push_back(N->getDebugInfoForProfiling()); 1813 Record.push_back((unsigned)N->getNameTableKind()); 1814 Record.push_back(N->getRangesBaseAddress()); 1815 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1817 1818 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1819 Record.clear(); 1820 } 1821 1822 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1823 SmallVectorImpl<uint64_t> &Record, 1824 unsigned Abbrev) { 1825 const uint64_t HasUnitFlag = 1 << 1; 1826 const uint64_t HasSPFlagsFlag = 1 << 2; 1827 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1828 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1829 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1830 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1831 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1832 Record.push_back(N->getLine()); 1833 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1834 Record.push_back(N->getScopeLine()); 1835 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1836 Record.push_back(N->getSPFlags()); 1837 Record.push_back(N->getVirtualIndex()); 1838 Record.push_back(N->getFlags()); 1839 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1840 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1841 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1842 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1843 Record.push_back(N->getThisAdjustment()); 1844 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1845 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1846 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1847 1848 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1849 Record.clear(); 1850 } 1851 1852 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1853 SmallVectorImpl<uint64_t> &Record, 1854 unsigned Abbrev) { 1855 Record.push_back(N->isDistinct()); 1856 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1857 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1858 Record.push_back(N->getLine()); 1859 Record.push_back(N->getColumn()); 1860 1861 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1862 Record.clear(); 1863 } 1864 1865 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1866 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1867 unsigned Abbrev) { 1868 Record.push_back(N->isDistinct()); 1869 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1870 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1871 Record.push_back(N->getDiscriminator()); 1872 1873 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1874 Record.clear(); 1875 } 1876 1877 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1878 SmallVectorImpl<uint64_t> &Record, 1879 unsigned Abbrev) { 1880 Record.push_back(N->isDistinct()); 1881 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1882 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1883 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1884 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1885 Record.push_back(N->getLineNo()); 1886 1887 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1888 Record.clear(); 1889 } 1890 1891 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1892 SmallVectorImpl<uint64_t> &Record, 1893 unsigned Abbrev) { 1894 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1895 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1896 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1897 1898 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1899 Record.clear(); 1900 } 1901 1902 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1903 SmallVectorImpl<uint64_t> &Record, 1904 unsigned Abbrev) { 1905 Record.push_back(N->isDistinct()); 1906 Record.push_back(N->getMacinfoType()); 1907 Record.push_back(N->getLine()); 1908 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1909 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1910 1911 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1912 Record.clear(); 1913 } 1914 1915 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1916 SmallVectorImpl<uint64_t> &Record, 1917 unsigned Abbrev) { 1918 Record.push_back(N->isDistinct()); 1919 Record.push_back(N->getMacinfoType()); 1920 Record.push_back(N->getLine()); 1921 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1922 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1923 1924 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1925 Record.clear(); 1926 } 1927 1928 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1929 SmallVectorImpl<uint64_t> &Record, 1930 unsigned Abbrev) { 1931 Record.reserve(N->getArgs().size()); 1932 for (ValueAsMetadata *MD : N->getArgs()) 1933 Record.push_back(VE.getMetadataID(MD)); 1934 1935 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1936 Record.clear(); 1937 } 1938 1939 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1940 SmallVectorImpl<uint64_t> &Record, 1941 unsigned Abbrev) { 1942 Record.push_back(N->isDistinct()); 1943 for (auto &I : N->operands()) 1944 Record.push_back(VE.getMetadataOrNullID(I)); 1945 Record.push_back(N->getLineNo()); 1946 Record.push_back(N->getIsDecl()); 1947 1948 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1949 Record.clear(); 1950 } 1951 1952 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1953 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1954 unsigned Abbrev) { 1955 Record.push_back(N->isDistinct()); 1956 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1957 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1958 Record.push_back(N->isDefault()); 1959 1960 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1961 Record.clear(); 1962 } 1963 1964 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1965 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1966 unsigned Abbrev) { 1967 Record.push_back(N->isDistinct()); 1968 Record.push_back(N->getTag()); 1969 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1970 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1971 Record.push_back(N->isDefault()); 1972 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1973 1974 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1975 Record.clear(); 1976 } 1977 1978 void ModuleBitcodeWriter::writeDIGlobalVariable( 1979 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1980 unsigned Abbrev) { 1981 const uint64_t Version = 2 << 1; 1982 Record.push_back((uint64_t)N->isDistinct() | Version); 1983 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1984 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1985 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1986 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1987 Record.push_back(N->getLine()); 1988 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1989 Record.push_back(N->isLocalToUnit()); 1990 Record.push_back(N->isDefinition()); 1991 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1992 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1993 Record.push_back(N->getAlignInBits()); 1994 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1995 1996 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1997 Record.clear(); 1998 } 1999 2000 void ModuleBitcodeWriter::writeDILocalVariable( 2001 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2002 unsigned Abbrev) { 2003 // In order to support all possible bitcode formats in BitcodeReader we need 2004 // to distinguish the following cases: 2005 // 1) Record has no artificial tag (Record[1]), 2006 // has no obsolete inlinedAt field (Record[9]). 2007 // In this case Record size will be 8, HasAlignment flag is false. 2008 // 2) Record has artificial tag (Record[1]), 2009 // has no obsolete inlignedAt field (Record[9]). 2010 // In this case Record size will be 9, HasAlignment flag is false. 2011 // 3) Record has both artificial tag (Record[1]) and 2012 // obsolete inlignedAt field (Record[9]). 2013 // In this case Record size will be 10, HasAlignment flag is false. 2014 // 4) Record has neither artificial tag, nor inlignedAt field, but 2015 // HasAlignment flag is true and Record[8] contains alignment value. 2016 const uint64_t HasAlignmentFlag = 1 << 1; 2017 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2018 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2019 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2020 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2021 Record.push_back(N->getLine()); 2022 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2023 Record.push_back(N->getArg()); 2024 Record.push_back(N->getFlags()); 2025 Record.push_back(N->getAlignInBits()); 2026 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2027 2028 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2029 Record.clear(); 2030 } 2031 2032 void ModuleBitcodeWriter::writeDILabel( 2033 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2034 unsigned Abbrev) { 2035 Record.push_back((uint64_t)N->isDistinct()); 2036 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2037 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2038 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2039 Record.push_back(N->getLine()); 2040 2041 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2042 Record.clear(); 2043 } 2044 2045 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2046 SmallVectorImpl<uint64_t> &Record, 2047 unsigned Abbrev) { 2048 Record.reserve(N->getElements().size() + 1); 2049 const uint64_t Version = 3 << 1; 2050 Record.push_back((uint64_t)N->isDistinct() | Version); 2051 Record.append(N->elements_begin(), N->elements_end()); 2052 2053 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2054 Record.clear(); 2055 } 2056 2057 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2058 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2059 unsigned Abbrev) { 2060 Record.push_back(N->isDistinct()); 2061 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2062 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2063 2064 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2065 Record.clear(); 2066 } 2067 2068 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2069 SmallVectorImpl<uint64_t> &Record, 2070 unsigned Abbrev) { 2071 Record.push_back(N->isDistinct()); 2072 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2073 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2074 Record.push_back(N->getLine()); 2075 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2076 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2077 Record.push_back(N->getAttributes()); 2078 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2079 2080 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2081 Record.clear(); 2082 } 2083 2084 void ModuleBitcodeWriter::writeDIImportedEntity( 2085 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2086 unsigned Abbrev) { 2087 Record.push_back(N->isDistinct()); 2088 Record.push_back(N->getTag()); 2089 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2090 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2091 Record.push_back(N->getLine()); 2092 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2093 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2094 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2095 2096 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2097 Record.clear(); 2098 } 2099 2100 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2101 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2102 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2105 return Stream.EmitAbbrev(std::move(Abbv)); 2106 } 2107 2108 void ModuleBitcodeWriter::writeNamedMetadata( 2109 SmallVectorImpl<uint64_t> &Record) { 2110 if (M.named_metadata_empty()) 2111 return; 2112 2113 unsigned Abbrev = createNamedMetadataAbbrev(); 2114 for (const NamedMDNode &NMD : M.named_metadata()) { 2115 // Write name. 2116 StringRef Str = NMD.getName(); 2117 Record.append(Str.bytes_begin(), Str.bytes_end()); 2118 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2119 Record.clear(); 2120 2121 // Write named metadata operands. 2122 for (const MDNode *N : NMD.operands()) 2123 Record.push_back(VE.getMetadataID(N)); 2124 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2125 Record.clear(); 2126 } 2127 } 2128 2129 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2130 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2131 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2135 return Stream.EmitAbbrev(std::move(Abbv)); 2136 } 2137 2138 /// Write out a record for MDString. 2139 /// 2140 /// All the metadata strings in a metadata block are emitted in a single 2141 /// record. The sizes and strings themselves are shoved into a blob. 2142 void ModuleBitcodeWriter::writeMetadataStrings( 2143 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2144 if (Strings.empty()) 2145 return; 2146 2147 // Start the record with the number of strings. 2148 Record.push_back(bitc::METADATA_STRINGS); 2149 Record.push_back(Strings.size()); 2150 2151 // Emit the sizes of the strings in the blob. 2152 SmallString<256> Blob; 2153 { 2154 BitstreamWriter W(Blob); 2155 for (const Metadata *MD : Strings) 2156 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2157 W.FlushToWord(); 2158 } 2159 2160 // Add the offset to the strings to the record. 2161 Record.push_back(Blob.size()); 2162 2163 // Add the strings to the blob. 2164 for (const Metadata *MD : Strings) 2165 Blob.append(cast<MDString>(MD)->getString()); 2166 2167 // Emit the final record. 2168 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2169 Record.clear(); 2170 } 2171 2172 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2173 enum MetadataAbbrev : unsigned { 2174 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2175 #include "llvm/IR/Metadata.def" 2176 LastPlusOne 2177 }; 2178 2179 void ModuleBitcodeWriter::writeMetadataRecords( 2180 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2181 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2182 if (MDs.empty()) 2183 return; 2184 2185 // Initialize MDNode abbreviations. 2186 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2187 #include "llvm/IR/Metadata.def" 2188 2189 for (const Metadata *MD : MDs) { 2190 if (IndexPos) 2191 IndexPos->push_back(Stream.GetCurrentBitNo()); 2192 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2193 assert(N->isResolved() && "Expected forward references to be resolved"); 2194 2195 switch (N->getMetadataID()) { 2196 default: 2197 llvm_unreachable("Invalid MDNode subclass"); 2198 #define HANDLE_MDNODE_LEAF(CLASS) \ 2199 case Metadata::CLASS##Kind: \ 2200 if (MDAbbrevs) \ 2201 write##CLASS(cast<CLASS>(N), Record, \ 2202 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2203 else \ 2204 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2205 continue; 2206 #include "llvm/IR/Metadata.def" 2207 } 2208 } 2209 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2210 } 2211 } 2212 2213 void ModuleBitcodeWriter::writeModuleMetadata() { 2214 if (!VE.hasMDs() && M.named_metadata_empty()) 2215 return; 2216 2217 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2218 SmallVector<uint64_t, 64> Record; 2219 2220 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2221 // block and load any metadata. 2222 std::vector<unsigned> MDAbbrevs; 2223 2224 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2225 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2226 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2227 createGenericDINodeAbbrev(); 2228 2229 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2230 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2233 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2234 2235 Abbv = std::make_shared<BitCodeAbbrev>(); 2236 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2239 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2240 2241 // Emit MDStrings together upfront. 2242 writeMetadataStrings(VE.getMDStrings(), Record); 2243 2244 // We only emit an index for the metadata record if we have more than a given 2245 // (naive) threshold of metadatas, otherwise it is not worth it. 2246 if (VE.getNonMDStrings().size() > IndexThreshold) { 2247 // Write a placeholder value in for the offset of the metadata index, 2248 // which is written after the records, so that it can include 2249 // the offset of each entry. The placeholder offset will be 2250 // updated after all records are emitted. 2251 uint64_t Vals[] = {0, 0}; 2252 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2253 } 2254 2255 // Compute and save the bit offset to the current position, which will be 2256 // patched when we emit the index later. We can simply subtract the 64-bit 2257 // fixed size from the current bit number to get the location to backpatch. 2258 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2259 2260 // This index will contain the bitpos for each individual record. 2261 std::vector<uint64_t> IndexPos; 2262 IndexPos.reserve(VE.getNonMDStrings().size()); 2263 2264 // Write all the records 2265 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2266 2267 if (VE.getNonMDStrings().size() > IndexThreshold) { 2268 // Now that we have emitted all the records we will emit the index. But 2269 // first 2270 // backpatch the forward reference so that the reader can skip the records 2271 // efficiently. 2272 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2273 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2274 2275 // Delta encode the index. 2276 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2277 for (auto &Elt : IndexPos) { 2278 auto EltDelta = Elt - PreviousValue; 2279 PreviousValue = Elt; 2280 Elt = EltDelta; 2281 } 2282 // Emit the index record. 2283 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2284 IndexPos.clear(); 2285 } 2286 2287 // Write the named metadata now. 2288 writeNamedMetadata(Record); 2289 2290 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2291 SmallVector<uint64_t, 4> Record; 2292 Record.push_back(VE.getValueID(&GO)); 2293 pushGlobalMetadataAttachment(Record, GO); 2294 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2295 }; 2296 for (const Function &F : M) 2297 if (F.isDeclaration() && F.hasMetadata()) 2298 AddDeclAttachedMetadata(F); 2299 // FIXME: Only store metadata for declarations here, and move data for global 2300 // variable definitions to a separate block (PR28134). 2301 for (const GlobalVariable &GV : M.globals()) 2302 if (GV.hasMetadata()) 2303 AddDeclAttachedMetadata(GV); 2304 2305 Stream.ExitBlock(); 2306 } 2307 2308 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2309 if (!VE.hasMDs()) 2310 return; 2311 2312 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2313 SmallVector<uint64_t, 64> Record; 2314 writeMetadataStrings(VE.getMDStrings(), Record); 2315 writeMetadataRecords(VE.getNonMDStrings(), Record); 2316 Stream.ExitBlock(); 2317 } 2318 2319 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2320 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2321 // [n x [id, mdnode]] 2322 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2323 GO.getAllMetadata(MDs); 2324 for (const auto &I : MDs) { 2325 Record.push_back(I.first); 2326 Record.push_back(VE.getMetadataID(I.second)); 2327 } 2328 } 2329 2330 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2331 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2332 2333 SmallVector<uint64_t, 64> Record; 2334 2335 if (F.hasMetadata()) { 2336 pushGlobalMetadataAttachment(Record, F); 2337 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2338 Record.clear(); 2339 } 2340 2341 // Write metadata attachments 2342 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2343 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2344 for (const BasicBlock &BB : F) 2345 for (const Instruction &I : BB) { 2346 MDs.clear(); 2347 I.getAllMetadataOtherThanDebugLoc(MDs); 2348 2349 // If no metadata, ignore instruction. 2350 if (MDs.empty()) continue; 2351 2352 Record.push_back(VE.getInstructionID(&I)); 2353 2354 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2355 Record.push_back(MDs[i].first); 2356 Record.push_back(VE.getMetadataID(MDs[i].second)); 2357 } 2358 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2359 Record.clear(); 2360 } 2361 2362 Stream.ExitBlock(); 2363 } 2364 2365 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2366 SmallVector<uint64_t, 64> Record; 2367 2368 // Write metadata kinds 2369 // METADATA_KIND - [n x [id, name]] 2370 SmallVector<StringRef, 8> Names; 2371 M.getMDKindNames(Names); 2372 2373 if (Names.empty()) return; 2374 2375 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2376 2377 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2378 Record.push_back(MDKindID); 2379 StringRef KName = Names[MDKindID]; 2380 Record.append(KName.begin(), KName.end()); 2381 2382 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2383 Record.clear(); 2384 } 2385 2386 Stream.ExitBlock(); 2387 } 2388 2389 void ModuleBitcodeWriter::writeOperandBundleTags() { 2390 // Write metadata kinds 2391 // 2392 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2393 // 2394 // OPERAND_BUNDLE_TAG - [strchr x N] 2395 2396 SmallVector<StringRef, 8> Tags; 2397 M.getOperandBundleTags(Tags); 2398 2399 if (Tags.empty()) 2400 return; 2401 2402 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2403 2404 SmallVector<uint64_t, 64> Record; 2405 2406 for (auto Tag : Tags) { 2407 Record.append(Tag.begin(), Tag.end()); 2408 2409 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2410 Record.clear(); 2411 } 2412 2413 Stream.ExitBlock(); 2414 } 2415 2416 void ModuleBitcodeWriter::writeSyncScopeNames() { 2417 SmallVector<StringRef, 8> SSNs; 2418 M.getContext().getSyncScopeNames(SSNs); 2419 if (SSNs.empty()) 2420 return; 2421 2422 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2423 2424 SmallVector<uint64_t, 64> Record; 2425 for (auto SSN : SSNs) { 2426 Record.append(SSN.begin(), SSN.end()); 2427 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2428 Record.clear(); 2429 } 2430 2431 Stream.ExitBlock(); 2432 } 2433 2434 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2435 bool isGlobal) { 2436 if (FirstVal == LastVal) return; 2437 2438 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2439 2440 unsigned AggregateAbbrev = 0; 2441 unsigned String8Abbrev = 0; 2442 unsigned CString7Abbrev = 0; 2443 unsigned CString6Abbrev = 0; 2444 // If this is a constant pool for the module, emit module-specific abbrevs. 2445 if (isGlobal) { 2446 // Abbrev for CST_CODE_AGGREGATE. 2447 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2448 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2451 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2452 2453 // Abbrev for CST_CODE_STRING. 2454 Abbv = std::make_shared<BitCodeAbbrev>(); 2455 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2458 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2459 // Abbrev for CST_CODE_CSTRING. 2460 Abbv = std::make_shared<BitCodeAbbrev>(); 2461 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2464 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2465 // Abbrev for CST_CODE_CSTRING. 2466 Abbv = std::make_shared<BitCodeAbbrev>(); 2467 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2470 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2471 } 2472 2473 SmallVector<uint64_t, 64> Record; 2474 2475 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2476 Type *LastTy = nullptr; 2477 for (unsigned i = FirstVal; i != LastVal; ++i) { 2478 const Value *V = Vals[i].first; 2479 // If we need to switch types, do so now. 2480 if (V->getType() != LastTy) { 2481 LastTy = V->getType(); 2482 Record.push_back(VE.getTypeID(LastTy)); 2483 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2484 CONSTANTS_SETTYPE_ABBREV); 2485 Record.clear(); 2486 } 2487 2488 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2489 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2490 Record.push_back( 2491 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2492 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2493 2494 // Add the asm string. 2495 const std::string &AsmStr = IA->getAsmString(); 2496 Record.push_back(AsmStr.size()); 2497 Record.append(AsmStr.begin(), AsmStr.end()); 2498 2499 // Add the constraint string. 2500 const std::string &ConstraintStr = IA->getConstraintString(); 2501 Record.push_back(ConstraintStr.size()); 2502 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2503 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2504 Record.clear(); 2505 continue; 2506 } 2507 const Constant *C = cast<Constant>(V); 2508 unsigned Code = -1U; 2509 unsigned AbbrevToUse = 0; 2510 if (C->isNullValue()) { 2511 Code = bitc::CST_CODE_NULL; 2512 } else if (isa<PoisonValue>(C)) { 2513 Code = bitc::CST_CODE_POISON; 2514 } else if (isa<UndefValue>(C)) { 2515 Code = bitc::CST_CODE_UNDEF; 2516 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2517 if (IV->getBitWidth() <= 64) { 2518 uint64_t V = IV->getSExtValue(); 2519 emitSignedInt64(Record, V); 2520 Code = bitc::CST_CODE_INTEGER; 2521 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2522 } else { // Wide integers, > 64 bits in size. 2523 emitWideAPInt(Record, IV->getValue()); 2524 Code = bitc::CST_CODE_WIDE_INTEGER; 2525 } 2526 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2527 Code = bitc::CST_CODE_FLOAT; 2528 Type *Ty = CFP->getType(); 2529 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2530 Ty->isDoubleTy()) { 2531 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2532 } else if (Ty->isX86_FP80Ty()) { 2533 // api needed to prevent premature destruction 2534 // bits are not in the same order as a normal i80 APInt, compensate. 2535 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2536 const uint64_t *p = api.getRawData(); 2537 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2538 Record.push_back(p[0] & 0xffffLL); 2539 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2540 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2541 const uint64_t *p = api.getRawData(); 2542 Record.push_back(p[0]); 2543 Record.push_back(p[1]); 2544 } else { 2545 assert(0 && "Unknown FP type!"); 2546 } 2547 } else if (isa<ConstantDataSequential>(C) && 2548 cast<ConstantDataSequential>(C)->isString()) { 2549 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2550 // Emit constant strings specially. 2551 unsigned NumElts = Str->getNumElements(); 2552 // If this is a null-terminated string, use the denser CSTRING encoding. 2553 if (Str->isCString()) { 2554 Code = bitc::CST_CODE_CSTRING; 2555 --NumElts; // Don't encode the null, which isn't allowed by char6. 2556 } else { 2557 Code = bitc::CST_CODE_STRING; 2558 AbbrevToUse = String8Abbrev; 2559 } 2560 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2561 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2562 for (unsigned i = 0; i != NumElts; ++i) { 2563 unsigned char V = Str->getElementAsInteger(i); 2564 Record.push_back(V); 2565 isCStr7 &= (V & 128) == 0; 2566 if (isCStrChar6) 2567 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2568 } 2569 2570 if (isCStrChar6) 2571 AbbrevToUse = CString6Abbrev; 2572 else if (isCStr7) 2573 AbbrevToUse = CString7Abbrev; 2574 } else if (const ConstantDataSequential *CDS = 2575 dyn_cast<ConstantDataSequential>(C)) { 2576 Code = bitc::CST_CODE_DATA; 2577 Type *EltTy = CDS->getElementType(); 2578 if (isa<IntegerType>(EltTy)) { 2579 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2580 Record.push_back(CDS->getElementAsInteger(i)); 2581 } else { 2582 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2583 Record.push_back( 2584 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2585 } 2586 } else if (isa<ConstantAggregate>(C)) { 2587 Code = bitc::CST_CODE_AGGREGATE; 2588 for (const Value *Op : C->operands()) 2589 Record.push_back(VE.getValueID(Op)); 2590 AbbrevToUse = AggregateAbbrev; 2591 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2592 switch (CE->getOpcode()) { 2593 default: 2594 if (Instruction::isCast(CE->getOpcode())) { 2595 Code = bitc::CST_CODE_CE_CAST; 2596 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2597 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2598 Record.push_back(VE.getValueID(C->getOperand(0))); 2599 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2600 } else { 2601 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2602 Code = bitc::CST_CODE_CE_BINOP; 2603 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2604 Record.push_back(VE.getValueID(C->getOperand(0))); 2605 Record.push_back(VE.getValueID(C->getOperand(1))); 2606 uint64_t Flags = getOptimizationFlags(CE); 2607 if (Flags != 0) 2608 Record.push_back(Flags); 2609 } 2610 break; 2611 case Instruction::FNeg: { 2612 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2613 Code = bitc::CST_CODE_CE_UNOP; 2614 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2615 Record.push_back(VE.getValueID(C->getOperand(0))); 2616 uint64_t Flags = getOptimizationFlags(CE); 2617 if (Flags != 0) 2618 Record.push_back(Flags); 2619 break; 2620 } 2621 case Instruction::GetElementPtr: { 2622 Code = bitc::CST_CODE_CE_GEP; 2623 const auto *GO = cast<GEPOperator>(C); 2624 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2625 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2626 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2627 Record.push_back((*Idx << 1) | GO->isInBounds()); 2628 } else if (GO->isInBounds()) 2629 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2630 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2631 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2632 Record.push_back(VE.getValueID(C->getOperand(i))); 2633 } 2634 break; 2635 } 2636 case Instruction::Select: 2637 Code = bitc::CST_CODE_CE_SELECT; 2638 Record.push_back(VE.getValueID(C->getOperand(0))); 2639 Record.push_back(VE.getValueID(C->getOperand(1))); 2640 Record.push_back(VE.getValueID(C->getOperand(2))); 2641 break; 2642 case Instruction::ExtractElement: 2643 Code = bitc::CST_CODE_CE_EXTRACTELT; 2644 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2645 Record.push_back(VE.getValueID(C->getOperand(0))); 2646 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2647 Record.push_back(VE.getValueID(C->getOperand(1))); 2648 break; 2649 case Instruction::InsertElement: 2650 Code = bitc::CST_CODE_CE_INSERTELT; 2651 Record.push_back(VE.getValueID(C->getOperand(0))); 2652 Record.push_back(VE.getValueID(C->getOperand(1))); 2653 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2654 Record.push_back(VE.getValueID(C->getOperand(2))); 2655 break; 2656 case Instruction::ShuffleVector: 2657 // If the return type and argument types are the same, this is a 2658 // standard shufflevector instruction. If the types are different, 2659 // then the shuffle is widening or truncating the input vectors, and 2660 // the argument type must also be encoded. 2661 if (C->getType() == C->getOperand(0)->getType()) { 2662 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2663 } else { 2664 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2665 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2666 } 2667 Record.push_back(VE.getValueID(C->getOperand(0))); 2668 Record.push_back(VE.getValueID(C->getOperand(1))); 2669 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2670 break; 2671 case Instruction::ICmp: 2672 case Instruction::FCmp: 2673 Code = bitc::CST_CODE_CE_CMP; 2674 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2675 Record.push_back(VE.getValueID(C->getOperand(0))); 2676 Record.push_back(VE.getValueID(C->getOperand(1))); 2677 Record.push_back(CE->getPredicate()); 2678 break; 2679 } 2680 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2681 Code = bitc::CST_CODE_BLOCKADDRESS; 2682 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2683 Record.push_back(VE.getValueID(BA->getFunction())); 2684 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2685 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2686 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2687 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2688 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2689 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2690 Code = bitc::CST_CODE_NO_CFI_VALUE; 2691 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2692 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2693 } else { 2694 #ifndef NDEBUG 2695 C->dump(); 2696 #endif 2697 llvm_unreachable("Unknown constant!"); 2698 } 2699 Stream.EmitRecord(Code, Record, AbbrevToUse); 2700 Record.clear(); 2701 } 2702 2703 Stream.ExitBlock(); 2704 } 2705 2706 void ModuleBitcodeWriter::writeModuleConstants() { 2707 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2708 2709 // Find the first constant to emit, which is the first non-globalvalue value. 2710 // We know globalvalues have been emitted by WriteModuleInfo. 2711 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2712 if (!isa<GlobalValue>(Vals[i].first)) { 2713 writeConstants(i, Vals.size(), true); 2714 return; 2715 } 2716 } 2717 } 2718 2719 /// pushValueAndType - The file has to encode both the value and type id for 2720 /// many values, because we need to know what type to create for forward 2721 /// references. However, most operands are not forward references, so this type 2722 /// field is not needed. 2723 /// 2724 /// This function adds V's value ID to Vals. If the value ID is higher than the 2725 /// instruction ID, then it is a forward reference, and it also includes the 2726 /// type ID. The value ID that is written is encoded relative to the InstID. 2727 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2728 SmallVectorImpl<unsigned> &Vals) { 2729 unsigned ValID = VE.getValueID(V); 2730 // Make encoding relative to the InstID. 2731 Vals.push_back(InstID - ValID); 2732 if (ValID >= InstID) { 2733 Vals.push_back(VE.getTypeID(V->getType())); 2734 return true; 2735 } 2736 return false; 2737 } 2738 2739 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2740 unsigned InstID) { 2741 SmallVector<unsigned, 64> Record; 2742 LLVMContext &C = CS.getContext(); 2743 2744 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2745 const auto &Bundle = CS.getOperandBundleAt(i); 2746 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2747 2748 for (auto &Input : Bundle.Inputs) 2749 pushValueAndType(Input, InstID, Record); 2750 2751 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2752 Record.clear(); 2753 } 2754 } 2755 2756 /// pushValue - Like pushValueAndType, but where the type of the value is 2757 /// omitted (perhaps it was already encoded in an earlier operand). 2758 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2759 SmallVectorImpl<unsigned> &Vals) { 2760 unsigned ValID = VE.getValueID(V); 2761 Vals.push_back(InstID - ValID); 2762 } 2763 2764 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2765 SmallVectorImpl<uint64_t> &Vals) { 2766 unsigned ValID = VE.getValueID(V); 2767 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2768 emitSignedInt64(Vals, diff); 2769 } 2770 2771 /// WriteInstruction - Emit an instruction to the specified stream. 2772 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2773 unsigned InstID, 2774 SmallVectorImpl<unsigned> &Vals) { 2775 unsigned Code = 0; 2776 unsigned AbbrevToUse = 0; 2777 VE.setInstructionID(&I); 2778 switch (I.getOpcode()) { 2779 default: 2780 if (Instruction::isCast(I.getOpcode())) { 2781 Code = bitc::FUNC_CODE_INST_CAST; 2782 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2783 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2784 Vals.push_back(VE.getTypeID(I.getType())); 2785 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2786 } else { 2787 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2788 Code = bitc::FUNC_CODE_INST_BINOP; 2789 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2790 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2791 pushValue(I.getOperand(1), InstID, Vals); 2792 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2793 uint64_t Flags = getOptimizationFlags(&I); 2794 if (Flags != 0) { 2795 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2796 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2797 Vals.push_back(Flags); 2798 } 2799 } 2800 break; 2801 case Instruction::FNeg: { 2802 Code = bitc::FUNC_CODE_INST_UNOP; 2803 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2804 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2805 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2806 uint64_t Flags = getOptimizationFlags(&I); 2807 if (Flags != 0) { 2808 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2809 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2810 Vals.push_back(Flags); 2811 } 2812 break; 2813 } 2814 case Instruction::GetElementPtr: { 2815 Code = bitc::FUNC_CODE_INST_GEP; 2816 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2817 auto &GEPInst = cast<GetElementPtrInst>(I); 2818 Vals.push_back(GEPInst.isInBounds()); 2819 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2820 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2821 pushValueAndType(I.getOperand(i), InstID, Vals); 2822 break; 2823 } 2824 case Instruction::ExtractValue: { 2825 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2826 pushValueAndType(I.getOperand(0), InstID, Vals); 2827 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2828 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2829 break; 2830 } 2831 case Instruction::InsertValue: { 2832 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2833 pushValueAndType(I.getOperand(0), InstID, Vals); 2834 pushValueAndType(I.getOperand(1), InstID, Vals); 2835 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2836 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2837 break; 2838 } 2839 case Instruction::Select: { 2840 Code = bitc::FUNC_CODE_INST_VSELECT; 2841 pushValueAndType(I.getOperand(1), InstID, Vals); 2842 pushValue(I.getOperand(2), InstID, Vals); 2843 pushValueAndType(I.getOperand(0), InstID, Vals); 2844 uint64_t Flags = getOptimizationFlags(&I); 2845 if (Flags != 0) 2846 Vals.push_back(Flags); 2847 break; 2848 } 2849 case Instruction::ExtractElement: 2850 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2851 pushValueAndType(I.getOperand(0), InstID, Vals); 2852 pushValueAndType(I.getOperand(1), InstID, Vals); 2853 break; 2854 case Instruction::InsertElement: 2855 Code = bitc::FUNC_CODE_INST_INSERTELT; 2856 pushValueAndType(I.getOperand(0), InstID, Vals); 2857 pushValue(I.getOperand(1), InstID, Vals); 2858 pushValueAndType(I.getOperand(2), InstID, Vals); 2859 break; 2860 case Instruction::ShuffleVector: 2861 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2862 pushValueAndType(I.getOperand(0), InstID, Vals); 2863 pushValue(I.getOperand(1), InstID, Vals); 2864 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2865 Vals); 2866 break; 2867 case Instruction::ICmp: 2868 case Instruction::FCmp: { 2869 // compare returning Int1Ty or vector of Int1Ty 2870 Code = bitc::FUNC_CODE_INST_CMP2; 2871 pushValueAndType(I.getOperand(0), InstID, Vals); 2872 pushValue(I.getOperand(1), InstID, Vals); 2873 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2874 uint64_t Flags = getOptimizationFlags(&I); 2875 if (Flags != 0) 2876 Vals.push_back(Flags); 2877 break; 2878 } 2879 2880 case Instruction::Ret: 2881 { 2882 Code = bitc::FUNC_CODE_INST_RET; 2883 unsigned NumOperands = I.getNumOperands(); 2884 if (NumOperands == 0) 2885 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2886 else if (NumOperands == 1) { 2887 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2888 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2889 } else { 2890 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2891 pushValueAndType(I.getOperand(i), InstID, Vals); 2892 } 2893 } 2894 break; 2895 case Instruction::Br: 2896 { 2897 Code = bitc::FUNC_CODE_INST_BR; 2898 const BranchInst &II = cast<BranchInst>(I); 2899 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2900 if (II.isConditional()) { 2901 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2902 pushValue(II.getCondition(), InstID, Vals); 2903 } 2904 } 2905 break; 2906 case Instruction::Switch: 2907 { 2908 Code = bitc::FUNC_CODE_INST_SWITCH; 2909 const SwitchInst &SI = cast<SwitchInst>(I); 2910 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2911 pushValue(SI.getCondition(), InstID, Vals); 2912 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2913 for (auto Case : SI.cases()) { 2914 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2915 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2916 } 2917 } 2918 break; 2919 case Instruction::IndirectBr: 2920 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2921 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2922 // Encode the address operand as relative, but not the basic blocks. 2923 pushValue(I.getOperand(0), InstID, Vals); 2924 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2925 Vals.push_back(VE.getValueID(I.getOperand(i))); 2926 break; 2927 2928 case Instruction::Invoke: { 2929 const InvokeInst *II = cast<InvokeInst>(&I); 2930 const Value *Callee = II->getCalledOperand(); 2931 FunctionType *FTy = II->getFunctionType(); 2932 2933 if (II->hasOperandBundles()) 2934 writeOperandBundles(*II, InstID); 2935 2936 Code = bitc::FUNC_CODE_INST_INVOKE; 2937 2938 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2939 Vals.push_back(II->getCallingConv() | 1 << 13); 2940 Vals.push_back(VE.getValueID(II->getNormalDest())); 2941 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2942 Vals.push_back(VE.getTypeID(FTy)); 2943 pushValueAndType(Callee, InstID, Vals); 2944 2945 // Emit value #'s for the fixed parameters. 2946 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2947 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2948 2949 // Emit type/value pairs for varargs params. 2950 if (FTy->isVarArg()) { 2951 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2952 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2953 } 2954 break; 2955 } 2956 case Instruction::Resume: 2957 Code = bitc::FUNC_CODE_INST_RESUME; 2958 pushValueAndType(I.getOperand(0), InstID, Vals); 2959 break; 2960 case Instruction::CleanupRet: { 2961 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2962 const auto &CRI = cast<CleanupReturnInst>(I); 2963 pushValue(CRI.getCleanupPad(), InstID, Vals); 2964 if (CRI.hasUnwindDest()) 2965 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2966 break; 2967 } 2968 case Instruction::CatchRet: { 2969 Code = bitc::FUNC_CODE_INST_CATCHRET; 2970 const auto &CRI = cast<CatchReturnInst>(I); 2971 pushValue(CRI.getCatchPad(), InstID, Vals); 2972 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2973 break; 2974 } 2975 case Instruction::CleanupPad: 2976 case Instruction::CatchPad: { 2977 const auto &FuncletPad = cast<FuncletPadInst>(I); 2978 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2979 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2980 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2981 2982 unsigned NumArgOperands = FuncletPad.arg_size(); 2983 Vals.push_back(NumArgOperands); 2984 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2985 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2986 break; 2987 } 2988 case Instruction::CatchSwitch: { 2989 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2990 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2991 2992 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2993 2994 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2995 Vals.push_back(NumHandlers); 2996 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2997 Vals.push_back(VE.getValueID(CatchPadBB)); 2998 2999 if (CatchSwitch.hasUnwindDest()) 3000 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3001 break; 3002 } 3003 case Instruction::CallBr: { 3004 const CallBrInst *CBI = cast<CallBrInst>(&I); 3005 const Value *Callee = CBI->getCalledOperand(); 3006 FunctionType *FTy = CBI->getFunctionType(); 3007 3008 if (CBI->hasOperandBundles()) 3009 writeOperandBundles(*CBI, InstID); 3010 3011 Code = bitc::FUNC_CODE_INST_CALLBR; 3012 3013 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3014 3015 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3016 1 << bitc::CALL_EXPLICIT_TYPE); 3017 3018 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3019 Vals.push_back(CBI->getNumIndirectDests()); 3020 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3021 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3022 3023 Vals.push_back(VE.getTypeID(FTy)); 3024 pushValueAndType(Callee, InstID, Vals); 3025 3026 // Emit value #'s for the fixed parameters. 3027 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3028 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3029 3030 // Emit type/value pairs for varargs params. 3031 if (FTy->isVarArg()) { 3032 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3033 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3034 } 3035 break; 3036 } 3037 case Instruction::Unreachable: 3038 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3039 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3040 break; 3041 3042 case Instruction::PHI: { 3043 const PHINode &PN = cast<PHINode>(I); 3044 Code = bitc::FUNC_CODE_INST_PHI; 3045 // With the newer instruction encoding, forward references could give 3046 // negative valued IDs. This is most common for PHIs, so we use 3047 // signed VBRs. 3048 SmallVector<uint64_t, 128> Vals64; 3049 Vals64.push_back(VE.getTypeID(PN.getType())); 3050 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3051 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3052 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3053 } 3054 3055 uint64_t Flags = getOptimizationFlags(&I); 3056 if (Flags != 0) 3057 Vals64.push_back(Flags); 3058 3059 // Emit a Vals64 vector and exit. 3060 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3061 Vals64.clear(); 3062 return; 3063 } 3064 3065 case Instruction::LandingPad: { 3066 const LandingPadInst &LP = cast<LandingPadInst>(I); 3067 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3068 Vals.push_back(VE.getTypeID(LP.getType())); 3069 Vals.push_back(LP.isCleanup()); 3070 Vals.push_back(LP.getNumClauses()); 3071 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3072 if (LP.isCatch(I)) 3073 Vals.push_back(LandingPadInst::Catch); 3074 else 3075 Vals.push_back(LandingPadInst::Filter); 3076 pushValueAndType(LP.getClause(I), InstID, Vals); 3077 } 3078 break; 3079 } 3080 3081 case Instruction::Alloca: { 3082 Code = bitc::FUNC_CODE_INST_ALLOCA; 3083 const AllocaInst &AI = cast<AllocaInst>(I); 3084 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3085 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3086 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3087 using APV = AllocaPackedValues; 3088 unsigned Record = 0; 3089 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3090 Bitfield::set<APV::AlignLower>( 3091 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3092 Bitfield::set<APV::AlignUpper>(Record, 3093 EncodedAlign >> APV::AlignLower::Bits); 3094 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3095 Bitfield::set<APV::ExplicitType>(Record, true); 3096 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3097 Vals.push_back(Record); 3098 3099 unsigned AS = AI.getAddressSpace(); 3100 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3101 Vals.push_back(AS); 3102 break; 3103 } 3104 3105 case Instruction::Load: 3106 if (cast<LoadInst>(I).isAtomic()) { 3107 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3108 pushValueAndType(I.getOperand(0), InstID, Vals); 3109 } else { 3110 Code = bitc::FUNC_CODE_INST_LOAD; 3111 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3112 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3113 } 3114 Vals.push_back(VE.getTypeID(I.getType())); 3115 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3116 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3117 if (cast<LoadInst>(I).isAtomic()) { 3118 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3119 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3120 } 3121 break; 3122 case Instruction::Store: 3123 if (cast<StoreInst>(I).isAtomic()) 3124 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3125 else 3126 Code = bitc::FUNC_CODE_INST_STORE; 3127 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3128 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3129 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3130 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3131 if (cast<StoreInst>(I).isAtomic()) { 3132 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3133 Vals.push_back( 3134 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3135 } 3136 break; 3137 case Instruction::AtomicCmpXchg: 3138 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3139 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3140 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3141 pushValue(I.getOperand(2), InstID, Vals); // newval. 3142 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3143 Vals.push_back( 3144 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3145 Vals.push_back( 3146 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3147 Vals.push_back( 3148 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3149 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3150 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3151 break; 3152 case Instruction::AtomicRMW: 3153 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3154 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3155 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3156 Vals.push_back( 3157 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3158 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3159 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3160 Vals.push_back( 3161 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3162 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3163 break; 3164 case Instruction::Fence: 3165 Code = bitc::FUNC_CODE_INST_FENCE; 3166 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3167 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3168 break; 3169 case Instruction::Call: { 3170 const CallInst &CI = cast<CallInst>(I); 3171 FunctionType *FTy = CI.getFunctionType(); 3172 3173 if (CI.hasOperandBundles()) 3174 writeOperandBundles(CI, InstID); 3175 3176 Code = bitc::FUNC_CODE_INST_CALL; 3177 3178 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3179 3180 unsigned Flags = getOptimizationFlags(&I); 3181 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3182 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3183 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3184 1 << bitc::CALL_EXPLICIT_TYPE | 3185 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3186 unsigned(Flags != 0) << bitc::CALL_FMF); 3187 if (Flags != 0) 3188 Vals.push_back(Flags); 3189 3190 Vals.push_back(VE.getTypeID(FTy)); 3191 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3192 3193 // Emit value #'s for the fixed parameters. 3194 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3195 // Check for labels (can happen with asm labels). 3196 if (FTy->getParamType(i)->isLabelTy()) 3197 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3198 else 3199 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3200 } 3201 3202 // Emit type/value pairs for varargs params. 3203 if (FTy->isVarArg()) { 3204 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3205 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3206 } 3207 break; 3208 } 3209 case Instruction::VAArg: 3210 Code = bitc::FUNC_CODE_INST_VAARG; 3211 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3212 pushValue(I.getOperand(0), InstID, Vals); // valist. 3213 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3214 break; 3215 case Instruction::Freeze: 3216 Code = bitc::FUNC_CODE_INST_FREEZE; 3217 pushValueAndType(I.getOperand(0), InstID, Vals); 3218 break; 3219 } 3220 3221 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3222 Vals.clear(); 3223 } 3224 3225 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3226 /// to allow clients to efficiently find the function body. 3227 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3228 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3229 // Get the offset of the VST we are writing, and backpatch it into 3230 // the VST forward declaration record. 3231 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3232 // The BitcodeStartBit was the stream offset of the identification block. 3233 VSTOffset -= bitcodeStartBit(); 3234 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3235 // Note that we add 1 here because the offset is relative to one word 3236 // before the start of the identification block, which was historically 3237 // always the start of the regular bitcode header. 3238 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3239 3240 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3241 3242 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3243 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3246 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3247 3248 for (const Function &F : M) { 3249 uint64_t Record[2]; 3250 3251 if (F.isDeclaration()) 3252 continue; 3253 3254 Record[0] = VE.getValueID(&F); 3255 3256 // Save the word offset of the function (from the start of the 3257 // actual bitcode written to the stream). 3258 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3259 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3260 // Note that we add 1 here because the offset is relative to one word 3261 // before the start of the identification block, which was historically 3262 // always the start of the regular bitcode header. 3263 Record[1] = BitcodeIndex / 32 + 1; 3264 3265 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3266 } 3267 3268 Stream.ExitBlock(); 3269 } 3270 3271 /// Emit names for arguments, instructions and basic blocks in a function. 3272 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3273 const ValueSymbolTable &VST) { 3274 if (VST.empty()) 3275 return; 3276 3277 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3278 3279 // FIXME: Set up the abbrev, we know how many values there are! 3280 // FIXME: We know if the type names can use 7-bit ascii. 3281 SmallVector<uint64_t, 64> NameVals; 3282 3283 for (const ValueName &Name : VST) { 3284 // Figure out the encoding to use for the name. 3285 StringEncoding Bits = getStringEncoding(Name.getKey()); 3286 3287 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3288 NameVals.push_back(VE.getValueID(Name.getValue())); 3289 3290 // VST_CODE_ENTRY: [valueid, namechar x N] 3291 // VST_CODE_BBENTRY: [bbid, namechar x N] 3292 unsigned Code; 3293 if (isa<BasicBlock>(Name.getValue())) { 3294 Code = bitc::VST_CODE_BBENTRY; 3295 if (Bits == SE_Char6) 3296 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3297 } else { 3298 Code = bitc::VST_CODE_ENTRY; 3299 if (Bits == SE_Char6) 3300 AbbrevToUse = VST_ENTRY_6_ABBREV; 3301 else if (Bits == SE_Fixed7) 3302 AbbrevToUse = VST_ENTRY_7_ABBREV; 3303 } 3304 3305 for (const auto P : Name.getKey()) 3306 NameVals.push_back((unsigned char)P); 3307 3308 // Emit the finished record. 3309 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3310 NameVals.clear(); 3311 } 3312 3313 Stream.ExitBlock(); 3314 } 3315 3316 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3317 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3318 unsigned Code; 3319 if (isa<BasicBlock>(Order.V)) 3320 Code = bitc::USELIST_CODE_BB; 3321 else 3322 Code = bitc::USELIST_CODE_DEFAULT; 3323 3324 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3325 Record.push_back(VE.getValueID(Order.V)); 3326 Stream.EmitRecord(Code, Record); 3327 } 3328 3329 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3330 assert(VE.shouldPreserveUseListOrder() && 3331 "Expected to be preserving use-list order"); 3332 3333 auto hasMore = [&]() { 3334 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3335 }; 3336 if (!hasMore()) 3337 // Nothing to do. 3338 return; 3339 3340 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3341 while (hasMore()) { 3342 writeUseList(std::move(VE.UseListOrders.back())); 3343 VE.UseListOrders.pop_back(); 3344 } 3345 Stream.ExitBlock(); 3346 } 3347 3348 /// Emit a function body to the module stream. 3349 void ModuleBitcodeWriter::writeFunction( 3350 const Function &F, 3351 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3352 // Save the bitcode index of the start of this function block for recording 3353 // in the VST. 3354 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3355 3356 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3357 VE.incorporateFunction(F); 3358 3359 SmallVector<unsigned, 64> Vals; 3360 3361 // Emit the number of basic blocks, so the reader can create them ahead of 3362 // time. 3363 Vals.push_back(VE.getBasicBlocks().size()); 3364 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3365 Vals.clear(); 3366 3367 // If there are function-local constants, emit them now. 3368 unsigned CstStart, CstEnd; 3369 VE.getFunctionConstantRange(CstStart, CstEnd); 3370 writeConstants(CstStart, CstEnd, false); 3371 3372 // If there is function-local metadata, emit it now. 3373 writeFunctionMetadata(F); 3374 3375 // Keep a running idea of what the instruction ID is. 3376 unsigned InstID = CstEnd; 3377 3378 bool NeedsMetadataAttachment = F.hasMetadata(); 3379 3380 DILocation *LastDL = nullptr; 3381 SmallSetVector<Function *, 4> BlockAddressUsers; 3382 3383 // Finally, emit all the instructions, in order. 3384 for (const BasicBlock &BB : F) { 3385 for (const Instruction &I : BB) { 3386 writeInstruction(I, InstID, Vals); 3387 3388 if (!I.getType()->isVoidTy()) 3389 ++InstID; 3390 3391 // If the instruction has metadata, write a metadata attachment later. 3392 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3393 3394 // If the instruction has a debug location, emit it. 3395 DILocation *DL = I.getDebugLoc(); 3396 if (!DL) 3397 continue; 3398 3399 if (DL == LastDL) { 3400 // Just repeat the same debug loc as last time. 3401 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3402 continue; 3403 } 3404 3405 Vals.push_back(DL->getLine()); 3406 Vals.push_back(DL->getColumn()); 3407 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3408 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3409 Vals.push_back(DL->isImplicitCode()); 3410 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3411 Vals.clear(); 3412 3413 LastDL = DL; 3414 } 3415 3416 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3417 SmallVector<Value *> Worklist{BA}; 3418 SmallPtrSet<Value *, 8> Visited{BA}; 3419 while (!Worklist.empty()) { 3420 Value *V = Worklist.pop_back_val(); 3421 for (User *U : V->users()) { 3422 if (auto *I = dyn_cast<Instruction>(U)) { 3423 Function *P = I->getFunction(); 3424 if (P != &F) 3425 BlockAddressUsers.insert(P); 3426 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3427 Visited.insert(U).second) 3428 Worklist.push_back(U); 3429 } 3430 } 3431 } 3432 } 3433 3434 if (!BlockAddressUsers.empty()) { 3435 Vals.resize(BlockAddressUsers.size()); 3436 for (auto I : llvm::enumerate(BlockAddressUsers)) 3437 Vals[I.index()] = VE.getValueID(I.value()); 3438 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3439 Vals.clear(); 3440 } 3441 3442 // Emit names for all the instructions etc. 3443 if (auto *Symtab = F.getValueSymbolTable()) 3444 writeFunctionLevelValueSymbolTable(*Symtab); 3445 3446 if (NeedsMetadataAttachment) 3447 writeFunctionMetadataAttachment(F); 3448 if (VE.shouldPreserveUseListOrder()) 3449 writeUseListBlock(&F); 3450 VE.purgeFunction(); 3451 Stream.ExitBlock(); 3452 } 3453 3454 // Emit blockinfo, which defines the standard abbreviations etc. 3455 void ModuleBitcodeWriter::writeBlockInfo() { 3456 // We only want to emit block info records for blocks that have multiple 3457 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3458 // Other blocks can define their abbrevs inline. 3459 Stream.EnterBlockInfoBlock(); 3460 3461 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3462 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3467 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3468 VST_ENTRY_8_ABBREV) 3469 llvm_unreachable("Unexpected abbrev ordering!"); 3470 } 3471 3472 { // 7-bit fixed width VST_CODE_ENTRY strings. 3473 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3474 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3478 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3479 VST_ENTRY_7_ABBREV) 3480 llvm_unreachable("Unexpected abbrev ordering!"); 3481 } 3482 { // 6-bit char6 VST_CODE_ENTRY strings. 3483 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3484 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3488 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3489 VST_ENTRY_6_ABBREV) 3490 llvm_unreachable("Unexpected abbrev ordering!"); 3491 } 3492 { // 6-bit char6 VST_CODE_BBENTRY strings. 3493 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3494 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3498 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3499 VST_BBENTRY_6_ABBREV) 3500 llvm_unreachable("Unexpected abbrev ordering!"); 3501 } 3502 3503 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3504 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3505 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3507 VE.computeBitsRequiredForTypeIndicies())); 3508 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3509 CONSTANTS_SETTYPE_ABBREV) 3510 llvm_unreachable("Unexpected abbrev ordering!"); 3511 } 3512 3513 { // INTEGER abbrev for CONSTANTS_BLOCK. 3514 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3515 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3517 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3518 CONSTANTS_INTEGER_ABBREV) 3519 llvm_unreachable("Unexpected abbrev ordering!"); 3520 } 3521 3522 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3523 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3524 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3527 VE.computeBitsRequiredForTypeIndicies())); 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3529 3530 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3531 CONSTANTS_CE_CAST_Abbrev) 3532 llvm_unreachable("Unexpected abbrev ordering!"); 3533 } 3534 { // NULL abbrev for CONSTANTS_BLOCK. 3535 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3536 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3537 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3538 CONSTANTS_NULL_Abbrev) 3539 llvm_unreachable("Unexpected abbrev ordering!"); 3540 } 3541 3542 // FIXME: This should only use space for first class types! 3543 3544 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3545 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3546 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3549 VE.computeBitsRequiredForTypeIndicies())); 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3552 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3553 FUNCTION_INST_LOAD_ABBREV) 3554 llvm_unreachable("Unexpected abbrev ordering!"); 3555 } 3556 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3557 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3558 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3561 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3562 FUNCTION_INST_UNOP_ABBREV) 3563 llvm_unreachable("Unexpected abbrev ordering!"); 3564 } 3565 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3566 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3567 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3571 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3572 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3573 llvm_unreachable("Unexpected abbrev ordering!"); 3574 } 3575 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3576 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3577 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3581 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3582 FUNCTION_INST_BINOP_ABBREV) 3583 llvm_unreachable("Unexpected abbrev ordering!"); 3584 } 3585 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3586 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3587 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3592 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3593 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3594 llvm_unreachable("Unexpected abbrev ordering!"); 3595 } 3596 { // INST_CAST abbrev for FUNCTION_BLOCK. 3597 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3598 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3601 VE.computeBitsRequiredForTypeIndicies())); 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3603 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3604 FUNCTION_INST_CAST_ABBREV) 3605 llvm_unreachable("Unexpected abbrev ordering!"); 3606 } 3607 3608 { // INST_RET abbrev for FUNCTION_BLOCK. 3609 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3610 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3611 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3612 FUNCTION_INST_RET_VOID_ABBREV) 3613 llvm_unreachable("Unexpected abbrev ordering!"); 3614 } 3615 { // INST_RET abbrev for FUNCTION_BLOCK. 3616 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3617 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3619 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3620 FUNCTION_INST_RET_VAL_ABBREV) 3621 llvm_unreachable("Unexpected abbrev ordering!"); 3622 } 3623 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3624 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3625 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3626 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3627 FUNCTION_INST_UNREACHABLE_ABBREV) 3628 llvm_unreachable("Unexpected abbrev ordering!"); 3629 } 3630 { 3631 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3632 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3635 Log2_32_Ceil(VE.getTypes().size() + 1))); 3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3638 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3639 FUNCTION_INST_GEP_ABBREV) 3640 llvm_unreachable("Unexpected abbrev ordering!"); 3641 } 3642 3643 Stream.ExitBlock(); 3644 } 3645 3646 /// Write the module path strings, currently only used when generating 3647 /// a combined index file. 3648 void IndexBitcodeWriter::writeModStrings() { 3649 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3650 3651 // TODO: See which abbrev sizes we actually need to emit 3652 3653 // 8-bit fixed-width MST_ENTRY strings. 3654 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3655 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3659 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3660 3661 // 7-bit fixed width MST_ENTRY strings. 3662 Abbv = std::make_shared<BitCodeAbbrev>(); 3663 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3667 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3668 3669 // 6-bit char6 MST_ENTRY strings. 3670 Abbv = std::make_shared<BitCodeAbbrev>(); 3671 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3675 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3676 3677 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3678 Abbv = std::make_shared<BitCodeAbbrev>(); 3679 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3685 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3686 3687 SmallVector<unsigned, 64> Vals; 3688 forEachModule( 3689 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3690 StringRef Key = MPSE.getKey(); 3691 const auto &Value = MPSE.getValue(); 3692 StringEncoding Bits = getStringEncoding(Key); 3693 unsigned AbbrevToUse = Abbrev8Bit; 3694 if (Bits == SE_Char6) 3695 AbbrevToUse = Abbrev6Bit; 3696 else if (Bits == SE_Fixed7) 3697 AbbrevToUse = Abbrev7Bit; 3698 3699 Vals.push_back(Value.first); 3700 Vals.append(Key.begin(), Key.end()); 3701 3702 // Emit the finished record. 3703 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3704 3705 // Emit an optional hash for the module now 3706 const auto &Hash = Value.second; 3707 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3708 Vals.assign(Hash.begin(), Hash.end()); 3709 // Emit the hash record. 3710 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3711 } 3712 3713 Vals.clear(); 3714 }); 3715 Stream.ExitBlock(); 3716 } 3717 3718 /// Write the function type metadata related records that need to appear before 3719 /// a function summary entry (whether per-module or combined). 3720 template <typename Fn> 3721 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3722 FunctionSummary *FS, 3723 Fn GetValueID) { 3724 if (!FS->type_tests().empty()) 3725 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3726 3727 SmallVector<uint64_t, 64> Record; 3728 3729 auto WriteVFuncIdVec = [&](uint64_t Ty, 3730 ArrayRef<FunctionSummary::VFuncId> VFs) { 3731 if (VFs.empty()) 3732 return; 3733 Record.clear(); 3734 for (auto &VF : VFs) { 3735 Record.push_back(VF.GUID); 3736 Record.push_back(VF.Offset); 3737 } 3738 Stream.EmitRecord(Ty, Record); 3739 }; 3740 3741 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3742 FS->type_test_assume_vcalls()); 3743 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3744 FS->type_checked_load_vcalls()); 3745 3746 auto WriteConstVCallVec = [&](uint64_t Ty, 3747 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3748 for (auto &VC : VCs) { 3749 Record.clear(); 3750 Record.push_back(VC.VFunc.GUID); 3751 Record.push_back(VC.VFunc.Offset); 3752 llvm::append_range(Record, VC.Args); 3753 Stream.EmitRecord(Ty, Record); 3754 } 3755 }; 3756 3757 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3758 FS->type_test_assume_const_vcalls()); 3759 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3760 FS->type_checked_load_const_vcalls()); 3761 3762 auto WriteRange = [&](ConstantRange Range) { 3763 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3764 assert(Range.getLower().getNumWords() == 1); 3765 assert(Range.getUpper().getNumWords() == 1); 3766 emitSignedInt64(Record, *Range.getLower().getRawData()); 3767 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3768 }; 3769 3770 if (!FS->paramAccesses().empty()) { 3771 Record.clear(); 3772 for (auto &Arg : FS->paramAccesses()) { 3773 size_t UndoSize = Record.size(); 3774 Record.push_back(Arg.ParamNo); 3775 WriteRange(Arg.Use); 3776 Record.push_back(Arg.Calls.size()); 3777 for (auto &Call : Arg.Calls) { 3778 Record.push_back(Call.ParamNo); 3779 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3780 if (!ValueID) { 3781 // If ValueID is unknown we can't drop just this call, we must drop 3782 // entire parameter. 3783 Record.resize(UndoSize); 3784 break; 3785 } 3786 Record.push_back(*ValueID); 3787 WriteRange(Call.Offsets); 3788 } 3789 } 3790 if (!Record.empty()) 3791 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3792 } 3793 } 3794 3795 /// Collect type IDs from type tests used by function. 3796 static void 3797 getReferencedTypeIds(FunctionSummary *FS, 3798 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3799 if (!FS->type_tests().empty()) 3800 for (auto &TT : FS->type_tests()) 3801 ReferencedTypeIds.insert(TT); 3802 3803 auto GetReferencedTypesFromVFuncIdVec = 3804 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3805 for (auto &VF : VFs) 3806 ReferencedTypeIds.insert(VF.GUID); 3807 }; 3808 3809 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3810 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3811 3812 auto GetReferencedTypesFromConstVCallVec = 3813 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3814 for (auto &VC : VCs) 3815 ReferencedTypeIds.insert(VC.VFunc.GUID); 3816 }; 3817 3818 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3819 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3820 } 3821 3822 static void writeWholeProgramDevirtResolutionByArg( 3823 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3824 const WholeProgramDevirtResolution::ByArg &ByArg) { 3825 NameVals.push_back(args.size()); 3826 llvm::append_range(NameVals, args); 3827 3828 NameVals.push_back(ByArg.TheKind); 3829 NameVals.push_back(ByArg.Info); 3830 NameVals.push_back(ByArg.Byte); 3831 NameVals.push_back(ByArg.Bit); 3832 } 3833 3834 static void writeWholeProgramDevirtResolution( 3835 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3836 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3837 NameVals.push_back(Id); 3838 3839 NameVals.push_back(Wpd.TheKind); 3840 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3841 NameVals.push_back(Wpd.SingleImplName.size()); 3842 3843 NameVals.push_back(Wpd.ResByArg.size()); 3844 for (auto &A : Wpd.ResByArg) 3845 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3846 } 3847 3848 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3849 StringTableBuilder &StrtabBuilder, 3850 const std::string &Id, 3851 const TypeIdSummary &Summary) { 3852 NameVals.push_back(StrtabBuilder.add(Id)); 3853 NameVals.push_back(Id.size()); 3854 3855 NameVals.push_back(Summary.TTRes.TheKind); 3856 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3857 NameVals.push_back(Summary.TTRes.AlignLog2); 3858 NameVals.push_back(Summary.TTRes.SizeM1); 3859 NameVals.push_back(Summary.TTRes.BitMask); 3860 NameVals.push_back(Summary.TTRes.InlineBits); 3861 3862 for (auto &W : Summary.WPDRes) 3863 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3864 W.second); 3865 } 3866 3867 static void writeTypeIdCompatibleVtableSummaryRecord( 3868 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3869 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3870 ValueEnumerator &VE) { 3871 NameVals.push_back(StrtabBuilder.add(Id)); 3872 NameVals.push_back(Id.size()); 3873 3874 for (auto &P : Summary) { 3875 NameVals.push_back(P.AddressPointOffset); 3876 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3877 } 3878 } 3879 3880 // Helper to emit a single function summary record. 3881 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3882 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3883 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3884 const Function &F) { 3885 NameVals.push_back(ValueID); 3886 3887 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3888 3889 writeFunctionTypeMetadataRecords( 3890 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3891 return {VE.getValueID(VI.getValue())}; 3892 }); 3893 3894 auto SpecialRefCnts = FS->specialRefCounts(); 3895 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3896 NameVals.push_back(FS->instCount()); 3897 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3898 NameVals.push_back(FS->refs().size()); 3899 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3900 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3901 3902 for (auto &RI : FS->refs()) 3903 NameVals.push_back(VE.getValueID(RI.getValue())); 3904 3905 bool HasProfileData = 3906 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3907 for (auto &ECI : FS->calls()) { 3908 NameVals.push_back(getValueId(ECI.first)); 3909 if (HasProfileData) 3910 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3911 else if (WriteRelBFToSummary) 3912 NameVals.push_back(ECI.second.RelBlockFreq); 3913 } 3914 3915 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3916 unsigned Code = 3917 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3918 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3919 : bitc::FS_PERMODULE)); 3920 3921 // Emit the finished record. 3922 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3923 NameVals.clear(); 3924 } 3925 3926 // Collect the global value references in the given variable's initializer, 3927 // and emit them in a summary record. 3928 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3929 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3930 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3931 auto VI = Index->getValueInfo(V.getGUID()); 3932 if (!VI || VI.getSummaryList().empty()) { 3933 // Only declarations should not have a summary (a declaration might however 3934 // have a summary if the def was in module level asm). 3935 assert(V.isDeclaration()); 3936 return; 3937 } 3938 auto *Summary = VI.getSummaryList()[0].get(); 3939 NameVals.push_back(VE.getValueID(&V)); 3940 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3941 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3942 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3943 3944 auto VTableFuncs = VS->vTableFuncs(); 3945 if (!VTableFuncs.empty()) 3946 NameVals.push_back(VS->refs().size()); 3947 3948 unsigned SizeBeforeRefs = NameVals.size(); 3949 for (auto &RI : VS->refs()) 3950 NameVals.push_back(VE.getValueID(RI.getValue())); 3951 // Sort the refs for determinism output, the vector returned by FS->refs() has 3952 // been initialized from a DenseSet. 3953 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3954 3955 if (VTableFuncs.empty()) 3956 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3957 FSModRefsAbbrev); 3958 else { 3959 // VTableFuncs pairs should already be sorted by offset. 3960 for (auto &P : VTableFuncs) { 3961 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3962 NameVals.push_back(P.VTableOffset); 3963 } 3964 3965 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3966 FSModVTableRefsAbbrev); 3967 } 3968 NameVals.clear(); 3969 } 3970 3971 /// Emit the per-module summary section alongside the rest of 3972 /// the module's bitcode. 3973 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3974 // By default we compile with ThinLTO if the module has a summary, but the 3975 // client can request full LTO with a module flag. 3976 bool IsThinLTO = true; 3977 if (auto *MD = 3978 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3979 IsThinLTO = MD->getZExtValue(); 3980 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3981 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3982 4); 3983 3984 Stream.EmitRecord( 3985 bitc::FS_VERSION, 3986 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3987 3988 // Write the index flags. 3989 uint64_t Flags = 0; 3990 // Bits 1-3 are set only in the combined index, skip them. 3991 if (Index->enableSplitLTOUnit()) 3992 Flags |= 0x8; 3993 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3994 3995 if (Index->begin() == Index->end()) { 3996 Stream.ExitBlock(); 3997 return; 3998 } 3999 4000 for (const auto &GVI : valueIds()) { 4001 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4002 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4003 } 4004 4005 // Abbrev for FS_PERMODULE_PROFILE. 4006 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4007 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4015 // numrefs x valueid, n x (valueid, hotness) 4016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4018 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4019 4020 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4021 Abbv = std::make_shared<BitCodeAbbrev>(); 4022 if (WriteRelBFToSummary) 4023 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4024 else 4025 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4033 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4036 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4037 4038 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4039 Abbv = std::make_shared<BitCodeAbbrev>(); 4040 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4045 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4046 4047 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4048 Abbv = std::make_shared<BitCodeAbbrev>(); 4049 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4053 // numrefs x valueid, n x (valueid , offset) 4054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4056 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4057 4058 // Abbrev for FS_ALIAS. 4059 Abbv = std::make_shared<BitCodeAbbrev>(); 4060 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4064 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4065 4066 // Abbrev for FS_TYPE_ID_METADATA 4067 Abbv = std::make_shared<BitCodeAbbrev>(); 4068 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4071 // n x (valueid , offset) 4072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4074 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4075 4076 SmallVector<uint64_t, 64> NameVals; 4077 // Iterate over the list of functions instead of the Index to 4078 // ensure the ordering is stable. 4079 for (const Function &F : M) { 4080 // Summary emission does not support anonymous functions, they have to 4081 // renamed using the anonymous function renaming pass. 4082 if (!F.hasName()) 4083 report_fatal_error("Unexpected anonymous function when writing summary"); 4084 4085 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4086 if (!VI || VI.getSummaryList().empty()) { 4087 // Only declarations should not have a summary (a declaration might 4088 // however have a summary if the def was in module level asm). 4089 assert(F.isDeclaration()); 4090 continue; 4091 } 4092 auto *Summary = VI.getSummaryList()[0].get(); 4093 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4094 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4095 } 4096 4097 // Capture references from GlobalVariable initializers, which are outside 4098 // of a function scope. 4099 for (const GlobalVariable &G : M.globals()) 4100 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4101 FSModVTableRefsAbbrev); 4102 4103 for (const GlobalAlias &A : M.aliases()) { 4104 auto *Aliasee = A.getAliaseeObject(); 4105 // Skip ifunc and nameless functions which don't have an entry in the 4106 // summary. 4107 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4108 continue; 4109 auto AliasId = VE.getValueID(&A); 4110 auto AliaseeId = VE.getValueID(Aliasee); 4111 NameVals.push_back(AliasId); 4112 auto *Summary = Index->getGlobalValueSummary(A); 4113 AliasSummary *AS = cast<AliasSummary>(Summary); 4114 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4115 NameVals.push_back(AliaseeId); 4116 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4117 NameVals.clear(); 4118 } 4119 4120 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4121 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4122 S.second, VE); 4123 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4124 TypeIdCompatibleVtableAbbrev); 4125 NameVals.clear(); 4126 } 4127 4128 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4129 ArrayRef<uint64_t>{Index->getBlockCount()}); 4130 4131 Stream.ExitBlock(); 4132 } 4133 4134 /// Emit the combined summary section into the combined index file. 4135 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4136 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4137 Stream.EmitRecord( 4138 bitc::FS_VERSION, 4139 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4140 4141 // Write the index flags. 4142 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4143 4144 for (const auto &GVI : valueIds()) { 4145 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4146 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4147 } 4148 4149 // Abbrev for FS_COMBINED. 4150 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4151 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4161 // numrefs x valueid, n x (valueid) 4162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4164 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4165 4166 // Abbrev for FS_COMBINED_PROFILE. 4167 Abbv = std::make_shared<BitCodeAbbrev>(); 4168 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4178 // numrefs x valueid, n x (valueid, hotness) 4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4181 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4182 4183 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4184 Abbv = std::make_shared<BitCodeAbbrev>(); 4185 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4191 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4192 4193 // Abbrev for FS_COMBINED_ALIAS. 4194 Abbv = std::make_shared<BitCodeAbbrev>(); 4195 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4200 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4201 4202 // The aliases are emitted as a post-pass, and will point to the value 4203 // id of the aliasee. Save them in a vector for post-processing. 4204 SmallVector<AliasSummary *, 64> Aliases; 4205 4206 // Save the value id for each summary for alias emission. 4207 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4208 4209 SmallVector<uint64_t, 64> NameVals; 4210 4211 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4212 // with the type ids referenced by this index file. 4213 std::set<GlobalValue::GUID> ReferencedTypeIds; 4214 4215 // For local linkage, we also emit the original name separately 4216 // immediately after the record. 4217 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4218 // We don't need to emit the original name if we are writing the index for 4219 // distributed backends (in which case ModuleToSummariesForIndex is 4220 // non-null). The original name is only needed during the thin link, since 4221 // for SamplePGO the indirect call targets for local functions have 4222 // have the original name annotated in profile. 4223 // Continue to emit it when writing out the entire combined index, which is 4224 // used in testing the thin link via llvm-lto. 4225 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4226 return; 4227 NameVals.push_back(S.getOriginalName()); 4228 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4229 NameVals.clear(); 4230 }; 4231 4232 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4233 forEachSummary([&](GVInfo I, bool IsAliasee) { 4234 GlobalValueSummary *S = I.second; 4235 assert(S); 4236 DefOrUseGUIDs.insert(I.first); 4237 for (const ValueInfo &VI : S->refs()) 4238 DefOrUseGUIDs.insert(VI.getGUID()); 4239 4240 auto ValueId = getValueId(I.first); 4241 assert(ValueId); 4242 SummaryToValueIdMap[S] = *ValueId; 4243 4244 // If this is invoked for an aliasee, we want to record the above 4245 // mapping, but then not emit a summary entry (if the aliasee is 4246 // to be imported, we will invoke this separately with IsAliasee=false). 4247 if (IsAliasee) 4248 return; 4249 4250 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4251 // Will process aliases as a post-pass because the reader wants all 4252 // global to be loaded first. 4253 Aliases.push_back(AS); 4254 return; 4255 } 4256 4257 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4258 NameVals.push_back(*ValueId); 4259 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4260 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4261 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4262 for (auto &RI : VS->refs()) { 4263 auto RefValueId = getValueId(RI.getGUID()); 4264 if (!RefValueId) 4265 continue; 4266 NameVals.push_back(*RefValueId); 4267 } 4268 4269 // Emit the finished record. 4270 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4271 FSModRefsAbbrev); 4272 NameVals.clear(); 4273 MaybeEmitOriginalName(*S); 4274 return; 4275 } 4276 4277 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4278 return getValueId(VI.getGUID()); 4279 }; 4280 4281 auto *FS = cast<FunctionSummary>(S); 4282 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4283 getReferencedTypeIds(FS, ReferencedTypeIds); 4284 4285 NameVals.push_back(*ValueId); 4286 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4287 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4288 NameVals.push_back(FS->instCount()); 4289 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4290 NameVals.push_back(FS->entryCount()); 4291 4292 // Fill in below 4293 NameVals.push_back(0); // numrefs 4294 NameVals.push_back(0); // rorefcnt 4295 NameVals.push_back(0); // worefcnt 4296 4297 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4298 for (auto &RI : FS->refs()) { 4299 auto RefValueId = getValueId(RI.getGUID()); 4300 if (!RefValueId) 4301 continue; 4302 NameVals.push_back(*RefValueId); 4303 if (RI.isReadOnly()) 4304 RORefCnt++; 4305 else if (RI.isWriteOnly()) 4306 WORefCnt++; 4307 Count++; 4308 } 4309 NameVals[6] = Count; 4310 NameVals[7] = RORefCnt; 4311 NameVals[8] = WORefCnt; 4312 4313 bool HasProfileData = false; 4314 for (auto &EI : FS->calls()) { 4315 HasProfileData |= 4316 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4317 if (HasProfileData) 4318 break; 4319 } 4320 4321 for (auto &EI : FS->calls()) { 4322 // If this GUID doesn't have a value id, it doesn't have a function 4323 // summary and we don't need to record any calls to it. 4324 Optional<unsigned> CallValueId = GetValueId(EI.first); 4325 if (!CallValueId) 4326 continue; 4327 NameVals.push_back(*CallValueId); 4328 if (HasProfileData) 4329 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4330 } 4331 4332 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4333 unsigned Code = 4334 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4335 4336 // Emit the finished record. 4337 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4338 NameVals.clear(); 4339 MaybeEmitOriginalName(*S); 4340 }); 4341 4342 for (auto *AS : Aliases) { 4343 auto AliasValueId = SummaryToValueIdMap[AS]; 4344 assert(AliasValueId); 4345 NameVals.push_back(AliasValueId); 4346 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4347 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4348 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4349 assert(AliaseeValueId); 4350 NameVals.push_back(AliaseeValueId); 4351 4352 // Emit the finished record. 4353 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4354 NameVals.clear(); 4355 MaybeEmitOriginalName(*AS); 4356 4357 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4358 getReferencedTypeIds(FS, ReferencedTypeIds); 4359 } 4360 4361 if (!Index.cfiFunctionDefs().empty()) { 4362 for (auto &S : Index.cfiFunctionDefs()) { 4363 if (DefOrUseGUIDs.count( 4364 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4365 NameVals.push_back(StrtabBuilder.add(S)); 4366 NameVals.push_back(S.size()); 4367 } 4368 } 4369 if (!NameVals.empty()) { 4370 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4371 NameVals.clear(); 4372 } 4373 } 4374 4375 if (!Index.cfiFunctionDecls().empty()) { 4376 for (auto &S : Index.cfiFunctionDecls()) { 4377 if (DefOrUseGUIDs.count( 4378 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4379 NameVals.push_back(StrtabBuilder.add(S)); 4380 NameVals.push_back(S.size()); 4381 } 4382 } 4383 if (!NameVals.empty()) { 4384 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4385 NameVals.clear(); 4386 } 4387 } 4388 4389 // Walk the GUIDs that were referenced, and write the 4390 // corresponding type id records. 4391 for (auto &T : ReferencedTypeIds) { 4392 auto TidIter = Index.typeIds().equal_range(T); 4393 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4394 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4395 It->second.second); 4396 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4397 NameVals.clear(); 4398 } 4399 } 4400 4401 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4402 ArrayRef<uint64_t>{Index.getBlockCount()}); 4403 4404 Stream.ExitBlock(); 4405 } 4406 4407 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4408 /// current llvm version, and a record for the epoch number. 4409 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4410 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4411 4412 // Write the "user readable" string identifying the bitcode producer 4413 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4414 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4417 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4418 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4419 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4420 4421 // Write the epoch version 4422 Abbv = std::make_shared<BitCodeAbbrev>(); 4423 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4425 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4426 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4427 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4428 Stream.ExitBlock(); 4429 } 4430 4431 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4432 // Emit the module's hash. 4433 // MODULE_CODE_HASH: [5*i32] 4434 if (GenerateHash) { 4435 uint32_t Vals[5]; 4436 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4437 Buffer.size() - BlockStartPos)); 4438 std::array<uint8_t, 20> Hash = Hasher.result(); 4439 for (int Pos = 0; Pos < 20; Pos += 4) { 4440 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4441 } 4442 4443 // Emit the finished record. 4444 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4445 4446 if (ModHash) 4447 // Save the written hash value. 4448 llvm::copy(Vals, std::begin(*ModHash)); 4449 } 4450 } 4451 4452 void ModuleBitcodeWriter::write() { 4453 writeIdentificationBlock(Stream); 4454 4455 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4456 size_t BlockStartPos = Buffer.size(); 4457 4458 writeModuleVersion(); 4459 4460 // Emit blockinfo, which defines the standard abbreviations etc. 4461 writeBlockInfo(); 4462 4463 // Emit information describing all of the types in the module. 4464 writeTypeTable(); 4465 4466 // Emit information about attribute groups. 4467 writeAttributeGroupTable(); 4468 4469 // Emit information about parameter attributes. 4470 writeAttributeTable(); 4471 4472 writeComdats(); 4473 4474 // Emit top-level description of module, including target triple, inline asm, 4475 // descriptors for global variables, and function prototype info. 4476 writeModuleInfo(); 4477 4478 // Emit constants. 4479 writeModuleConstants(); 4480 4481 // Emit metadata kind names. 4482 writeModuleMetadataKinds(); 4483 4484 // Emit metadata. 4485 writeModuleMetadata(); 4486 4487 // Emit module-level use-lists. 4488 if (VE.shouldPreserveUseListOrder()) 4489 writeUseListBlock(nullptr); 4490 4491 writeOperandBundleTags(); 4492 writeSyncScopeNames(); 4493 4494 // Emit function bodies. 4495 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4496 for (const Function &F : M) 4497 if (!F.isDeclaration()) 4498 writeFunction(F, FunctionToBitcodeIndex); 4499 4500 // Need to write after the above call to WriteFunction which populates 4501 // the summary information in the index. 4502 if (Index) 4503 writePerModuleGlobalValueSummary(); 4504 4505 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4506 4507 writeModuleHash(BlockStartPos); 4508 4509 Stream.ExitBlock(); 4510 } 4511 4512 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4513 uint32_t &Position) { 4514 support::endian::write32le(&Buffer[Position], Value); 4515 Position += 4; 4516 } 4517 4518 /// If generating a bc file on darwin, we have to emit a 4519 /// header and trailer to make it compatible with the system archiver. To do 4520 /// this we emit the following header, and then emit a trailer that pads the 4521 /// file out to be a multiple of 16 bytes. 4522 /// 4523 /// struct bc_header { 4524 /// uint32_t Magic; // 0x0B17C0DE 4525 /// uint32_t Version; // Version, currently always 0. 4526 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4527 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4528 /// uint32_t CPUType; // CPU specifier. 4529 /// ... potentially more later ... 4530 /// }; 4531 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4532 const Triple &TT) { 4533 unsigned CPUType = ~0U; 4534 4535 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4536 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4537 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4538 // specific constants here because they are implicitly part of the Darwin ABI. 4539 enum { 4540 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4541 DARWIN_CPU_TYPE_X86 = 7, 4542 DARWIN_CPU_TYPE_ARM = 12, 4543 DARWIN_CPU_TYPE_POWERPC = 18 4544 }; 4545 4546 Triple::ArchType Arch = TT.getArch(); 4547 if (Arch == Triple::x86_64) 4548 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4549 else if (Arch == Triple::x86) 4550 CPUType = DARWIN_CPU_TYPE_X86; 4551 else if (Arch == Triple::ppc) 4552 CPUType = DARWIN_CPU_TYPE_POWERPC; 4553 else if (Arch == Triple::ppc64) 4554 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4555 else if (Arch == Triple::arm || Arch == Triple::thumb) 4556 CPUType = DARWIN_CPU_TYPE_ARM; 4557 4558 // Traditional Bitcode starts after header. 4559 assert(Buffer.size() >= BWH_HeaderSize && 4560 "Expected header size to be reserved"); 4561 unsigned BCOffset = BWH_HeaderSize; 4562 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4563 4564 // Write the magic and version. 4565 unsigned Position = 0; 4566 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4567 writeInt32ToBuffer(0, Buffer, Position); // Version. 4568 writeInt32ToBuffer(BCOffset, Buffer, Position); 4569 writeInt32ToBuffer(BCSize, Buffer, Position); 4570 writeInt32ToBuffer(CPUType, Buffer, Position); 4571 4572 // If the file is not a multiple of 16 bytes, insert dummy padding. 4573 while (Buffer.size() & 15) 4574 Buffer.push_back(0); 4575 } 4576 4577 /// Helper to write the header common to all bitcode files. 4578 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4579 // Emit the file header. 4580 Stream.Emit((unsigned)'B', 8); 4581 Stream.Emit((unsigned)'C', 8); 4582 Stream.Emit(0x0, 4); 4583 Stream.Emit(0xC, 4); 4584 Stream.Emit(0xE, 4); 4585 Stream.Emit(0xD, 4); 4586 } 4587 4588 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4589 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4590 writeBitcodeHeader(*Stream); 4591 } 4592 4593 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4594 4595 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4596 Stream->EnterSubblock(Block, 3); 4597 4598 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4599 Abbv->Add(BitCodeAbbrevOp(Record)); 4600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4601 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4602 4603 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4604 4605 Stream->ExitBlock(); 4606 } 4607 4608 void BitcodeWriter::writeSymtab() { 4609 assert(!WroteStrtab && !WroteSymtab); 4610 4611 // If any module has module-level inline asm, we will require a registered asm 4612 // parser for the target so that we can create an accurate symbol table for 4613 // the module. 4614 for (Module *M : Mods) { 4615 if (M->getModuleInlineAsm().empty()) 4616 continue; 4617 4618 std::string Err; 4619 const Triple TT(M->getTargetTriple()); 4620 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4621 if (!T || !T->hasMCAsmParser()) 4622 return; 4623 } 4624 4625 WroteSymtab = true; 4626 SmallVector<char, 0> Symtab; 4627 // The irsymtab::build function may be unable to create a symbol table if the 4628 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4629 // table is not required for correctness, but we still want to be able to 4630 // write malformed modules to bitcode files, so swallow the error. 4631 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4632 consumeError(std::move(E)); 4633 return; 4634 } 4635 4636 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4637 {Symtab.data(), Symtab.size()}); 4638 } 4639 4640 void BitcodeWriter::writeStrtab() { 4641 assert(!WroteStrtab); 4642 4643 std::vector<char> Strtab; 4644 StrtabBuilder.finalizeInOrder(); 4645 Strtab.resize(StrtabBuilder.getSize()); 4646 StrtabBuilder.write((uint8_t *)Strtab.data()); 4647 4648 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4649 {Strtab.data(), Strtab.size()}); 4650 4651 WroteStrtab = true; 4652 } 4653 4654 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4655 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4656 WroteStrtab = true; 4657 } 4658 4659 void BitcodeWriter::writeModule(const Module &M, 4660 bool ShouldPreserveUseListOrder, 4661 const ModuleSummaryIndex *Index, 4662 bool GenerateHash, ModuleHash *ModHash) { 4663 assert(!WroteStrtab); 4664 4665 // The Mods vector is used by irsymtab::build, which requires non-const 4666 // Modules in case it needs to materialize metadata. But the bitcode writer 4667 // requires that the module is materialized, so we can cast to non-const here, 4668 // after checking that it is in fact materialized. 4669 assert(M.isMaterialized()); 4670 Mods.push_back(const_cast<Module *>(&M)); 4671 4672 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4673 ShouldPreserveUseListOrder, Index, 4674 GenerateHash, ModHash); 4675 ModuleWriter.write(); 4676 } 4677 4678 void BitcodeWriter::writeIndex( 4679 const ModuleSummaryIndex *Index, 4680 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4681 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4682 ModuleToSummariesForIndex); 4683 IndexWriter.write(); 4684 } 4685 4686 /// Write the specified module to the specified output stream. 4687 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4688 bool ShouldPreserveUseListOrder, 4689 const ModuleSummaryIndex *Index, 4690 bool GenerateHash, ModuleHash *ModHash) { 4691 SmallVector<char, 0> Buffer; 4692 Buffer.reserve(256*1024); 4693 4694 // If this is darwin or another generic macho target, reserve space for the 4695 // header. 4696 Triple TT(M.getTargetTriple()); 4697 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4698 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4699 4700 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4701 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4702 ModHash); 4703 Writer.writeSymtab(); 4704 Writer.writeStrtab(); 4705 4706 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4707 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4708 4709 // Write the generated bitstream to "Out". 4710 if (!Buffer.empty()) 4711 Out.write((char *)&Buffer.front(), Buffer.size()); 4712 } 4713 4714 void IndexBitcodeWriter::write() { 4715 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4716 4717 writeModuleVersion(); 4718 4719 // Write the module paths in the combined index. 4720 writeModStrings(); 4721 4722 // Write the summary combined index records. 4723 writeCombinedGlobalValueSummary(); 4724 4725 Stream.ExitBlock(); 4726 } 4727 4728 // Write the specified module summary index to the given raw output stream, 4729 // where it will be written in a new bitcode block. This is used when 4730 // writing the combined index file for ThinLTO. When writing a subset of the 4731 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4732 void llvm::writeIndexToFile( 4733 const ModuleSummaryIndex &Index, raw_ostream &Out, 4734 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4735 SmallVector<char, 0> Buffer; 4736 Buffer.reserve(256 * 1024); 4737 4738 BitcodeWriter Writer(Buffer); 4739 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4740 Writer.writeStrtab(); 4741 4742 Out.write((char *)&Buffer.front(), Buffer.size()); 4743 } 4744 4745 namespace { 4746 4747 /// Class to manage the bitcode writing for a thin link bitcode file. 4748 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4749 /// ModHash is for use in ThinLTO incremental build, generated while writing 4750 /// the module bitcode file. 4751 const ModuleHash *ModHash; 4752 4753 public: 4754 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4755 BitstreamWriter &Stream, 4756 const ModuleSummaryIndex &Index, 4757 const ModuleHash &ModHash) 4758 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4759 /*ShouldPreserveUseListOrder=*/false, &Index), 4760 ModHash(&ModHash) {} 4761 4762 void write(); 4763 4764 private: 4765 void writeSimplifiedModuleInfo(); 4766 }; 4767 4768 } // end anonymous namespace 4769 4770 // This function writes a simpilified module info for thin link bitcode file. 4771 // It only contains the source file name along with the name(the offset and 4772 // size in strtab) and linkage for global values. For the global value info 4773 // entry, in order to keep linkage at offset 5, there are three zeros used 4774 // as padding. 4775 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4776 SmallVector<unsigned, 64> Vals; 4777 // Emit the module's source file name. 4778 { 4779 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4780 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4781 if (Bits == SE_Char6) 4782 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4783 else if (Bits == SE_Fixed7) 4784 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4785 4786 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4787 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4788 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4790 Abbv->Add(AbbrevOpToUse); 4791 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4792 4793 for (const auto P : M.getSourceFileName()) 4794 Vals.push_back((unsigned char)P); 4795 4796 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4797 Vals.clear(); 4798 } 4799 4800 // Emit the global variable information. 4801 for (const GlobalVariable &GV : M.globals()) { 4802 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4803 Vals.push_back(StrtabBuilder.add(GV.getName())); 4804 Vals.push_back(GV.getName().size()); 4805 Vals.push_back(0); 4806 Vals.push_back(0); 4807 Vals.push_back(0); 4808 Vals.push_back(getEncodedLinkage(GV)); 4809 4810 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4811 Vals.clear(); 4812 } 4813 4814 // Emit the function proto information. 4815 for (const Function &F : M) { 4816 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4817 Vals.push_back(StrtabBuilder.add(F.getName())); 4818 Vals.push_back(F.getName().size()); 4819 Vals.push_back(0); 4820 Vals.push_back(0); 4821 Vals.push_back(0); 4822 Vals.push_back(getEncodedLinkage(F)); 4823 4824 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4825 Vals.clear(); 4826 } 4827 4828 // Emit the alias information. 4829 for (const GlobalAlias &A : M.aliases()) { 4830 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4831 Vals.push_back(StrtabBuilder.add(A.getName())); 4832 Vals.push_back(A.getName().size()); 4833 Vals.push_back(0); 4834 Vals.push_back(0); 4835 Vals.push_back(0); 4836 Vals.push_back(getEncodedLinkage(A)); 4837 4838 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4839 Vals.clear(); 4840 } 4841 4842 // Emit the ifunc information. 4843 for (const GlobalIFunc &I : M.ifuncs()) { 4844 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4845 Vals.push_back(StrtabBuilder.add(I.getName())); 4846 Vals.push_back(I.getName().size()); 4847 Vals.push_back(0); 4848 Vals.push_back(0); 4849 Vals.push_back(0); 4850 Vals.push_back(getEncodedLinkage(I)); 4851 4852 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4853 Vals.clear(); 4854 } 4855 } 4856 4857 void ThinLinkBitcodeWriter::write() { 4858 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4859 4860 writeModuleVersion(); 4861 4862 writeSimplifiedModuleInfo(); 4863 4864 writePerModuleGlobalValueSummary(); 4865 4866 // Write module hash. 4867 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4868 4869 Stream.ExitBlock(); 4870 } 4871 4872 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4873 const ModuleSummaryIndex &Index, 4874 const ModuleHash &ModHash) { 4875 assert(!WroteStrtab); 4876 4877 // The Mods vector is used by irsymtab::build, which requires non-const 4878 // Modules in case it needs to materialize metadata. But the bitcode writer 4879 // requires that the module is materialized, so we can cast to non-const here, 4880 // after checking that it is in fact materialized. 4881 assert(M.isMaterialized()); 4882 Mods.push_back(const_cast<Module *>(&M)); 4883 4884 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4885 ModHash); 4886 ThinLinkWriter.write(); 4887 } 4888 4889 // Write the specified thin link bitcode file to the given raw output stream, 4890 // where it will be written in a new bitcode block. This is used when 4891 // writing the per-module index file for ThinLTO. 4892 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4893 const ModuleSummaryIndex &Index, 4894 const ModuleHash &ModHash) { 4895 SmallVector<char, 0> Buffer; 4896 Buffer.reserve(256 * 1024); 4897 4898 BitcodeWriter Writer(Buffer); 4899 Writer.writeThinLinkBitcode(M, Index, ModHash); 4900 Writer.writeSymtab(); 4901 Writer.writeStrtab(); 4902 4903 Out.write((char *)&Buffer.front(), Buffer.size()); 4904 } 4905 4906 static const char *getSectionNameForBitcode(const Triple &T) { 4907 switch (T.getObjectFormat()) { 4908 case Triple::MachO: 4909 return "__LLVM,__bitcode"; 4910 case Triple::COFF: 4911 case Triple::ELF: 4912 case Triple::Wasm: 4913 case Triple::UnknownObjectFormat: 4914 return ".llvmbc"; 4915 case Triple::GOFF: 4916 llvm_unreachable("GOFF is not yet implemented"); 4917 break; 4918 case Triple::SPIRV: 4919 llvm_unreachable("SPIRV is not yet implemented"); 4920 break; 4921 case Triple::XCOFF: 4922 llvm_unreachable("XCOFF is not yet implemented"); 4923 break; 4924 case Triple::DXContainer: 4925 llvm_unreachable("DXContainer is not yet implemented"); 4926 break; 4927 } 4928 llvm_unreachable("Unimplemented ObjectFormatType"); 4929 } 4930 4931 static const char *getSectionNameForCommandline(const Triple &T) { 4932 switch (T.getObjectFormat()) { 4933 case Triple::MachO: 4934 return "__LLVM,__cmdline"; 4935 case Triple::COFF: 4936 case Triple::ELF: 4937 case Triple::Wasm: 4938 case Triple::UnknownObjectFormat: 4939 return ".llvmcmd"; 4940 case Triple::GOFF: 4941 llvm_unreachable("GOFF is not yet implemented"); 4942 break; 4943 case Triple::SPIRV: 4944 llvm_unreachable("SPIRV is not yet implemented"); 4945 break; 4946 case Triple::XCOFF: 4947 llvm_unreachable("XCOFF is not yet implemented"); 4948 break; 4949 case Triple::DXContainer: 4950 llvm_unreachable("DXC is not yet implemented"); 4951 break; 4952 } 4953 llvm_unreachable("Unimplemented ObjectFormatType"); 4954 } 4955 4956 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4957 bool EmbedBitcode, bool EmbedCmdline, 4958 const std::vector<uint8_t> &CmdArgs) { 4959 // Save llvm.compiler.used and remove it. 4960 SmallVector<Constant *, 2> UsedArray; 4961 SmallVector<GlobalValue *, 4> UsedGlobals; 4962 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4963 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4964 for (auto *GV : UsedGlobals) { 4965 if (GV->getName() != "llvm.embedded.module" && 4966 GV->getName() != "llvm.cmdline") 4967 UsedArray.push_back( 4968 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4969 } 4970 if (Used) 4971 Used->eraseFromParent(); 4972 4973 // Embed the bitcode for the llvm module. 4974 std::string Data; 4975 ArrayRef<uint8_t> ModuleData; 4976 Triple T(M.getTargetTriple()); 4977 4978 if (EmbedBitcode) { 4979 if (Buf.getBufferSize() == 0 || 4980 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4981 (const unsigned char *)Buf.getBufferEnd())) { 4982 // If the input is LLVM Assembly, bitcode is produced by serializing 4983 // the module. Use-lists order need to be preserved in this case. 4984 llvm::raw_string_ostream OS(Data); 4985 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4986 ModuleData = 4987 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4988 } else 4989 // If the input is LLVM bitcode, write the input byte stream directly. 4990 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4991 Buf.getBufferSize()); 4992 } 4993 llvm::Constant *ModuleConstant = 4994 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4995 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4996 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4997 ModuleConstant); 4998 GV->setSection(getSectionNameForBitcode(T)); 4999 // Set alignment to 1 to prevent padding between two contributions from input 5000 // sections after linking. 5001 GV->setAlignment(Align(1)); 5002 UsedArray.push_back( 5003 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5004 if (llvm::GlobalVariable *Old = 5005 M.getGlobalVariable("llvm.embedded.module", true)) { 5006 assert(Old->hasZeroLiveUses() && 5007 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5008 GV->takeName(Old); 5009 Old->eraseFromParent(); 5010 } else { 5011 GV->setName("llvm.embedded.module"); 5012 } 5013 5014 // Skip if only bitcode needs to be embedded. 5015 if (EmbedCmdline) { 5016 // Embed command-line options. 5017 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5018 CmdArgs.size()); 5019 llvm::Constant *CmdConstant = 5020 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5021 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5022 llvm::GlobalValue::PrivateLinkage, 5023 CmdConstant); 5024 GV->setSection(getSectionNameForCommandline(T)); 5025 GV->setAlignment(Align(1)); 5026 UsedArray.push_back( 5027 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5028 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5029 assert(Old->hasZeroLiveUses() && 5030 "llvm.cmdline can only be used once in llvm.compiler.used"); 5031 GV->takeName(Old); 5032 Old->eraseFromParent(); 5033 } else { 5034 GV->setName("llvm.cmdline"); 5035 } 5036 } 5037 5038 if (UsedArray.empty()) 5039 return; 5040 5041 // Recreate llvm.compiler.used. 5042 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5043 auto *NewUsed = new GlobalVariable( 5044 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5045 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5046 NewUsed->setSection("llvm.metadata"); 5047 } 5048