1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/StringExtras.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/Bitcode/ReaderWriter.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/Program.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Support/SHA1.h" 37 #include <cctype> 38 #include <map> 39 using namespace llvm; 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV, 64 FUNCTION_INST_GEP_ABBREV, 65 }; 66 67 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 68 switch (Opcode) { 69 default: llvm_unreachable("Unknown cast instruction!"); 70 case Instruction::Trunc : return bitc::CAST_TRUNC; 71 case Instruction::ZExt : return bitc::CAST_ZEXT; 72 case Instruction::SExt : return bitc::CAST_SEXT; 73 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 74 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 75 case Instruction::UIToFP : return bitc::CAST_UITOFP; 76 case Instruction::SIToFP : return bitc::CAST_SITOFP; 77 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 78 case Instruction::FPExt : return bitc::CAST_FPEXT; 79 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 80 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 81 case Instruction::BitCast : return bitc::CAST_BITCAST; 82 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 83 } 84 } 85 86 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 87 switch (Opcode) { 88 default: llvm_unreachable("Unknown binary instruction!"); 89 case Instruction::Add: 90 case Instruction::FAdd: return bitc::BINOP_ADD; 91 case Instruction::Sub: 92 case Instruction::FSub: return bitc::BINOP_SUB; 93 case Instruction::Mul: 94 case Instruction::FMul: return bitc::BINOP_MUL; 95 case Instruction::UDiv: return bitc::BINOP_UDIV; 96 case Instruction::FDiv: 97 case Instruction::SDiv: return bitc::BINOP_SDIV; 98 case Instruction::URem: return bitc::BINOP_UREM; 99 case Instruction::FRem: 100 case Instruction::SRem: return bitc::BINOP_SREM; 101 case Instruction::Shl: return bitc::BINOP_SHL; 102 case Instruction::LShr: return bitc::BINOP_LSHR; 103 case Instruction::AShr: return bitc::BINOP_ASHR; 104 case Instruction::And: return bitc::BINOP_AND; 105 case Instruction::Or: return bitc::BINOP_OR; 106 case Instruction::Xor: return bitc::BINOP_XOR; 107 } 108 } 109 110 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 111 switch (Op) { 112 default: llvm_unreachable("Unknown RMW operation!"); 113 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 114 case AtomicRMWInst::Add: return bitc::RMW_ADD; 115 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 116 case AtomicRMWInst::And: return bitc::RMW_AND; 117 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 118 case AtomicRMWInst::Or: return bitc::RMW_OR; 119 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 120 case AtomicRMWInst::Max: return bitc::RMW_MAX; 121 case AtomicRMWInst::Min: return bitc::RMW_MIN; 122 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 123 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 124 } 125 } 126 127 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 128 switch (Ordering) { 129 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 130 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 131 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 132 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 133 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 134 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 135 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 136 } 137 llvm_unreachable("Invalid ordering"); 138 } 139 140 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 141 switch (SynchScope) { 142 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 143 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 144 } 145 llvm_unreachable("Invalid synch scope"); 146 } 147 148 static void WriteStringRecord(unsigned Code, StringRef Str, 149 unsigned AbbrevToUse, BitstreamWriter &Stream) { 150 SmallVector<unsigned, 64> Vals; 151 152 // Code: [strchar x N] 153 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 154 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 155 AbbrevToUse = 0; 156 Vals.push_back(Str[i]); 157 } 158 159 // Emit the finished record. 160 Stream.EmitRecord(Code, Vals, AbbrevToUse); 161 } 162 163 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 164 switch (Kind) { 165 case Attribute::Alignment: 166 return bitc::ATTR_KIND_ALIGNMENT; 167 case Attribute::AllocSize: 168 return bitc::ATTR_KIND_ALLOC_SIZE; 169 case Attribute::AlwaysInline: 170 return bitc::ATTR_KIND_ALWAYS_INLINE; 171 case Attribute::ArgMemOnly: 172 return bitc::ATTR_KIND_ARGMEMONLY; 173 case Attribute::Builtin: 174 return bitc::ATTR_KIND_BUILTIN; 175 case Attribute::ByVal: 176 return bitc::ATTR_KIND_BY_VAL; 177 case Attribute::Convergent: 178 return bitc::ATTR_KIND_CONVERGENT; 179 case Attribute::InAlloca: 180 return bitc::ATTR_KIND_IN_ALLOCA; 181 case Attribute::Cold: 182 return bitc::ATTR_KIND_COLD; 183 case Attribute::InaccessibleMemOnly: 184 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 185 case Attribute::InaccessibleMemOrArgMemOnly: 186 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 187 case Attribute::InlineHint: 188 return bitc::ATTR_KIND_INLINE_HINT; 189 case Attribute::InReg: 190 return bitc::ATTR_KIND_IN_REG; 191 case Attribute::JumpTable: 192 return bitc::ATTR_KIND_JUMP_TABLE; 193 case Attribute::MinSize: 194 return bitc::ATTR_KIND_MIN_SIZE; 195 case Attribute::Naked: 196 return bitc::ATTR_KIND_NAKED; 197 case Attribute::Nest: 198 return bitc::ATTR_KIND_NEST; 199 case Attribute::NoAlias: 200 return bitc::ATTR_KIND_NO_ALIAS; 201 case Attribute::NoBuiltin: 202 return bitc::ATTR_KIND_NO_BUILTIN; 203 case Attribute::NoCapture: 204 return bitc::ATTR_KIND_NO_CAPTURE; 205 case Attribute::NoDuplicate: 206 return bitc::ATTR_KIND_NO_DUPLICATE; 207 case Attribute::NoImplicitFloat: 208 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 209 case Attribute::NoInline: 210 return bitc::ATTR_KIND_NO_INLINE; 211 case Attribute::NoRecurse: 212 return bitc::ATTR_KIND_NO_RECURSE; 213 case Attribute::NonLazyBind: 214 return bitc::ATTR_KIND_NON_LAZY_BIND; 215 case Attribute::NonNull: 216 return bitc::ATTR_KIND_NON_NULL; 217 case Attribute::Dereferenceable: 218 return bitc::ATTR_KIND_DEREFERENCEABLE; 219 case Attribute::DereferenceableOrNull: 220 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 221 case Attribute::NoRedZone: 222 return bitc::ATTR_KIND_NO_RED_ZONE; 223 case Attribute::NoReturn: 224 return bitc::ATTR_KIND_NO_RETURN; 225 case Attribute::NoUnwind: 226 return bitc::ATTR_KIND_NO_UNWIND; 227 case Attribute::OptimizeForSize: 228 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 229 case Attribute::OptimizeNone: 230 return bitc::ATTR_KIND_OPTIMIZE_NONE; 231 case Attribute::ReadNone: 232 return bitc::ATTR_KIND_READ_NONE; 233 case Attribute::ReadOnly: 234 return bitc::ATTR_KIND_READ_ONLY; 235 case Attribute::Returned: 236 return bitc::ATTR_KIND_RETURNED; 237 case Attribute::ReturnsTwice: 238 return bitc::ATTR_KIND_RETURNS_TWICE; 239 case Attribute::SExt: 240 return bitc::ATTR_KIND_S_EXT; 241 case Attribute::StackAlignment: 242 return bitc::ATTR_KIND_STACK_ALIGNMENT; 243 case Attribute::StackProtect: 244 return bitc::ATTR_KIND_STACK_PROTECT; 245 case Attribute::StackProtectReq: 246 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 247 case Attribute::StackProtectStrong: 248 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 249 case Attribute::SafeStack: 250 return bitc::ATTR_KIND_SAFESTACK; 251 case Attribute::StructRet: 252 return bitc::ATTR_KIND_STRUCT_RET; 253 case Attribute::SanitizeAddress: 254 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 255 case Attribute::SanitizeThread: 256 return bitc::ATTR_KIND_SANITIZE_THREAD; 257 case Attribute::SanitizeMemory: 258 return bitc::ATTR_KIND_SANITIZE_MEMORY; 259 case Attribute::SwiftError: 260 return bitc::ATTR_KIND_SWIFT_ERROR; 261 case Attribute::SwiftSelf: 262 return bitc::ATTR_KIND_SWIFT_SELF; 263 case Attribute::UWTable: 264 return bitc::ATTR_KIND_UW_TABLE; 265 case Attribute::ZExt: 266 return bitc::ATTR_KIND_Z_EXT; 267 case Attribute::EndAttrKinds: 268 llvm_unreachable("Can not encode end-attribute kinds marker."); 269 case Attribute::None: 270 llvm_unreachable("Can not encode none-attribute."); 271 } 272 273 llvm_unreachable("Trying to encode unknown attribute"); 274 } 275 276 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 277 BitstreamWriter &Stream) { 278 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 279 if (AttrGrps.empty()) return; 280 281 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 282 283 SmallVector<uint64_t, 64> Record; 284 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 285 AttributeSet AS = AttrGrps[i]; 286 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 287 AttributeSet A = AS.getSlotAttributes(i); 288 289 Record.push_back(VE.getAttributeGroupID(A)); 290 Record.push_back(AS.getSlotIndex(i)); 291 292 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 293 I != E; ++I) { 294 Attribute Attr = *I; 295 if (Attr.isEnumAttribute()) { 296 Record.push_back(0); 297 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 298 } else if (Attr.isIntAttribute()) { 299 Record.push_back(1); 300 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 301 Record.push_back(Attr.getValueAsInt()); 302 } else { 303 StringRef Kind = Attr.getKindAsString(); 304 StringRef Val = Attr.getValueAsString(); 305 306 Record.push_back(Val.empty() ? 3 : 4); 307 Record.append(Kind.begin(), Kind.end()); 308 Record.push_back(0); 309 if (!Val.empty()) { 310 Record.append(Val.begin(), Val.end()); 311 Record.push_back(0); 312 } 313 } 314 } 315 316 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 317 Record.clear(); 318 } 319 } 320 321 Stream.ExitBlock(); 322 } 323 324 static void WriteAttributeTable(const ValueEnumerator &VE, 325 BitstreamWriter &Stream) { 326 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 327 if (Attrs.empty()) return; 328 329 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 330 331 SmallVector<uint64_t, 64> Record; 332 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 333 const AttributeSet &A = Attrs[i]; 334 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 335 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 336 337 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 338 Record.clear(); 339 } 340 341 Stream.ExitBlock(); 342 } 343 344 /// WriteTypeTable - Write out the type table for a module. 345 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 346 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 347 348 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 349 SmallVector<uint64_t, 64> TypeVals; 350 351 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 352 353 // Abbrev for TYPE_CODE_POINTER. 354 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 357 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 358 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_FUNCTION. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_STRUCT_ANON. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 375 376 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 377 378 // Abbrev for TYPE_CODE_STRUCT_NAME. 379 Abbv = new BitCodeAbbrev(); 380 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 383 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 384 385 // Abbrev for TYPE_CODE_STRUCT_NAMED. 386 Abbv = new BitCodeAbbrev(); 387 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 391 392 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 393 394 // Abbrev for TYPE_CODE_ARRAY. 395 Abbv = new BitCodeAbbrev(); 396 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 399 400 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 401 402 // Emit an entry count so the reader can reserve space. 403 TypeVals.push_back(TypeList.size()); 404 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 405 TypeVals.clear(); 406 407 // Loop over all of the types, emitting each in turn. 408 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 409 Type *T = TypeList[i]; 410 int AbbrevToUse = 0; 411 unsigned Code = 0; 412 413 switch (T->getTypeID()) { 414 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 415 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 416 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 417 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 418 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 419 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 420 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 421 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 422 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 423 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 424 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 425 case Type::IntegerTyID: 426 // INTEGER: [width] 427 Code = bitc::TYPE_CODE_INTEGER; 428 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 429 break; 430 case Type::PointerTyID: { 431 PointerType *PTy = cast<PointerType>(T); 432 // POINTER: [pointee type, address space] 433 Code = bitc::TYPE_CODE_POINTER; 434 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 435 unsigned AddressSpace = PTy->getAddressSpace(); 436 TypeVals.push_back(AddressSpace); 437 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 438 break; 439 } 440 case Type::FunctionTyID: { 441 FunctionType *FT = cast<FunctionType>(T); 442 // FUNCTION: [isvararg, retty, paramty x N] 443 Code = bitc::TYPE_CODE_FUNCTION; 444 TypeVals.push_back(FT->isVarArg()); 445 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 446 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 447 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 448 AbbrevToUse = FunctionAbbrev; 449 break; 450 } 451 case Type::StructTyID: { 452 StructType *ST = cast<StructType>(T); 453 // STRUCT: [ispacked, eltty x N] 454 TypeVals.push_back(ST->isPacked()); 455 // Output all of the element types. 456 for (StructType::element_iterator I = ST->element_begin(), 457 E = ST->element_end(); I != E; ++I) 458 TypeVals.push_back(VE.getTypeID(*I)); 459 460 if (ST->isLiteral()) { 461 Code = bitc::TYPE_CODE_STRUCT_ANON; 462 AbbrevToUse = StructAnonAbbrev; 463 } else { 464 if (ST->isOpaque()) { 465 Code = bitc::TYPE_CODE_OPAQUE; 466 } else { 467 Code = bitc::TYPE_CODE_STRUCT_NAMED; 468 AbbrevToUse = StructNamedAbbrev; 469 } 470 471 // Emit the name if it is present. 472 if (!ST->getName().empty()) 473 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 474 StructNameAbbrev, Stream); 475 } 476 break; 477 } 478 case Type::ArrayTyID: { 479 ArrayType *AT = cast<ArrayType>(T); 480 // ARRAY: [numelts, eltty] 481 Code = bitc::TYPE_CODE_ARRAY; 482 TypeVals.push_back(AT->getNumElements()); 483 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 484 AbbrevToUse = ArrayAbbrev; 485 break; 486 } 487 case Type::VectorTyID: { 488 VectorType *VT = cast<VectorType>(T); 489 // VECTOR [numelts, eltty] 490 Code = bitc::TYPE_CODE_VECTOR; 491 TypeVals.push_back(VT->getNumElements()); 492 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 493 break; 494 } 495 } 496 497 // Emit the finished record. 498 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 499 TypeVals.clear(); 500 } 501 502 Stream.ExitBlock(); 503 } 504 505 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 506 switch (Linkage) { 507 case GlobalValue::ExternalLinkage: 508 return 0; 509 case GlobalValue::WeakAnyLinkage: 510 return 16; 511 case GlobalValue::AppendingLinkage: 512 return 2; 513 case GlobalValue::InternalLinkage: 514 return 3; 515 case GlobalValue::LinkOnceAnyLinkage: 516 return 18; 517 case GlobalValue::ExternalWeakLinkage: 518 return 7; 519 case GlobalValue::CommonLinkage: 520 return 8; 521 case GlobalValue::PrivateLinkage: 522 return 9; 523 case GlobalValue::WeakODRLinkage: 524 return 17; 525 case GlobalValue::LinkOnceODRLinkage: 526 return 19; 527 case GlobalValue::AvailableExternallyLinkage: 528 return 12; 529 } 530 llvm_unreachable("Invalid linkage"); 531 } 532 533 static unsigned getEncodedLinkage(const GlobalValue &GV) { 534 return getEncodedLinkage(GV.getLinkage()); 535 } 536 537 static unsigned getEncodedVisibility(const GlobalValue &GV) { 538 switch (GV.getVisibility()) { 539 case GlobalValue::DefaultVisibility: return 0; 540 case GlobalValue::HiddenVisibility: return 1; 541 case GlobalValue::ProtectedVisibility: return 2; 542 } 543 llvm_unreachable("Invalid visibility"); 544 } 545 546 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 547 switch (GV.getDLLStorageClass()) { 548 case GlobalValue::DefaultStorageClass: return 0; 549 case GlobalValue::DLLImportStorageClass: return 1; 550 case GlobalValue::DLLExportStorageClass: return 2; 551 } 552 llvm_unreachable("Invalid DLL storage class"); 553 } 554 555 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 556 switch (GV.getThreadLocalMode()) { 557 case GlobalVariable::NotThreadLocal: return 0; 558 case GlobalVariable::GeneralDynamicTLSModel: return 1; 559 case GlobalVariable::LocalDynamicTLSModel: return 2; 560 case GlobalVariable::InitialExecTLSModel: return 3; 561 case GlobalVariable::LocalExecTLSModel: return 4; 562 } 563 llvm_unreachable("Invalid TLS model"); 564 } 565 566 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 567 switch (C.getSelectionKind()) { 568 case Comdat::Any: 569 return bitc::COMDAT_SELECTION_KIND_ANY; 570 case Comdat::ExactMatch: 571 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 572 case Comdat::Largest: 573 return bitc::COMDAT_SELECTION_KIND_LARGEST; 574 case Comdat::NoDuplicates: 575 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 576 case Comdat::SameSize: 577 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 578 } 579 llvm_unreachable("Invalid selection kind"); 580 } 581 582 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 583 SmallVector<unsigned, 64> Vals; 584 for (const Comdat *C : VE.getComdats()) { 585 // COMDAT: [selection_kind, name] 586 Vals.push_back(getEncodedComdatSelectionKind(*C)); 587 size_t Size = C->getName().size(); 588 assert(isUInt<32>(Size)); 589 Vals.push_back(Size); 590 for (char Chr : C->getName()) 591 Vals.push_back((unsigned char)Chr); 592 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 593 Vals.clear(); 594 } 595 } 596 597 /// Write a record that will eventually hold the word offset of the 598 /// module-level VST. For now the offset is 0, which will be backpatched 599 /// after the real VST is written. Returns the bit offset to backpatch. 600 static uint64_t WriteValueSymbolTableForwardDecl(BitstreamWriter &Stream) { 601 // Write a placeholder value in for the offset of the real VST, 602 // which is written after the function blocks so that it can include 603 // the offset of each function. The placeholder offset will be 604 // updated when the real VST is written. 605 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 606 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 607 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 608 // hold the real VST offset. Must use fixed instead of VBR as we don't 609 // know how many VBR chunks to reserve ahead of time. 610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 611 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 612 613 // Emit the placeholder 614 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 615 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 616 617 // Compute and return the bit offset to the placeholder, which will be 618 // patched when the real VST is written. We can simply subtract the 32-bit 619 // fixed size from the current bit number to get the location to backpatch. 620 return Stream.GetCurrentBitNo() - 32; 621 } 622 623 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 624 625 /// Determine the encoding to use for the given string name and length. 626 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 627 bool isChar6 = true; 628 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 629 if (isChar6) 630 isChar6 = BitCodeAbbrevOp::isChar6(*C); 631 if ((unsigned char)*C & 128) 632 // don't bother scanning the rest. 633 return SE_Fixed8; 634 } 635 if (isChar6) 636 return SE_Char6; 637 else 638 return SE_Fixed7; 639 } 640 641 /// Emit top-level description of module, including target triple, inline asm, 642 /// descriptors for global variables, and function prototype info. 643 /// Returns the bit offset to backpatch with the location of the real VST. 644 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 645 BitstreamWriter &Stream) { 646 // Emit various pieces of data attached to a module. 647 if (!M->getTargetTriple().empty()) 648 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 649 0/*TODO*/, Stream); 650 const std::string &DL = M->getDataLayoutStr(); 651 if (!DL.empty()) 652 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 653 if (!M->getModuleInlineAsm().empty()) 654 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 655 0/*TODO*/, Stream); 656 657 // Emit information about sections and GC, computing how many there are. Also 658 // compute the maximum alignment value. 659 std::map<std::string, unsigned> SectionMap; 660 std::map<std::string, unsigned> GCMap; 661 unsigned MaxAlignment = 0; 662 unsigned MaxGlobalType = 0; 663 for (const GlobalValue &GV : M->globals()) { 664 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 665 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 666 if (GV.hasSection()) { 667 // Give section names unique ID's. 668 unsigned &Entry = SectionMap[GV.getSection()]; 669 if (!Entry) { 670 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 671 0/*TODO*/, Stream); 672 Entry = SectionMap.size(); 673 } 674 } 675 } 676 for (const Function &F : *M) { 677 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 678 if (F.hasSection()) { 679 // Give section names unique ID's. 680 unsigned &Entry = SectionMap[F.getSection()]; 681 if (!Entry) { 682 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 683 0/*TODO*/, Stream); 684 Entry = SectionMap.size(); 685 } 686 } 687 if (F.hasGC()) { 688 // Same for GC names. 689 unsigned &Entry = GCMap[F.getGC()]; 690 if (!Entry) { 691 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 692 0/*TODO*/, Stream); 693 Entry = GCMap.size(); 694 } 695 } 696 } 697 698 // Emit abbrev for globals, now that we know # sections and max alignment. 699 unsigned SimpleGVarAbbrev = 0; 700 if (!M->global_empty()) { 701 // Add an abbrev for common globals with no visibility or thread localness. 702 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 703 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 705 Log2_32_Ceil(MaxGlobalType+1))); 706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 707 //| explicitType << 1 708 //| constant 709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 711 if (MaxAlignment == 0) // Alignment. 712 Abbv->Add(BitCodeAbbrevOp(0)); 713 else { 714 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 716 Log2_32_Ceil(MaxEncAlignment+1))); 717 } 718 if (SectionMap.empty()) // Section. 719 Abbv->Add(BitCodeAbbrevOp(0)); 720 else 721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 722 Log2_32_Ceil(SectionMap.size()+1))); 723 // Don't bother emitting vis + thread local. 724 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 725 } 726 727 // Emit the global variable information. 728 SmallVector<unsigned, 64> Vals; 729 for (const GlobalVariable &GV : M->globals()) { 730 unsigned AbbrevToUse = 0; 731 732 // GLOBALVAR: [type, isconst, initid, 733 // linkage, alignment, section, visibility, threadlocal, 734 // unnamed_addr, externally_initialized, dllstorageclass, 735 // comdat] 736 Vals.push_back(VE.getTypeID(GV.getValueType())); 737 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 738 Vals.push_back(GV.isDeclaration() ? 0 : 739 (VE.getValueID(GV.getInitializer()) + 1)); 740 Vals.push_back(getEncodedLinkage(GV)); 741 Vals.push_back(Log2_32(GV.getAlignment())+1); 742 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 743 if (GV.isThreadLocal() || 744 GV.getVisibility() != GlobalValue::DefaultVisibility || 745 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 746 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 747 GV.hasComdat()) { 748 Vals.push_back(getEncodedVisibility(GV)); 749 Vals.push_back(getEncodedThreadLocalMode(GV)); 750 Vals.push_back(GV.hasUnnamedAddr()); 751 Vals.push_back(GV.isExternallyInitialized()); 752 Vals.push_back(getEncodedDLLStorageClass(GV)); 753 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 754 } else { 755 AbbrevToUse = SimpleGVarAbbrev; 756 } 757 758 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 759 Vals.clear(); 760 } 761 762 // Emit the function proto information. 763 for (const Function &F : *M) { 764 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 765 // section, visibility, gc, unnamed_addr, prologuedata, 766 // dllstorageclass, comdat, prefixdata, personalityfn] 767 Vals.push_back(VE.getTypeID(F.getFunctionType())); 768 Vals.push_back(F.getCallingConv()); 769 Vals.push_back(F.isDeclaration()); 770 Vals.push_back(getEncodedLinkage(F)); 771 Vals.push_back(VE.getAttributeID(F.getAttributes())); 772 Vals.push_back(Log2_32(F.getAlignment())+1); 773 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 774 Vals.push_back(getEncodedVisibility(F)); 775 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 776 Vals.push_back(F.hasUnnamedAddr()); 777 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 778 : 0); 779 Vals.push_back(getEncodedDLLStorageClass(F)); 780 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 781 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 782 : 0); 783 Vals.push_back( 784 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 785 786 unsigned AbbrevToUse = 0; 787 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 788 Vals.clear(); 789 } 790 791 // Emit the alias information. 792 for (const GlobalAlias &A : M->aliases()) { 793 // ALIAS: [alias type, aliasee val#, linkage, visibility] 794 Vals.push_back(VE.getTypeID(A.getValueType())); 795 Vals.push_back(A.getType()->getAddressSpace()); 796 Vals.push_back(VE.getValueID(A.getAliasee())); 797 Vals.push_back(getEncodedLinkage(A)); 798 Vals.push_back(getEncodedVisibility(A)); 799 Vals.push_back(getEncodedDLLStorageClass(A)); 800 Vals.push_back(getEncodedThreadLocalMode(A)); 801 Vals.push_back(A.hasUnnamedAddr()); 802 unsigned AbbrevToUse = 0; 803 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 804 Vals.clear(); 805 } 806 807 // Emit the ifunc information. 808 for (const GlobalIFunc &I : M->ifuncs()) { 809 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 810 Vals.push_back(VE.getTypeID(I.getValueType())); 811 Vals.push_back(I.getType()->getAddressSpace()); 812 Vals.push_back(VE.getValueID(I.getResolver())); 813 Vals.push_back(getEncodedLinkage(I)); 814 Vals.push_back(getEncodedVisibility(I)); 815 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 816 Vals.clear(); 817 } 818 819 // Emit the module's source file name. 820 { 821 StringEncoding Bits = getStringEncoding(M->getSourceFileName().data(), 822 M->getSourceFileName().size()); 823 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 824 if (Bits == SE_Char6) 825 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 826 else if (Bits == SE_Fixed7) 827 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 828 829 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 830 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 831 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 833 Abbv->Add(AbbrevOpToUse); 834 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 835 836 for (const auto P : M->getSourceFileName()) 837 Vals.push_back((unsigned char)P); 838 839 // Emit the finished record. 840 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 841 Vals.clear(); 842 } 843 844 // If we have a VST, write the VSTOFFSET record placeholder and return 845 // its offset. 846 if (M->getValueSymbolTable().empty()) 847 return 0; 848 return WriteValueSymbolTableForwardDecl(Stream); 849 } 850 851 static uint64_t GetOptimizationFlags(const Value *V) { 852 uint64_t Flags = 0; 853 854 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 855 if (OBO->hasNoSignedWrap()) 856 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 857 if (OBO->hasNoUnsignedWrap()) 858 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 859 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 860 if (PEO->isExact()) 861 Flags |= 1 << bitc::PEO_EXACT; 862 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 863 if (FPMO->hasUnsafeAlgebra()) 864 Flags |= FastMathFlags::UnsafeAlgebra; 865 if (FPMO->hasNoNaNs()) 866 Flags |= FastMathFlags::NoNaNs; 867 if (FPMO->hasNoInfs()) 868 Flags |= FastMathFlags::NoInfs; 869 if (FPMO->hasNoSignedZeros()) 870 Flags |= FastMathFlags::NoSignedZeros; 871 if (FPMO->hasAllowReciprocal()) 872 Flags |= FastMathFlags::AllowReciprocal; 873 } 874 875 return Flags; 876 } 877 878 static void writeValueAsMetadata(const ValueAsMetadata *MD, 879 const ValueEnumerator &VE, 880 BitstreamWriter &Stream, 881 SmallVectorImpl<uint64_t> &Record) { 882 // Mimic an MDNode with a value as one operand. 883 Value *V = MD->getValue(); 884 Record.push_back(VE.getTypeID(V->getType())); 885 Record.push_back(VE.getValueID(V)); 886 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 887 Record.clear(); 888 } 889 890 static void writeMDTuple(const MDTuple *N, const ValueEnumerator &VE, 891 BitstreamWriter &Stream, 892 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 893 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 894 Metadata *MD = N->getOperand(i); 895 assert(!(MD && isa<LocalAsMetadata>(MD)) && 896 "Unexpected function-local metadata"); 897 Record.push_back(VE.getMetadataOrNullID(MD)); 898 } 899 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 900 : bitc::METADATA_NODE, 901 Record, Abbrev); 902 Record.clear(); 903 } 904 905 static unsigned createDILocationAbbrev(BitstreamWriter &Stream) { 906 // Assume the column is usually under 128, and always output the inlined-at 907 // location (it's never more expensive than building an array size 1). 908 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 909 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 915 return Stream.EmitAbbrev(Abbv); 916 } 917 918 static void writeDILocation(const DILocation *N, const ValueEnumerator &VE, 919 BitstreamWriter &Stream, 920 SmallVectorImpl<uint64_t> &Record, 921 unsigned &Abbrev) { 922 if (!Abbrev) 923 Abbrev = createDILocationAbbrev(Stream); 924 925 Record.push_back(N->isDistinct()); 926 Record.push_back(N->getLine()); 927 Record.push_back(N->getColumn()); 928 Record.push_back(VE.getMetadataID(N->getScope())); 929 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 930 931 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 932 Record.clear(); 933 } 934 935 static unsigned createGenericDINodeAbbrev(BitstreamWriter &Stream) { 936 // Assume the column is usually under 128, and always output the inlined-at 937 // location (it's never more expensive than building an array size 1). 938 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 939 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 946 return Stream.EmitAbbrev(Abbv); 947 } 948 949 static void writeGenericDINode(const GenericDINode *N, 950 const ValueEnumerator &VE, 951 BitstreamWriter &Stream, 952 SmallVectorImpl<uint64_t> &Record, 953 unsigned &Abbrev) { 954 if (!Abbrev) 955 Abbrev = createGenericDINodeAbbrev(Stream); 956 957 Record.push_back(N->isDistinct()); 958 Record.push_back(N->getTag()); 959 Record.push_back(0); // Per-tag version field; unused for now. 960 961 for (auto &I : N->operands()) 962 Record.push_back(VE.getMetadataOrNullID(I)); 963 964 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 965 Record.clear(); 966 } 967 968 static uint64_t rotateSign(int64_t I) { 969 uint64_t U = I; 970 return I < 0 ? ~(U << 1) : U << 1; 971 } 972 973 static void writeDISubrange(const DISubrange *N, const ValueEnumerator &, 974 BitstreamWriter &Stream, 975 SmallVectorImpl<uint64_t> &Record, 976 unsigned Abbrev) { 977 Record.push_back(N->isDistinct()); 978 Record.push_back(N->getCount()); 979 Record.push_back(rotateSign(N->getLowerBound())); 980 981 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 982 Record.clear(); 983 } 984 985 static void writeDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 986 BitstreamWriter &Stream, 987 SmallVectorImpl<uint64_t> &Record, 988 unsigned Abbrev) { 989 Record.push_back(N->isDistinct()); 990 Record.push_back(rotateSign(N->getValue())); 991 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 992 993 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 994 Record.clear(); 995 } 996 997 static void writeDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 998 BitstreamWriter &Stream, 999 SmallVectorImpl<uint64_t> &Record, 1000 unsigned Abbrev) { 1001 Record.push_back(N->isDistinct()); 1002 Record.push_back(N->getTag()); 1003 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1004 Record.push_back(N->getSizeInBits()); 1005 Record.push_back(N->getAlignInBits()); 1006 Record.push_back(N->getEncoding()); 1007 1008 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1009 Record.clear(); 1010 } 1011 1012 static void writeDIDerivedType(const DIDerivedType *N, 1013 const ValueEnumerator &VE, 1014 BitstreamWriter &Stream, 1015 SmallVectorImpl<uint64_t> &Record, 1016 unsigned Abbrev) { 1017 Record.push_back(N->isDistinct()); 1018 Record.push_back(N->getTag()); 1019 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1020 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1021 Record.push_back(N->getLine()); 1022 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1023 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1024 Record.push_back(N->getSizeInBits()); 1025 Record.push_back(N->getAlignInBits()); 1026 Record.push_back(N->getOffsetInBits()); 1027 Record.push_back(N->getFlags()); 1028 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1029 1030 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1031 Record.clear(); 1032 } 1033 1034 static void writeDICompositeType(const DICompositeType *N, 1035 const ValueEnumerator &VE, 1036 BitstreamWriter &Stream, 1037 SmallVectorImpl<uint64_t> &Record, 1038 unsigned Abbrev) { 1039 Record.push_back(N->isDistinct()); 1040 Record.push_back(N->getTag()); 1041 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1042 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1043 Record.push_back(N->getLine()); 1044 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1045 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1046 Record.push_back(N->getSizeInBits()); 1047 Record.push_back(N->getAlignInBits()); 1048 Record.push_back(N->getOffsetInBits()); 1049 Record.push_back(N->getFlags()); 1050 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1051 Record.push_back(N->getRuntimeLang()); 1052 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1053 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1054 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1055 1056 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1057 Record.clear(); 1058 } 1059 1060 static void writeDISubroutineType(const DISubroutineType *N, 1061 const ValueEnumerator &VE, 1062 BitstreamWriter &Stream, 1063 SmallVectorImpl<uint64_t> &Record, 1064 unsigned Abbrev) { 1065 Record.push_back(N->isDistinct()); 1066 Record.push_back(N->getFlags()); 1067 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1068 1069 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1070 Record.clear(); 1071 } 1072 1073 static void writeDIFile(const DIFile *N, const ValueEnumerator &VE, 1074 BitstreamWriter &Stream, 1075 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1076 Record.push_back(N->isDistinct()); 1077 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1078 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1079 1080 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1081 Record.clear(); 1082 } 1083 1084 static void writeDICompileUnit(const DICompileUnit *N, 1085 const ValueEnumerator &VE, 1086 BitstreamWriter &Stream, 1087 SmallVectorImpl<uint64_t> &Record, 1088 unsigned Abbrev) { 1089 assert(N->isDistinct() && "Expected distinct compile units"); 1090 Record.push_back(/* IsDistinct */ true); 1091 Record.push_back(N->getSourceLanguage()); 1092 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1093 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1094 Record.push_back(N->isOptimized()); 1095 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1096 Record.push_back(N->getRuntimeVersion()); 1097 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1098 Record.push_back(N->getEmissionKind()); 1099 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1100 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1101 Record.push_back(/* subprograms */ 0); 1102 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1103 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1104 Record.push_back(N->getDWOId()); 1105 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1106 1107 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1108 Record.clear(); 1109 } 1110 1111 static void writeDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 1112 BitstreamWriter &Stream, 1113 SmallVectorImpl<uint64_t> &Record, 1114 unsigned Abbrev) { 1115 Record.push_back(N->isDistinct()); 1116 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1117 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1118 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1119 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1120 Record.push_back(N->getLine()); 1121 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1122 Record.push_back(N->isLocalToUnit()); 1123 Record.push_back(N->isDefinition()); 1124 Record.push_back(N->getScopeLine()); 1125 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1126 Record.push_back(N->getVirtuality()); 1127 Record.push_back(N->getVirtualIndex()); 1128 Record.push_back(N->getFlags()); 1129 Record.push_back(N->isOptimized()); 1130 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1131 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1132 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1133 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1134 1135 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1136 Record.clear(); 1137 } 1138 1139 static void writeDILexicalBlock(const DILexicalBlock *N, 1140 const ValueEnumerator &VE, 1141 BitstreamWriter &Stream, 1142 SmallVectorImpl<uint64_t> &Record, 1143 unsigned Abbrev) { 1144 Record.push_back(N->isDistinct()); 1145 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1146 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1147 Record.push_back(N->getLine()); 1148 Record.push_back(N->getColumn()); 1149 1150 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1151 Record.clear(); 1152 } 1153 1154 static void writeDILexicalBlockFile(const DILexicalBlockFile *N, 1155 const ValueEnumerator &VE, 1156 BitstreamWriter &Stream, 1157 SmallVectorImpl<uint64_t> &Record, 1158 unsigned Abbrev) { 1159 Record.push_back(N->isDistinct()); 1160 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1161 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1162 Record.push_back(N->getDiscriminator()); 1163 1164 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1165 Record.clear(); 1166 } 1167 1168 static void writeDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1169 BitstreamWriter &Stream, 1170 SmallVectorImpl<uint64_t> &Record, 1171 unsigned Abbrev) { 1172 Record.push_back(N->isDistinct()); 1173 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1174 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1175 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1176 Record.push_back(N->getLine()); 1177 1178 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1179 Record.clear(); 1180 } 1181 1182 static void writeDIMacro(const DIMacro *N, const ValueEnumerator &VE, 1183 BitstreamWriter &Stream, 1184 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1185 Record.push_back(N->isDistinct()); 1186 Record.push_back(N->getMacinfoType()); 1187 Record.push_back(N->getLine()); 1188 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1189 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1190 1191 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1192 Record.clear(); 1193 } 1194 1195 static void writeDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE, 1196 BitstreamWriter &Stream, 1197 SmallVectorImpl<uint64_t> &Record, 1198 unsigned Abbrev) { 1199 Record.push_back(N->isDistinct()); 1200 Record.push_back(N->getMacinfoType()); 1201 Record.push_back(N->getLine()); 1202 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1203 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1204 1205 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1206 Record.clear(); 1207 } 1208 1209 static void writeDIModule(const DIModule *N, const ValueEnumerator &VE, 1210 BitstreamWriter &Stream, 1211 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1212 Record.push_back(N->isDistinct()); 1213 for (auto &I : N->operands()) 1214 Record.push_back(VE.getMetadataOrNullID(I)); 1215 1216 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1217 Record.clear(); 1218 } 1219 1220 static void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 1221 const ValueEnumerator &VE, 1222 BitstreamWriter &Stream, 1223 SmallVectorImpl<uint64_t> &Record, 1224 unsigned Abbrev) { 1225 Record.push_back(N->isDistinct()); 1226 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1227 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1228 1229 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1230 Record.clear(); 1231 } 1232 1233 static void writeDITemplateValueParameter(const DITemplateValueParameter *N, 1234 const ValueEnumerator &VE, 1235 BitstreamWriter &Stream, 1236 SmallVectorImpl<uint64_t> &Record, 1237 unsigned Abbrev) { 1238 Record.push_back(N->isDistinct()); 1239 Record.push_back(N->getTag()); 1240 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1241 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1242 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1243 1244 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1245 Record.clear(); 1246 } 1247 1248 static void writeDIGlobalVariable(const DIGlobalVariable *N, 1249 const ValueEnumerator &VE, 1250 BitstreamWriter &Stream, 1251 SmallVectorImpl<uint64_t> &Record, 1252 unsigned Abbrev) { 1253 Record.push_back(N->isDistinct()); 1254 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1255 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1256 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1257 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1258 Record.push_back(N->getLine()); 1259 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1260 Record.push_back(N->isLocalToUnit()); 1261 Record.push_back(N->isDefinition()); 1262 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1263 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1264 1265 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1266 Record.clear(); 1267 } 1268 1269 static void writeDILocalVariable(const DILocalVariable *N, 1270 const ValueEnumerator &VE, 1271 BitstreamWriter &Stream, 1272 SmallVectorImpl<uint64_t> &Record, 1273 unsigned Abbrev) { 1274 Record.push_back(N->isDistinct()); 1275 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1276 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1277 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1278 Record.push_back(N->getLine()); 1279 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1280 Record.push_back(N->getArg()); 1281 Record.push_back(N->getFlags()); 1282 1283 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1284 Record.clear(); 1285 } 1286 1287 static void writeDIExpression(const DIExpression *N, const ValueEnumerator &, 1288 BitstreamWriter &Stream, 1289 SmallVectorImpl<uint64_t> &Record, 1290 unsigned Abbrev) { 1291 Record.reserve(N->getElements().size() + 1); 1292 1293 Record.push_back(N->isDistinct()); 1294 Record.append(N->elements_begin(), N->elements_end()); 1295 1296 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1297 Record.clear(); 1298 } 1299 1300 static void writeDIObjCProperty(const DIObjCProperty *N, 1301 const ValueEnumerator &VE, 1302 BitstreamWriter &Stream, 1303 SmallVectorImpl<uint64_t> &Record, 1304 unsigned Abbrev) { 1305 Record.push_back(N->isDistinct()); 1306 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1307 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1308 Record.push_back(N->getLine()); 1309 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1310 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1311 Record.push_back(N->getAttributes()); 1312 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1313 1314 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1315 Record.clear(); 1316 } 1317 1318 static void writeDIImportedEntity(const DIImportedEntity *N, 1319 const ValueEnumerator &VE, 1320 BitstreamWriter &Stream, 1321 SmallVectorImpl<uint64_t> &Record, 1322 unsigned Abbrev) { 1323 Record.push_back(N->isDistinct()); 1324 Record.push_back(N->getTag()); 1325 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1326 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1327 Record.push_back(N->getLine()); 1328 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1329 1330 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1331 Record.clear(); 1332 } 1333 1334 static unsigned createNamedMetadataAbbrev(BitstreamWriter &Stream) { 1335 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1336 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1339 return Stream.EmitAbbrev(Abbv); 1340 } 1341 1342 static void writeNamedMetadata(const Module &M, const ValueEnumerator &VE, 1343 BitstreamWriter &Stream, 1344 SmallVectorImpl<uint64_t> &Record) { 1345 if (M.named_metadata_empty()) 1346 return; 1347 1348 unsigned Abbrev = createNamedMetadataAbbrev(Stream); 1349 for (const NamedMDNode &NMD : M.named_metadata()) { 1350 // Write name. 1351 StringRef Str = NMD.getName(); 1352 Record.append(Str.bytes_begin(), Str.bytes_end()); 1353 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1354 Record.clear(); 1355 1356 // Write named metadata operands. 1357 for (const MDNode *N : NMD.operands()) 1358 Record.push_back(VE.getMetadataID(N)); 1359 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1360 Record.clear(); 1361 } 1362 } 1363 1364 static unsigned createMetadataStringsAbbrev(BitstreamWriter &Stream) { 1365 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1366 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1370 return Stream.EmitAbbrev(Abbv); 1371 } 1372 1373 /// Write out a record for MDString. 1374 /// 1375 /// All the metadata strings in a metadata block are emitted in a single 1376 /// record. The sizes and strings themselves are shoved into a blob. 1377 static void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 1378 BitstreamWriter &Stream, 1379 SmallVectorImpl<uint64_t> &Record) { 1380 if (Strings.empty()) 1381 return; 1382 1383 // Start the record with the number of strings. 1384 Record.push_back(bitc::METADATA_STRINGS); 1385 Record.push_back(Strings.size()); 1386 1387 // Emit the sizes of the strings in the blob. 1388 SmallString<256> Blob; 1389 { 1390 BitstreamWriter W(Blob); 1391 for (const Metadata *MD : Strings) 1392 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1393 W.FlushToWord(); 1394 } 1395 1396 // Add the offset to the strings to the record. 1397 Record.push_back(Blob.size()); 1398 1399 // Add the strings to the blob. 1400 for (const Metadata *MD : Strings) 1401 Blob.append(cast<MDString>(MD)->getString()); 1402 1403 // Emit the final record. 1404 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(Stream), Record, Blob); 1405 Record.clear(); 1406 } 1407 1408 static void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1409 const ValueEnumerator &VE, 1410 BitstreamWriter &Stream, 1411 SmallVectorImpl<uint64_t> &Record) { 1412 if (MDs.empty()) 1413 return; 1414 1415 // Initialize MDNode abbreviations. 1416 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1417 #include "llvm/IR/Metadata.def" 1418 1419 for (const Metadata *MD : MDs) { 1420 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1421 assert(N->isResolved() && "Expected forward references to be resolved"); 1422 1423 switch (N->getMetadataID()) { 1424 default: 1425 llvm_unreachable("Invalid MDNode subclass"); 1426 #define HANDLE_MDNODE_LEAF(CLASS) \ 1427 case Metadata::CLASS##Kind: \ 1428 write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1429 continue; 1430 #include "llvm/IR/Metadata.def" 1431 } 1432 } 1433 writeValueAsMetadata(cast<ValueAsMetadata>(MD), VE, Stream, Record); 1434 } 1435 } 1436 1437 static void writeModuleMetadata(const Module &M, 1438 const ValueEnumerator &VE, 1439 BitstreamWriter &Stream) { 1440 if (!VE.hasMDs() && M.named_metadata_empty()) 1441 return; 1442 1443 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1444 SmallVector<uint64_t, 64> Record; 1445 writeMetadataStrings(VE.getMDStrings(), Stream, Record); 1446 writeMetadataRecords(VE.getNonMDStrings(), VE, Stream, Record); 1447 writeNamedMetadata(M, VE, Stream, Record); 1448 Stream.ExitBlock(); 1449 } 1450 1451 static void writeFunctionMetadata(const Function &F, const ValueEnumerator &VE, 1452 BitstreamWriter &Stream) { 1453 if (!VE.hasMDs()) 1454 return; 1455 1456 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1457 SmallVector<uint64_t, 64> Record; 1458 writeMetadataStrings(VE.getMDStrings(), Stream, Record); 1459 writeMetadataRecords(VE.getNonMDStrings(), VE, Stream, Record); 1460 Stream.ExitBlock(); 1461 } 1462 1463 static void WriteMetadataAttachment(const Function &F, 1464 const ValueEnumerator &VE, 1465 BitstreamWriter &Stream) { 1466 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1467 1468 SmallVector<uint64_t, 64> Record; 1469 1470 // Write metadata attachments 1471 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1472 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1473 F.getAllMetadata(MDs); 1474 if (!MDs.empty()) { 1475 for (const auto &I : MDs) { 1476 Record.push_back(I.first); 1477 Record.push_back(VE.getMetadataID(I.second)); 1478 } 1479 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1480 Record.clear(); 1481 } 1482 1483 for (const BasicBlock &BB : F) 1484 for (const Instruction &I : BB) { 1485 MDs.clear(); 1486 I.getAllMetadataOtherThanDebugLoc(MDs); 1487 1488 // If no metadata, ignore instruction. 1489 if (MDs.empty()) continue; 1490 1491 Record.push_back(VE.getInstructionID(&I)); 1492 1493 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1494 Record.push_back(MDs[i].first); 1495 Record.push_back(VE.getMetadataID(MDs[i].second)); 1496 } 1497 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1498 Record.clear(); 1499 } 1500 1501 Stream.ExitBlock(); 1502 } 1503 1504 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1505 SmallVector<uint64_t, 64> Record; 1506 1507 // Write metadata kinds 1508 // METADATA_KIND - [n x [id, name]] 1509 SmallVector<StringRef, 8> Names; 1510 M->getMDKindNames(Names); 1511 1512 if (Names.empty()) return; 1513 1514 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1515 1516 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1517 Record.push_back(MDKindID); 1518 StringRef KName = Names[MDKindID]; 1519 Record.append(KName.begin(), KName.end()); 1520 1521 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1522 Record.clear(); 1523 } 1524 1525 Stream.ExitBlock(); 1526 } 1527 1528 static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) { 1529 // Write metadata kinds 1530 // 1531 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1532 // 1533 // OPERAND_BUNDLE_TAG - [strchr x N] 1534 1535 SmallVector<StringRef, 8> Tags; 1536 M->getOperandBundleTags(Tags); 1537 1538 if (Tags.empty()) 1539 return; 1540 1541 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1542 1543 SmallVector<uint64_t, 64> Record; 1544 1545 for (auto Tag : Tags) { 1546 Record.append(Tag.begin(), Tag.end()); 1547 1548 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1549 Record.clear(); 1550 } 1551 1552 Stream.ExitBlock(); 1553 } 1554 1555 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1556 if ((int64_t)V >= 0) 1557 Vals.push_back(V << 1); 1558 else 1559 Vals.push_back((-V << 1) | 1); 1560 } 1561 1562 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1563 const ValueEnumerator &VE, 1564 BitstreamWriter &Stream, bool isGlobal) { 1565 if (FirstVal == LastVal) return; 1566 1567 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1568 1569 unsigned AggregateAbbrev = 0; 1570 unsigned String8Abbrev = 0; 1571 unsigned CString7Abbrev = 0; 1572 unsigned CString6Abbrev = 0; 1573 // If this is a constant pool for the module, emit module-specific abbrevs. 1574 if (isGlobal) { 1575 // Abbrev for CST_CODE_AGGREGATE. 1576 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1577 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1580 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1581 1582 // Abbrev for CST_CODE_STRING. 1583 Abbv = new BitCodeAbbrev(); 1584 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1587 String8Abbrev = Stream.EmitAbbrev(Abbv); 1588 // Abbrev for CST_CODE_CSTRING. 1589 Abbv = new BitCodeAbbrev(); 1590 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1593 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1594 // Abbrev for CST_CODE_CSTRING. 1595 Abbv = new BitCodeAbbrev(); 1596 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1599 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1600 } 1601 1602 SmallVector<uint64_t, 64> Record; 1603 1604 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1605 Type *LastTy = nullptr; 1606 for (unsigned i = FirstVal; i != LastVal; ++i) { 1607 const Value *V = Vals[i].first; 1608 // If we need to switch types, do so now. 1609 if (V->getType() != LastTy) { 1610 LastTy = V->getType(); 1611 Record.push_back(VE.getTypeID(LastTy)); 1612 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1613 CONSTANTS_SETTYPE_ABBREV); 1614 Record.clear(); 1615 } 1616 1617 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1618 Record.push_back(unsigned(IA->hasSideEffects()) | 1619 unsigned(IA->isAlignStack()) << 1 | 1620 unsigned(IA->getDialect()&1) << 2); 1621 1622 // Add the asm string. 1623 const std::string &AsmStr = IA->getAsmString(); 1624 Record.push_back(AsmStr.size()); 1625 Record.append(AsmStr.begin(), AsmStr.end()); 1626 1627 // Add the constraint string. 1628 const std::string &ConstraintStr = IA->getConstraintString(); 1629 Record.push_back(ConstraintStr.size()); 1630 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1631 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1632 Record.clear(); 1633 continue; 1634 } 1635 const Constant *C = cast<Constant>(V); 1636 unsigned Code = -1U; 1637 unsigned AbbrevToUse = 0; 1638 if (C->isNullValue()) { 1639 Code = bitc::CST_CODE_NULL; 1640 } else if (isa<UndefValue>(C)) { 1641 Code = bitc::CST_CODE_UNDEF; 1642 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1643 if (IV->getBitWidth() <= 64) { 1644 uint64_t V = IV->getSExtValue(); 1645 emitSignedInt64(Record, V); 1646 Code = bitc::CST_CODE_INTEGER; 1647 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1648 } else { // Wide integers, > 64 bits in size. 1649 // We have an arbitrary precision integer value to write whose 1650 // bit width is > 64. However, in canonical unsigned integer 1651 // format it is likely that the high bits are going to be zero. 1652 // So, we only write the number of active words. 1653 unsigned NWords = IV->getValue().getActiveWords(); 1654 const uint64_t *RawWords = IV->getValue().getRawData(); 1655 for (unsigned i = 0; i != NWords; ++i) { 1656 emitSignedInt64(Record, RawWords[i]); 1657 } 1658 Code = bitc::CST_CODE_WIDE_INTEGER; 1659 } 1660 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1661 Code = bitc::CST_CODE_FLOAT; 1662 Type *Ty = CFP->getType(); 1663 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1664 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1665 } else if (Ty->isX86_FP80Ty()) { 1666 // api needed to prevent premature destruction 1667 // bits are not in the same order as a normal i80 APInt, compensate. 1668 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1669 const uint64_t *p = api.getRawData(); 1670 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1671 Record.push_back(p[0] & 0xffffLL); 1672 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1673 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1674 const uint64_t *p = api.getRawData(); 1675 Record.push_back(p[0]); 1676 Record.push_back(p[1]); 1677 } else { 1678 assert (0 && "Unknown FP type!"); 1679 } 1680 } else if (isa<ConstantDataSequential>(C) && 1681 cast<ConstantDataSequential>(C)->isString()) { 1682 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1683 // Emit constant strings specially. 1684 unsigned NumElts = Str->getNumElements(); 1685 // If this is a null-terminated string, use the denser CSTRING encoding. 1686 if (Str->isCString()) { 1687 Code = bitc::CST_CODE_CSTRING; 1688 --NumElts; // Don't encode the null, which isn't allowed by char6. 1689 } else { 1690 Code = bitc::CST_CODE_STRING; 1691 AbbrevToUse = String8Abbrev; 1692 } 1693 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1694 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1695 for (unsigned i = 0; i != NumElts; ++i) { 1696 unsigned char V = Str->getElementAsInteger(i); 1697 Record.push_back(V); 1698 isCStr7 &= (V & 128) == 0; 1699 if (isCStrChar6) 1700 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1701 } 1702 1703 if (isCStrChar6) 1704 AbbrevToUse = CString6Abbrev; 1705 else if (isCStr7) 1706 AbbrevToUse = CString7Abbrev; 1707 } else if (const ConstantDataSequential *CDS = 1708 dyn_cast<ConstantDataSequential>(C)) { 1709 Code = bitc::CST_CODE_DATA; 1710 Type *EltTy = CDS->getType()->getElementType(); 1711 if (isa<IntegerType>(EltTy)) { 1712 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1713 Record.push_back(CDS->getElementAsInteger(i)); 1714 } else { 1715 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1716 Record.push_back( 1717 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 1718 } 1719 } else if (isa<ConstantAggregate>(C)) { 1720 Code = bitc::CST_CODE_AGGREGATE; 1721 for (const Value *Op : C->operands()) 1722 Record.push_back(VE.getValueID(Op)); 1723 AbbrevToUse = AggregateAbbrev; 1724 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1725 switch (CE->getOpcode()) { 1726 default: 1727 if (Instruction::isCast(CE->getOpcode())) { 1728 Code = bitc::CST_CODE_CE_CAST; 1729 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1730 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1731 Record.push_back(VE.getValueID(C->getOperand(0))); 1732 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1733 } else { 1734 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1735 Code = bitc::CST_CODE_CE_BINOP; 1736 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1737 Record.push_back(VE.getValueID(C->getOperand(0))); 1738 Record.push_back(VE.getValueID(C->getOperand(1))); 1739 uint64_t Flags = GetOptimizationFlags(CE); 1740 if (Flags != 0) 1741 Record.push_back(Flags); 1742 } 1743 break; 1744 case Instruction::GetElementPtr: { 1745 Code = bitc::CST_CODE_CE_GEP; 1746 const auto *GO = cast<GEPOperator>(C); 1747 if (GO->isInBounds()) 1748 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1749 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1750 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1751 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1752 Record.push_back(VE.getValueID(C->getOperand(i))); 1753 } 1754 break; 1755 } 1756 case Instruction::Select: 1757 Code = bitc::CST_CODE_CE_SELECT; 1758 Record.push_back(VE.getValueID(C->getOperand(0))); 1759 Record.push_back(VE.getValueID(C->getOperand(1))); 1760 Record.push_back(VE.getValueID(C->getOperand(2))); 1761 break; 1762 case Instruction::ExtractElement: 1763 Code = bitc::CST_CODE_CE_EXTRACTELT; 1764 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1765 Record.push_back(VE.getValueID(C->getOperand(0))); 1766 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1767 Record.push_back(VE.getValueID(C->getOperand(1))); 1768 break; 1769 case Instruction::InsertElement: 1770 Code = bitc::CST_CODE_CE_INSERTELT; 1771 Record.push_back(VE.getValueID(C->getOperand(0))); 1772 Record.push_back(VE.getValueID(C->getOperand(1))); 1773 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1774 Record.push_back(VE.getValueID(C->getOperand(2))); 1775 break; 1776 case Instruction::ShuffleVector: 1777 // If the return type and argument types are the same, this is a 1778 // standard shufflevector instruction. If the types are different, 1779 // then the shuffle is widening or truncating the input vectors, and 1780 // the argument type must also be encoded. 1781 if (C->getType() == C->getOperand(0)->getType()) { 1782 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1783 } else { 1784 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1785 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1786 } 1787 Record.push_back(VE.getValueID(C->getOperand(0))); 1788 Record.push_back(VE.getValueID(C->getOperand(1))); 1789 Record.push_back(VE.getValueID(C->getOperand(2))); 1790 break; 1791 case Instruction::ICmp: 1792 case Instruction::FCmp: 1793 Code = bitc::CST_CODE_CE_CMP; 1794 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1795 Record.push_back(VE.getValueID(C->getOperand(0))); 1796 Record.push_back(VE.getValueID(C->getOperand(1))); 1797 Record.push_back(CE->getPredicate()); 1798 break; 1799 } 1800 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1801 Code = bitc::CST_CODE_BLOCKADDRESS; 1802 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1803 Record.push_back(VE.getValueID(BA->getFunction())); 1804 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1805 } else { 1806 #ifndef NDEBUG 1807 C->dump(); 1808 #endif 1809 llvm_unreachable("Unknown constant!"); 1810 } 1811 Stream.EmitRecord(Code, Record, AbbrevToUse); 1812 Record.clear(); 1813 } 1814 1815 Stream.ExitBlock(); 1816 } 1817 1818 static void WriteModuleConstants(const ValueEnumerator &VE, 1819 BitstreamWriter &Stream) { 1820 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1821 1822 // Find the first constant to emit, which is the first non-globalvalue value. 1823 // We know globalvalues have been emitted by WriteModuleInfo. 1824 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1825 if (!isa<GlobalValue>(Vals[i].first)) { 1826 WriteConstants(i, Vals.size(), VE, Stream, true); 1827 return; 1828 } 1829 } 1830 } 1831 1832 /// PushValueAndType - The file has to encode both the value and type id for 1833 /// many values, because we need to know what type to create for forward 1834 /// references. However, most operands are not forward references, so this type 1835 /// field is not needed. 1836 /// 1837 /// This function adds V's value ID to Vals. If the value ID is higher than the 1838 /// instruction ID, then it is a forward reference, and it also includes the 1839 /// type ID. The value ID that is written is encoded relative to the InstID. 1840 static bool PushValueAndType(const Value *V, unsigned InstID, 1841 SmallVectorImpl<unsigned> &Vals, 1842 ValueEnumerator &VE) { 1843 unsigned ValID = VE.getValueID(V); 1844 // Make encoding relative to the InstID. 1845 Vals.push_back(InstID - ValID); 1846 if (ValID >= InstID) { 1847 Vals.push_back(VE.getTypeID(V->getType())); 1848 return true; 1849 } 1850 return false; 1851 } 1852 1853 static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS, 1854 unsigned InstID, ValueEnumerator &VE) { 1855 SmallVector<unsigned, 64> Record; 1856 LLVMContext &C = CS.getInstruction()->getContext(); 1857 1858 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1859 const auto &Bundle = CS.getOperandBundleAt(i); 1860 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 1861 1862 for (auto &Input : Bundle.Inputs) 1863 PushValueAndType(Input, InstID, Record, VE); 1864 1865 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 1866 Record.clear(); 1867 } 1868 } 1869 1870 /// pushValue - Like PushValueAndType, but where the type of the value is 1871 /// omitted (perhaps it was already encoded in an earlier operand). 1872 static void pushValue(const Value *V, unsigned InstID, 1873 SmallVectorImpl<unsigned> &Vals, 1874 ValueEnumerator &VE) { 1875 unsigned ValID = VE.getValueID(V); 1876 Vals.push_back(InstID - ValID); 1877 } 1878 1879 static void pushValueSigned(const Value *V, unsigned InstID, 1880 SmallVectorImpl<uint64_t> &Vals, 1881 ValueEnumerator &VE) { 1882 unsigned ValID = VE.getValueID(V); 1883 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1884 emitSignedInt64(Vals, diff); 1885 } 1886 1887 /// WriteInstruction - Emit an instruction to the specified stream. 1888 static void WriteInstruction(const Instruction &I, unsigned InstID, 1889 ValueEnumerator &VE, BitstreamWriter &Stream, 1890 SmallVectorImpl<unsigned> &Vals) { 1891 unsigned Code = 0; 1892 unsigned AbbrevToUse = 0; 1893 VE.setInstructionID(&I); 1894 switch (I.getOpcode()) { 1895 default: 1896 if (Instruction::isCast(I.getOpcode())) { 1897 Code = bitc::FUNC_CODE_INST_CAST; 1898 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1899 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1900 Vals.push_back(VE.getTypeID(I.getType())); 1901 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1902 } else { 1903 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1904 Code = bitc::FUNC_CODE_INST_BINOP; 1905 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1906 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1907 pushValue(I.getOperand(1), InstID, Vals, VE); 1908 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1909 uint64_t Flags = GetOptimizationFlags(&I); 1910 if (Flags != 0) { 1911 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1912 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1913 Vals.push_back(Flags); 1914 } 1915 } 1916 break; 1917 1918 case Instruction::GetElementPtr: { 1919 Code = bitc::FUNC_CODE_INST_GEP; 1920 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1921 auto &GEPInst = cast<GetElementPtrInst>(I); 1922 Vals.push_back(GEPInst.isInBounds()); 1923 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1924 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1925 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1926 break; 1927 } 1928 case Instruction::ExtractValue: { 1929 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1930 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1931 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1932 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1933 break; 1934 } 1935 case Instruction::InsertValue: { 1936 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1937 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1938 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1939 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1940 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1941 break; 1942 } 1943 case Instruction::Select: 1944 Code = bitc::FUNC_CODE_INST_VSELECT; 1945 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1946 pushValue(I.getOperand(2), InstID, Vals, VE); 1947 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1948 break; 1949 case Instruction::ExtractElement: 1950 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1951 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1952 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1953 break; 1954 case Instruction::InsertElement: 1955 Code = bitc::FUNC_CODE_INST_INSERTELT; 1956 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1957 pushValue(I.getOperand(1), InstID, Vals, VE); 1958 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1959 break; 1960 case Instruction::ShuffleVector: 1961 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1962 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1963 pushValue(I.getOperand(1), InstID, Vals, VE); 1964 pushValue(I.getOperand(2), InstID, Vals, VE); 1965 break; 1966 case Instruction::ICmp: 1967 case Instruction::FCmp: { 1968 // compare returning Int1Ty or vector of Int1Ty 1969 Code = bitc::FUNC_CODE_INST_CMP2; 1970 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1971 pushValue(I.getOperand(1), InstID, Vals, VE); 1972 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1973 uint64_t Flags = GetOptimizationFlags(&I); 1974 if (Flags != 0) 1975 Vals.push_back(Flags); 1976 break; 1977 } 1978 1979 case Instruction::Ret: 1980 { 1981 Code = bitc::FUNC_CODE_INST_RET; 1982 unsigned NumOperands = I.getNumOperands(); 1983 if (NumOperands == 0) 1984 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1985 else if (NumOperands == 1) { 1986 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1987 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1988 } else { 1989 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1990 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1991 } 1992 } 1993 break; 1994 case Instruction::Br: 1995 { 1996 Code = bitc::FUNC_CODE_INST_BR; 1997 const BranchInst &II = cast<BranchInst>(I); 1998 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1999 if (II.isConditional()) { 2000 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2001 pushValue(II.getCondition(), InstID, Vals, VE); 2002 } 2003 } 2004 break; 2005 case Instruction::Switch: 2006 { 2007 Code = bitc::FUNC_CODE_INST_SWITCH; 2008 const SwitchInst &SI = cast<SwitchInst>(I); 2009 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2010 pushValue(SI.getCondition(), InstID, Vals, VE); 2011 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2012 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2013 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2014 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2015 } 2016 } 2017 break; 2018 case Instruction::IndirectBr: 2019 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2020 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2021 // Encode the address operand as relative, but not the basic blocks. 2022 pushValue(I.getOperand(0), InstID, Vals, VE); 2023 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2024 Vals.push_back(VE.getValueID(I.getOperand(i))); 2025 break; 2026 2027 case Instruction::Invoke: { 2028 const InvokeInst *II = cast<InvokeInst>(&I); 2029 const Value *Callee = II->getCalledValue(); 2030 FunctionType *FTy = II->getFunctionType(); 2031 2032 if (II->hasOperandBundles()) 2033 WriteOperandBundles(Stream, II, InstID, VE); 2034 2035 Code = bitc::FUNC_CODE_INST_INVOKE; 2036 2037 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2038 Vals.push_back(II->getCallingConv() | 1 << 13); 2039 Vals.push_back(VE.getValueID(II->getNormalDest())); 2040 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2041 Vals.push_back(VE.getTypeID(FTy)); 2042 PushValueAndType(Callee, InstID, Vals, VE); 2043 2044 // Emit value #'s for the fixed parameters. 2045 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2046 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 2047 2048 // Emit type/value pairs for varargs params. 2049 if (FTy->isVarArg()) { 2050 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 2051 i != e; ++i) 2052 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 2053 } 2054 break; 2055 } 2056 case Instruction::Resume: 2057 Code = bitc::FUNC_CODE_INST_RESUME; 2058 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2059 break; 2060 case Instruction::CleanupRet: { 2061 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2062 const auto &CRI = cast<CleanupReturnInst>(I); 2063 pushValue(CRI.getCleanupPad(), InstID, Vals, VE); 2064 if (CRI.hasUnwindDest()) 2065 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2066 break; 2067 } 2068 case Instruction::CatchRet: { 2069 Code = bitc::FUNC_CODE_INST_CATCHRET; 2070 const auto &CRI = cast<CatchReturnInst>(I); 2071 pushValue(CRI.getCatchPad(), InstID, Vals, VE); 2072 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2073 break; 2074 } 2075 case Instruction::CleanupPad: 2076 case Instruction::CatchPad: { 2077 const auto &FuncletPad = cast<FuncletPadInst>(I); 2078 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2079 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2080 pushValue(FuncletPad.getParentPad(), InstID, Vals, VE); 2081 2082 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2083 Vals.push_back(NumArgOperands); 2084 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2085 PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE); 2086 break; 2087 } 2088 case Instruction::CatchSwitch: { 2089 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2090 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2091 2092 pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE); 2093 2094 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2095 Vals.push_back(NumHandlers); 2096 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2097 Vals.push_back(VE.getValueID(CatchPadBB)); 2098 2099 if (CatchSwitch.hasUnwindDest()) 2100 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2101 break; 2102 } 2103 case Instruction::Unreachable: 2104 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2105 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2106 break; 2107 2108 case Instruction::PHI: { 2109 const PHINode &PN = cast<PHINode>(I); 2110 Code = bitc::FUNC_CODE_INST_PHI; 2111 // With the newer instruction encoding, forward references could give 2112 // negative valued IDs. This is most common for PHIs, so we use 2113 // signed VBRs. 2114 SmallVector<uint64_t, 128> Vals64; 2115 Vals64.push_back(VE.getTypeID(PN.getType())); 2116 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2117 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 2118 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2119 } 2120 // Emit a Vals64 vector and exit. 2121 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2122 Vals64.clear(); 2123 return; 2124 } 2125 2126 case Instruction::LandingPad: { 2127 const LandingPadInst &LP = cast<LandingPadInst>(I); 2128 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2129 Vals.push_back(VE.getTypeID(LP.getType())); 2130 Vals.push_back(LP.isCleanup()); 2131 Vals.push_back(LP.getNumClauses()); 2132 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2133 if (LP.isCatch(I)) 2134 Vals.push_back(LandingPadInst::Catch); 2135 else 2136 Vals.push_back(LandingPadInst::Filter); 2137 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 2138 } 2139 break; 2140 } 2141 2142 case Instruction::Alloca: { 2143 Code = bitc::FUNC_CODE_INST_ALLOCA; 2144 const AllocaInst &AI = cast<AllocaInst>(I); 2145 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2146 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2147 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2148 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2149 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2150 "not enough bits for maximum alignment"); 2151 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2152 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2153 AlignRecord |= 1 << 6; 2154 AlignRecord |= AI.isSwiftError() << 7; 2155 Vals.push_back(AlignRecord); 2156 break; 2157 } 2158 2159 case Instruction::Load: 2160 if (cast<LoadInst>(I).isAtomic()) { 2161 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2162 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2163 } else { 2164 Code = bitc::FUNC_CODE_INST_LOAD; 2165 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 2166 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2167 } 2168 Vals.push_back(VE.getTypeID(I.getType())); 2169 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2170 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2171 if (cast<LoadInst>(I).isAtomic()) { 2172 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2173 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2174 } 2175 break; 2176 case Instruction::Store: 2177 if (cast<StoreInst>(I).isAtomic()) 2178 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2179 else 2180 Code = bitc::FUNC_CODE_INST_STORE; 2181 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 2182 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 2183 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2184 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2185 if (cast<StoreInst>(I).isAtomic()) { 2186 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2187 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2188 } 2189 break; 2190 case Instruction::AtomicCmpXchg: 2191 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2192 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2193 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2194 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2195 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2196 Vals.push_back(GetEncodedOrdering( 2197 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2198 Vals.push_back(GetEncodedSynchScope( 2199 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2200 Vals.push_back(GetEncodedOrdering( 2201 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2202 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2203 break; 2204 case Instruction::AtomicRMW: 2205 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2206 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2207 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2208 Vals.push_back(GetEncodedRMWOperation( 2209 cast<AtomicRMWInst>(I).getOperation())); 2210 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2211 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2212 Vals.push_back(GetEncodedSynchScope( 2213 cast<AtomicRMWInst>(I).getSynchScope())); 2214 break; 2215 case Instruction::Fence: 2216 Code = bitc::FUNC_CODE_INST_FENCE; 2217 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2218 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2219 break; 2220 case Instruction::Call: { 2221 const CallInst &CI = cast<CallInst>(I); 2222 FunctionType *FTy = CI.getFunctionType(); 2223 2224 if (CI.hasOperandBundles()) 2225 WriteOperandBundles(Stream, &CI, InstID, VE); 2226 2227 Code = bitc::FUNC_CODE_INST_CALL; 2228 2229 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2230 2231 unsigned Flags = GetOptimizationFlags(&I); 2232 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2233 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2234 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2235 1 << bitc::CALL_EXPLICIT_TYPE | 2236 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2237 unsigned(Flags != 0) << bitc::CALL_FMF); 2238 if (Flags != 0) 2239 Vals.push_back(Flags); 2240 2241 Vals.push_back(VE.getTypeID(FTy)); 2242 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2243 2244 // Emit value #'s for the fixed parameters. 2245 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2246 // Check for labels (can happen with asm labels). 2247 if (FTy->getParamType(i)->isLabelTy()) 2248 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2249 else 2250 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2251 } 2252 2253 // Emit type/value pairs for varargs params. 2254 if (FTy->isVarArg()) { 2255 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2256 i != e; ++i) 2257 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2258 } 2259 break; 2260 } 2261 case Instruction::VAArg: 2262 Code = bitc::FUNC_CODE_INST_VAARG; 2263 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2264 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2265 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2266 break; 2267 } 2268 2269 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2270 Vals.clear(); 2271 } 2272 2273 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder, 2274 /// BitcodeStartBit and ModuleSummaryIndex are only passed for the module-level 2275 /// VST, where we are including a function bitcode index and need to 2276 /// backpatch the VST forward declaration record. 2277 static void WriteValueSymbolTable( 2278 const ValueSymbolTable &VST, const ValueEnumerator &VE, 2279 BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0, 2280 uint64_t BitcodeStartBit = 0, 2281 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr) { 2282 if (VST.empty()) { 2283 // WriteValueSymbolTableForwardDecl should have returned early as 2284 // well. Ensure this handling remains in sync by asserting that 2285 // the placeholder offset is not set. 2286 assert(VSTOffsetPlaceholder == 0); 2287 return; 2288 } 2289 2290 if (VSTOffsetPlaceholder > 0) { 2291 // Get the offset of the VST we are writing, and backpatch it into 2292 // the VST forward declaration record. 2293 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2294 // The BitcodeStartBit was the stream offset of the actual bitcode 2295 // (e.g. excluding any initial darwin header). 2296 VSTOffset -= BitcodeStartBit; 2297 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2298 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2299 } 2300 2301 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2302 2303 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2304 // records, which are not used in the per-function VSTs. 2305 unsigned FnEntry8BitAbbrev; 2306 unsigned FnEntry7BitAbbrev; 2307 unsigned FnEntry6BitAbbrev; 2308 if (VSTOffsetPlaceholder > 0) { 2309 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2310 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2311 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2316 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2317 2318 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2319 Abbv = new BitCodeAbbrev(); 2320 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2325 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2326 2327 // 6-bit char6 VST_CODE_FNENTRY function strings. 2328 Abbv = new BitCodeAbbrev(); 2329 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2334 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2335 } 2336 2337 // FIXME: Set up the abbrev, we know how many values there are! 2338 // FIXME: We know if the type names can use 7-bit ascii. 2339 SmallVector<unsigned, 64> NameVals; 2340 2341 for (const ValueName &Name : VST) { 2342 // Figure out the encoding to use for the name. 2343 StringEncoding Bits = 2344 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2345 2346 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2347 NameVals.push_back(VE.getValueID(Name.getValue())); 2348 2349 Function *F = dyn_cast<Function>(Name.getValue()); 2350 if (!F) { 2351 // If value is an alias, need to get the aliased base object to 2352 // see if it is a function. 2353 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2354 if (GA && GA->getBaseObject()) 2355 F = dyn_cast<Function>(GA->getBaseObject()); 2356 } 2357 2358 // VST_CODE_ENTRY: [valueid, namechar x N] 2359 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2360 // VST_CODE_BBENTRY: [bbid, namechar x N] 2361 unsigned Code; 2362 if (isa<BasicBlock>(Name.getValue())) { 2363 Code = bitc::VST_CODE_BBENTRY; 2364 if (Bits == SE_Char6) 2365 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2366 } else if (F && !F->isDeclaration()) { 2367 // Must be the module-level VST, where we pass in the Index and 2368 // have a VSTOffsetPlaceholder. The function-level VST should not 2369 // contain any Function symbols. 2370 assert(FunctionToBitcodeIndex); 2371 assert(VSTOffsetPlaceholder > 0); 2372 2373 // Save the word offset of the function (from the start of the 2374 // actual bitcode written to the stream). 2375 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - BitcodeStartBit; 2376 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2377 NameVals.push_back(BitcodeIndex / 32); 2378 2379 Code = bitc::VST_CODE_FNENTRY; 2380 AbbrevToUse = FnEntry8BitAbbrev; 2381 if (Bits == SE_Char6) 2382 AbbrevToUse = FnEntry6BitAbbrev; 2383 else if (Bits == SE_Fixed7) 2384 AbbrevToUse = FnEntry7BitAbbrev; 2385 } else { 2386 Code = bitc::VST_CODE_ENTRY; 2387 if (Bits == SE_Char6) 2388 AbbrevToUse = VST_ENTRY_6_ABBREV; 2389 else if (Bits == SE_Fixed7) 2390 AbbrevToUse = VST_ENTRY_7_ABBREV; 2391 } 2392 2393 for (const auto P : Name.getKey()) 2394 NameVals.push_back((unsigned char)P); 2395 2396 // Emit the finished record. 2397 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2398 NameVals.clear(); 2399 } 2400 Stream.ExitBlock(); 2401 } 2402 2403 /// Emit function names and summary offsets for the combined index 2404 /// used by ThinLTO. 2405 static void WriteCombinedValueSymbolTable( 2406 const ModuleSummaryIndex &Index, BitstreamWriter &Stream, 2407 std::map<GlobalValue::GUID, unsigned> &GUIDToValueIdMap, 2408 uint64_t VSTOffsetPlaceholder) { 2409 assert(VSTOffsetPlaceholder > 0 && "Expected non-zero VSTOffsetPlaceholder"); 2410 // Get the offset of the VST we are writing, and backpatch it into 2411 // the VST forward declaration record. 2412 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2413 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2414 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2415 2416 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2417 2418 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2419 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_GVDEFENTRY)); 2420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // sumoffset 2422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // guid 2423 unsigned DefEntryAbbrev = Stream.EmitAbbrev(Abbv); 2424 2425 Abbv = new BitCodeAbbrev(); 2426 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2429 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2430 2431 SmallVector<uint64_t, 64> NameVals; 2432 2433 for (const auto &FII : Index) { 2434 GlobalValue::GUID FuncGUID = FII.first; 2435 const auto &VMI = GUIDToValueIdMap.find(FuncGUID); 2436 assert(VMI != GUIDToValueIdMap.end()); 2437 2438 for (const auto &FI : FII.second) { 2439 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, sumoffset, guid] 2440 NameVals.push_back(VMI->second); 2441 NameVals.push_back(FI->bitcodeIndex()); 2442 NameVals.push_back(FuncGUID); 2443 2444 // Emit the finished record. 2445 Stream.EmitRecord(bitc::VST_CODE_COMBINED_GVDEFENTRY, NameVals, 2446 DefEntryAbbrev); 2447 NameVals.clear(); 2448 } 2449 GUIDToValueIdMap.erase(VMI); 2450 } 2451 for (const auto &GVI : GUIDToValueIdMap) { 2452 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2453 NameVals.push_back(GVI.second); 2454 NameVals.push_back(GVI.first); 2455 2456 // Emit the finished record. 2457 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2458 NameVals.clear(); 2459 } 2460 Stream.ExitBlock(); 2461 } 2462 2463 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2464 BitstreamWriter &Stream) { 2465 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2466 unsigned Code; 2467 if (isa<BasicBlock>(Order.V)) 2468 Code = bitc::USELIST_CODE_BB; 2469 else 2470 Code = bitc::USELIST_CODE_DEFAULT; 2471 2472 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2473 Record.push_back(VE.getValueID(Order.V)); 2474 Stream.EmitRecord(Code, Record); 2475 } 2476 2477 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2478 BitstreamWriter &Stream) { 2479 assert(VE.shouldPreserveUseListOrder() && 2480 "Expected to be preserving use-list order"); 2481 2482 auto hasMore = [&]() { 2483 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2484 }; 2485 if (!hasMore()) 2486 // Nothing to do. 2487 return; 2488 2489 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2490 while (hasMore()) { 2491 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2492 VE.UseListOrders.pop_back(); 2493 } 2494 Stream.ExitBlock(); 2495 } 2496 2497 /// Emit a function body to the module stream. 2498 static void 2499 WriteFunction(const Function &F, const Module *M, ValueEnumerator &VE, 2500 BitstreamWriter &Stream, 2501 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2502 // Save the bitcode index of the start of this function block for recording 2503 // in the VST. 2504 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2505 2506 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2507 VE.incorporateFunction(F); 2508 2509 SmallVector<unsigned, 64> Vals; 2510 2511 // Emit the number of basic blocks, so the reader can create them ahead of 2512 // time. 2513 Vals.push_back(VE.getBasicBlocks().size()); 2514 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2515 Vals.clear(); 2516 2517 // If there are function-local constants, emit them now. 2518 unsigned CstStart, CstEnd; 2519 VE.getFunctionConstantRange(CstStart, CstEnd); 2520 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2521 2522 // If there is function-local metadata, emit it now. 2523 writeFunctionMetadata(F, VE, Stream); 2524 2525 // Keep a running idea of what the instruction ID is. 2526 unsigned InstID = CstEnd; 2527 2528 bool NeedsMetadataAttachment = F.hasMetadata(); 2529 2530 DILocation *LastDL = nullptr; 2531 // Finally, emit all the instructions, in order. 2532 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2533 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2534 I != E; ++I) { 2535 WriteInstruction(*I, InstID, VE, Stream, Vals); 2536 2537 if (!I->getType()->isVoidTy()) 2538 ++InstID; 2539 2540 // If the instruction has metadata, write a metadata attachment later. 2541 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2542 2543 // If the instruction has a debug location, emit it. 2544 DILocation *DL = I->getDebugLoc(); 2545 if (!DL) 2546 continue; 2547 2548 if (DL == LastDL) { 2549 // Just repeat the same debug loc as last time. 2550 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2551 continue; 2552 } 2553 2554 Vals.push_back(DL->getLine()); 2555 Vals.push_back(DL->getColumn()); 2556 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2557 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2558 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2559 Vals.clear(); 2560 2561 LastDL = DL; 2562 } 2563 2564 // Emit names for all the instructions etc. 2565 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2566 2567 if (NeedsMetadataAttachment) 2568 WriteMetadataAttachment(F, VE, Stream); 2569 if (VE.shouldPreserveUseListOrder()) 2570 WriteUseListBlock(&F, VE, Stream); 2571 VE.purgeFunction(); 2572 Stream.ExitBlock(); 2573 } 2574 2575 // Emit blockinfo, which defines the standard abbreviations etc. 2576 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2577 // We only want to emit block info records for blocks that have multiple 2578 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2579 // Other blocks can define their abbrevs inline. 2580 Stream.EnterBlockInfoBlock(2); 2581 2582 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2583 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2588 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2589 Abbv) != VST_ENTRY_8_ABBREV) 2590 llvm_unreachable("Unexpected abbrev ordering!"); 2591 } 2592 2593 { // 7-bit fixed width VST_CODE_ENTRY strings. 2594 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2595 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2599 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2600 Abbv) != VST_ENTRY_7_ABBREV) 2601 llvm_unreachable("Unexpected abbrev ordering!"); 2602 } 2603 { // 6-bit char6 VST_CODE_ENTRY strings. 2604 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2605 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2609 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2610 Abbv) != VST_ENTRY_6_ABBREV) 2611 llvm_unreachable("Unexpected abbrev ordering!"); 2612 } 2613 { // 6-bit char6 VST_CODE_BBENTRY strings. 2614 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2615 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2619 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2620 Abbv) != VST_BBENTRY_6_ABBREV) 2621 llvm_unreachable("Unexpected abbrev ordering!"); 2622 } 2623 2624 2625 2626 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2628 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2630 VE.computeBitsRequiredForTypeIndicies())); 2631 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2632 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2633 llvm_unreachable("Unexpected abbrev ordering!"); 2634 } 2635 2636 { // INTEGER abbrev for CONSTANTS_BLOCK. 2637 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2638 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2640 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2641 Abbv) != CONSTANTS_INTEGER_ABBREV) 2642 llvm_unreachable("Unexpected abbrev ordering!"); 2643 } 2644 2645 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2646 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2647 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2650 VE.computeBitsRequiredForTypeIndicies())); 2651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2652 2653 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2654 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2655 llvm_unreachable("Unexpected abbrev ordering!"); 2656 } 2657 { // NULL abbrev for CONSTANTS_BLOCK. 2658 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2659 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2660 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2661 Abbv) != CONSTANTS_NULL_Abbrev) 2662 llvm_unreachable("Unexpected abbrev ordering!"); 2663 } 2664 2665 // FIXME: This should only use space for first class types! 2666 2667 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2668 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2669 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2672 VE.computeBitsRequiredForTypeIndicies())); 2673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2675 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2676 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2677 llvm_unreachable("Unexpected abbrev ordering!"); 2678 } 2679 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2680 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2681 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2685 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2686 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2687 llvm_unreachable("Unexpected abbrev ordering!"); 2688 } 2689 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2690 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2691 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2696 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2697 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2698 llvm_unreachable("Unexpected abbrev ordering!"); 2699 } 2700 { // INST_CAST abbrev for FUNCTION_BLOCK. 2701 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2702 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2705 VE.computeBitsRequiredForTypeIndicies())); 2706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2707 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2708 Abbv) != FUNCTION_INST_CAST_ABBREV) 2709 llvm_unreachable("Unexpected abbrev ordering!"); 2710 } 2711 2712 { // INST_RET abbrev for FUNCTION_BLOCK. 2713 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2714 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2715 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2716 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2717 llvm_unreachable("Unexpected abbrev ordering!"); 2718 } 2719 { // INST_RET abbrev for FUNCTION_BLOCK. 2720 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2721 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2723 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2724 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2725 llvm_unreachable("Unexpected abbrev ordering!"); 2726 } 2727 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2728 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2729 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2730 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2731 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2732 llvm_unreachable("Unexpected abbrev ordering!"); 2733 } 2734 { 2735 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2736 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2739 Log2_32_Ceil(VE.getTypes().size() + 1))); 2740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2742 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2743 FUNCTION_INST_GEP_ABBREV) 2744 llvm_unreachable("Unexpected abbrev ordering!"); 2745 } 2746 2747 Stream.ExitBlock(); 2748 } 2749 2750 /// Write the module path strings, currently only used when generating 2751 /// a combined index file. 2752 static void WriteModStrings(const ModuleSummaryIndex &I, 2753 BitstreamWriter &Stream) { 2754 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 2755 2756 // TODO: See which abbrev sizes we actually need to emit 2757 2758 // 8-bit fixed-width MST_ENTRY strings. 2759 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2760 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2764 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 2765 2766 // 7-bit fixed width MST_ENTRY strings. 2767 Abbv = new BitCodeAbbrev(); 2768 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2772 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 2773 2774 // 6-bit char6 MST_ENTRY strings. 2775 Abbv = new BitCodeAbbrev(); 2776 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2780 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 2781 2782 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 2783 Abbv = new BitCodeAbbrev(); 2784 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 2785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2790 unsigned AbbrevHash = Stream.EmitAbbrev(Abbv); 2791 2792 SmallVector<unsigned, 64> Vals; 2793 for (const auto &MPSE : I.modulePaths()) { 2794 StringEncoding Bits = 2795 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 2796 unsigned AbbrevToUse = Abbrev8Bit; 2797 if (Bits == SE_Char6) 2798 AbbrevToUse = Abbrev6Bit; 2799 else if (Bits == SE_Fixed7) 2800 AbbrevToUse = Abbrev7Bit; 2801 2802 Vals.push_back(MPSE.getValue().first); 2803 2804 for (const auto P : MPSE.getKey()) 2805 Vals.push_back((unsigned char)P); 2806 2807 // Emit the finished record. 2808 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 2809 2810 Vals.clear(); 2811 // Emit an optional hash for the module now 2812 auto &Hash = MPSE.getValue().second; 2813 bool AllZero = true; // Detect if the hash is empty, and do not generate it 2814 for (auto Val : Hash) { 2815 if (Val) 2816 AllZero = false; 2817 Vals.push_back(Val); 2818 } 2819 if (!AllZero) { 2820 // Emit the hash record. 2821 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 2822 } 2823 2824 Vals.clear(); 2825 } 2826 Stream.ExitBlock(); 2827 } 2828 2829 // Helper to emit a single function summary record. 2830 static void WritePerModuleFunctionSummaryRecord( 2831 SmallVector<uint64_t, 64> &NameVals, GlobalValueInfo *Info, 2832 unsigned ValueID, const ValueEnumerator &VE, unsigned FSCallsAbbrev, 2833 unsigned FSCallsProfileAbbrev, BitstreamWriter &Stream, const Function &F) { 2834 NameVals.push_back(ValueID); 2835 2836 FunctionSummary *FS = cast<FunctionSummary>(Info->summary()); 2837 NameVals.push_back(getEncodedLinkage(FS->linkage())); 2838 NameVals.push_back(FS->instCount()); 2839 NameVals.push_back(FS->refs().size()); 2840 2841 for (auto &RI : FS->refs()) 2842 NameVals.push_back(VE.getValueID(RI.getValue())); 2843 2844 bool HasProfileData = F.getEntryCount().hasValue(); 2845 for (auto &ECI : FS->calls()) { 2846 NameVals.push_back(VE.getValueID(ECI.first.getValue())); 2847 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); 2848 NameVals.push_back(ECI.second.CallsiteCount); 2849 if (HasProfileData) 2850 NameVals.push_back(ECI.second.ProfileCount); 2851 } 2852 2853 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 2854 unsigned Code = 2855 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 2856 2857 // Emit the finished record. 2858 Stream.EmitRecord(Code, NameVals, FSAbbrev); 2859 NameVals.clear(); 2860 } 2861 2862 // Collect the global value references in the given variable's initializer, 2863 // and emit them in a summary record. 2864 static void WriteModuleLevelReferences(const GlobalVariable &V, 2865 const ModuleSummaryIndex &Index, 2866 const ValueEnumerator &VE, 2867 SmallVector<uint64_t, 64> &NameVals, 2868 unsigned FSModRefsAbbrev, 2869 BitstreamWriter &Stream) { 2870 // Only interested in recording variable defs in the summary. 2871 if (V.isDeclaration()) 2872 return; 2873 NameVals.push_back(VE.getValueID(&V)); 2874 NameVals.push_back(getEncodedLinkage(V.getLinkage())); 2875 auto *Info = Index.getGlobalValueInfo(V); 2876 GlobalVarSummary *VS = cast<GlobalVarSummary>(Info->summary()); 2877 for (auto Ref : VS->refs()) 2878 NameVals.push_back(VE.getValueID(Ref.getValue())); 2879 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 2880 FSModRefsAbbrev); 2881 NameVals.clear(); 2882 } 2883 2884 /// Emit the per-module summary section alongside the rest of 2885 /// the module's bitcode. 2886 static void WritePerModuleGlobalValueSummary(const Module *M, 2887 const ModuleSummaryIndex &Index, 2888 const ValueEnumerator &VE, 2889 BitstreamWriter &Stream) { 2890 if (M->empty()) 2891 return; 2892 2893 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 2894 2895 // Abbrev for FS_PERMODULE. 2896 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2897 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 2898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2902 // numrefs x valueid, n x (valueid, callsitecount) 2903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2905 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 2906 2907 // Abbrev for FS_PERMODULE_PROFILE. 2908 Abbv = new BitCodeAbbrev(); 2909 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 2910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2914 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 2915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2917 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 2918 2919 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 2920 Abbv = new BitCodeAbbrev(); 2921 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 2922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 2925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2926 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 2927 2928 // Abbrev for FS_ALIAS. 2929 Abbv = new BitCodeAbbrev(); 2930 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 2931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2934 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 2935 2936 SmallVector<uint64_t, 64> NameVals; 2937 // Iterate over the list of functions instead of the Index to 2938 // ensure the ordering is stable. 2939 for (const Function &F : *M) { 2940 if (F.isDeclaration()) 2941 continue; 2942 // Summary emission does not support anonymous functions, they have to 2943 // renamed using the anonymous function renaming pass. 2944 if (!F.hasName()) 2945 report_fatal_error("Unexpected anonymous function when writing summary"); 2946 2947 auto *Info = Index.getGlobalValueInfo(F); 2948 WritePerModuleFunctionSummaryRecord( 2949 NameVals, Info, 2950 VE.getValueID(M->getValueSymbolTable().lookup(F.getName())), VE, 2951 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, F); 2952 } 2953 2954 // Capture references from GlobalVariable initializers, which are outside 2955 // of a function scope. 2956 for (const GlobalVariable &G : M->globals()) 2957 WriteModuleLevelReferences(G, Index, VE, NameVals, FSModRefsAbbrev, Stream); 2958 2959 for (const GlobalAlias &A : M->aliases()) { 2960 auto *Aliasee = A.getBaseObject(); 2961 if (!Aliasee->hasName()) 2962 // Nameless function don't have an entry in the summary, skip it. 2963 continue; 2964 auto AliasId = VE.getValueID(&A); 2965 auto AliaseeId = VE.getValueID(Aliasee); 2966 NameVals.push_back(AliasId); 2967 NameVals.push_back(getEncodedLinkage(A.getLinkage())); 2968 NameVals.push_back(AliaseeId); 2969 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 2970 NameVals.clear(); 2971 } 2972 2973 Stream.ExitBlock(); 2974 } 2975 2976 /// Emit the combined summary section into the combined index file. 2977 static void WriteCombinedGlobalValueSummary( 2978 const ModuleSummaryIndex &Index, BitstreamWriter &Stream, 2979 std::map<GlobalValue::GUID, unsigned> &GUIDToValueIdMap, 2980 unsigned GlobalValueId) { 2981 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 2982 2983 // Abbrev for FS_COMBINED. 2984 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2985 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 2986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 2987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2990 // numrefs x valueid, n x (valueid, callsitecount) 2991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2993 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 2994 2995 // Abbrev for FS_COMBINED_PROFILE. 2996 Abbv = new BitCodeAbbrev(); 2997 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 2998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 2999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3002 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3005 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3006 3007 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3008 Abbv = new BitCodeAbbrev(); 3009 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3014 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3015 3016 // Abbrev for FS_COMBINED_ALIAS. 3017 Abbv = new BitCodeAbbrev(); 3018 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // offset 3022 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3023 3024 // The aliases are emitted as a post-pass, and will point to the summary 3025 // offset id of the aliasee. For this purpose we need to be able to get back 3026 // from the summary to the offset 3027 SmallVector<GlobalValueInfo *, 64> Aliases; 3028 DenseMap<const GlobalValueSummary *, uint64_t> SummaryToOffsetMap; 3029 3030 SmallVector<uint64_t, 64> NameVals; 3031 for (const auto &FII : Index) { 3032 for (auto &FI : FII.second) { 3033 GlobalValueSummary *S = FI->summary(); 3034 assert(S); 3035 if (isa<AliasSummary>(S)) { 3036 // Will process aliases as a post-pass because the reader wants all 3037 // global to be loaded first. 3038 Aliases.push_back(FI.get()); 3039 continue; 3040 } 3041 3042 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3043 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3044 NameVals.push_back(getEncodedLinkage(VS->linkage())); 3045 for (auto &RI : VS->refs()) { 3046 const auto &VMI = GUIDToValueIdMap.find(RI.getGUID()); 3047 unsigned RefId; 3048 // If this GUID doesn't have an entry, assign one. 3049 if (VMI == GUIDToValueIdMap.end()) { 3050 GUIDToValueIdMap[RI.getGUID()] = ++GlobalValueId; 3051 RefId = GlobalValueId; 3052 } else { 3053 RefId = VMI->second; 3054 } 3055 NameVals.push_back(RefId); 3056 } 3057 3058 // Record the starting offset of this summary entry for use 3059 // in the VST entry. Add the current code size since the 3060 // reader will invoke readRecord after the abbrev id read. 3061 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + 3062 Stream.GetAbbrevIDWidth()); 3063 // Store temporarily the offset in the map for a possible alias. 3064 SummaryToOffsetMap[S] = FI->bitcodeIndex(); 3065 3066 // Emit the finished record. 3067 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3068 FSModRefsAbbrev); 3069 NameVals.clear(); 3070 continue; 3071 } 3072 3073 auto *FS = cast<FunctionSummary>(S); 3074 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3075 NameVals.push_back(getEncodedLinkage(FS->linkage())); 3076 NameVals.push_back(FS->instCount()); 3077 NameVals.push_back(FS->refs().size()); 3078 3079 for (auto &RI : FS->refs()) { 3080 const auto &VMI = GUIDToValueIdMap.find(RI.getGUID()); 3081 unsigned RefId; 3082 // If this GUID doesn't have an entry, assign one. 3083 if (VMI == GUIDToValueIdMap.end()) { 3084 GUIDToValueIdMap[RI.getGUID()] = ++GlobalValueId; 3085 RefId = GlobalValueId; 3086 } else { 3087 RefId = VMI->second; 3088 } 3089 NameVals.push_back(RefId); 3090 } 3091 3092 bool HasProfileData = false; 3093 for (auto &EI : FS->calls()) { 3094 HasProfileData |= EI.second.ProfileCount != 0; 3095 if (HasProfileData) 3096 break; 3097 } 3098 3099 for (auto &EI : FS->calls()) { 3100 const auto &VMI = GUIDToValueIdMap.find(EI.first.getGUID()); 3101 // If this GUID doesn't have an entry, it doesn't have a function 3102 // summary and we don't need to record any calls to it. 3103 if (VMI == GUIDToValueIdMap.end()) 3104 continue; 3105 NameVals.push_back(VMI->second); 3106 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3107 NameVals.push_back(EI.second.CallsiteCount); 3108 if (HasProfileData) 3109 NameVals.push_back(EI.second.ProfileCount); 3110 } 3111 3112 // Record the starting offset of this summary entry for use 3113 // in the VST entry. Add the current code size since the 3114 // reader will invoke readRecord after the abbrev id read. 3115 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth()); 3116 // Store temporarily the offset in the map for a possible alias. 3117 SummaryToOffsetMap[S] = FI->bitcodeIndex(); 3118 3119 unsigned FSAbbrev = 3120 (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3121 unsigned Code = 3122 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3123 3124 // Emit the finished record. 3125 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3126 NameVals.clear(); 3127 } 3128 } 3129 3130 for (auto GVI : Aliases) { 3131 AliasSummary *AS = cast<AliasSummary>(GVI->summary()); 3132 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3133 NameVals.push_back(getEncodedLinkage(AS->linkage())); 3134 auto AliaseeOffset = SummaryToOffsetMap[&AS->getAliasee()]; 3135 assert(AliaseeOffset); 3136 NameVals.push_back(AliaseeOffset); 3137 3138 // Record the starting offset of this summary entry for use 3139 // in the VST entry. Add the current code size since the 3140 // reader will invoke readRecord after the abbrev id read. 3141 GVI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth()); 3142 3143 // Emit the finished record. 3144 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3145 NameVals.clear(); 3146 } 3147 3148 Stream.ExitBlock(); 3149 } 3150 3151 // Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3152 // current llvm version, and a record for the epoch number. 3153 static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) { 3154 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3155 3156 // Write the "user readable" string identifying the bitcode producer 3157 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3158 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3161 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3162 WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING, 3163 "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream); 3164 3165 // Write the epoch version 3166 Abbv = new BitCodeAbbrev(); 3167 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3169 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3170 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3171 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3172 Stream.ExitBlock(); 3173 } 3174 3175 static void writeModuleHash(BitstreamWriter &Stream, 3176 SmallVectorImpl<char> &Buffer, 3177 size_t BlockStartPos) { 3178 // Emit the module's hash. 3179 // MODULE_CODE_HASH: [5*i32] 3180 SHA1 Hasher; 3181 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&Buffer[BlockStartPos], 3182 Buffer.size() - BlockStartPos)); 3183 auto Hash = Hasher.result(); 3184 SmallVector<uint64_t, 20> Vals; 3185 auto LShift = [&](unsigned char Val, unsigned Amount) 3186 -> uint64_t { return ((uint64_t)Val) << Amount; }; 3187 for (int Pos = 0; Pos < 20; Pos += 4) { 3188 uint32_t SubHash = LShift(Hash[Pos + 0], 24); 3189 SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) | 3190 (unsigned)(unsigned char)Hash[Pos + 3]; 3191 Vals.push_back(SubHash); 3192 } 3193 3194 // Emit the finished record. 3195 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3196 } 3197 3198 /// WriteModule - Emit the specified module to the bitstream. 3199 static void WriteModule(const Module *M, BitstreamWriter &Stream, 3200 bool ShouldPreserveUseListOrder, 3201 uint64_t BitcodeStartBit, 3202 const ModuleSummaryIndex *Index, bool GenerateHash, 3203 SmallVectorImpl<char> &Buffer) { 3204 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3205 size_t BlockStartPos = Buffer.size(); 3206 3207 SmallVector<unsigned, 1> Vals; 3208 unsigned CurVersion = 1; 3209 Vals.push_back(CurVersion); 3210 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3211 3212 // Analyze the module, enumerating globals, functions, etc. 3213 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 3214 3215 // Emit blockinfo, which defines the standard abbreviations etc. 3216 WriteBlockInfo(VE, Stream); 3217 3218 // Emit information about attribute groups. 3219 WriteAttributeGroupTable(VE, Stream); 3220 3221 // Emit information about parameter attributes. 3222 WriteAttributeTable(VE, Stream); 3223 3224 // Emit information describing all of the types in the module. 3225 WriteTypeTable(VE, Stream); 3226 3227 writeComdats(VE, Stream); 3228 3229 // Emit top-level description of module, including target triple, inline asm, 3230 // descriptors for global variables, and function prototype info. 3231 uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream); 3232 3233 // Emit constants. 3234 WriteModuleConstants(VE, Stream); 3235 3236 // Emit metadata. 3237 writeModuleMetadata(*M, VE, Stream); 3238 3239 // Emit metadata. 3240 WriteModuleMetadataStore(M, Stream); 3241 3242 // Emit module-level use-lists. 3243 if (VE.shouldPreserveUseListOrder()) 3244 WriteUseListBlock(nullptr, VE, Stream); 3245 3246 WriteOperandBundleTags(M, Stream); 3247 3248 // Emit function bodies. 3249 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3250 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 3251 if (!F->isDeclaration()) 3252 WriteFunction(*F, M, VE, Stream, FunctionToBitcodeIndex); 3253 3254 // Need to write after the above call to WriteFunction which populates 3255 // the summary information in the index. 3256 if (Index) 3257 WritePerModuleGlobalValueSummary(M, *Index, VE, Stream); 3258 3259 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream, 3260 VSTOffsetPlaceholder, BitcodeStartBit, 3261 &FunctionToBitcodeIndex); 3262 3263 if (GenerateHash) { 3264 writeModuleHash(Stream, Buffer, BlockStartPos); 3265 } 3266 3267 Stream.ExitBlock(); 3268 } 3269 3270 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 3271 /// header and trailer to make it compatible with the system archiver. To do 3272 /// this we emit the following header, and then emit a trailer that pads the 3273 /// file out to be a multiple of 16 bytes. 3274 /// 3275 /// struct bc_header { 3276 /// uint32_t Magic; // 0x0B17C0DE 3277 /// uint32_t Version; // Version, currently always 0. 3278 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3279 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3280 /// uint32_t CPUType; // CPU specifier. 3281 /// ... potentially more later ... 3282 /// }; 3283 3284 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3285 uint32_t &Position) { 3286 support::endian::write32le(&Buffer[Position], Value); 3287 Position += 4; 3288 } 3289 3290 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3291 const Triple &TT) { 3292 unsigned CPUType = ~0U; 3293 3294 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3295 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3296 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3297 // specific constants here because they are implicitly part of the Darwin ABI. 3298 enum { 3299 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3300 DARWIN_CPU_TYPE_X86 = 7, 3301 DARWIN_CPU_TYPE_ARM = 12, 3302 DARWIN_CPU_TYPE_POWERPC = 18 3303 }; 3304 3305 Triple::ArchType Arch = TT.getArch(); 3306 if (Arch == Triple::x86_64) 3307 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3308 else if (Arch == Triple::x86) 3309 CPUType = DARWIN_CPU_TYPE_X86; 3310 else if (Arch == Triple::ppc) 3311 CPUType = DARWIN_CPU_TYPE_POWERPC; 3312 else if (Arch == Triple::ppc64) 3313 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3314 else if (Arch == Triple::arm || Arch == Triple::thumb) 3315 CPUType = DARWIN_CPU_TYPE_ARM; 3316 3317 // Traditional Bitcode starts after header. 3318 assert(Buffer.size() >= BWH_HeaderSize && 3319 "Expected header size to be reserved"); 3320 unsigned BCOffset = BWH_HeaderSize; 3321 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3322 3323 // Write the magic and version. 3324 unsigned Position = 0; 3325 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 3326 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 3327 WriteInt32ToBuffer(BCOffset , Buffer, Position); 3328 WriteInt32ToBuffer(BCSize , Buffer, Position); 3329 WriteInt32ToBuffer(CPUType , Buffer, Position); 3330 3331 // If the file is not a multiple of 16 bytes, insert dummy padding. 3332 while (Buffer.size() & 15) 3333 Buffer.push_back(0); 3334 } 3335 3336 /// Helper to write the header common to all bitcode files. 3337 static void WriteBitcodeHeader(BitstreamWriter &Stream) { 3338 // Emit the file header. 3339 Stream.Emit((unsigned)'B', 8); 3340 Stream.Emit((unsigned)'C', 8); 3341 Stream.Emit(0x0, 4); 3342 Stream.Emit(0xC, 4); 3343 Stream.Emit(0xE, 4); 3344 Stream.Emit(0xD, 4); 3345 } 3346 3347 /// WriteBitcodeToFile - Write the specified module to the specified output 3348 /// stream. 3349 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3350 bool ShouldPreserveUseListOrder, 3351 const ModuleSummaryIndex *Index, 3352 bool GenerateHash) { 3353 SmallVector<char, 0> Buffer; 3354 Buffer.reserve(256*1024); 3355 3356 // If this is darwin or another generic macho target, reserve space for the 3357 // header. 3358 Triple TT(M->getTargetTriple()); 3359 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3360 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3361 3362 // Emit the module into the buffer. 3363 { 3364 BitstreamWriter Stream(Buffer); 3365 // Save the start bit of the actual bitcode, in case there is space 3366 // saved at the start for the darwin header above. The reader stream 3367 // will start at the bitcode, and we need the offset of the VST 3368 // to line up. 3369 uint64_t BitcodeStartBit = Stream.GetCurrentBitNo(); 3370 3371 // Emit the file header. 3372 WriteBitcodeHeader(Stream); 3373 3374 WriteIdentificationBlock(M, Stream); 3375 3376 // Emit the module. 3377 WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit, Index, 3378 GenerateHash, Buffer); 3379 } 3380 3381 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3382 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 3383 3384 // Write the generated bitstream to "Out". 3385 Out.write((char*)&Buffer.front(), Buffer.size()); 3386 } 3387 3388 // Write the specified module summary index to the given raw output stream, 3389 // where it will be written in a new bitcode block. This is used when 3390 // writing the combined index file for ThinLTO. 3391 void llvm::WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out) { 3392 SmallVector<char, 0> Buffer; 3393 Buffer.reserve(256 * 1024); 3394 3395 BitstreamWriter Stream(Buffer); 3396 3397 // Emit the bitcode header. 3398 WriteBitcodeHeader(Stream); 3399 3400 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3401 3402 SmallVector<unsigned, 1> Vals; 3403 unsigned CurVersion = 1; 3404 Vals.push_back(CurVersion); 3405 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3406 3407 // If we have a VST, write the VSTOFFSET record placeholder and record 3408 // its offset. 3409 uint64_t VSTOffsetPlaceholder = WriteValueSymbolTableForwardDecl(Stream); 3410 3411 // Write the module paths in the combined index. 3412 WriteModStrings(Index, Stream); 3413 3414 // Assign unique value ids to all functions in the index for use 3415 // in writing out the call graph edges. Save the mapping from GUID 3416 // to the new global value id to use when writing those edges, which 3417 // are currently saved in the index in terms of GUID. 3418 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 3419 unsigned GlobalValueId = 0; 3420 for (auto &II : Index) 3421 GUIDToValueIdMap[II.first] = ++GlobalValueId; 3422 3423 // Write the summary combined index records. 3424 WriteCombinedGlobalValueSummary(Index, Stream, GUIDToValueIdMap, 3425 GlobalValueId); 3426 3427 // Need a special VST writer for the combined index (we don't have a 3428 // real VST and real values when this is invoked). 3429 WriteCombinedValueSymbolTable(Index, Stream, GUIDToValueIdMap, 3430 VSTOffsetPlaceholder); 3431 3432 Stream.ExitBlock(); 3433 3434 Out.write((char *)&Buffer.front(), Buffer.size()); 3435 } 3436