1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 static cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev, 218 unsigned FSModVTableRefsAbbrev); 219 220 void assignValueId(GlobalValue::GUID ValGUID) { 221 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 222 } 223 224 unsigned getValueId(GlobalValue::GUID ValGUID) { 225 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 226 // Expect that any GUID value had a value Id assigned by an 227 // earlier call to assignValueId. 228 assert(VMI != GUIDToValueIdMap.end() && 229 "GUID does not have assigned value Id"); 230 return VMI->second; 231 } 232 233 // Helper to get the valueId for the type of value recorded in VI. 234 unsigned getValueId(ValueInfo VI) { 235 if (!VI.haveGVs() || !VI.getValue()) 236 return getValueId(VI.getGUID()); 237 return VE.getValueID(VI.getValue()); 238 } 239 240 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 241 }; 242 243 /// Class to manage the bitcode writing for a module. 244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 245 /// Pointer to the buffer allocated by caller for bitcode writing. 246 const SmallVectorImpl<char> &Buffer; 247 248 /// True if a module hash record should be written. 249 bool GenerateHash; 250 251 /// If non-null, when GenerateHash is true, the resulting hash is written 252 /// into ModHash. 253 ModuleHash *ModHash; 254 255 SHA1 Hasher; 256 257 /// The start bit of the identification block. 258 uint64_t BitcodeStartBit; 259 260 public: 261 /// Constructs a ModuleBitcodeWriter object for the given Module, 262 /// writing to the provided \p Buffer. 263 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 264 StringTableBuilder &StrtabBuilder, 265 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 266 const ModuleSummaryIndex *Index, bool GenerateHash, 267 ModuleHash *ModHash = nullptr) 268 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 269 ShouldPreserveUseListOrder, Index), 270 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 271 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 272 273 /// Emit the current module to the bitstream. 274 void write(); 275 276 private: 277 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 278 279 size_t addToStrtab(StringRef Str); 280 281 void writeAttributeGroupTable(); 282 void writeAttributeTable(); 283 void writeTypeTable(); 284 void writeComdats(); 285 void writeValueSymbolTableForwardDecl(); 286 void writeModuleInfo(); 287 void writeValueAsMetadata(const ValueAsMetadata *MD, 288 SmallVectorImpl<uint64_t> &Record); 289 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 290 unsigned Abbrev); 291 unsigned createDILocationAbbrev(); 292 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned &Abbrev); 294 unsigned createGenericDINodeAbbrev(); 295 void writeGenericDINode(const GenericDINode *N, 296 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 297 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned Abbrev); 299 void writeDIEnumerator(const DIEnumerator *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 301 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIDerivedType(const DIDerivedType *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDICompositeType(const DICompositeType *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDISubroutineType(const DISubroutineType *N, 308 SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDICompileUnit(const DICompileUnit *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDISubprogram(const DISubprogram *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDILexicalBlock(const DILexicalBlock *N, 317 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 318 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICommonBlock(const DICommonBlock *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 335 SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIGlobalVariable(const DIGlobalVariable *N, 338 SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDILocalVariable(const DILocalVariable *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILabel(const DILabel *N, 343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 344 void writeDIExpression(const DIExpression *N, 345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIObjCProperty(const DIObjCProperty *N, 350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 351 void writeDIImportedEntity(const DIImportedEntity *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 unsigned createNamedMetadataAbbrev(); 355 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 356 unsigned createMetadataStringsAbbrev(); 357 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 358 SmallVectorImpl<uint64_t> &Record); 359 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 360 SmallVectorImpl<uint64_t> &Record, 361 std::vector<unsigned> *MDAbbrevs = nullptr, 362 std::vector<uint64_t> *IndexPos = nullptr); 363 void writeModuleMetadata(); 364 void writeFunctionMetadata(const Function &F); 365 void writeFunctionMetadataAttachment(const Function &F); 366 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 367 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 368 const GlobalObject &GO); 369 void writeModuleMetadataKinds(); 370 void writeOperandBundleTags(); 371 void writeSyncScopeNames(); 372 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 373 void writeModuleConstants(); 374 bool pushValueAndType(const Value *V, unsigned InstID, 375 SmallVectorImpl<unsigned> &Vals); 376 void writeOperandBundles(const CallBase &CB, unsigned InstID); 377 void pushValue(const Value *V, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void pushValueSigned(const Value *V, unsigned InstID, 380 SmallVectorImpl<uint64_t> &Vals); 381 void writeInstruction(const Instruction &I, unsigned InstID, 382 SmallVectorImpl<unsigned> &Vals); 383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 384 void writeGlobalValueSymbolTable( 385 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 386 void writeUseList(UseListOrder &&Order); 387 void writeUseListBlock(const Function *F); 388 void 389 writeFunction(const Function &F, 390 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 391 void writeBlockInfo(); 392 void writeModuleHash(size_t BlockStartPos); 393 394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 395 return unsigned(SSID); 396 } 397 }; 398 399 /// Class to manage the bitcode writing for a combined index. 400 class IndexBitcodeWriter : public BitcodeWriterBase { 401 /// The combined index to write to bitcode. 402 const ModuleSummaryIndex &Index; 403 404 /// When writing a subset of the index for distributed backends, client 405 /// provides a map of modules to the corresponding GUIDs/summaries to write. 406 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 407 408 /// Map that holds the correspondence between the GUID used in the combined 409 /// index and a value id generated by this class to use in references. 410 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 411 412 /// Tracks the last value id recorded in the GUIDToValueMap. 413 unsigned GlobalValueId = 0; 414 415 public: 416 /// Constructs a IndexBitcodeWriter object for the given combined index, 417 /// writing to the provided \p Buffer. When writing a subset of the index 418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 419 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 420 const ModuleSummaryIndex &Index, 421 const std::map<std::string, GVSummaryMapTy> 422 *ModuleToSummariesForIndex = nullptr) 423 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 424 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 425 // Assign unique value ids to all summaries to be written, for use 426 // in writing out the call graph edges. Save the mapping from GUID 427 // to the new global value id to use when writing those edges, which 428 // are currently saved in the index in terms of GUID. 429 forEachSummary([&](GVInfo I, bool) { 430 GUIDToValueIdMap[I.first] = ++GlobalValueId; 431 }); 432 } 433 434 /// The below iterator returns the GUID and associated summary. 435 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 436 437 /// Calls the callback for each value GUID and summary to be written to 438 /// bitcode. This hides the details of whether they are being pulled from the 439 /// entire index or just those in a provided ModuleToSummariesForIndex map. 440 template<typename Functor> 441 void forEachSummary(Functor Callback) { 442 if (ModuleToSummariesForIndex) { 443 for (auto &M : *ModuleToSummariesForIndex) 444 for (auto &Summary : M.second) { 445 Callback(Summary, false); 446 // Ensure aliasee is handled, e.g. for assigning a valueId, 447 // even if we are not importing the aliasee directly (the 448 // imported alias will contain a copy of aliasee). 449 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 450 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 451 } 452 } else { 453 for (auto &Summaries : Index) 454 for (auto &Summary : Summaries.second.SummaryList) 455 Callback({Summaries.first, Summary.get()}, false); 456 } 457 } 458 459 /// Calls the callback for each entry in the modulePaths StringMap that 460 /// should be written to the module path string table. This hides the details 461 /// of whether they are being pulled from the entire index or just those in a 462 /// provided ModuleToSummariesForIndex map. 463 template <typename Functor> void forEachModule(Functor Callback) { 464 if (ModuleToSummariesForIndex) { 465 for (const auto &M : *ModuleToSummariesForIndex) { 466 const auto &MPI = Index.modulePaths().find(M.first); 467 if (MPI == Index.modulePaths().end()) { 468 // This should only happen if the bitcode file was empty, in which 469 // case we shouldn't be importing (the ModuleToSummariesForIndex 470 // would only include the module we are writing and index for). 471 assert(ModuleToSummariesForIndex->size() == 1); 472 continue; 473 } 474 Callback(*MPI); 475 } 476 } else { 477 for (const auto &MPSE : Index.modulePaths()) 478 Callback(MPSE); 479 } 480 } 481 482 /// Main entry point for writing a combined index to bitcode. 483 void write(); 484 485 private: 486 void writeModStrings(); 487 void writeCombinedGlobalValueSummary(); 488 489 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 490 auto VMI = GUIDToValueIdMap.find(ValGUID); 491 if (VMI == GUIDToValueIdMap.end()) 492 return None; 493 return VMI->second; 494 } 495 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 499 } // end anonymous namespace 500 501 static unsigned getEncodedCastOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown cast instruction!"); 504 case Instruction::Trunc : return bitc::CAST_TRUNC; 505 case Instruction::ZExt : return bitc::CAST_ZEXT; 506 case Instruction::SExt : return bitc::CAST_SEXT; 507 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 508 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 509 case Instruction::UIToFP : return bitc::CAST_UITOFP; 510 case Instruction::SIToFP : return bitc::CAST_SITOFP; 511 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 512 case Instruction::FPExt : return bitc::CAST_FPEXT; 513 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 514 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 515 case Instruction::BitCast : return bitc::CAST_BITCAST; 516 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 517 } 518 } 519 520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 521 switch (Opcode) { 522 default: llvm_unreachable("Unknown binary instruction!"); 523 case Instruction::FNeg: return bitc::UNOP_FNEG; 524 } 525 } 526 527 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 528 switch (Opcode) { 529 default: llvm_unreachable("Unknown binary instruction!"); 530 case Instruction::Add: 531 case Instruction::FAdd: return bitc::BINOP_ADD; 532 case Instruction::Sub: 533 case Instruction::FSub: return bitc::BINOP_SUB; 534 case Instruction::Mul: 535 case Instruction::FMul: return bitc::BINOP_MUL; 536 case Instruction::UDiv: return bitc::BINOP_UDIV; 537 case Instruction::FDiv: 538 case Instruction::SDiv: return bitc::BINOP_SDIV; 539 case Instruction::URem: return bitc::BINOP_UREM; 540 case Instruction::FRem: 541 case Instruction::SRem: return bitc::BINOP_SREM; 542 case Instruction::Shl: return bitc::BINOP_SHL; 543 case Instruction::LShr: return bitc::BINOP_LSHR; 544 case Instruction::AShr: return bitc::BINOP_ASHR; 545 case Instruction::And: return bitc::BINOP_AND; 546 case Instruction::Or: return bitc::BINOP_OR; 547 case Instruction::Xor: return bitc::BINOP_XOR; 548 } 549 } 550 551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 552 switch (Op) { 553 default: llvm_unreachable("Unknown RMW operation!"); 554 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 555 case AtomicRMWInst::Add: return bitc::RMW_ADD; 556 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 557 case AtomicRMWInst::And: return bitc::RMW_AND; 558 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 559 case AtomicRMWInst::Or: return bitc::RMW_OR; 560 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 561 case AtomicRMWInst::Max: return bitc::RMW_MAX; 562 case AtomicRMWInst::Min: return bitc::RMW_MIN; 563 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 564 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 565 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 566 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 567 } 568 } 569 570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 571 switch (Ordering) { 572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 579 } 580 llvm_unreachable("Invalid ordering"); 581 } 582 583 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 584 StringRef Str, unsigned AbbrevToUse) { 585 SmallVector<unsigned, 64> Vals; 586 587 // Code: [strchar x N] 588 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 589 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 590 AbbrevToUse = 0; 591 Vals.push_back(Str[i]); 592 } 593 594 // Emit the finished record. 595 Stream.EmitRecord(Code, Vals, AbbrevToUse); 596 } 597 598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 599 switch (Kind) { 600 case Attribute::Alignment: 601 return bitc::ATTR_KIND_ALIGNMENT; 602 case Attribute::AllocSize: 603 return bitc::ATTR_KIND_ALLOC_SIZE; 604 case Attribute::AlwaysInline: 605 return bitc::ATTR_KIND_ALWAYS_INLINE; 606 case Attribute::ArgMemOnly: 607 return bitc::ATTR_KIND_ARGMEMONLY; 608 case Attribute::Builtin: 609 return bitc::ATTR_KIND_BUILTIN; 610 case Attribute::ByVal: 611 return bitc::ATTR_KIND_BY_VAL; 612 case Attribute::Convergent: 613 return bitc::ATTR_KIND_CONVERGENT; 614 case Attribute::InAlloca: 615 return bitc::ATTR_KIND_IN_ALLOCA; 616 case Attribute::Cold: 617 return bitc::ATTR_KIND_COLD; 618 case Attribute::InaccessibleMemOnly: 619 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 620 case Attribute::InaccessibleMemOrArgMemOnly: 621 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 622 case Attribute::InlineHint: 623 return bitc::ATTR_KIND_INLINE_HINT; 624 case Attribute::InReg: 625 return bitc::ATTR_KIND_IN_REG; 626 case Attribute::JumpTable: 627 return bitc::ATTR_KIND_JUMP_TABLE; 628 case Attribute::MinSize: 629 return bitc::ATTR_KIND_MIN_SIZE; 630 case Attribute::Naked: 631 return bitc::ATTR_KIND_NAKED; 632 case Attribute::Nest: 633 return bitc::ATTR_KIND_NEST; 634 case Attribute::NoAlias: 635 return bitc::ATTR_KIND_NO_ALIAS; 636 case Attribute::NoBuiltin: 637 return bitc::ATTR_KIND_NO_BUILTIN; 638 case Attribute::NoCapture: 639 return bitc::ATTR_KIND_NO_CAPTURE; 640 case Attribute::NoDuplicate: 641 return bitc::ATTR_KIND_NO_DUPLICATE; 642 case Attribute::NoFree: 643 return bitc::ATTR_KIND_NOFREE; 644 case Attribute::NoImplicitFloat: 645 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 646 case Attribute::NoInline: 647 return bitc::ATTR_KIND_NO_INLINE; 648 case Attribute::NoRecurse: 649 return bitc::ATTR_KIND_NO_RECURSE; 650 case Attribute::NoMerge: 651 return bitc::ATTR_KIND_NO_MERGE; 652 case Attribute::NonLazyBind: 653 return bitc::ATTR_KIND_NON_LAZY_BIND; 654 case Attribute::NonNull: 655 return bitc::ATTR_KIND_NON_NULL; 656 case Attribute::Dereferenceable: 657 return bitc::ATTR_KIND_DEREFERENCEABLE; 658 case Attribute::DereferenceableOrNull: 659 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 660 case Attribute::NoRedZone: 661 return bitc::ATTR_KIND_NO_RED_ZONE; 662 case Attribute::NoReturn: 663 return bitc::ATTR_KIND_NO_RETURN; 664 case Attribute::NoSync: 665 return bitc::ATTR_KIND_NOSYNC; 666 case Attribute::NoCfCheck: 667 return bitc::ATTR_KIND_NOCF_CHECK; 668 case Attribute::NoUnwind: 669 return bitc::ATTR_KIND_NO_UNWIND; 670 case Attribute::NullPointerIsValid: 671 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 672 case Attribute::OptForFuzzing: 673 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 674 case Attribute::OptimizeForSize: 675 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 676 case Attribute::OptimizeNone: 677 return bitc::ATTR_KIND_OPTIMIZE_NONE; 678 case Attribute::ReadNone: 679 return bitc::ATTR_KIND_READ_NONE; 680 case Attribute::ReadOnly: 681 return bitc::ATTR_KIND_READ_ONLY; 682 case Attribute::Returned: 683 return bitc::ATTR_KIND_RETURNED; 684 case Attribute::ReturnsTwice: 685 return bitc::ATTR_KIND_RETURNS_TWICE; 686 case Attribute::SExt: 687 return bitc::ATTR_KIND_S_EXT; 688 case Attribute::Speculatable: 689 return bitc::ATTR_KIND_SPECULATABLE; 690 case Attribute::StackAlignment: 691 return bitc::ATTR_KIND_STACK_ALIGNMENT; 692 case Attribute::StackProtect: 693 return bitc::ATTR_KIND_STACK_PROTECT; 694 case Attribute::StackProtectReq: 695 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 696 case Attribute::StackProtectStrong: 697 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 698 case Attribute::SafeStack: 699 return bitc::ATTR_KIND_SAFESTACK; 700 case Attribute::ShadowCallStack: 701 return bitc::ATTR_KIND_SHADOWCALLSTACK; 702 case Attribute::StrictFP: 703 return bitc::ATTR_KIND_STRICT_FP; 704 case Attribute::StructRet: 705 return bitc::ATTR_KIND_STRUCT_RET; 706 case Attribute::SanitizeAddress: 707 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 708 case Attribute::SanitizeHWAddress: 709 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 710 case Attribute::SanitizeThread: 711 return bitc::ATTR_KIND_SANITIZE_THREAD; 712 case Attribute::SanitizeMemory: 713 return bitc::ATTR_KIND_SANITIZE_MEMORY; 714 case Attribute::SpeculativeLoadHardening: 715 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 716 case Attribute::SwiftError: 717 return bitc::ATTR_KIND_SWIFT_ERROR; 718 case Attribute::SwiftSelf: 719 return bitc::ATTR_KIND_SWIFT_SELF; 720 case Attribute::UWTable: 721 return bitc::ATTR_KIND_UW_TABLE; 722 case Attribute::WillReturn: 723 return bitc::ATTR_KIND_WILLRETURN; 724 case Attribute::WriteOnly: 725 return bitc::ATTR_KIND_WRITEONLY; 726 case Attribute::ZExt: 727 return bitc::ATTR_KIND_Z_EXT; 728 case Attribute::ImmArg: 729 return bitc::ATTR_KIND_IMMARG; 730 case Attribute::SanitizeMemTag: 731 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 732 case Attribute::Preallocated: 733 return bitc::ATTR_KIND_PREALLOCATED; 734 case Attribute::NoUndef: 735 return bitc::ATTR_KIND_NOUNDEF; 736 case Attribute::ByRef: 737 return bitc::ATTR_KIND_BYREF; 738 case Attribute::EndAttrKinds: 739 llvm_unreachable("Can not encode end-attribute kinds marker."); 740 case Attribute::None: 741 llvm_unreachable("Can not encode none-attribute."); 742 case Attribute::EmptyKey: 743 case Attribute::TombstoneKey: 744 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 745 } 746 747 llvm_unreachable("Trying to encode unknown attribute"); 748 } 749 750 void ModuleBitcodeWriter::writeAttributeGroupTable() { 751 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 752 VE.getAttributeGroups(); 753 if (AttrGrps.empty()) return; 754 755 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 756 757 SmallVector<uint64_t, 64> Record; 758 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 759 unsigned AttrListIndex = Pair.first; 760 AttributeSet AS = Pair.second; 761 Record.push_back(VE.getAttributeGroupID(Pair)); 762 Record.push_back(AttrListIndex); 763 764 for (Attribute Attr : AS) { 765 if (Attr.isEnumAttribute()) { 766 Record.push_back(0); 767 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 768 } else if (Attr.isIntAttribute()) { 769 Record.push_back(1); 770 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 771 Record.push_back(Attr.getValueAsInt()); 772 } else if (Attr.isStringAttribute()) { 773 StringRef Kind = Attr.getKindAsString(); 774 StringRef Val = Attr.getValueAsString(); 775 776 Record.push_back(Val.empty() ? 3 : 4); 777 Record.append(Kind.begin(), Kind.end()); 778 Record.push_back(0); 779 if (!Val.empty()) { 780 Record.append(Val.begin(), Val.end()); 781 Record.push_back(0); 782 } 783 } else { 784 assert(Attr.isTypeAttribute()); 785 Type *Ty = Attr.getValueAsType(); 786 Record.push_back(Ty ? 6 : 5); 787 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 788 if (Ty) 789 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 790 } 791 } 792 793 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 794 Record.clear(); 795 } 796 797 Stream.ExitBlock(); 798 } 799 800 void ModuleBitcodeWriter::writeAttributeTable() { 801 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 802 if (Attrs.empty()) return; 803 804 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 805 806 SmallVector<uint64_t, 64> Record; 807 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 808 AttributeList AL = Attrs[i]; 809 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 810 AttributeSet AS = AL.getAttributes(i); 811 if (AS.hasAttributes()) 812 Record.push_back(VE.getAttributeGroupID({i, AS})); 813 } 814 815 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 816 Record.clear(); 817 } 818 819 Stream.ExitBlock(); 820 } 821 822 /// WriteTypeTable - Write out the type table for a module. 823 void ModuleBitcodeWriter::writeTypeTable() { 824 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 825 826 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 827 SmallVector<uint64_t, 64> TypeVals; 828 829 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 830 831 // Abbrev for TYPE_CODE_POINTER. 832 auto Abbv = std::make_shared<BitCodeAbbrev>(); 833 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 835 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 836 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 837 838 // Abbrev for TYPE_CODE_FUNCTION. 839 Abbv = std::make_shared<BitCodeAbbrev>(); 840 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 844 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 845 846 // Abbrev for TYPE_CODE_STRUCT_ANON. 847 Abbv = std::make_shared<BitCodeAbbrev>(); 848 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 852 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 853 854 // Abbrev for TYPE_CODE_STRUCT_NAME. 855 Abbv = std::make_shared<BitCodeAbbrev>(); 856 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 859 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 860 861 // Abbrev for TYPE_CODE_STRUCT_NAMED. 862 Abbv = std::make_shared<BitCodeAbbrev>(); 863 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 867 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 868 869 // Abbrev for TYPE_CODE_ARRAY. 870 Abbv = std::make_shared<BitCodeAbbrev>(); 871 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 874 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 875 876 // Emit an entry count so the reader can reserve space. 877 TypeVals.push_back(TypeList.size()); 878 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 879 TypeVals.clear(); 880 881 // Loop over all of the types, emitting each in turn. 882 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 883 Type *T = TypeList[i]; 884 int AbbrevToUse = 0; 885 unsigned Code = 0; 886 887 switch (T->getTypeID()) { 888 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 889 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 890 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 891 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 892 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 893 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 894 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 895 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 896 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 897 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 898 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 899 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 900 case Type::IntegerTyID: 901 // INTEGER: [width] 902 Code = bitc::TYPE_CODE_INTEGER; 903 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 904 break; 905 case Type::PointerTyID: { 906 PointerType *PTy = cast<PointerType>(T); 907 // POINTER: [pointee type, address space] 908 Code = bitc::TYPE_CODE_POINTER; 909 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 910 unsigned AddressSpace = PTy->getAddressSpace(); 911 TypeVals.push_back(AddressSpace); 912 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 913 break; 914 } 915 case Type::FunctionTyID: { 916 FunctionType *FT = cast<FunctionType>(T); 917 // FUNCTION: [isvararg, retty, paramty x N] 918 Code = bitc::TYPE_CODE_FUNCTION; 919 TypeVals.push_back(FT->isVarArg()); 920 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 921 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 922 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 923 AbbrevToUse = FunctionAbbrev; 924 break; 925 } 926 case Type::StructTyID: { 927 StructType *ST = cast<StructType>(T); 928 // STRUCT: [ispacked, eltty x N] 929 TypeVals.push_back(ST->isPacked()); 930 // Output all of the element types. 931 for (StructType::element_iterator I = ST->element_begin(), 932 E = ST->element_end(); I != E; ++I) 933 TypeVals.push_back(VE.getTypeID(*I)); 934 935 if (ST->isLiteral()) { 936 Code = bitc::TYPE_CODE_STRUCT_ANON; 937 AbbrevToUse = StructAnonAbbrev; 938 } else { 939 if (ST->isOpaque()) { 940 Code = bitc::TYPE_CODE_OPAQUE; 941 } else { 942 Code = bitc::TYPE_CODE_STRUCT_NAMED; 943 AbbrevToUse = StructNamedAbbrev; 944 } 945 946 // Emit the name if it is present. 947 if (!ST->getName().empty()) 948 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 949 StructNameAbbrev); 950 } 951 break; 952 } 953 case Type::ArrayTyID: { 954 ArrayType *AT = cast<ArrayType>(T); 955 // ARRAY: [numelts, eltty] 956 Code = bitc::TYPE_CODE_ARRAY; 957 TypeVals.push_back(AT->getNumElements()); 958 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 959 AbbrevToUse = ArrayAbbrev; 960 break; 961 } 962 case Type::FixedVectorTyID: 963 case Type::ScalableVectorTyID: { 964 VectorType *VT = cast<VectorType>(T); 965 // VECTOR [numelts, eltty] or 966 // [numelts, eltty, scalable] 967 Code = bitc::TYPE_CODE_VECTOR; 968 TypeVals.push_back(VT->getElementCount().Min); 969 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 970 if (isa<ScalableVectorType>(VT)) 971 TypeVals.push_back(true); 972 break; 973 } 974 } 975 976 // Emit the finished record. 977 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 978 TypeVals.clear(); 979 } 980 981 Stream.ExitBlock(); 982 } 983 984 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 985 switch (Linkage) { 986 case GlobalValue::ExternalLinkage: 987 return 0; 988 case GlobalValue::WeakAnyLinkage: 989 return 16; 990 case GlobalValue::AppendingLinkage: 991 return 2; 992 case GlobalValue::InternalLinkage: 993 return 3; 994 case GlobalValue::LinkOnceAnyLinkage: 995 return 18; 996 case GlobalValue::ExternalWeakLinkage: 997 return 7; 998 case GlobalValue::CommonLinkage: 999 return 8; 1000 case GlobalValue::PrivateLinkage: 1001 return 9; 1002 case GlobalValue::WeakODRLinkage: 1003 return 17; 1004 case GlobalValue::LinkOnceODRLinkage: 1005 return 19; 1006 case GlobalValue::AvailableExternallyLinkage: 1007 return 12; 1008 } 1009 llvm_unreachable("Invalid linkage"); 1010 } 1011 1012 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1013 return getEncodedLinkage(GV.getLinkage()); 1014 } 1015 1016 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1017 uint64_t RawFlags = 0; 1018 RawFlags |= Flags.ReadNone; 1019 RawFlags |= (Flags.ReadOnly << 1); 1020 RawFlags |= (Flags.NoRecurse << 2); 1021 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1022 RawFlags |= (Flags.NoInline << 4); 1023 RawFlags |= (Flags.AlwaysInline << 5); 1024 return RawFlags; 1025 } 1026 1027 // Decode the flags for GlobalValue in the summary 1028 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1029 uint64_t RawFlags = 0; 1030 1031 RawFlags |= Flags.NotEligibleToImport; // bool 1032 RawFlags |= (Flags.Live << 1); 1033 RawFlags |= (Flags.DSOLocal << 2); 1034 RawFlags |= (Flags.CanAutoHide << 3); 1035 1036 // Linkage don't need to be remapped at that time for the summary. Any future 1037 // change to the getEncodedLinkage() function will need to be taken into 1038 // account here as well. 1039 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1040 1041 return RawFlags; 1042 } 1043 1044 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1045 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1046 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1047 return RawFlags; 1048 } 1049 1050 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1051 switch (GV.getVisibility()) { 1052 case GlobalValue::DefaultVisibility: return 0; 1053 case GlobalValue::HiddenVisibility: return 1; 1054 case GlobalValue::ProtectedVisibility: return 2; 1055 } 1056 llvm_unreachable("Invalid visibility"); 1057 } 1058 1059 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1060 switch (GV.getDLLStorageClass()) { 1061 case GlobalValue::DefaultStorageClass: return 0; 1062 case GlobalValue::DLLImportStorageClass: return 1; 1063 case GlobalValue::DLLExportStorageClass: return 2; 1064 } 1065 llvm_unreachable("Invalid DLL storage class"); 1066 } 1067 1068 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1069 switch (GV.getThreadLocalMode()) { 1070 case GlobalVariable::NotThreadLocal: return 0; 1071 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1072 case GlobalVariable::LocalDynamicTLSModel: return 2; 1073 case GlobalVariable::InitialExecTLSModel: return 3; 1074 case GlobalVariable::LocalExecTLSModel: return 4; 1075 } 1076 llvm_unreachable("Invalid TLS model"); 1077 } 1078 1079 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1080 switch (C.getSelectionKind()) { 1081 case Comdat::Any: 1082 return bitc::COMDAT_SELECTION_KIND_ANY; 1083 case Comdat::ExactMatch: 1084 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1085 case Comdat::Largest: 1086 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1087 case Comdat::NoDuplicates: 1088 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1089 case Comdat::SameSize: 1090 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1091 } 1092 llvm_unreachable("Invalid selection kind"); 1093 } 1094 1095 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1096 switch (GV.getUnnamedAddr()) { 1097 case GlobalValue::UnnamedAddr::None: return 0; 1098 case GlobalValue::UnnamedAddr::Local: return 2; 1099 case GlobalValue::UnnamedAddr::Global: return 1; 1100 } 1101 llvm_unreachable("Invalid unnamed_addr"); 1102 } 1103 1104 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1105 if (GenerateHash) 1106 Hasher.update(Str); 1107 return StrtabBuilder.add(Str); 1108 } 1109 1110 void ModuleBitcodeWriter::writeComdats() { 1111 SmallVector<unsigned, 64> Vals; 1112 for (const Comdat *C : VE.getComdats()) { 1113 // COMDAT: [strtab offset, strtab size, selection_kind] 1114 Vals.push_back(addToStrtab(C->getName())); 1115 Vals.push_back(C->getName().size()); 1116 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1117 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1118 Vals.clear(); 1119 } 1120 } 1121 1122 /// Write a record that will eventually hold the word offset of the 1123 /// module-level VST. For now the offset is 0, which will be backpatched 1124 /// after the real VST is written. Saves the bit offset to backpatch. 1125 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1126 // Write a placeholder value in for the offset of the real VST, 1127 // which is written after the function blocks so that it can include 1128 // the offset of each function. The placeholder offset will be 1129 // updated when the real VST is written. 1130 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1131 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1132 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1133 // hold the real VST offset. Must use fixed instead of VBR as we don't 1134 // know how many VBR chunks to reserve ahead of time. 1135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1136 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1137 1138 // Emit the placeholder 1139 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1140 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1141 1142 // Compute and save the bit offset to the placeholder, which will be 1143 // patched when the real VST is written. We can simply subtract the 32-bit 1144 // fixed size from the current bit number to get the location to backpatch. 1145 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1146 } 1147 1148 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1149 1150 /// Determine the encoding to use for the given string name and length. 1151 static StringEncoding getStringEncoding(StringRef Str) { 1152 bool isChar6 = true; 1153 for (char C : Str) { 1154 if (isChar6) 1155 isChar6 = BitCodeAbbrevOp::isChar6(C); 1156 if ((unsigned char)C & 128) 1157 // don't bother scanning the rest. 1158 return SE_Fixed8; 1159 } 1160 if (isChar6) 1161 return SE_Char6; 1162 return SE_Fixed7; 1163 } 1164 1165 /// Emit top-level description of module, including target triple, inline asm, 1166 /// descriptors for global variables, and function prototype info. 1167 /// Returns the bit offset to backpatch with the location of the real VST. 1168 void ModuleBitcodeWriter::writeModuleInfo() { 1169 // Emit various pieces of data attached to a module. 1170 if (!M.getTargetTriple().empty()) 1171 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1172 0 /*TODO*/); 1173 const std::string &DL = M.getDataLayoutStr(); 1174 if (!DL.empty()) 1175 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1176 if (!M.getModuleInlineAsm().empty()) 1177 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1178 0 /*TODO*/); 1179 1180 // Emit information about sections and GC, computing how many there are. Also 1181 // compute the maximum alignment value. 1182 std::map<std::string, unsigned> SectionMap; 1183 std::map<std::string, unsigned> GCMap; 1184 unsigned MaxAlignment = 0; 1185 unsigned MaxGlobalType = 0; 1186 for (const GlobalVariable &GV : M.globals()) { 1187 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1188 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1189 if (GV.hasSection()) { 1190 // Give section names unique ID's. 1191 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1192 if (!Entry) { 1193 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1194 0 /*TODO*/); 1195 Entry = SectionMap.size(); 1196 } 1197 } 1198 } 1199 for (const Function &F : M) { 1200 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1201 if (F.hasSection()) { 1202 // Give section names unique ID's. 1203 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1204 if (!Entry) { 1205 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1206 0 /*TODO*/); 1207 Entry = SectionMap.size(); 1208 } 1209 } 1210 if (F.hasGC()) { 1211 // Same for GC names. 1212 unsigned &Entry = GCMap[F.getGC()]; 1213 if (!Entry) { 1214 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1215 0 /*TODO*/); 1216 Entry = GCMap.size(); 1217 } 1218 } 1219 } 1220 1221 // Emit abbrev for globals, now that we know # sections and max alignment. 1222 unsigned SimpleGVarAbbrev = 0; 1223 if (!M.global_empty()) { 1224 // Add an abbrev for common globals with no visibility or thread localness. 1225 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1226 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1230 Log2_32_Ceil(MaxGlobalType+1))); 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1232 //| explicitType << 1 1233 //| constant 1234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1236 if (MaxAlignment == 0) // Alignment. 1237 Abbv->Add(BitCodeAbbrevOp(0)); 1238 else { 1239 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1241 Log2_32_Ceil(MaxEncAlignment+1))); 1242 } 1243 if (SectionMap.empty()) // Section. 1244 Abbv->Add(BitCodeAbbrevOp(0)); 1245 else 1246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1247 Log2_32_Ceil(SectionMap.size()+1))); 1248 // Don't bother emitting vis + thread local. 1249 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1250 } 1251 1252 SmallVector<unsigned, 64> Vals; 1253 // Emit the module's source file name. 1254 { 1255 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1256 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1257 if (Bits == SE_Char6) 1258 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1259 else if (Bits == SE_Fixed7) 1260 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1261 1262 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1263 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1264 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1266 Abbv->Add(AbbrevOpToUse); 1267 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1268 1269 for (const auto P : M.getSourceFileName()) 1270 Vals.push_back((unsigned char)P); 1271 1272 // Emit the finished record. 1273 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1274 Vals.clear(); 1275 } 1276 1277 // Emit the global variable information. 1278 for (const GlobalVariable &GV : M.globals()) { 1279 unsigned AbbrevToUse = 0; 1280 1281 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1282 // linkage, alignment, section, visibility, threadlocal, 1283 // unnamed_addr, externally_initialized, dllstorageclass, 1284 // comdat, attributes, DSO_Local] 1285 Vals.push_back(addToStrtab(GV.getName())); 1286 Vals.push_back(GV.getName().size()); 1287 Vals.push_back(VE.getTypeID(GV.getValueType())); 1288 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1289 Vals.push_back(GV.isDeclaration() ? 0 : 1290 (VE.getValueID(GV.getInitializer()) + 1)); 1291 Vals.push_back(getEncodedLinkage(GV)); 1292 Vals.push_back(Log2_32(GV.getAlignment())+1); 1293 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1294 : 0); 1295 if (GV.isThreadLocal() || 1296 GV.getVisibility() != GlobalValue::DefaultVisibility || 1297 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1298 GV.isExternallyInitialized() || 1299 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1300 GV.hasComdat() || 1301 GV.hasAttributes() || 1302 GV.isDSOLocal() || 1303 GV.hasPartition()) { 1304 Vals.push_back(getEncodedVisibility(GV)); 1305 Vals.push_back(getEncodedThreadLocalMode(GV)); 1306 Vals.push_back(getEncodedUnnamedAddr(GV)); 1307 Vals.push_back(GV.isExternallyInitialized()); 1308 Vals.push_back(getEncodedDLLStorageClass(GV)); 1309 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1310 1311 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1312 Vals.push_back(VE.getAttributeListID(AL)); 1313 1314 Vals.push_back(GV.isDSOLocal()); 1315 Vals.push_back(addToStrtab(GV.getPartition())); 1316 Vals.push_back(GV.getPartition().size()); 1317 } else { 1318 AbbrevToUse = SimpleGVarAbbrev; 1319 } 1320 1321 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1322 Vals.clear(); 1323 } 1324 1325 // Emit the function proto information. 1326 for (const Function &F : M) { 1327 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1328 // linkage, paramattrs, alignment, section, visibility, gc, 1329 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1330 // prefixdata, personalityfn, DSO_Local, addrspace] 1331 Vals.push_back(addToStrtab(F.getName())); 1332 Vals.push_back(F.getName().size()); 1333 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1334 Vals.push_back(F.getCallingConv()); 1335 Vals.push_back(F.isDeclaration()); 1336 Vals.push_back(getEncodedLinkage(F)); 1337 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1338 Vals.push_back(Log2_32(F.getAlignment())+1); 1339 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1340 : 0); 1341 Vals.push_back(getEncodedVisibility(F)); 1342 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1343 Vals.push_back(getEncodedUnnamedAddr(F)); 1344 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1345 : 0); 1346 Vals.push_back(getEncodedDLLStorageClass(F)); 1347 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1348 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1349 : 0); 1350 Vals.push_back( 1351 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1352 1353 Vals.push_back(F.isDSOLocal()); 1354 Vals.push_back(F.getAddressSpace()); 1355 Vals.push_back(addToStrtab(F.getPartition())); 1356 Vals.push_back(F.getPartition().size()); 1357 1358 unsigned AbbrevToUse = 0; 1359 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1360 Vals.clear(); 1361 } 1362 1363 // Emit the alias information. 1364 for (const GlobalAlias &A : M.aliases()) { 1365 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1366 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1367 // DSO_Local] 1368 Vals.push_back(addToStrtab(A.getName())); 1369 Vals.push_back(A.getName().size()); 1370 Vals.push_back(VE.getTypeID(A.getValueType())); 1371 Vals.push_back(A.getType()->getAddressSpace()); 1372 Vals.push_back(VE.getValueID(A.getAliasee())); 1373 Vals.push_back(getEncodedLinkage(A)); 1374 Vals.push_back(getEncodedVisibility(A)); 1375 Vals.push_back(getEncodedDLLStorageClass(A)); 1376 Vals.push_back(getEncodedThreadLocalMode(A)); 1377 Vals.push_back(getEncodedUnnamedAddr(A)); 1378 Vals.push_back(A.isDSOLocal()); 1379 Vals.push_back(addToStrtab(A.getPartition())); 1380 Vals.push_back(A.getPartition().size()); 1381 1382 unsigned AbbrevToUse = 0; 1383 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1384 Vals.clear(); 1385 } 1386 1387 // Emit the ifunc information. 1388 for (const GlobalIFunc &I : M.ifuncs()) { 1389 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1390 // val#, linkage, visibility, DSO_Local] 1391 Vals.push_back(addToStrtab(I.getName())); 1392 Vals.push_back(I.getName().size()); 1393 Vals.push_back(VE.getTypeID(I.getValueType())); 1394 Vals.push_back(I.getType()->getAddressSpace()); 1395 Vals.push_back(VE.getValueID(I.getResolver())); 1396 Vals.push_back(getEncodedLinkage(I)); 1397 Vals.push_back(getEncodedVisibility(I)); 1398 Vals.push_back(I.isDSOLocal()); 1399 Vals.push_back(addToStrtab(I.getPartition())); 1400 Vals.push_back(I.getPartition().size()); 1401 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1402 Vals.clear(); 1403 } 1404 1405 writeValueSymbolTableForwardDecl(); 1406 } 1407 1408 static uint64_t getOptimizationFlags(const Value *V) { 1409 uint64_t Flags = 0; 1410 1411 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1412 if (OBO->hasNoSignedWrap()) 1413 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1414 if (OBO->hasNoUnsignedWrap()) 1415 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1416 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1417 if (PEO->isExact()) 1418 Flags |= 1 << bitc::PEO_EXACT; 1419 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1420 if (FPMO->hasAllowReassoc()) 1421 Flags |= bitc::AllowReassoc; 1422 if (FPMO->hasNoNaNs()) 1423 Flags |= bitc::NoNaNs; 1424 if (FPMO->hasNoInfs()) 1425 Flags |= bitc::NoInfs; 1426 if (FPMO->hasNoSignedZeros()) 1427 Flags |= bitc::NoSignedZeros; 1428 if (FPMO->hasAllowReciprocal()) 1429 Flags |= bitc::AllowReciprocal; 1430 if (FPMO->hasAllowContract()) 1431 Flags |= bitc::AllowContract; 1432 if (FPMO->hasApproxFunc()) 1433 Flags |= bitc::ApproxFunc; 1434 } 1435 1436 return Flags; 1437 } 1438 1439 void ModuleBitcodeWriter::writeValueAsMetadata( 1440 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1441 // Mimic an MDNode with a value as one operand. 1442 Value *V = MD->getValue(); 1443 Record.push_back(VE.getTypeID(V->getType())); 1444 Record.push_back(VE.getValueID(V)); 1445 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1446 Record.clear(); 1447 } 1448 1449 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1450 SmallVectorImpl<uint64_t> &Record, 1451 unsigned Abbrev) { 1452 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1453 Metadata *MD = N->getOperand(i); 1454 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1455 "Unexpected function-local metadata"); 1456 Record.push_back(VE.getMetadataOrNullID(MD)); 1457 } 1458 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1459 : bitc::METADATA_NODE, 1460 Record, Abbrev); 1461 Record.clear(); 1462 } 1463 1464 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1465 // Assume the column is usually under 128, and always output the inlined-at 1466 // location (it's never more expensive than building an array size 1). 1467 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1468 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1475 return Stream.EmitAbbrev(std::move(Abbv)); 1476 } 1477 1478 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1479 SmallVectorImpl<uint64_t> &Record, 1480 unsigned &Abbrev) { 1481 if (!Abbrev) 1482 Abbrev = createDILocationAbbrev(); 1483 1484 Record.push_back(N->isDistinct()); 1485 Record.push_back(N->getLine()); 1486 Record.push_back(N->getColumn()); 1487 Record.push_back(VE.getMetadataID(N->getScope())); 1488 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1489 Record.push_back(N->isImplicitCode()); 1490 1491 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1492 Record.clear(); 1493 } 1494 1495 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1496 // Assume the column is usually under 128, and always output the inlined-at 1497 // location (it's never more expensive than building an array size 1). 1498 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1499 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1506 return Stream.EmitAbbrev(std::move(Abbv)); 1507 } 1508 1509 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1510 SmallVectorImpl<uint64_t> &Record, 1511 unsigned &Abbrev) { 1512 if (!Abbrev) 1513 Abbrev = createGenericDINodeAbbrev(); 1514 1515 Record.push_back(N->isDistinct()); 1516 Record.push_back(N->getTag()); 1517 Record.push_back(0); // Per-tag version field; unused for now. 1518 1519 for (auto &I : N->operands()) 1520 Record.push_back(VE.getMetadataOrNullID(I)); 1521 1522 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1523 Record.clear(); 1524 } 1525 1526 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1527 SmallVectorImpl<uint64_t> &Record, 1528 unsigned Abbrev) { 1529 const uint64_t Version = 2 << 1; 1530 Record.push_back((uint64_t)N->isDistinct() | Version); 1531 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1532 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1533 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1534 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1535 1536 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1537 Record.clear(); 1538 } 1539 1540 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1541 if ((int64_t)V >= 0) 1542 Vals.push_back(V << 1); 1543 else 1544 Vals.push_back((-V << 1) | 1); 1545 } 1546 1547 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1548 // We have an arbitrary precision integer value to write whose 1549 // bit width is > 64. However, in canonical unsigned integer 1550 // format it is likely that the high bits are going to be zero. 1551 // So, we only write the number of active words. 1552 unsigned NumWords = A.getActiveWords(); 1553 const uint64_t *RawData = A.getRawData(); 1554 for (unsigned i = 0; i < NumWords; i++) 1555 emitSignedInt64(Vals, RawData[i]); 1556 } 1557 1558 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1559 SmallVectorImpl<uint64_t> &Record, 1560 unsigned Abbrev) { 1561 const uint64_t IsBigInt = 1 << 2; 1562 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1563 Record.push_back(N->getValue().getBitWidth()); 1564 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1565 emitWideAPInt(Record, N->getValue()); 1566 1567 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1568 Record.clear(); 1569 } 1570 1571 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1572 SmallVectorImpl<uint64_t> &Record, 1573 unsigned Abbrev) { 1574 Record.push_back(N->isDistinct()); 1575 Record.push_back(N->getTag()); 1576 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1577 Record.push_back(N->getSizeInBits()); 1578 Record.push_back(N->getAlignInBits()); 1579 Record.push_back(N->getEncoding()); 1580 Record.push_back(N->getFlags()); 1581 1582 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1583 Record.clear(); 1584 } 1585 1586 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1587 SmallVectorImpl<uint64_t> &Record, 1588 unsigned Abbrev) { 1589 Record.push_back(N->isDistinct()); 1590 Record.push_back(N->getTag()); 1591 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1593 Record.push_back(N->getLine()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1596 Record.push_back(N->getSizeInBits()); 1597 Record.push_back(N->getAlignInBits()); 1598 Record.push_back(N->getOffsetInBits()); 1599 Record.push_back(N->getFlags()); 1600 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1601 1602 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1603 // that there is no DWARF address space associated with DIDerivedType. 1604 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1605 Record.push_back(*DWARFAddressSpace + 1); 1606 else 1607 Record.push_back(0); 1608 1609 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1610 Record.clear(); 1611 } 1612 1613 void ModuleBitcodeWriter::writeDICompositeType( 1614 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1615 unsigned Abbrev) { 1616 const unsigned IsNotUsedInOldTypeRef = 0x2; 1617 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1618 Record.push_back(N->getTag()); 1619 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1620 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1621 Record.push_back(N->getLine()); 1622 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1623 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1624 Record.push_back(N->getSizeInBits()); 1625 Record.push_back(N->getAlignInBits()); 1626 Record.push_back(N->getOffsetInBits()); 1627 Record.push_back(N->getFlags()); 1628 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1629 Record.push_back(N->getRuntimeLang()); 1630 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1631 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1632 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1633 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1634 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1635 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1636 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1637 1638 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1639 Record.clear(); 1640 } 1641 1642 void ModuleBitcodeWriter::writeDISubroutineType( 1643 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1644 unsigned Abbrev) { 1645 const unsigned HasNoOldTypeRefs = 0x2; 1646 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1647 Record.push_back(N->getFlags()); 1648 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1649 Record.push_back(N->getCC()); 1650 1651 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1652 Record.clear(); 1653 } 1654 1655 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1656 SmallVectorImpl<uint64_t> &Record, 1657 unsigned Abbrev) { 1658 Record.push_back(N->isDistinct()); 1659 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1660 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1661 if (N->getRawChecksum()) { 1662 Record.push_back(N->getRawChecksum()->Kind); 1663 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1664 } else { 1665 // Maintain backwards compatibility with the old internal representation of 1666 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1667 Record.push_back(0); 1668 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1669 } 1670 auto Source = N->getRawSource(); 1671 if (Source) 1672 Record.push_back(VE.getMetadataOrNullID(*Source)); 1673 1674 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1675 Record.clear(); 1676 } 1677 1678 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1679 SmallVectorImpl<uint64_t> &Record, 1680 unsigned Abbrev) { 1681 assert(N->isDistinct() && "Expected distinct compile units"); 1682 Record.push_back(/* IsDistinct */ true); 1683 Record.push_back(N->getSourceLanguage()); 1684 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1686 Record.push_back(N->isOptimized()); 1687 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1688 Record.push_back(N->getRuntimeVersion()); 1689 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1690 Record.push_back(N->getEmissionKind()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1693 Record.push_back(/* subprograms */ 0); 1694 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1695 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1696 Record.push_back(N->getDWOId()); 1697 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1698 Record.push_back(N->getSplitDebugInlining()); 1699 Record.push_back(N->getDebugInfoForProfiling()); 1700 Record.push_back((unsigned)N->getNameTableKind()); 1701 Record.push_back(N->getRangesBaseAddress()); 1702 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1703 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1704 1705 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1706 Record.clear(); 1707 } 1708 1709 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1710 SmallVectorImpl<uint64_t> &Record, 1711 unsigned Abbrev) { 1712 const uint64_t HasUnitFlag = 1 << 1; 1713 const uint64_t HasSPFlagsFlag = 1 << 2; 1714 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1715 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1719 Record.push_back(N->getLine()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1721 Record.push_back(N->getScopeLine()); 1722 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1723 Record.push_back(N->getSPFlags()); 1724 Record.push_back(N->getVirtualIndex()); 1725 Record.push_back(N->getFlags()); 1726 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1727 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1728 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1729 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1730 Record.push_back(N->getThisAdjustment()); 1731 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1732 1733 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1734 Record.clear(); 1735 } 1736 1737 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1738 SmallVectorImpl<uint64_t> &Record, 1739 unsigned Abbrev) { 1740 Record.push_back(N->isDistinct()); 1741 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1742 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1743 Record.push_back(N->getLine()); 1744 Record.push_back(N->getColumn()); 1745 1746 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1747 Record.clear(); 1748 } 1749 1750 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1751 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1752 unsigned Abbrev) { 1753 Record.push_back(N->isDistinct()); 1754 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1755 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1756 Record.push_back(N->getDiscriminator()); 1757 1758 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1759 Record.clear(); 1760 } 1761 1762 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1763 SmallVectorImpl<uint64_t> &Record, 1764 unsigned Abbrev) { 1765 Record.push_back(N->isDistinct()); 1766 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1767 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1768 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1769 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1770 Record.push_back(N->getLineNo()); 1771 1772 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1773 Record.clear(); 1774 } 1775 1776 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1777 SmallVectorImpl<uint64_t> &Record, 1778 unsigned Abbrev) { 1779 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1780 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1781 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1782 1783 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1784 Record.clear(); 1785 } 1786 1787 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1788 SmallVectorImpl<uint64_t> &Record, 1789 unsigned Abbrev) { 1790 Record.push_back(N->isDistinct()); 1791 Record.push_back(N->getMacinfoType()); 1792 Record.push_back(N->getLine()); 1793 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1795 1796 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1797 Record.clear(); 1798 } 1799 1800 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1801 SmallVectorImpl<uint64_t> &Record, 1802 unsigned Abbrev) { 1803 Record.push_back(N->isDistinct()); 1804 Record.push_back(N->getMacinfoType()); 1805 Record.push_back(N->getLine()); 1806 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1807 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1808 1809 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1810 Record.clear(); 1811 } 1812 1813 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1814 SmallVectorImpl<uint64_t> &Record, 1815 unsigned Abbrev) { 1816 Record.push_back(N->isDistinct()); 1817 for (auto &I : N->operands()) 1818 Record.push_back(VE.getMetadataOrNullID(I)); 1819 Record.push_back(N->getLineNo()); 1820 1821 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1822 Record.clear(); 1823 } 1824 1825 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1826 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1827 unsigned Abbrev) { 1828 Record.push_back(N->isDistinct()); 1829 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1830 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1831 Record.push_back(N->isDefault()); 1832 1833 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1834 Record.clear(); 1835 } 1836 1837 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1838 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1839 unsigned Abbrev) { 1840 Record.push_back(N->isDistinct()); 1841 Record.push_back(N->getTag()); 1842 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1843 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1844 Record.push_back(N->isDefault()); 1845 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1846 1847 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1848 Record.clear(); 1849 } 1850 1851 void ModuleBitcodeWriter::writeDIGlobalVariable( 1852 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1853 unsigned Abbrev) { 1854 const uint64_t Version = 2 << 1; 1855 Record.push_back((uint64_t)N->isDistinct() | Version); 1856 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1857 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1858 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1859 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1860 Record.push_back(N->getLine()); 1861 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1862 Record.push_back(N->isLocalToUnit()); 1863 Record.push_back(N->isDefinition()); 1864 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1865 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1866 Record.push_back(N->getAlignInBits()); 1867 1868 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1869 Record.clear(); 1870 } 1871 1872 void ModuleBitcodeWriter::writeDILocalVariable( 1873 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1874 unsigned Abbrev) { 1875 // In order to support all possible bitcode formats in BitcodeReader we need 1876 // to distinguish the following cases: 1877 // 1) Record has no artificial tag (Record[1]), 1878 // has no obsolete inlinedAt field (Record[9]). 1879 // In this case Record size will be 8, HasAlignment flag is false. 1880 // 2) Record has artificial tag (Record[1]), 1881 // has no obsolete inlignedAt field (Record[9]). 1882 // In this case Record size will be 9, HasAlignment flag is false. 1883 // 3) Record has both artificial tag (Record[1]) and 1884 // obsolete inlignedAt field (Record[9]). 1885 // In this case Record size will be 10, HasAlignment flag is false. 1886 // 4) Record has neither artificial tag, nor inlignedAt field, but 1887 // HasAlignment flag is true and Record[8] contains alignment value. 1888 const uint64_t HasAlignmentFlag = 1 << 1; 1889 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1890 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1891 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1892 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1893 Record.push_back(N->getLine()); 1894 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1895 Record.push_back(N->getArg()); 1896 Record.push_back(N->getFlags()); 1897 Record.push_back(N->getAlignInBits()); 1898 1899 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1900 Record.clear(); 1901 } 1902 1903 void ModuleBitcodeWriter::writeDILabel( 1904 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1905 unsigned Abbrev) { 1906 Record.push_back((uint64_t)N->isDistinct()); 1907 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1908 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1909 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1910 Record.push_back(N->getLine()); 1911 1912 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1913 Record.clear(); 1914 } 1915 1916 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1917 SmallVectorImpl<uint64_t> &Record, 1918 unsigned Abbrev) { 1919 Record.reserve(N->getElements().size() + 1); 1920 const uint64_t Version = 3 << 1; 1921 Record.push_back((uint64_t)N->isDistinct() | Version); 1922 Record.append(N->elements_begin(), N->elements_end()); 1923 1924 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1925 Record.clear(); 1926 } 1927 1928 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1929 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1930 unsigned Abbrev) { 1931 Record.push_back(N->isDistinct()); 1932 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1933 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1934 1935 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1936 Record.clear(); 1937 } 1938 1939 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1940 SmallVectorImpl<uint64_t> &Record, 1941 unsigned Abbrev) { 1942 Record.push_back(N->isDistinct()); 1943 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1944 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1945 Record.push_back(N->getLine()); 1946 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1947 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1948 Record.push_back(N->getAttributes()); 1949 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1950 1951 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1952 Record.clear(); 1953 } 1954 1955 void ModuleBitcodeWriter::writeDIImportedEntity( 1956 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1957 unsigned Abbrev) { 1958 Record.push_back(N->isDistinct()); 1959 Record.push_back(N->getTag()); 1960 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1961 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1962 Record.push_back(N->getLine()); 1963 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1964 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1965 1966 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1967 Record.clear(); 1968 } 1969 1970 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1971 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1972 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1975 return Stream.EmitAbbrev(std::move(Abbv)); 1976 } 1977 1978 void ModuleBitcodeWriter::writeNamedMetadata( 1979 SmallVectorImpl<uint64_t> &Record) { 1980 if (M.named_metadata_empty()) 1981 return; 1982 1983 unsigned Abbrev = createNamedMetadataAbbrev(); 1984 for (const NamedMDNode &NMD : M.named_metadata()) { 1985 // Write name. 1986 StringRef Str = NMD.getName(); 1987 Record.append(Str.bytes_begin(), Str.bytes_end()); 1988 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1989 Record.clear(); 1990 1991 // Write named metadata operands. 1992 for (const MDNode *N : NMD.operands()) 1993 Record.push_back(VE.getMetadataID(N)); 1994 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1995 Record.clear(); 1996 } 1997 } 1998 1999 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2000 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2001 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2005 return Stream.EmitAbbrev(std::move(Abbv)); 2006 } 2007 2008 /// Write out a record for MDString. 2009 /// 2010 /// All the metadata strings in a metadata block are emitted in a single 2011 /// record. The sizes and strings themselves are shoved into a blob. 2012 void ModuleBitcodeWriter::writeMetadataStrings( 2013 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2014 if (Strings.empty()) 2015 return; 2016 2017 // Start the record with the number of strings. 2018 Record.push_back(bitc::METADATA_STRINGS); 2019 Record.push_back(Strings.size()); 2020 2021 // Emit the sizes of the strings in the blob. 2022 SmallString<256> Blob; 2023 { 2024 BitstreamWriter W(Blob); 2025 for (const Metadata *MD : Strings) 2026 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2027 W.FlushToWord(); 2028 } 2029 2030 // Add the offset to the strings to the record. 2031 Record.push_back(Blob.size()); 2032 2033 // Add the strings to the blob. 2034 for (const Metadata *MD : Strings) 2035 Blob.append(cast<MDString>(MD)->getString()); 2036 2037 // Emit the final record. 2038 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2039 Record.clear(); 2040 } 2041 2042 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2043 enum MetadataAbbrev : unsigned { 2044 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2045 #include "llvm/IR/Metadata.def" 2046 LastPlusOne 2047 }; 2048 2049 void ModuleBitcodeWriter::writeMetadataRecords( 2050 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2051 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2052 if (MDs.empty()) 2053 return; 2054 2055 // Initialize MDNode abbreviations. 2056 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2057 #include "llvm/IR/Metadata.def" 2058 2059 for (const Metadata *MD : MDs) { 2060 if (IndexPos) 2061 IndexPos->push_back(Stream.GetCurrentBitNo()); 2062 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2063 assert(N->isResolved() && "Expected forward references to be resolved"); 2064 2065 switch (N->getMetadataID()) { 2066 default: 2067 llvm_unreachable("Invalid MDNode subclass"); 2068 #define HANDLE_MDNODE_LEAF(CLASS) \ 2069 case Metadata::CLASS##Kind: \ 2070 if (MDAbbrevs) \ 2071 write##CLASS(cast<CLASS>(N), Record, \ 2072 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2073 else \ 2074 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2075 continue; 2076 #include "llvm/IR/Metadata.def" 2077 } 2078 } 2079 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2080 } 2081 } 2082 2083 void ModuleBitcodeWriter::writeModuleMetadata() { 2084 if (!VE.hasMDs() && M.named_metadata_empty()) 2085 return; 2086 2087 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2088 SmallVector<uint64_t, 64> Record; 2089 2090 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2091 // block and load any metadata. 2092 std::vector<unsigned> MDAbbrevs; 2093 2094 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2095 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2096 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2097 createGenericDINodeAbbrev(); 2098 2099 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2100 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2103 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2104 2105 Abbv = std::make_shared<BitCodeAbbrev>(); 2106 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2109 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2110 2111 // Emit MDStrings together upfront. 2112 writeMetadataStrings(VE.getMDStrings(), Record); 2113 2114 // We only emit an index for the metadata record if we have more than a given 2115 // (naive) threshold of metadatas, otherwise it is not worth it. 2116 if (VE.getNonMDStrings().size() > IndexThreshold) { 2117 // Write a placeholder value in for the offset of the metadata index, 2118 // which is written after the records, so that it can include 2119 // the offset of each entry. The placeholder offset will be 2120 // updated after all records are emitted. 2121 uint64_t Vals[] = {0, 0}; 2122 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2123 } 2124 2125 // Compute and save the bit offset to the current position, which will be 2126 // patched when we emit the index later. We can simply subtract the 64-bit 2127 // fixed size from the current bit number to get the location to backpatch. 2128 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2129 2130 // This index will contain the bitpos for each individual record. 2131 std::vector<uint64_t> IndexPos; 2132 IndexPos.reserve(VE.getNonMDStrings().size()); 2133 2134 // Write all the records 2135 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2136 2137 if (VE.getNonMDStrings().size() > IndexThreshold) { 2138 // Now that we have emitted all the records we will emit the index. But 2139 // first 2140 // backpatch the forward reference so that the reader can skip the records 2141 // efficiently. 2142 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2143 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2144 2145 // Delta encode the index. 2146 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2147 for (auto &Elt : IndexPos) { 2148 auto EltDelta = Elt - PreviousValue; 2149 PreviousValue = Elt; 2150 Elt = EltDelta; 2151 } 2152 // Emit the index record. 2153 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2154 IndexPos.clear(); 2155 } 2156 2157 // Write the named metadata now. 2158 writeNamedMetadata(Record); 2159 2160 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2161 SmallVector<uint64_t, 4> Record; 2162 Record.push_back(VE.getValueID(&GO)); 2163 pushGlobalMetadataAttachment(Record, GO); 2164 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2165 }; 2166 for (const Function &F : M) 2167 if (F.isDeclaration() && F.hasMetadata()) 2168 AddDeclAttachedMetadata(F); 2169 // FIXME: Only store metadata for declarations here, and move data for global 2170 // variable definitions to a separate block (PR28134). 2171 for (const GlobalVariable &GV : M.globals()) 2172 if (GV.hasMetadata()) 2173 AddDeclAttachedMetadata(GV); 2174 2175 Stream.ExitBlock(); 2176 } 2177 2178 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2179 if (!VE.hasMDs()) 2180 return; 2181 2182 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2183 SmallVector<uint64_t, 64> Record; 2184 writeMetadataStrings(VE.getMDStrings(), Record); 2185 writeMetadataRecords(VE.getNonMDStrings(), Record); 2186 Stream.ExitBlock(); 2187 } 2188 2189 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2190 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2191 // [n x [id, mdnode]] 2192 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2193 GO.getAllMetadata(MDs); 2194 for (const auto &I : MDs) { 2195 Record.push_back(I.first); 2196 Record.push_back(VE.getMetadataID(I.second)); 2197 } 2198 } 2199 2200 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2201 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2202 2203 SmallVector<uint64_t, 64> Record; 2204 2205 if (F.hasMetadata()) { 2206 pushGlobalMetadataAttachment(Record, F); 2207 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2208 Record.clear(); 2209 } 2210 2211 // Write metadata attachments 2212 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2213 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2214 for (const BasicBlock &BB : F) 2215 for (const Instruction &I : BB) { 2216 MDs.clear(); 2217 I.getAllMetadataOtherThanDebugLoc(MDs); 2218 2219 // If no metadata, ignore instruction. 2220 if (MDs.empty()) continue; 2221 2222 Record.push_back(VE.getInstructionID(&I)); 2223 2224 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2225 Record.push_back(MDs[i].first); 2226 Record.push_back(VE.getMetadataID(MDs[i].second)); 2227 } 2228 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2229 Record.clear(); 2230 } 2231 2232 Stream.ExitBlock(); 2233 } 2234 2235 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2236 SmallVector<uint64_t, 64> Record; 2237 2238 // Write metadata kinds 2239 // METADATA_KIND - [n x [id, name]] 2240 SmallVector<StringRef, 8> Names; 2241 M.getMDKindNames(Names); 2242 2243 if (Names.empty()) return; 2244 2245 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2246 2247 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2248 Record.push_back(MDKindID); 2249 StringRef KName = Names[MDKindID]; 2250 Record.append(KName.begin(), KName.end()); 2251 2252 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2253 Record.clear(); 2254 } 2255 2256 Stream.ExitBlock(); 2257 } 2258 2259 void ModuleBitcodeWriter::writeOperandBundleTags() { 2260 // Write metadata kinds 2261 // 2262 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2263 // 2264 // OPERAND_BUNDLE_TAG - [strchr x N] 2265 2266 SmallVector<StringRef, 8> Tags; 2267 M.getOperandBundleTags(Tags); 2268 2269 if (Tags.empty()) 2270 return; 2271 2272 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2273 2274 SmallVector<uint64_t, 64> Record; 2275 2276 for (auto Tag : Tags) { 2277 Record.append(Tag.begin(), Tag.end()); 2278 2279 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2280 Record.clear(); 2281 } 2282 2283 Stream.ExitBlock(); 2284 } 2285 2286 void ModuleBitcodeWriter::writeSyncScopeNames() { 2287 SmallVector<StringRef, 8> SSNs; 2288 M.getContext().getSyncScopeNames(SSNs); 2289 if (SSNs.empty()) 2290 return; 2291 2292 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2293 2294 SmallVector<uint64_t, 64> Record; 2295 for (auto SSN : SSNs) { 2296 Record.append(SSN.begin(), SSN.end()); 2297 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2298 Record.clear(); 2299 } 2300 2301 Stream.ExitBlock(); 2302 } 2303 2304 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2305 bool isGlobal) { 2306 if (FirstVal == LastVal) return; 2307 2308 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2309 2310 unsigned AggregateAbbrev = 0; 2311 unsigned String8Abbrev = 0; 2312 unsigned CString7Abbrev = 0; 2313 unsigned CString6Abbrev = 0; 2314 // If this is a constant pool for the module, emit module-specific abbrevs. 2315 if (isGlobal) { 2316 // Abbrev for CST_CODE_AGGREGATE. 2317 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2318 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2321 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2322 2323 // Abbrev for CST_CODE_STRING. 2324 Abbv = std::make_shared<BitCodeAbbrev>(); 2325 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2328 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2329 // Abbrev for CST_CODE_CSTRING. 2330 Abbv = std::make_shared<BitCodeAbbrev>(); 2331 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2334 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2335 // Abbrev for CST_CODE_CSTRING. 2336 Abbv = std::make_shared<BitCodeAbbrev>(); 2337 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2340 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2341 } 2342 2343 SmallVector<uint64_t, 64> Record; 2344 2345 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2346 Type *LastTy = nullptr; 2347 for (unsigned i = FirstVal; i != LastVal; ++i) { 2348 const Value *V = Vals[i].first; 2349 // If we need to switch types, do so now. 2350 if (V->getType() != LastTy) { 2351 LastTy = V->getType(); 2352 Record.push_back(VE.getTypeID(LastTy)); 2353 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2354 CONSTANTS_SETTYPE_ABBREV); 2355 Record.clear(); 2356 } 2357 2358 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2359 Record.push_back(unsigned(IA->hasSideEffects()) | 2360 unsigned(IA->isAlignStack()) << 1 | 2361 unsigned(IA->getDialect()&1) << 2); 2362 2363 // Add the asm string. 2364 const std::string &AsmStr = IA->getAsmString(); 2365 Record.push_back(AsmStr.size()); 2366 Record.append(AsmStr.begin(), AsmStr.end()); 2367 2368 // Add the constraint string. 2369 const std::string &ConstraintStr = IA->getConstraintString(); 2370 Record.push_back(ConstraintStr.size()); 2371 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2372 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2373 Record.clear(); 2374 continue; 2375 } 2376 const Constant *C = cast<Constant>(V); 2377 unsigned Code = -1U; 2378 unsigned AbbrevToUse = 0; 2379 if (C->isNullValue()) { 2380 Code = bitc::CST_CODE_NULL; 2381 } else if (isa<UndefValue>(C)) { 2382 Code = bitc::CST_CODE_UNDEF; 2383 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2384 if (IV->getBitWidth() <= 64) { 2385 uint64_t V = IV->getSExtValue(); 2386 emitSignedInt64(Record, V); 2387 Code = bitc::CST_CODE_INTEGER; 2388 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2389 } else { // Wide integers, > 64 bits in size. 2390 emitWideAPInt(Record, IV->getValue()); 2391 Code = bitc::CST_CODE_WIDE_INTEGER; 2392 } 2393 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2394 Code = bitc::CST_CODE_FLOAT; 2395 Type *Ty = CFP->getType(); 2396 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2397 Ty->isDoubleTy()) { 2398 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2399 } else if (Ty->isX86_FP80Ty()) { 2400 // api needed to prevent premature destruction 2401 // bits are not in the same order as a normal i80 APInt, compensate. 2402 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2403 const uint64_t *p = api.getRawData(); 2404 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2405 Record.push_back(p[0] & 0xffffLL); 2406 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2407 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2408 const uint64_t *p = api.getRawData(); 2409 Record.push_back(p[0]); 2410 Record.push_back(p[1]); 2411 } else { 2412 assert(0 && "Unknown FP type!"); 2413 } 2414 } else if (isa<ConstantDataSequential>(C) && 2415 cast<ConstantDataSequential>(C)->isString()) { 2416 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2417 // Emit constant strings specially. 2418 unsigned NumElts = Str->getNumElements(); 2419 // If this is a null-terminated string, use the denser CSTRING encoding. 2420 if (Str->isCString()) { 2421 Code = bitc::CST_CODE_CSTRING; 2422 --NumElts; // Don't encode the null, which isn't allowed by char6. 2423 } else { 2424 Code = bitc::CST_CODE_STRING; 2425 AbbrevToUse = String8Abbrev; 2426 } 2427 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2428 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2429 for (unsigned i = 0; i != NumElts; ++i) { 2430 unsigned char V = Str->getElementAsInteger(i); 2431 Record.push_back(V); 2432 isCStr7 &= (V & 128) == 0; 2433 if (isCStrChar6) 2434 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2435 } 2436 2437 if (isCStrChar6) 2438 AbbrevToUse = CString6Abbrev; 2439 else if (isCStr7) 2440 AbbrevToUse = CString7Abbrev; 2441 } else if (const ConstantDataSequential *CDS = 2442 dyn_cast<ConstantDataSequential>(C)) { 2443 Code = bitc::CST_CODE_DATA; 2444 Type *EltTy = CDS->getElementType(); 2445 if (isa<IntegerType>(EltTy)) { 2446 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2447 Record.push_back(CDS->getElementAsInteger(i)); 2448 } else { 2449 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2450 Record.push_back( 2451 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2452 } 2453 } else if (isa<ConstantAggregate>(C)) { 2454 Code = bitc::CST_CODE_AGGREGATE; 2455 for (const Value *Op : C->operands()) 2456 Record.push_back(VE.getValueID(Op)); 2457 AbbrevToUse = AggregateAbbrev; 2458 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2459 switch (CE->getOpcode()) { 2460 default: 2461 if (Instruction::isCast(CE->getOpcode())) { 2462 Code = bitc::CST_CODE_CE_CAST; 2463 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2464 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2465 Record.push_back(VE.getValueID(C->getOperand(0))); 2466 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2467 } else { 2468 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2469 Code = bitc::CST_CODE_CE_BINOP; 2470 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2471 Record.push_back(VE.getValueID(C->getOperand(0))); 2472 Record.push_back(VE.getValueID(C->getOperand(1))); 2473 uint64_t Flags = getOptimizationFlags(CE); 2474 if (Flags != 0) 2475 Record.push_back(Flags); 2476 } 2477 break; 2478 case Instruction::FNeg: { 2479 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2480 Code = bitc::CST_CODE_CE_UNOP; 2481 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2482 Record.push_back(VE.getValueID(C->getOperand(0))); 2483 uint64_t Flags = getOptimizationFlags(CE); 2484 if (Flags != 0) 2485 Record.push_back(Flags); 2486 break; 2487 } 2488 case Instruction::GetElementPtr: { 2489 Code = bitc::CST_CODE_CE_GEP; 2490 const auto *GO = cast<GEPOperator>(C); 2491 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2492 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2493 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2494 Record.push_back((*Idx << 1) | GO->isInBounds()); 2495 } else if (GO->isInBounds()) 2496 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2497 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2498 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2499 Record.push_back(VE.getValueID(C->getOperand(i))); 2500 } 2501 break; 2502 } 2503 case Instruction::Select: 2504 Code = bitc::CST_CODE_CE_SELECT; 2505 Record.push_back(VE.getValueID(C->getOperand(0))); 2506 Record.push_back(VE.getValueID(C->getOperand(1))); 2507 Record.push_back(VE.getValueID(C->getOperand(2))); 2508 break; 2509 case Instruction::ExtractElement: 2510 Code = bitc::CST_CODE_CE_EXTRACTELT; 2511 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2512 Record.push_back(VE.getValueID(C->getOperand(0))); 2513 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2514 Record.push_back(VE.getValueID(C->getOperand(1))); 2515 break; 2516 case Instruction::InsertElement: 2517 Code = bitc::CST_CODE_CE_INSERTELT; 2518 Record.push_back(VE.getValueID(C->getOperand(0))); 2519 Record.push_back(VE.getValueID(C->getOperand(1))); 2520 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2521 Record.push_back(VE.getValueID(C->getOperand(2))); 2522 break; 2523 case Instruction::ShuffleVector: 2524 // If the return type and argument types are the same, this is a 2525 // standard shufflevector instruction. If the types are different, 2526 // then the shuffle is widening or truncating the input vectors, and 2527 // the argument type must also be encoded. 2528 if (C->getType() == C->getOperand(0)->getType()) { 2529 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2530 } else { 2531 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2532 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2533 } 2534 Record.push_back(VE.getValueID(C->getOperand(0))); 2535 Record.push_back(VE.getValueID(C->getOperand(1))); 2536 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2537 break; 2538 case Instruction::ICmp: 2539 case Instruction::FCmp: 2540 Code = bitc::CST_CODE_CE_CMP; 2541 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2542 Record.push_back(VE.getValueID(C->getOperand(0))); 2543 Record.push_back(VE.getValueID(C->getOperand(1))); 2544 Record.push_back(CE->getPredicate()); 2545 break; 2546 } 2547 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2548 Code = bitc::CST_CODE_BLOCKADDRESS; 2549 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2550 Record.push_back(VE.getValueID(BA->getFunction())); 2551 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2552 } else { 2553 #ifndef NDEBUG 2554 C->dump(); 2555 #endif 2556 llvm_unreachable("Unknown constant!"); 2557 } 2558 Stream.EmitRecord(Code, Record, AbbrevToUse); 2559 Record.clear(); 2560 } 2561 2562 Stream.ExitBlock(); 2563 } 2564 2565 void ModuleBitcodeWriter::writeModuleConstants() { 2566 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2567 2568 // Find the first constant to emit, which is the first non-globalvalue value. 2569 // We know globalvalues have been emitted by WriteModuleInfo. 2570 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2571 if (!isa<GlobalValue>(Vals[i].first)) { 2572 writeConstants(i, Vals.size(), true); 2573 return; 2574 } 2575 } 2576 } 2577 2578 /// pushValueAndType - The file has to encode both the value and type id for 2579 /// many values, because we need to know what type to create for forward 2580 /// references. However, most operands are not forward references, so this type 2581 /// field is not needed. 2582 /// 2583 /// This function adds V's value ID to Vals. If the value ID is higher than the 2584 /// instruction ID, then it is a forward reference, and it also includes the 2585 /// type ID. The value ID that is written is encoded relative to the InstID. 2586 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2587 SmallVectorImpl<unsigned> &Vals) { 2588 unsigned ValID = VE.getValueID(V); 2589 // Make encoding relative to the InstID. 2590 Vals.push_back(InstID - ValID); 2591 if (ValID >= InstID) { 2592 Vals.push_back(VE.getTypeID(V->getType())); 2593 return true; 2594 } 2595 return false; 2596 } 2597 2598 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2599 unsigned InstID) { 2600 SmallVector<unsigned, 64> Record; 2601 LLVMContext &C = CS.getContext(); 2602 2603 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2604 const auto &Bundle = CS.getOperandBundleAt(i); 2605 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2606 2607 for (auto &Input : Bundle.Inputs) 2608 pushValueAndType(Input, InstID, Record); 2609 2610 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2611 Record.clear(); 2612 } 2613 } 2614 2615 /// pushValue - Like pushValueAndType, but where the type of the value is 2616 /// omitted (perhaps it was already encoded in an earlier operand). 2617 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2618 SmallVectorImpl<unsigned> &Vals) { 2619 unsigned ValID = VE.getValueID(V); 2620 Vals.push_back(InstID - ValID); 2621 } 2622 2623 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2624 SmallVectorImpl<uint64_t> &Vals) { 2625 unsigned ValID = VE.getValueID(V); 2626 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2627 emitSignedInt64(Vals, diff); 2628 } 2629 2630 /// WriteInstruction - Emit an instruction to the specified stream. 2631 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2632 unsigned InstID, 2633 SmallVectorImpl<unsigned> &Vals) { 2634 unsigned Code = 0; 2635 unsigned AbbrevToUse = 0; 2636 VE.setInstructionID(&I); 2637 switch (I.getOpcode()) { 2638 default: 2639 if (Instruction::isCast(I.getOpcode())) { 2640 Code = bitc::FUNC_CODE_INST_CAST; 2641 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2642 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2643 Vals.push_back(VE.getTypeID(I.getType())); 2644 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2645 } else { 2646 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2647 Code = bitc::FUNC_CODE_INST_BINOP; 2648 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2649 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2650 pushValue(I.getOperand(1), InstID, Vals); 2651 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2652 uint64_t Flags = getOptimizationFlags(&I); 2653 if (Flags != 0) { 2654 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2655 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2656 Vals.push_back(Flags); 2657 } 2658 } 2659 break; 2660 case Instruction::FNeg: { 2661 Code = bitc::FUNC_CODE_INST_UNOP; 2662 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2663 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2664 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2665 uint64_t Flags = getOptimizationFlags(&I); 2666 if (Flags != 0) { 2667 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2668 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2669 Vals.push_back(Flags); 2670 } 2671 break; 2672 } 2673 case Instruction::GetElementPtr: { 2674 Code = bitc::FUNC_CODE_INST_GEP; 2675 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2676 auto &GEPInst = cast<GetElementPtrInst>(I); 2677 Vals.push_back(GEPInst.isInBounds()); 2678 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2679 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2680 pushValueAndType(I.getOperand(i), InstID, Vals); 2681 break; 2682 } 2683 case Instruction::ExtractValue: { 2684 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2685 pushValueAndType(I.getOperand(0), InstID, Vals); 2686 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2687 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2688 break; 2689 } 2690 case Instruction::InsertValue: { 2691 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2692 pushValueAndType(I.getOperand(0), InstID, Vals); 2693 pushValueAndType(I.getOperand(1), InstID, Vals); 2694 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2695 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2696 break; 2697 } 2698 case Instruction::Select: { 2699 Code = bitc::FUNC_CODE_INST_VSELECT; 2700 pushValueAndType(I.getOperand(1), InstID, Vals); 2701 pushValue(I.getOperand(2), InstID, Vals); 2702 pushValueAndType(I.getOperand(0), InstID, Vals); 2703 uint64_t Flags = getOptimizationFlags(&I); 2704 if (Flags != 0) 2705 Vals.push_back(Flags); 2706 break; 2707 } 2708 case Instruction::ExtractElement: 2709 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2710 pushValueAndType(I.getOperand(0), InstID, Vals); 2711 pushValueAndType(I.getOperand(1), InstID, Vals); 2712 break; 2713 case Instruction::InsertElement: 2714 Code = bitc::FUNC_CODE_INST_INSERTELT; 2715 pushValueAndType(I.getOperand(0), InstID, Vals); 2716 pushValue(I.getOperand(1), InstID, Vals); 2717 pushValueAndType(I.getOperand(2), InstID, Vals); 2718 break; 2719 case Instruction::ShuffleVector: 2720 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2721 pushValueAndType(I.getOperand(0), InstID, Vals); 2722 pushValue(I.getOperand(1), InstID, Vals); 2723 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2724 Vals); 2725 break; 2726 case Instruction::ICmp: 2727 case Instruction::FCmp: { 2728 // compare returning Int1Ty or vector of Int1Ty 2729 Code = bitc::FUNC_CODE_INST_CMP2; 2730 pushValueAndType(I.getOperand(0), InstID, Vals); 2731 pushValue(I.getOperand(1), InstID, Vals); 2732 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2733 uint64_t Flags = getOptimizationFlags(&I); 2734 if (Flags != 0) 2735 Vals.push_back(Flags); 2736 break; 2737 } 2738 2739 case Instruction::Ret: 2740 { 2741 Code = bitc::FUNC_CODE_INST_RET; 2742 unsigned NumOperands = I.getNumOperands(); 2743 if (NumOperands == 0) 2744 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2745 else if (NumOperands == 1) { 2746 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2747 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2748 } else { 2749 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2750 pushValueAndType(I.getOperand(i), InstID, Vals); 2751 } 2752 } 2753 break; 2754 case Instruction::Br: 2755 { 2756 Code = bitc::FUNC_CODE_INST_BR; 2757 const BranchInst &II = cast<BranchInst>(I); 2758 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2759 if (II.isConditional()) { 2760 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2761 pushValue(II.getCondition(), InstID, Vals); 2762 } 2763 } 2764 break; 2765 case Instruction::Switch: 2766 { 2767 Code = bitc::FUNC_CODE_INST_SWITCH; 2768 const SwitchInst &SI = cast<SwitchInst>(I); 2769 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2770 pushValue(SI.getCondition(), InstID, Vals); 2771 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2772 for (auto Case : SI.cases()) { 2773 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2774 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2775 } 2776 } 2777 break; 2778 case Instruction::IndirectBr: 2779 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2780 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2781 // Encode the address operand as relative, but not the basic blocks. 2782 pushValue(I.getOperand(0), InstID, Vals); 2783 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2784 Vals.push_back(VE.getValueID(I.getOperand(i))); 2785 break; 2786 2787 case Instruction::Invoke: { 2788 const InvokeInst *II = cast<InvokeInst>(&I); 2789 const Value *Callee = II->getCalledOperand(); 2790 FunctionType *FTy = II->getFunctionType(); 2791 2792 if (II->hasOperandBundles()) 2793 writeOperandBundles(*II, InstID); 2794 2795 Code = bitc::FUNC_CODE_INST_INVOKE; 2796 2797 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2798 Vals.push_back(II->getCallingConv() | 1 << 13); 2799 Vals.push_back(VE.getValueID(II->getNormalDest())); 2800 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2801 Vals.push_back(VE.getTypeID(FTy)); 2802 pushValueAndType(Callee, InstID, Vals); 2803 2804 // Emit value #'s for the fixed parameters. 2805 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2806 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2807 2808 // Emit type/value pairs for varargs params. 2809 if (FTy->isVarArg()) { 2810 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2811 i != e; ++i) 2812 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2813 } 2814 break; 2815 } 2816 case Instruction::Resume: 2817 Code = bitc::FUNC_CODE_INST_RESUME; 2818 pushValueAndType(I.getOperand(0), InstID, Vals); 2819 break; 2820 case Instruction::CleanupRet: { 2821 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2822 const auto &CRI = cast<CleanupReturnInst>(I); 2823 pushValue(CRI.getCleanupPad(), InstID, Vals); 2824 if (CRI.hasUnwindDest()) 2825 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2826 break; 2827 } 2828 case Instruction::CatchRet: { 2829 Code = bitc::FUNC_CODE_INST_CATCHRET; 2830 const auto &CRI = cast<CatchReturnInst>(I); 2831 pushValue(CRI.getCatchPad(), InstID, Vals); 2832 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2833 break; 2834 } 2835 case Instruction::CleanupPad: 2836 case Instruction::CatchPad: { 2837 const auto &FuncletPad = cast<FuncletPadInst>(I); 2838 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2839 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2840 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2841 2842 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2843 Vals.push_back(NumArgOperands); 2844 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2845 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2846 break; 2847 } 2848 case Instruction::CatchSwitch: { 2849 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2850 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2851 2852 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2853 2854 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2855 Vals.push_back(NumHandlers); 2856 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2857 Vals.push_back(VE.getValueID(CatchPadBB)); 2858 2859 if (CatchSwitch.hasUnwindDest()) 2860 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2861 break; 2862 } 2863 case Instruction::CallBr: { 2864 const CallBrInst *CBI = cast<CallBrInst>(&I); 2865 const Value *Callee = CBI->getCalledOperand(); 2866 FunctionType *FTy = CBI->getFunctionType(); 2867 2868 if (CBI->hasOperandBundles()) 2869 writeOperandBundles(*CBI, InstID); 2870 2871 Code = bitc::FUNC_CODE_INST_CALLBR; 2872 2873 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2874 2875 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2876 1 << bitc::CALL_EXPLICIT_TYPE); 2877 2878 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2879 Vals.push_back(CBI->getNumIndirectDests()); 2880 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2881 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2882 2883 Vals.push_back(VE.getTypeID(FTy)); 2884 pushValueAndType(Callee, InstID, Vals); 2885 2886 // Emit value #'s for the fixed parameters. 2887 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2888 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2889 2890 // Emit type/value pairs for varargs params. 2891 if (FTy->isVarArg()) { 2892 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2893 i != e; ++i) 2894 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2895 } 2896 break; 2897 } 2898 case Instruction::Unreachable: 2899 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2900 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2901 break; 2902 2903 case Instruction::PHI: { 2904 const PHINode &PN = cast<PHINode>(I); 2905 Code = bitc::FUNC_CODE_INST_PHI; 2906 // With the newer instruction encoding, forward references could give 2907 // negative valued IDs. This is most common for PHIs, so we use 2908 // signed VBRs. 2909 SmallVector<uint64_t, 128> Vals64; 2910 Vals64.push_back(VE.getTypeID(PN.getType())); 2911 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2912 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2913 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2914 } 2915 2916 uint64_t Flags = getOptimizationFlags(&I); 2917 if (Flags != 0) 2918 Vals64.push_back(Flags); 2919 2920 // Emit a Vals64 vector and exit. 2921 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2922 Vals64.clear(); 2923 return; 2924 } 2925 2926 case Instruction::LandingPad: { 2927 const LandingPadInst &LP = cast<LandingPadInst>(I); 2928 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2929 Vals.push_back(VE.getTypeID(LP.getType())); 2930 Vals.push_back(LP.isCleanup()); 2931 Vals.push_back(LP.getNumClauses()); 2932 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2933 if (LP.isCatch(I)) 2934 Vals.push_back(LandingPadInst::Catch); 2935 else 2936 Vals.push_back(LandingPadInst::Filter); 2937 pushValueAndType(LP.getClause(I), InstID, Vals); 2938 } 2939 break; 2940 } 2941 2942 case Instruction::Alloca: { 2943 Code = bitc::FUNC_CODE_INST_ALLOCA; 2944 const AllocaInst &AI = cast<AllocaInst>(I); 2945 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2946 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2947 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2948 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2949 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2950 "not enough bits for maximum alignment"); 2951 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2952 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2953 AlignRecord |= 1 << 6; 2954 AlignRecord |= AI.isSwiftError() << 7; 2955 Vals.push_back(AlignRecord); 2956 break; 2957 } 2958 2959 case Instruction::Load: 2960 if (cast<LoadInst>(I).isAtomic()) { 2961 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2962 pushValueAndType(I.getOperand(0), InstID, Vals); 2963 } else { 2964 Code = bitc::FUNC_CODE_INST_LOAD; 2965 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2966 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2967 } 2968 Vals.push_back(VE.getTypeID(I.getType())); 2969 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2970 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2971 if (cast<LoadInst>(I).isAtomic()) { 2972 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2973 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2974 } 2975 break; 2976 case Instruction::Store: 2977 if (cast<StoreInst>(I).isAtomic()) 2978 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2979 else 2980 Code = bitc::FUNC_CODE_INST_STORE; 2981 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2982 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2983 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2984 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2985 if (cast<StoreInst>(I).isAtomic()) { 2986 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2987 Vals.push_back( 2988 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2989 } 2990 break; 2991 case Instruction::AtomicCmpXchg: 2992 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2993 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2994 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2995 pushValue(I.getOperand(2), InstID, Vals); // newval. 2996 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2997 Vals.push_back( 2998 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2999 Vals.push_back( 3000 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3001 Vals.push_back( 3002 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3003 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3004 break; 3005 case Instruction::AtomicRMW: 3006 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3007 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3008 pushValue(I.getOperand(1), InstID, Vals); // val. 3009 Vals.push_back( 3010 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3011 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3012 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3013 Vals.push_back( 3014 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3015 break; 3016 case Instruction::Fence: 3017 Code = bitc::FUNC_CODE_INST_FENCE; 3018 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3019 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3020 break; 3021 case Instruction::Call: { 3022 const CallInst &CI = cast<CallInst>(I); 3023 FunctionType *FTy = CI.getFunctionType(); 3024 3025 if (CI.hasOperandBundles()) 3026 writeOperandBundles(CI, InstID); 3027 3028 Code = bitc::FUNC_CODE_INST_CALL; 3029 3030 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3031 3032 unsigned Flags = getOptimizationFlags(&I); 3033 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3034 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3035 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3036 1 << bitc::CALL_EXPLICIT_TYPE | 3037 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3038 unsigned(Flags != 0) << bitc::CALL_FMF); 3039 if (Flags != 0) 3040 Vals.push_back(Flags); 3041 3042 Vals.push_back(VE.getTypeID(FTy)); 3043 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3044 3045 // Emit value #'s for the fixed parameters. 3046 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3047 // Check for labels (can happen with asm labels). 3048 if (FTy->getParamType(i)->isLabelTy()) 3049 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3050 else 3051 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3052 } 3053 3054 // Emit type/value pairs for varargs params. 3055 if (FTy->isVarArg()) { 3056 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3057 i != e; ++i) 3058 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3059 } 3060 break; 3061 } 3062 case Instruction::VAArg: 3063 Code = bitc::FUNC_CODE_INST_VAARG; 3064 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3065 pushValue(I.getOperand(0), InstID, Vals); // valist. 3066 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3067 break; 3068 case Instruction::Freeze: 3069 Code = bitc::FUNC_CODE_INST_FREEZE; 3070 pushValueAndType(I.getOperand(0), InstID, Vals); 3071 break; 3072 } 3073 3074 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3075 Vals.clear(); 3076 } 3077 3078 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3079 /// to allow clients to efficiently find the function body. 3080 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3081 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3082 // Get the offset of the VST we are writing, and backpatch it into 3083 // the VST forward declaration record. 3084 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3085 // The BitcodeStartBit was the stream offset of the identification block. 3086 VSTOffset -= bitcodeStartBit(); 3087 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3088 // Note that we add 1 here because the offset is relative to one word 3089 // before the start of the identification block, which was historically 3090 // always the start of the regular bitcode header. 3091 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3092 3093 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3094 3095 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3096 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3099 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3100 3101 for (const Function &F : M) { 3102 uint64_t Record[2]; 3103 3104 if (F.isDeclaration()) 3105 continue; 3106 3107 Record[0] = VE.getValueID(&F); 3108 3109 // Save the word offset of the function (from the start of the 3110 // actual bitcode written to the stream). 3111 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3112 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3113 // Note that we add 1 here because the offset is relative to one word 3114 // before the start of the identification block, which was historically 3115 // always the start of the regular bitcode header. 3116 Record[1] = BitcodeIndex / 32 + 1; 3117 3118 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3119 } 3120 3121 Stream.ExitBlock(); 3122 } 3123 3124 /// Emit names for arguments, instructions and basic blocks in a function. 3125 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3126 const ValueSymbolTable &VST) { 3127 if (VST.empty()) 3128 return; 3129 3130 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3131 3132 // FIXME: Set up the abbrev, we know how many values there are! 3133 // FIXME: We know if the type names can use 7-bit ascii. 3134 SmallVector<uint64_t, 64> NameVals; 3135 3136 for (const ValueName &Name : VST) { 3137 // Figure out the encoding to use for the name. 3138 StringEncoding Bits = getStringEncoding(Name.getKey()); 3139 3140 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3141 NameVals.push_back(VE.getValueID(Name.getValue())); 3142 3143 // VST_CODE_ENTRY: [valueid, namechar x N] 3144 // VST_CODE_BBENTRY: [bbid, namechar x N] 3145 unsigned Code; 3146 if (isa<BasicBlock>(Name.getValue())) { 3147 Code = bitc::VST_CODE_BBENTRY; 3148 if (Bits == SE_Char6) 3149 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3150 } else { 3151 Code = bitc::VST_CODE_ENTRY; 3152 if (Bits == SE_Char6) 3153 AbbrevToUse = VST_ENTRY_6_ABBREV; 3154 else if (Bits == SE_Fixed7) 3155 AbbrevToUse = VST_ENTRY_7_ABBREV; 3156 } 3157 3158 for (const auto P : Name.getKey()) 3159 NameVals.push_back((unsigned char)P); 3160 3161 // Emit the finished record. 3162 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3163 NameVals.clear(); 3164 } 3165 3166 Stream.ExitBlock(); 3167 } 3168 3169 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3170 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3171 unsigned Code; 3172 if (isa<BasicBlock>(Order.V)) 3173 Code = bitc::USELIST_CODE_BB; 3174 else 3175 Code = bitc::USELIST_CODE_DEFAULT; 3176 3177 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3178 Record.push_back(VE.getValueID(Order.V)); 3179 Stream.EmitRecord(Code, Record); 3180 } 3181 3182 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3183 assert(VE.shouldPreserveUseListOrder() && 3184 "Expected to be preserving use-list order"); 3185 3186 auto hasMore = [&]() { 3187 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3188 }; 3189 if (!hasMore()) 3190 // Nothing to do. 3191 return; 3192 3193 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3194 while (hasMore()) { 3195 writeUseList(std::move(VE.UseListOrders.back())); 3196 VE.UseListOrders.pop_back(); 3197 } 3198 Stream.ExitBlock(); 3199 } 3200 3201 /// Emit a function body to the module stream. 3202 void ModuleBitcodeWriter::writeFunction( 3203 const Function &F, 3204 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3205 // Save the bitcode index of the start of this function block for recording 3206 // in the VST. 3207 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3208 3209 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3210 VE.incorporateFunction(F); 3211 3212 SmallVector<unsigned, 64> Vals; 3213 3214 // Emit the number of basic blocks, so the reader can create them ahead of 3215 // time. 3216 Vals.push_back(VE.getBasicBlocks().size()); 3217 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3218 Vals.clear(); 3219 3220 // If there are function-local constants, emit them now. 3221 unsigned CstStart, CstEnd; 3222 VE.getFunctionConstantRange(CstStart, CstEnd); 3223 writeConstants(CstStart, CstEnd, false); 3224 3225 // If there is function-local metadata, emit it now. 3226 writeFunctionMetadata(F); 3227 3228 // Keep a running idea of what the instruction ID is. 3229 unsigned InstID = CstEnd; 3230 3231 bool NeedsMetadataAttachment = F.hasMetadata(); 3232 3233 DILocation *LastDL = nullptr; 3234 // Finally, emit all the instructions, in order. 3235 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3236 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3237 I != E; ++I) { 3238 writeInstruction(*I, InstID, Vals); 3239 3240 if (!I->getType()->isVoidTy()) 3241 ++InstID; 3242 3243 // If the instruction has metadata, write a metadata attachment later. 3244 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3245 3246 // If the instruction has a debug location, emit it. 3247 DILocation *DL = I->getDebugLoc(); 3248 if (!DL) 3249 continue; 3250 3251 if (DL == LastDL) { 3252 // Just repeat the same debug loc as last time. 3253 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3254 continue; 3255 } 3256 3257 Vals.push_back(DL->getLine()); 3258 Vals.push_back(DL->getColumn()); 3259 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3260 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3261 Vals.push_back(DL->isImplicitCode()); 3262 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3263 Vals.clear(); 3264 3265 LastDL = DL; 3266 } 3267 3268 // Emit names for all the instructions etc. 3269 if (auto *Symtab = F.getValueSymbolTable()) 3270 writeFunctionLevelValueSymbolTable(*Symtab); 3271 3272 if (NeedsMetadataAttachment) 3273 writeFunctionMetadataAttachment(F); 3274 if (VE.shouldPreserveUseListOrder()) 3275 writeUseListBlock(&F); 3276 VE.purgeFunction(); 3277 Stream.ExitBlock(); 3278 } 3279 3280 // Emit blockinfo, which defines the standard abbreviations etc. 3281 void ModuleBitcodeWriter::writeBlockInfo() { 3282 // We only want to emit block info records for blocks that have multiple 3283 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3284 // Other blocks can define their abbrevs inline. 3285 Stream.EnterBlockInfoBlock(); 3286 3287 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3288 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3293 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3294 VST_ENTRY_8_ABBREV) 3295 llvm_unreachable("Unexpected abbrev ordering!"); 3296 } 3297 3298 { // 7-bit fixed width VST_CODE_ENTRY strings. 3299 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3300 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3304 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3305 VST_ENTRY_7_ABBREV) 3306 llvm_unreachable("Unexpected abbrev ordering!"); 3307 } 3308 { // 6-bit char6 VST_CODE_ENTRY strings. 3309 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3310 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3314 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3315 VST_ENTRY_6_ABBREV) 3316 llvm_unreachable("Unexpected abbrev ordering!"); 3317 } 3318 { // 6-bit char6 VST_CODE_BBENTRY strings. 3319 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3320 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3324 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3325 VST_BBENTRY_6_ABBREV) 3326 llvm_unreachable("Unexpected abbrev ordering!"); 3327 } 3328 3329 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3330 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3331 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3333 VE.computeBitsRequiredForTypeIndicies())); 3334 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3335 CONSTANTS_SETTYPE_ABBREV) 3336 llvm_unreachable("Unexpected abbrev ordering!"); 3337 } 3338 3339 { // INTEGER abbrev for CONSTANTS_BLOCK. 3340 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3341 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3343 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3344 CONSTANTS_INTEGER_ABBREV) 3345 llvm_unreachable("Unexpected abbrev ordering!"); 3346 } 3347 3348 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3349 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3350 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3353 VE.computeBitsRequiredForTypeIndicies())); 3354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3355 3356 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3357 CONSTANTS_CE_CAST_Abbrev) 3358 llvm_unreachable("Unexpected abbrev ordering!"); 3359 } 3360 { // NULL abbrev for CONSTANTS_BLOCK. 3361 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3362 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3363 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3364 CONSTANTS_NULL_Abbrev) 3365 llvm_unreachable("Unexpected abbrev ordering!"); 3366 } 3367 3368 // FIXME: This should only use space for first class types! 3369 3370 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3371 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3372 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3375 VE.computeBitsRequiredForTypeIndicies())); 3376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3378 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3379 FUNCTION_INST_LOAD_ABBREV) 3380 llvm_unreachable("Unexpected abbrev ordering!"); 3381 } 3382 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3383 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3384 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3387 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3388 FUNCTION_INST_UNOP_ABBREV) 3389 llvm_unreachable("Unexpected abbrev ordering!"); 3390 } 3391 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3392 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3393 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3397 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3398 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3399 llvm_unreachable("Unexpected abbrev ordering!"); 3400 } 3401 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3402 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3403 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3407 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3408 FUNCTION_INST_BINOP_ABBREV) 3409 llvm_unreachable("Unexpected abbrev ordering!"); 3410 } 3411 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3412 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3413 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3418 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3419 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3420 llvm_unreachable("Unexpected abbrev ordering!"); 3421 } 3422 { // INST_CAST abbrev for FUNCTION_BLOCK. 3423 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3424 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3427 VE.computeBitsRequiredForTypeIndicies())); 3428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3429 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3430 FUNCTION_INST_CAST_ABBREV) 3431 llvm_unreachable("Unexpected abbrev ordering!"); 3432 } 3433 3434 { // INST_RET abbrev for FUNCTION_BLOCK. 3435 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3436 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3437 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3438 FUNCTION_INST_RET_VOID_ABBREV) 3439 llvm_unreachable("Unexpected abbrev ordering!"); 3440 } 3441 { // INST_RET abbrev for FUNCTION_BLOCK. 3442 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3443 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3445 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3446 FUNCTION_INST_RET_VAL_ABBREV) 3447 llvm_unreachable("Unexpected abbrev ordering!"); 3448 } 3449 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3450 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3451 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3452 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3453 FUNCTION_INST_UNREACHABLE_ABBREV) 3454 llvm_unreachable("Unexpected abbrev ordering!"); 3455 } 3456 { 3457 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3458 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3461 Log2_32_Ceil(VE.getTypes().size() + 1))); 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3464 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3465 FUNCTION_INST_GEP_ABBREV) 3466 llvm_unreachable("Unexpected abbrev ordering!"); 3467 } 3468 3469 Stream.ExitBlock(); 3470 } 3471 3472 /// Write the module path strings, currently only used when generating 3473 /// a combined index file. 3474 void IndexBitcodeWriter::writeModStrings() { 3475 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3476 3477 // TODO: See which abbrev sizes we actually need to emit 3478 3479 // 8-bit fixed-width MST_ENTRY strings. 3480 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3481 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3485 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3486 3487 // 7-bit fixed width MST_ENTRY strings. 3488 Abbv = std::make_shared<BitCodeAbbrev>(); 3489 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3493 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3494 3495 // 6-bit char6 MST_ENTRY strings. 3496 Abbv = std::make_shared<BitCodeAbbrev>(); 3497 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3501 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3502 3503 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3504 Abbv = std::make_shared<BitCodeAbbrev>(); 3505 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3511 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3512 3513 SmallVector<unsigned, 64> Vals; 3514 forEachModule( 3515 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3516 StringRef Key = MPSE.getKey(); 3517 const auto &Value = MPSE.getValue(); 3518 StringEncoding Bits = getStringEncoding(Key); 3519 unsigned AbbrevToUse = Abbrev8Bit; 3520 if (Bits == SE_Char6) 3521 AbbrevToUse = Abbrev6Bit; 3522 else if (Bits == SE_Fixed7) 3523 AbbrevToUse = Abbrev7Bit; 3524 3525 Vals.push_back(Value.first); 3526 Vals.append(Key.begin(), Key.end()); 3527 3528 // Emit the finished record. 3529 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3530 3531 // Emit an optional hash for the module now 3532 const auto &Hash = Value.second; 3533 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3534 Vals.assign(Hash.begin(), Hash.end()); 3535 // Emit the hash record. 3536 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3537 } 3538 3539 Vals.clear(); 3540 }); 3541 Stream.ExitBlock(); 3542 } 3543 3544 /// Write the function type metadata related records that need to appear before 3545 /// a function summary entry (whether per-module or combined). 3546 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3547 FunctionSummary *FS) { 3548 if (!FS->type_tests().empty()) 3549 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3550 3551 SmallVector<uint64_t, 64> Record; 3552 3553 auto WriteVFuncIdVec = [&](uint64_t Ty, 3554 ArrayRef<FunctionSummary::VFuncId> VFs) { 3555 if (VFs.empty()) 3556 return; 3557 Record.clear(); 3558 for (auto &VF : VFs) { 3559 Record.push_back(VF.GUID); 3560 Record.push_back(VF.Offset); 3561 } 3562 Stream.EmitRecord(Ty, Record); 3563 }; 3564 3565 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3566 FS->type_test_assume_vcalls()); 3567 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3568 FS->type_checked_load_vcalls()); 3569 3570 auto WriteConstVCallVec = [&](uint64_t Ty, 3571 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3572 for (auto &VC : VCs) { 3573 Record.clear(); 3574 Record.push_back(VC.VFunc.GUID); 3575 Record.push_back(VC.VFunc.Offset); 3576 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3577 Stream.EmitRecord(Ty, Record); 3578 } 3579 }; 3580 3581 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3582 FS->type_test_assume_const_vcalls()); 3583 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3584 FS->type_checked_load_const_vcalls()); 3585 3586 auto WriteRange = [&](ConstantRange Range) { 3587 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3588 assert(Range.getLower().getNumWords() == 1); 3589 assert(Range.getUpper().getNumWords() == 1); 3590 emitSignedInt64(Record, *Range.getLower().getRawData()); 3591 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3592 }; 3593 3594 if (!FS->paramAccesses().empty()) { 3595 Record.clear(); 3596 for (auto &Arg : FS->paramAccesses()) { 3597 Record.push_back(Arg.ParamNo); 3598 WriteRange(Arg.Use); 3599 Record.push_back(Arg.Calls.size()); 3600 for (auto &Call : Arg.Calls) { 3601 Record.push_back(Call.ParamNo); 3602 Record.push_back(Call.Callee); 3603 WriteRange(Call.Offsets); 3604 } 3605 } 3606 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3607 } 3608 } 3609 3610 /// Collect type IDs from type tests used by function. 3611 static void 3612 getReferencedTypeIds(FunctionSummary *FS, 3613 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3614 if (!FS->type_tests().empty()) 3615 for (auto &TT : FS->type_tests()) 3616 ReferencedTypeIds.insert(TT); 3617 3618 auto GetReferencedTypesFromVFuncIdVec = 3619 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3620 for (auto &VF : VFs) 3621 ReferencedTypeIds.insert(VF.GUID); 3622 }; 3623 3624 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3625 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3626 3627 auto GetReferencedTypesFromConstVCallVec = 3628 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3629 for (auto &VC : VCs) 3630 ReferencedTypeIds.insert(VC.VFunc.GUID); 3631 }; 3632 3633 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3634 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3635 } 3636 3637 static void writeWholeProgramDevirtResolutionByArg( 3638 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3639 const WholeProgramDevirtResolution::ByArg &ByArg) { 3640 NameVals.push_back(args.size()); 3641 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3642 3643 NameVals.push_back(ByArg.TheKind); 3644 NameVals.push_back(ByArg.Info); 3645 NameVals.push_back(ByArg.Byte); 3646 NameVals.push_back(ByArg.Bit); 3647 } 3648 3649 static void writeWholeProgramDevirtResolution( 3650 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3651 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3652 NameVals.push_back(Id); 3653 3654 NameVals.push_back(Wpd.TheKind); 3655 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3656 NameVals.push_back(Wpd.SingleImplName.size()); 3657 3658 NameVals.push_back(Wpd.ResByArg.size()); 3659 for (auto &A : Wpd.ResByArg) 3660 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3661 } 3662 3663 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3664 StringTableBuilder &StrtabBuilder, 3665 const std::string &Id, 3666 const TypeIdSummary &Summary) { 3667 NameVals.push_back(StrtabBuilder.add(Id)); 3668 NameVals.push_back(Id.size()); 3669 3670 NameVals.push_back(Summary.TTRes.TheKind); 3671 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3672 NameVals.push_back(Summary.TTRes.AlignLog2); 3673 NameVals.push_back(Summary.TTRes.SizeM1); 3674 NameVals.push_back(Summary.TTRes.BitMask); 3675 NameVals.push_back(Summary.TTRes.InlineBits); 3676 3677 for (auto &W : Summary.WPDRes) 3678 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3679 W.second); 3680 } 3681 3682 static void writeTypeIdCompatibleVtableSummaryRecord( 3683 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3684 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3685 ValueEnumerator &VE) { 3686 NameVals.push_back(StrtabBuilder.add(Id)); 3687 NameVals.push_back(Id.size()); 3688 3689 for (auto &P : Summary) { 3690 NameVals.push_back(P.AddressPointOffset); 3691 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3692 } 3693 } 3694 3695 // Helper to emit a single function summary record. 3696 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3697 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3698 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3699 const Function &F) { 3700 NameVals.push_back(ValueID); 3701 3702 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3703 writeFunctionTypeMetadataRecords(Stream, FS); 3704 3705 auto SpecialRefCnts = FS->specialRefCounts(); 3706 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3707 NameVals.push_back(FS->instCount()); 3708 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3709 NameVals.push_back(FS->refs().size()); 3710 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3711 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3712 3713 for (auto &RI : FS->refs()) 3714 NameVals.push_back(VE.getValueID(RI.getValue())); 3715 3716 bool HasProfileData = 3717 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3718 for (auto &ECI : FS->calls()) { 3719 NameVals.push_back(getValueId(ECI.first)); 3720 if (HasProfileData) 3721 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3722 else if (WriteRelBFToSummary) 3723 NameVals.push_back(ECI.second.RelBlockFreq); 3724 } 3725 3726 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3727 unsigned Code = 3728 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3729 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3730 : bitc::FS_PERMODULE)); 3731 3732 // Emit the finished record. 3733 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3734 NameVals.clear(); 3735 } 3736 3737 // Collect the global value references in the given variable's initializer, 3738 // and emit them in a summary record. 3739 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3740 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3741 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3742 auto VI = Index->getValueInfo(V.getGUID()); 3743 if (!VI || VI.getSummaryList().empty()) { 3744 // Only declarations should not have a summary (a declaration might however 3745 // have a summary if the def was in module level asm). 3746 assert(V.isDeclaration()); 3747 return; 3748 } 3749 auto *Summary = VI.getSummaryList()[0].get(); 3750 NameVals.push_back(VE.getValueID(&V)); 3751 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3752 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3753 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3754 3755 auto VTableFuncs = VS->vTableFuncs(); 3756 if (!VTableFuncs.empty()) 3757 NameVals.push_back(VS->refs().size()); 3758 3759 unsigned SizeBeforeRefs = NameVals.size(); 3760 for (auto &RI : VS->refs()) 3761 NameVals.push_back(VE.getValueID(RI.getValue())); 3762 // Sort the refs for determinism output, the vector returned by FS->refs() has 3763 // been initialized from a DenseSet. 3764 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3765 3766 if (VTableFuncs.empty()) 3767 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3768 FSModRefsAbbrev); 3769 else { 3770 // VTableFuncs pairs should already be sorted by offset. 3771 for (auto &P : VTableFuncs) { 3772 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3773 NameVals.push_back(P.VTableOffset); 3774 } 3775 3776 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3777 FSModVTableRefsAbbrev); 3778 } 3779 NameVals.clear(); 3780 } 3781 3782 /// Emit the per-module summary section alongside the rest of 3783 /// the module's bitcode. 3784 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3785 // By default we compile with ThinLTO if the module has a summary, but the 3786 // client can request full LTO with a module flag. 3787 bool IsThinLTO = true; 3788 if (auto *MD = 3789 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3790 IsThinLTO = MD->getZExtValue(); 3791 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3792 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3793 4); 3794 3795 Stream.EmitRecord( 3796 bitc::FS_VERSION, 3797 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3798 3799 // Write the index flags. 3800 uint64_t Flags = 0; 3801 // Bits 1-3 are set only in the combined index, skip them. 3802 if (Index->enableSplitLTOUnit()) 3803 Flags |= 0x8; 3804 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3805 3806 if (Index->begin() == Index->end()) { 3807 Stream.ExitBlock(); 3808 return; 3809 } 3810 3811 for (const auto &GVI : valueIds()) { 3812 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3813 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3814 } 3815 3816 // Abbrev for FS_PERMODULE_PROFILE. 3817 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3818 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3826 // numrefs x valueid, n x (valueid, hotness) 3827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3829 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3830 3831 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3832 Abbv = std::make_shared<BitCodeAbbrev>(); 3833 if (WriteRelBFToSummary) 3834 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3835 else 3836 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3844 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3847 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3848 3849 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3850 Abbv = std::make_shared<BitCodeAbbrev>(); 3851 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3856 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3857 3858 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3859 Abbv = std::make_shared<BitCodeAbbrev>(); 3860 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3864 // numrefs x valueid, n x (valueid , offset) 3865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3867 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3868 3869 // Abbrev for FS_ALIAS. 3870 Abbv = std::make_shared<BitCodeAbbrev>(); 3871 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3875 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3876 3877 // Abbrev for FS_TYPE_ID_METADATA 3878 Abbv = std::make_shared<BitCodeAbbrev>(); 3879 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3882 // n x (valueid , offset) 3883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3885 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3886 3887 SmallVector<uint64_t, 64> NameVals; 3888 // Iterate over the list of functions instead of the Index to 3889 // ensure the ordering is stable. 3890 for (const Function &F : M) { 3891 // Summary emission does not support anonymous functions, they have to 3892 // renamed using the anonymous function renaming pass. 3893 if (!F.hasName()) 3894 report_fatal_error("Unexpected anonymous function when writing summary"); 3895 3896 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3897 if (!VI || VI.getSummaryList().empty()) { 3898 // Only declarations should not have a summary (a declaration might 3899 // however have a summary if the def was in module level asm). 3900 assert(F.isDeclaration()); 3901 continue; 3902 } 3903 auto *Summary = VI.getSummaryList()[0].get(); 3904 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3905 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3906 } 3907 3908 // Capture references from GlobalVariable initializers, which are outside 3909 // of a function scope. 3910 for (const GlobalVariable &G : M.globals()) 3911 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3912 FSModVTableRefsAbbrev); 3913 3914 for (const GlobalAlias &A : M.aliases()) { 3915 auto *Aliasee = A.getBaseObject(); 3916 if (!Aliasee->hasName()) 3917 // Nameless function don't have an entry in the summary, skip it. 3918 continue; 3919 auto AliasId = VE.getValueID(&A); 3920 auto AliaseeId = VE.getValueID(Aliasee); 3921 NameVals.push_back(AliasId); 3922 auto *Summary = Index->getGlobalValueSummary(A); 3923 AliasSummary *AS = cast<AliasSummary>(Summary); 3924 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3925 NameVals.push_back(AliaseeId); 3926 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3927 NameVals.clear(); 3928 } 3929 3930 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3931 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3932 S.second, VE); 3933 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3934 TypeIdCompatibleVtableAbbrev); 3935 NameVals.clear(); 3936 } 3937 3938 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 3939 ArrayRef<uint64_t>{Index->getBlockCount()}); 3940 3941 Stream.ExitBlock(); 3942 } 3943 3944 /// Emit the combined summary section into the combined index file. 3945 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3946 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3947 Stream.EmitRecord( 3948 bitc::FS_VERSION, 3949 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3950 3951 // Write the index flags. 3952 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 3953 3954 for (const auto &GVI : valueIds()) { 3955 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3956 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3957 } 3958 3959 // Abbrev for FS_COMBINED. 3960 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3961 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3971 // numrefs x valueid, n x (valueid) 3972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3974 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3975 3976 // Abbrev for FS_COMBINED_PROFILE. 3977 Abbv = std::make_shared<BitCodeAbbrev>(); 3978 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3988 // numrefs x valueid, n x (valueid, hotness) 3989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3991 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3992 3993 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3994 Abbv = std::make_shared<BitCodeAbbrev>(); 3995 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4001 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4002 4003 // Abbrev for FS_COMBINED_ALIAS. 4004 Abbv = std::make_shared<BitCodeAbbrev>(); 4005 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4010 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4011 4012 // The aliases are emitted as a post-pass, and will point to the value 4013 // id of the aliasee. Save them in a vector for post-processing. 4014 SmallVector<AliasSummary *, 64> Aliases; 4015 4016 // Save the value id for each summary for alias emission. 4017 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4018 4019 SmallVector<uint64_t, 64> NameVals; 4020 4021 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4022 // with the type ids referenced by this index file. 4023 std::set<GlobalValue::GUID> ReferencedTypeIds; 4024 4025 // For local linkage, we also emit the original name separately 4026 // immediately after the record. 4027 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4028 if (!GlobalValue::isLocalLinkage(S.linkage())) 4029 return; 4030 NameVals.push_back(S.getOriginalName()); 4031 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4032 NameVals.clear(); 4033 }; 4034 4035 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4036 forEachSummary([&](GVInfo I, bool IsAliasee) { 4037 GlobalValueSummary *S = I.second; 4038 assert(S); 4039 DefOrUseGUIDs.insert(I.first); 4040 for (const ValueInfo &VI : S->refs()) 4041 DefOrUseGUIDs.insert(VI.getGUID()); 4042 4043 auto ValueId = getValueId(I.first); 4044 assert(ValueId); 4045 SummaryToValueIdMap[S] = *ValueId; 4046 4047 // If this is invoked for an aliasee, we want to record the above 4048 // mapping, but then not emit a summary entry (if the aliasee is 4049 // to be imported, we will invoke this separately with IsAliasee=false). 4050 if (IsAliasee) 4051 return; 4052 4053 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4054 // Will process aliases as a post-pass because the reader wants all 4055 // global to be loaded first. 4056 Aliases.push_back(AS); 4057 return; 4058 } 4059 4060 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4061 NameVals.push_back(*ValueId); 4062 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4063 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4064 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4065 for (auto &RI : VS->refs()) { 4066 auto RefValueId = getValueId(RI.getGUID()); 4067 if (!RefValueId) 4068 continue; 4069 NameVals.push_back(*RefValueId); 4070 } 4071 4072 // Emit the finished record. 4073 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4074 FSModRefsAbbrev); 4075 NameVals.clear(); 4076 MaybeEmitOriginalName(*S); 4077 return; 4078 } 4079 4080 auto *FS = cast<FunctionSummary>(S); 4081 writeFunctionTypeMetadataRecords(Stream, FS); 4082 getReferencedTypeIds(FS, ReferencedTypeIds); 4083 4084 NameVals.push_back(*ValueId); 4085 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4086 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4087 NameVals.push_back(FS->instCount()); 4088 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4089 NameVals.push_back(FS->entryCount()); 4090 4091 // Fill in below 4092 NameVals.push_back(0); // numrefs 4093 NameVals.push_back(0); // rorefcnt 4094 NameVals.push_back(0); // worefcnt 4095 4096 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4097 for (auto &RI : FS->refs()) { 4098 auto RefValueId = getValueId(RI.getGUID()); 4099 if (!RefValueId) 4100 continue; 4101 NameVals.push_back(*RefValueId); 4102 if (RI.isReadOnly()) 4103 RORefCnt++; 4104 else if (RI.isWriteOnly()) 4105 WORefCnt++; 4106 Count++; 4107 } 4108 NameVals[6] = Count; 4109 NameVals[7] = RORefCnt; 4110 NameVals[8] = WORefCnt; 4111 4112 bool HasProfileData = false; 4113 for (auto &EI : FS->calls()) { 4114 HasProfileData |= 4115 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4116 if (HasProfileData) 4117 break; 4118 } 4119 4120 for (auto &EI : FS->calls()) { 4121 // If this GUID doesn't have a value id, it doesn't have a function 4122 // summary and we don't need to record any calls to it. 4123 GlobalValue::GUID GUID = EI.first.getGUID(); 4124 auto CallValueId = getValueId(GUID); 4125 if (!CallValueId) { 4126 // For SamplePGO, the indirect call targets for local functions will 4127 // have its original name annotated in profile. We try to find the 4128 // corresponding PGOFuncName as the GUID. 4129 GUID = Index.getGUIDFromOriginalID(GUID); 4130 if (GUID == 0) 4131 continue; 4132 CallValueId = getValueId(GUID); 4133 if (!CallValueId) 4134 continue; 4135 // The mapping from OriginalId to GUID may return a GUID 4136 // that corresponds to a static variable. Filter it out here. 4137 // This can happen when 4138 // 1) There is a call to a library function which does not have 4139 // a CallValidId; 4140 // 2) There is a static variable with the OriginalGUID identical 4141 // to the GUID of the library function in 1); 4142 // When this happens, the logic for SamplePGO kicks in and 4143 // the static variable in 2) will be found, which needs to be 4144 // filtered out. 4145 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4146 if (GVSum && 4147 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4148 continue; 4149 } 4150 NameVals.push_back(*CallValueId); 4151 if (HasProfileData) 4152 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4153 } 4154 4155 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4156 unsigned Code = 4157 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4158 4159 // Emit the finished record. 4160 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4161 NameVals.clear(); 4162 MaybeEmitOriginalName(*S); 4163 }); 4164 4165 for (auto *AS : Aliases) { 4166 auto AliasValueId = SummaryToValueIdMap[AS]; 4167 assert(AliasValueId); 4168 NameVals.push_back(AliasValueId); 4169 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4170 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4171 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4172 assert(AliaseeValueId); 4173 NameVals.push_back(AliaseeValueId); 4174 4175 // Emit the finished record. 4176 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4177 NameVals.clear(); 4178 MaybeEmitOriginalName(*AS); 4179 4180 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4181 getReferencedTypeIds(FS, ReferencedTypeIds); 4182 } 4183 4184 if (!Index.cfiFunctionDefs().empty()) { 4185 for (auto &S : Index.cfiFunctionDefs()) { 4186 if (DefOrUseGUIDs.count( 4187 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4188 NameVals.push_back(StrtabBuilder.add(S)); 4189 NameVals.push_back(S.size()); 4190 } 4191 } 4192 if (!NameVals.empty()) { 4193 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4194 NameVals.clear(); 4195 } 4196 } 4197 4198 if (!Index.cfiFunctionDecls().empty()) { 4199 for (auto &S : Index.cfiFunctionDecls()) { 4200 if (DefOrUseGUIDs.count( 4201 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4202 NameVals.push_back(StrtabBuilder.add(S)); 4203 NameVals.push_back(S.size()); 4204 } 4205 } 4206 if (!NameVals.empty()) { 4207 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4208 NameVals.clear(); 4209 } 4210 } 4211 4212 // Walk the GUIDs that were referenced, and write the 4213 // corresponding type id records. 4214 for (auto &T : ReferencedTypeIds) { 4215 auto TidIter = Index.typeIds().equal_range(T); 4216 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4217 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4218 It->second.second); 4219 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4220 NameVals.clear(); 4221 } 4222 } 4223 4224 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4225 ArrayRef<uint64_t>{Index.getBlockCount()}); 4226 4227 Stream.ExitBlock(); 4228 } 4229 4230 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4231 /// current llvm version, and a record for the epoch number. 4232 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4233 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4234 4235 // Write the "user readable" string identifying the bitcode producer 4236 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4237 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4240 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4241 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4242 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4243 4244 // Write the epoch version 4245 Abbv = std::make_shared<BitCodeAbbrev>(); 4246 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4248 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4249 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4250 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4251 Stream.ExitBlock(); 4252 } 4253 4254 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4255 // Emit the module's hash. 4256 // MODULE_CODE_HASH: [5*i32] 4257 if (GenerateHash) { 4258 uint32_t Vals[5]; 4259 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4260 Buffer.size() - BlockStartPos)); 4261 StringRef Hash = Hasher.result(); 4262 for (int Pos = 0; Pos < 20; Pos += 4) { 4263 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4264 } 4265 4266 // Emit the finished record. 4267 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4268 4269 if (ModHash) 4270 // Save the written hash value. 4271 llvm::copy(Vals, std::begin(*ModHash)); 4272 } 4273 } 4274 4275 void ModuleBitcodeWriter::write() { 4276 writeIdentificationBlock(Stream); 4277 4278 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4279 size_t BlockStartPos = Buffer.size(); 4280 4281 writeModuleVersion(); 4282 4283 // Emit blockinfo, which defines the standard abbreviations etc. 4284 writeBlockInfo(); 4285 4286 // Emit information describing all of the types in the module. 4287 writeTypeTable(); 4288 4289 // Emit information about attribute groups. 4290 writeAttributeGroupTable(); 4291 4292 // Emit information about parameter attributes. 4293 writeAttributeTable(); 4294 4295 writeComdats(); 4296 4297 // Emit top-level description of module, including target triple, inline asm, 4298 // descriptors for global variables, and function prototype info. 4299 writeModuleInfo(); 4300 4301 // Emit constants. 4302 writeModuleConstants(); 4303 4304 // Emit metadata kind names. 4305 writeModuleMetadataKinds(); 4306 4307 // Emit metadata. 4308 writeModuleMetadata(); 4309 4310 // Emit module-level use-lists. 4311 if (VE.shouldPreserveUseListOrder()) 4312 writeUseListBlock(nullptr); 4313 4314 writeOperandBundleTags(); 4315 writeSyncScopeNames(); 4316 4317 // Emit function bodies. 4318 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4319 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4320 if (!F->isDeclaration()) 4321 writeFunction(*F, FunctionToBitcodeIndex); 4322 4323 // Need to write after the above call to WriteFunction which populates 4324 // the summary information in the index. 4325 if (Index) 4326 writePerModuleGlobalValueSummary(); 4327 4328 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4329 4330 writeModuleHash(BlockStartPos); 4331 4332 Stream.ExitBlock(); 4333 } 4334 4335 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4336 uint32_t &Position) { 4337 support::endian::write32le(&Buffer[Position], Value); 4338 Position += 4; 4339 } 4340 4341 /// If generating a bc file on darwin, we have to emit a 4342 /// header and trailer to make it compatible with the system archiver. To do 4343 /// this we emit the following header, and then emit a trailer that pads the 4344 /// file out to be a multiple of 16 bytes. 4345 /// 4346 /// struct bc_header { 4347 /// uint32_t Magic; // 0x0B17C0DE 4348 /// uint32_t Version; // Version, currently always 0. 4349 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4350 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4351 /// uint32_t CPUType; // CPU specifier. 4352 /// ... potentially more later ... 4353 /// }; 4354 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4355 const Triple &TT) { 4356 unsigned CPUType = ~0U; 4357 4358 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4359 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4360 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4361 // specific constants here because they are implicitly part of the Darwin ABI. 4362 enum { 4363 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4364 DARWIN_CPU_TYPE_X86 = 7, 4365 DARWIN_CPU_TYPE_ARM = 12, 4366 DARWIN_CPU_TYPE_POWERPC = 18 4367 }; 4368 4369 Triple::ArchType Arch = TT.getArch(); 4370 if (Arch == Triple::x86_64) 4371 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4372 else if (Arch == Triple::x86) 4373 CPUType = DARWIN_CPU_TYPE_X86; 4374 else if (Arch == Triple::ppc) 4375 CPUType = DARWIN_CPU_TYPE_POWERPC; 4376 else if (Arch == Triple::ppc64) 4377 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4378 else if (Arch == Triple::arm || Arch == Triple::thumb) 4379 CPUType = DARWIN_CPU_TYPE_ARM; 4380 4381 // Traditional Bitcode starts after header. 4382 assert(Buffer.size() >= BWH_HeaderSize && 4383 "Expected header size to be reserved"); 4384 unsigned BCOffset = BWH_HeaderSize; 4385 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4386 4387 // Write the magic and version. 4388 unsigned Position = 0; 4389 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4390 writeInt32ToBuffer(0, Buffer, Position); // Version. 4391 writeInt32ToBuffer(BCOffset, Buffer, Position); 4392 writeInt32ToBuffer(BCSize, Buffer, Position); 4393 writeInt32ToBuffer(CPUType, Buffer, Position); 4394 4395 // If the file is not a multiple of 16 bytes, insert dummy padding. 4396 while (Buffer.size() & 15) 4397 Buffer.push_back(0); 4398 } 4399 4400 /// Helper to write the header common to all bitcode files. 4401 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4402 // Emit the file header. 4403 Stream.Emit((unsigned)'B', 8); 4404 Stream.Emit((unsigned)'C', 8); 4405 Stream.Emit(0x0, 4); 4406 Stream.Emit(0xC, 4); 4407 Stream.Emit(0xE, 4); 4408 Stream.Emit(0xD, 4); 4409 } 4410 4411 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4412 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4413 writeBitcodeHeader(*Stream); 4414 } 4415 4416 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4417 4418 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4419 Stream->EnterSubblock(Block, 3); 4420 4421 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4422 Abbv->Add(BitCodeAbbrevOp(Record)); 4423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4424 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4425 4426 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4427 4428 Stream->ExitBlock(); 4429 } 4430 4431 void BitcodeWriter::writeSymtab() { 4432 assert(!WroteStrtab && !WroteSymtab); 4433 4434 // If any module has module-level inline asm, we will require a registered asm 4435 // parser for the target so that we can create an accurate symbol table for 4436 // the module. 4437 for (Module *M : Mods) { 4438 if (M->getModuleInlineAsm().empty()) 4439 continue; 4440 4441 std::string Err; 4442 const Triple TT(M->getTargetTriple()); 4443 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4444 if (!T || !T->hasMCAsmParser()) 4445 return; 4446 } 4447 4448 WroteSymtab = true; 4449 SmallVector<char, 0> Symtab; 4450 // The irsymtab::build function may be unable to create a symbol table if the 4451 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4452 // table is not required for correctness, but we still want to be able to 4453 // write malformed modules to bitcode files, so swallow the error. 4454 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4455 consumeError(std::move(E)); 4456 return; 4457 } 4458 4459 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4460 {Symtab.data(), Symtab.size()}); 4461 } 4462 4463 void BitcodeWriter::writeStrtab() { 4464 assert(!WroteStrtab); 4465 4466 std::vector<char> Strtab; 4467 StrtabBuilder.finalizeInOrder(); 4468 Strtab.resize(StrtabBuilder.getSize()); 4469 StrtabBuilder.write((uint8_t *)Strtab.data()); 4470 4471 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4472 {Strtab.data(), Strtab.size()}); 4473 4474 WroteStrtab = true; 4475 } 4476 4477 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4478 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4479 WroteStrtab = true; 4480 } 4481 4482 void BitcodeWriter::writeModule(const Module &M, 4483 bool ShouldPreserveUseListOrder, 4484 const ModuleSummaryIndex *Index, 4485 bool GenerateHash, ModuleHash *ModHash) { 4486 assert(!WroteStrtab); 4487 4488 // The Mods vector is used by irsymtab::build, which requires non-const 4489 // Modules in case it needs to materialize metadata. But the bitcode writer 4490 // requires that the module is materialized, so we can cast to non-const here, 4491 // after checking that it is in fact materialized. 4492 assert(M.isMaterialized()); 4493 Mods.push_back(const_cast<Module *>(&M)); 4494 4495 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4496 ShouldPreserveUseListOrder, Index, 4497 GenerateHash, ModHash); 4498 ModuleWriter.write(); 4499 } 4500 4501 void BitcodeWriter::writeIndex( 4502 const ModuleSummaryIndex *Index, 4503 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4504 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4505 ModuleToSummariesForIndex); 4506 IndexWriter.write(); 4507 } 4508 4509 /// Write the specified module to the specified output stream. 4510 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4511 bool ShouldPreserveUseListOrder, 4512 const ModuleSummaryIndex *Index, 4513 bool GenerateHash, ModuleHash *ModHash) { 4514 SmallVector<char, 0> Buffer; 4515 Buffer.reserve(256*1024); 4516 4517 // If this is darwin or another generic macho target, reserve space for the 4518 // header. 4519 Triple TT(M.getTargetTriple()); 4520 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4521 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4522 4523 BitcodeWriter Writer(Buffer); 4524 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4525 ModHash); 4526 Writer.writeSymtab(); 4527 Writer.writeStrtab(); 4528 4529 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4530 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4531 4532 // Write the generated bitstream to "Out". 4533 Out.write((char*)&Buffer.front(), Buffer.size()); 4534 } 4535 4536 void IndexBitcodeWriter::write() { 4537 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4538 4539 writeModuleVersion(); 4540 4541 // Write the module paths in the combined index. 4542 writeModStrings(); 4543 4544 // Write the summary combined index records. 4545 writeCombinedGlobalValueSummary(); 4546 4547 Stream.ExitBlock(); 4548 } 4549 4550 // Write the specified module summary index to the given raw output stream, 4551 // where it will be written in a new bitcode block. This is used when 4552 // writing the combined index file for ThinLTO. When writing a subset of the 4553 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4554 void llvm::WriteIndexToFile( 4555 const ModuleSummaryIndex &Index, raw_ostream &Out, 4556 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4557 SmallVector<char, 0> Buffer; 4558 Buffer.reserve(256 * 1024); 4559 4560 BitcodeWriter Writer(Buffer); 4561 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4562 Writer.writeStrtab(); 4563 4564 Out.write((char *)&Buffer.front(), Buffer.size()); 4565 } 4566 4567 namespace { 4568 4569 /// Class to manage the bitcode writing for a thin link bitcode file. 4570 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4571 /// ModHash is for use in ThinLTO incremental build, generated while writing 4572 /// the module bitcode file. 4573 const ModuleHash *ModHash; 4574 4575 public: 4576 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4577 BitstreamWriter &Stream, 4578 const ModuleSummaryIndex &Index, 4579 const ModuleHash &ModHash) 4580 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4581 /*ShouldPreserveUseListOrder=*/false, &Index), 4582 ModHash(&ModHash) {} 4583 4584 void write(); 4585 4586 private: 4587 void writeSimplifiedModuleInfo(); 4588 }; 4589 4590 } // end anonymous namespace 4591 4592 // This function writes a simpilified module info for thin link bitcode file. 4593 // It only contains the source file name along with the name(the offset and 4594 // size in strtab) and linkage for global values. For the global value info 4595 // entry, in order to keep linkage at offset 5, there are three zeros used 4596 // as padding. 4597 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4598 SmallVector<unsigned, 64> Vals; 4599 // Emit the module's source file name. 4600 { 4601 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4602 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4603 if (Bits == SE_Char6) 4604 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4605 else if (Bits == SE_Fixed7) 4606 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4607 4608 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4609 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4610 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4612 Abbv->Add(AbbrevOpToUse); 4613 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4614 4615 for (const auto P : M.getSourceFileName()) 4616 Vals.push_back((unsigned char)P); 4617 4618 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4619 Vals.clear(); 4620 } 4621 4622 // Emit the global variable information. 4623 for (const GlobalVariable &GV : M.globals()) { 4624 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4625 Vals.push_back(StrtabBuilder.add(GV.getName())); 4626 Vals.push_back(GV.getName().size()); 4627 Vals.push_back(0); 4628 Vals.push_back(0); 4629 Vals.push_back(0); 4630 Vals.push_back(getEncodedLinkage(GV)); 4631 4632 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4633 Vals.clear(); 4634 } 4635 4636 // Emit the function proto information. 4637 for (const Function &F : M) { 4638 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4639 Vals.push_back(StrtabBuilder.add(F.getName())); 4640 Vals.push_back(F.getName().size()); 4641 Vals.push_back(0); 4642 Vals.push_back(0); 4643 Vals.push_back(0); 4644 Vals.push_back(getEncodedLinkage(F)); 4645 4646 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4647 Vals.clear(); 4648 } 4649 4650 // Emit the alias information. 4651 for (const GlobalAlias &A : M.aliases()) { 4652 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4653 Vals.push_back(StrtabBuilder.add(A.getName())); 4654 Vals.push_back(A.getName().size()); 4655 Vals.push_back(0); 4656 Vals.push_back(0); 4657 Vals.push_back(0); 4658 Vals.push_back(getEncodedLinkage(A)); 4659 4660 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4661 Vals.clear(); 4662 } 4663 4664 // Emit the ifunc information. 4665 for (const GlobalIFunc &I : M.ifuncs()) { 4666 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4667 Vals.push_back(StrtabBuilder.add(I.getName())); 4668 Vals.push_back(I.getName().size()); 4669 Vals.push_back(0); 4670 Vals.push_back(0); 4671 Vals.push_back(0); 4672 Vals.push_back(getEncodedLinkage(I)); 4673 4674 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4675 Vals.clear(); 4676 } 4677 } 4678 4679 void ThinLinkBitcodeWriter::write() { 4680 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4681 4682 writeModuleVersion(); 4683 4684 writeSimplifiedModuleInfo(); 4685 4686 writePerModuleGlobalValueSummary(); 4687 4688 // Write module hash. 4689 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4690 4691 Stream.ExitBlock(); 4692 } 4693 4694 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4695 const ModuleSummaryIndex &Index, 4696 const ModuleHash &ModHash) { 4697 assert(!WroteStrtab); 4698 4699 // The Mods vector is used by irsymtab::build, which requires non-const 4700 // Modules in case it needs to materialize metadata. But the bitcode writer 4701 // requires that the module is materialized, so we can cast to non-const here, 4702 // after checking that it is in fact materialized. 4703 assert(M.isMaterialized()); 4704 Mods.push_back(const_cast<Module *>(&M)); 4705 4706 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4707 ModHash); 4708 ThinLinkWriter.write(); 4709 } 4710 4711 // Write the specified thin link bitcode file to the given raw output stream, 4712 // where it will be written in a new bitcode block. This is used when 4713 // writing the per-module index file for ThinLTO. 4714 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4715 const ModuleSummaryIndex &Index, 4716 const ModuleHash &ModHash) { 4717 SmallVector<char, 0> Buffer; 4718 Buffer.reserve(256 * 1024); 4719 4720 BitcodeWriter Writer(Buffer); 4721 Writer.writeThinLinkBitcode(M, Index, ModHash); 4722 Writer.writeSymtab(); 4723 Writer.writeStrtab(); 4724 4725 Out.write((char *)&Buffer.front(), Buffer.size()); 4726 } 4727 4728 static const char *getSectionNameForBitcode(const Triple &T) { 4729 switch (T.getObjectFormat()) { 4730 case Triple::MachO: 4731 return "__LLVM,__bitcode"; 4732 case Triple::COFF: 4733 case Triple::ELF: 4734 case Triple::Wasm: 4735 case Triple::UnknownObjectFormat: 4736 return ".llvmbc"; 4737 case Triple::XCOFF: 4738 llvm_unreachable("XCOFF is not yet implemented"); 4739 break; 4740 } 4741 llvm_unreachable("Unimplemented ObjectFormatType"); 4742 } 4743 4744 static const char *getSectionNameForCommandline(const Triple &T) { 4745 switch (T.getObjectFormat()) { 4746 case Triple::MachO: 4747 return "__LLVM,__cmdline"; 4748 case Triple::COFF: 4749 case Triple::ELF: 4750 case Triple::Wasm: 4751 case Triple::UnknownObjectFormat: 4752 return ".llvmcmd"; 4753 case Triple::XCOFF: 4754 llvm_unreachable("XCOFF is not yet implemented"); 4755 break; 4756 } 4757 llvm_unreachable("Unimplemented ObjectFormatType"); 4758 } 4759 4760 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4761 bool EmbedBitcode, bool EmbedMarker, 4762 const std::vector<uint8_t> *CmdArgs) { 4763 // Save llvm.compiler.used and remove it. 4764 SmallVector<Constant *, 2> UsedArray; 4765 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4766 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4767 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4768 for (auto *GV : UsedGlobals) { 4769 if (GV->getName() != "llvm.embedded.module" && 4770 GV->getName() != "llvm.cmdline") 4771 UsedArray.push_back( 4772 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4773 } 4774 if (Used) 4775 Used->eraseFromParent(); 4776 4777 // Embed the bitcode for the llvm module. 4778 std::string Data; 4779 ArrayRef<uint8_t> ModuleData; 4780 Triple T(M.getTargetTriple()); 4781 // Create a constant that contains the bitcode. 4782 // In case of embedding a marker, ignore the input Buf and use the empty 4783 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 4784 if (EmbedBitcode) { 4785 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 4786 (const unsigned char *)Buf.getBufferEnd())) { 4787 // If the input is LLVM Assembly, bitcode is produced by serializing 4788 // the module. Use-lists order need to be preserved in this case. 4789 llvm::raw_string_ostream OS(Data); 4790 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4791 ModuleData = 4792 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4793 } else 4794 // If the input is LLVM bitcode, write the input byte stream directly. 4795 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4796 Buf.getBufferSize()); 4797 } 4798 llvm::Constant *ModuleConstant = 4799 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4800 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4801 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4802 ModuleConstant); 4803 GV->setSection(getSectionNameForBitcode(T)); 4804 UsedArray.push_back( 4805 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4806 if (llvm::GlobalVariable *Old = 4807 M.getGlobalVariable("llvm.embedded.module", true)) { 4808 assert(Old->hasOneUse() && 4809 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4810 GV->takeName(Old); 4811 Old->eraseFromParent(); 4812 } else { 4813 GV->setName("llvm.embedded.module"); 4814 } 4815 4816 // Skip if only bitcode needs to be embedded. 4817 if (EmbedMarker) { 4818 // Embed command-line options. 4819 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()), 4820 CmdArgs->size()); 4821 llvm::Constant *CmdConstant = 4822 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4823 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4824 llvm::GlobalValue::PrivateLinkage, 4825 CmdConstant); 4826 GV->setSection(getSectionNameForCommandline(T)); 4827 UsedArray.push_back( 4828 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4829 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4830 assert(Old->hasOneUse() && 4831 "llvm.cmdline can only be used once in llvm.compiler.used"); 4832 GV->takeName(Old); 4833 Old->eraseFromParent(); 4834 } else { 4835 GV->setName("llvm.cmdline"); 4836 } 4837 } 4838 4839 if (UsedArray.empty()) 4840 return; 4841 4842 // Recreate llvm.compiler.used. 4843 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4844 auto *NewUsed = new GlobalVariable( 4845 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4846 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4847 NewUsed->setSection("llvm.metadata"); 4848 } 4849