1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitCodes.h" 28 #include "llvm/Bitcode/BitstreamWriter.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev); 218 219 void assignValueId(GlobalValue::GUID ValGUID) { 220 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 221 } 222 223 unsigned getValueId(GlobalValue::GUID ValGUID) { 224 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 225 // Expect that any GUID value had a value Id assigned by an 226 // earlier call to assignValueId. 227 assert(VMI != GUIDToValueIdMap.end() && 228 "GUID does not have assigned value Id"); 229 return VMI->second; 230 } 231 232 // Helper to get the valueId for the type of value recorded in VI. 233 unsigned getValueId(ValueInfo VI) { 234 if (!VI.haveGVs() || !VI.getValue()) 235 return getValueId(VI.getGUID()); 236 return VE.getValueID(VI.getValue()); 237 } 238 239 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 240 }; 241 242 /// Class to manage the bitcode writing for a module. 243 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 244 /// Pointer to the buffer allocated by caller for bitcode writing. 245 const SmallVectorImpl<char> &Buffer; 246 247 /// True if a module hash record should be written. 248 bool GenerateHash; 249 250 /// If non-null, when GenerateHash is true, the resulting hash is written 251 /// into ModHash. 252 ModuleHash *ModHash; 253 254 SHA1 Hasher; 255 256 /// The start bit of the identification block. 257 uint64_t BitcodeStartBit; 258 259 public: 260 /// Constructs a ModuleBitcodeWriter object for the given Module, 261 /// writing to the provided \p Buffer. 262 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 263 StringTableBuilder &StrtabBuilder, 264 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 265 const ModuleSummaryIndex *Index, bool GenerateHash, 266 ModuleHash *ModHash = nullptr) 267 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 268 ShouldPreserveUseListOrder, Index), 269 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 270 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 271 272 /// Emit the current module to the bitstream. 273 void write(); 274 275 private: 276 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 277 278 size_t addToStrtab(StringRef Str); 279 280 void writeAttributeGroupTable(); 281 void writeAttributeTable(); 282 void writeTypeTable(); 283 void writeComdats(); 284 void writeValueSymbolTableForwardDecl(); 285 void writeModuleInfo(); 286 void writeValueAsMetadata(const ValueAsMetadata *MD, 287 SmallVectorImpl<uint64_t> &Record); 288 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 289 unsigned Abbrev); 290 unsigned createDILocationAbbrev(); 291 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 292 unsigned &Abbrev); 293 unsigned createGenericDINodeAbbrev(); 294 void writeGenericDINode(const GenericDINode *N, 295 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 296 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned Abbrev); 298 void writeDIEnumerator(const DIEnumerator *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 300 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIDerivedType(const DIDerivedType *N, 303 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 304 void writeDICompositeType(const DICompositeType *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDISubroutineType(const DISubroutineType *N, 307 SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDICompileUnit(const DICompileUnit *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDISubprogram(const DISubprogram *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDILexicalBlock(const DILexicalBlock *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 323 unsigned Abbrev); 324 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 327 unsigned Abbrev); 328 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIGlobalVariable(const DIGlobalVariable *N, 335 SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDILocalVariable(const DILocalVariable *N, 338 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 339 void writeDILabel(const DILabel *N, 340 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 341 void writeDIExpression(const DIExpression *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 344 SmallVectorImpl<uint64_t> &Record, 345 unsigned Abbrev); 346 void writeDIObjCProperty(const DIObjCProperty *N, 347 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 348 void writeDIImportedEntity(const DIImportedEntity *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 unsigned createNamedMetadataAbbrev(); 352 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 353 unsigned createMetadataStringsAbbrev(); 354 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 355 SmallVectorImpl<uint64_t> &Record); 356 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 357 SmallVectorImpl<uint64_t> &Record, 358 std::vector<unsigned> *MDAbbrevs = nullptr, 359 std::vector<uint64_t> *IndexPos = nullptr); 360 void writeModuleMetadata(); 361 void writeFunctionMetadata(const Function &F); 362 void writeFunctionMetadataAttachment(const Function &F); 363 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 364 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 365 const GlobalObject &GO); 366 void writeModuleMetadataKinds(); 367 void writeOperandBundleTags(); 368 void writeSyncScopeNames(); 369 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 370 void writeModuleConstants(); 371 bool pushValueAndType(const Value *V, unsigned InstID, 372 SmallVectorImpl<unsigned> &Vals); 373 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 374 void pushValue(const Value *V, unsigned InstID, 375 SmallVectorImpl<unsigned> &Vals); 376 void pushValueSigned(const Value *V, unsigned InstID, 377 SmallVectorImpl<uint64_t> &Vals); 378 void writeInstruction(const Instruction &I, unsigned InstID, 379 SmallVectorImpl<unsigned> &Vals); 380 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 381 void writeGlobalValueSymbolTable( 382 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 383 void writeUseList(UseListOrder &&Order); 384 void writeUseListBlock(const Function *F); 385 void 386 writeFunction(const Function &F, 387 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 388 void writeBlockInfo(); 389 void writeModuleHash(size_t BlockStartPos); 390 391 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 392 return unsigned(SSID); 393 } 394 }; 395 396 /// Class to manage the bitcode writing for a combined index. 397 class IndexBitcodeWriter : public BitcodeWriterBase { 398 /// The combined index to write to bitcode. 399 const ModuleSummaryIndex &Index; 400 401 /// When writing a subset of the index for distributed backends, client 402 /// provides a map of modules to the corresponding GUIDs/summaries to write. 403 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 404 405 /// Map that holds the correspondence between the GUID used in the combined 406 /// index and a value id generated by this class to use in references. 407 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 408 409 /// Tracks the last value id recorded in the GUIDToValueMap. 410 unsigned GlobalValueId = 0; 411 412 public: 413 /// Constructs a IndexBitcodeWriter object for the given combined index, 414 /// writing to the provided \p Buffer. When writing a subset of the index 415 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 416 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 417 const ModuleSummaryIndex &Index, 418 const std::map<std::string, GVSummaryMapTy> 419 *ModuleToSummariesForIndex = nullptr) 420 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 421 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 422 // Assign unique value ids to all summaries to be written, for use 423 // in writing out the call graph edges. Save the mapping from GUID 424 // to the new global value id to use when writing those edges, which 425 // are currently saved in the index in terms of GUID. 426 forEachSummary([&](GVInfo I, bool) { 427 GUIDToValueIdMap[I.first] = ++GlobalValueId; 428 }); 429 } 430 431 /// The below iterator returns the GUID and associated summary. 432 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 433 434 /// Calls the callback for each value GUID and summary to be written to 435 /// bitcode. This hides the details of whether they are being pulled from the 436 /// entire index or just those in a provided ModuleToSummariesForIndex map. 437 template<typename Functor> 438 void forEachSummary(Functor Callback) { 439 if (ModuleToSummariesForIndex) { 440 for (auto &M : *ModuleToSummariesForIndex) 441 for (auto &Summary : M.second) { 442 Callback(Summary, false); 443 // Ensure aliasee is handled, e.g. for assigning a valueId, 444 // even if we are not importing the aliasee directly (the 445 // imported alias will contain a copy of aliasee). 446 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 447 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 448 } 449 } else { 450 for (auto &Summaries : Index) 451 for (auto &Summary : Summaries.second.SummaryList) 452 Callback({Summaries.first, Summary.get()}, false); 453 } 454 } 455 456 /// Calls the callback for each entry in the modulePaths StringMap that 457 /// should be written to the module path string table. This hides the details 458 /// of whether they are being pulled from the entire index or just those in a 459 /// provided ModuleToSummariesForIndex map. 460 template <typename Functor> void forEachModule(Functor Callback) { 461 if (ModuleToSummariesForIndex) { 462 for (const auto &M : *ModuleToSummariesForIndex) { 463 const auto &MPI = Index.modulePaths().find(M.first); 464 if (MPI == Index.modulePaths().end()) { 465 // This should only happen if the bitcode file was empty, in which 466 // case we shouldn't be importing (the ModuleToSummariesForIndex 467 // would only include the module we are writing and index for). 468 assert(ModuleToSummariesForIndex->size() == 1); 469 continue; 470 } 471 Callback(*MPI); 472 } 473 } else { 474 for (const auto &MPSE : Index.modulePaths()) 475 Callback(MPSE); 476 } 477 } 478 479 /// Main entry point for writing a combined index to bitcode. 480 void write(); 481 482 private: 483 void writeModStrings(); 484 void writeCombinedGlobalValueSummary(); 485 486 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 487 auto VMI = GUIDToValueIdMap.find(ValGUID); 488 if (VMI == GUIDToValueIdMap.end()) 489 return None; 490 return VMI->second; 491 } 492 493 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 494 }; 495 496 } // end anonymous namespace 497 498 static unsigned getEncodedCastOpcode(unsigned Opcode) { 499 switch (Opcode) { 500 default: llvm_unreachable("Unknown cast instruction!"); 501 case Instruction::Trunc : return bitc::CAST_TRUNC; 502 case Instruction::ZExt : return bitc::CAST_ZEXT; 503 case Instruction::SExt : return bitc::CAST_SEXT; 504 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 505 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 506 case Instruction::UIToFP : return bitc::CAST_UITOFP; 507 case Instruction::SIToFP : return bitc::CAST_SITOFP; 508 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 509 case Instruction::FPExt : return bitc::CAST_FPEXT; 510 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 511 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 512 case Instruction::BitCast : return bitc::CAST_BITCAST; 513 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 514 } 515 } 516 517 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 518 switch (Opcode) { 519 default: llvm_unreachable("Unknown binary instruction!"); 520 case Instruction::FNeg: return bitc::UNOP_NEG; 521 } 522 } 523 524 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 525 switch (Opcode) { 526 default: llvm_unreachable("Unknown binary instruction!"); 527 case Instruction::Add: 528 case Instruction::FAdd: return bitc::BINOP_ADD; 529 case Instruction::Sub: 530 case Instruction::FSub: return bitc::BINOP_SUB; 531 case Instruction::Mul: 532 case Instruction::FMul: return bitc::BINOP_MUL; 533 case Instruction::UDiv: return bitc::BINOP_UDIV; 534 case Instruction::FDiv: 535 case Instruction::SDiv: return bitc::BINOP_SDIV; 536 case Instruction::URem: return bitc::BINOP_UREM; 537 case Instruction::FRem: 538 case Instruction::SRem: return bitc::BINOP_SREM; 539 case Instruction::Shl: return bitc::BINOP_SHL; 540 case Instruction::LShr: return bitc::BINOP_LSHR; 541 case Instruction::AShr: return bitc::BINOP_ASHR; 542 case Instruction::And: return bitc::BINOP_AND; 543 case Instruction::Or: return bitc::BINOP_OR; 544 case Instruction::Xor: return bitc::BINOP_XOR; 545 } 546 } 547 548 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 549 switch (Op) { 550 default: llvm_unreachable("Unknown RMW operation!"); 551 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 552 case AtomicRMWInst::Add: return bitc::RMW_ADD; 553 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 554 case AtomicRMWInst::And: return bitc::RMW_AND; 555 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 556 case AtomicRMWInst::Or: return bitc::RMW_OR; 557 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 558 case AtomicRMWInst::Max: return bitc::RMW_MAX; 559 case AtomicRMWInst::Min: return bitc::RMW_MIN; 560 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 561 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 562 } 563 } 564 565 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 566 switch (Ordering) { 567 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 568 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 569 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 570 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 571 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 572 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 573 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 574 } 575 llvm_unreachable("Invalid ordering"); 576 } 577 578 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 579 StringRef Str, unsigned AbbrevToUse) { 580 SmallVector<unsigned, 64> Vals; 581 582 // Code: [strchar x N] 583 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 584 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 585 AbbrevToUse = 0; 586 Vals.push_back(Str[i]); 587 } 588 589 // Emit the finished record. 590 Stream.EmitRecord(Code, Vals, AbbrevToUse); 591 } 592 593 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 594 switch (Kind) { 595 case Attribute::Alignment: 596 return bitc::ATTR_KIND_ALIGNMENT; 597 case Attribute::AllocSize: 598 return bitc::ATTR_KIND_ALLOC_SIZE; 599 case Attribute::AlwaysInline: 600 return bitc::ATTR_KIND_ALWAYS_INLINE; 601 case Attribute::ArgMemOnly: 602 return bitc::ATTR_KIND_ARGMEMONLY; 603 case Attribute::Builtin: 604 return bitc::ATTR_KIND_BUILTIN; 605 case Attribute::ByVal: 606 return bitc::ATTR_KIND_BY_VAL; 607 case Attribute::Convergent: 608 return bitc::ATTR_KIND_CONVERGENT; 609 case Attribute::InAlloca: 610 return bitc::ATTR_KIND_IN_ALLOCA; 611 case Attribute::Cold: 612 return bitc::ATTR_KIND_COLD; 613 case Attribute::InaccessibleMemOnly: 614 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 615 case Attribute::InaccessibleMemOrArgMemOnly: 616 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 617 case Attribute::InlineHint: 618 return bitc::ATTR_KIND_INLINE_HINT; 619 case Attribute::InReg: 620 return bitc::ATTR_KIND_IN_REG; 621 case Attribute::JumpTable: 622 return bitc::ATTR_KIND_JUMP_TABLE; 623 case Attribute::MinSize: 624 return bitc::ATTR_KIND_MIN_SIZE; 625 case Attribute::Naked: 626 return bitc::ATTR_KIND_NAKED; 627 case Attribute::Nest: 628 return bitc::ATTR_KIND_NEST; 629 case Attribute::NoAlias: 630 return bitc::ATTR_KIND_NO_ALIAS; 631 case Attribute::NoBuiltin: 632 return bitc::ATTR_KIND_NO_BUILTIN; 633 case Attribute::NoCapture: 634 return bitc::ATTR_KIND_NO_CAPTURE; 635 case Attribute::NoDuplicate: 636 return bitc::ATTR_KIND_NO_DUPLICATE; 637 case Attribute::NoImplicitFloat: 638 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 639 case Attribute::NoInline: 640 return bitc::ATTR_KIND_NO_INLINE; 641 case Attribute::NoRecurse: 642 return bitc::ATTR_KIND_NO_RECURSE; 643 case Attribute::NonLazyBind: 644 return bitc::ATTR_KIND_NON_LAZY_BIND; 645 case Attribute::NonNull: 646 return bitc::ATTR_KIND_NON_NULL; 647 case Attribute::Dereferenceable: 648 return bitc::ATTR_KIND_DEREFERENCEABLE; 649 case Attribute::DereferenceableOrNull: 650 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 651 case Attribute::NoRedZone: 652 return bitc::ATTR_KIND_NO_RED_ZONE; 653 case Attribute::NoReturn: 654 return bitc::ATTR_KIND_NO_RETURN; 655 case Attribute::NoCfCheck: 656 return bitc::ATTR_KIND_NOCF_CHECK; 657 case Attribute::NoUnwind: 658 return bitc::ATTR_KIND_NO_UNWIND; 659 case Attribute::OptForFuzzing: 660 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 661 case Attribute::OptimizeForSize: 662 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 663 case Attribute::OptimizeNone: 664 return bitc::ATTR_KIND_OPTIMIZE_NONE; 665 case Attribute::ReadNone: 666 return bitc::ATTR_KIND_READ_NONE; 667 case Attribute::ReadOnly: 668 return bitc::ATTR_KIND_READ_ONLY; 669 case Attribute::Returned: 670 return bitc::ATTR_KIND_RETURNED; 671 case Attribute::ReturnsTwice: 672 return bitc::ATTR_KIND_RETURNS_TWICE; 673 case Attribute::SExt: 674 return bitc::ATTR_KIND_S_EXT; 675 case Attribute::Speculatable: 676 return bitc::ATTR_KIND_SPECULATABLE; 677 case Attribute::StackAlignment: 678 return bitc::ATTR_KIND_STACK_ALIGNMENT; 679 case Attribute::StackProtect: 680 return bitc::ATTR_KIND_STACK_PROTECT; 681 case Attribute::StackProtectReq: 682 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 683 case Attribute::StackProtectStrong: 684 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 685 case Attribute::SafeStack: 686 return bitc::ATTR_KIND_SAFESTACK; 687 case Attribute::ShadowCallStack: 688 return bitc::ATTR_KIND_SHADOWCALLSTACK; 689 case Attribute::StrictFP: 690 return bitc::ATTR_KIND_STRICT_FP; 691 case Attribute::StructRet: 692 return bitc::ATTR_KIND_STRUCT_RET; 693 case Attribute::SanitizeAddress: 694 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 695 case Attribute::SanitizeHWAddress: 696 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 697 case Attribute::SanitizeThread: 698 return bitc::ATTR_KIND_SANITIZE_THREAD; 699 case Attribute::SanitizeMemory: 700 return bitc::ATTR_KIND_SANITIZE_MEMORY; 701 case Attribute::SpeculativeLoadHardening: 702 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 703 case Attribute::SwiftError: 704 return bitc::ATTR_KIND_SWIFT_ERROR; 705 case Attribute::SwiftSelf: 706 return bitc::ATTR_KIND_SWIFT_SELF; 707 case Attribute::UWTable: 708 return bitc::ATTR_KIND_UW_TABLE; 709 case Attribute::WriteOnly: 710 return bitc::ATTR_KIND_WRITEONLY; 711 case Attribute::ZExt: 712 return bitc::ATTR_KIND_Z_EXT; 713 case Attribute::EndAttrKinds: 714 llvm_unreachable("Can not encode end-attribute kinds marker."); 715 case Attribute::None: 716 llvm_unreachable("Can not encode none-attribute."); 717 } 718 719 llvm_unreachable("Trying to encode unknown attribute"); 720 } 721 722 void ModuleBitcodeWriter::writeAttributeGroupTable() { 723 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 724 VE.getAttributeGroups(); 725 if (AttrGrps.empty()) return; 726 727 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 728 729 SmallVector<uint64_t, 64> Record; 730 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 731 unsigned AttrListIndex = Pair.first; 732 AttributeSet AS = Pair.second; 733 Record.push_back(VE.getAttributeGroupID(Pair)); 734 Record.push_back(AttrListIndex); 735 736 for (Attribute Attr : AS) { 737 if (Attr.isEnumAttribute()) { 738 Record.push_back(0); 739 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 740 } else if (Attr.isIntAttribute()) { 741 Record.push_back(1); 742 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 743 Record.push_back(Attr.getValueAsInt()); 744 } else { 745 StringRef Kind = Attr.getKindAsString(); 746 StringRef Val = Attr.getValueAsString(); 747 748 Record.push_back(Val.empty() ? 3 : 4); 749 Record.append(Kind.begin(), Kind.end()); 750 Record.push_back(0); 751 if (!Val.empty()) { 752 Record.append(Val.begin(), Val.end()); 753 Record.push_back(0); 754 } 755 } 756 } 757 758 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 759 Record.clear(); 760 } 761 762 Stream.ExitBlock(); 763 } 764 765 void ModuleBitcodeWriter::writeAttributeTable() { 766 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 767 if (Attrs.empty()) return; 768 769 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 770 771 SmallVector<uint64_t, 64> Record; 772 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 773 AttributeList AL = Attrs[i]; 774 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 775 AttributeSet AS = AL.getAttributes(i); 776 if (AS.hasAttributes()) 777 Record.push_back(VE.getAttributeGroupID({i, AS})); 778 } 779 780 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 781 Record.clear(); 782 } 783 784 Stream.ExitBlock(); 785 } 786 787 /// WriteTypeTable - Write out the type table for a module. 788 void ModuleBitcodeWriter::writeTypeTable() { 789 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 790 791 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 792 SmallVector<uint64_t, 64> TypeVals; 793 794 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 795 796 // Abbrev for TYPE_CODE_POINTER. 797 auto Abbv = std::make_shared<BitCodeAbbrev>(); 798 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 800 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 801 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 802 803 // Abbrev for TYPE_CODE_FUNCTION. 804 Abbv = std::make_shared<BitCodeAbbrev>(); 805 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 809 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 810 811 // Abbrev for TYPE_CODE_STRUCT_ANON. 812 Abbv = std::make_shared<BitCodeAbbrev>(); 813 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 817 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 818 819 // Abbrev for TYPE_CODE_STRUCT_NAME. 820 Abbv = std::make_shared<BitCodeAbbrev>(); 821 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 824 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 825 826 // Abbrev for TYPE_CODE_STRUCT_NAMED. 827 Abbv = std::make_shared<BitCodeAbbrev>(); 828 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 832 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 833 834 // Abbrev for TYPE_CODE_ARRAY. 835 Abbv = std::make_shared<BitCodeAbbrev>(); 836 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 839 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 840 841 // Emit an entry count so the reader can reserve space. 842 TypeVals.push_back(TypeList.size()); 843 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 844 TypeVals.clear(); 845 846 // Loop over all of the types, emitting each in turn. 847 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 848 Type *T = TypeList[i]; 849 int AbbrevToUse = 0; 850 unsigned Code = 0; 851 852 switch (T->getTypeID()) { 853 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 854 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 855 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 856 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 857 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 858 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 859 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 860 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 861 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 862 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 863 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 864 case Type::IntegerTyID: 865 // INTEGER: [width] 866 Code = bitc::TYPE_CODE_INTEGER; 867 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 868 break; 869 case Type::PointerTyID: { 870 PointerType *PTy = cast<PointerType>(T); 871 // POINTER: [pointee type, address space] 872 Code = bitc::TYPE_CODE_POINTER; 873 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 874 unsigned AddressSpace = PTy->getAddressSpace(); 875 TypeVals.push_back(AddressSpace); 876 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 877 break; 878 } 879 case Type::FunctionTyID: { 880 FunctionType *FT = cast<FunctionType>(T); 881 // FUNCTION: [isvararg, retty, paramty x N] 882 Code = bitc::TYPE_CODE_FUNCTION; 883 TypeVals.push_back(FT->isVarArg()); 884 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 885 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 886 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 887 AbbrevToUse = FunctionAbbrev; 888 break; 889 } 890 case Type::StructTyID: { 891 StructType *ST = cast<StructType>(T); 892 // STRUCT: [ispacked, eltty x N] 893 TypeVals.push_back(ST->isPacked()); 894 // Output all of the element types. 895 for (StructType::element_iterator I = ST->element_begin(), 896 E = ST->element_end(); I != E; ++I) 897 TypeVals.push_back(VE.getTypeID(*I)); 898 899 if (ST->isLiteral()) { 900 Code = bitc::TYPE_CODE_STRUCT_ANON; 901 AbbrevToUse = StructAnonAbbrev; 902 } else { 903 if (ST->isOpaque()) { 904 Code = bitc::TYPE_CODE_OPAQUE; 905 } else { 906 Code = bitc::TYPE_CODE_STRUCT_NAMED; 907 AbbrevToUse = StructNamedAbbrev; 908 } 909 910 // Emit the name if it is present. 911 if (!ST->getName().empty()) 912 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 913 StructNameAbbrev); 914 } 915 break; 916 } 917 case Type::ArrayTyID: { 918 ArrayType *AT = cast<ArrayType>(T); 919 // ARRAY: [numelts, eltty] 920 Code = bitc::TYPE_CODE_ARRAY; 921 TypeVals.push_back(AT->getNumElements()); 922 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 923 AbbrevToUse = ArrayAbbrev; 924 break; 925 } 926 case Type::VectorTyID: { 927 VectorType *VT = cast<VectorType>(T); 928 // VECTOR [numelts, eltty] 929 Code = bitc::TYPE_CODE_VECTOR; 930 TypeVals.push_back(VT->getNumElements()); 931 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 932 break; 933 } 934 } 935 936 // Emit the finished record. 937 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 938 TypeVals.clear(); 939 } 940 941 Stream.ExitBlock(); 942 } 943 944 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 945 switch (Linkage) { 946 case GlobalValue::ExternalLinkage: 947 return 0; 948 case GlobalValue::WeakAnyLinkage: 949 return 16; 950 case GlobalValue::AppendingLinkage: 951 return 2; 952 case GlobalValue::InternalLinkage: 953 return 3; 954 case GlobalValue::LinkOnceAnyLinkage: 955 return 18; 956 case GlobalValue::ExternalWeakLinkage: 957 return 7; 958 case GlobalValue::CommonLinkage: 959 return 8; 960 case GlobalValue::PrivateLinkage: 961 return 9; 962 case GlobalValue::WeakODRLinkage: 963 return 17; 964 case GlobalValue::LinkOnceODRLinkage: 965 return 19; 966 case GlobalValue::AvailableExternallyLinkage: 967 return 12; 968 } 969 llvm_unreachable("Invalid linkage"); 970 } 971 972 static unsigned getEncodedLinkage(const GlobalValue &GV) { 973 return getEncodedLinkage(GV.getLinkage()); 974 } 975 976 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 977 uint64_t RawFlags = 0; 978 RawFlags |= Flags.ReadNone; 979 RawFlags |= (Flags.ReadOnly << 1); 980 RawFlags |= (Flags.NoRecurse << 2); 981 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 982 RawFlags |= (Flags.NoInline << 4); 983 return RawFlags; 984 } 985 986 // Decode the flags for GlobalValue in the summary 987 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 988 uint64_t RawFlags = 0; 989 990 RawFlags |= Flags.NotEligibleToImport; // bool 991 RawFlags |= (Flags.Live << 1); 992 RawFlags |= (Flags.DSOLocal << 2); 993 994 // Linkage don't need to be remapped at that time for the summary. Any future 995 // change to the getEncodedLinkage() function will need to be taken into 996 // account here as well. 997 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 998 999 return RawFlags; 1000 } 1001 1002 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1003 uint64_t RawFlags = Flags.ReadOnly; 1004 return RawFlags; 1005 } 1006 1007 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1008 switch (GV.getVisibility()) { 1009 case GlobalValue::DefaultVisibility: return 0; 1010 case GlobalValue::HiddenVisibility: return 1; 1011 case GlobalValue::ProtectedVisibility: return 2; 1012 } 1013 llvm_unreachable("Invalid visibility"); 1014 } 1015 1016 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1017 switch (GV.getDLLStorageClass()) { 1018 case GlobalValue::DefaultStorageClass: return 0; 1019 case GlobalValue::DLLImportStorageClass: return 1; 1020 case GlobalValue::DLLExportStorageClass: return 2; 1021 } 1022 llvm_unreachable("Invalid DLL storage class"); 1023 } 1024 1025 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1026 switch (GV.getThreadLocalMode()) { 1027 case GlobalVariable::NotThreadLocal: return 0; 1028 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1029 case GlobalVariable::LocalDynamicTLSModel: return 2; 1030 case GlobalVariable::InitialExecTLSModel: return 3; 1031 case GlobalVariable::LocalExecTLSModel: return 4; 1032 } 1033 llvm_unreachable("Invalid TLS model"); 1034 } 1035 1036 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1037 switch (C.getSelectionKind()) { 1038 case Comdat::Any: 1039 return bitc::COMDAT_SELECTION_KIND_ANY; 1040 case Comdat::ExactMatch: 1041 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1042 case Comdat::Largest: 1043 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1044 case Comdat::NoDuplicates: 1045 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1046 case Comdat::SameSize: 1047 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1048 } 1049 llvm_unreachable("Invalid selection kind"); 1050 } 1051 1052 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1053 switch (GV.getUnnamedAddr()) { 1054 case GlobalValue::UnnamedAddr::None: return 0; 1055 case GlobalValue::UnnamedAddr::Local: return 2; 1056 case GlobalValue::UnnamedAddr::Global: return 1; 1057 } 1058 llvm_unreachable("Invalid unnamed_addr"); 1059 } 1060 1061 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1062 if (GenerateHash) 1063 Hasher.update(Str); 1064 return StrtabBuilder.add(Str); 1065 } 1066 1067 void ModuleBitcodeWriter::writeComdats() { 1068 SmallVector<unsigned, 64> Vals; 1069 for (const Comdat *C : VE.getComdats()) { 1070 // COMDAT: [strtab offset, strtab size, selection_kind] 1071 Vals.push_back(addToStrtab(C->getName())); 1072 Vals.push_back(C->getName().size()); 1073 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1074 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1075 Vals.clear(); 1076 } 1077 } 1078 1079 /// Write a record that will eventually hold the word offset of the 1080 /// module-level VST. For now the offset is 0, which will be backpatched 1081 /// after the real VST is written. Saves the bit offset to backpatch. 1082 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1083 // Write a placeholder value in for the offset of the real VST, 1084 // which is written after the function blocks so that it can include 1085 // the offset of each function. The placeholder offset will be 1086 // updated when the real VST is written. 1087 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1088 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1089 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1090 // hold the real VST offset. Must use fixed instead of VBR as we don't 1091 // know how many VBR chunks to reserve ahead of time. 1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1093 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1094 1095 // Emit the placeholder 1096 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1097 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1098 1099 // Compute and save the bit offset to the placeholder, which will be 1100 // patched when the real VST is written. We can simply subtract the 32-bit 1101 // fixed size from the current bit number to get the location to backpatch. 1102 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1103 } 1104 1105 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1106 1107 /// Determine the encoding to use for the given string name and length. 1108 static StringEncoding getStringEncoding(StringRef Str) { 1109 bool isChar6 = true; 1110 for (char C : Str) { 1111 if (isChar6) 1112 isChar6 = BitCodeAbbrevOp::isChar6(C); 1113 if ((unsigned char)C & 128) 1114 // don't bother scanning the rest. 1115 return SE_Fixed8; 1116 } 1117 if (isChar6) 1118 return SE_Char6; 1119 return SE_Fixed7; 1120 } 1121 1122 /// Emit top-level description of module, including target triple, inline asm, 1123 /// descriptors for global variables, and function prototype info. 1124 /// Returns the bit offset to backpatch with the location of the real VST. 1125 void ModuleBitcodeWriter::writeModuleInfo() { 1126 // Emit various pieces of data attached to a module. 1127 if (!M.getTargetTriple().empty()) 1128 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1129 0 /*TODO*/); 1130 const std::string &DL = M.getDataLayoutStr(); 1131 if (!DL.empty()) 1132 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1133 if (!M.getModuleInlineAsm().empty()) 1134 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1135 0 /*TODO*/); 1136 1137 // Emit information about sections and GC, computing how many there are. Also 1138 // compute the maximum alignment value. 1139 std::map<std::string, unsigned> SectionMap; 1140 std::map<std::string, unsigned> GCMap; 1141 unsigned MaxAlignment = 0; 1142 unsigned MaxGlobalType = 0; 1143 for (const GlobalValue &GV : M.globals()) { 1144 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1145 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1146 if (GV.hasSection()) { 1147 // Give section names unique ID's. 1148 unsigned &Entry = SectionMap[GV.getSection()]; 1149 if (!Entry) { 1150 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1151 0 /*TODO*/); 1152 Entry = SectionMap.size(); 1153 } 1154 } 1155 } 1156 for (const Function &F : M) { 1157 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1158 if (F.hasSection()) { 1159 // Give section names unique ID's. 1160 unsigned &Entry = SectionMap[F.getSection()]; 1161 if (!Entry) { 1162 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1163 0 /*TODO*/); 1164 Entry = SectionMap.size(); 1165 } 1166 } 1167 if (F.hasGC()) { 1168 // Same for GC names. 1169 unsigned &Entry = GCMap[F.getGC()]; 1170 if (!Entry) { 1171 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1172 0 /*TODO*/); 1173 Entry = GCMap.size(); 1174 } 1175 } 1176 } 1177 1178 // Emit abbrev for globals, now that we know # sections and max alignment. 1179 unsigned SimpleGVarAbbrev = 0; 1180 if (!M.global_empty()) { 1181 // Add an abbrev for common globals with no visibility or thread localness. 1182 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1183 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1187 Log2_32_Ceil(MaxGlobalType+1))); 1188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1189 //| explicitType << 1 1190 //| constant 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1193 if (MaxAlignment == 0) // Alignment. 1194 Abbv->Add(BitCodeAbbrevOp(0)); 1195 else { 1196 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1198 Log2_32_Ceil(MaxEncAlignment+1))); 1199 } 1200 if (SectionMap.empty()) // Section. 1201 Abbv->Add(BitCodeAbbrevOp(0)); 1202 else 1203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1204 Log2_32_Ceil(SectionMap.size()+1))); 1205 // Don't bother emitting vis + thread local. 1206 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1207 } 1208 1209 SmallVector<unsigned, 64> Vals; 1210 // Emit the module's source file name. 1211 { 1212 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1213 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1214 if (Bits == SE_Char6) 1215 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1216 else if (Bits == SE_Fixed7) 1217 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1218 1219 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1220 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1221 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1223 Abbv->Add(AbbrevOpToUse); 1224 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1225 1226 for (const auto P : M.getSourceFileName()) 1227 Vals.push_back((unsigned char)P); 1228 1229 // Emit the finished record. 1230 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1231 Vals.clear(); 1232 } 1233 1234 // Emit the global variable information. 1235 for (const GlobalVariable &GV : M.globals()) { 1236 unsigned AbbrevToUse = 0; 1237 1238 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1239 // linkage, alignment, section, visibility, threadlocal, 1240 // unnamed_addr, externally_initialized, dllstorageclass, 1241 // comdat, attributes, DSO_Local] 1242 Vals.push_back(addToStrtab(GV.getName())); 1243 Vals.push_back(GV.getName().size()); 1244 Vals.push_back(VE.getTypeID(GV.getValueType())); 1245 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1246 Vals.push_back(GV.isDeclaration() ? 0 : 1247 (VE.getValueID(GV.getInitializer()) + 1)); 1248 Vals.push_back(getEncodedLinkage(GV)); 1249 Vals.push_back(Log2_32(GV.getAlignment())+1); 1250 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1251 if (GV.isThreadLocal() || 1252 GV.getVisibility() != GlobalValue::DefaultVisibility || 1253 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1254 GV.isExternallyInitialized() || 1255 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1256 GV.hasComdat() || 1257 GV.hasAttributes() || 1258 GV.isDSOLocal()) { 1259 Vals.push_back(getEncodedVisibility(GV)); 1260 Vals.push_back(getEncodedThreadLocalMode(GV)); 1261 Vals.push_back(getEncodedUnnamedAddr(GV)); 1262 Vals.push_back(GV.isExternallyInitialized()); 1263 Vals.push_back(getEncodedDLLStorageClass(GV)); 1264 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1265 1266 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1267 Vals.push_back(VE.getAttributeListID(AL)); 1268 1269 Vals.push_back(GV.isDSOLocal()); 1270 } else { 1271 AbbrevToUse = SimpleGVarAbbrev; 1272 } 1273 1274 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1275 Vals.clear(); 1276 } 1277 1278 // Emit the function proto information. 1279 for (const Function &F : M) { 1280 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1281 // linkage, paramattrs, alignment, section, visibility, gc, 1282 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1283 // prefixdata, personalityfn, DSO_Local, addrspace] 1284 Vals.push_back(addToStrtab(F.getName())); 1285 Vals.push_back(F.getName().size()); 1286 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1287 Vals.push_back(F.getCallingConv()); 1288 Vals.push_back(F.isDeclaration()); 1289 Vals.push_back(getEncodedLinkage(F)); 1290 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1291 Vals.push_back(Log2_32(F.getAlignment())+1); 1292 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1293 Vals.push_back(getEncodedVisibility(F)); 1294 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1295 Vals.push_back(getEncodedUnnamedAddr(F)); 1296 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1297 : 0); 1298 Vals.push_back(getEncodedDLLStorageClass(F)); 1299 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1300 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1301 : 0); 1302 Vals.push_back( 1303 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1304 1305 Vals.push_back(F.isDSOLocal()); 1306 Vals.push_back(F.getAddressSpace()); 1307 1308 unsigned AbbrevToUse = 0; 1309 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1310 Vals.clear(); 1311 } 1312 1313 // Emit the alias information. 1314 for (const GlobalAlias &A : M.aliases()) { 1315 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1316 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1317 // DSO_Local] 1318 Vals.push_back(addToStrtab(A.getName())); 1319 Vals.push_back(A.getName().size()); 1320 Vals.push_back(VE.getTypeID(A.getValueType())); 1321 Vals.push_back(A.getType()->getAddressSpace()); 1322 Vals.push_back(VE.getValueID(A.getAliasee())); 1323 Vals.push_back(getEncodedLinkage(A)); 1324 Vals.push_back(getEncodedVisibility(A)); 1325 Vals.push_back(getEncodedDLLStorageClass(A)); 1326 Vals.push_back(getEncodedThreadLocalMode(A)); 1327 Vals.push_back(getEncodedUnnamedAddr(A)); 1328 Vals.push_back(A.isDSOLocal()); 1329 1330 unsigned AbbrevToUse = 0; 1331 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1332 Vals.clear(); 1333 } 1334 1335 // Emit the ifunc information. 1336 for (const GlobalIFunc &I : M.ifuncs()) { 1337 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1338 // val#, linkage, visibility, DSO_Local] 1339 Vals.push_back(addToStrtab(I.getName())); 1340 Vals.push_back(I.getName().size()); 1341 Vals.push_back(VE.getTypeID(I.getValueType())); 1342 Vals.push_back(I.getType()->getAddressSpace()); 1343 Vals.push_back(VE.getValueID(I.getResolver())); 1344 Vals.push_back(getEncodedLinkage(I)); 1345 Vals.push_back(getEncodedVisibility(I)); 1346 Vals.push_back(I.isDSOLocal()); 1347 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1348 Vals.clear(); 1349 } 1350 1351 writeValueSymbolTableForwardDecl(); 1352 } 1353 1354 static uint64_t getOptimizationFlags(const Value *V) { 1355 uint64_t Flags = 0; 1356 1357 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1358 if (OBO->hasNoSignedWrap()) 1359 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1360 if (OBO->hasNoUnsignedWrap()) 1361 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1362 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1363 if (PEO->isExact()) 1364 Flags |= 1 << bitc::PEO_EXACT; 1365 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1366 if (FPMO->hasAllowReassoc()) 1367 Flags |= bitc::AllowReassoc; 1368 if (FPMO->hasNoNaNs()) 1369 Flags |= bitc::NoNaNs; 1370 if (FPMO->hasNoInfs()) 1371 Flags |= bitc::NoInfs; 1372 if (FPMO->hasNoSignedZeros()) 1373 Flags |= bitc::NoSignedZeros; 1374 if (FPMO->hasAllowReciprocal()) 1375 Flags |= bitc::AllowReciprocal; 1376 if (FPMO->hasAllowContract()) 1377 Flags |= bitc::AllowContract; 1378 if (FPMO->hasApproxFunc()) 1379 Flags |= bitc::ApproxFunc; 1380 } 1381 1382 return Flags; 1383 } 1384 1385 void ModuleBitcodeWriter::writeValueAsMetadata( 1386 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1387 // Mimic an MDNode with a value as one operand. 1388 Value *V = MD->getValue(); 1389 Record.push_back(VE.getTypeID(V->getType())); 1390 Record.push_back(VE.getValueID(V)); 1391 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1392 Record.clear(); 1393 } 1394 1395 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1396 SmallVectorImpl<uint64_t> &Record, 1397 unsigned Abbrev) { 1398 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1399 Metadata *MD = N->getOperand(i); 1400 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1401 "Unexpected function-local metadata"); 1402 Record.push_back(VE.getMetadataOrNullID(MD)); 1403 } 1404 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1405 : bitc::METADATA_NODE, 1406 Record, Abbrev); 1407 Record.clear(); 1408 } 1409 1410 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1411 // Assume the column is usually under 128, and always output the inlined-at 1412 // location (it's never more expensive than building an array size 1). 1413 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1414 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1421 return Stream.EmitAbbrev(std::move(Abbv)); 1422 } 1423 1424 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1425 SmallVectorImpl<uint64_t> &Record, 1426 unsigned &Abbrev) { 1427 if (!Abbrev) 1428 Abbrev = createDILocationAbbrev(); 1429 1430 Record.push_back(N->isDistinct()); 1431 Record.push_back(N->getLine()); 1432 Record.push_back(N->getColumn()); 1433 Record.push_back(VE.getMetadataID(N->getScope())); 1434 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1435 Record.push_back(N->isImplicitCode()); 1436 1437 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1438 Record.clear(); 1439 } 1440 1441 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1442 // Assume the column is usually under 128, and always output the inlined-at 1443 // location (it's never more expensive than building an array size 1). 1444 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1445 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1452 return Stream.EmitAbbrev(std::move(Abbv)); 1453 } 1454 1455 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1456 SmallVectorImpl<uint64_t> &Record, 1457 unsigned &Abbrev) { 1458 if (!Abbrev) 1459 Abbrev = createGenericDINodeAbbrev(); 1460 1461 Record.push_back(N->isDistinct()); 1462 Record.push_back(N->getTag()); 1463 Record.push_back(0); // Per-tag version field; unused for now. 1464 1465 for (auto &I : N->operands()) 1466 Record.push_back(VE.getMetadataOrNullID(I)); 1467 1468 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1469 Record.clear(); 1470 } 1471 1472 static uint64_t rotateSign(int64_t I) { 1473 uint64_t U = I; 1474 return I < 0 ? ~(U << 1) : U << 1; 1475 } 1476 1477 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1478 SmallVectorImpl<uint64_t> &Record, 1479 unsigned Abbrev) { 1480 const uint64_t Version = 1 << 1; 1481 Record.push_back((uint64_t)N->isDistinct() | Version); 1482 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1483 Record.push_back(rotateSign(N->getLowerBound())); 1484 1485 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1486 Record.clear(); 1487 } 1488 1489 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1490 SmallVectorImpl<uint64_t> &Record, 1491 unsigned Abbrev) { 1492 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1493 Record.push_back(rotateSign(N->getValue())); 1494 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1495 1496 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1497 Record.clear(); 1498 } 1499 1500 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1501 SmallVectorImpl<uint64_t> &Record, 1502 unsigned Abbrev) { 1503 Record.push_back(N->isDistinct()); 1504 Record.push_back(N->getTag()); 1505 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1506 Record.push_back(N->getSizeInBits()); 1507 Record.push_back(N->getAlignInBits()); 1508 Record.push_back(N->getEncoding()); 1509 Record.push_back(N->getFlags()); 1510 1511 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1512 Record.clear(); 1513 } 1514 1515 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1516 SmallVectorImpl<uint64_t> &Record, 1517 unsigned Abbrev) { 1518 Record.push_back(N->isDistinct()); 1519 Record.push_back(N->getTag()); 1520 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1521 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1522 Record.push_back(N->getLine()); 1523 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1524 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1525 Record.push_back(N->getSizeInBits()); 1526 Record.push_back(N->getAlignInBits()); 1527 Record.push_back(N->getOffsetInBits()); 1528 Record.push_back(N->getFlags()); 1529 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1530 1531 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1532 // that there is no DWARF address space associated with DIDerivedType. 1533 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1534 Record.push_back(*DWARFAddressSpace + 1); 1535 else 1536 Record.push_back(0); 1537 1538 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1539 Record.clear(); 1540 } 1541 1542 void ModuleBitcodeWriter::writeDICompositeType( 1543 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1544 unsigned Abbrev) { 1545 const unsigned IsNotUsedInOldTypeRef = 0x2; 1546 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1547 Record.push_back(N->getTag()); 1548 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1549 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1550 Record.push_back(N->getLine()); 1551 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1552 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1553 Record.push_back(N->getSizeInBits()); 1554 Record.push_back(N->getAlignInBits()); 1555 Record.push_back(N->getOffsetInBits()); 1556 Record.push_back(N->getFlags()); 1557 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1558 Record.push_back(N->getRuntimeLang()); 1559 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1560 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1561 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1562 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1563 1564 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1565 Record.clear(); 1566 } 1567 1568 void ModuleBitcodeWriter::writeDISubroutineType( 1569 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1570 unsigned Abbrev) { 1571 const unsigned HasNoOldTypeRefs = 0x2; 1572 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1573 Record.push_back(N->getFlags()); 1574 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1575 Record.push_back(N->getCC()); 1576 1577 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1578 Record.clear(); 1579 } 1580 1581 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1582 SmallVectorImpl<uint64_t> &Record, 1583 unsigned Abbrev) { 1584 Record.push_back(N->isDistinct()); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1587 if (N->getRawChecksum()) { 1588 Record.push_back(N->getRawChecksum()->Kind); 1589 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1590 } else { 1591 // Maintain backwards compatibility with the old internal representation of 1592 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1593 Record.push_back(0); 1594 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1595 } 1596 auto Source = N->getRawSource(); 1597 if (Source) 1598 Record.push_back(VE.getMetadataOrNullID(*Source)); 1599 1600 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1601 Record.clear(); 1602 } 1603 1604 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1605 SmallVectorImpl<uint64_t> &Record, 1606 unsigned Abbrev) { 1607 assert(N->isDistinct() && "Expected distinct compile units"); 1608 Record.push_back(/* IsDistinct */ true); 1609 Record.push_back(N->getSourceLanguage()); 1610 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1611 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1612 Record.push_back(N->isOptimized()); 1613 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1614 Record.push_back(N->getRuntimeVersion()); 1615 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1616 Record.push_back(N->getEmissionKind()); 1617 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1618 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1619 Record.push_back(/* subprograms */ 0); 1620 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1621 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1622 Record.push_back(N->getDWOId()); 1623 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1624 Record.push_back(N->getSplitDebugInlining()); 1625 Record.push_back(N->getDebugInfoForProfiling()); 1626 Record.push_back((unsigned)N->getNameTableKind()); 1627 1628 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1629 Record.clear(); 1630 } 1631 1632 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1633 SmallVectorImpl<uint64_t> &Record, 1634 unsigned Abbrev) { 1635 const uint64_t HasUnitFlag = 1 << 1; 1636 const uint64_t HasSPFlagsFlag = 1 << 2; 1637 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1638 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1639 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1640 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1641 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1642 Record.push_back(N->getLine()); 1643 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1644 Record.push_back(N->getScopeLine()); 1645 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1646 Record.push_back(N->getSPFlags()); 1647 Record.push_back(N->getVirtualIndex()); 1648 Record.push_back(N->getFlags()); 1649 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1650 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1651 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1652 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1653 Record.push_back(N->getThisAdjustment()); 1654 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1655 1656 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1657 Record.clear(); 1658 } 1659 1660 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1661 SmallVectorImpl<uint64_t> &Record, 1662 unsigned Abbrev) { 1663 Record.push_back(N->isDistinct()); 1664 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1665 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1666 Record.push_back(N->getLine()); 1667 Record.push_back(N->getColumn()); 1668 1669 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1670 Record.clear(); 1671 } 1672 1673 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1674 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1675 unsigned Abbrev) { 1676 Record.push_back(N->isDistinct()); 1677 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1678 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1679 Record.push_back(N->getDiscriminator()); 1680 1681 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1682 Record.clear(); 1683 } 1684 1685 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1686 SmallVectorImpl<uint64_t> &Record, 1687 unsigned Abbrev) { 1688 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1689 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1690 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1691 1692 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1693 Record.clear(); 1694 } 1695 1696 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1697 SmallVectorImpl<uint64_t> &Record, 1698 unsigned Abbrev) { 1699 Record.push_back(N->isDistinct()); 1700 Record.push_back(N->getMacinfoType()); 1701 Record.push_back(N->getLine()); 1702 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1703 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1704 1705 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1706 Record.clear(); 1707 } 1708 1709 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1710 SmallVectorImpl<uint64_t> &Record, 1711 unsigned Abbrev) { 1712 Record.push_back(N->isDistinct()); 1713 Record.push_back(N->getMacinfoType()); 1714 Record.push_back(N->getLine()); 1715 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1717 1718 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1719 Record.clear(); 1720 } 1721 1722 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1723 SmallVectorImpl<uint64_t> &Record, 1724 unsigned Abbrev) { 1725 Record.push_back(N->isDistinct()); 1726 for (auto &I : N->operands()) 1727 Record.push_back(VE.getMetadataOrNullID(I)); 1728 1729 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1730 Record.clear(); 1731 } 1732 1733 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1734 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1735 unsigned Abbrev) { 1736 Record.push_back(N->isDistinct()); 1737 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1738 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1739 1740 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1741 Record.clear(); 1742 } 1743 1744 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1745 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1746 unsigned Abbrev) { 1747 Record.push_back(N->isDistinct()); 1748 Record.push_back(N->getTag()); 1749 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1750 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1751 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1752 1753 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1754 Record.clear(); 1755 } 1756 1757 void ModuleBitcodeWriter::writeDIGlobalVariable( 1758 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1759 unsigned Abbrev) { 1760 const uint64_t Version = 2 << 1; 1761 Record.push_back((uint64_t)N->isDistinct() | Version); 1762 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1763 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1764 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1765 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1766 Record.push_back(N->getLine()); 1767 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1768 Record.push_back(N->isLocalToUnit()); 1769 Record.push_back(N->isDefinition()); 1770 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1772 Record.push_back(N->getAlignInBits()); 1773 1774 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1775 Record.clear(); 1776 } 1777 1778 void ModuleBitcodeWriter::writeDILocalVariable( 1779 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1780 unsigned Abbrev) { 1781 // In order to support all possible bitcode formats in BitcodeReader we need 1782 // to distinguish the following cases: 1783 // 1) Record has no artificial tag (Record[1]), 1784 // has no obsolete inlinedAt field (Record[9]). 1785 // In this case Record size will be 8, HasAlignment flag is false. 1786 // 2) Record has artificial tag (Record[1]), 1787 // has no obsolete inlignedAt field (Record[9]). 1788 // In this case Record size will be 9, HasAlignment flag is false. 1789 // 3) Record has both artificial tag (Record[1]) and 1790 // obsolete inlignedAt field (Record[9]). 1791 // In this case Record size will be 10, HasAlignment flag is false. 1792 // 4) Record has neither artificial tag, nor inlignedAt field, but 1793 // HasAlignment flag is true and Record[8] contains alignment value. 1794 const uint64_t HasAlignmentFlag = 1 << 1; 1795 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1796 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1797 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1799 Record.push_back(N->getLine()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1801 Record.push_back(N->getArg()); 1802 Record.push_back(N->getFlags()); 1803 Record.push_back(N->getAlignInBits()); 1804 1805 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1806 Record.clear(); 1807 } 1808 1809 void ModuleBitcodeWriter::writeDILabel( 1810 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1811 unsigned Abbrev) { 1812 Record.push_back((uint64_t)N->isDistinct()); 1813 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1816 Record.push_back(N->getLine()); 1817 1818 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1819 Record.clear(); 1820 } 1821 1822 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1823 SmallVectorImpl<uint64_t> &Record, 1824 unsigned Abbrev) { 1825 Record.reserve(N->getElements().size() + 1); 1826 const uint64_t Version = 3 << 1; 1827 Record.push_back((uint64_t)N->isDistinct() | Version); 1828 Record.append(N->elements_begin(), N->elements_end()); 1829 1830 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1831 Record.clear(); 1832 } 1833 1834 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1835 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1836 unsigned Abbrev) { 1837 Record.push_back(N->isDistinct()); 1838 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1839 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1840 1841 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1842 Record.clear(); 1843 } 1844 1845 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1846 SmallVectorImpl<uint64_t> &Record, 1847 unsigned Abbrev) { 1848 Record.push_back(N->isDistinct()); 1849 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1850 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1851 Record.push_back(N->getLine()); 1852 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1854 Record.push_back(N->getAttributes()); 1855 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1856 1857 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1858 Record.clear(); 1859 } 1860 1861 void ModuleBitcodeWriter::writeDIImportedEntity( 1862 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1863 unsigned Abbrev) { 1864 Record.push_back(N->isDistinct()); 1865 Record.push_back(N->getTag()); 1866 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1867 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1868 Record.push_back(N->getLine()); 1869 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1870 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1871 1872 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1873 Record.clear(); 1874 } 1875 1876 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1877 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1878 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1881 return Stream.EmitAbbrev(std::move(Abbv)); 1882 } 1883 1884 void ModuleBitcodeWriter::writeNamedMetadata( 1885 SmallVectorImpl<uint64_t> &Record) { 1886 if (M.named_metadata_empty()) 1887 return; 1888 1889 unsigned Abbrev = createNamedMetadataAbbrev(); 1890 for (const NamedMDNode &NMD : M.named_metadata()) { 1891 // Write name. 1892 StringRef Str = NMD.getName(); 1893 Record.append(Str.bytes_begin(), Str.bytes_end()); 1894 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1895 Record.clear(); 1896 1897 // Write named metadata operands. 1898 for (const MDNode *N : NMD.operands()) 1899 Record.push_back(VE.getMetadataID(N)); 1900 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1901 Record.clear(); 1902 } 1903 } 1904 1905 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1906 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1907 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1911 return Stream.EmitAbbrev(std::move(Abbv)); 1912 } 1913 1914 /// Write out a record for MDString. 1915 /// 1916 /// All the metadata strings in a metadata block are emitted in a single 1917 /// record. The sizes and strings themselves are shoved into a blob. 1918 void ModuleBitcodeWriter::writeMetadataStrings( 1919 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1920 if (Strings.empty()) 1921 return; 1922 1923 // Start the record with the number of strings. 1924 Record.push_back(bitc::METADATA_STRINGS); 1925 Record.push_back(Strings.size()); 1926 1927 // Emit the sizes of the strings in the blob. 1928 SmallString<256> Blob; 1929 { 1930 BitstreamWriter W(Blob); 1931 for (const Metadata *MD : Strings) 1932 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1933 W.FlushToWord(); 1934 } 1935 1936 // Add the offset to the strings to the record. 1937 Record.push_back(Blob.size()); 1938 1939 // Add the strings to the blob. 1940 for (const Metadata *MD : Strings) 1941 Blob.append(cast<MDString>(MD)->getString()); 1942 1943 // Emit the final record. 1944 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1945 Record.clear(); 1946 } 1947 1948 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1949 enum MetadataAbbrev : unsigned { 1950 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1951 #include "llvm/IR/Metadata.def" 1952 LastPlusOne 1953 }; 1954 1955 void ModuleBitcodeWriter::writeMetadataRecords( 1956 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1957 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1958 if (MDs.empty()) 1959 return; 1960 1961 // Initialize MDNode abbreviations. 1962 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1963 #include "llvm/IR/Metadata.def" 1964 1965 for (const Metadata *MD : MDs) { 1966 if (IndexPos) 1967 IndexPos->push_back(Stream.GetCurrentBitNo()); 1968 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1969 assert(N->isResolved() && "Expected forward references to be resolved"); 1970 1971 switch (N->getMetadataID()) { 1972 default: 1973 llvm_unreachable("Invalid MDNode subclass"); 1974 #define HANDLE_MDNODE_LEAF(CLASS) \ 1975 case Metadata::CLASS##Kind: \ 1976 if (MDAbbrevs) \ 1977 write##CLASS(cast<CLASS>(N), Record, \ 1978 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1979 else \ 1980 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1981 continue; 1982 #include "llvm/IR/Metadata.def" 1983 } 1984 } 1985 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1986 } 1987 } 1988 1989 void ModuleBitcodeWriter::writeModuleMetadata() { 1990 if (!VE.hasMDs() && M.named_metadata_empty()) 1991 return; 1992 1993 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1994 SmallVector<uint64_t, 64> Record; 1995 1996 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1997 // block and load any metadata. 1998 std::vector<unsigned> MDAbbrevs; 1999 2000 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2001 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2002 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2003 createGenericDINodeAbbrev(); 2004 2005 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2006 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2009 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2010 2011 Abbv = std::make_shared<BitCodeAbbrev>(); 2012 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2015 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2016 2017 // Emit MDStrings together upfront. 2018 writeMetadataStrings(VE.getMDStrings(), Record); 2019 2020 // We only emit an index for the metadata record if we have more than a given 2021 // (naive) threshold of metadatas, otherwise it is not worth it. 2022 if (VE.getNonMDStrings().size() > IndexThreshold) { 2023 // Write a placeholder value in for the offset of the metadata index, 2024 // which is written after the records, so that it can include 2025 // the offset of each entry. The placeholder offset will be 2026 // updated after all records are emitted. 2027 uint64_t Vals[] = {0, 0}; 2028 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2029 } 2030 2031 // Compute and save the bit offset to the current position, which will be 2032 // patched when we emit the index later. We can simply subtract the 64-bit 2033 // fixed size from the current bit number to get the location to backpatch. 2034 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2035 2036 // This index will contain the bitpos for each individual record. 2037 std::vector<uint64_t> IndexPos; 2038 IndexPos.reserve(VE.getNonMDStrings().size()); 2039 2040 // Write all the records 2041 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2042 2043 if (VE.getNonMDStrings().size() > IndexThreshold) { 2044 // Now that we have emitted all the records we will emit the index. But 2045 // first 2046 // backpatch the forward reference so that the reader can skip the records 2047 // efficiently. 2048 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2049 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2050 2051 // Delta encode the index. 2052 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2053 for (auto &Elt : IndexPos) { 2054 auto EltDelta = Elt - PreviousValue; 2055 PreviousValue = Elt; 2056 Elt = EltDelta; 2057 } 2058 // Emit the index record. 2059 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2060 IndexPos.clear(); 2061 } 2062 2063 // Write the named metadata now. 2064 writeNamedMetadata(Record); 2065 2066 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2067 SmallVector<uint64_t, 4> Record; 2068 Record.push_back(VE.getValueID(&GO)); 2069 pushGlobalMetadataAttachment(Record, GO); 2070 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2071 }; 2072 for (const Function &F : M) 2073 if (F.isDeclaration() && F.hasMetadata()) 2074 AddDeclAttachedMetadata(F); 2075 // FIXME: Only store metadata for declarations here, and move data for global 2076 // variable definitions to a separate block (PR28134). 2077 for (const GlobalVariable &GV : M.globals()) 2078 if (GV.hasMetadata()) 2079 AddDeclAttachedMetadata(GV); 2080 2081 Stream.ExitBlock(); 2082 } 2083 2084 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2085 if (!VE.hasMDs()) 2086 return; 2087 2088 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2089 SmallVector<uint64_t, 64> Record; 2090 writeMetadataStrings(VE.getMDStrings(), Record); 2091 writeMetadataRecords(VE.getNonMDStrings(), Record); 2092 Stream.ExitBlock(); 2093 } 2094 2095 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2096 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2097 // [n x [id, mdnode]] 2098 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2099 GO.getAllMetadata(MDs); 2100 for (const auto &I : MDs) { 2101 Record.push_back(I.first); 2102 Record.push_back(VE.getMetadataID(I.second)); 2103 } 2104 } 2105 2106 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2107 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2108 2109 SmallVector<uint64_t, 64> Record; 2110 2111 if (F.hasMetadata()) { 2112 pushGlobalMetadataAttachment(Record, F); 2113 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2114 Record.clear(); 2115 } 2116 2117 // Write metadata attachments 2118 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2119 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2120 for (const BasicBlock &BB : F) 2121 for (const Instruction &I : BB) { 2122 MDs.clear(); 2123 I.getAllMetadataOtherThanDebugLoc(MDs); 2124 2125 // If no metadata, ignore instruction. 2126 if (MDs.empty()) continue; 2127 2128 Record.push_back(VE.getInstructionID(&I)); 2129 2130 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2131 Record.push_back(MDs[i].first); 2132 Record.push_back(VE.getMetadataID(MDs[i].second)); 2133 } 2134 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2135 Record.clear(); 2136 } 2137 2138 Stream.ExitBlock(); 2139 } 2140 2141 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2142 SmallVector<uint64_t, 64> Record; 2143 2144 // Write metadata kinds 2145 // METADATA_KIND - [n x [id, name]] 2146 SmallVector<StringRef, 8> Names; 2147 M.getMDKindNames(Names); 2148 2149 if (Names.empty()) return; 2150 2151 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2152 2153 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2154 Record.push_back(MDKindID); 2155 StringRef KName = Names[MDKindID]; 2156 Record.append(KName.begin(), KName.end()); 2157 2158 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2159 Record.clear(); 2160 } 2161 2162 Stream.ExitBlock(); 2163 } 2164 2165 void ModuleBitcodeWriter::writeOperandBundleTags() { 2166 // Write metadata kinds 2167 // 2168 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2169 // 2170 // OPERAND_BUNDLE_TAG - [strchr x N] 2171 2172 SmallVector<StringRef, 8> Tags; 2173 M.getOperandBundleTags(Tags); 2174 2175 if (Tags.empty()) 2176 return; 2177 2178 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2179 2180 SmallVector<uint64_t, 64> Record; 2181 2182 for (auto Tag : Tags) { 2183 Record.append(Tag.begin(), Tag.end()); 2184 2185 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2186 Record.clear(); 2187 } 2188 2189 Stream.ExitBlock(); 2190 } 2191 2192 void ModuleBitcodeWriter::writeSyncScopeNames() { 2193 SmallVector<StringRef, 8> SSNs; 2194 M.getContext().getSyncScopeNames(SSNs); 2195 if (SSNs.empty()) 2196 return; 2197 2198 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2199 2200 SmallVector<uint64_t, 64> Record; 2201 for (auto SSN : SSNs) { 2202 Record.append(SSN.begin(), SSN.end()); 2203 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2204 Record.clear(); 2205 } 2206 2207 Stream.ExitBlock(); 2208 } 2209 2210 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2211 if ((int64_t)V >= 0) 2212 Vals.push_back(V << 1); 2213 else 2214 Vals.push_back((-V << 1) | 1); 2215 } 2216 2217 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2218 bool isGlobal) { 2219 if (FirstVal == LastVal) return; 2220 2221 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2222 2223 unsigned AggregateAbbrev = 0; 2224 unsigned String8Abbrev = 0; 2225 unsigned CString7Abbrev = 0; 2226 unsigned CString6Abbrev = 0; 2227 // If this is a constant pool for the module, emit module-specific abbrevs. 2228 if (isGlobal) { 2229 // Abbrev for CST_CODE_AGGREGATE. 2230 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2231 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2234 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2235 2236 // Abbrev for CST_CODE_STRING. 2237 Abbv = std::make_shared<BitCodeAbbrev>(); 2238 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2241 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2242 // Abbrev for CST_CODE_CSTRING. 2243 Abbv = std::make_shared<BitCodeAbbrev>(); 2244 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2247 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2248 // Abbrev for CST_CODE_CSTRING. 2249 Abbv = std::make_shared<BitCodeAbbrev>(); 2250 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2253 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2254 } 2255 2256 SmallVector<uint64_t, 64> Record; 2257 2258 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2259 Type *LastTy = nullptr; 2260 for (unsigned i = FirstVal; i != LastVal; ++i) { 2261 const Value *V = Vals[i].first; 2262 // If we need to switch types, do so now. 2263 if (V->getType() != LastTy) { 2264 LastTy = V->getType(); 2265 Record.push_back(VE.getTypeID(LastTy)); 2266 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2267 CONSTANTS_SETTYPE_ABBREV); 2268 Record.clear(); 2269 } 2270 2271 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2272 Record.push_back(unsigned(IA->hasSideEffects()) | 2273 unsigned(IA->isAlignStack()) << 1 | 2274 unsigned(IA->getDialect()&1) << 2); 2275 2276 // Add the asm string. 2277 const std::string &AsmStr = IA->getAsmString(); 2278 Record.push_back(AsmStr.size()); 2279 Record.append(AsmStr.begin(), AsmStr.end()); 2280 2281 // Add the constraint string. 2282 const std::string &ConstraintStr = IA->getConstraintString(); 2283 Record.push_back(ConstraintStr.size()); 2284 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2285 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2286 Record.clear(); 2287 continue; 2288 } 2289 const Constant *C = cast<Constant>(V); 2290 unsigned Code = -1U; 2291 unsigned AbbrevToUse = 0; 2292 if (C->isNullValue()) { 2293 Code = bitc::CST_CODE_NULL; 2294 } else if (isa<UndefValue>(C)) { 2295 Code = bitc::CST_CODE_UNDEF; 2296 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2297 if (IV->getBitWidth() <= 64) { 2298 uint64_t V = IV->getSExtValue(); 2299 emitSignedInt64(Record, V); 2300 Code = bitc::CST_CODE_INTEGER; 2301 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2302 } else { // Wide integers, > 64 bits in size. 2303 // We have an arbitrary precision integer value to write whose 2304 // bit width is > 64. However, in canonical unsigned integer 2305 // format it is likely that the high bits are going to be zero. 2306 // So, we only write the number of active words. 2307 unsigned NWords = IV->getValue().getActiveWords(); 2308 const uint64_t *RawWords = IV->getValue().getRawData(); 2309 for (unsigned i = 0; i != NWords; ++i) { 2310 emitSignedInt64(Record, RawWords[i]); 2311 } 2312 Code = bitc::CST_CODE_WIDE_INTEGER; 2313 } 2314 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2315 Code = bitc::CST_CODE_FLOAT; 2316 Type *Ty = CFP->getType(); 2317 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2318 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2319 } else if (Ty->isX86_FP80Ty()) { 2320 // api needed to prevent premature destruction 2321 // bits are not in the same order as a normal i80 APInt, compensate. 2322 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2323 const uint64_t *p = api.getRawData(); 2324 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2325 Record.push_back(p[0] & 0xffffLL); 2326 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2327 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2328 const uint64_t *p = api.getRawData(); 2329 Record.push_back(p[0]); 2330 Record.push_back(p[1]); 2331 } else { 2332 assert(0 && "Unknown FP type!"); 2333 } 2334 } else if (isa<ConstantDataSequential>(C) && 2335 cast<ConstantDataSequential>(C)->isString()) { 2336 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2337 // Emit constant strings specially. 2338 unsigned NumElts = Str->getNumElements(); 2339 // If this is a null-terminated string, use the denser CSTRING encoding. 2340 if (Str->isCString()) { 2341 Code = bitc::CST_CODE_CSTRING; 2342 --NumElts; // Don't encode the null, which isn't allowed by char6. 2343 } else { 2344 Code = bitc::CST_CODE_STRING; 2345 AbbrevToUse = String8Abbrev; 2346 } 2347 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2348 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2349 for (unsigned i = 0; i != NumElts; ++i) { 2350 unsigned char V = Str->getElementAsInteger(i); 2351 Record.push_back(V); 2352 isCStr7 &= (V & 128) == 0; 2353 if (isCStrChar6) 2354 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2355 } 2356 2357 if (isCStrChar6) 2358 AbbrevToUse = CString6Abbrev; 2359 else if (isCStr7) 2360 AbbrevToUse = CString7Abbrev; 2361 } else if (const ConstantDataSequential *CDS = 2362 dyn_cast<ConstantDataSequential>(C)) { 2363 Code = bitc::CST_CODE_DATA; 2364 Type *EltTy = CDS->getType()->getElementType(); 2365 if (isa<IntegerType>(EltTy)) { 2366 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2367 Record.push_back(CDS->getElementAsInteger(i)); 2368 } else { 2369 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2370 Record.push_back( 2371 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2372 } 2373 } else if (isa<ConstantAggregate>(C)) { 2374 Code = bitc::CST_CODE_AGGREGATE; 2375 for (const Value *Op : C->operands()) 2376 Record.push_back(VE.getValueID(Op)); 2377 AbbrevToUse = AggregateAbbrev; 2378 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2379 switch (CE->getOpcode()) { 2380 default: 2381 if (Instruction::isCast(CE->getOpcode())) { 2382 Code = bitc::CST_CODE_CE_CAST; 2383 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2384 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2385 Record.push_back(VE.getValueID(C->getOperand(0))); 2386 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2387 } else { 2388 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2389 Code = bitc::CST_CODE_CE_BINOP; 2390 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2391 Record.push_back(VE.getValueID(C->getOperand(0))); 2392 Record.push_back(VE.getValueID(C->getOperand(1))); 2393 uint64_t Flags = getOptimizationFlags(CE); 2394 if (Flags != 0) 2395 Record.push_back(Flags); 2396 } 2397 break; 2398 case Instruction::FNeg: { 2399 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2400 Code = bitc::CST_CODE_CE_UNOP; 2401 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2402 Record.push_back(VE.getValueID(C->getOperand(0))); 2403 uint64_t Flags = getOptimizationFlags(CE); 2404 if (Flags != 0) 2405 Record.push_back(Flags); 2406 break; 2407 } 2408 case Instruction::GetElementPtr: { 2409 Code = bitc::CST_CODE_CE_GEP; 2410 const auto *GO = cast<GEPOperator>(C); 2411 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2412 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2413 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2414 Record.push_back((*Idx << 1) | GO->isInBounds()); 2415 } else if (GO->isInBounds()) 2416 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2417 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2418 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2419 Record.push_back(VE.getValueID(C->getOperand(i))); 2420 } 2421 break; 2422 } 2423 case Instruction::Select: 2424 Code = bitc::CST_CODE_CE_SELECT; 2425 Record.push_back(VE.getValueID(C->getOperand(0))); 2426 Record.push_back(VE.getValueID(C->getOperand(1))); 2427 Record.push_back(VE.getValueID(C->getOperand(2))); 2428 break; 2429 case Instruction::ExtractElement: 2430 Code = bitc::CST_CODE_CE_EXTRACTELT; 2431 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2432 Record.push_back(VE.getValueID(C->getOperand(0))); 2433 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2434 Record.push_back(VE.getValueID(C->getOperand(1))); 2435 break; 2436 case Instruction::InsertElement: 2437 Code = bitc::CST_CODE_CE_INSERTELT; 2438 Record.push_back(VE.getValueID(C->getOperand(0))); 2439 Record.push_back(VE.getValueID(C->getOperand(1))); 2440 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2441 Record.push_back(VE.getValueID(C->getOperand(2))); 2442 break; 2443 case Instruction::ShuffleVector: 2444 // If the return type and argument types are the same, this is a 2445 // standard shufflevector instruction. If the types are different, 2446 // then the shuffle is widening or truncating the input vectors, and 2447 // the argument type must also be encoded. 2448 if (C->getType() == C->getOperand(0)->getType()) { 2449 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2450 } else { 2451 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2452 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2453 } 2454 Record.push_back(VE.getValueID(C->getOperand(0))); 2455 Record.push_back(VE.getValueID(C->getOperand(1))); 2456 Record.push_back(VE.getValueID(C->getOperand(2))); 2457 break; 2458 case Instruction::ICmp: 2459 case Instruction::FCmp: 2460 Code = bitc::CST_CODE_CE_CMP; 2461 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2462 Record.push_back(VE.getValueID(C->getOperand(0))); 2463 Record.push_back(VE.getValueID(C->getOperand(1))); 2464 Record.push_back(CE->getPredicate()); 2465 break; 2466 } 2467 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2468 Code = bitc::CST_CODE_BLOCKADDRESS; 2469 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2470 Record.push_back(VE.getValueID(BA->getFunction())); 2471 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2472 } else { 2473 #ifndef NDEBUG 2474 C->dump(); 2475 #endif 2476 llvm_unreachable("Unknown constant!"); 2477 } 2478 Stream.EmitRecord(Code, Record, AbbrevToUse); 2479 Record.clear(); 2480 } 2481 2482 Stream.ExitBlock(); 2483 } 2484 2485 void ModuleBitcodeWriter::writeModuleConstants() { 2486 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2487 2488 // Find the first constant to emit, which is the first non-globalvalue value. 2489 // We know globalvalues have been emitted by WriteModuleInfo. 2490 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2491 if (!isa<GlobalValue>(Vals[i].first)) { 2492 writeConstants(i, Vals.size(), true); 2493 return; 2494 } 2495 } 2496 } 2497 2498 /// pushValueAndType - The file has to encode both the value and type id for 2499 /// many values, because we need to know what type to create for forward 2500 /// references. However, most operands are not forward references, so this type 2501 /// field is not needed. 2502 /// 2503 /// This function adds V's value ID to Vals. If the value ID is higher than the 2504 /// instruction ID, then it is a forward reference, and it also includes the 2505 /// type ID. The value ID that is written is encoded relative to the InstID. 2506 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2507 SmallVectorImpl<unsigned> &Vals) { 2508 unsigned ValID = VE.getValueID(V); 2509 // Make encoding relative to the InstID. 2510 Vals.push_back(InstID - ValID); 2511 if (ValID >= InstID) { 2512 Vals.push_back(VE.getTypeID(V->getType())); 2513 return true; 2514 } 2515 return false; 2516 } 2517 2518 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2519 unsigned InstID) { 2520 SmallVector<unsigned, 64> Record; 2521 LLVMContext &C = CS.getInstruction()->getContext(); 2522 2523 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2524 const auto &Bundle = CS.getOperandBundleAt(i); 2525 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2526 2527 for (auto &Input : Bundle.Inputs) 2528 pushValueAndType(Input, InstID, Record); 2529 2530 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2531 Record.clear(); 2532 } 2533 } 2534 2535 /// pushValue - Like pushValueAndType, but where the type of the value is 2536 /// omitted (perhaps it was already encoded in an earlier operand). 2537 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2538 SmallVectorImpl<unsigned> &Vals) { 2539 unsigned ValID = VE.getValueID(V); 2540 Vals.push_back(InstID - ValID); 2541 } 2542 2543 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2544 SmallVectorImpl<uint64_t> &Vals) { 2545 unsigned ValID = VE.getValueID(V); 2546 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2547 emitSignedInt64(Vals, diff); 2548 } 2549 2550 /// WriteInstruction - Emit an instruction to the specified stream. 2551 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2552 unsigned InstID, 2553 SmallVectorImpl<unsigned> &Vals) { 2554 unsigned Code = 0; 2555 unsigned AbbrevToUse = 0; 2556 VE.setInstructionID(&I); 2557 switch (I.getOpcode()) { 2558 default: 2559 if (Instruction::isCast(I.getOpcode())) { 2560 Code = bitc::FUNC_CODE_INST_CAST; 2561 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2562 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2563 Vals.push_back(VE.getTypeID(I.getType())); 2564 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2565 } else { 2566 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2567 Code = bitc::FUNC_CODE_INST_BINOP; 2568 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2569 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2570 pushValue(I.getOperand(1), InstID, Vals); 2571 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2572 uint64_t Flags = getOptimizationFlags(&I); 2573 if (Flags != 0) { 2574 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2575 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2576 Vals.push_back(Flags); 2577 } 2578 } 2579 break; 2580 case Instruction::FNeg: { 2581 Code = bitc::FUNC_CODE_INST_UNOP; 2582 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2583 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2584 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2585 uint64_t Flags = getOptimizationFlags(&I); 2586 if (Flags != 0) { 2587 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2588 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2589 Vals.push_back(Flags); 2590 } 2591 break; 2592 } 2593 case Instruction::GetElementPtr: { 2594 Code = bitc::FUNC_CODE_INST_GEP; 2595 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2596 auto &GEPInst = cast<GetElementPtrInst>(I); 2597 Vals.push_back(GEPInst.isInBounds()); 2598 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2599 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2600 pushValueAndType(I.getOperand(i), InstID, Vals); 2601 break; 2602 } 2603 case Instruction::ExtractValue: { 2604 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2605 pushValueAndType(I.getOperand(0), InstID, Vals); 2606 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2607 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2608 break; 2609 } 2610 case Instruction::InsertValue: { 2611 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2612 pushValueAndType(I.getOperand(0), InstID, Vals); 2613 pushValueAndType(I.getOperand(1), InstID, Vals); 2614 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2615 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2616 break; 2617 } 2618 case Instruction::Select: 2619 Code = bitc::FUNC_CODE_INST_VSELECT; 2620 pushValueAndType(I.getOperand(1), InstID, Vals); 2621 pushValue(I.getOperand(2), InstID, Vals); 2622 pushValueAndType(I.getOperand(0), InstID, Vals); 2623 break; 2624 case Instruction::ExtractElement: 2625 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2626 pushValueAndType(I.getOperand(0), InstID, Vals); 2627 pushValueAndType(I.getOperand(1), InstID, Vals); 2628 break; 2629 case Instruction::InsertElement: 2630 Code = bitc::FUNC_CODE_INST_INSERTELT; 2631 pushValueAndType(I.getOperand(0), InstID, Vals); 2632 pushValue(I.getOperand(1), InstID, Vals); 2633 pushValueAndType(I.getOperand(2), InstID, Vals); 2634 break; 2635 case Instruction::ShuffleVector: 2636 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2637 pushValueAndType(I.getOperand(0), InstID, Vals); 2638 pushValue(I.getOperand(1), InstID, Vals); 2639 pushValue(I.getOperand(2), InstID, Vals); 2640 break; 2641 case Instruction::ICmp: 2642 case Instruction::FCmp: { 2643 // compare returning Int1Ty or vector of Int1Ty 2644 Code = bitc::FUNC_CODE_INST_CMP2; 2645 pushValueAndType(I.getOperand(0), InstID, Vals); 2646 pushValue(I.getOperand(1), InstID, Vals); 2647 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2648 uint64_t Flags = getOptimizationFlags(&I); 2649 if (Flags != 0) 2650 Vals.push_back(Flags); 2651 break; 2652 } 2653 2654 case Instruction::Ret: 2655 { 2656 Code = bitc::FUNC_CODE_INST_RET; 2657 unsigned NumOperands = I.getNumOperands(); 2658 if (NumOperands == 0) 2659 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2660 else if (NumOperands == 1) { 2661 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2662 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2663 } else { 2664 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2665 pushValueAndType(I.getOperand(i), InstID, Vals); 2666 } 2667 } 2668 break; 2669 case Instruction::Br: 2670 { 2671 Code = bitc::FUNC_CODE_INST_BR; 2672 const BranchInst &II = cast<BranchInst>(I); 2673 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2674 if (II.isConditional()) { 2675 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2676 pushValue(II.getCondition(), InstID, Vals); 2677 } 2678 } 2679 break; 2680 case Instruction::Switch: 2681 { 2682 Code = bitc::FUNC_CODE_INST_SWITCH; 2683 const SwitchInst &SI = cast<SwitchInst>(I); 2684 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2685 pushValue(SI.getCondition(), InstID, Vals); 2686 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2687 for (auto Case : SI.cases()) { 2688 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2689 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2690 } 2691 } 2692 break; 2693 case Instruction::IndirectBr: 2694 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2695 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2696 // Encode the address operand as relative, but not the basic blocks. 2697 pushValue(I.getOperand(0), InstID, Vals); 2698 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2699 Vals.push_back(VE.getValueID(I.getOperand(i))); 2700 break; 2701 2702 case Instruction::Invoke: { 2703 const InvokeInst *II = cast<InvokeInst>(&I); 2704 const Value *Callee = II->getCalledValue(); 2705 FunctionType *FTy = II->getFunctionType(); 2706 2707 if (II->hasOperandBundles()) 2708 writeOperandBundles(II, InstID); 2709 2710 Code = bitc::FUNC_CODE_INST_INVOKE; 2711 2712 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2713 Vals.push_back(II->getCallingConv() | 1 << 13); 2714 Vals.push_back(VE.getValueID(II->getNormalDest())); 2715 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2716 Vals.push_back(VE.getTypeID(FTy)); 2717 pushValueAndType(Callee, InstID, Vals); 2718 2719 // Emit value #'s for the fixed parameters. 2720 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2721 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2722 2723 // Emit type/value pairs for varargs params. 2724 if (FTy->isVarArg()) { 2725 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2726 i != e; ++i) 2727 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2728 } 2729 break; 2730 } 2731 case Instruction::Resume: 2732 Code = bitc::FUNC_CODE_INST_RESUME; 2733 pushValueAndType(I.getOperand(0), InstID, Vals); 2734 break; 2735 case Instruction::CleanupRet: { 2736 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2737 const auto &CRI = cast<CleanupReturnInst>(I); 2738 pushValue(CRI.getCleanupPad(), InstID, Vals); 2739 if (CRI.hasUnwindDest()) 2740 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2741 break; 2742 } 2743 case Instruction::CatchRet: { 2744 Code = bitc::FUNC_CODE_INST_CATCHRET; 2745 const auto &CRI = cast<CatchReturnInst>(I); 2746 pushValue(CRI.getCatchPad(), InstID, Vals); 2747 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2748 break; 2749 } 2750 case Instruction::CleanupPad: 2751 case Instruction::CatchPad: { 2752 const auto &FuncletPad = cast<FuncletPadInst>(I); 2753 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2754 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2755 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2756 2757 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2758 Vals.push_back(NumArgOperands); 2759 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2760 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2761 break; 2762 } 2763 case Instruction::CatchSwitch: { 2764 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2765 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2766 2767 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2768 2769 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2770 Vals.push_back(NumHandlers); 2771 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2772 Vals.push_back(VE.getValueID(CatchPadBB)); 2773 2774 if (CatchSwitch.hasUnwindDest()) 2775 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2776 break; 2777 } 2778 case Instruction::Unreachable: 2779 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2780 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2781 break; 2782 2783 case Instruction::PHI: { 2784 const PHINode &PN = cast<PHINode>(I); 2785 Code = bitc::FUNC_CODE_INST_PHI; 2786 // With the newer instruction encoding, forward references could give 2787 // negative valued IDs. This is most common for PHIs, so we use 2788 // signed VBRs. 2789 SmallVector<uint64_t, 128> Vals64; 2790 Vals64.push_back(VE.getTypeID(PN.getType())); 2791 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2792 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2793 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2794 } 2795 // Emit a Vals64 vector and exit. 2796 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2797 Vals64.clear(); 2798 return; 2799 } 2800 2801 case Instruction::LandingPad: { 2802 const LandingPadInst &LP = cast<LandingPadInst>(I); 2803 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2804 Vals.push_back(VE.getTypeID(LP.getType())); 2805 Vals.push_back(LP.isCleanup()); 2806 Vals.push_back(LP.getNumClauses()); 2807 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2808 if (LP.isCatch(I)) 2809 Vals.push_back(LandingPadInst::Catch); 2810 else 2811 Vals.push_back(LandingPadInst::Filter); 2812 pushValueAndType(LP.getClause(I), InstID, Vals); 2813 } 2814 break; 2815 } 2816 2817 case Instruction::Alloca: { 2818 Code = bitc::FUNC_CODE_INST_ALLOCA; 2819 const AllocaInst &AI = cast<AllocaInst>(I); 2820 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2821 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2822 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2823 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2824 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2825 "not enough bits for maximum alignment"); 2826 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2827 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2828 AlignRecord |= 1 << 6; 2829 AlignRecord |= AI.isSwiftError() << 7; 2830 Vals.push_back(AlignRecord); 2831 break; 2832 } 2833 2834 case Instruction::Load: 2835 if (cast<LoadInst>(I).isAtomic()) { 2836 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2837 pushValueAndType(I.getOperand(0), InstID, Vals); 2838 } else { 2839 Code = bitc::FUNC_CODE_INST_LOAD; 2840 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2841 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2842 } 2843 Vals.push_back(VE.getTypeID(I.getType())); 2844 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2845 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2846 if (cast<LoadInst>(I).isAtomic()) { 2847 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2848 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2849 } 2850 break; 2851 case Instruction::Store: 2852 if (cast<StoreInst>(I).isAtomic()) 2853 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2854 else 2855 Code = bitc::FUNC_CODE_INST_STORE; 2856 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2857 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2858 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2859 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2860 if (cast<StoreInst>(I).isAtomic()) { 2861 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2862 Vals.push_back( 2863 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2864 } 2865 break; 2866 case Instruction::AtomicCmpXchg: 2867 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2868 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2869 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2870 pushValue(I.getOperand(2), InstID, Vals); // newval. 2871 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2872 Vals.push_back( 2873 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2874 Vals.push_back( 2875 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2876 Vals.push_back( 2877 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2878 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2879 break; 2880 case Instruction::AtomicRMW: 2881 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2882 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2883 pushValue(I.getOperand(1), InstID, Vals); // val. 2884 Vals.push_back( 2885 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2886 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2887 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2888 Vals.push_back( 2889 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2890 break; 2891 case Instruction::Fence: 2892 Code = bitc::FUNC_CODE_INST_FENCE; 2893 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2894 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2895 break; 2896 case Instruction::Call: { 2897 const CallInst &CI = cast<CallInst>(I); 2898 FunctionType *FTy = CI.getFunctionType(); 2899 2900 if (CI.hasOperandBundles()) 2901 writeOperandBundles(&CI, InstID); 2902 2903 Code = bitc::FUNC_CODE_INST_CALL; 2904 2905 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2906 2907 unsigned Flags = getOptimizationFlags(&I); 2908 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2909 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2910 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2911 1 << bitc::CALL_EXPLICIT_TYPE | 2912 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2913 unsigned(Flags != 0) << bitc::CALL_FMF); 2914 if (Flags != 0) 2915 Vals.push_back(Flags); 2916 2917 Vals.push_back(VE.getTypeID(FTy)); 2918 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2919 2920 // Emit value #'s for the fixed parameters. 2921 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2922 // Check for labels (can happen with asm labels). 2923 if (FTy->getParamType(i)->isLabelTy()) 2924 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2925 else 2926 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2927 } 2928 2929 // Emit type/value pairs for varargs params. 2930 if (FTy->isVarArg()) { 2931 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2932 i != e; ++i) 2933 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2934 } 2935 break; 2936 } 2937 case Instruction::VAArg: 2938 Code = bitc::FUNC_CODE_INST_VAARG; 2939 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2940 pushValue(I.getOperand(0), InstID, Vals); // valist. 2941 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2942 break; 2943 } 2944 2945 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2946 Vals.clear(); 2947 } 2948 2949 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2950 /// to allow clients to efficiently find the function body. 2951 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2952 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2953 // Get the offset of the VST we are writing, and backpatch it into 2954 // the VST forward declaration record. 2955 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2956 // The BitcodeStartBit was the stream offset of the identification block. 2957 VSTOffset -= bitcodeStartBit(); 2958 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2959 // Note that we add 1 here because the offset is relative to one word 2960 // before the start of the identification block, which was historically 2961 // always the start of the regular bitcode header. 2962 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2963 2964 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2965 2966 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2967 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2970 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2971 2972 for (const Function &F : M) { 2973 uint64_t Record[2]; 2974 2975 if (F.isDeclaration()) 2976 continue; 2977 2978 Record[0] = VE.getValueID(&F); 2979 2980 // Save the word offset of the function (from the start of the 2981 // actual bitcode written to the stream). 2982 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2983 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2984 // Note that we add 1 here because the offset is relative to one word 2985 // before the start of the identification block, which was historically 2986 // always the start of the regular bitcode header. 2987 Record[1] = BitcodeIndex / 32 + 1; 2988 2989 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2990 } 2991 2992 Stream.ExitBlock(); 2993 } 2994 2995 /// Emit names for arguments, instructions and basic blocks in a function. 2996 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2997 const ValueSymbolTable &VST) { 2998 if (VST.empty()) 2999 return; 3000 3001 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3002 3003 // FIXME: Set up the abbrev, we know how many values there are! 3004 // FIXME: We know if the type names can use 7-bit ascii. 3005 SmallVector<uint64_t, 64> NameVals; 3006 3007 for (const ValueName &Name : VST) { 3008 // Figure out the encoding to use for the name. 3009 StringEncoding Bits = getStringEncoding(Name.getKey()); 3010 3011 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3012 NameVals.push_back(VE.getValueID(Name.getValue())); 3013 3014 // VST_CODE_ENTRY: [valueid, namechar x N] 3015 // VST_CODE_BBENTRY: [bbid, namechar x N] 3016 unsigned Code; 3017 if (isa<BasicBlock>(Name.getValue())) { 3018 Code = bitc::VST_CODE_BBENTRY; 3019 if (Bits == SE_Char6) 3020 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3021 } else { 3022 Code = bitc::VST_CODE_ENTRY; 3023 if (Bits == SE_Char6) 3024 AbbrevToUse = VST_ENTRY_6_ABBREV; 3025 else if (Bits == SE_Fixed7) 3026 AbbrevToUse = VST_ENTRY_7_ABBREV; 3027 } 3028 3029 for (const auto P : Name.getKey()) 3030 NameVals.push_back((unsigned char)P); 3031 3032 // Emit the finished record. 3033 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3034 NameVals.clear(); 3035 } 3036 3037 Stream.ExitBlock(); 3038 } 3039 3040 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3041 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3042 unsigned Code; 3043 if (isa<BasicBlock>(Order.V)) 3044 Code = bitc::USELIST_CODE_BB; 3045 else 3046 Code = bitc::USELIST_CODE_DEFAULT; 3047 3048 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3049 Record.push_back(VE.getValueID(Order.V)); 3050 Stream.EmitRecord(Code, Record); 3051 } 3052 3053 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3054 assert(VE.shouldPreserveUseListOrder() && 3055 "Expected to be preserving use-list order"); 3056 3057 auto hasMore = [&]() { 3058 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3059 }; 3060 if (!hasMore()) 3061 // Nothing to do. 3062 return; 3063 3064 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3065 while (hasMore()) { 3066 writeUseList(std::move(VE.UseListOrders.back())); 3067 VE.UseListOrders.pop_back(); 3068 } 3069 Stream.ExitBlock(); 3070 } 3071 3072 /// Emit a function body to the module stream. 3073 void ModuleBitcodeWriter::writeFunction( 3074 const Function &F, 3075 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3076 // Save the bitcode index of the start of this function block for recording 3077 // in the VST. 3078 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3079 3080 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3081 VE.incorporateFunction(F); 3082 3083 SmallVector<unsigned, 64> Vals; 3084 3085 // Emit the number of basic blocks, so the reader can create them ahead of 3086 // time. 3087 Vals.push_back(VE.getBasicBlocks().size()); 3088 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3089 Vals.clear(); 3090 3091 // If there are function-local constants, emit them now. 3092 unsigned CstStart, CstEnd; 3093 VE.getFunctionConstantRange(CstStart, CstEnd); 3094 writeConstants(CstStart, CstEnd, false); 3095 3096 // If there is function-local metadata, emit it now. 3097 writeFunctionMetadata(F); 3098 3099 // Keep a running idea of what the instruction ID is. 3100 unsigned InstID = CstEnd; 3101 3102 bool NeedsMetadataAttachment = F.hasMetadata(); 3103 3104 DILocation *LastDL = nullptr; 3105 // Finally, emit all the instructions, in order. 3106 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3107 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3108 I != E; ++I) { 3109 writeInstruction(*I, InstID, Vals); 3110 3111 if (!I->getType()->isVoidTy()) 3112 ++InstID; 3113 3114 // If the instruction has metadata, write a metadata attachment later. 3115 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3116 3117 // If the instruction has a debug location, emit it. 3118 DILocation *DL = I->getDebugLoc(); 3119 if (!DL) 3120 continue; 3121 3122 if (DL == LastDL) { 3123 // Just repeat the same debug loc as last time. 3124 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3125 continue; 3126 } 3127 3128 Vals.push_back(DL->getLine()); 3129 Vals.push_back(DL->getColumn()); 3130 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3131 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3132 Vals.push_back(DL->isImplicitCode()); 3133 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3134 Vals.clear(); 3135 3136 LastDL = DL; 3137 } 3138 3139 // Emit names for all the instructions etc. 3140 if (auto *Symtab = F.getValueSymbolTable()) 3141 writeFunctionLevelValueSymbolTable(*Symtab); 3142 3143 if (NeedsMetadataAttachment) 3144 writeFunctionMetadataAttachment(F); 3145 if (VE.shouldPreserveUseListOrder()) 3146 writeUseListBlock(&F); 3147 VE.purgeFunction(); 3148 Stream.ExitBlock(); 3149 } 3150 3151 // Emit blockinfo, which defines the standard abbreviations etc. 3152 void ModuleBitcodeWriter::writeBlockInfo() { 3153 // We only want to emit block info records for blocks that have multiple 3154 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3155 // Other blocks can define their abbrevs inline. 3156 Stream.EnterBlockInfoBlock(); 3157 3158 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3159 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3164 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3165 VST_ENTRY_8_ABBREV) 3166 llvm_unreachable("Unexpected abbrev ordering!"); 3167 } 3168 3169 { // 7-bit fixed width VST_CODE_ENTRY strings. 3170 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3171 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3175 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3176 VST_ENTRY_7_ABBREV) 3177 llvm_unreachable("Unexpected abbrev ordering!"); 3178 } 3179 { // 6-bit char6 VST_CODE_ENTRY strings. 3180 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3181 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3185 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3186 VST_ENTRY_6_ABBREV) 3187 llvm_unreachable("Unexpected abbrev ordering!"); 3188 } 3189 { // 6-bit char6 VST_CODE_BBENTRY strings. 3190 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3191 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3195 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3196 VST_BBENTRY_6_ABBREV) 3197 llvm_unreachable("Unexpected abbrev ordering!"); 3198 } 3199 3200 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3201 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3202 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3204 VE.computeBitsRequiredForTypeIndicies())); 3205 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3206 CONSTANTS_SETTYPE_ABBREV) 3207 llvm_unreachable("Unexpected abbrev ordering!"); 3208 } 3209 3210 { // INTEGER abbrev for CONSTANTS_BLOCK. 3211 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3212 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3214 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3215 CONSTANTS_INTEGER_ABBREV) 3216 llvm_unreachable("Unexpected abbrev ordering!"); 3217 } 3218 3219 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3220 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3221 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3224 VE.computeBitsRequiredForTypeIndicies())); 3225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3226 3227 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3228 CONSTANTS_CE_CAST_Abbrev) 3229 llvm_unreachable("Unexpected abbrev ordering!"); 3230 } 3231 { // NULL abbrev for CONSTANTS_BLOCK. 3232 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3233 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3234 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3235 CONSTANTS_NULL_Abbrev) 3236 llvm_unreachable("Unexpected abbrev ordering!"); 3237 } 3238 3239 // FIXME: This should only use space for first class types! 3240 3241 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3242 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3243 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3246 VE.computeBitsRequiredForTypeIndicies())); 3247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3249 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3250 FUNCTION_INST_LOAD_ABBREV) 3251 llvm_unreachable("Unexpected abbrev ordering!"); 3252 } 3253 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3254 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3255 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3258 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3259 FUNCTION_INST_UNOP_ABBREV) 3260 llvm_unreachable("Unexpected abbrev ordering!"); 3261 } 3262 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3263 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3264 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3268 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3269 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3270 llvm_unreachable("Unexpected abbrev ordering!"); 3271 } 3272 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3273 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3274 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3278 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3279 FUNCTION_INST_BINOP_ABBREV) 3280 llvm_unreachable("Unexpected abbrev ordering!"); 3281 } 3282 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3283 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3284 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3289 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3290 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3291 llvm_unreachable("Unexpected abbrev ordering!"); 3292 } 3293 { // INST_CAST abbrev for FUNCTION_BLOCK. 3294 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3295 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3298 VE.computeBitsRequiredForTypeIndicies())); 3299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3300 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3301 FUNCTION_INST_CAST_ABBREV) 3302 llvm_unreachable("Unexpected abbrev ordering!"); 3303 } 3304 3305 { // INST_RET abbrev for FUNCTION_BLOCK. 3306 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3307 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3308 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3309 FUNCTION_INST_RET_VOID_ABBREV) 3310 llvm_unreachable("Unexpected abbrev ordering!"); 3311 } 3312 { // INST_RET abbrev for FUNCTION_BLOCK. 3313 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3314 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3316 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3317 FUNCTION_INST_RET_VAL_ABBREV) 3318 llvm_unreachable("Unexpected abbrev ordering!"); 3319 } 3320 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3321 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3322 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3323 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3324 FUNCTION_INST_UNREACHABLE_ABBREV) 3325 llvm_unreachable("Unexpected abbrev ordering!"); 3326 } 3327 { 3328 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3329 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3332 Log2_32_Ceil(VE.getTypes().size() + 1))); 3333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3335 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3336 FUNCTION_INST_GEP_ABBREV) 3337 llvm_unreachable("Unexpected abbrev ordering!"); 3338 } 3339 3340 Stream.ExitBlock(); 3341 } 3342 3343 /// Write the module path strings, currently only used when generating 3344 /// a combined index file. 3345 void IndexBitcodeWriter::writeModStrings() { 3346 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3347 3348 // TODO: See which abbrev sizes we actually need to emit 3349 3350 // 8-bit fixed-width MST_ENTRY strings. 3351 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3352 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3356 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3357 3358 // 7-bit fixed width MST_ENTRY strings. 3359 Abbv = std::make_shared<BitCodeAbbrev>(); 3360 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3364 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3365 3366 // 6-bit char6 MST_ENTRY strings. 3367 Abbv = std::make_shared<BitCodeAbbrev>(); 3368 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3372 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3373 3374 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3375 Abbv = std::make_shared<BitCodeAbbrev>(); 3376 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3382 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3383 3384 SmallVector<unsigned, 64> Vals; 3385 forEachModule( 3386 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3387 StringRef Key = MPSE.getKey(); 3388 const auto &Value = MPSE.getValue(); 3389 StringEncoding Bits = getStringEncoding(Key); 3390 unsigned AbbrevToUse = Abbrev8Bit; 3391 if (Bits == SE_Char6) 3392 AbbrevToUse = Abbrev6Bit; 3393 else if (Bits == SE_Fixed7) 3394 AbbrevToUse = Abbrev7Bit; 3395 3396 Vals.push_back(Value.first); 3397 Vals.append(Key.begin(), Key.end()); 3398 3399 // Emit the finished record. 3400 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3401 3402 // Emit an optional hash for the module now 3403 const auto &Hash = Value.second; 3404 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3405 Vals.assign(Hash.begin(), Hash.end()); 3406 // Emit the hash record. 3407 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3408 } 3409 3410 Vals.clear(); 3411 }); 3412 Stream.ExitBlock(); 3413 } 3414 3415 /// Write the function type metadata related records that need to appear before 3416 /// a function summary entry (whether per-module or combined). 3417 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3418 FunctionSummary *FS) { 3419 if (!FS->type_tests().empty()) 3420 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3421 3422 SmallVector<uint64_t, 64> Record; 3423 3424 auto WriteVFuncIdVec = [&](uint64_t Ty, 3425 ArrayRef<FunctionSummary::VFuncId> VFs) { 3426 if (VFs.empty()) 3427 return; 3428 Record.clear(); 3429 for (auto &VF : VFs) { 3430 Record.push_back(VF.GUID); 3431 Record.push_back(VF.Offset); 3432 } 3433 Stream.EmitRecord(Ty, Record); 3434 }; 3435 3436 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3437 FS->type_test_assume_vcalls()); 3438 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3439 FS->type_checked_load_vcalls()); 3440 3441 auto WriteConstVCallVec = [&](uint64_t Ty, 3442 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3443 for (auto &VC : VCs) { 3444 Record.clear(); 3445 Record.push_back(VC.VFunc.GUID); 3446 Record.push_back(VC.VFunc.Offset); 3447 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3448 Stream.EmitRecord(Ty, Record); 3449 } 3450 }; 3451 3452 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3453 FS->type_test_assume_const_vcalls()); 3454 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3455 FS->type_checked_load_const_vcalls()); 3456 } 3457 3458 /// Collect type IDs from type tests used by function. 3459 static void 3460 getReferencedTypeIds(FunctionSummary *FS, 3461 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3462 if (!FS->type_tests().empty()) 3463 for (auto &TT : FS->type_tests()) 3464 ReferencedTypeIds.insert(TT); 3465 3466 auto GetReferencedTypesFromVFuncIdVec = 3467 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3468 for (auto &VF : VFs) 3469 ReferencedTypeIds.insert(VF.GUID); 3470 }; 3471 3472 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3473 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3474 3475 auto GetReferencedTypesFromConstVCallVec = 3476 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3477 for (auto &VC : VCs) 3478 ReferencedTypeIds.insert(VC.VFunc.GUID); 3479 }; 3480 3481 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3482 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3483 } 3484 3485 static void writeWholeProgramDevirtResolutionByArg( 3486 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3487 const WholeProgramDevirtResolution::ByArg &ByArg) { 3488 NameVals.push_back(args.size()); 3489 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3490 3491 NameVals.push_back(ByArg.TheKind); 3492 NameVals.push_back(ByArg.Info); 3493 NameVals.push_back(ByArg.Byte); 3494 NameVals.push_back(ByArg.Bit); 3495 } 3496 3497 static void writeWholeProgramDevirtResolution( 3498 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3499 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3500 NameVals.push_back(Id); 3501 3502 NameVals.push_back(Wpd.TheKind); 3503 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3504 NameVals.push_back(Wpd.SingleImplName.size()); 3505 3506 NameVals.push_back(Wpd.ResByArg.size()); 3507 for (auto &A : Wpd.ResByArg) 3508 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3509 } 3510 3511 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3512 StringTableBuilder &StrtabBuilder, 3513 const std::string &Id, 3514 const TypeIdSummary &Summary) { 3515 NameVals.push_back(StrtabBuilder.add(Id)); 3516 NameVals.push_back(Id.size()); 3517 3518 NameVals.push_back(Summary.TTRes.TheKind); 3519 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3520 NameVals.push_back(Summary.TTRes.AlignLog2); 3521 NameVals.push_back(Summary.TTRes.SizeM1); 3522 NameVals.push_back(Summary.TTRes.BitMask); 3523 NameVals.push_back(Summary.TTRes.InlineBits); 3524 3525 for (auto &W : Summary.WPDRes) 3526 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3527 W.second); 3528 } 3529 3530 // Helper to emit a single function summary record. 3531 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3532 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3533 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3534 const Function &F) { 3535 NameVals.push_back(ValueID); 3536 3537 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3538 writeFunctionTypeMetadataRecords(Stream, FS); 3539 3540 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3541 NameVals.push_back(FS->instCount()); 3542 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3543 NameVals.push_back(FS->refs().size()); 3544 NameVals.push_back(FS->immutableRefCount()); 3545 3546 for (auto &RI : FS->refs()) 3547 NameVals.push_back(VE.getValueID(RI.getValue())); 3548 3549 bool HasProfileData = 3550 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3551 for (auto &ECI : FS->calls()) { 3552 NameVals.push_back(getValueId(ECI.first)); 3553 if (HasProfileData) 3554 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3555 else if (WriteRelBFToSummary) 3556 NameVals.push_back(ECI.second.RelBlockFreq); 3557 } 3558 3559 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3560 unsigned Code = 3561 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3562 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3563 : bitc::FS_PERMODULE)); 3564 3565 // Emit the finished record. 3566 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3567 NameVals.clear(); 3568 } 3569 3570 // Collect the global value references in the given variable's initializer, 3571 // and emit them in a summary record. 3572 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3573 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3574 unsigned FSModRefsAbbrev) { 3575 auto VI = Index->getValueInfo(V.getGUID()); 3576 if (!VI || VI.getSummaryList().empty()) { 3577 // Only declarations should not have a summary (a declaration might however 3578 // have a summary if the def was in module level asm). 3579 assert(V.isDeclaration()); 3580 return; 3581 } 3582 auto *Summary = VI.getSummaryList()[0].get(); 3583 NameVals.push_back(VE.getValueID(&V)); 3584 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3585 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3586 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3587 3588 unsigned SizeBeforeRefs = NameVals.size(); 3589 for (auto &RI : VS->refs()) 3590 NameVals.push_back(VE.getValueID(RI.getValue())); 3591 // Sort the refs for determinism output, the vector returned by FS->refs() has 3592 // been initialized from a DenseSet. 3593 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3594 3595 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3596 FSModRefsAbbrev); 3597 NameVals.clear(); 3598 } 3599 3600 // Current version for the summary. 3601 // This is bumped whenever we introduce changes in the way some record are 3602 // interpreted, like flags for instance. 3603 static const uint64_t INDEX_VERSION = 6; 3604 3605 /// Emit the per-module summary section alongside the rest of 3606 /// the module's bitcode. 3607 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3608 // By default we compile with ThinLTO if the module has a summary, but the 3609 // client can request full LTO with a module flag. 3610 bool IsThinLTO = true; 3611 if (auto *MD = 3612 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3613 IsThinLTO = MD->getZExtValue(); 3614 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3615 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3616 4); 3617 3618 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3619 3620 // Write the index flags. 3621 uint64_t Flags = 0; 3622 // Bits 1-3 are set only in the combined index, skip them. 3623 if (Index->enableSplitLTOUnit()) 3624 Flags |= 0x8; 3625 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3626 3627 if (Index->begin() == Index->end()) { 3628 Stream.ExitBlock(); 3629 return; 3630 } 3631 3632 for (const auto &GVI : valueIds()) { 3633 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3634 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3635 } 3636 3637 // Abbrev for FS_PERMODULE_PROFILE. 3638 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3639 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3646 // numrefs x valueid, n x (valueid, hotness) 3647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3649 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3650 3651 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3652 Abbv = std::make_shared<BitCodeAbbrev>(); 3653 if (WriteRelBFToSummary) 3654 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3655 else 3656 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3663 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3666 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3667 3668 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3669 Abbv = std::make_shared<BitCodeAbbrev>(); 3670 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3675 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3676 3677 // Abbrev for FS_ALIAS. 3678 Abbv = std::make_shared<BitCodeAbbrev>(); 3679 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3683 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3684 3685 SmallVector<uint64_t, 64> NameVals; 3686 // Iterate over the list of functions instead of the Index to 3687 // ensure the ordering is stable. 3688 for (const Function &F : M) { 3689 // Summary emission does not support anonymous functions, they have to 3690 // renamed using the anonymous function renaming pass. 3691 if (!F.hasName()) 3692 report_fatal_error("Unexpected anonymous function when writing summary"); 3693 3694 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3695 if (!VI || VI.getSummaryList().empty()) { 3696 // Only declarations should not have a summary (a declaration might 3697 // however have a summary if the def was in module level asm). 3698 assert(F.isDeclaration()); 3699 continue; 3700 } 3701 auto *Summary = VI.getSummaryList()[0].get(); 3702 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3703 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3704 } 3705 3706 // Capture references from GlobalVariable initializers, which are outside 3707 // of a function scope. 3708 for (const GlobalVariable &G : M.globals()) 3709 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3710 3711 for (const GlobalAlias &A : M.aliases()) { 3712 auto *Aliasee = A.getBaseObject(); 3713 if (!Aliasee->hasName()) 3714 // Nameless function don't have an entry in the summary, skip it. 3715 continue; 3716 auto AliasId = VE.getValueID(&A); 3717 auto AliaseeId = VE.getValueID(Aliasee); 3718 NameVals.push_back(AliasId); 3719 auto *Summary = Index->getGlobalValueSummary(A); 3720 AliasSummary *AS = cast<AliasSummary>(Summary); 3721 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3722 NameVals.push_back(AliaseeId); 3723 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3724 NameVals.clear(); 3725 } 3726 3727 Stream.ExitBlock(); 3728 } 3729 3730 /// Emit the combined summary section into the combined index file. 3731 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3732 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3733 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3734 3735 // Write the index flags. 3736 uint64_t Flags = 0; 3737 if (Index.withGlobalValueDeadStripping()) 3738 Flags |= 0x1; 3739 if (Index.skipModuleByDistributedBackend()) 3740 Flags |= 0x2; 3741 if (Index.hasSyntheticEntryCounts()) 3742 Flags |= 0x4; 3743 if (Index.enableSplitLTOUnit()) 3744 Flags |= 0x8; 3745 if (Index.partiallySplitLTOUnits()) 3746 Flags |= 0x10; 3747 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3748 3749 for (const auto &GVI : valueIds()) { 3750 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3751 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3752 } 3753 3754 // Abbrev for FS_COMBINED. 3755 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3756 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3765 // numrefs x valueid, n x (valueid) 3766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3768 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3769 3770 // Abbrev for FS_COMBINED_PROFILE. 3771 Abbv = std::make_shared<BitCodeAbbrev>(); 3772 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3780 // numrefs x valueid, n x (valueid, hotness) 3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3783 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3784 3785 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3786 Abbv = std::make_shared<BitCodeAbbrev>(); 3787 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3793 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3794 3795 // Abbrev for FS_COMBINED_ALIAS. 3796 Abbv = std::make_shared<BitCodeAbbrev>(); 3797 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3802 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3803 3804 // The aliases are emitted as a post-pass, and will point to the value 3805 // id of the aliasee. Save them in a vector for post-processing. 3806 SmallVector<AliasSummary *, 64> Aliases; 3807 3808 // Save the value id for each summary for alias emission. 3809 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3810 3811 SmallVector<uint64_t, 64> NameVals; 3812 3813 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3814 // with the type ids referenced by this index file. 3815 std::set<GlobalValue::GUID> ReferencedTypeIds; 3816 3817 // For local linkage, we also emit the original name separately 3818 // immediately after the record. 3819 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3820 if (!GlobalValue::isLocalLinkage(S.linkage())) 3821 return; 3822 NameVals.push_back(S.getOriginalName()); 3823 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3824 NameVals.clear(); 3825 }; 3826 3827 forEachSummary([&](GVInfo I, bool IsAliasee) { 3828 GlobalValueSummary *S = I.second; 3829 assert(S); 3830 3831 auto ValueId = getValueId(I.first); 3832 assert(ValueId); 3833 SummaryToValueIdMap[S] = *ValueId; 3834 3835 // If this is invoked for an aliasee, we want to record the above 3836 // mapping, but then not emit a summary entry (if the aliasee is 3837 // to be imported, we will invoke this separately with IsAliasee=false). 3838 if (IsAliasee) 3839 return; 3840 3841 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3842 // Will process aliases as a post-pass because the reader wants all 3843 // global to be loaded first. 3844 Aliases.push_back(AS); 3845 return; 3846 } 3847 3848 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3849 NameVals.push_back(*ValueId); 3850 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3851 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3852 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3853 for (auto &RI : VS->refs()) { 3854 auto RefValueId = getValueId(RI.getGUID()); 3855 if (!RefValueId) 3856 continue; 3857 NameVals.push_back(*RefValueId); 3858 } 3859 3860 // Emit the finished record. 3861 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3862 FSModRefsAbbrev); 3863 NameVals.clear(); 3864 MaybeEmitOriginalName(*S); 3865 return; 3866 } 3867 3868 auto *FS = cast<FunctionSummary>(S); 3869 writeFunctionTypeMetadataRecords(Stream, FS); 3870 getReferencedTypeIds(FS, ReferencedTypeIds); 3871 3872 NameVals.push_back(*ValueId); 3873 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3874 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3875 NameVals.push_back(FS->instCount()); 3876 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3877 NameVals.push_back(FS->entryCount()); 3878 3879 // Fill in below 3880 NameVals.push_back(0); // numrefs 3881 NameVals.push_back(0); // immutablerefcnt 3882 3883 unsigned Count = 0, ImmutableRefCnt = 0; 3884 for (auto &RI : FS->refs()) { 3885 auto RefValueId = getValueId(RI.getGUID()); 3886 if (!RefValueId) 3887 continue; 3888 NameVals.push_back(*RefValueId); 3889 if (RI.isReadOnly()) 3890 ImmutableRefCnt++; 3891 Count++; 3892 } 3893 NameVals[6] = Count; 3894 NameVals[7] = ImmutableRefCnt; 3895 3896 bool HasProfileData = false; 3897 for (auto &EI : FS->calls()) { 3898 HasProfileData |= 3899 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 3900 if (HasProfileData) 3901 break; 3902 } 3903 3904 for (auto &EI : FS->calls()) { 3905 // If this GUID doesn't have a value id, it doesn't have a function 3906 // summary and we don't need to record any calls to it. 3907 GlobalValue::GUID GUID = EI.first.getGUID(); 3908 auto CallValueId = getValueId(GUID); 3909 if (!CallValueId) { 3910 // For SamplePGO, the indirect call targets for local functions will 3911 // have its original name annotated in profile. We try to find the 3912 // corresponding PGOFuncName as the GUID. 3913 GUID = Index.getGUIDFromOriginalID(GUID); 3914 if (GUID == 0) 3915 continue; 3916 CallValueId = getValueId(GUID); 3917 if (!CallValueId) 3918 continue; 3919 // The mapping from OriginalId to GUID may return a GUID 3920 // that corresponds to a static variable. Filter it out here. 3921 // This can happen when 3922 // 1) There is a call to a library function which does not have 3923 // a CallValidId; 3924 // 2) There is a static variable with the OriginalGUID identical 3925 // to the GUID of the library function in 1); 3926 // When this happens, the logic for SamplePGO kicks in and 3927 // the static variable in 2) will be found, which needs to be 3928 // filtered out. 3929 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3930 if (GVSum && 3931 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 3932 continue; 3933 } 3934 NameVals.push_back(*CallValueId); 3935 if (HasProfileData) 3936 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3937 } 3938 3939 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3940 unsigned Code = 3941 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3942 3943 // Emit the finished record. 3944 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3945 NameVals.clear(); 3946 MaybeEmitOriginalName(*S); 3947 }); 3948 3949 for (auto *AS : Aliases) { 3950 auto AliasValueId = SummaryToValueIdMap[AS]; 3951 assert(AliasValueId); 3952 NameVals.push_back(AliasValueId); 3953 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3954 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3955 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3956 assert(AliaseeValueId); 3957 NameVals.push_back(AliaseeValueId); 3958 3959 // Emit the finished record. 3960 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3961 NameVals.clear(); 3962 MaybeEmitOriginalName(*AS); 3963 3964 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 3965 getReferencedTypeIds(FS, ReferencedTypeIds); 3966 } 3967 3968 if (!Index.cfiFunctionDefs().empty()) { 3969 for (auto &S : Index.cfiFunctionDefs()) { 3970 NameVals.push_back(StrtabBuilder.add(S)); 3971 NameVals.push_back(S.size()); 3972 } 3973 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3974 NameVals.clear(); 3975 } 3976 3977 if (!Index.cfiFunctionDecls().empty()) { 3978 for (auto &S : Index.cfiFunctionDecls()) { 3979 NameVals.push_back(StrtabBuilder.add(S)); 3980 NameVals.push_back(S.size()); 3981 } 3982 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3983 NameVals.clear(); 3984 } 3985 3986 // Walk the GUIDs that were referenced, and write the 3987 // corresponding type id records. 3988 for (auto &T : ReferencedTypeIds) { 3989 auto TidIter = Index.typeIds().equal_range(T); 3990 for (auto It = TidIter.first; It != TidIter.second; ++It) { 3991 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 3992 It->second.second); 3993 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 3994 NameVals.clear(); 3995 } 3996 } 3997 3998 Stream.ExitBlock(); 3999 } 4000 4001 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4002 /// current llvm version, and a record for the epoch number. 4003 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4004 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4005 4006 // Write the "user readable" string identifying the bitcode producer 4007 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4008 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4011 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4012 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4013 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4014 4015 // Write the epoch version 4016 Abbv = std::make_shared<BitCodeAbbrev>(); 4017 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4019 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4020 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 4021 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4022 Stream.ExitBlock(); 4023 } 4024 4025 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4026 // Emit the module's hash. 4027 // MODULE_CODE_HASH: [5*i32] 4028 if (GenerateHash) { 4029 uint32_t Vals[5]; 4030 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4031 Buffer.size() - BlockStartPos)); 4032 StringRef Hash = Hasher.result(); 4033 for (int Pos = 0; Pos < 20; Pos += 4) { 4034 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4035 } 4036 4037 // Emit the finished record. 4038 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4039 4040 if (ModHash) 4041 // Save the written hash value. 4042 llvm::copy(Vals, std::begin(*ModHash)); 4043 } 4044 } 4045 4046 void ModuleBitcodeWriter::write() { 4047 writeIdentificationBlock(Stream); 4048 4049 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4050 size_t BlockStartPos = Buffer.size(); 4051 4052 writeModuleVersion(); 4053 4054 // Emit blockinfo, which defines the standard abbreviations etc. 4055 writeBlockInfo(); 4056 4057 // Emit information about attribute groups. 4058 writeAttributeGroupTable(); 4059 4060 // Emit information about parameter attributes. 4061 writeAttributeTable(); 4062 4063 // Emit information describing all of the types in the module. 4064 writeTypeTable(); 4065 4066 writeComdats(); 4067 4068 // Emit top-level description of module, including target triple, inline asm, 4069 // descriptors for global variables, and function prototype info. 4070 writeModuleInfo(); 4071 4072 // Emit constants. 4073 writeModuleConstants(); 4074 4075 // Emit metadata kind names. 4076 writeModuleMetadataKinds(); 4077 4078 // Emit metadata. 4079 writeModuleMetadata(); 4080 4081 // Emit module-level use-lists. 4082 if (VE.shouldPreserveUseListOrder()) 4083 writeUseListBlock(nullptr); 4084 4085 writeOperandBundleTags(); 4086 writeSyncScopeNames(); 4087 4088 // Emit function bodies. 4089 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4090 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4091 if (!F->isDeclaration()) 4092 writeFunction(*F, FunctionToBitcodeIndex); 4093 4094 // Need to write after the above call to WriteFunction which populates 4095 // the summary information in the index. 4096 if (Index) 4097 writePerModuleGlobalValueSummary(); 4098 4099 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4100 4101 writeModuleHash(BlockStartPos); 4102 4103 Stream.ExitBlock(); 4104 } 4105 4106 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4107 uint32_t &Position) { 4108 support::endian::write32le(&Buffer[Position], Value); 4109 Position += 4; 4110 } 4111 4112 /// If generating a bc file on darwin, we have to emit a 4113 /// header and trailer to make it compatible with the system archiver. To do 4114 /// this we emit the following header, and then emit a trailer that pads the 4115 /// file out to be a multiple of 16 bytes. 4116 /// 4117 /// struct bc_header { 4118 /// uint32_t Magic; // 0x0B17C0DE 4119 /// uint32_t Version; // Version, currently always 0. 4120 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4121 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4122 /// uint32_t CPUType; // CPU specifier. 4123 /// ... potentially more later ... 4124 /// }; 4125 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4126 const Triple &TT) { 4127 unsigned CPUType = ~0U; 4128 4129 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4130 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4131 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4132 // specific constants here because they are implicitly part of the Darwin ABI. 4133 enum { 4134 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4135 DARWIN_CPU_TYPE_X86 = 7, 4136 DARWIN_CPU_TYPE_ARM = 12, 4137 DARWIN_CPU_TYPE_POWERPC = 18 4138 }; 4139 4140 Triple::ArchType Arch = TT.getArch(); 4141 if (Arch == Triple::x86_64) 4142 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4143 else if (Arch == Triple::x86) 4144 CPUType = DARWIN_CPU_TYPE_X86; 4145 else if (Arch == Triple::ppc) 4146 CPUType = DARWIN_CPU_TYPE_POWERPC; 4147 else if (Arch == Triple::ppc64) 4148 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4149 else if (Arch == Triple::arm || Arch == Triple::thumb) 4150 CPUType = DARWIN_CPU_TYPE_ARM; 4151 4152 // Traditional Bitcode starts after header. 4153 assert(Buffer.size() >= BWH_HeaderSize && 4154 "Expected header size to be reserved"); 4155 unsigned BCOffset = BWH_HeaderSize; 4156 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4157 4158 // Write the magic and version. 4159 unsigned Position = 0; 4160 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4161 writeInt32ToBuffer(0, Buffer, Position); // Version. 4162 writeInt32ToBuffer(BCOffset, Buffer, Position); 4163 writeInt32ToBuffer(BCSize, Buffer, Position); 4164 writeInt32ToBuffer(CPUType, Buffer, Position); 4165 4166 // If the file is not a multiple of 16 bytes, insert dummy padding. 4167 while (Buffer.size() & 15) 4168 Buffer.push_back(0); 4169 } 4170 4171 /// Helper to write the header common to all bitcode files. 4172 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4173 // Emit the file header. 4174 Stream.Emit((unsigned)'B', 8); 4175 Stream.Emit((unsigned)'C', 8); 4176 Stream.Emit(0x0, 4); 4177 Stream.Emit(0xC, 4); 4178 Stream.Emit(0xE, 4); 4179 Stream.Emit(0xD, 4); 4180 } 4181 4182 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4183 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4184 writeBitcodeHeader(*Stream); 4185 } 4186 4187 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4188 4189 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4190 Stream->EnterSubblock(Block, 3); 4191 4192 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4193 Abbv->Add(BitCodeAbbrevOp(Record)); 4194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4195 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4196 4197 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4198 4199 Stream->ExitBlock(); 4200 } 4201 4202 void BitcodeWriter::writeSymtab() { 4203 assert(!WroteStrtab && !WroteSymtab); 4204 4205 // If any module has module-level inline asm, we will require a registered asm 4206 // parser for the target so that we can create an accurate symbol table for 4207 // the module. 4208 for (Module *M : Mods) { 4209 if (M->getModuleInlineAsm().empty()) 4210 continue; 4211 4212 std::string Err; 4213 const Triple TT(M->getTargetTriple()); 4214 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4215 if (!T || !T->hasMCAsmParser()) 4216 return; 4217 } 4218 4219 WroteSymtab = true; 4220 SmallVector<char, 0> Symtab; 4221 // The irsymtab::build function may be unable to create a symbol table if the 4222 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4223 // table is not required for correctness, but we still want to be able to 4224 // write malformed modules to bitcode files, so swallow the error. 4225 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4226 consumeError(std::move(E)); 4227 return; 4228 } 4229 4230 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4231 {Symtab.data(), Symtab.size()}); 4232 } 4233 4234 void BitcodeWriter::writeStrtab() { 4235 assert(!WroteStrtab); 4236 4237 std::vector<char> Strtab; 4238 StrtabBuilder.finalizeInOrder(); 4239 Strtab.resize(StrtabBuilder.getSize()); 4240 StrtabBuilder.write((uint8_t *)Strtab.data()); 4241 4242 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4243 {Strtab.data(), Strtab.size()}); 4244 4245 WroteStrtab = true; 4246 } 4247 4248 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4249 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4250 WroteStrtab = true; 4251 } 4252 4253 void BitcodeWriter::writeModule(const Module &M, 4254 bool ShouldPreserveUseListOrder, 4255 const ModuleSummaryIndex *Index, 4256 bool GenerateHash, ModuleHash *ModHash) { 4257 assert(!WroteStrtab); 4258 4259 // The Mods vector is used by irsymtab::build, which requires non-const 4260 // Modules in case it needs to materialize metadata. But the bitcode writer 4261 // requires that the module is materialized, so we can cast to non-const here, 4262 // after checking that it is in fact materialized. 4263 assert(M.isMaterialized()); 4264 Mods.push_back(const_cast<Module *>(&M)); 4265 4266 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4267 ShouldPreserveUseListOrder, Index, 4268 GenerateHash, ModHash); 4269 ModuleWriter.write(); 4270 } 4271 4272 void BitcodeWriter::writeIndex( 4273 const ModuleSummaryIndex *Index, 4274 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4275 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4276 ModuleToSummariesForIndex); 4277 IndexWriter.write(); 4278 } 4279 4280 /// Write the specified module to the specified output stream. 4281 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4282 bool ShouldPreserveUseListOrder, 4283 const ModuleSummaryIndex *Index, 4284 bool GenerateHash, ModuleHash *ModHash) { 4285 SmallVector<char, 0> Buffer; 4286 Buffer.reserve(256*1024); 4287 4288 // If this is darwin or another generic macho target, reserve space for the 4289 // header. 4290 Triple TT(M.getTargetTriple()); 4291 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4292 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4293 4294 BitcodeWriter Writer(Buffer); 4295 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4296 ModHash); 4297 Writer.writeSymtab(); 4298 Writer.writeStrtab(); 4299 4300 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4301 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4302 4303 // Write the generated bitstream to "Out". 4304 Out.write((char*)&Buffer.front(), Buffer.size()); 4305 } 4306 4307 void IndexBitcodeWriter::write() { 4308 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4309 4310 writeModuleVersion(); 4311 4312 // Write the module paths in the combined index. 4313 writeModStrings(); 4314 4315 // Write the summary combined index records. 4316 writeCombinedGlobalValueSummary(); 4317 4318 Stream.ExitBlock(); 4319 } 4320 4321 // Write the specified module summary index to the given raw output stream, 4322 // where it will be written in a new bitcode block. This is used when 4323 // writing the combined index file for ThinLTO. When writing a subset of the 4324 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4325 void llvm::WriteIndexToFile( 4326 const ModuleSummaryIndex &Index, raw_ostream &Out, 4327 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4328 SmallVector<char, 0> Buffer; 4329 Buffer.reserve(256 * 1024); 4330 4331 BitcodeWriter Writer(Buffer); 4332 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4333 Writer.writeStrtab(); 4334 4335 Out.write((char *)&Buffer.front(), Buffer.size()); 4336 } 4337 4338 namespace { 4339 4340 /// Class to manage the bitcode writing for a thin link bitcode file. 4341 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4342 /// ModHash is for use in ThinLTO incremental build, generated while writing 4343 /// the module bitcode file. 4344 const ModuleHash *ModHash; 4345 4346 public: 4347 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4348 BitstreamWriter &Stream, 4349 const ModuleSummaryIndex &Index, 4350 const ModuleHash &ModHash) 4351 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4352 /*ShouldPreserveUseListOrder=*/false, &Index), 4353 ModHash(&ModHash) {} 4354 4355 void write(); 4356 4357 private: 4358 void writeSimplifiedModuleInfo(); 4359 }; 4360 4361 } // end anonymous namespace 4362 4363 // This function writes a simpilified module info for thin link bitcode file. 4364 // It only contains the source file name along with the name(the offset and 4365 // size in strtab) and linkage for global values. For the global value info 4366 // entry, in order to keep linkage at offset 5, there are three zeros used 4367 // as padding. 4368 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4369 SmallVector<unsigned, 64> Vals; 4370 // Emit the module's source file name. 4371 { 4372 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4373 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4374 if (Bits == SE_Char6) 4375 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4376 else if (Bits == SE_Fixed7) 4377 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4378 4379 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4380 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4381 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4383 Abbv->Add(AbbrevOpToUse); 4384 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4385 4386 for (const auto P : M.getSourceFileName()) 4387 Vals.push_back((unsigned char)P); 4388 4389 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4390 Vals.clear(); 4391 } 4392 4393 // Emit the global variable information. 4394 for (const GlobalVariable &GV : M.globals()) { 4395 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4396 Vals.push_back(StrtabBuilder.add(GV.getName())); 4397 Vals.push_back(GV.getName().size()); 4398 Vals.push_back(0); 4399 Vals.push_back(0); 4400 Vals.push_back(0); 4401 Vals.push_back(getEncodedLinkage(GV)); 4402 4403 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4404 Vals.clear(); 4405 } 4406 4407 // Emit the function proto information. 4408 for (const Function &F : M) { 4409 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4410 Vals.push_back(StrtabBuilder.add(F.getName())); 4411 Vals.push_back(F.getName().size()); 4412 Vals.push_back(0); 4413 Vals.push_back(0); 4414 Vals.push_back(0); 4415 Vals.push_back(getEncodedLinkage(F)); 4416 4417 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4418 Vals.clear(); 4419 } 4420 4421 // Emit the alias information. 4422 for (const GlobalAlias &A : M.aliases()) { 4423 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4424 Vals.push_back(StrtabBuilder.add(A.getName())); 4425 Vals.push_back(A.getName().size()); 4426 Vals.push_back(0); 4427 Vals.push_back(0); 4428 Vals.push_back(0); 4429 Vals.push_back(getEncodedLinkage(A)); 4430 4431 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4432 Vals.clear(); 4433 } 4434 4435 // Emit the ifunc information. 4436 for (const GlobalIFunc &I : M.ifuncs()) { 4437 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4438 Vals.push_back(StrtabBuilder.add(I.getName())); 4439 Vals.push_back(I.getName().size()); 4440 Vals.push_back(0); 4441 Vals.push_back(0); 4442 Vals.push_back(0); 4443 Vals.push_back(getEncodedLinkage(I)); 4444 4445 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4446 Vals.clear(); 4447 } 4448 } 4449 4450 void ThinLinkBitcodeWriter::write() { 4451 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4452 4453 writeModuleVersion(); 4454 4455 writeSimplifiedModuleInfo(); 4456 4457 writePerModuleGlobalValueSummary(); 4458 4459 // Write module hash. 4460 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4461 4462 Stream.ExitBlock(); 4463 } 4464 4465 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4466 const ModuleSummaryIndex &Index, 4467 const ModuleHash &ModHash) { 4468 assert(!WroteStrtab); 4469 4470 // The Mods vector is used by irsymtab::build, which requires non-const 4471 // Modules in case it needs to materialize metadata. But the bitcode writer 4472 // requires that the module is materialized, so we can cast to non-const here, 4473 // after checking that it is in fact materialized. 4474 assert(M.isMaterialized()); 4475 Mods.push_back(const_cast<Module *>(&M)); 4476 4477 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4478 ModHash); 4479 ThinLinkWriter.write(); 4480 } 4481 4482 // Write the specified thin link bitcode file to the given raw output stream, 4483 // where it will be written in a new bitcode block. This is used when 4484 // writing the per-module index file for ThinLTO. 4485 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4486 const ModuleSummaryIndex &Index, 4487 const ModuleHash &ModHash) { 4488 SmallVector<char, 0> Buffer; 4489 Buffer.reserve(256 * 1024); 4490 4491 BitcodeWriter Writer(Buffer); 4492 Writer.writeThinLinkBitcode(M, Index, ModHash); 4493 Writer.writeSymtab(); 4494 Writer.writeStrtab(); 4495 4496 Out.write((char *)&Buffer.front(), Buffer.size()); 4497 } 4498