1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/Program.h" 35 #include "llvm/Support/SHA1.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <cctype> 38 #include <map> 39 using namespace llvm; 40 41 namespace { 42 43 cl::opt<unsigned> 44 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 45 cl::desc("Number of metadatas above which we emit an index " 46 "to enable lazy-loading")); 47 /// These are manifest constants used by the bitcode writer. They do not need to 48 /// be kept in sync with the reader, but need to be consistent within this file. 49 enum { 50 // VALUE_SYMTAB_BLOCK abbrev id's. 51 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 VST_ENTRY_7_ABBREV, 53 VST_ENTRY_6_ABBREV, 54 VST_BBENTRY_6_ABBREV, 55 56 // CONSTANTS_BLOCK abbrev id's. 57 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 CONSTANTS_INTEGER_ABBREV, 59 CONSTANTS_CE_CAST_Abbrev, 60 CONSTANTS_NULL_Abbrev, 61 62 // FUNCTION_BLOCK abbrev id's. 63 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 64 FUNCTION_INST_BINOP_ABBREV, 65 FUNCTION_INST_BINOP_FLAGS_ABBREV, 66 FUNCTION_INST_CAST_ABBREV, 67 FUNCTION_INST_RET_VOID_ABBREV, 68 FUNCTION_INST_RET_VAL_ABBREV, 69 FUNCTION_INST_UNREACHABLE_ABBREV, 70 FUNCTION_INST_GEP_ABBREV, 71 }; 72 73 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 74 /// file type. 75 class BitcodeWriterBase { 76 protected: 77 /// The stream created and owned by the client. 78 BitstreamWriter &Stream; 79 80 public: 81 /// Constructs a BitcodeWriterBase object that writes to the provided 82 /// \p Stream. 83 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 84 85 protected: 86 void writeBitcodeHeader(); 87 void writeModuleVersion(); 88 }; 89 90 void BitcodeWriterBase::writeModuleVersion() { 91 // VERSION: [version#] 92 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 93 } 94 95 /// Class to manage the bitcode writing for a module. 96 class ModuleBitcodeWriter : public BitcodeWriterBase { 97 /// Pointer to the buffer allocated by caller for bitcode writing. 98 const SmallVectorImpl<char> &Buffer; 99 100 StringTableBuilder &StrtabBuilder; 101 102 /// The Module to write to bitcode. 103 const Module &M; 104 105 /// Enumerates ids for all values in the module. 106 ValueEnumerator VE; 107 108 /// Optional per-module index to write for ThinLTO. 109 const ModuleSummaryIndex *Index; 110 111 /// True if a module hash record should be written. 112 bool GenerateHash; 113 114 /// If non-null, when GenerateHash is true, the resulting hash is written 115 /// into ModHash. When GenerateHash is false, that specified value 116 /// is used as the hash instead of computing from the generated bitcode. 117 /// Can be used to produce the same module hash for a minimized bitcode 118 /// used just for the thin link as in the regular full bitcode that will 119 /// be used in the backend. 120 ModuleHash *ModHash; 121 122 /// The start bit of the identification block. 123 uint64_t BitcodeStartBit; 124 125 /// Map that holds the correspondence between GUIDs in the summary index, 126 /// that came from indirect call profiles, and a value id generated by this 127 /// class to use in the VST and summary block records. 128 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 129 130 /// Tracks the last value id recorded in the GUIDToValueMap. 131 unsigned GlobalValueId; 132 133 /// Saves the offset of the VSTOffset record that must eventually be 134 /// backpatched with the offset of the actual VST. 135 uint64_t VSTOffsetPlaceholder = 0; 136 137 public: 138 /// Constructs a ModuleBitcodeWriter object for the given Module, 139 /// writing to the provided \p Buffer. 140 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 141 StringTableBuilder &StrtabBuilder, 142 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 143 const ModuleSummaryIndex *Index, bool GenerateHash, 144 ModuleHash *ModHash = nullptr) 145 : BitcodeWriterBase(Stream), Buffer(Buffer), StrtabBuilder(StrtabBuilder), 146 M(*M), VE(*M, ShouldPreserveUseListOrder), Index(Index), 147 GenerateHash(GenerateHash), ModHash(ModHash), 148 BitcodeStartBit(Stream.GetCurrentBitNo()) { 149 // Assign ValueIds to any callee values in the index that came from 150 // indirect call profiles and were recorded as a GUID not a Value* 151 // (which would have been assigned an ID by the ValueEnumerator). 152 // The starting ValueId is just after the number of values in the 153 // ValueEnumerator, so that they can be emitted in the VST. 154 GlobalValueId = VE.getValues().size(); 155 if (!Index) 156 return; 157 for (const auto &GUIDSummaryLists : *Index) 158 // Examine all summaries for this GUID. 159 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 160 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 161 // For each call in the function summary, see if the call 162 // is to a GUID (which means it is for an indirect call, 163 // otherwise we would have a Value for it). If so, synthesize 164 // a value id. 165 for (auto &CallEdge : FS->calls()) 166 if (!CallEdge.first.getValue()) 167 assignValueId(CallEdge.first.getGUID()); 168 } 169 170 /// Emit the current module to the bitstream. 171 void write(); 172 173 private: 174 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 175 176 void writeAttributeGroupTable(); 177 void writeAttributeTable(); 178 void writeTypeTable(); 179 void writeComdats(); 180 void writeValueSymbolTableForwardDecl(); 181 void writeModuleInfo(); 182 void writeValueAsMetadata(const ValueAsMetadata *MD, 183 SmallVectorImpl<uint64_t> &Record); 184 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 185 unsigned Abbrev); 186 unsigned createDILocationAbbrev(); 187 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned &Abbrev); 189 unsigned createGenericDINodeAbbrev(); 190 void writeGenericDINode(const GenericDINode *N, 191 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 192 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 193 unsigned Abbrev); 194 void writeDIEnumerator(const DIEnumerator *N, 195 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 196 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDIDerivedType(const DIDerivedType *N, 199 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 200 void writeDICompositeType(const DICompositeType *N, 201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 202 void writeDISubroutineType(const DISubroutineType *N, 203 SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 206 unsigned Abbrev); 207 void writeDICompileUnit(const DICompileUnit *N, 208 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 209 void writeDISubprogram(const DISubprogram *N, 210 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 211 void writeDILexicalBlock(const DILexicalBlock *N, 212 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 213 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 214 SmallVectorImpl<uint64_t> &Record, 215 unsigned Abbrev); 216 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 217 unsigned Abbrev); 218 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 219 unsigned Abbrev); 220 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 221 unsigned Abbrev); 222 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 223 unsigned Abbrev); 224 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 225 SmallVectorImpl<uint64_t> &Record, 226 unsigned Abbrev); 227 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 228 SmallVectorImpl<uint64_t> &Record, 229 unsigned Abbrev); 230 void writeDIGlobalVariable(const DIGlobalVariable *N, 231 SmallVectorImpl<uint64_t> &Record, 232 unsigned Abbrev); 233 void writeDILocalVariable(const DILocalVariable *N, 234 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 235 void writeDIExpression(const DIExpression *N, 236 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 237 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 238 SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIObjCProperty(const DIObjCProperty *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 242 void writeDIImportedEntity(const DIImportedEntity *N, 243 SmallVectorImpl<uint64_t> &Record, 244 unsigned Abbrev); 245 unsigned createNamedMetadataAbbrev(); 246 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 247 unsigned createMetadataStringsAbbrev(); 248 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 249 SmallVectorImpl<uint64_t> &Record); 250 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 251 SmallVectorImpl<uint64_t> &Record, 252 std::vector<unsigned> *MDAbbrevs = nullptr, 253 std::vector<uint64_t> *IndexPos = nullptr); 254 void writeModuleMetadata(); 255 void writeFunctionMetadata(const Function &F); 256 void writeFunctionMetadataAttachment(const Function &F); 257 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 258 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 259 const GlobalObject &GO); 260 void writeModuleMetadataKinds(); 261 void writeOperandBundleTags(); 262 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 263 void writeModuleConstants(); 264 bool pushValueAndType(const Value *V, unsigned InstID, 265 SmallVectorImpl<unsigned> &Vals); 266 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 267 void pushValue(const Value *V, unsigned InstID, 268 SmallVectorImpl<unsigned> &Vals); 269 void pushValueSigned(const Value *V, unsigned InstID, 270 SmallVectorImpl<uint64_t> &Vals); 271 void writeInstruction(const Instruction &I, unsigned InstID, 272 SmallVectorImpl<unsigned> &Vals); 273 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 274 void writeGlobalValueSymbolTable( 275 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 276 void writeUseList(UseListOrder &&Order); 277 void writeUseListBlock(const Function *F); 278 void 279 writeFunction(const Function &F, 280 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 281 void writeBlockInfo(); 282 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 283 GlobalValueSummary *Summary, 284 unsigned ValueID, 285 unsigned FSCallsAbbrev, 286 unsigned FSCallsProfileAbbrev, 287 const Function &F); 288 void writeModuleLevelReferences(const GlobalVariable &V, 289 SmallVector<uint64_t, 64> &NameVals, 290 unsigned FSModRefsAbbrev); 291 void writePerModuleGlobalValueSummary(); 292 void writeModuleHash(size_t BlockStartPos); 293 294 void assignValueId(GlobalValue::GUID ValGUID) { 295 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 296 } 297 unsigned getValueId(GlobalValue::GUID ValGUID) { 298 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 299 // Expect that any GUID value had a value Id assigned by an 300 // earlier call to assignValueId. 301 assert(VMI != GUIDToValueIdMap.end() && 302 "GUID does not have assigned value Id"); 303 return VMI->second; 304 } 305 // Helper to get the valueId for the type of value recorded in VI. 306 unsigned getValueId(ValueInfo VI) { 307 if (!VI.getValue()) 308 return getValueId(VI.getGUID()); 309 return VE.getValueID(VI.getValue()); 310 } 311 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 312 }; 313 314 /// Class to manage the bitcode writing for a combined index. 315 class IndexBitcodeWriter : public BitcodeWriterBase { 316 /// The combined index to write to bitcode. 317 const ModuleSummaryIndex &Index; 318 319 /// When writing a subset of the index for distributed backends, client 320 /// provides a map of modules to the corresponding GUIDs/summaries to write. 321 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 322 323 /// Map that holds the correspondence between the GUID used in the combined 324 /// index and a value id generated by this class to use in references. 325 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 326 327 /// Tracks the last value id recorded in the GUIDToValueMap. 328 unsigned GlobalValueId = 0; 329 330 public: 331 /// Constructs a IndexBitcodeWriter object for the given combined index, 332 /// writing to the provided \p Buffer. When writing a subset of the index 333 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 334 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 335 const std::map<std::string, GVSummaryMapTy> 336 *ModuleToSummariesForIndex = nullptr) 337 : BitcodeWriterBase(Stream), Index(Index), 338 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 339 // Assign unique value ids to all summaries to be written, for use 340 // in writing out the call graph edges. Save the mapping from GUID 341 // to the new global value id to use when writing those edges, which 342 // are currently saved in the index in terms of GUID. 343 forEachSummary([&](GVInfo I) { 344 GUIDToValueIdMap[I.first] = ++GlobalValueId; 345 }); 346 } 347 348 /// The below iterator returns the GUID and associated summary. 349 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 350 351 /// Calls the callback for each value GUID and summary to be written to 352 /// bitcode. This hides the details of whether they are being pulled from the 353 /// entire index or just those in a provided ModuleToSummariesForIndex map. 354 void forEachSummary(std::function<void(GVInfo)> Callback) { 355 if (ModuleToSummariesForIndex) { 356 for (auto &M : *ModuleToSummariesForIndex) 357 for (auto &Summary : M.second) 358 Callback(Summary); 359 } else { 360 for (auto &Summaries : Index) 361 for (auto &Summary : Summaries.second.SummaryList) 362 Callback({Summaries.first, Summary.get()}); 363 } 364 } 365 366 /// Main entry point for writing a combined index to bitcode. 367 void write(); 368 369 private: 370 void writeModStrings(); 371 void writeCombinedGlobalValueSummary(); 372 373 /// Indicates whether the provided \p ModulePath should be written into 374 /// the module string table, e.g. if full index written or if it is in 375 /// the provided subset. 376 bool doIncludeModule(StringRef ModulePath) { 377 return !ModuleToSummariesForIndex || 378 ModuleToSummariesForIndex->count(ModulePath); 379 } 380 381 bool hasValueId(GlobalValue::GUID ValGUID) { 382 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 383 return VMI != GUIDToValueIdMap.end(); 384 } 385 void assignValueId(GlobalValue::GUID ValGUID) { 386 unsigned &ValueId = GUIDToValueIdMap[ValGUID]; 387 if (ValueId == 0) 388 ValueId = ++GlobalValueId; 389 } 390 unsigned getValueId(GlobalValue::GUID ValGUID) { 391 auto VMI = GUIDToValueIdMap.find(ValGUID); 392 assert(VMI != GUIDToValueIdMap.end()); 393 return VMI->second; 394 } 395 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 396 }; 397 } // end anonymous namespace 398 399 static unsigned getEncodedCastOpcode(unsigned Opcode) { 400 switch (Opcode) { 401 default: llvm_unreachable("Unknown cast instruction!"); 402 case Instruction::Trunc : return bitc::CAST_TRUNC; 403 case Instruction::ZExt : return bitc::CAST_ZEXT; 404 case Instruction::SExt : return bitc::CAST_SEXT; 405 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 406 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 407 case Instruction::UIToFP : return bitc::CAST_UITOFP; 408 case Instruction::SIToFP : return bitc::CAST_SITOFP; 409 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 410 case Instruction::FPExt : return bitc::CAST_FPEXT; 411 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 412 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 413 case Instruction::BitCast : return bitc::CAST_BITCAST; 414 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 415 } 416 } 417 418 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 419 switch (Opcode) { 420 default: llvm_unreachable("Unknown binary instruction!"); 421 case Instruction::Add: 422 case Instruction::FAdd: return bitc::BINOP_ADD; 423 case Instruction::Sub: 424 case Instruction::FSub: return bitc::BINOP_SUB; 425 case Instruction::Mul: 426 case Instruction::FMul: return bitc::BINOP_MUL; 427 case Instruction::UDiv: return bitc::BINOP_UDIV; 428 case Instruction::FDiv: 429 case Instruction::SDiv: return bitc::BINOP_SDIV; 430 case Instruction::URem: return bitc::BINOP_UREM; 431 case Instruction::FRem: 432 case Instruction::SRem: return bitc::BINOP_SREM; 433 case Instruction::Shl: return bitc::BINOP_SHL; 434 case Instruction::LShr: return bitc::BINOP_LSHR; 435 case Instruction::AShr: return bitc::BINOP_ASHR; 436 case Instruction::And: return bitc::BINOP_AND; 437 case Instruction::Or: return bitc::BINOP_OR; 438 case Instruction::Xor: return bitc::BINOP_XOR; 439 } 440 } 441 442 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 443 switch (Op) { 444 default: llvm_unreachable("Unknown RMW operation!"); 445 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 446 case AtomicRMWInst::Add: return bitc::RMW_ADD; 447 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 448 case AtomicRMWInst::And: return bitc::RMW_AND; 449 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 450 case AtomicRMWInst::Or: return bitc::RMW_OR; 451 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 452 case AtomicRMWInst::Max: return bitc::RMW_MAX; 453 case AtomicRMWInst::Min: return bitc::RMW_MIN; 454 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 455 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 456 } 457 } 458 459 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 460 switch (Ordering) { 461 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 462 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 463 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 464 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 465 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 466 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 467 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 468 } 469 llvm_unreachable("Invalid ordering"); 470 } 471 472 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 473 switch (SynchScope) { 474 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 475 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 476 } 477 llvm_unreachable("Invalid synch scope"); 478 } 479 480 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 481 StringRef Str, unsigned AbbrevToUse) { 482 SmallVector<unsigned, 64> Vals; 483 484 // Code: [strchar x N] 485 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 486 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 487 AbbrevToUse = 0; 488 Vals.push_back(Str[i]); 489 } 490 491 // Emit the finished record. 492 Stream.EmitRecord(Code, Vals, AbbrevToUse); 493 } 494 495 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 496 switch (Kind) { 497 case Attribute::Alignment: 498 return bitc::ATTR_KIND_ALIGNMENT; 499 case Attribute::AllocSize: 500 return bitc::ATTR_KIND_ALLOC_SIZE; 501 case Attribute::AlwaysInline: 502 return bitc::ATTR_KIND_ALWAYS_INLINE; 503 case Attribute::ArgMemOnly: 504 return bitc::ATTR_KIND_ARGMEMONLY; 505 case Attribute::Builtin: 506 return bitc::ATTR_KIND_BUILTIN; 507 case Attribute::ByVal: 508 return bitc::ATTR_KIND_BY_VAL; 509 case Attribute::Convergent: 510 return bitc::ATTR_KIND_CONVERGENT; 511 case Attribute::InAlloca: 512 return bitc::ATTR_KIND_IN_ALLOCA; 513 case Attribute::Cold: 514 return bitc::ATTR_KIND_COLD; 515 case Attribute::InaccessibleMemOnly: 516 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 517 case Attribute::InaccessibleMemOrArgMemOnly: 518 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 519 case Attribute::InlineHint: 520 return bitc::ATTR_KIND_INLINE_HINT; 521 case Attribute::InReg: 522 return bitc::ATTR_KIND_IN_REG; 523 case Attribute::JumpTable: 524 return bitc::ATTR_KIND_JUMP_TABLE; 525 case Attribute::MinSize: 526 return bitc::ATTR_KIND_MIN_SIZE; 527 case Attribute::Naked: 528 return bitc::ATTR_KIND_NAKED; 529 case Attribute::Nest: 530 return bitc::ATTR_KIND_NEST; 531 case Attribute::NoAlias: 532 return bitc::ATTR_KIND_NO_ALIAS; 533 case Attribute::NoBuiltin: 534 return bitc::ATTR_KIND_NO_BUILTIN; 535 case Attribute::NoCapture: 536 return bitc::ATTR_KIND_NO_CAPTURE; 537 case Attribute::NoDuplicate: 538 return bitc::ATTR_KIND_NO_DUPLICATE; 539 case Attribute::NoImplicitFloat: 540 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 541 case Attribute::NoInline: 542 return bitc::ATTR_KIND_NO_INLINE; 543 case Attribute::NoRecurse: 544 return bitc::ATTR_KIND_NO_RECURSE; 545 case Attribute::NonLazyBind: 546 return bitc::ATTR_KIND_NON_LAZY_BIND; 547 case Attribute::NonNull: 548 return bitc::ATTR_KIND_NON_NULL; 549 case Attribute::Dereferenceable: 550 return bitc::ATTR_KIND_DEREFERENCEABLE; 551 case Attribute::DereferenceableOrNull: 552 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 553 case Attribute::NoRedZone: 554 return bitc::ATTR_KIND_NO_RED_ZONE; 555 case Attribute::NoReturn: 556 return bitc::ATTR_KIND_NO_RETURN; 557 case Attribute::NoUnwind: 558 return bitc::ATTR_KIND_NO_UNWIND; 559 case Attribute::OptimizeForSize: 560 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 561 case Attribute::OptimizeNone: 562 return bitc::ATTR_KIND_OPTIMIZE_NONE; 563 case Attribute::ReadNone: 564 return bitc::ATTR_KIND_READ_NONE; 565 case Attribute::ReadOnly: 566 return bitc::ATTR_KIND_READ_ONLY; 567 case Attribute::Returned: 568 return bitc::ATTR_KIND_RETURNED; 569 case Attribute::ReturnsTwice: 570 return bitc::ATTR_KIND_RETURNS_TWICE; 571 case Attribute::SExt: 572 return bitc::ATTR_KIND_S_EXT; 573 case Attribute::Speculatable: 574 return bitc::ATTR_KIND_SPECULATABLE; 575 case Attribute::StackAlignment: 576 return bitc::ATTR_KIND_STACK_ALIGNMENT; 577 case Attribute::StackProtect: 578 return bitc::ATTR_KIND_STACK_PROTECT; 579 case Attribute::StackProtectReq: 580 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 581 case Attribute::StackProtectStrong: 582 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 583 case Attribute::SafeStack: 584 return bitc::ATTR_KIND_SAFESTACK; 585 case Attribute::StructRet: 586 return bitc::ATTR_KIND_STRUCT_RET; 587 case Attribute::SanitizeAddress: 588 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 589 case Attribute::SanitizeThread: 590 return bitc::ATTR_KIND_SANITIZE_THREAD; 591 case Attribute::SanitizeMemory: 592 return bitc::ATTR_KIND_SANITIZE_MEMORY; 593 case Attribute::SwiftError: 594 return bitc::ATTR_KIND_SWIFT_ERROR; 595 case Attribute::SwiftSelf: 596 return bitc::ATTR_KIND_SWIFT_SELF; 597 case Attribute::UWTable: 598 return bitc::ATTR_KIND_UW_TABLE; 599 case Attribute::WriteOnly: 600 return bitc::ATTR_KIND_WRITEONLY; 601 case Attribute::ZExt: 602 return bitc::ATTR_KIND_Z_EXT; 603 case Attribute::EndAttrKinds: 604 llvm_unreachable("Can not encode end-attribute kinds marker."); 605 case Attribute::None: 606 llvm_unreachable("Can not encode none-attribute."); 607 } 608 609 llvm_unreachable("Trying to encode unknown attribute"); 610 } 611 612 void ModuleBitcodeWriter::writeAttributeGroupTable() { 613 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 614 VE.getAttributeGroups(); 615 if (AttrGrps.empty()) return; 616 617 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 618 619 SmallVector<uint64_t, 64> Record; 620 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 621 unsigned AttrListIndex = Pair.first; 622 AttributeSet AS = Pair.second; 623 Record.push_back(VE.getAttributeGroupID(Pair)); 624 Record.push_back(AttrListIndex); 625 626 for (Attribute Attr : AS) { 627 if (Attr.isEnumAttribute()) { 628 Record.push_back(0); 629 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 630 } else if (Attr.isIntAttribute()) { 631 Record.push_back(1); 632 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 633 Record.push_back(Attr.getValueAsInt()); 634 } else { 635 StringRef Kind = Attr.getKindAsString(); 636 StringRef Val = Attr.getValueAsString(); 637 638 Record.push_back(Val.empty() ? 3 : 4); 639 Record.append(Kind.begin(), Kind.end()); 640 Record.push_back(0); 641 if (!Val.empty()) { 642 Record.append(Val.begin(), Val.end()); 643 Record.push_back(0); 644 } 645 } 646 } 647 648 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 649 Record.clear(); 650 } 651 652 Stream.ExitBlock(); 653 } 654 655 void ModuleBitcodeWriter::writeAttributeTable() { 656 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 657 if (Attrs.empty()) return; 658 659 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 660 661 SmallVector<uint64_t, 64> Record; 662 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 663 AttributeList AL = Attrs[i]; 664 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 665 AttributeSet AS = AL.getAttributes(i); 666 if (AS.hasAttributes()) 667 Record.push_back(VE.getAttributeGroupID({i, AS})); 668 } 669 670 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 671 Record.clear(); 672 } 673 674 Stream.ExitBlock(); 675 } 676 677 /// WriteTypeTable - Write out the type table for a module. 678 void ModuleBitcodeWriter::writeTypeTable() { 679 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 680 681 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 682 SmallVector<uint64_t, 64> TypeVals; 683 684 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 685 686 // Abbrev for TYPE_CODE_POINTER. 687 auto Abbv = std::make_shared<BitCodeAbbrev>(); 688 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 690 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 691 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 692 693 // Abbrev for TYPE_CODE_FUNCTION. 694 Abbv = std::make_shared<BitCodeAbbrev>(); 695 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 699 700 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 701 702 // Abbrev for TYPE_CODE_STRUCT_ANON. 703 Abbv = std::make_shared<BitCodeAbbrev>(); 704 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 708 709 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 710 711 // Abbrev for TYPE_CODE_STRUCT_NAME. 712 Abbv = std::make_shared<BitCodeAbbrev>(); 713 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 716 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 717 718 // Abbrev for TYPE_CODE_STRUCT_NAMED. 719 Abbv = std::make_shared<BitCodeAbbrev>(); 720 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 724 725 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 726 727 // Abbrev for TYPE_CODE_ARRAY. 728 Abbv = std::make_shared<BitCodeAbbrev>(); 729 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 732 733 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 734 735 // Emit an entry count so the reader can reserve space. 736 TypeVals.push_back(TypeList.size()); 737 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 738 TypeVals.clear(); 739 740 // Loop over all of the types, emitting each in turn. 741 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 742 Type *T = TypeList[i]; 743 int AbbrevToUse = 0; 744 unsigned Code = 0; 745 746 switch (T->getTypeID()) { 747 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 748 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 749 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 750 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 751 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 752 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 753 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 754 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 755 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 756 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 757 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 758 case Type::IntegerTyID: 759 // INTEGER: [width] 760 Code = bitc::TYPE_CODE_INTEGER; 761 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 762 break; 763 case Type::PointerTyID: { 764 PointerType *PTy = cast<PointerType>(T); 765 // POINTER: [pointee type, address space] 766 Code = bitc::TYPE_CODE_POINTER; 767 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 768 unsigned AddressSpace = PTy->getAddressSpace(); 769 TypeVals.push_back(AddressSpace); 770 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 771 break; 772 } 773 case Type::FunctionTyID: { 774 FunctionType *FT = cast<FunctionType>(T); 775 // FUNCTION: [isvararg, retty, paramty x N] 776 Code = bitc::TYPE_CODE_FUNCTION; 777 TypeVals.push_back(FT->isVarArg()); 778 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 779 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 780 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 781 AbbrevToUse = FunctionAbbrev; 782 break; 783 } 784 case Type::StructTyID: { 785 StructType *ST = cast<StructType>(T); 786 // STRUCT: [ispacked, eltty x N] 787 TypeVals.push_back(ST->isPacked()); 788 // Output all of the element types. 789 for (StructType::element_iterator I = ST->element_begin(), 790 E = ST->element_end(); I != E; ++I) 791 TypeVals.push_back(VE.getTypeID(*I)); 792 793 if (ST->isLiteral()) { 794 Code = bitc::TYPE_CODE_STRUCT_ANON; 795 AbbrevToUse = StructAnonAbbrev; 796 } else { 797 if (ST->isOpaque()) { 798 Code = bitc::TYPE_CODE_OPAQUE; 799 } else { 800 Code = bitc::TYPE_CODE_STRUCT_NAMED; 801 AbbrevToUse = StructNamedAbbrev; 802 } 803 804 // Emit the name if it is present. 805 if (!ST->getName().empty()) 806 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 807 StructNameAbbrev); 808 } 809 break; 810 } 811 case Type::ArrayTyID: { 812 ArrayType *AT = cast<ArrayType>(T); 813 // ARRAY: [numelts, eltty] 814 Code = bitc::TYPE_CODE_ARRAY; 815 TypeVals.push_back(AT->getNumElements()); 816 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 817 AbbrevToUse = ArrayAbbrev; 818 break; 819 } 820 case Type::VectorTyID: { 821 VectorType *VT = cast<VectorType>(T); 822 // VECTOR [numelts, eltty] 823 Code = bitc::TYPE_CODE_VECTOR; 824 TypeVals.push_back(VT->getNumElements()); 825 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 826 break; 827 } 828 } 829 830 // Emit the finished record. 831 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 832 TypeVals.clear(); 833 } 834 835 Stream.ExitBlock(); 836 } 837 838 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 839 switch (Linkage) { 840 case GlobalValue::ExternalLinkage: 841 return 0; 842 case GlobalValue::WeakAnyLinkage: 843 return 16; 844 case GlobalValue::AppendingLinkage: 845 return 2; 846 case GlobalValue::InternalLinkage: 847 return 3; 848 case GlobalValue::LinkOnceAnyLinkage: 849 return 18; 850 case GlobalValue::ExternalWeakLinkage: 851 return 7; 852 case GlobalValue::CommonLinkage: 853 return 8; 854 case GlobalValue::PrivateLinkage: 855 return 9; 856 case GlobalValue::WeakODRLinkage: 857 return 17; 858 case GlobalValue::LinkOnceODRLinkage: 859 return 19; 860 case GlobalValue::AvailableExternallyLinkage: 861 return 12; 862 } 863 llvm_unreachable("Invalid linkage"); 864 } 865 866 static unsigned getEncodedLinkage(const GlobalValue &GV) { 867 return getEncodedLinkage(GV.getLinkage()); 868 } 869 870 // Decode the flags for GlobalValue in the summary 871 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 872 uint64_t RawFlags = 0; 873 874 RawFlags |= Flags.NotEligibleToImport; // bool 875 RawFlags |= (Flags.LiveRoot << 1); 876 // Linkage don't need to be remapped at that time for the summary. Any future 877 // change to the getEncodedLinkage() function will need to be taken into 878 // account here as well. 879 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 880 881 return RawFlags; 882 } 883 884 static unsigned getEncodedVisibility(const GlobalValue &GV) { 885 switch (GV.getVisibility()) { 886 case GlobalValue::DefaultVisibility: return 0; 887 case GlobalValue::HiddenVisibility: return 1; 888 case GlobalValue::ProtectedVisibility: return 2; 889 } 890 llvm_unreachable("Invalid visibility"); 891 } 892 893 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 894 switch (GV.getDLLStorageClass()) { 895 case GlobalValue::DefaultStorageClass: return 0; 896 case GlobalValue::DLLImportStorageClass: return 1; 897 case GlobalValue::DLLExportStorageClass: return 2; 898 } 899 llvm_unreachable("Invalid DLL storage class"); 900 } 901 902 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 903 switch (GV.getThreadLocalMode()) { 904 case GlobalVariable::NotThreadLocal: return 0; 905 case GlobalVariable::GeneralDynamicTLSModel: return 1; 906 case GlobalVariable::LocalDynamicTLSModel: return 2; 907 case GlobalVariable::InitialExecTLSModel: return 3; 908 case GlobalVariable::LocalExecTLSModel: return 4; 909 } 910 llvm_unreachable("Invalid TLS model"); 911 } 912 913 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 914 switch (C.getSelectionKind()) { 915 case Comdat::Any: 916 return bitc::COMDAT_SELECTION_KIND_ANY; 917 case Comdat::ExactMatch: 918 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 919 case Comdat::Largest: 920 return bitc::COMDAT_SELECTION_KIND_LARGEST; 921 case Comdat::NoDuplicates: 922 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 923 case Comdat::SameSize: 924 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 925 } 926 llvm_unreachable("Invalid selection kind"); 927 } 928 929 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 930 switch (GV.getUnnamedAddr()) { 931 case GlobalValue::UnnamedAddr::None: return 0; 932 case GlobalValue::UnnamedAddr::Local: return 2; 933 case GlobalValue::UnnamedAddr::Global: return 1; 934 } 935 llvm_unreachable("Invalid unnamed_addr"); 936 } 937 938 void ModuleBitcodeWriter::writeComdats() { 939 SmallVector<unsigned, 64> Vals; 940 for (const Comdat *C : VE.getComdats()) { 941 // COMDAT: [strtab offset, strtab size, selection_kind] 942 Vals.push_back(StrtabBuilder.add(C->getName())); 943 Vals.push_back(C->getName().size()); 944 Vals.push_back(getEncodedComdatSelectionKind(*C)); 945 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 946 Vals.clear(); 947 } 948 } 949 950 /// Write a record that will eventually hold the word offset of the 951 /// module-level VST. For now the offset is 0, which will be backpatched 952 /// after the real VST is written. Saves the bit offset to backpatch. 953 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 954 // Write a placeholder value in for the offset of the real VST, 955 // which is written after the function blocks so that it can include 956 // the offset of each function. The placeholder offset will be 957 // updated when the real VST is written. 958 auto Abbv = std::make_shared<BitCodeAbbrev>(); 959 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 960 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 961 // hold the real VST offset. Must use fixed instead of VBR as we don't 962 // know how many VBR chunks to reserve ahead of time. 963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 964 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 965 966 // Emit the placeholder 967 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 968 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 969 970 // Compute and save the bit offset to the placeholder, which will be 971 // patched when the real VST is written. We can simply subtract the 32-bit 972 // fixed size from the current bit number to get the location to backpatch. 973 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 974 } 975 976 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 977 978 /// Determine the encoding to use for the given string name and length. 979 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 980 bool isChar6 = true; 981 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 982 if (isChar6) 983 isChar6 = BitCodeAbbrevOp::isChar6(*C); 984 if ((unsigned char)*C & 128) 985 // don't bother scanning the rest. 986 return SE_Fixed8; 987 } 988 if (isChar6) 989 return SE_Char6; 990 else 991 return SE_Fixed7; 992 } 993 994 /// Emit top-level description of module, including target triple, inline asm, 995 /// descriptors for global variables, and function prototype info. 996 /// Returns the bit offset to backpatch with the location of the real VST. 997 void ModuleBitcodeWriter::writeModuleInfo() { 998 // Emit various pieces of data attached to a module. 999 if (!M.getTargetTriple().empty()) 1000 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1001 0 /*TODO*/); 1002 const std::string &DL = M.getDataLayoutStr(); 1003 if (!DL.empty()) 1004 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1005 if (!M.getModuleInlineAsm().empty()) 1006 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1007 0 /*TODO*/); 1008 1009 // Emit information about sections and GC, computing how many there are. Also 1010 // compute the maximum alignment value. 1011 std::map<std::string, unsigned> SectionMap; 1012 std::map<std::string, unsigned> GCMap; 1013 unsigned MaxAlignment = 0; 1014 unsigned MaxGlobalType = 0; 1015 for (const GlobalValue &GV : M.globals()) { 1016 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1017 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1018 if (GV.hasSection()) { 1019 // Give section names unique ID's. 1020 unsigned &Entry = SectionMap[GV.getSection()]; 1021 if (!Entry) { 1022 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1023 0 /*TODO*/); 1024 Entry = SectionMap.size(); 1025 } 1026 } 1027 } 1028 for (const Function &F : M) { 1029 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1030 if (F.hasSection()) { 1031 // Give section names unique ID's. 1032 unsigned &Entry = SectionMap[F.getSection()]; 1033 if (!Entry) { 1034 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1035 0 /*TODO*/); 1036 Entry = SectionMap.size(); 1037 } 1038 } 1039 if (F.hasGC()) { 1040 // Same for GC names. 1041 unsigned &Entry = GCMap[F.getGC()]; 1042 if (!Entry) { 1043 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1044 0 /*TODO*/); 1045 Entry = GCMap.size(); 1046 } 1047 } 1048 } 1049 1050 // Emit abbrev for globals, now that we know # sections and max alignment. 1051 unsigned SimpleGVarAbbrev = 0; 1052 if (!M.global_empty()) { 1053 // Add an abbrev for common globals with no visibility or thread localness. 1054 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1055 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1059 Log2_32_Ceil(MaxGlobalType+1))); 1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1061 //| explicitType << 1 1062 //| constant 1063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1065 if (MaxAlignment == 0) // Alignment. 1066 Abbv->Add(BitCodeAbbrevOp(0)); 1067 else { 1068 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1070 Log2_32_Ceil(MaxEncAlignment+1))); 1071 } 1072 if (SectionMap.empty()) // Section. 1073 Abbv->Add(BitCodeAbbrevOp(0)); 1074 else 1075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1076 Log2_32_Ceil(SectionMap.size()+1))); 1077 // Don't bother emitting vis + thread local. 1078 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1079 } 1080 1081 SmallVector<unsigned, 64> Vals; 1082 // Emit the module's source file name. 1083 { 1084 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1085 M.getSourceFileName().size()); 1086 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1087 if (Bits == SE_Char6) 1088 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1089 else if (Bits == SE_Fixed7) 1090 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1091 1092 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1093 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1094 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1096 Abbv->Add(AbbrevOpToUse); 1097 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1098 1099 for (const auto P : M.getSourceFileName()) 1100 Vals.push_back((unsigned char)P); 1101 1102 // Emit the finished record. 1103 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1104 Vals.clear(); 1105 } 1106 1107 // Emit the global variable information. 1108 for (const GlobalVariable &GV : M.globals()) { 1109 unsigned AbbrevToUse = 0; 1110 1111 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1112 // linkage, alignment, section, visibility, threadlocal, 1113 // unnamed_addr, externally_initialized, dllstorageclass, 1114 // comdat, attributes] 1115 Vals.push_back(StrtabBuilder.add(GV.getName())); 1116 Vals.push_back(GV.getName().size()); 1117 Vals.push_back(VE.getTypeID(GV.getValueType())); 1118 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1119 Vals.push_back(GV.isDeclaration() ? 0 : 1120 (VE.getValueID(GV.getInitializer()) + 1)); 1121 Vals.push_back(getEncodedLinkage(GV)); 1122 Vals.push_back(Log2_32(GV.getAlignment())+1); 1123 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1124 if (GV.isThreadLocal() || 1125 GV.getVisibility() != GlobalValue::DefaultVisibility || 1126 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1127 GV.isExternallyInitialized() || 1128 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1129 GV.hasComdat() || 1130 GV.hasAttributes()) { 1131 Vals.push_back(getEncodedVisibility(GV)); 1132 Vals.push_back(getEncodedThreadLocalMode(GV)); 1133 Vals.push_back(getEncodedUnnamedAddr(GV)); 1134 Vals.push_back(GV.isExternallyInitialized()); 1135 Vals.push_back(getEncodedDLLStorageClass(GV)); 1136 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1137 1138 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1139 Vals.push_back(VE.getAttributeListID(AL)); 1140 } else { 1141 AbbrevToUse = SimpleGVarAbbrev; 1142 } 1143 1144 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1145 Vals.clear(); 1146 } 1147 1148 // Emit the function proto information. 1149 for (const Function &F : M) { 1150 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1151 // linkage, paramattrs, alignment, section, visibility, gc, 1152 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1153 // prefixdata, personalityfn] 1154 Vals.push_back(StrtabBuilder.add(F.getName())); 1155 Vals.push_back(F.getName().size()); 1156 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1157 Vals.push_back(F.getCallingConv()); 1158 Vals.push_back(F.isDeclaration()); 1159 Vals.push_back(getEncodedLinkage(F)); 1160 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1161 Vals.push_back(Log2_32(F.getAlignment())+1); 1162 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1163 Vals.push_back(getEncodedVisibility(F)); 1164 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1165 Vals.push_back(getEncodedUnnamedAddr(F)); 1166 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1167 : 0); 1168 Vals.push_back(getEncodedDLLStorageClass(F)); 1169 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1170 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1171 : 0); 1172 Vals.push_back( 1173 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1174 1175 unsigned AbbrevToUse = 0; 1176 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1177 Vals.clear(); 1178 } 1179 1180 // Emit the alias information. 1181 for (const GlobalAlias &A : M.aliases()) { 1182 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1183 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1184 Vals.push_back(StrtabBuilder.add(A.getName())); 1185 Vals.push_back(A.getName().size()); 1186 Vals.push_back(VE.getTypeID(A.getValueType())); 1187 Vals.push_back(A.getType()->getAddressSpace()); 1188 Vals.push_back(VE.getValueID(A.getAliasee())); 1189 Vals.push_back(getEncodedLinkage(A)); 1190 Vals.push_back(getEncodedVisibility(A)); 1191 Vals.push_back(getEncodedDLLStorageClass(A)); 1192 Vals.push_back(getEncodedThreadLocalMode(A)); 1193 Vals.push_back(getEncodedUnnamedAddr(A)); 1194 unsigned AbbrevToUse = 0; 1195 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1196 Vals.clear(); 1197 } 1198 1199 // Emit the ifunc information. 1200 for (const GlobalIFunc &I : M.ifuncs()) { 1201 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1202 // val#, linkage, visibility] 1203 Vals.push_back(StrtabBuilder.add(I.getName())); 1204 Vals.push_back(I.getName().size()); 1205 Vals.push_back(VE.getTypeID(I.getValueType())); 1206 Vals.push_back(I.getType()->getAddressSpace()); 1207 Vals.push_back(VE.getValueID(I.getResolver())); 1208 Vals.push_back(getEncodedLinkage(I)); 1209 Vals.push_back(getEncodedVisibility(I)); 1210 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1211 Vals.clear(); 1212 } 1213 1214 writeValueSymbolTableForwardDecl(); 1215 } 1216 1217 static uint64_t getOptimizationFlags(const Value *V) { 1218 uint64_t Flags = 0; 1219 1220 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1221 if (OBO->hasNoSignedWrap()) 1222 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1223 if (OBO->hasNoUnsignedWrap()) 1224 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1225 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1226 if (PEO->isExact()) 1227 Flags |= 1 << bitc::PEO_EXACT; 1228 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1229 if (FPMO->hasUnsafeAlgebra()) 1230 Flags |= FastMathFlags::UnsafeAlgebra; 1231 if (FPMO->hasNoNaNs()) 1232 Flags |= FastMathFlags::NoNaNs; 1233 if (FPMO->hasNoInfs()) 1234 Flags |= FastMathFlags::NoInfs; 1235 if (FPMO->hasNoSignedZeros()) 1236 Flags |= FastMathFlags::NoSignedZeros; 1237 if (FPMO->hasAllowReciprocal()) 1238 Flags |= FastMathFlags::AllowReciprocal; 1239 if (FPMO->hasAllowContract()) 1240 Flags |= FastMathFlags::AllowContract; 1241 } 1242 1243 return Flags; 1244 } 1245 1246 void ModuleBitcodeWriter::writeValueAsMetadata( 1247 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1248 // Mimic an MDNode with a value as one operand. 1249 Value *V = MD->getValue(); 1250 Record.push_back(VE.getTypeID(V->getType())); 1251 Record.push_back(VE.getValueID(V)); 1252 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1253 Record.clear(); 1254 } 1255 1256 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1257 SmallVectorImpl<uint64_t> &Record, 1258 unsigned Abbrev) { 1259 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1260 Metadata *MD = N->getOperand(i); 1261 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1262 "Unexpected function-local metadata"); 1263 Record.push_back(VE.getMetadataOrNullID(MD)); 1264 } 1265 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1266 : bitc::METADATA_NODE, 1267 Record, Abbrev); 1268 Record.clear(); 1269 } 1270 1271 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1272 // Assume the column is usually under 128, and always output the inlined-at 1273 // location (it's never more expensive than building an array size 1). 1274 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1275 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1281 return Stream.EmitAbbrev(std::move(Abbv)); 1282 } 1283 1284 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1285 SmallVectorImpl<uint64_t> &Record, 1286 unsigned &Abbrev) { 1287 if (!Abbrev) 1288 Abbrev = createDILocationAbbrev(); 1289 1290 Record.push_back(N->isDistinct()); 1291 Record.push_back(N->getLine()); 1292 Record.push_back(N->getColumn()); 1293 Record.push_back(VE.getMetadataID(N->getScope())); 1294 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1295 1296 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1297 Record.clear(); 1298 } 1299 1300 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1301 // Assume the column is usually under 128, and always output the inlined-at 1302 // location (it's never more expensive than building an array size 1). 1303 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1304 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1311 return Stream.EmitAbbrev(std::move(Abbv)); 1312 } 1313 1314 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1315 SmallVectorImpl<uint64_t> &Record, 1316 unsigned &Abbrev) { 1317 if (!Abbrev) 1318 Abbrev = createGenericDINodeAbbrev(); 1319 1320 Record.push_back(N->isDistinct()); 1321 Record.push_back(N->getTag()); 1322 Record.push_back(0); // Per-tag version field; unused for now. 1323 1324 for (auto &I : N->operands()) 1325 Record.push_back(VE.getMetadataOrNullID(I)); 1326 1327 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1328 Record.clear(); 1329 } 1330 1331 static uint64_t rotateSign(int64_t I) { 1332 uint64_t U = I; 1333 return I < 0 ? ~(U << 1) : U << 1; 1334 } 1335 1336 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1337 SmallVectorImpl<uint64_t> &Record, 1338 unsigned Abbrev) { 1339 Record.push_back(N->isDistinct()); 1340 Record.push_back(N->getCount()); 1341 Record.push_back(rotateSign(N->getLowerBound())); 1342 1343 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1344 Record.clear(); 1345 } 1346 1347 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1348 SmallVectorImpl<uint64_t> &Record, 1349 unsigned Abbrev) { 1350 Record.push_back(N->isDistinct()); 1351 Record.push_back(rotateSign(N->getValue())); 1352 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1353 1354 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1355 Record.clear(); 1356 } 1357 1358 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1359 SmallVectorImpl<uint64_t> &Record, 1360 unsigned Abbrev) { 1361 Record.push_back(N->isDistinct()); 1362 Record.push_back(N->getTag()); 1363 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1364 Record.push_back(N->getSizeInBits()); 1365 Record.push_back(N->getAlignInBits()); 1366 Record.push_back(N->getEncoding()); 1367 1368 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1369 Record.clear(); 1370 } 1371 1372 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1373 SmallVectorImpl<uint64_t> &Record, 1374 unsigned Abbrev) { 1375 Record.push_back(N->isDistinct()); 1376 Record.push_back(N->getTag()); 1377 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1378 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1379 Record.push_back(N->getLine()); 1380 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1381 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1382 Record.push_back(N->getSizeInBits()); 1383 Record.push_back(N->getAlignInBits()); 1384 Record.push_back(N->getOffsetInBits()); 1385 Record.push_back(N->getFlags()); 1386 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1387 1388 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1389 // that there is no DWARF address space associated with DIDerivedType. 1390 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1391 Record.push_back(*DWARFAddressSpace + 1); 1392 else 1393 Record.push_back(0); 1394 1395 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1396 Record.clear(); 1397 } 1398 1399 void ModuleBitcodeWriter::writeDICompositeType( 1400 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1401 unsigned Abbrev) { 1402 const unsigned IsNotUsedInOldTypeRef = 0x2; 1403 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1404 Record.push_back(N->getTag()); 1405 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1406 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1407 Record.push_back(N->getLine()); 1408 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1409 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1410 Record.push_back(N->getSizeInBits()); 1411 Record.push_back(N->getAlignInBits()); 1412 Record.push_back(N->getOffsetInBits()); 1413 Record.push_back(N->getFlags()); 1414 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1415 Record.push_back(N->getRuntimeLang()); 1416 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1417 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1418 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1419 1420 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1421 Record.clear(); 1422 } 1423 1424 void ModuleBitcodeWriter::writeDISubroutineType( 1425 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1426 unsigned Abbrev) { 1427 const unsigned HasNoOldTypeRefs = 0x2; 1428 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1429 Record.push_back(N->getFlags()); 1430 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1431 Record.push_back(N->getCC()); 1432 1433 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1434 Record.clear(); 1435 } 1436 1437 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1438 SmallVectorImpl<uint64_t> &Record, 1439 unsigned Abbrev) { 1440 Record.push_back(N->isDistinct()); 1441 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1442 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1443 Record.push_back(N->getChecksumKind()); 1444 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1445 1446 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1447 Record.clear(); 1448 } 1449 1450 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1451 SmallVectorImpl<uint64_t> &Record, 1452 unsigned Abbrev) { 1453 assert(N->isDistinct() && "Expected distinct compile units"); 1454 Record.push_back(/* IsDistinct */ true); 1455 Record.push_back(N->getSourceLanguage()); 1456 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1457 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1458 Record.push_back(N->isOptimized()); 1459 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1460 Record.push_back(N->getRuntimeVersion()); 1461 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1462 Record.push_back(N->getEmissionKind()); 1463 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1464 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1465 Record.push_back(/* subprograms */ 0); 1466 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1467 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1468 Record.push_back(N->getDWOId()); 1469 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1470 Record.push_back(N->getSplitDebugInlining()); 1471 Record.push_back(N->getDebugInfoForProfiling()); 1472 1473 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1474 Record.clear(); 1475 } 1476 1477 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1478 SmallVectorImpl<uint64_t> &Record, 1479 unsigned Abbrev) { 1480 uint64_t HasUnitFlag = 1 << 1; 1481 Record.push_back(N->isDistinct() | HasUnitFlag); 1482 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1483 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1484 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1485 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1486 Record.push_back(N->getLine()); 1487 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1488 Record.push_back(N->isLocalToUnit()); 1489 Record.push_back(N->isDefinition()); 1490 Record.push_back(N->getScopeLine()); 1491 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1492 Record.push_back(N->getVirtuality()); 1493 Record.push_back(N->getVirtualIndex()); 1494 Record.push_back(N->getFlags()); 1495 Record.push_back(N->isOptimized()); 1496 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1497 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1498 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1499 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1500 Record.push_back(N->getThisAdjustment()); 1501 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1502 1503 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1504 Record.clear(); 1505 } 1506 1507 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1508 SmallVectorImpl<uint64_t> &Record, 1509 unsigned Abbrev) { 1510 Record.push_back(N->isDistinct()); 1511 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1512 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1513 Record.push_back(N->getLine()); 1514 Record.push_back(N->getColumn()); 1515 1516 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1517 Record.clear(); 1518 } 1519 1520 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1521 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1522 unsigned Abbrev) { 1523 Record.push_back(N->isDistinct()); 1524 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1525 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1526 Record.push_back(N->getDiscriminator()); 1527 1528 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1529 Record.clear(); 1530 } 1531 1532 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1533 SmallVectorImpl<uint64_t> &Record, 1534 unsigned Abbrev) { 1535 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1536 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1537 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1538 1539 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1540 Record.clear(); 1541 } 1542 1543 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1544 SmallVectorImpl<uint64_t> &Record, 1545 unsigned Abbrev) { 1546 Record.push_back(N->isDistinct()); 1547 Record.push_back(N->getMacinfoType()); 1548 Record.push_back(N->getLine()); 1549 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1550 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1551 1552 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1553 Record.clear(); 1554 } 1555 1556 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1557 SmallVectorImpl<uint64_t> &Record, 1558 unsigned Abbrev) { 1559 Record.push_back(N->isDistinct()); 1560 Record.push_back(N->getMacinfoType()); 1561 Record.push_back(N->getLine()); 1562 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1563 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1564 1565 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1566 Record.clear(); 1567 } 1568 1569 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1570 SmallVectorImpl<uint64_t> &Record, 1571 unsigned Abbrev) { 1572 Record.push_back(N->isDistinct()); 1573 for (auto &I : N->operands()) 1574 Record.push_back(VE.getMetadataOrNullID(I)); 1575 1576 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1577 Record.clear(); 1578 } 1579 1580 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1581 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1582 unsigned Abbrev) { 1583 Record.push_back(N->isDistinct()); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1586 1587 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1588 Record.clear(); 1589 } 1590 1591 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1592 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1593 unsigned Abbrev) { 1594 Record.push_back(N->isDistinct()); 1595 Record.push_back(N->getTag()); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1599 1600 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1601 Record.clear(); 1602 } 1603 1604 void ModuleBitcodeWriter::writeDIGlobalVariable( 1605 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1606 unsigned Abbrev) { 1607 const uint64_t Version = 1 << 1; 1608 Record.push_back((uint64_t)N->isDistinct() | Version); 1609 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1610 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1611 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1612 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1613 Record.push_back(N->getLine()); 1614 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1615 Record.push_back(N->isLocalToUnit()); 1616 Record.push_back(N->isDefinition()); 1617 Record.push_back(/* expr */ 0); 1618 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1619 Record.push_back(N->getAlignInBits()); 1620 1621 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1622 Record.clear(); 1623 } 1624 1625 void ModuleBitcodeWriter::writeDILocalVariable( 1626 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1627 unsigned Abbrev) { 1628 // In order to support all possible bitcode formats in BitcodeReader we need 1629 // to distinguish the following cases: 1630 // 1) Record has no artificial tag (Record[1]), 1631 // has no obsolete inlinedAt field (Record[9]). 1632 // In this case Record size will be 8, HasAlignment flag is false. 1633 // 2) Record has artificial tag (Record[1]), 1634 // has no obsolete inlignedAt field (Record[9]). 1635 // In this case Record size will be 9, HasAlignment flag is false. 1636 // 3) Record has both artificial tag (Record[1]) and 1637 // obsolete inlignedAt field (Record[9]). 1638 // In this case Record size will be 10, HasAlignment flag is false. 1639 // 4) Record has neither artificial tag, nor inlignedAt field, but 1640 // HasAlignment flag is true and Record[8] contains alignment value. 1641 const uint64_t HasAlignmentFlag = 1 << 1; 1642 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1643 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1644 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1645 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1646 Record.push_back(N->getLine()); 1647 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1648 Record.push_back(N->getArg()); 1649 Record.push_back(N->getFlags()); 1650 Record.push_back(N->getAlignInBits()); 1651 1652 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1653 Record.clear(); 1654 } 1655 1656 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1657 SmallVectorImpl<uint64_t> &Record, 1658 unsigned Abbrev) { 1659 Record.reserve(N->getElements().size() + 1); 1660 const uint64_t Version = 2 << 1; 1661 Record.push_back((uint64_t)N->isDistinct() | Version); 1662 Record.append(N->elements_begin(), N->elements_end()); 1663 1664 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1665 Record.clear(); 1666 } 1667 1668 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1669 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1670 unsigned Abbrev) { 1671 Record.push_back(N->isDistinct()); 1672 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1673 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1674 1675 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1676 Record.clear(); 1677 } 1678 1679 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1680 SmallVectorImpl<uint64_t> &Record, 1681 unsigned Abbrev) { 1682 Record.push_back(N->isDistinct()); 1683 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1684 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1685 Record.push_back(N->getLine()); 1686 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1688 Record.push_back(N->getAttributes()); 1689 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1690 1691 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1692 Record.clear(); 1693 } 1694 1695 void ModuleBitcodeWriter::writeDIImportedEntity( 1696 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1697 unsigned Abbrev) { 1698 Record.push_back(N->isDistinct()); 1699 Record.push_back(N->getTag()); 1700 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1701 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1702 Record.push_back(N->getLine()); 1703 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1704 1705 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1706 Record.clear(); 1707 } 1708 1709 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1710 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1711 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1714 return Stream.EmitAbbrev(std::move(Abbv)); 1715 } 1716 1717 void ModuleBitcodeWriter::writeNamedMetadata( 1718 SmallVectorImpl<uint64_t> &Record) { 1719 if (M.named_metadata_empty()) 1720 return; 1721 1722 unsigned Abbrev = createNamedMetadataAbbrev(); 1723 for (const NamedMDNode &NMD : M.named_metadata()) { 1724 // Write name. 1725 StringRef Str = NMD.getName(); 1726 Record.append(Str.bytes_begin(), Str.bytes_end()); 1727 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1728 Record.clear(); 1729 1730 // Write named metadata operands. 1731 for (const MDNode *N : NMD.operands()) 1732 Record.push_back(VE.getMetadataID(N)); 1733 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1734 Record.clear(); 1735 } 1736 } 1737 1738 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1739 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1740 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1744 return Stream.EmitAbbrev(std::move(Abbv)); 1745 } 1746 1747 /// Write out a record for MDString. 1748 /// 1749 /// All the metadata strings in a metadata block are emitted in a single 1750 /// record. The sizes and strings themselves are shoved into a blob. 1751 void ModuleBitcodeWriter::writeMetadataStrings( 1752 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1753 if (Strings.empty()) 1754 return; 1755 1756 // Start the record with the number of strings. 1757 Record.push_back(bitc::METADATA_STRINGS); 1758 Record.push_back(Strings.size()); 1759 1760 // Emit the sizes of the strings in the blob. 1761 SmallString<256> Blob; 1762 { 1763 BitstreamWriter W(Blob); 1764 for (const Metadata *MD : Strings) 1765 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1766 W.FlushToWord(); 1767 } 1768 1769 // Add the offset to the strings to the record. 1770 Record.push_back(Blob.size()); 1771 1772 // Add the strings to the blob. 1773 for (const Metadata *MD : Strings) 1774 Blob.append(cast<MDString>(MD)->getString()); 1775 1776 // Emit the final record. 1777 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1778 Record.clear(); 1779 } 1780 1781 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1782 enum MetadataAbbrev : unsigned { 1783 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1784 #include "llvm/IR/Metadata.def" 1785 LastPlusOne 1786 }; 1787 1788 void ModuleBitcodeWriter::writeMetadataRecords( 1789 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1790 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1791 if (MDs.empty()) 1792 return; 1793 1794 // Initialize MDNode abbreviations. 1795 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1796 #include "llvm/IR/Metadata.def" 1797 1798 for (const Metadata *MD : MDs) { 1799 if (IndexPos) 1800 IndexPos->push_back(Stream.GetCurrentBitNo()); 1801 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1802 assert(N->isResolved() && "Expected forward references to be resolved"); 1803 1804 switch (N->getMetadataID()) { 1805 default: 1806 llvm_unreachable("Invalid MDNode subclass"); 1807 #define HANDLE_MDNODE_LEAF(CLASS) \ 1808 case Metadata::CLASS##Kind: \ 1809 if (MDAbbrevs) \ 1810 write##CLASS(cast<CLASS>(N), Record, \ 1811 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1812 else \ 1813 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1814 continue; 1815 #include "llvm/IR/Metadata.def" 1816 } 1817 } 1818 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1819 } 1820 } 1821 1822 void ModuleBitcodeWriter::writeModuleMetadata() { 1823 if (!VE.hasMDs() && M.named_metadata_empty()) 1824 return; 1825 1826 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1827 SmallVector<uint64_t, 64> Record; 1828 1829 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1830 // block and load any metadata. 1831 std::vector<unsigned> MDAbbrevs; 1832 1833 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1834 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1835 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1836 createGenericDINodeAbbrev(); 1837 1838 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1839 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1842 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1843 1844 Abbv = std::make_shared<BitCodeAbbrev>(); 1845 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1848 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1849 1850 // Emit MDStrings together upfront. 1851 writeMetadataStrings(VE.getMDStrings(), Record); 1852 1853 // We only emit an index for the metadata record if we have more than a given 1854 // (naive) threshold of metadatas, otherwise it is not worth it. 1855 if (VE.getNonMDStrings().size() > IndexThreshold) { 1856 // Write a placeholder value in for the offset of the metadata index, 1857 // which is written after the records, so that it can include 1858 // the offset of each entry. The placeholder offset will be 1859 // updated after all records are emitted. 1860 uint64_t Vals[] = {0, 0}; 1861 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1862 } 1863 1864 // Compute and save the bit offset to the current position, which will be 1865 // patched when we emit the index later. We can simply subtract the 64-bit 1866 // fixed size from the current bit number to get the location to backpatch. 1867 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1868 1869 // This index will contain the bitpos for each individual record. 1870 std::vector<uint64_t> IndexPos; 1871 IndexPos.reserve(VE.getNonMDStrings().size()); 1872 1873 // Write all the records 1874 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1875 1876 if (VE.getNonMDStrings().size() > IndexThreshold) { 1877 // Now that we have emitted all the records we will emit the index. But 1878 // first 1879 // backpatch the forward reference so that the reader can skip the records 1880 // efficiently. 1881 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1882 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1883 1884 // Delta encode the index. 1885 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1886 for (auto &Elt : IndexPos) { 1887 auto EltDelta = Elt - PreviousValue; 1888 PreviousValue = Elt; 1889 Elt = EltDelta; 1890 } 1891 // Emit the index record. 1892 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1893 IndexPos.clear(); 1894 } 1895 1896 // Write the named metadata now. 1897 writeNamedMetadata(Record); 1898 1899 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1900 SmallVector<uint64_t, 4> Record; 1901 Record.push_back(VE.getValueID(&GO)); 1902 pushGlobalMetadataAttachment(Record, GO); 1903 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1904 }; 1905 for (const Function &F : M) 1906 if (F.isDeclaration() && F.hasMetadata()) 1907 AddDeclAttachedMetadata(F); 1908 // FIXME: Only store metadata for declarations here, and move data for global 1909 // variable definitions to a separate block (PR28134). 1910 for (const GlobalVariable &GV : M.globals()) 1911 if (GV.hasMetadata()) 1912 AddDeclAttachedMetadata(GV); 1913 1914 Stream.ExitBlock(); 1915 } 1916 1917 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1918 if (!VE.hasMDs()) 1919 return; 1920 1921 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1922 SmallVector<uint64_t, 64> Record; 1923 writeMetadataStrings(VE.getMDStrings(), Record); 1924 writeMetadataRecords(VE.getNonMDStrings(), Record); 1925 Stream.ExitBlock(); 1926 } 1927 1928 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1929 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1930 // [n x [id, mdnode]] 1931 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1932 GO.getAllMetadata(MDs); 1933 for (const auto &I : MDs) { 1934 Record.push_back(I.first); 1935 Record.push_back(VE.getMetadataID(I.second)); 1936 } 1937 } 1938 1939 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1940 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1941 1942 SmallVector<uint64_t, 64> Record; 1943 1944 if (F.hasMetadata()) { 1945 pushGlobalMetadataAttachment(Record, F); 1946 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1947 Record.clear(); 1948 } 1949 1950 // Write metadata attachments 1951 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1952 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1953 for (const BasicBlock &BB : F) 1954 for (const Instruction &I : BB) { 1955 MDs.clear(); 1956 I.getAllMetadataOtherThanDebugLoc(MDs); 1957 1958 // If no metadata, ignore instruction. 1959 if (MDs.empty()) continue; 1960 1961 Record.push_back(VE.getInstructionID(&I)); 1962 1963 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1964 Record.push_back(MDs[i].first); 1965 Record.push_back(VE.getMetadataID(MDs[i].second)); 1966 } 1967 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1968 Record.clear(); 1969 } 1970 1971 Stream.ExitBlock(); 1972 } 1973 1974 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 1975 SmallVector<uint64_t, 64> Record; 1976 1977 // Write metadata kinds 1978 // METADATA_KIND - [n x [id, name]] 1979 SmallVector<StringRef, 8> Names; 1980 M.getMDKindNames(Names); 1981 1982 if (Names.empty()) return; 1983 1984 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1985 1986 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1987 Record.push_back(MDKindID); 1988 StringRef KName = Names[MDKindID]; 1989 Record.append(KName.begin(), KName.end()); 1990 1991 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1992 Record.clear(); 1993 } 1994 1995 Stream.ExitBlock(); 1996 } 1997 1998 void ModuleBitcodeWriter::writeOperandBundleTags() { 1999 // Write metadata kinds 2000 // 2001 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2002 // 2003 // OPERAND_BUNDLE_TAG - [strchr x N] 2004 2005 SmallVector<StringRef, 8> Tags; 2006 M.getOperandBundleTags(Tags); 2007 2008 if (Tags.empty()) 2009 return; 2010 2011 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2012 2013 SmallVector<uint64_t, 64> Record; 2014 2015 for (auto Tag : Tags) { 2016 Record.append(Tag.begin(), Tag.end()); 2017 2018 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2019 Record.clear(); 2020 } 2021 2022 Stream.ExitBlock(); 2023 } 2024 2025 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2026 if ((int64_t)V >= 0) 2027 Vals.push_back(V << 1); 2028 else 2029 Vals.push_back((-V << 1) | 1); 2030 } 2031 2032 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2033 bool isGlobal) { 2034 if (FirstVal == LastVal) return; 2035 2036 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2037 2038 unsigned AggregateAbbrev = 0; 2039 unsigned String8Abbrev = 0; 2040 unsigned CString7Abbrev = 0; 2041 unsigned CString6Abbrev = 0; 2042 // If this is a constant pool for the module, emit module-specific abbrevs. 2043 if (isGlobal) { 2044 // Abbrev for CST_CODE_AGGREGATE. 2045 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2046 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2049 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2050 2051 // Abbrev for CST_CODE_STRING. 2052 Abbv = std::make_shared<BitCodeAbbrev>(); 2053 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2056 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2057 // Abbrev for CST_CODE_CSTRING. 2058 Abbv = std::make_shared<BitCodeAbbrev>(); 2059 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2062 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2063 // Abbrev for CST_CODE_CSTRING. 2064 Abbv = std::make_shared<BitCodeAbbrev>(); 2065 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2068 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2069 } 2070 2071 SmallVector<uint64_t, 64> Record; 2072 2073 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2074 Type *LastTy = nullptr; 2075 for (unsigned i = FirstVal; i != LastVal; ++i) { 2076 const Value *V = Vals[i].first; 2077 // If we need to switch types, do so now. 2078 if (V->getType() != LastTy) { 2079 LastTy = V->getType(); 2080 Record.push_back(VE.getTypeID(LastTy)); 2081 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2082 CONSTANTS_SETTYPE_ABBREV); 2083 Record.clear(); 2084 } 2085 2086 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2087 Record.push_back(unsigned(IA->hasSideEffects()) | 2088 unsigned(IA->isAlignStack()) << 1 | 2089 unsigned(IA->getDialect()&1) << 2); 2090 2091 // Add the asm string. 2092 const std::string &AsmStr = IA->getAsmString(); 2093 Record.push_back(AsmStr.size()); 2094 Record.append(AsmStr.begin(), AsmStr.end()); 2095 2096 // Add the constraint string. 2097 const std::string &ConstraintStr = IA->getConstraintString(); 2098 Record.push_back(ConstraintStr.size()); 2099 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2100 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2101 Record.clear(); 2102 continue; 2103 } 2104 const Constant *C = cast<Constant>(V); 2105 unsigned Code = -1U; 2106 unsigned AbbrevToUse = 0; 2107 if (C->isNullValue()) { 2108 Code = bitc::CST_CODE_NULL; 2109 } else if (isa<UndefValue>(C)) { 2110 Code = bitc::CST_CODE_UNDEF; 2111 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2112 if (IV->getBitWidth() <= 64) { 2113 uint64_t V = IV->getSExtValue(); 2114 emitSignedInt64(Record, V); 2115 Code = bitc::CST_CODE_INTEGER; 2116 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2117 } else { // Wide integers, > 64 bits in size. 2118 // We have an arbitrary precision integer value to write whose 2119 // bit width is > 64. However, in canonical unsigned integer 2120 // format it is likely that the high bits are going to be zero. 2121 // So, we only write the number of active words. 2122 unsigned NWords = IV->getValue().getActiveWords(); 2123 const uint64_t *RawWords = IV->getValue().getRawData(); 2124 for (unsigned i = 0; i != NWords; ++i) { 2125 emitSignedInt64(Record, RawWords[i]); 2126 } 2127 Code = bitc::CST_CODE_WIDE_INTEGER; 2128 } 2129 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2130 Code = bitc::CST_CODE_FLOAT; 2131 Type *Ty = CFP->getType(); 2132 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2133 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2134 } else if (Ty->isX86_FP80Ty()) { 2135 // api needed to prevent premature destruction 2136 // bits are not in the same order as a normal i80 APInt, compensate. 2137 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2138 const uint64_t *p = api.getRawData(); 2139 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2140 Record.push_back(p[0] & 0xffffLL); 2141 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2142 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2143 const uint64_t *p = api.getRawData(); 2144 Record.push_back(p[0]); 2145 Record.push_back(p[1]); 2146 } else { 2147 assert (0 && "Unknown FP type!"); 2148 } 2149 } else if (isa<ConstantDataSequential>(C) && 2150 cast<ConstantDataSequential>(C)->isString()) { 2151 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2152 // Emit constant strings specially. 2153 unsigned NumElts = Str->getNumElements(); 2154 // If this is a null-terminated string, use the denser CSTRING encoding. 2155 if (Str->isCString()) { 2156 Code = bitc::CST_CODE_CSTRING; 2157 --NumElts; // Don't encode the null, which isn't allowed by char6. 2158 } else { 2159 Code = bitc::CST_CODE_STRING; 2160 AbbrevToUse = String8Abbrev; 2161 } 2162 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2163 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2164 for (unsigned i = 0; i != NumElts; ++i) { 2165 unsigned char V = Str->getElementAsInteger(i); 2166 Record.push_back(V); 2167 isCStr7 &= (V & 128) == 0; 2168 if (isCStrChar6) 2169 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2170 } 2171 2172 if (isCStrChar6) 2173 AbbrevToUse = CString6Abbrev; 2174 else if (isCStr7) 2175 AbbrevToUse = CString7Abbrev; 2176 } else if (const ConstantDataSequential *CDS = 2177 dyn_cast<ConstantDataSequential>(C)) { 2178 Code = bitc::CST_CODE_DATA; 2179 Type *EltTy = CDS->getType()->getElementType(); 2180 if (isa<IntegerType>(EltTy)) { 2181 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2182 Record.push_back(CDS->getElementAsInteger(i)); 2183 } else { 2184 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2185 Record.push_back( 2186 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2187 } 2188 } else if (isa<ConstantAggregate>(C)) { 2189 Code = bitc::CST_CODE_AGGREGATE; 2190 for (const Value *Op : C->operands()) 2191 Record.push_back(VE.getValueID(Op)); 2192 AbbrevToUse = AggregateAbbrev; 2193 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2194 switch (CE->getOpcode()) { 2195 default: 2196 if (Instruction::isCast(CE->getOpcode())) { 2197 Code = bitc::CST_CODE_CE_CAST; 2198 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2199 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2200 Record.push_back(VE.getValueID(C->getOperand(0))); 2201 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2202 } else { 2203 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2204 Code = bitc::CST_CODE_CE_BINOP; 2205 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2206 Record.push_back(VE.getValueID(C->getOperand(0))); 2207 Record.push_back(VE.getValueID(C->getOperand(1))); 2208 uint64_t Flags = getOptimizationFlags(CE); 2209 if (Flags != 0) 2210 Record.push_back(Flags); 2211 } 2212 break; 2213 case Instruction::GetElementPtr: { 2214 Code = bitc::CST_CODE_CE_GEP; 2215 const auto *GO = cast<GEPOperator>(C); 2216 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2217 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2218 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2219 Record.push_back((*Idx << 1) | GO->isInBounds()); 2220 } else if (GO->isInBounds()) 2221 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2222 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2223 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2224 Record.push_back(VE.getValueID(C->getOperand(i))); 2225 } 2226 break; 2227 } 2228 case Instruction::Select: 2229 Code = bitc::CST_CODE_CE_SELECT; 2230 Record.push_back(VE.getValueID(C->getOperand(0))); 2231 Record.push_back(VE.getValueID(C->getOperand(1))); 2232 Record.push_back(VE.getValueID(C->getOperand(2))); 2233 break; 2234 case Instruction::ExtractElement: 2235 Code = bitc::CST_CODE_CE_EXTRACTELT; 2236 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2237 Record.push_back(VE.getValueID(C->getOperand(0))); 2238 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2239 Record.push_back(VE.getValueID(C->getOperand(1))); 2240 break; 2241 case Instruction::InsertElement: 2242 Code = bitc::CST_CODE_CE_INSERTELT; 2243 Record.push_back(VE.getValueID(C->getOperand(0))); 2244 Record.push_back(VE.getValueID(C->getOperand(1))); 2245 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2246 Record.push_back(VE.getValueID(C->getOperand(2))); 2247 break; 2248 case Instruction::ShuffleVector: 2249 // If the return type and argument types are the same, this is a 2250 // standard shufflevector instruction. If the types are different, 2251 // then the shuffle is widening or truncating the input vectors, and 2252 // the argument type must also be encoded. 2253 if (C->getType() == C->getOperand(0)->getType()) { 2254 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2255 } else { 2256 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2257 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2258 } 2259 Record.push_back(VE.getValueID(C->getOperand(0))); 2260 Record.push_back(VE.getValueID(C->getOperand(1))); 2261 Record.push_back(VE.getValueID(C->getOperand(2))); 2262 break; 2263 case Instruction::ICmp: 2264 case Instruction::FCmp: 2265 Code = bitc::CST_CODE_CE_CMP; 2266 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2267 Record.push_back(VE.getValueID(C->getOperand(0))); 2268 Record.push_back(VE.getValueID(C->getOperand(1))); 2269 Record.push_back(CE->getPredicate()); 2270 break; 2271 } 2272 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2273 Code = bitc::CST_CODE_BLOCKADDRESS; 2274 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2275 Record.push_back(VE.getValueID(BA->getFunction())); 2276 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2277 } else { 2278 #ifndef NDEBUG 2279 C->dump(); 2280 #endif 2281 llvm_unreachable("Unknown constant!"); 2282 } 2283 Stream.EmitRecord(Code, Record, AbbrevToUse); 2284 Record.clear(); 2285 } 2286 2287 Stream.ExitBlock(); 2288 } 2289 2290 void ModuleBitcodeWriter::writeModuleConstants() { 2291 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2292 2293 // Find the first constant to emit, which is the first non-globalvalue value. 2294 // We know globalvalues have been emitted by WriteModuleInfo. 2295 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2296 if (!isa<GlobalValue>(Vals[i].first)) { 2297 writeConstants(i, Vals.size(), true); 2298 return; 2299 } 2300 } 2301 } 2302 2303 /// pushValueAndType - The file has to encode both the value and type id for 2304 /// many values, because we need to know what type to create for forward 2305 /// references. However, most operands are not forward references, so this type 2306 /// field is not needed. 2307 /// 2308 /// This function adds V's value ID to Vals. If the value ID is higher than the 2309 /// instruction ID, then it is a forward reference, and it also includes the 2310 /// type ID. The value ID that is written is encoded relative to the InstID. 2311 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2312 SmallVectorImpl<unsigned> &Vals) { 2313 unsigned ValID = VE.getValueID(V); 2314 // Make encoding relative to the InstID. 2315 Vals.push_back(InstID - ValID); 2316 if (ValID >= InstID) { 2317 Vals.push_back(VE.getTypeID(V->getType())); 2318 return true; 2319 } 2320 return false; 2321 } 2322 2323 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2324 unsigned InstID) { 2325 SmallVector<unsigned, 64> Record; 2326 LLVMContext &C = CS.getInstruction()->getContext(); 2327 2328 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2329 const auto &Bundle = CS.getOperandBundleAt(i); 2330 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2331 2332 for (auto &Input : Bundle.Inputs) 2333 pushValueAndType(Input, InstID, Record); 2334 2335 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2336 Record.clear(); 2337 } 2338 } 2339 2340 /// pushValue - Like pushValueAndType, but where the type of the value is 2341 /// omitted (perhaps it was already encoded in an earlier operand). 2342 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2343 SmallVectorImpl<unsigned> &Vals) { 2344 unsigned ValID = VE.getValueID(V); 2345 Vals.push_back(InstID - ValID); 2346 } 2347 2348 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2349 SmallVectorImpl<uint64_t> &Vals) { 2350 unsigned ValID = VE.getValueID(V); 2351 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2352 emitSignedInt64(Vals, diff); 2353 } 2354 2355 /// WriteInstruction - Emit an instruction to the specified stream. 2356 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2357 unsigned InstID, 2358 SmallVectorImpl<unsigned> &Vals) { 2359 unsigned Code = 0; 2360 unsigned AbbrevToUse = 0; 2361 VE.setInstructionID(&I); 2362 switch (I.getOpcode()) { 2363 default: 2364 if (Instruction::isCast(I.getOpcode())) { 2365 Code = bitc::FUNC_CODE_INST_CAST; 2366 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2367 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2368 Vals.push_back(VE.getTypeID(I.getType())); 2369 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2370 } else { 2371 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2372 Code = bitc::FUNC_CODE_INST_BINOP; 2373 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2374 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2375 pushValue(I.getOperand(1), InstID, Vals); 2376 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2377 uint64_t Flags = getOptimizationFlags(&I); 2378 if (Flags != 0) { 2379 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2380 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2381 Vals.push_back(Flags); 2382 } 2383 } 2384 break; 2385 2386 case Instruction::GetElementPtr: { 2387 Code = bitc::FUNC_CODE_INST_GEP; 2388 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2389 auto &GEPInst = cast<GetElementPtrInst>(I); 2390 Vals.push_back(GEPInst.isInBounds()); 2391 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2392 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2393 pushValueAndType(I.getOperand(i), InstID, Vals); 2394 break; 2395 } 2396 case Instruction::ExtractValue: { 2397 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2398 pushValueAndType(I.getOperand(0), InstID, Vals); 2399 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2400 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2401 break; 2402 } 2403 case Instruction::InsertValue: { 2404 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2405 pushValueAndType(I.getOperand(0), InstID, Vals); 2406 pushValueAndType(I.getOperand(1), InstID, Vals); 2407 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2408 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2409 break; 2410 } 2411 case Instruction::Select: 2412 Code = bitc::FUNC_CODE_INST_VSELECT; 2413 pushValueAndType(I.getOperand(1), InstID, Vals); 2414 pushValue(I.getOperand(2), InstID, Vals); 2415 pushValueAndType(I.getOperand(0), InstID, Vals); 2416 break; 2417 case Instruction::ExtractElement: 2418 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2419 pushValueAndType(I.getOperand(0), InstID, Vals); 2420 pushValueAndType(I.getOperand(1), InstID, Vals); 2421 break; 2422 case Instruction::InsertElement: 2423 Code = bitc::FUNC_CODE_INST_INSERTELT; 2424 pushValueAndType(I.getOperand(0), InstID, Vals); 2425 pushValue(I.getOperand(1), InstID, Vals); 2426 pushValueAndType(I.getOperand(2), InstID, Vals); 2427 break; 2428 case Instruction::ShuffleVector: 2429 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2430 pushValueAndType(I.getOperand(0), InstID, Vals); 2431 pushValue(I.getOperand(1), InstID, Vals); 2432 pushValue(I.getOperand(2), InstID, Vals); 2433 break; 2434 case Instruction::ICmp: 2435 case Instruction::FCmp: { 2436 // compare returning Int1Ty or vector of Int1Ty 2437 Code = bitc::FUNC_CODE_INST_CMP2; 2438 pushValueAndType(I.getOperand(0), InstID, Vals); 2439 pushValue(I.getOperand(1), InstID, Vals); 2440 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2441 uint64_t Flags = getOptimizationFlags(&I); 2442 if (Flags != 0) 2443 Vals.push_back(Flags); 2444 break; 2445 } 2446 2447 case Instruction::Ret: 2448 { 2449 Code = bitc::FUNC_CODE_INST_RET; 2450 unsigned NumOperands = I.getNumOperands(); 2451 if (NumOperands == 0) 2452 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2453 else if (NumOperands == 1) { 2454 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2455 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2456 } else { 2457 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2458 pushValueAndType(I.getOperand(i), InstID, Vals); 2459 } 2460 } 2461 break; 2462 case Instruction::Br: 2463 { 2464 Code = bitc::FUNC_CODE_INST_BR; 2465 const BranchInst &II = cast<BranchInst>(I); 2466 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2467 if (II.isConditional()) { 2468 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2469 pushValue(II.getCondition(), InstID, Vals); 2470 } 2471 } 2472 break; 2473 case Instruction::Switch: 2474 { 2475 Code = bitc::FUNC_CODE_INST_SWITCH; 2476 const SwitchInst &SI = cast<SwitchInst>(I); 2477 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2478 pushValue(SI.getCondition(), InstID, Vals); 2479 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2480 for (auto Case : SI.cases()) { 2481 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2482 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2483 } 2484 } 2485 break; 2486 case Instruction::IndirectBr: 2487 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2488 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2489 // Encode the address operand as relative, but not the basic blocks. 2490 pushValue(I.getOperand(0), InstID, Vals); 2491 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2492 Vals.push_back(VE.getValueID(I.getOperand(i))); 2493 break; 2494 2495 case Instruction::Invoke: { 2496 const InvokeInst *II = cast<InvokeInst>(&I); 2497 const Value *Callee = II->getCalledValue(); 2498 FunctionType *FTy = II->getFunctionType(); 2499 2500 if (II->hasOperandBundles()) 2501 writeOperandBundles(II, InstID); 2502 2503 Code = bitc::FUNC_CODE_INST_INVOKE; 2504 2505 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2506 Vals.push_back(II->getCallingConv() | 1 << 13); 2507 Vals.push_back(VE.getValueID(II->getNormalDest())); 2508 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2509 Vals.push_back(VE.getTypeID(FTy)); 2510 pushValueAndType(Callee, InstID, Vals); 2511 2512 // Emit value #'s for the fixed parameters. 2513 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2514 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2515 2516 // Emit type/value pairs for varargs params. 2517 if (FTy->isVarArg()) { 2518 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2519 i != e; ++i) 2520 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2521 } 2522 break; 2523 } 2524 case Instruction::Resume: 2525 Code = bitc::FUNC_CODE_INST_RESUME; 2526 pushValueAndType(I.getOperand(0), InstID, Vals); 2527 break; 2528 case Instruction::CleanupRet: { 2529 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2530 const auto &CRI = cast<CleanupReturnInst>(I); 2531 pushValue(CRI.getCleanupPad(), InstID, Vals); 2532 if (CRI.hasUnwindDest()) 2533 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2534 break; 2535 } 2536 case Instruction::CatchRet: { 2537 Code = bitc::FUNC_CODE_INST_CATCHRET; 2538 const auto &CRI = cast<CatchReturnInst>(I); 2539 pushValue(CRI.getCatchPad(), InstID, Vals); 2540 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2541 break; 2542 } 2543 case Instruction::CleanupPad: 2544 case Instruction::CatchPad: { 2545 const auto &FuncletPad = cast<FuncletPadInst>(I); 2546 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2547 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2548 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2549 2550 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2551 Vals.push_back(NumArgOperands); 2552 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2553 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2554 break; 2555 } 2556 case Instruction::CatchSwitch: { 2557 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2558 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2559 2560 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2561 2562 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2563 Vals.push_back(NumHandlers); 2564 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2565 Vals.push_back(VE.getValueID(CatchPadBB)); 2566 2567 if (CatchSwitch.hasUnwindDest()) 2568 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2569 break; 2570 } 2571 case Instruction::Unreachable: 2572 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2573 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2574 break; 2575 2576 case Instruction::PHI: { 2577 const PHINode &PN = cast<PHINode>(I); 2578 Code = bitc::FUNC_CODE_INST_PHI; 2579 // With the newer instruction encoding, forward references could give 2580 // negative valued IDs. This is most common for PHIs, so we use 2581 // signed VBRs. 2582 SmallVector<uint64_t, 128> Vals64; 2583 Vals64.push_back(VE.getTypeID(PN.getType())); 2584 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2585 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2586 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2587 } 2588 // Emit a Vals64 vector and exit. 2589 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2590 Vals64.clear(); 2591 return; 2592 } 2593 2594 case Instruction::LandingPad: { 2595 const LandingPadInst &LP = cast<LandingPadInst>(I); 2596 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2597 Vals.push_back(VE.getTypeID(LP.getType())); 2598 Vals.push_back(LP.isCleanup()); 2599 Vals.push_back(LP.getNumClauses()); 2600 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2601 if (LP.isCatch(I)) 2602 Vals.push_back(LandingPadInst::Catch); 2603 else 2604 Vals.push_back(LandingPadInst::Filter); 2605 pushValueAndType(LP.getClause(I), InstID, Vals); 2606 } 2607 break; 2608 } 2609 2610 case Instruction::Alloca: { 2611 Code = bitc::FUNC_CODE_INST_ALLOCA; 2612 const AllocaInst &AI = cast<AllocaInst>(I); 2613 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2614 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2615 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2616 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2617 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2618 "not enough bits for maximum alignment"); 2619 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2620 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2621 AlignRecord |= 1 << 6; 2622 AlignRecord |= AI.isSwiftError() << 7; 2623 Vals.push_back(AlignRecord); 2624 break; 2625 } 2626 2627 case Instruction::Load: 2628 if (cast<LoadInst>(I).isAtomic()) { 2629 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2630 pushValueAndType(I.getOperand(0), InstID, Vals); 2631 } else { 2632 Code = bitc::FUNC_CODE_INST_LOAD; 2633 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2634 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2635 } 2636 Vals.push_back(VE.getTypeID(I.getType())); 2637 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2638 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2639 if (cast<LoadInst>(I).isAtomic()) { 2640 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2641 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2642 } 2643 break; 2644 case Instruction::Store: 2645 if (cast<StoreInst>(I).isAtomic()) 2646 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2647 else 2648 Code = bitc::FUNC_CODE_INST_STORE; 2649 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2650 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2651 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2652 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2653 if (cast<StoreInst>(I).isAtomic()) { 2654 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2655 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2656 } 2657 break; 2658 case Instruction::AtomicCmpXchg: 2659 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2660 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2661 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2662 pushValue(I.getOperand(2), InstID, Vals); // newval. 2663 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2664 Vals.push_back( 2665 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2666 Vals.push_back( 2667 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2668 Vals.push_back( 2669 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2670 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2671 break; 2672 case Instruction::AtomicRMW: 2673 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2674 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2675 pushValue(I.getOperand(1), InstID, Vals); // val. 2676 Vals.push_back( 2677 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2678 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2679 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2680 Vals.push_back( 2681 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2682 break; 2683 case Instruction::Fence: 2684 Code = bitc::FUNC_CODE_INST_FENCE; 2685 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2686 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2687 break; 2688 case Instruction::Call: { 2689 const CallInst &CI = cast<CallInst>(I); 2690 FunctionType *FTy = CI.getFunctionType(); 2691 2692 if (CI.hasOperandBundles()) 2693 writeOperandBundles(&CI, InstID); 2694 2695 Code = bitc::FUNC_CODE_INST_CALL; 2696 2697 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2698 2699 unsigned Flags = getOptimizationFlags(&I); 2700 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2701 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2702 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2703 1 << bitc::CALL_EXPLICIT_TYPE | 2704 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2705 unsigned(Flags != 0) << bitc::CALL_FMF); 2706 if (Flags != 0) 2707 Vals.push_back(Flags); 2708 2709 Vals.push_back(VE.getTypeID(FTy)); 2710 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2711 2712 // Emit value #'s for the fixed parameters. 2713 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2714 // Check for labels (can happen with asm labels). 2715 if (FTy->getParamType(i)->isLabelTy()) 2716 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2717 else 2718 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2719 } 2720 2721 // Emit type/value pairs for varargs params. 2722 if (FTy->isVarArg()) { 2723 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2724 i != e; ++i) 2725 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2726 } 2727 break; 2728 } 2729 case Instruction::VAArg: 2730 Code = bitc::FUNC_CODE_INST_VAARG; 2731 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2732 pushValue(I.getOperand(0), InstID, Vals); // valist. 2733 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2734 break; 2735 } 2736 2737 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2738 Vals.clear(); 2739 } 2740 2741 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2742 /// to allow clients to efficiently find the function body. 2743 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2744 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2745 // Get the offset of the VST we are writing, and backpatch it into 2746 // the VST forward declaration record. 2747 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2748 // The BitcodeStartBit was the stream offset of the identification block. 2749 VSTOffset -= bitcodeStartBit(); 2750 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2751 // Note that we add 1 here because the offset is relative to one word 2752 // before the start of the identification block, which was historically 2753 // always the start of the regular bitcode header. 2754 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2755 2756 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2757 2758 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2759 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2762 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2763 2764 for (const Function &F : M) { 2765 uint64_t Record[2]; 2766 2767 if (F.isDeclaration()) 2768 continue; 2769 2770 Record[0] = VE.getValueID(&F); 2771 2772 // Save the word offset of the function (from the start of the 2773 // actual bitcode written to the stream). 2774 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2775 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2776 // Note that we add 1 here because the offset is relative to one word 2777 // before the start of the identification block, which was historically 2778 // always the start of the regular bitcode header. 2779 Record[1] = BitcodeIndex / 32 + 1; 2780 2781 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2782 } 2783 2784 Stream.ExitBlock(); 2785 } 2786 2787 /// Emit names for arguments, instructions and basic blocks in a function. 2788 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2789 const ValueSymbolTable &VST) { 2790 if (VST.empty()) 2791 return; 2792 2793 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2794 2795 // FIXME: Set up the abbrev, we know how many values there are! 2796 // FIXME: We know if the type names can use 7-bit ascii. 2797 SmallVector<uint64_t, 64> NameVals; 2798 2799 for (const ValueName &Name : VST) { 2800 // Figure out the encoding to use for the name. 2801 StringEncoding Bits = 2802 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2803 2804 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2805 NameVals.push_back(VE.getValueID(Name.getValue())); 2806 2807 // VST_CODE_ENTRY: [valueid, namechar x N] 2808 // VST_CODE_BBENTRY: [bbid, namechar x N] 2809 unsigned Code; 2810 if (isa<BasicBlock>(Name.getValue())) { 2811 Code = bitc::VST_CODE_BBENTRY; 2812 if (Bits == SE_Char6) 2813 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2814 } else { 2815 Code = bitc::VST_CODE_ENTRY; 2816 if (Bits == SE_Char6) 2817 AbbrevToUse = VST_ENTRY_6_ABBREV; 2818 else if (Bits == SE_Fixed7) 2819 AbbrevToUse = VST_ENTRY_7_ABBREV; 2820 } 2821 2822 for (const auto P : Name.getKey()) 2823 NameVals.push_back((unsigned char)P); 2824 2825 // Emit the finished record. 2826 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2827 NameVals.clear(); 2828 } 2829 2830 Stream.ExitBlock(); 2831 } 2832 2833 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2834 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2835 unsigned Code; 2836 if (isa<BasicBlock>(Order.V)) 2837 Code = bitc::USELIST_CODE_BB; 2838 else 2839 Code = bitc::USELIST_CODE_DEFAULT; 2840 2841 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2842 Record.push_back(VE.getValueID(Order.V)); 2843 Stream.EmitRecord(Code, Record); 2844 } 2845 2846 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2847 assert(VE.shouldPreserveUseListOrder() && 2848 "Expected to be preserving use-list order"); 2849 2850 auto hasMore = [&]() { 2851 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2852 }; 2853 if (!hasMore()) 2854 // Nothing to do. 2855 return; 2856 2857 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2858 while (hasMore()) { 2859 writeUseList(std::move(VE.UseListOrders.back())); 2860 VE.UseListOrders.pop_back(); 2861 } 2862 Stream.ExitBlock(); 2863 } 2864 2865 /// Emit a function body to the module stream. 2866 void ModuleBitcodeWriter::writeFunction( 2867 const Function &F, 2868 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2869 // Save the bitcode index of the start of this function block for recording 2870 // in the VST. 2871 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2872 2873 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2874 VE.incorporateFunction(F); 2875 2876 SmallVector<unsigned, 64> Vals; 2877 2878 // Emit the number of basic blocks, so the reader can create them ahead of 2879 // time. 2880 Vals.push_back(VE.getBasicBlocks().size()); 2881 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2882 Vals.clear(); 2883 2884 // If there are function-local constants, emit them now. 2885 unsigned CstStart, CstEnd; 2886 VE.getFunctionConstantRange(CstStart, CstEnd); 2887 writeConstants(CstStart, CstEnd, false); 2888 2889 // If there is function-local metadata, emit it now. 2890 writeFunctionMetadata(F); 2891 2892 // Keep a running idea of what the instruction ID is. 2893 unsigned InstID = CstEnd; 2894 2895 bool NeedsMetadataAttachment = F.hasMetadata(); 2896 2897 DILocation *LastDL = nullptr; 2898 // Finally, emit all the instructions, in order. 2899 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2900 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2901 I != E; ++I) { 2902 writeInstruction(*I, InstID, Vals); 2903 2904 if (!I->getType()->isVoidTy()) 2905 ++InstID; 2906 2907 // If the instruction has metadata, write a metadata attachment later. 2908 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2909 2910 // If the instruction has a debug location, emit it. 2911 DILocation *DL = I->getDebugLoc(); 2912 if (!DL) 2913 continue; 2914 2915 if (DL == LastDL) { 2916 // Just repeat the same debug loc as last time. 2917 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2918 continue; 2919 } 2920 2921 Vals.push_back(DL->getLine()); 2922 Vals.push_back(DL->getColumn()); 2923 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2924 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2925 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2926 Vals.clear(); 2927 2928 LastDL = DL; 2929 } 2930 2931 // Emit names for all the instructions etc. 2932 if (auto *Symtab = F.getValueSymbolTable()) 2933 writeFunctionLevelValueSymbolTable(*Symtab); 2934 2935 if (NeedsMetadataAttachment) 2936 writeFunctionMetadataAttachment(F); 2937 if (VE.shouldPreserveUseListOrder()) 2938 writeUseListBlock(&F); 2939 VE.purgeFunction(); 2940 Stream.ExitBlock(); 2941 } 2942 2943 // Emit blockinfo, which defines the standard abbreviations etc. 2944 void ModuleBitcodeWriter::writeBlockInfo() { 2945 // We only want to emit block info records for blocks that have multiple 2946 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2947 // Other blocks can define their abbrevs inline. 2948 Stream.EnterBlockInfoBlock(); 2949 2950 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2951 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2956 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2957 VST_ENTRY_8_ABBREV) 2958 llvm_unreachable("Unexpected abbrev ordering!"); 2959 } 2960 2961 { // 7-bit fixed width VST_CODE_ENTRY strings. 2962 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2963 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2967 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2968 VST_ENTRY_7_ABBREV) 2969 llvm_unreachable("Unexpected abbrev ordering!"); 2970 } 2971 { // 6-bit char6 VST_CODE_ENTRY strings. 2972 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2973 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2977 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2978 VST_ENTRY_6_ABBREV) 2979 llvm_unreachable("Unexpected abbrev ordering!"); 2980 } 2981 { // 6-bit char6 VST_CODE_BBENTRY strings. 2982 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2983 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2987 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2988 VST_BBENTRY_6_ABBREV) 2989 llvm_unreachable("Unexpected abbrev ordering!"); 2990 } 2991 2992 2993 2994 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2995 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2996 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2998 VE.computeBitsRequiredForTypeIndicies())); 2999 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3000 CONSTANTS_SETTYPE_ABBREV) 3001 llvm_unreachable("Unexpected abbrev ordering!"); 3002 } 3003 3004 { // INTEGER abbrev for CONSTANTS_BLOCK. 3005 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3006 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3008 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3009 CONSTANTS_INTEGER_ABBREV) 3010 llvm_unreachable("Unexpected abbrev ordering!"); 3011 } 3012 3013 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3014 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3015 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3018 VE.computeBitsRequiredForTypeIndicies())); 3019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3020 3021 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3022 CONSTANTS_CE_CAST_Abbrev) 3023 llvm_unreachable("Unexpected abbrev ordering!"); 3024 } 3025 { // NULL abbrev for CONSTANTS_BLOCK. 3026 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3027 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3028 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3029 CONSTANTS_NULL_Abbrev) 3030 llvm_unreachable("Unexpected abbrev ordering!"); 3031 } 3032 3033 // FIXME: This should only use space for first class types! 3034 3035 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3036 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3037 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3040 VE.computeBitsRequiredForTypeIndicies())); 3041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3043 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3044 FUNCTION_INST_LOAD_ABBREV) 3045 llvm_unreachable("Unexpected abbrev ordering!"); 3046 } 3047 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3048 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3049 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3053 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3054 FUNCTION_INST_BINOP_ABBREV) 3055 llvm_unreachable("Unexpected abbrev ordering!"); 3056 } 3057 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3058 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3059 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3064 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3065 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3066 llvm_unreachable("Unexpected abbrev ordering!"); 3067 } 3068 { // INST_CAST abbrev for FUNCTION_BLOCK. 3069 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3070 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3073 VE.computeBitsRequiredForTypeIndicies())); 3074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3075 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3076 FUNCTION_INST_CAST_ABBREV) 3077 llvm_unreachable("Unexpected abbrev ordering!"); 3078 } 3079 3080 { // INST_RET abbrev for FUNCTION_BLOCK. 3081 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3082 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3083 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3084 FUNCTION_INST_RET_VOID_ABBREV) 3085 llvm_unreachable("Unexpected abbrev ordering!"); 3086 } 3087 { // INST_RET abbrev for FUNCTION_BLOCK. 3088 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3089 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3091 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3092 FUNCTION_INST_RET_VAL_ABBREV) 3093 llvm_unreachable("Unexpected abbrev ordering!"); 3094 } 3095 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3096 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3097 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3098 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3099 FUNCTION_INST_UNREACHABLE_ABBREV) 3100 llvm_unreachable("Unexpected abbrev ordering!"); 3101 } 3102 { 3103 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3104 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3107 Log2_32_Ceil(VE.getTypes().size() + 1))); 3108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3110 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3111 FUNCTION_INST_GEP_ABBREV) 3112 llvm_unreachable("Unexpected abbrev ordering!"); 3113 } 3114 3115 Stream.ExitBlock(); 3116 } 3117 3118 /// Write the module path strings, currently only used when generating 3119 /// a combined index file. 3120 void IndexBitcodeWriter::writeModStrings() { 3121 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3122 3123 // TODO: See which abbrev sizes we actually need to emit 3124 3125 // 8-bit fixed-width MST_ENTRY strings. 3126 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3127 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3131 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3132 3133 // 7-bit fixed width MST_ENTRY strings. 3134 Abbv = std::make_shared<BitCodeAbbrev>(); 3135 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3139 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3140 3141 // 6-bit char6 MST_ENTRY strings. 3142 Abbv = std::make_shared<BitCodeAbbrev>(); 3143 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3147 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3148 3149 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3150 Abbv = std::make_shared<BitCodeAbbrev>(); 3151 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3157 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3158 3159 SmallVector<unsigned, 64> Vals; 3160 for (const auto &MPSE : Index.modulePaths()) { 3161 if (!doIncludeModule(MPSE.getKey())) 3162 continue; 3163 StringEncoding Bits = 3164 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3165 unsigned AbbrevToUse = Abbrev8Bit; 3166 if (Bits == SE_Char6) 3167 AbbrevToUse = Abbrev6Bit; 3168 else if (Bits == SE_Fixed7) 3169 AbbrevToUse = Abbrev7Bit; 3170 3171 Vals.push_back(MPSE.getValue().first); 3172 3173 for (const auto P : MPSE.getKey()) 3174 Vals.push_back((unsigned char)P); 3175 3176 // Emit the finished record. 3177 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3178 3179 Vals.clear(); 3180 // Emit an optional hash for the module now 3181 auto &Hash = MPSE.getValue().second; 3182 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3183 for (auto Val : Hash) { 3184 if (Val) 3185 AllZero = false; 3186 Vals.push_back(Val); 3187 } 3188 if (!AllZero) { 3189 // Emit the hash record. 3190 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3191 } 3192 3193 Vals.clear(); 3194 } 3195 Stream.ExitBlock(); 3196 } 3197 3198 /// Write the function type metadata related records that need to appear before 3199 /// a function summary entry (whether per-module or combined). 3200 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3201 FunctionSummary *FS) { 3202 if (!FS->type_tests().empty()) 3203 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3204 3205 SmallVector<uint64_t, 64> Record; 3206 3207 auto WriteVFuncIdVec = [&](uint64_t Ty, 3208 ArrayRef<FunctionSummary::VFuncId> VFs) { 3209 if (VFs.empty()) 3210 return; 3211 Record.clear(); 3212 for (auto &VF : VFs) { 3213 Record.push_back(VF.GUID); 3214 Record.push_back(VF.Offset); 3215 } 3216 Stream.EmitRecord(Ty, Record); 3217 }; 3218 3219 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3220 FS->type_test_assume_vcalls()); 3221 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3222 FS->type_checked_load_vcalls()); 3223 3224 auto WriteConstVCallVec = [&](uint64_t Ty, 3225 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3226 for (auto &VC : VCs) { 3227 Record.clear(); 3228 Record.push_back(VC.VFunc.GUID); 3229 Record.push_back(VC.VFunc.Offset); 3230 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3231 Stream.EmitRecord(Ty, Record); 3232 } 3233 }; 3234 3235 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3236 FS->type_test_assume_const_vcalls()); 3237 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3238 FS->type_checked_load_const_vcalls()); 3239 } 3240 3241 // Helper to emit a single function summary record. 3242 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3243 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3244 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3245 const Function &F) { 3246 NameVals.push_back(ValueID); 3247 3248 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3249 writeFunctionTypeMetadataRecords(Stream, FS); 3250 3251 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3252 NameVals.push_back(FS->instCount()); 3253 NameVals.push_back(FS->refs().size()); 3254 3255 for (auto &RI : FS->refs()) 3256 NameVals.push_back(VE.getValueID(RI.getValue())); 3257 3258 bool HasProfileData = F.getEntryCount().hasValue(); 3259 for (auto &ECI : FS->calls()) { 3260 NameVals.push_back(getValueId(ECI.first)); 3261 if (HasProfileData) 3262 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3263 } 3264 3265 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3266 unsigned Code = 3267 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3268 3269 // Emit the finished record. 3270 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3271 NameVals.clear(); 3272 } 3273 3274 // Collect the global value references in the given variable's initializer, 3275 // and emit them in a summary record. 3276 void ModuleBitcodeWriter::writeModuleLevelReferences( 3277 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3278 unsigned FSModRefsAbbrev) { 3279 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3280 if (!VI || VI.getSummaryList().empty()) { 3281 // Only declarations should not have a summary (a declaration might however 3282 // have a summary if the def was in module level asm). 3283 assert(V.isDeclaration()); 3284 return; 3285 } 3286 auto *Summary = VI.getSummaryList()[0].get(); 3287 NameVals.push_back(VE.getValueID(&V)); 3288 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3289 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3290 3291 unsigned SizeBeforeRefs = NameVals.size(); 3292 for (auto &RI : VS->refs()) 3293 NameVals.push_back(VE.getValueID(RI.getValue())); 3294 // Sort the refs for determinism output, the vector returned by FS->refs() has 3295 // been initialized from a DenseSet. 3296 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3297 3298 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3299 FSModRefsAbbrev); 3300 NameVals.clear(); 3301 } 3302 3303 // Current version for the summary. 3304 // This is bumped whenever we introduce changes in the way some record are 3305 // interpreted, like flags for instance. 3306 static const uint64_t INDEX_VERSION = 3; 3307 3308 /// Emit the per-module summary section alongside the rest of 3309 /// the module's bitcode. 3310 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3311 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3312 3313 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3314 3315 if (Index->begin() == Index->end()) { 3316 Stream.ExitBlock(); 3317 return; 3318 } 3319 3320 for (const auto &GVI : valueIds()) { 3321 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3322 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3323 } 3324 3325 // Abbrev for FS_PERMODULE. 3326 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3327 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3332 // numrefs x valueid, n x (valueid) 3333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3335 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3336 3337 // Abbrev for FS_PERMODULE_PROFILE. 3338 Abbv = std::make_shared<BitCodeAbbrev>(); 3339 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3344 // numrefs x valueid, n x (valueid, hotness) 3345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3347 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3348 3349 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3350 Abbv = std::make_shared<BitCodeAbbrev>(); 3351 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3356 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3357 3358 // Abbrev for FS_ALIAS. 3359 Abbv = std::make_shared<BitCodeAbbrev>(); 3360 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3364 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3365 3366 SmallVector<uint64_t, 64> NameVals; 3367 // Iterate over the list of functions instead of the Index to 3368 // ensure the ordering is stable. 3369 for (const Function &F : M) { 3370 // Summary emission does not support anonymous functions, they have to 3371 // renamed using the anonymous function renaming pass. 3372 if (!F.hasName()) 3373 report_fatal_error("Unexpected anonymous function when writing summary"); 3374 3375 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3376 if (!VI || VI.getSummaryList().empty()) { 3377 // Only declarations should not have a summary (a declaration might 3378 // however have a summary if the def was in module level asm). 3379 assert(F.isDeclaration()); 3380 continue; 3381 } 3382 auto *Summary = VI.getSummaryList()[0].get(); 3383 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3384 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3385 } 3386 3387 // Capture references from GlobalVariable initializers, which are outside 3388 // of a function scope. 3389 for (const GlobalVariable &G : M.globals()) 3390 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3391 3392 for (const GlobalAlias &A : M.aliases()) { 3393 auto *Aliasee = A.getBaseObject(); 3394 if (!Aliasee->hasName()) 3395 // Nameless function don't have an entry in the summary, skip it. 3396 continue; 3397 auto AliasId = VE.getValueID(&A); 3398 auto AliaseeId = VE.getValueID(Aliasee); 3399 NameVals.push_back(AliasId); 3400 auto *Summary = Index->getGlobalValueSummary(A); 3401 AliasSummary *AS = cast<AliasSummary>(Summary); 3402 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3403 NameVals.push_back(AliaseeId); 3404 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3405 NameVals.clear(); 3406 } 3407 3408 Stream.ExitBlock(); 3409 } 3410 3411 /// Emit the combined summary section into the combined index file. 3412 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3413 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3414 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3415 3416 // Create value IDs for undefined references. 3417 forEachSummary([&](GVInfo I) { 3418 for (auto &RI : I.second->refs()) 3419 assignValueId(RI.getGUID()); 3420 }); 3421 3422 for (const auto &GVI : valueIds()) { 3423 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3424 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3425 } 3426 3427 // Abbrev for FS_COMBINED. 3428 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3429 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3435 // numrefs x valueid, n x (valueid) 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3438 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3439 3440 // Abbrev for FS_COMBINED_PROFILE. 3441 Abbv = std::make_shared<BitCodeAbbrev>(); 3442 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3448 // numrefs x valueid, n x (valueid, hotness) 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3451 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3452 3453 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3454 Abbv = std::make_shared<BitCodeAbbrev>(); 3455 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3461 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3462 3463 // Abbrev for FS_COMBINED_ALIAS. 3464 Abbv = std::make_shared<BitCodeAbbrev>(); 3465 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3470 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3471 3472 // The aliases are emitted as a post-pass, and will point to the value 3473 // id of the aliasee. Save them in a vector for post-processing. 3474 SmallVector<AliasSummary *, 64> Aliases; 3475 3476 // Save the value id for each summary for alias emission. 3477 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3478 3479 SmallVector<uint64_t, 64> NameVals; 3480 3481 // For local linkage, we also emit the original name separately 3482 // immediately after the record. 3483 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3484 if (!GlobalValue::isLocalLinkage(S.linkage())) 3485 return; 3486 NameVals.push_back(S.getOriginalName()); 3487 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3488 NameVals.clear(); 3489 }; 3490 3491 forEachSummary([&](GVInfo I) { 3492 GlobalValueSummary *S = I.second; 3493 assert(S); 3494 3495 assert(hasValueId(I.first)); 3496 unsigned ValueId = getValueId(I.first); 3497 SummaryToValueIdMap[S] = ValueId; 3498 3499 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3500 // Will process aliases as a post-pass because the reader wants all 3501 // global to be loaded first. 3502 Aliases.push_back(AS); 3503 return; 3504 } 3505 3506 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3507 NameVals.push_back(ValueId); 3508 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3509 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3510 for (auto &RI : VS->refs()) { 3511 NameVals.push_back(getValueId(RI.getGUID())); 3512 } 3513 3514 // Emit the finished record. 3515 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3516 FSModRefsAbbrev); 3517 NameVals.clear(); 3518 MaybeEmitOriginalName(*S); 3519 return; 3520 } 3521 3522 auto *FS = cast<FunctionSummary>(S); 3523 writeFunctionTypeMetadataRecords(Stream, FS); 3524 3525 NameVals.push_back(ValueId); 3526 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3527 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3528 NameVals.push_back(FS->instCount()); 3529 NameVals.push_back(FS->refs().size()); 3530 3531 for (auto &RI : FS->refs()) { 3532 NameVals.push_back(getValueId(RI.getGUID())); 3533 } 3534 3535 bool HasProfileData = false; 3536 for (auto &EI : FS->calls()) { 3537 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3538 if (HasProfileData) 3539 break; 3540 } 3541 3542 for (auto &EI : FS->calls()) { 3543 // If this GUID doesn't have a value id, it doesn't have a function 3544 // summary and we don't need to record any calls to it. 3545 GlobalValue::GUID GUID = EI.first.getGUID(); 3546 if (!hasValueId(GUID)) { 3547 // For SamplePGO, the indirect call targets for local functions will 3548 // have its original name annotated in profile. We try to find the 3549 // corresponding PGOFuncName as the GUID. 3550 GUID = Index.getGUIDFromOriginalID(GUID); 3551 if (GUID == 0 || !hasValueId(GUID)) 3552 continue; 3553 } 3554 NameVals.push_back(getValueId(GUID)); 3555 if (HasProfileData) 3556 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3557 } 3558 3559 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3560 unsigned Code = 3561 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3562 3563 // Emit the finished record. 3564 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3565 NameVals.clear(); 3566 MaybeEmitOriginalName(*S); 3567 }); 3568 3569 for (auto *AS : Aliases) { 3570 auto AliasValueId = SummaryToValueIdMap[AS]; 3571 assert(AliasValueId); 3572 NameVals.push_back(AliasValueId); 3573 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3574 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3575 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3576 assert(AliaseeValueId); 3577 NameVals.push_back(AliaseeValueId); 3578 3579 // Emit the finished record. 3580 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3581 NameVals.clear(); 3582 MaybeEmitOriginalName(*AS); 3583 } 3584 3585 Stream.ExitBlock(); 3586 } 3587 3588 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3589 /// current llvm version, and a record for the epoch number. 3590 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3591 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3592 3593 // Write the "user readable" string identifying the bitcode producer 3594 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3595 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3598 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3599 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3600 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3601 3602 // Write the epoch version 3603 Abbv = std::make_shared<BitCodeAbbrev>(); 3604 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3606 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3607 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3608 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3609 Stream.ExitBlock(); 3610 } 3611 3612 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3613 // Emit the module's hash. 3614 // MODULE_CODE_HASH: [5*i32] 3615 if (GenerateHash) { 3616 SHA1 Hasher; 3617 uint32_t Vals[5]; 3618 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3619 Buffer.size() - BlockStartPos)); 3620 StringRef Hash = Hasher.result(); 3621 for (int Pos = 0; Pos < 20; Pos += 4) { 3622 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3623 } 3624 3625 // Emit the finished record. 3626 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3627 3628 if (ModHash) 3629 // Save the written hash value. 3630 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3631 } else if (ModHash) 3632 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3633 } 3634 3635 void ModuleBitcodeWriter::write() { 3636 writeIdentificationBlock(Stream); 3637 3638 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3639 size_t BlockStartPos = Buffer.size(); 3640 3641 writeModuleVersion(); 3642 3643 // Emit blockinfo, which defines the standard abbreviations etc. 3644 writeBlockInfo(); 3645 3646 // Emit information about attribute groups. 3647 writeAttributeGroupTable(); 3648 3649 // Emit information about parameter attributes. 3650 writeAttributeTable(); 3651 3652 // Emit information describing all of the types in the module. 3653 writeTypeTable(); 3654 3655 writeComdats(); 3656 3657 // Emit top-level description of module, including target triple, inline asm, 3658 // descriptors for global variables, and function prototype info. 3659 writeModuleInfo(); 3660 3661 // Emit constants. 3662 writeModuleConstants(); 3663 3664 // Emit metadata kind names. 3665 writeModuleMetadataKinds(); 3666 3667 // Emit metadata. 3668 writeModuleMetadata(); 3669 3670 // Emit module-level use-lists. 3671 if (VE.shouldPreserveUseListOrder()) 3672 writeUseListBlock(nullptr); 3673 3674 writeOperandBundleTags(); 3675 3676 // Emit function bodies. 3677 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3678 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3679 if (!F->isDeclaration()) 3680 writeFunction(*F, FunctionToBitcodeIndex); 3681 3682 // Need to write after the above call to WriteFunction which populates 3683 // the summary information in the index. 3684 if (Index) 3685 writePerModuleGlobalValueSummary(); 3686 3687 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3688 3689 writeModuleHash(BlockStartPos); 3690 3691 Stream.ExitBlock(); 3692 } 3693 3694 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3695 uint32_t &Position) { 3696 support::endian::write32le(&Buffer[Position], Value); 3697 Position += 4; 3698 } 3699 3700 /// If generating a bc file on darwin, we have to emit a 3701 /// header and trailer to make it compatible with the system archiver. To do 3702 /// this we emit the following header, and then emit a trailer that pads the 3703 /// file out to be a multiple of 16 bytes. 3704 /// 3705 /// struct bc_header { 3706 /// uint32_t Magic; // 0x0B17C0DE 3707 /// uint32_t Version; // Version, currently always 0. 3708 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3709 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3710 /// uint32_t CPUType; // CPU specifier. 3711 /// ... potentially more later ... 3712 /// }; 3713 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3714 const Triple &TT) { 3715 unsigned CPUType = ~0U; 3716 3717 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3718 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3719 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3720 // specific constants here because they are implicitly part of the Darwin ABI. 3721 enum { 3722 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3723 DARWIN_CPU_TYPE_X86 = 7, 3724 DARWIN_CPU_TYPE_ARM = 12, 3725 DARWIN_CPU_TYPE_POWERPC = 18 3726 }; 3727 3728 Triple::ArchType Arch = TT.getArch(); 3729 if (Arch == Triple::x86_64) 3730 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3731 else if (Arch == Triple::x86) 3732 CPUType = DARWIN_CPU_TYPE_X86; 3733 else if (Arch == Triple::ppc) 3734 CPUType = DARWIN_CPU_TYPE_POWERPC; 3735 else if (Arch == Triple::ppc64) 3736 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3737 else if (Arch == Triple::arm || Arch == Triple::thumb) 3738 CPUType = DARWIN_CPU_TYPE_ARM; 3739 3740 // Traditional Bitcode starts after header. 3741 assert(Buffer.size() >= BWH_HeaderSize && 3742 "Expected header size to be reserved"); 3743 unsigned BCOffset = BWH_HeaderSize; 3744 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3745 3746 // Write the magic and version. 3747 unsigned Position = 0; 3748 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3749 writeInt32ToBuffer(0, Buffer, Position); // Version. 3750 writeInt32ToBuffer(BCOffset, Buffer, Position); 3751 writeInt32ToBuffer(BCSize, Buffer, Position); 3752 writeInt32ToBuffer(CPUType, Buffer, Position); 3753 3754 // If the file is not a multiple of 16 bytes, insert dummy padding. 3755 while (Buffer.size() & 15) 3756 Buffer.push_back(0); 3757 } 3758 3759 /// Helper to write the header common to all bitcode files. 3760 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3761 // Emit the file header. 3762 Stream.Emit((unsigned)'B', 8); 3763 Stream.Emit((unsigned)'C', 8); 3764 Stream.Emit(0x0, 4); 3765 Stream.Emit(0xC, 4); 3766 Stream.Emit(0xE, 4); 3767 Stream.Emit(0xD, 4); 3768 } 3769 3770 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3771 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3772 writeBitcodeHeader(*Stream); 3773 } 3774 3775 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3776 3777 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3778 Stream->EnterSubblock(Block, 3); 3779 3780 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3781 Abbv->Add(BitCodeAbbrevOp(Record)); 3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3783 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3784 3785 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3786 3787 Stream->ExitBlock(); 3788 } 3789 3790 void BitcodeWriter::writeStrtab() { 3791 assert(!WroteStrtab); 3792 3793 std::vector<char> Strtab; 3794 StrtabBuilder.finalizeInOrder(); 3795 Strtab.resize(StrtabBuilder.getSize()); 3796 StrtabBuilder.write((uint8_t *)Strtab.data()); 3797 3798 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3799 {Strtab.data(), Strtab.size()}); 3800 3801 WroteStrtab = true; 3802 } 3803 3804 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3805 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3806 WroteStrtab = true; 3807 } 3808 3809 void BitcodeWriter::writeModule(const Module *M, 3810 bool ShouldPreserveUseListOrder, 3811 const ModuleSummaryIndex *Index, 3812 bool GenerateHash, ModuleHash *ModHash) { 3813 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3814 ShouldPreserveUseListOrder, Index, 3815 GenerateHash, ModHash); 3816 ModuleWriter.write(); 3817 } 3818 3819 /// WriteBitcodeToFile - Write the specified module to the specified output 3820 /// stream. 3821 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3822 bool ShouldPreserveUseListOrder, 3823 const ModuleSummaryIndex *Index, 3824 bool GenerateHash, ModuleHash *ModHash) { 3825 SmallVector<char, 0> Buffer; 3826 Buffer.reserve(256*1024); 3827 3828 // If this is darwin or another generic macho target, reserve space for the 3829 // header. 3830 Triple TT(M->getTargetTriple()); 3831 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3832 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3833 3834 BitcodeWriter Writer(Buffer); 3835 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3836 ModHash); 3837 Writer.writeStrtab(); 3838 3839 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3840 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3841 3842 // Write the generated bitstream to "Out". 3843 Out.write((char*)&Buffer.front(), Buffer.size()); 3844 } 3845 3846 void IndexBitcodeWriter::write() { 3847 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3848 3849 writeModuleVersion(); 3850 3851 // Write the module paths in the combined index. 3852 writeModStrings(); 3853 3854 // Write the summary combined index records. 3855 writeCombinedGlobalValueSummary(); 3856 3857 Stream.ExitBlock(); 3858 } 3859 3860 // Write the specified module summary index to the given raw output stream, 3861 // where it will be written in a new bitcode block. This is used when 3862 // writing the combined index file for ThinLTO. When writing a subset of the 3863 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3864 void llvm::WriteIndexToFile( 3865 const ModuleSummaryIndex &Index, raw_ostream &Out, 3866 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3867 SmallVector<char, 0> Buffer; 3868 Buffer.reserve(256 * 1024); 3869 3870 BitstreamWriter Stream(Buffer); 3871 writeBitcodeHeader(Stream); 3872 3873 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 3874 IndexWriter.write(); 3875 3876 Out.write((char *)&Buffer.front(), Buffer.size()); 3877 } 3878