1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeBitcodeHeader(); 146 void writeModuleVersion(); 147 }; 148 149 void BitcodeWriterBase::writeModuleVersion() { 150 // VERSION: [version#] 151 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 152 } 153 154 /// Base class to manage the module bitcode writing, currently subclassed for 155 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 156 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 157 protected: 158 /// The Module to write to bitcode. 159 const Module &M; 160 161 /// Enumerates ids for all values in the module. 162 ValueEnumerator VE; 163 164 /// Optional per-module index to write for ThinLTO. 165 const ModuleSummaryIndex *Index; 166 167 /// Map that holds the correspondence between GUIDs in the summary index, 168 /// that came from indirect call profiles, and a value id generated by this 169 /// class to use in the VST and summary block records. 170 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 171 172 /// Tracks the last value id recorded in the GUIDToValueMap. 173 unsigned GlobalValueId; 174 175 /// Saves the offset of the VSTOffset record that must eventually be 176 /// backpatched with the offset of the actual VST. 177 uint64_t VSTOffsetPlaceholder = 0; 178 179 public: 180 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 181 /// writing to the provided \p Buffer. 182 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 183 BitstreamWriter &Stream, 184 bool ShouldPreserveUseListOrder, 185 const ModuleSummaryIndex *Index) 186 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 187 VE(M, ShouldPreserveUseListOrder), Index(Index) { 188 // Assign ValueIds to any callee values in the index that came from 189 // indirect call profiles and were recorded as a GUID not a Value* 190 // (which would have been assigned an ID by the ValueEnumerator). 191 // The starting ValueId is just after the number of values in the 192 // ValueEnumerator, so that they can be emitted in the VST. 193 GlobalValueId = VE.getValues().size(); 194 if (!Index) 195 return; 196 for (const auto &GUIDSummaryLists : *Index) 197 // Examine all summaries for this GUID. 198 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 199 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 200 // For each call in the function summary, see if the call 201 // is to a GUID (which means it is for an indirect call, 202 // otherwise we would have a Value for it). If so, synthesize 203 // a value id. 204 for (auto &CallEdge : FS->calls()) 205 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 206 assignValueId(CallEdge.first.getGUID()); 207 } 208 209 protected: 210 void writePerModuleGlobalValueSummary(); 211 212 private: 213 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 214 GlobalValueSummary *Summary, 215 unsigned ValueID, 216 unsigned FSCallsAbbrev, 217 unsigned FSCallsProfileAbbrev, 218 const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDIGlobalVariable(const DIGlobalVariable *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDILocalVariable(const DILocalVariable *N, 352 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 353 void writeDILabel(const DILabel *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDIExpression(const DIExpression *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIObjCProperty(const DIObjCProperty *N, 361 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 362 void writeDIImportedEntity(const DIImportedEntity *N, 363 SmallVectorImpl<uint64_t> &Record, 364 unsigned Abbrev); 365 unsigned createNamedMetadataAbbrev(); 366 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 367 unsigned createMetadataStringsAbbrev(); 368 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 369 SmallVectorImpl<uint64_t> &Record); 370 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 371 SmallVectorImpl<uint64_t> &Record, 372 std::vector<unsigned> *MDAbbrevs = nullptr, 373 std::vector<uint64_t> *IndexPos = nullptr); 374 void writeModuleMetadata(); 375 void writeFunctionMetadata(const Function &F); 376 void writeFunctionMetadataAttachment(const Function &F); 377 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 378 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 379 const GlobalObject &GO); 380 void writeModuleMetadataKinds(); 381 void writeOperandBundleTags(); 382 void writeSyncScopeNames(); 383 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 384 void writeModuleConstants(); 385 bool pushValueAndType(const Value *V, unsigned InstID, 386 SmallVectorImpl<unsigned> &Vals); 387 void writeOperandBundles(const CallBase &CB, unsigned InstID); 388 void pushValue(const Value *V, unsigned InstID, 389 SmallVectorImpl<unsigned> &Vals); 390 void pushValueSigned(const Value *V, unsigned InstID, 391 SmallVectorImpl<uint64_t> &Vals); 392 void writeInstruction(const Instruction &I, unsigned InstID, 393 SmallVectorImpl<unsigned> &Vals); 394 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 395 void writeGlobalValueSymbolTable( 396 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 397 void writeUseList(UseListOrder &&Order); 398 void writeUseListBlock(const Function *F); 399 void 400 writeFunction(const Function &F, 401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 402 void writeBlockInfo(); 403 void writeModuleHash(size_t BlockStartPos); 404 405 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 406 return unsigned(SSID); 407 } 408 409 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 410 }; 411 412 /// Class to manage the bitcode writing for a combined index. 413 class IndexBitcodeWriter : public BitcodeWriterBase { 414 /// The combined index to write to bitcode. 415 const ModuleSummaryIndex &Index; 416 417 /// When writing a subset of the index for distributed backends, client 418 /// provides a map of modules to the corresponding GUIDs/summaries to write. 419 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 420 421 /// Map that holds the correspondence between the GUID used in the combined 422 /// index and a value id generated by this class to use in references. 423 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 424 425 /// Tracks the last value id recorded in the GUIDToValueMap. 426 unsigned GlobalValueId = 0; 427 428 public: 429 /// Constructs a IndexBitcodeWriter object for the given combined index, 430 /// writing to the provided \p Buffer. When writing a subset of the index 431 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 432 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 433 const ModuleSummaryIndex &Index, 434 const std::map<std::string, GVSummaryMapTy> 435 *ModuleToSummariesForIndex = nullptr) 436 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 437 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 438 // Assign unique value ids to all summaries to be written, for use 439 // in writing out the call graph edges. Save the mapping from GUID 440 // to the new global value id to use when writing those edges, which 441 // are currently saved in the index in terms of GUID. 442 forEachSummary([&](GVInfo I, bool) { 443 GUIDToValueIdMap[I.first] = ++GlobalValueId; 444 }); 445 } 446 447 /// The below iterator returns the GUID and associated summary. 448 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 449 450 /// Calls the callback for each value GUID and summary to be written to 451 /// bitcode. This hides the details of whether they are being pulled from the 452 /// entire index or just those in a provided ModuleToSummariesForIndex map. 453 template<typename Functor> 454 void forEachSummary(Functor Callback) { 455 if (ModuleToSummariesForIndex) { 456 for (auto &M : *ModuleToSummariesForIndex) 457 for (auto &Summary : M.second) { 458 Callback(Summary, false); 459 // Ensure aliasee is handled, e.g. for assigning a valueId, 460 // even if we are not importing the aliasee directly (the 461 // imported alias will contain a copy of aliasee). 462 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 463 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 464 } 465 } else { 466 for (auto &Summaries : Index) 467 for (auto &Summary : Summaries.second.SummaryList) 468 Callback({Summaries.first, Summary.get()}, false); 469 } 470 } 471 472 /// Calls the callback for each entry in the modulePaths StringMap that 473 /// should be written to the module path string table. This hides the details 474 /// of whether they are being pulled from the entire index or just those in a 475 /// provided ModuleToSummariesForIndex map. 476 template <typename Functor> void forEachModule(Functor Callback) { 477 if (ModuleToSummariesForIndex) { 478 for (const auto &M : *ModuleToSummariesForIndex) { 479 const auto &MPI = Index.modulePaths().find(M.first); 480 if (MPI == Index.modulePaths().end()) { 481 // This should only happen if the bitcode file was empty, in which 482 // case we shouldn't be importing (the ModuleToSummariesForIndex 483 // would only include the module we are writing and index for). 484 assert(ModuleToSummariesForIndex->size() == 1); 485 continue; 486 } 487 Callback(*MPI); 488 } 489 } else { 490 for (const auto &MPSE : Index.modulePaths()) 491 Callback(MPSE); 492 } 493 } 494 495 /// Main entry point for writing a combined index to bitcode. 496 void write(); 497 498 private: 499 void writeModStrings(); 500 void writeCombinedGlobalValueSummary(); 501 502 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 503 auto VMI = GUIDToValueIdMap.find(ValGUID); 504 if (VMI == GUIDToValueIdMap.end()) 505 return None; 506 return VMI->second; 507 } 508 509 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 510 }; 511 512 } // end anonymous namespace 513 514 static unsigned getEncodedCastOpcode(unsigned Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Unknown cast instruction!"); 517 case Instruction::Trunc : return bitc::CAST_TRUNC; 518 case Instruction::ZExt : return bitc::CAST_ZEXT; 519 case Instruction::SExt : return bitc::CAST_SEXT; 520 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 521 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 522 case Instruction::UIToFP : return bitc::CAST_UITOFP; 523 case Instruction::SIToFP : return bitc::CAST_SITOFP; 524 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 525 case Instruction::FPExt : return bitc::CAST_FPEXT; 526 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 527 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 528 case Instruction::BitCast : return bitc::CAST_BITCAST; 529 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 530 } 531 } 532 533 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 534 switch (Opcode) { 535 default: llvm_unreachable("Unknown binary instruction!"); 536 case Instruction::FNeg: return bitc::UNOP_FNEG; 537 } 538 } 539 540 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 541 switch (Opcode) { 542 default: llvm_unreachable("Unknown binary instruction!"); 543 case Instruction::Add: 544 case Instruction::FAdd: return bitc::BINOP_ADD; 545 case Instruction::Sub: 546 case Instruction::FSub: return bitc::BINOP_SUB; 547 case Instruction::Mul: 548 case Instruction::FMul: return bitc::BINOP_MUL; 549 case Instruction::UDiv: return bitc::BINOP_UDIV; 550 case Instruction::FDiv: 551 case Instruction::SDiv: return bitc::BINOP_SDIV; 552 case Instruction::URem: return bitc::BINOP_UREM; 553 case Instruction::FRem: 554 case Instruction::SRem: return bitc::BINOP_SREM; 555 case Instruction::Shl: return bitc::BINOP_SHL; 556 case Instruction::LShr: return bitc::BINOP_LSHR; 557 case Instruction::AShr: return bitc::BINOP_ASHR; 558 case Instruction::And: return bitc::BINOP_AND; 559 case Instruction::Or: return bitc::BINOP_OR; 560 case Instruction::Xor: return bitc::BINOP_XOR; 561 } 562 } 563 564 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 565 switch (Op) { 566 default: llvm_unreachable("Unknown RMW operation!"); 567 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 568 case AtomicRMWInst::Add: return bitc::RMW_ADD; 569 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 570 case AtomicRMWInst::And: return bitc::RMW_AND; 571 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 572 case AtomicRMWInst::Or: return bitc::RMW_OR; 573 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 574 case AtomicRMWInst::Max: return bitc::RMW_MAX; 575 case AtomicRMWInst::Min: return bitc::RMW_MIN; 576 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 577 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 578 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 579 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 580 } 581 } 582 583 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 584 switch (Ordering) { 585 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 586 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 587 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 588 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 589 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 590 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 591 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 592 } 593 llvm_unreachable("Invalid ordering"); 594 } 595 596 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 597 StringRef Str, unsigned AbbrevToUse) { 598 SmallVector<unsigned, 64> Vals; 599 600 // Code: [strchar x N] 601 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 602 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 603 AbbrevToUse = 0; 604 Vals.push_back(Str[i]); 605 } 606 607 // Emit the finished record. 608 Stream.EmitRecord(Code, Vals, AbbrevToUse); 609 } 610 611 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 612 switch (Kind) { 613 case Attribute::Alignment: 614 return bitc::ATTR_KIND_ALIGNMENT; 615 case Attribute::AllocSize: 616 return bitc::ATTR_KIND_ALLOC_SIZE; 617 case Attribute::AlwaysInline: 618 return bitc::ATTR_KIND_ALWAYS_INLINE; 619 case Attribute::ArgMemOnly: 620 return bitc::ATTR_KIND_ARGMEMONLY; 621 case Attribute::Builtin: 622 return bitc::ATTR_KIND_BUILTIN; 623 case Attribute::ByVal: 624 return bitc::ATTR_KIND_BY_VAL; 625 case Attribute::Convergent: 626 return bitc::ATTR_KIND_CONVERGENT; 627 case Attribute::InAlloca: 628 return bitc::ATTR_KIND_IN_ALLOCA; 629 case Attribute::Cold: 630 return bitc::ATTR_KIND_COLD; 631 case Attribute::Hot: 632 return bitc::ATTR_KIND_HOT; 633 case Attribute::InaccessibleMemOnly: 634 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 635 case Attribute::InaccessibleMemOrArgMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 637 case Attribute::InlineHint: 638 return bitc::ATTR_KIND_INLINE_HINT; 639 case Attribute::InReg: 640 return bitc::ATTR_KIND_IN_REG; 641 case Attribute::JumpTable: 642 return bitc::ATTR_KIND_JUMP_TABLE; 643 case Attribute::MinSize: 644 return bitc::ATTR_KIND_MIN_SIZE; 645 case Attribute::Naked: 646 return bitc::ATTR_KIND_NAKED; 647 case Attribute::Nest: 648 return bitc::ATTR_KIND_NEST; 649 case Attribute::NoAlias: 650 return bitc::ATTR_KIND_NO_ALIAS; 651 case Attribute::NoBuiltin: 652 return bitc::ATTR_KIND_NO_BUILTIN; 653 case Attribute::NoCallback: 654 return bitc::ATTR_KIND_NO_CALLBACK; 655 case Attribute::NoCapture: 656 return bitc::ATTR_KIND_NO_CAPTURE; 657 case Attribute::NoDuplicate: 658 return bitc::ATTR_KIND_NO_DUPLICATE; 659 case Attribute::NoFree: 660 return bitc::ATTR_KIND_NOFREE; 661 case Attribute::NoImplicitFloat: 662 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 663 case Attribute::NoInline: 664 return bitc::ATTR_KIND_NO_INLINE; 665 case Attribute::NoRecurse: 666 return bitc::ATTR_KIND_NO_RECURSE; 667 case Attribute::NoMerge: 668 return bitc::ATTR_KIND_NO_MERGE; 669 case Attribute::NonLazyBind: 670 return bitc::ATTR_KIND_NON_LAZY_BIND; 671 case Attribute::NonNull: 672 return bitc::ATTR_KIND_NON_NULL; 673 case Attribute::Dereferenceable: 674 return bitc::ATTR_KIND_DEREFERENCEABLE; 675 case Attribute::DereferenceableOrNull: 676 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 677 case Attribute::NoRedZone: 678 return bitc::ATTR_KIND_NO_RED_ZONE; 679 case Attribute::NoReturn: 680 return bitc::ATTR_KIND_NO_RETURN; 681 case Attribute::NoSync: 682 return bitc::ATTR_KIND_NOSYNC; 683 case Attribute::NoCfCheck: 684 return bitc::ATTR_KIND_NOCF_CHECK; 685 case Attribute::NoProfile: 686 return bitc::ATTR_KIND_NO_PROFILE; 687 case Attribute::NoUnwind: 688 return bitc::ATTR_KIND_NO_UNWIND; 689 case Attribute::NoSanitizeCoverage: 690 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 691 case Attribute::NullPointerIsValid: 692 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 693 case Attribute::OptForFuzzing: 694 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 695 case Attribute::OptimizeForSize: 696 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 697 case Attribute::OptimizeNone: 698 return bitc::ATTR_KIND_OPTIMIZE_NONE; 699 case Attribute::ReadNone: 700 return bitc::ATTR_KIND_READ_NONE; 701 case Attribute::ReadOnly: 702 return bitc::ATTR_KIND_READ_ONLY; 703 case Attribute::Returned: 704 return bitc::ATTR_KIND_RETURNED; 705 case Attribute::ReturnsTwice: 706 return bitc::ATTR_KIND_RETURNS_TWICE; 707 case Attribute::SExt: 708 return bitc::ATTR_KIND_S_EXT; 709 case Attribute::Speculatable: 710 return bitc::ATTR_KIND_SPECULATABLE; 711 case Attribute::StackAlignment: 712 return bitc::ATTR_KIND_STACK_ALIGNMENT; 713 case Attribute::StackProtect: 714 return bitc::ATTR_KIND_STACK_PROTECT; 715 case Attribute::StackProtectReq: 716 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 717 case Attribute::StackProtectStrong: 718 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 719 case Attribute::SafeStack: 720 return bitc::ATTR_KIND_SAFESTACK; 721 case Attribute::ShadowCallStack: 722 return bitc::ATTR_KIND_SHADOWCALLSTACK; 723 case Attribute::StrictFP: 724 return bitc::ATTR_KIND_STRICT_FP; 725 case Attribute::StructRet: 726 return bitc::ATTR_KIND_STRUCT_RET; 727 case Attribute::SanitizeAddress: 728 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 729 case Attribute::SanitizeHWAddress: 730 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 731 case Attribute::SanitizeThread: 732 return bitc::ATTR_KIND_SANITIZE_THREAD; 733 case Attribute::SanitizeMemory: 734 return bitc::ATTR_KIND_SANITIZE_MEMORY; 735 case Attribute::SpeculativeLoadHardening: 736 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 737 case Attribute::SwiftError: 738 return bitc::ATTR_KIND_SWIFT_ERROR; 739 case Attribute::SwiftSelf: 740 return bitc::ATTR_KIND_SWIFT_SELF; 741 case Attribute::SwiftAsync: 742 return bitc::ATTR_KIND_SWIFT_ASYNC; 743 case Attribute::UWTable: 744 return bitc::ATTR_KIND_UW_TABLE; 745 case Attribute::VScaleRange: 746 return bitc::ATTR_KIND_VSCALE_RANGE; 747 case Attribute::WillReturn: 748 return bitc::ATTR_KIND_WILLRETURN; 749 case Attribute::WriteOnly: 750 return bitc::ATTR_KIND_WRITEONLY; 751 case Attribute::ZExt: 752 return bitc::ATTR_KIND_Z_EXT; 753 case Attribute::ImmArg: 754 return bitc::ATTR_KIND_IMMARG; 755 case Attribute::SanitizeMemTag: 756 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 757 case Attribute::Preallocated: 758 return bitc::ATTR_KIND_PREALLOCATED; 759 case Attribute::NoUndef: 760 return bitc::ATTR_KIND_NOUNDEF; 761 case Attribute::ByRef: 762 return bitc::ATTR_KIND_BYREF; 763 case Attribute::MustProgress: 764 return bitc::ATTR_KIND_MUSTPROGRESS; 765 case Attribute::EndAttrKinds: 766 llvm_unreachable("Can not encode end-attribute kinds marker."); 767 case Attribute::None: 768 llvm_unreachable("Can not encode none-attribute."); 769 case Attribute::EmptyKey: 770 case Attribute::TombstoneKey: 771 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 772 } 773 774 llvm_unreachable("Trying to encode unknown attribute"); 775 } 776 777 void ModuleBitcodeWriter::writeAttributeGroupTable() { 778 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 779 VE.getAttributeGroups(); 780 if (AttrGrps.empty()) return; 781 782 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 783 784 SmallVector<uint64_t, 64> Record; 785 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 786 unsigned AttrListIndex = Pair.first; 787 AttributeSet AS = Pair.second; 788 Record.push_back(VE.getAttributeGroupID(Pair)); 789 Record.push_back(AttrListIndex); 790 791 for (Attribute Attr : AS) { 792 if (Attr.isEnumAttribute()) { 793 Record.push_back(0); 794 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 795 } else if (Attr.isIntAttribute()) { 796 Record.push_back(1); 797 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 798 Record.push_back(Attr.getValueAsInt()); 799 } else if (Attr.isStringAttribute()) { 800 StringRef Kind = Attr.getKindAsString(); 801 StringRef Val = Attr.getValueAsString(); 802 803 Record.push_back(Val.empty() ? 3 : 4); 804 Record.append(Kind.begin(), Kind.end()); 805 Record.push_back(0); 806 if (!Val.empty()) { 807 Record.append(Val.begin(), Val.end()); 808 Record.push_back(0); 809 } 810 } else { 811 assert(Attr.isTypeAttribute()); 812 Type *Ty = Attr.getValueAsType(); 813 Record.push_back(Ty ? 6 : 5); 814 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 815 if (Ty) 816 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 817 } 818 } 819 820 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 821 Record.clear(); 822 } 823 824 Stream.ExitBlock(); 825 } 826 827 void ModuleBitcodeWriter::writeAttributeTable() { 828 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 829 if (Attrs.empty()) return; 830 831 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 832 833 SmallVector<uint64_t, 64> Record; 834 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 835 AttributeList AL = Attrs[i]; 836 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 837 AttributeSet AS = AL.getAttributes(i); 838 if (AS.hasAttributes()) 839 Record.push_back(VE.getAttributeGroupID({i, AS})); 840 } 841 842 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 843 Record.clear(); 844 } 845 846 Stream.ExitBlock(); 847 } 848 849 /// WriteTypeTable - Write out the type table for a module. 850 void ModuleBitcodeWriter::writeTypeTable() { 851 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 852 853 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 854 SmallVector<uint64_t, 64> TypeVals; 855 856 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 857 858 // Abbrev for TYPE_CODE_POINTER. 859 auto Abbv = std::make_shared<BitCodeAbbrev>(); 860 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 862 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 863 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 864 865 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 866 Abbv = std::make_shared<BitCodeAbbrev>(); 867 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 868 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 869 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 870 871 // Abbrev for TYPE_CODE_FUNCTION. 872 Abbv = std::make_shared<BitCodeAbbrev>(); 873 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 877 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 878 879 // Abbrev for TYPE_CODE_STRUCT_ANON. 880 Abbv = std::make_shared<BitCodeAbbrev>(); 881 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 885 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 886 887 // Abbrev for TYPE_CODE_STRUCT_NAME. 888 Abbv = std::make_shared<BitCodeAbbrev>(); 889 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 892 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 893 894 // Abbrev for TYPE_CODE_STRUCT_NAMED. 895 Abbv = std::make_shared<BitCodeAbbrev>(); 896 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 900 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 901 902 // Abbrev for TYPE_CODE_ARRAY. 903 Abbv = std::make_shared<BitCodeAbbrev>(); 904 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 907 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 908 909 // Emit an entry count so the reader can reserve space. 910 TypeVals.push_back(TypeList.size()); 911 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 912 TypeVals.clear(); 913 914 // Loop over all of the types, emitting each in turn. 915 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 916 Type *T = TypeList[i]; 917 int AbbrevToUse = 0; 918 unsigned Code = 0; 919 920 switch (T->getTypeID()) { 921 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 922 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 923 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 924 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 925 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 926 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 927 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 928 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 929 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 930 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 931 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 932 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 933 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 934 case Type::IntegerTyID: 935 // INTEGER: [width] 936 Code = bitc::TYPE_CODE_INTEGER; 937 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 938 break; 939 case Type::PointerTyID: { 940 PointerType *PTy = cast<PointerType>(T); 941 unsigned AddressSpace = PTy->getAddressSpace(); 942 if (PTy->isOpaque()) { 943 // OPAQUE_POINTER: [address space] 944 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 945 TypeVals.push_back(AddressSpace); 946 if (AddressSpace == 0) 947 AbbrevToUse = OpaquePtrAbbrev; 948 } else { 949 // POINTER: [pointee type, address space] 950 Code = bitc::TYPE_CODE_POINTER; 951 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 952 TypeVals.push_back(AddressSpace); 953 if (AddressSpace == 0) 954 AbbrevToUse = PtrAbbrev; 955 } 956 break; 957 } 958 case Type::FunctionTyID: { 959 FunctionType *FT = cast<FunctionType>(T); 960 // FUNCTION: [isvararg, retty, paramty x N] 961 Code = bitc::TYPE_CODE_FUNCTION; 962 TypeVals.push_back(FT->isVarArg()); 963 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 964 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 965 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 966 AbbrevToUse = FunctionAbbrev; 967 break; 968 } 969 case Type::StructTyID: { 970 StructType *ST = cast<StructType>(T); 971 // STRUCT: [ispacked, eltty x N] 972 TypeVals.push_back(ST->isPacked()); 973 // Output all of the element types. 974 for (StructType::element_iterator I = ST->element_begin(), 975 E = ST->element_end(); I != E; ++I) 976 TypeVals.push_back(VE.getTypeID(*I)); 977 978 if (ST->isLiteral()) { 979 Code = bitc::TYPE_CODE_STRUCT_ANON; 980 AbbrevToUse = StructAnonAbbrev; 981 } else { 982 if (ST->isOpaque()) { 983 Code = bitc::TYPE_CODE_OPAQUE; 984 } else { 985 Code = bitc::TYPE_CODE_STRUCT_NAMED; 986 AbbrevToUse = StructNamedAbbrev; 987 } 988 989 // Emit the name if it is present. 990 if (!ST->getName().empty()) 991 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 992 StructNameAbbrev); 993 } 994 break; 995 } 996 case Type::ArrayTyID: { 997 ArrayType *AT = cast<ArrayType>(T); 998 // ARRAY: [numelts, eltty] 999 Code = bitc::TYPE_CODE_ARRAY; 1000 TypeVals.push_back(AT->getNumElements()); 1001 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1002 AbbrevToUse = ArrayAbbrev; 1003 break; 1004 } 1005 case Type::FixedVectorTyID: 1006 case Type::ScalableVectorTyID: { 1007 VectorType *VT = cast<VectorType>(T); 1008 // VECTOR [numelts, eltty] or 1009 // [numelts, eltty, scalable] 1010 Code = bitc::TYPE_CODE_VECTOR; 1011 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1012 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1013 if (isa<ScalableVectorType>(VT)) 1014 TypeVals.push_back(true); 1015 break; 1016 } 1017 } 1018 1019 // Emit the finished record. 1020 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1021 TypeVals.clear(); 1022 } 1023 1024 Stream.ExitBlock(); 1025 } 1026 1027 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1028 switch (Linkage) { 1029 case GlobalValue::ExternalLinkage: 1030 return 0; 1031 case GlobalValue::WeakAnyLinkage: 1032 return 16; 1033 case GlobalValue::AppendingLinkage: 1034 return 2; 1035 case GlobalValue::InternalLinkage: 1036 return 3; 1037 case GlobalValue::LinkOnceAnyLinkage: 1038 return 18; 1039 case GlobalValue::ExternalWeakLinkage: 1040 return 7; 1041 case GlobalValue::CommonLinkage: 1042 return 8; 1043 case GlobalValue::PrivateLinkage: 1044 return 9; 1045 case GlobalValue::WeakODRLinkage: 1046 return 17; 1047 case GlobalValue::LinkOnceODRLinkage: 1048 return 19; 1049 case GlobalValue::AvailableExternallyLinkage: 1050 return 12; 1051 } 1052 llvm_unreachable("Invalid linkage"); 1053 } 1054 1055 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1056 return getEncodedLinkage(GV.getLinkage()); 1057 } 1058 1059 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1060 uint64_t RawFlags = 0; 1061 RawFlags |= Flags.ReadNone; 1062 RawFlags |= (Flags.ReadOnly << 1); 1063 RawFlags |= (Flags.NoRecurse << 2); 1064 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1065 RawFlags |= (Flags.NoInline << 4); 1066 RawFlags |= (Flags.AlwaysInline << 5); 1067 return RawFlags; 1068 } 1069 1070 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1071 // in BitcodeReader.cpp. 1072 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1073 uint64_t RawFlags = 0; 1074 1075 RawFlags |= Flags.NotEligibleToImport; // bool 1076 RawFlags |= (Flags.Live << 1); 1077 RawFlags |= (Flags.DSOLocal << 2); 1078 RawFlags |= (Flags.CanAutoHide << 3); 1079 1080 // Linkage don't need to be remapped at that time for the summary. Any future 1081 // change to the getEncodedLinkage() function will need to be taken into 1082 // account here as well. 1083 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1084 1085 RawFlags |= (Flags.Visibility << 8); // 2 bits 1086 1087 return RawFlags; 1088 } 1089 1090 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1091 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1092 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1093 return RawFlags; 1094 } 1095 1096 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1097 switch (GV.getVisibility()) { 1098 case GlobalValue::DefaultVisibility: return 0; 1099 case GlobalValue::HiddenVisibility: return 1; 1100 case GlobalValue::ProtectedVisibility: return 2; 1101 } 1102 llvm_unreachable("Invalid visibility"); 1103 } 1104 1105 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1106 switch (GV.getDLLStorageClass()) { 1107 case GlobalValue::DefaultStorageClass: return 0; 1108 case GlobalValue::DLLImportStorageClass: return 1; 1109 case GlobalValue::DLLExportStorageClass: return 2; 1110 } 1111 llvm_unreachable("Invalid DLL storage class"); 1112 } 1113 1114 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1115 switch (GV.getThreadLocalMode()) { 1116 case GlobalVariable::NotThreadLocal: return 0; 1117 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1118 case GlobalVariable::LocalDynamicTLSModel: return 2; 1119 case GlobalVariable::InitialExecTLSModel: return 3; 1120 case GlobalVariable::LocalExecTLSModel: return 4; 1121 } 1122 llvm_unreachable("Invalid TLS model"); 1123 } 1124 1125 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1126 switch (C.getSelectionKind()) { 1127 case Comdat::Any: 1128 return bitc::COMDAT_SELECTION_KIND_ANY; 1129 case Comdat::ExactMatch: 1130 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1131 case Comdat::Largest: 1132 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1133 case Comdat::NoDuplicates: 1134 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1135 case Comdat::SameSize: 1136 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1137 } 1138 llvm_unreachable("Invalid selection kind"); 1139 } 1140 1141 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1142 switch (GV.getUnnamedAddr()) { 1143 case GlobalValue::UnnamedAddr::None: return 0; 1144 case GlobalValue::UnnamedAddr::Local: return 2; 1145 case GlobalValue::UnnamedAddr::Global: return 1; 1146 } 1147 llvm_unreachable("Invalid unnamed_addr"); 1148 } 1149 1150 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1151 if (GenerateHash) 1152 Hasher.update(Str); 1153 return StrtabBuilder.add(Str); 1154 } 1155 1156 void ModuleBitcodeWriter::writeComdats() { 1157 SmallVector<unsigned, 64> Vals; 1158 for (const Comdat *C : VE.getComdats()) { 1159 // COMDAT: [strtab offset, strtab size, selection_kind] 1160 Vals.push_back(addToStrtab(C->getName())); 1161 Vals.push_back(C->getName().size()); 1162 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1163 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1164 Vals.clear(); 1165 } 1166 } 1167 1168 /// Write a record that will eventually hold the word offset of the 1169 /// module-level VST. For now the offset is 0, which will be backpatched 1170 /// after the real VST is written. Saves the bit offset to backpatch. 1171 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1172 // Write a placeholder value in for the offset of the real VST, 1173 // which is written after the function blocks so that it can include 1174 // the offset of each function. The placeholder offset will be 1175 // updated when the real VST is written. 1176 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1177 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1178 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1179 // hold the real VST offset. Must use fixed instead of VBR as we don't 1180 // know how many VBR chunks to reserve ahead of time. 1181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1182 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1183 1184 // Emit the placeholder 1185 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1186 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1187 1188 // Compute and save the bit offset to the placeholder, which will be 1189 // patched when the real VST is written. We can simply subtract the 32-bit 1190 // fixed size from the current bit number to get the location to backpatch. 1191 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1192 } 1193 1194 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1195 1196 /// Determine the encoding to use for the given string name and length. 1197 static StringEncoding getStringEncoding(StringRef Str) { 1198 bool isChar6 = true; 1199 for (char C : Str) { 1200 if (isChar6) 1201 isChar6 = BitCodeAbbrevOp::isChar6(C); 1202 if ((unsigned char)C & 128) 1203 // don't bother scanning the rest. 1204 return SE_Fixed8; 1205 } 1206 if (isChar6) 1207 return SE_Char6; 1208 return SE_Fixed7; 1209 } 1210 1211 /// Emit top-level description of module, including target triple, inline asm, 1212 /// descriptors for global variables, and function prototype info. 1213 /// Returns the bit offset to backpatch with the location of the real VST. 1214 void ModuleBitcodeWriter::writeModuleInfo() { 1215 // Emit various pieces of data attached to a module. 1216 if (!M.getTargetTriple().empty()) 1217 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1218 0 /*TODO*/); 1219 const std::string &DL = M.getDataLayoutStr(); 1220 if (!DL.empty()) 1221 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1222 if (!M.getModuleInlineAsm().empty()) 1223 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1224 0 /*TODO*/); 1225 1226 // Emit information about sections and GC, computing how many there are. Also 1227 // compute the maximum alignment value. 1228 std::map<std::string, unsigned> SectionMap; 1229 std::map<std::string, unsigned> GCMap; 1230 MaybeAlign MaxAlignment; 1231 unsigned MaxGlobalType = 0; 1232 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1233 if (A) 1234 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1235 }; 1236 for (const GlobalVariable &GV : M.globals()) { 1237 UpdateMaxAlignment(GV.getAlign()); 1238 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1239 if (GV.hasSection()) { 1240 // Give section names unique ID's. 1241 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1242 if (!Entry) { 1243 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1244 0 /*TODO*/); 1245 Entry = SectionMap.size(); 1246 } 1247 } 1248 } 1249 for (const Function &F : M) { 1250 UpdateMaxAlignment(F.getAlign()); 1251 if (F.hasSection()) { 1252 // Give section names unique ID's. 1253 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1254 if (!Entry) { 1255 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1256 0 /*TODO*/); 1257 Entry = SectionMap.size(); 1258 } 1259 } 1260 if (F.hasGC()) { 1261 // Same for GC names. 1262 unsigned &Entry = GCMap[F.getGC()]; 1263 if (!Entry) { 1264 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1265 0 /*TODO*/); 1266 Entry = GCMap.size(); 1267 } 1268 } 1269 } 1270 1271 // Emit abbrev for globals, now that we know # sections and max alignment. 1272 unsigned SimpleGVarAbbrev = 0; 1273 if (!M.global_empty()) { 1274 // Add an abbrev for common globals with no visibility or thread localness. 1275 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1276 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1280 Log2_32_Ceil(MaxGlobalType+1))); 1281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1282 //| explicitType << 1 1283 //| constant 1284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1286 if (!MaxAlignment) // Alignment. 1287 Abbv->Add(BitCodeAbbrevOp(0)); 1288 else { 1289 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1291 Log2_32_Ceil(MaxEncAlignment+1))); 1292 } 1293 if (SectionMap.empty()) // Section. 1294 Abbv->Add(BitCodeAbbrevOp(0)); 1295 else 1296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1297 Log2_32_Ceil(SectionMap.size()+1))); 1298 // Don't bother emitting vis + thread local. 1299 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1300 } 1301 1302 SmallVector<unsigned, 64> Vals; 1303 // Emit the module's source file name. 1304 { 1305 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1306 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1307 if (Bits == SE_Char6) 1308 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1309 else if (Bits == SE_Fixed7) 1310 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1311 1312 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1313 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1314 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1316 Abbv->Add(AbbrevOpToUse); 1317 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1318 1319 for (const auto P : M.getSourceFileName()) 1320 Vals.push_back((unsigned char)P); 1321 1322 // Emit the finished record. 1323 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1324 Vals.clear(); 1325 } 1326 1327 // Emit the global variable information. 1328 for (const GlobalVariable &GV : M.globals()) { 1329 unsigned AbbrevToUse = 0; 1330 1331 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1332 // linkage, alignment, section, visibility, threadlocal, 1333 // unnamed_addr, externally_initialized, dllstorageclass, 1334 // comdat, attributes, DSO_Local] 1335 Vals.push_back(addToStrtab(GV.getName())); 1336 Vals.push_back(GV.getName().size()); 1337 Vals.push_back(VE.getTypeID(GV.getValueType())); 1338 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1339 Vals.push_back(GV.isDeclaration() ? 0 : 1340 (VE.getValueID(GV.getInitializer()) + 1)); 1341 Vals.push_back(getEncodedLinkage(GV)); 1342 Vals.push_back(getEncodedAlign(GV.getAlign())); 1343 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1344 : 0); 1345 if (GV.isThreadLocal() || 1346 GV.getVisibility() != GlobalValue::DefaultVisibility || 1347 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1348 GV.isExternallyInitialized() || 1349 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1350 GV.hasComdat() || 1351 GV.hasAttributes() || 1352 GV.isDSOLocal() || 1353 GV.hasPartition()) { 1354 Vals.push_back(getEncodedVisibility(GV)); 1355 Vals.push_back(getEncodedThreadLocalMode(GV)); 1356 Vals.push_back(getEncodedUnnamedAddr(GV)); 1357 Vals.push_back(GV.isExternallyInitialized()); 1358 Vals.push_back(getEncodedDLLStorageClass(GV)); 1359 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1360 1361 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1362 Vals.push_back(VE.getAttributeListID(AL)); 1363 1364 Vals.push_back(GV.isDSOLocal()); 1365 Vals.push_back(addToStrtab(GV.getPartition())); 1366 Vals.push_back(GV.getPartition().size()); 1367 } else { 1368 AbbrevToUse = SimpleGVarAbbrev; 1369 } 1370 1371 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1372 Vals.clear(); 1373 } 1374 1375 // Emit the function proto information. 1376 for (const Function &F : M) { 1377 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1378 // linkage, paramattrs, alignment, section, visibility, gc, 1379 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1380 // prefixdata, personalityfn, DSO_Local, addrspace] 1381 Vals.push_back(addToStrtab(F.getName())); 1382 Vals.push_back(F.getName().size()); 1383 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1384 Vals.push_back(F.getCallingConv()); 1385 Vals.push_back(F.isDeclaration()); 1386 Vals.push_back(getEncodedLinkage(F)); 1387 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1388 Vals.push_back(getEncodedAlign(F.getAlign())); 1389 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1390 : 0); 1391 Vals.push_back(getEncodedVisibility(F)); 1392 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1393 Vals.push_back(getEncodedUnnamedAddr(F)); 1394 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1395 : 0); 1396 Vals.push_back(getEncodedDLLStorageClass(F)); 1397 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1398 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1399 : 0); 1400 Vals.push_back( 1401 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1402 1403 Vals.push_back(F.isDSOLocal()); 1404 Vals.push_back(F.getAddressSpace()); 1405 Vals.push_back(addToStrtab(F.getPartition())); 1406 Vals.push_back(F.getPartition().size()); 1407 1408 unsigned AbbrevToUse = 0; 1409 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1410 Vals.clear(); 1411 } 1412 1413 // Emit the alias information. 1414 for (const GlobalAlias &A : M.aliases()) { 1415 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1416 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1417 // DSO_Local] 1418 Vals.push_back(addToStrtab(A.getName())); 1419 Vals.push_back(A.getName().size()); 1420 Vals.push_back(VE.getTypeID(A.getValueType())); 1421 Vals.push_back(A.getType()->getAddressSpace()); 1422 Vals.push_back(VE.getValueID(A.getAliasee())); 1423 Vals.push_back(getEncodedLinkage(A)); 1424 Vals.push_back(getEncodedVisibility(A)); 1425 Vals.push_back(getEncodedDLLStorageClass(A)); 1426 Vals.push_back(getEncodedThreadLocalMode(A)); 1427 Vals.push_back(getEncodedUnnamedAddr(A)); 1428 Vals.push_back(A.isDSOLocal()); 1429 Vals.push_back(addToStrtab(A.getPartition())); 1430 Vals.push_back(A.getPartition().size()); 1431 1432 unsigned AbbrevToUse = 0; 1433 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1434 Vals.clear(); 1435 } 1436 1437 // Emit the ifunc information. 1438 for (const GlobalIFunc &I : M.ifuncs()) { 1439 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1440 // val#, linkage, visibility, DSO_Local] 1441 Vals.push_back(addToStrtab(I.getName())); 1442 Vals.push_back(I.getName().size()); 1443 Vals.push_back(VE.getTypeID(I.getValueType())); 1444 Vals.push_back(I.getType()->getAddressSpace()); 1445 Vals.push_back(VE.getValueID(I.getResolver())); 1446 Vals.push_back(getEncodedLinkage(I)); 1447 Vals.push_back(getEncodedVisibility(I)); 1448 Vals.push_back(I.isDSOLocal()); 1449 Vals.push_back(addToStrtab(I.getPartition())); 1450 Vals.push_back(I.getPartition().size()); 1451 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1452 Vals.clear(); 1453 } 1454 1455 writeValueSymbolTableForwardDecl(); 1456 } 1457 1458 static uint64_t getOptimizationFlags(const Value *V) { 1459 uint64_t Flags = 0; 1460 1461 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1462 if (OBO->hasNoSignedWrap()) 1463 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1464 if (OBO->hasNoUnsignedWrap()) 1465 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1466 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1467 if (PEO->isExact()) 1468 Flags |= 1 << bitc::PEO_EXACT; 1469 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1470 if (FPMO->hasAllowReassoc()) 1471 Flags |= bitc::AllowReassoc; 1472 if (FPMO->hasNoNaNs()) 1473 Flags |= bitc::NoNaNs; 1474 if (FPMO->hasNoInfs()) 1475 Flags |= bitc::NoInfs; 1476 if (FPMO->hasNoSignedZeros()) 1477 Flags |= bitc::NoSignedZeros; 1478 if (FPMO->hasAllowReciprocal()) 1479 Flags |= bitc::AllowReciprocal; 1480 if (FPMO->hasAllowContract()) 1481 Flags |= bitc::AllowContract; 1482 if (FPMO->hasApproxFunc()) 1483 Flags |= bitc::ApproxFunc; 1484 } 1485 1486 return Flags; 1487 } 1488 1489 void ModuleBitcodeWriter::writeValueAsMetadata( 1490 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1491 // Mimic an MDNode with a value as one operand. 1492 Value *V = MD->getValue(); 1493 Record.push_back(VE.getTypeID(V->getType())); 1494 Record.push_back(VE.getValueID(V)); 1495 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1496 Record.clear(); 1497 } 1498 1499 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1500 SmallVectorImpl<uint64_t> &Record, 1501 unsigned Abbrev) { 1502 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1503 Metadata *MD = N->getOperand(i); 1504 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1505 "Unexpected function-local metadata"); 1506 Record.push_back(VE.getMetadataOrNullID(MD)); 1507 } 1508 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1509 : bitc::METADATA_NODE, 1510 Record, Abbrev); 1511 Record.clear(); 1512 } 1513 1514 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1515 // Assume the column is usually under 128, and always output the inlined-at 1516 // location (it's never more expensive than building an array size 1). 1517 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1518 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1525 return Stream.EmitAbbrev(std::move(Abbv)); 1526 } 1527 1528 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1529 SmallVectorImpl<uint64_t> &Record, 1530 unsigned &Abbrev) { 1531 if (!Abbrev) 1532 Abbrev = createDILocationAbbrev(); 1533 1534 Record.push_back(N->isDistinct()); 1535 Record.push_back(N->getLine()); 1536 Record.push_back(N->getColumn()); 1537 Record.push_back(VE.getMetadataID(N->getScope())); 1538 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1539 Record.push_back(N->isImplicitCode()); 1540 1541 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1542 Record.clear(); 1543 } 1544 1545 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1546 // Assume the column is usually under 128, and always output the inlined-at 1547 // location (it's never more expensive than building an array size 1). 1548 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1549 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1556 return Stream.EmitAbbrev(std::move(Abbv)); 1557 } 1558 1559 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1560 SmallVectorImpl<uint64_t> &Record, 1561 unsigned &Abbrev) { 1562 if (!Abbrev) 1563 Abbrev = createGenericDINodeAbbrev(); 1564 1565 Record.push_back(N->isDistinct()); 1566 Record.push_back(N->getTag()); 1567 Record.push_back(0); // Per-tag version field; unused for now. 1568 1569 for (auto &I : N->operands()) 1570 Record.push_back(VE.getMetadataOrNullID(I)); 1571 1572 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1573 Record.clear(); 1574 } 1575 1576 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1577 SmallVectorImpl<uint64_t> &Record, 1578 unsigned Abbrev) { 1579 const uint64_t Version = 2 << 1; 1580 Record.push_back((uint64_t)N->isDistinct() | Version); 1581 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1582 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1583 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1585 1586 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1587 Record.clear(); 1588 } 1589 1590 void ModuleBitcodeWriter::writeDIGenericSubrange( 1591 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1592 unsigned Abbrev) { 1593 Record.push_back((uint64_t)N->isDistinct()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1598 1599 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1600 Record.clear(); 1601 } 1602 1603 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1604 if ((int64_t)V >= 0) 1605 Vals.push_back(V << 1); 1606 else 1607 Vals.push_back((-V << 1) | 1); 1608 } 1609 1610 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1611 // We have an arbitrary precision integer value to write whose 1612 // bit width is > 64. However, in canonical unsigned integer 1613 // format it is likely that the high bits are going to be zero. 1614 // So, we only write the number of active words. 1615 unsigned NumWords = A.getActiveWords(); 1616 const uint64_t *RawData = A.getRawData(); 1617 for (unsigned i = 0; i < NumWords; i++) 1618 emitSignedInt64(Vals, RawData[i]); 1619 } 1620 1621 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1622 SmallVectorImpl<uint64_t> &Record, 1623 unsigned Abbrev) { 1624 const uint64_t IsBigInt = 1 << 2; 1625 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1626 Record.push_back(N->getValue().getBitWidth()); 1627 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1628 emitWideAPInt(Record, N->getValue()); 1629 1630 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1631 Record.clear(); 1632 } 1633 1634 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1635 SmallVectorImpl<uint64_t> &Record, 1636 unsigned Abbrev) { 1637 Record.push_back(N->isDistinct()); 1638 Record.push_back(N->getTag()); 1639 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1640 Record.push_back(N->getSizeInBits()); 1641 Record.push_back(N->getAlignInBits()); 1642 Record.push_back(N->getEncoding()); 1643 Record.push_back(N->getFlags()); 1644 1645 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1646 Record.clear(); 1647 } 1648 1649 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1650 SmallVectorImpl<uint64_t> &Record, 1651 unsigned Abbrev) { 1652 Record.push_back(N->isDistinct()); 1653 Record.push_back(N->getTag()); 1654 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1655 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1656 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1657 Record.push_back(N->getSizeInBits()); 1658 Record.push_back(N->getAlignInBits()); 1659 Record.push_back(N->getEncoding()); 1660 1661 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1662 Record.clear(); 1663 } 1664 1665 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1666 SmallVectorImpl<uint64_t> &Record, 1667 unsigned Abbrev) { 1668 Record.push_back(N->isDistinct()); 1669 Record.push_back(N->getTag()); 1670 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1671 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1672 Record.push_back(N->getLine()); 1673 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1674 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1675 Record.push_back(N->getSizeInBits()); 1676 Record.push_back(N->getAlignInBits()); 1677 Record.push_back(N->getOffsetInBits()); 1678 Record.push_back(N->getFlags()); 1679 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1680 1681 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1682 // that there is no DWARF address space associated with DIDerivedType. 1683 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1684 Record.push_back(*DWARFAddressSpace + 1); 1685 else 1686 Record.push_back(0); 1687 1688 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1689 Record.clear(); 1690 } 1691 1692 void ModuleBitcodeWriter::writeDICompositeType( 1693 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1694 unsigned Abbrev) { 1695 const unsigned IsNotUsedInOldTypeRef = 0x2; 1696 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1697 Record.push_back(N->getTag()); 1698 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1699 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1700 Record.push_back(N->getLine()); 1701 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1702 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1703 Record.push_back(N->getSizeInBits()); 1704 Record.push_back(N->getAlignInBits()); 1705 Record.push_back(N->getOffsetInBits()); 1706 Record.push_back(N->getFlags()); 1707 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1708 Record.push_back(N->getRuntimeLang()); 1709 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1714 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1715 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1717 1718 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1719 Record.clear(); 1720 } 1721 1722 void ModuleBitcodeWriter::writeDISubroutineType( 1723 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1724 unsigned Abbrev) { 1725 const unsigned HasNoOldTypeRefs = 0x2; 1726 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1727 Record.push_back(N->getFlags()); 1728 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1729 Record.push_back(N->getCC()); 1730 1731 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1732 Record.clear(); 1733 } 1734 1735 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1736 SmallVectorImpl<uint64_t> &Record, 1737 unsigned Abbrev) { 1738 Record.push_back(N->isDistinct()); 1739 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1740 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1741 if (N->getRawChecksum()) { 1742 Record.push_back(N->getRawChecksum()->Kind); 1743 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1744 } else { 1745 // Maintain backwards compatibility with the old internal representation of 1746 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1747 Record.push_back(0); 1748 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1749 } 1750 auto Source = N->getRawSource(); 1751 if (Source) 1752 Record.push_back(VE.getMetadataOrNullID(*Source)); 1753 1754 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1755 Record.clear(); 1756 } 1757 1758 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1759 SmallVectorImpl<uint64_t> &Record, 1760 unsigned Abbrev) { 1761 assert(N->isDistinct() && "Expected distinct compile units"); 1762 Record.push_back(/* IsDistinct */ true); 1763 Record.push_back(N->getSourceLanguage()); 1764 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1765 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1766 Record.push_back(N->isOptimized()); 1767 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1768 Record.push_back(N->getRuntimeVersion()); 1769 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1770 Record.push_back(N->getEmissionKind()); 1771 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1772 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1773 Record.push_back(/* subprograms */ 0); 1774 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1775 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1776 Record.push_back(N->getDWOId()); 1777 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1778 Record.push_back(N->getSplitDebugInlining()); 1779 Record.push_back(N->getDebugInfoForProfiling()); 1780 Record.push_back((unsigned)N->getNameTableKind()); 1781 Record.push_back(N->getRangesBaseAddress()); 1782 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1783 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1784 1785 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1786 Record.clear(); 1787 } 1788 1789 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1790 SmallVectorImpl<uint64_t> &Record, 1791 unsigned Abbrev) { 1792 const uint64_t HasUnitFlag = 1 << 1; 1793 const uint64_t HasSPFlagsFlag = 1 << 2; 1794 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1795 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1796 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1797 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1799 Record.push_back(N->getLine()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1801 Record.push_back(N->getScopeLine()); 1802 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1803 Record.push_back(N->getSPFlags()); 1804 Record.push_back(N->getVirtualIndex()); 1805 Record.push_back(N->getFlags()); 1806 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1807 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1808 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1809 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1810 Record.push_back(N->getThisAdjustment()); 1811 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1812 1813 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1814 Record.clear(); 1815 } 1816 1817 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1818 SmallVectorImpl<uint64_t> &Record, 1819 unsigned Abbrev) { 1820 Record.push_back(N->isDistinct()); 1821 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1822 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1823 Record.push_back(N->getLine()); 1824 Record.push_back(N->getColumn()); 1825 1826 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1827 Record.clear(); 1828 } 1829 1830 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1831 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1832 unsigned Abbrev) { 1833 Record.push_back(N->isDistinct()); 1834 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1835 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1836 Record.push_back(N->getDiscriminator()); 1837 1838 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1839 Record.clear(); 1840 } 1841 1842 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1843 SmallVectorImpl<uint64_t> &Record, 1844 unsigned Abbrev) { 1845 Record.push_back(N->isDistinct()); 1846 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1847 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1848 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1849 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1850 Record.push_back(N->getLineNo()); 1851 1852 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1853 Record.clear(); 1854 } 1855 1856 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1857 SmallVectorImpl<uint64_t> &Record, 1858 unsigned Abbrev) { 1859 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1860 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1861 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1862 1863 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1864 Record.clear(); 1865 } 1866 1867 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1868 SmallVectorImpl<uint64_t> &Record, 1869 unsigned Abbrev) { 1870 Record.push_back(N->isDistinct()); 1871 Record.push_back(N->getMacinfoType()); 1872 Record.push_back(N->getLine()); 1873 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1874 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1875 1876 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1877 Record.clear(); 1878 } 1879 1880 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1881 SmallVectorImpl<uint64_t> &Record, 1882 unsigned Abbrev) { 1883 Record.push_back(N->isDistinct()); 1884 Record.push_back(N->getMacinfoType()); 1885 Record.push_back(N->getLine()); 1886 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1887 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1888 1889 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1890 Record.clear(); 1891 } 1892 1893 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1894 SmallVectorImpl<uint64_t> &Record, 1895 unsigned Abbrev) { 1896 Record.reserve(N->getArgs().size()); 1897 for (ValueAsMetadata *MD : N->getArgs()) 1898 Record.push_back(VE.getMetadataID(MD)); 1899 1900 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1901 Record.clear(); 1902 } 1903 1904 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1905 SmallVectorImpl<uint64_t> &Record, 1906 unsigned Abbrev) { 1907 Record.push_back(N->isDistinct()); 1908 for (auto &I : N->operands()) 1909 Record.push_back(VE.getMetadataOrNullID(I)); 1910 Record.push_back(N->getLineNo()); 1911 Record.push_back(N->getIsDecl()); 1912 1913 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1914 Record.clear(); 1915 } 1916 1917 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1918 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1919 unsigned Abbrev) { 1920 Record.push_back(N->isDistinct()); 1921 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1922 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1923 Record.push_back(N->isDefault()); 1924 1925 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1926 Record.clear(); 1927 } 1928 1929 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1930 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1931 unsigned Abbrev) { 1932 Record.push_back(N->isDistinct()); 1933 Record.push_back(N->getTag()); 1934 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1935 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1936 Record.push_back(N->isDefault()); 1937 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1938 1939 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1940 Record.clear(); 1941 } 1942 1943 void ModuleBitcodeWriter::writeDIGlobalVariable( 1944 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1945 unsigned Abbrev) { 1946 const uint64_t Version = 2 << 1; 1947 Record.push_back((uint64_t)N->isDistinct() | Version); 1948 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1949 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1950 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1951 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1952 Record.push_back(N->getLine()); 1953 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1954 Record.push_back(N->isLocalToUnit()); 1955 Record.push_back(N->isDefinition()); 1956 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1957 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1958 Record.push_back(N->getAlignInBits()); 1959 1960 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1961 Record.clear(); 1962 } 1963 1964 void ModuleBitcodeWriter::writeDILocalVariable( 1965 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1966 unsigned Abbrev) { 1967 // In order to support all possible bitcode formats in BitcodeReader we need 1968 // to distinguish the following cases: 1969 // 1) Record has no artificial tag (Record[1]), 1970 // has no obsolete inlinedAt field (Record[9]). 1971 // In this case Record size will be 8, HasAlignment flag is false. 1972 // 2) Record has artificial tag (Record[1]), 1973 // has no obsolete inlignedAt field (Record[9]). 1974 // In this case Record size will be 9, HasAlignment flag is false. 1975 // 3) Record has both artificial tag (Record[1]) and 1976 // obsolete inlignedAt field (Record[9]). 1977 // In this case Record size will be 10, HasAlignment flag is false. 1978 // 4) Record has neither artificial tag, nor inlignedAt field, but 1979 // HasAlignment flag is true and Record[8] contains alignment value. 1980 const uint64_t HasAlignmentFlag = 1 << 1; 1981 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1982 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1983 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1984 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1985 Record.push_back(N->getLine()); 1986 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1987 Record.push_back(N->getArg()); 1988 Record.push_back(N->getFlags()); 1989 Record.push_back(N->getAlignInBits()); 1990 1991 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1992 Record.clear(); 1993 } 1994 1995 void ModuleBitcodeWriter::writeDILabel( 1996 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1997 unsigned Abbrev) { 1998 Record.push_back((uint64_t)N->isDistinct()); 1999 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2000 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2001 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2002 Record.push_back(N->getLine()); 2003 2004 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2005 Record.clear(); 2006 } 2007 2008 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2009 SmallVectorImpl<uint64_t> &Record, 2010 unsigned Abbrev) { 2011 Record.reserve(N->getElements().size() + 1); 2012 const uint64_t Version = 3 << 1; 2013 Record.push_back((uint64_t)N->isDistinct() | Version); 2014 Record.append(N->elements_begin(), N->elements_end()); 2015 2016 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2017 Record.clear(); 2018 } 2019 2020 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2021 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2022 unsigned Abbrev) { 2023 Record.push_back(N->isDistinct()); 2024 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2025 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2026 2027 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2028 Record.clear(); 2029 } 2030 2031 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2032 SmallVectorImpl<uint64_t> &Record, 2033 unsigned Abbrev) { 2034 Record.push_back(N->isDistinct()); 2035 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2036 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2037 Record.push_back(N->getLine()); 2038 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2039 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2040 Record.push_back(N->getAttributes()); 2041 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2042 2043 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2044 Record.clear(); 2045 } 2046 2047 void ModuleBitcodeWriter::writeDIImportedEntity( 2048 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2049 unsigned Abbrev) { 2050 Record.push_back(N->isDistinct()); 2051 Record.push_back(N->getTag()); 2052 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2053 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2054 Record.push_back(N->getLine()); 2055 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2056 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2057 2058 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2059 Record.clear(); 2060 } 2061 2062 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2063 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2064 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2067 return Stream.EmitAbbrev(std::move(Abbv)); 2068 } 2069 2070 void ModuleBitcodeWriter::writeNamedMetadata( 2071 SmallVectorImpl<uint64_t> &Record) { 2072 if (M.named_metadata_empty()) 2073 return; 2074 2075 unsigned Abbrev = createNamedMetadataAbbrev(); 2076 for (const NamedMDNode &NMD : M.named_metadata()) { 2077 // Write name. 2078 StringRef Str = NMD.getName(); 2079 Record.append(Str.bytes_begin(), Str.bytes_end()); 2080 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2081 Record.clear(); 2082 2083 // Write named metadata operands. 2084 for (const MDNode *N : NMD.operands()) 2085 Record.push_back(VE.getMetadataID(N)); 2086 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2087 Record.clear(); 2088 } 2089 } 2090 2091 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2092 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2093 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2097 return Stream.EmitAbbrev(std::move(Abbv)); 2098 } 2099 2100 /// Write out a record for MDString. 2101 /// 2102 /// All the metadata strings in a metadata block are emitted in a single 2103 /// record. The sizes and strings themselves are shoved into a blob. 2104 void ModuleBitcodeWriter::writeMetadataStrings( 2105 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2106 if (Strings.empty()) 2107 return; 2108 2109 // Start the record with the number of strings. 2110 Record.push_back(bitc::METADATA_STRINGS); 2111 Record.push_back(Strings.size()); 2112 2113 // Emit the sizes of the strings in the blob. 2114 SmallString<256> Blob; 2115 { 2116 BitstreamWriter W(Blob); 2117 for (const Metadata *MD : Strings) 2118 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2119 W.FlushToWord(); 2120 } 2121 2122 // Add the offset to the strings to the record. 2123 Record.push_back(Blob.size()); 2124 2125 // Add the strings to the blob. 2126 for (const Metadata *MD : Strings) 2127 Blob.append(cast<MDString>(MD)->getString()); 2128 2129 // Emit the final record. 2130 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2131 Record.clear(); 2132 } 2133 2134 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2135 enum MetadataAbbrev : unsigned { 2136 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2137 #include "llvm/IR/Metadata.def" 2138 LastPlusOne 2139 }; 2140 2141 void ModuleBitcodeWriter::writeMetadataRecords( 2142 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2143 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2144 if (MDs.empty()) 2145 return; 2146 2147 // Initialize MDNode abbreviations. 2148 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2149 #include "llvm/IR/Metadata.def" 2150 2151 for (const Metadata *MD : MDs) { 2152 if (IndexPos) 2153 IndexPos->push_back(Stream.GetCurrentBitNo()); 2154 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2155 assert(N->isResolved() && "Expected forward references to be resolved"); 2156 2157 switch (N->getMetadataID()) { 2158 default: 2159 llvm_unreachable("Invalid MDNode subclass"); 2160 #define HANDLE_MDNODE_LEAF(CLASS) \ 2161 case Metadata::CLASS##Kind: \ 2162 if (MDAbbrevs) \ 2163 write##CLASS(cast<CLASS>(N), Record, \ 2164 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2165 else \ 2166 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2167 continue; 2168 #include "llvm/IR/Metadata.def" 2169 } 2170 } 2171 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2172 } 2173 } 2174 2175 void ModuleBitcodeWriter::writeModuleMetadata() { 2176 if (!VE.hasMDs() && M.named_metadata_empty()) 2177 return; 2178 2179 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2180 SmallVector<uint64_t, 64> Record; 2181 2182 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2183 // block and load any metadata. 2184 std::vector<unsigned> MDAbbrevs; 2185 2186 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2187 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2188 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2189 createGenericDINodeAbbrev(); 2190 2191 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2192 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2195 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2196 2197 Abbv = std::make_shared<BitCodeAbbrev>(); 2198 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2201 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2202 2203 // Emit MDStrings together upfront. 2204 writeMetadataStrings(VE.getMDStrings(), Record); 2205 2206 // We only emit an index for the metadata record if we have more than a given 2207 // (naive) threshold of metadatas, otherwise it is not worth it. 2208 if (VE.getNonMDStrings().size() > IndexThreshold) { 2209 // Write a placeholder value in for the offset of the metadata index, 2210 // which is written after the records, so that it can include 2211 // the offset of each entry. The placeholder offset will be 2212 // updated after all records are emitted. 2213 uint64_t Vals[] = {0, 0}; 2214 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2215 } 2216 2217 // Compute and save the bit offset to the current position, which will be 2218 // patched when we emit the index later. We can simply subtract the 64-bit 2219 // fixed size from the current bit number to get the location to backpatch. 2220 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2221 2222 // This index will contain the bitpos for each individual record. 2223 std::vector<uint64_t> IndexPos; 2224 IndexPos.reserve(VE.getNonMDStrings().size()); 2225 2226 // Write all the records 2227 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2228 2229 if (VE.getNonMDStrings().size() > IndexThreshold) { 2230 // Now that we have emitted all the records we will emit the index. But 2231 // first 2232 // backpatch the forward reference so that the reader can skip the records 2233 // efficiently. 2234 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2235 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2236 2237 // Delta encode the index. 2238 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2239 for (auto &Elt : IndexPos) { 2240 auto EltDelta = Elt - PreviousValue; 2241 PreviousValue = Elt; 2242 Elt = EltDelta; 2243 } 2244 // Emit the index record. 2245 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2246 IndexPos.clear(); 2247 } 2248 2249 // Write the named metadata now. 2250 writeNamedMetadata(Record); 2251 2252 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2253 SmallVector<uint64_t, 4> Record; 2254 Record.push_back(VE.getValueID(&GO)); 2255 pushGlobalMetadataAttachment(Record, GO); 2256 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2257 }; 2258 for (const Function &F : M) 2259 if (F.isDeclaration() && F.hasMetadata()) 2260 AddDeclAttachedMetadata(F); 2261 // FIXME: Only store metadata for declarations here, and move data for global 2262 // variable definitions to a separate block (PR28134). 2263 for (const GlobalVariable &GV : M.globals()) 2264 if (GV.hasMetadata()) 2265 AddDeclAttachedMetadata(GV); 2266 2267 Stream.ExitBlock(); 2268 } 2269 2270 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2271 if (!VE.hasMDs()) 2272 return; 2273 2274 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2275 SmallVector<uint64_t, 64> Record; 2276 writeMetadataStrings(VE.getMDStrings(), Record); 2277 writeMetadataRecords(VE.getNonMDStrings(), Record); 2278 Stream.ExitBlock(); 2279 } 2280 2281 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2282 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2283 // [n x [id, mdnode]] 2284 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2285 GO.getAllMetadata(MDs); 2286 for (const auto &I : MDs) { 2287 Record.push_back(I.first); 2288 Record.push_back(VE.getMetadataID(I.second)); 2289 } 2290 } 2291 2292 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2293 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2294 2295 SmallVector<uint64_t, 64> Record; 2296 2297 if (F.hasMetadata()) { 2298 pushGlobalMetadataAttachment(Record, F); 2299 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2300 Record.clear(); 2301 } 2302 2303 // Write metadata attachments 2304 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2305 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2306 for (const BasicBlock &BB : F) 2307 for (const Instruction &I : BB) { 2308 MDs.clear(); 2309 I.getAllMetadataOtherThanDebugLoc(MDs); 2310 2311 // If no metadata, ignore instruction. 2312 if (MDs.empty()) continue; 2313 2314 Record.push_back(VE.getInstructionID(&I)); 2315 2316 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2317 Record.push_back(MDs[i].first); 2318 Record.push_back(VE.getMetadataID(MDs[i].second)); 2319 } 2320 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2321 Record.clear(); 2322 } 2323 2324 Stream.ExitBlock(); 2325 } 2326 2327 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2328 SmallVector<uint64_t, 64> Record; 2329 2330 // Write metadata kinds 2331 // METADATA_KIND - [n x [id, name]] 2332 SmallVector<StringRef, 8> Names; 2333 M.getMDKindNames(Names); 2334 2335 if (Names.empty()) return; 2336 2337 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2338 2339 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2340 Record.push_back(MDKindID); 2341 StringRef KName = Names[MDKindID]; 2342 Record.append(KName.begin(), KName.end()); 2343 2344 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2345 Record.clear(); 2346 } 2347 2348 Stream.ExitBlock(); 2349 } 2350 2351 void ModuleBitcodeWriter::writeOperandBundleTags() { 2352 // Write metadata kinds 2353 // 2354 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2355 // 2356 // OPERAND_BUNDLE_TAG - [strchr x N] 2357 2358 SmallVector<StringRef, 8> Tags; 2359 M.getOperandBundleTags(Tags); 2360 2361 if (Tags.empty()) 2362 return; 2363 2364 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2365 2366 SmallVector<uint64_t, 64> Record; 2367 2368 for (auto Tag : Tags) { 2369 Record.append(Tag.begin(), Tag.end()); 2370 2371 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2372 Record.clear(); 2373 } 2374 2375 Stream.ExitBlock(); 2376 } 2377 2378 void ModuleBitcodeWriter::writeSyncScopeNames() { 2379 SmallVector<StringRef, 8> SSNs; 2380 M.getContext().getSyncScopeNames(SSNs); 2381 if (SSNs.empty()) 2382 return; 2383 2384 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2385 2386 SmallVector<uint64_t, 64> Record; 2387 for (auto SSN : SSNs) { 2388 Record.append(SSN.begin(), SSN.end()); 2389 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2390 Record.clear(); 2391 } 2392 2393 Stream.ExitBlock(); 2394 } 2395 2396 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2397 bool isGlobal) { 2398 if (FirstVal == LastVal) return; 2399 2400 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2401 2402 unsigned AggregateAbbrev = 0; 2403 unsigned String8Abbrev = 0; 2404 unsigned CString7Abbrev = 0; 2405 unsigned CString6Abbrev = 0; 2406 // If this is a constant pool for the module, emit module-specific abbrevs. 2407 if (isGlobal) { 2408 // Abbrev for CST_CODE_AGGREGATE. 2409 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2410 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2413 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2414 2415 // Abbrev for CST_CODE_STRING. 2416 Abbv = std::make_shared<BitCodeAbbrev>(); 2417 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2420 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2421 // Abbrev for CST_CODE_CSTRING. 2422 Abbv = std::make_shared<BitCodeAbbrev>(); 2423 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2426 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2427 // Abbrev for CST_CODE_CSTRING. 2428 Abbv = std::make_shared<BitCodeAbbrev>(); 2429 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2432 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2433 } 2434 2435 SmallVector<uint64_t, 64> Record; 2436 2437 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2438 Type *LastTy = nullptr; 2439 for (unsigned i = FirstVal; i != LastVal; ++i) { 2440 const Value *V = Vals[i].first; 2441 // If we need to switch types, do so now. 2442 if (V->getType() != LastTy) { 2443 LastTy = V->getType(); 2444 Record.push_back(VE.getTypeID(LastTy)); 2445 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2446 CONSTANTS_SETTYPE_ABBREV); 2447 Record.clear(); 2448 } 2449 2450 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2451 Record.push_back( 2452 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2453 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2454 2455 // Add the asm string. 2456 const std::string &AsmStr = IA->getAsmString(); 2457 Record.push_back(AsmStr.size()); 2458 Record.append(AsmStr.begin(), AsmStr.end()); 2459 2460 // Add the constraint string. 2461 const std::string &ConstraintStr = IA->getConstraintString(); 2462 Record.push_back(ConstraintStr.size()); 2463 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2464 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2465 Record.clear(); 2466 continue; 2467 } 2468 const Constant *C = cast<Constant>(V); 2469 unsigned Code = -1U; 2470 unsigned AbbrevToUse = 0; 2471 if (C->isNullValue()) { 2472 Code = bitc::CST_CODE_NULL; 2473 } else if (isa<PoisonValue>(C)) { 2474 Code = bitc::CST_CODE_POISON; 2475 } else if (isa<UndefValue>(C)) { 2476 Code = bitc::CST_CODE_UNDEF; 2477 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2478 if (IV->getBitWidth() <= 64) { 2479 uint64_t V = IV->getSExtValue(); 2480 emitSignedInt64(Record, V); 2481 Code = bitc::CST_CODE_INTEGER; 2482 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2483 } else { // Wide integers, > 64 bits in size. 2484 emitWideAPInt(Record, IV->getValue()); 2485 Code = bitc::CST_CODE_WIDE_INTEGER; 2486 } 2487 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2488 Code = bitc::CST_CODE_FLOAT; 2489 Type *Ty = CFP->getType(); 2490 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2491 Ty->isDoubleTy()) { 2492 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2493 } else if (Ty->isX86_FP80Ty()) { 2494 // api needed to prevent premature destruction 2495 // bits are not in the same order as a normal i80 APInt, compensate. 2496 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2497 const uint64_t *p = api.getRawData(); 2498 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2499 Record.push_back(p[0] & 0xffffLL); 2500 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2501 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2502 const uint64_t *p = api.getRawData(); 2503 Record.push_back(p[0]); 2504 Record.push_back(p[1]); 2505 } else { 2506 assert(0 && "Unknown FP type!"); 2507 } 2508 } else if (isa<ConstantDataSequential>(C) && 2509 cast<ConstantDataSequential>(C)->isString()) { 2510 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2511 // Emit constant strings specially. 2512 unsigned NumElts = Str->getNumElements(); 2513 // If this is a null-terminated string, use the denser CSTRING encoding. 2514 if (Str->isCString()) { 2515 Code = bitc::CST_CODE_CSTRING; 2516 --NumElts; // Don't encode the null, which isn't allowed by char6. 2517 } else { 2518 Code = bitc::CST_CODE_STRING; 2519 AbbrevToUse = String8Abbrev; 2520 } 2521 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2522 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2523 for (unsigned i = 0; i != NumElts; ++i) { 2524 unsigned char V = Str->getElementAsInteger(i); 2525 Record.push_back(V); 2526 isCStr7 &= (V & 128) == 0; 2527 if (isCStrChar6) 2528 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2529 } 2530 2531 if (isCStrChar6) 2532 AbbrevToUse = CString6Abbrev; 2533 else if (isCStr7) 2534 AbbrevToUse = CString7Abbrev; 2535 } else if (const ConstantDataSequential *CDS = 2536 dyn_cast<ConstantDataSequential>(C)) { 2537 Code = bitc::CST_CODE_DATA; 2538 Type *EltTy = CDS->getElementType(); 2539 if (isa<IntegerType>(EltTy)) { 2540 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2541 Record.push_back(CDS->getElementAsInteger(i)); 2542 } else { 2543 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2544 Record.push_back( 2545 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2546 } 2547 } else if (isa<ConstantAggregate>(C)) { 2548 Code = bitc::CST_CODE_AGGREGATE; 2549 for (const Value *Op : C->operands()) 2550 Record.push_back(VE.getValueID(Op)); 2551 AbbrevToUse = AggregateAbbrev; 2552 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2553 switch (CE->getOpcode()) { 2554 default: 2555 if (Instruction::isCast(CE->getOpcode())) { 2556 Code = bitc::CST_CODE_CE_CAST; 2557 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2558 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2559 Record.push_back(VE.getValueID(C->getOperand(0))); 2560 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2561 } else { 2562 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2563 Code = bitc::CST_CODE_CE_BINOP; 2564 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2565 Record.push_back(VE.getValueID(C->getOperand(0))); 2566 Record.push_back(VE.getValueID(C->getOperand(1))); 2567 uint64_t Flags = getOptimizationFlags(CE); 2568 if (Flags != 0) 2569 Record.push_back(Flags); 2570 } 2571 break; 2572 case Instruction::FNeg: { 2573 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2574 Code = bitc::CST_CODE_CE_UNOP; 2575 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2576 Record.push_back(VE.getValueID(C->getOperand(0))); 2577 uint64_t Flags = getOptimizationFlags(CE); 2578 if (Flags != 0) 2579 Record.push_back(Flags); 2580 break; 2581 } 2582 case Instruction::GetElementPtr: { 2583 Code = bitc::CST_CODE_CE_GEP; 2584 const auto *GO = cast<GEPOperator>(C); 2585 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2586 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2587 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2588 Record.push_back((*Idx << 1) | GO->isInBounds()); 2589 } else if (GO->isInBounds()) 2590 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2591 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2592 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2593 Record.push_back(VE.getValueID(C->getOperand(i))); 2594 } 2595 break; 2596 } 2597 case Instruction::Select: 2598 Code = bitc::CST_CODE_CE_SELECT; 2599 Record.push_back(VE.getValueID(C->getOperand(0))); 2600 Record.push_back(VE.getValueID(C->getOperand(1))); 2601 Record.push_back(VE.getValueID(C->getOperand(2))); 2602 break; 2603 case Instruction::ExtractElement: 2604 Code = bitc::CST_CODE_CE_EXTRACTELT; 2605 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2606 Record.push_back(VE.getValueID(C->getOperand(0))); 2607 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2608 Record.push_back(VE.getValueID(C->getOperand(1))); 2609 break; 2610 case Instruction::InsertElement: 2611 Code = bitc::CST_CODE_CE_INSERTELT; 2612 Record.push_back(VE.getValueID(C->getOperand(0))); 2613 Record.push_back(VE.getValueID(C->getOperand(1))); 2614 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2615 Record.push_back(VE.getValueID(C->getOperand(2))); 2616 break; 2617 case Instruction::ShuffleVector: 2618 // If the return type and argument types are the same, this is a 2619 // standard shufflevector instruction. If the types are different, 2620 // then the shuffle is widening or truncating the input vectors, and 2621 // the argument type must also be encoded. 2622 if (C->getType() == C->getOperand(0)->getType()) { 2623 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2624 } else { 2625 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2626 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2627 } 2628 Record.push_back(VE.getValueID(C->getOperand(0))); 2629 Record.push_back(VE.getValueID(C->getOperand(1))); 2630 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2631 break; 2632 case Instruction::ICmp: 2633 case Instruction::FCmp: 2634 Code = bitc::CST_CODE_CE_CMP; 2635 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2636 Record.push_back(VE.getValueID(C->getOperand(0))); 2637 Record.push_back(VE.getValueID(C->getOperand(1))); 2638 Record.push_back(CE->getPredicate()); 2639 break; 2640 } 2641 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2642 Code = bitc::CST_CODE_BLOCKADDRESS; 2643 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2644 Record.push_back(VE.getValueID(BA->getFunction())); 2645 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2646 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2647 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2648 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2649 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2650 } else { 2651 #ifndef NDEBUG 2652 C->dump(); 2653 #endif 2654 llvm_unreachable("Unknown constant!"); 2655 } 2656 Stream.EmitRecord(Code, Record, AbbrevToUse); 2657 Record.clear(); 2658 } 2659 2660 Stream.ExitBlock(); 2661 } 2662 2663 void ModuleBitcodeWriter::writeModuleConstants() { 2664 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2665 2666 // Find the first constant to emit, which is the first non-globalvalue value. 2667 // We know globalvalues have been emitted by WriteModuleInfo. 2668 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2669 if (!isa<GlobalValue>(Vals[i].first)) { 2670 writeConstants(i, Vals.size(), true); 2671 return; 2672 } 2673 } 2674 } 2675 2676 /// pushValueAndType - The file has to encode both the value and type id for 2677 /// many values, because we need to know what type to create for forward 2678 /// references. However, most operands are not forward references, so this type 2679 /// field is not needed. 2680 /// 2681 /// This function adds V's value ID to Vals. If the value ID is higher than the 2682 /// instruction ID, then it is a forward reference, and it also includes the 2683 /// type ID. The value ID that is written is encoded relative to the InstID. 2684 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2685 SmallVectorImpl<unsigned> &Vals) { 2686 unsigned ValID = VE.getValueID(V); 2687 // Make encoding relative to the InstID. 2688 Vals.push_back(InstID - ValID); 2689 if (ValID >= InstID) { 2690 Vals.push_back(VE.getTypeID(V->getType())); 2691 return true; 2692 } 2693 return false; 2694 } 2695 2696 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2697 unsigned InstID) { 2698 SmallVector<unsigned, 64> Record; 2699 LLVMContext &C = CS.getContext(); 2700 2701 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2702 const auto &Bundle = CS.getOperandBundleAt(i); 2703 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2704 2705 for (auto &Input : Bundle.Inputs) 2706 pushValueAndType(Input, InstID, Record); 2707 2708 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2709 Record.clear(); 2710 } 2711 } 2712 2713 /// pushValue - Like pushValueAndType, but where the type of the value is 2714 /// omitted (perhaps it was already encoded in an earlier operand). 2715 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2716 SmallVectorImpl<unsigned> &Vals) { 2717 unsigned ValID = VE.getValueID(V); 2718 Vals.push_back(InstID - ValID); 2719 } 2720 2721 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2722 SmallVectorImpl<uint64_t> &Vals) { 2723 unsigned ValID = VE.getValueID(V); 2724 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2725 emitSignedInt64(Vals, diff); 2726 } 2727 2728 /// WriteInstruction - Emit an instruction to the specified stream. 2729 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2730 unsigned InstID, 2731 SmallVectorImpl<unsigned> &Vals) { 2732 unsigned Code = 0; 2733 unsigned AbbrevToUse = 0; 2734 VE.setInstructionID(&I); 2735 switch (I.getOpcode()) { 2736 default: 2737 if (Instruction::isCast(I.getOpcode())) { 2738 Code = bitc::FUNC_CODE_INST_CAST; 2739 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2740 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2741 Vals.push_back(VE.getTypeID(I.getType())); 2742 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2743 } else { 2744 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2745 Code = bitc::FUNC_CODE_INST_BINOP; 2746 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2747 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2748 pushValue(I.getOperand(1), InstID, Vals); 2749 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2750 uint64_t Flags = getOptimizationFlags(&I); 2751 if (Flags != 0) { 2752 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2753 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2754 Vals.push_back(Flags); 2755 } 2756 } 2757 break; 2758 case Instruction::FNeg: { 2759 Code = bitc::FUNC_CODE_INST_UNOP; 2760 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2761 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2762 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2763 uint64_t Flags = getOptimizationFlags(&I); 2764 if (Flags != 0) { 2765 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2766 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2767 Vals.push_back(Flags); 2768 } 2769 break; 2770 } 2771 case Instruction::GetElementPtr: { 2772 Code = bitc::FUNC_CODE_INST_GEP; 2773 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2774 auto &GEPInst = cast<GetElementPtrInst>(I); 2775 Vals.push_back(GEPInst.isInBounds()); 2776 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2777 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2778 pushValueAndType(I.getOperand(i), InstID, Vals); 2779 break; 2780 } 2781 case Instruction::ExtractValue: { 2782 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2783 pushValueAndType(I.getOperand(0), InstID, Vals); 2784 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2785 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2786 break; 2787 } 2788 case Instruction::InsertValue: { 2789 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2790 pushValueAndType(I.getOperand(0), InstID, Vals); 2791 pushValueAndType(I.getOperand(1), InstID, Vals); 2792 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2793 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2794 break; 2795 } 2796 case Instruction::Select: { 2797 Code = bitc::FUNC_CODE_INST_VSELECT; 2798 pushValueAndType(I.getOperand(1), InstID, Vals); 2799 pushValue(I.getOperand(2), InstID, Vals); 2800 pushValueAndType(I.getOperand(0), InstID, Vals); 2801 uint64_t Flags = getOptimizationFlags(&I); 2802 if (Flags != 0) 2803 Vals.push_back(Flags); 2804 break; 2805 } 2806 case Instruction::ExtractElement: 2807 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2808 pushValueAndType(I.getOperand(0), InstID, Vals); 2809 pushValueAndType(I.getOperand(1), InstID, Vals); 2810 break; 2811 case Instruction::InsertElement: 2812 Code = bitc::FUNC_CODE_INST_INSERTELT; 2813 pushValueAndType(I.getOperand(0), InstID, Vals); 2814 pushValue(I.getOperand(1), InstID, Vals); 2815 pushValueAndType(I.getOperand(2), InstID, Vals); 2816 break; 2817 case Instruction::ShuffleVector: 2818 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2819 pushValueAndType(I.getOperand(0), InstID, Vals); 2820 pushValue(I.getOperand(1), InstID, Vals); 2821 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2822 Vals); 2823 break; 2824 case Instruction::ICmp: 2825 case Instruction::FCmp: { 2826 // compare returning Int1Ty or vector of Int1Ty 2827 Code = bitc::FUNC_CODE_INST_CMP2; 2828 pushValueAndType(I.getOperand(0), InstID, Vals); 2829 pushValue(I.getOperand(1), InstID, Vals); 2830 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2831 uint64_t Flags = getOptimizationFlags(&I); 2832 if (Flags != 0) 2833 Vals.push_back(Flags); 2834 break; 2835 } 2836 2837 case Instruction::Ret: 2838 { 2839 Code = bitc::FUNC_CODE_INST_RET; 2840 unsigned NumOperands = I.getNumOperands(); 2841 if (NumOperands == 0) 2842 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2843 else if (NumOperands == 1) { 2844 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2845 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2846 } else { 2847 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2848 pushValueAndType(I.getOperand(i), InstID, Vals); 2849 } 2850 } 2851 break; 2852 case Instruction::Br: 2853 { 2854 Code = bitc::FUNC_CODE_INST_BR; 2855 const BranchInst &II = cast<BranchInst>(I); 2856 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2857 if (II.isConditional()) { 2858 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2859 pushValue(II.getCondition(), InstID, Vals); 2860 } 2861 } 2862 break; 2863 case Instruction::Switch: 2864 { 2865 Code = bitc::FUNC_CODE_INST_SWITCH; 2866 const SwitchInst &SI = cast<SwitchInst>(I); 2867 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2868 pushValue(SI.getCondition(), InstID, Vals); 2869 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2870 for (auto Case : SI.cases()) { 2871 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2872 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2873 } 2874 } 2875 break; 2876 case Instruction::IndirectBr: 2877 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2878 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2879 // Encode the address operand as relative, but not the basic blocks. 2880 pushValue(I.getOperand(0), InstID, Vals); 2881 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2882 Vals.push_back(VE.getValueID(I.getOperand(i))); 2883 break; 2884 2885 case Instruction::Invoke: { 2886 const InvokeInst *II = cast<InvokeInst>(&I); 2887 const Value *Callee = II->getCalledOperand(); 2888 FunctionType *FTy = II->getFunctionType(); 2889 2890 if (II->hasOperandBundles()) 2891 writeOperandBundles(*II, InstID); 2892 2893 Code = bitc::FUNC_CODE_INST_INVOKE; 2894 2895 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2896 Vals.push_back(II->getCallingConv() | 1 << 13); 2897 Vals.push_back(VE.getValueID(II->getNormalDest())); 2898 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2899 Vals.push_back(VE.getTypeID(FTy)); 2900 pushValueAndType(Callee, InstID, Vals); 2901 2902 // Emit value #'s for the fixed parameters. 2903 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2904 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2905 2906 // Emit type/value pairs for varargs params. 2907 if (FTy->isVarArg()) { 2908 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2909 i != e; ++i) 2910 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2911 } 2912 break; 2913 } 2914 case Instruction::Resume: 2915 Code = bitc::FUNC_CODE_INST_RESUME; 2916 pushValueAndType(I.getOperand(0), InstID, Vals); 2917 break; 2918 case Instruction::CleanupRet: { 2919 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2920 const auto &CRI = cast<CleanupReturnInst>(I); 2921 pushValue(CRI.getCleanupPad(), InstID, Vals); 2922 if (CRI.hasUnwindDest()) 2923 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2924 break; 2925 } 2926 case Instruction::CatchRet: { 2927 Code = bitc::FUNC_CODE_INST_CATCHRET; 2928 const auto &CRI = cast<CatchReturnInst>(I); 2929 pushValue(CRI.getCatchPad(), InstID, Vals); 2930 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2931 break; 2932 } 2933 case Instruction::CleanupPad: 2934 case Instruction::CatchPad: { 2935 const auto &FuncletPad = cast<FuncletPadInst>(I); 2936 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2937 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2938 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2939 2940 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2941 Vals.push_back(NumArgOperands); 2942 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2943 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2944 break; 2945 } 2946 case Instruction::CatchSwitch: { 2947 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2948 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2949 2950 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2951 2952 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2953 Vals.push_back(NumHandlers); 2954 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2955 Vals.push_back(VE.getValueID(CatchPadBB)); 2956 2957 if (CatchSwitch.hasUnwindDest()) 2958 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2959 break; 2960 } 2961 case Instruction::CallBr: { 2962 const CallBrInst *CBI = cast<CallBrInst>(&I); 2963 const Value *Callee = CBI->getCalledOperand(); 2964 FunctionType *FTy = CBI->getFunctionType(); 2965 2966 if (CBI->hasOperandBundles()) 2967 writeOperandBundles(*CBI, InstID); 2968 2969 Code = bitc::FUNC_CODE_INST_CALLBR; 2970 2971 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2972 2973 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2974 1 << bitc::CALL_EXPLICIT_TYPE); 2975 2976 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2977 Vals.push_back(CBI->getNumIndirectDests()); 2978 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2979 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2980 2981 Vals.push_back(VE.getTypeID(FTy)); 2982 pushValueAndType(Callee, InstID, Vals); 2983 2984 // Emit value #'s for the fixed parameters. 2985 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2986 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2987 2988 // Emit type/value pairs for varargs params. 2989 if (FTy->isVarArg()) { 2990 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2991 i != e; ++i) 2992 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2993 } 2994 break; 2995 } 2996 case Instruction::Unreachable: 2997 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2998 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2999 break; 3000 3001 case Instruction::PHI: { 3002 const PHINode &PN = cast<PHINode>(I); 3003 Code = bitc::FUNC_CODE_INST_PHI; 3004 // With the newer instruction encoding, forward references could give 3005 // negative valued IDs. This is most common for PHIs, so we use 3006 // signed VBRs. 3007 SmallVector<uint64_t, 128> Vals64; 3008 Vals64.push_back(VE.getTypeID(PN.getType())); 3009 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3010 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3011 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3012 } 3013 3014 uint64_t Flags = getOptimizationFlags(&I); 3015 if (Flags != 0) 3016 Vals64.push_back(Flags); 3017 3018 // Emit a Vals64 vector and exit. 3019 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3020 Vals64.clear(); 3021 return; 3022 } 3023 3024 case Instruction::LandingPad: { 3025 const LandingPadInst &LP = cast<LandingPadInst>(I); 3026 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3027 Vals.push_back(VE.getTypeID(LP.getType())); 3028 Vals.push_back(LP.isCleanup()); 3029 Vals.push_back(LP.getNumClauses()); 3030 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3031 if (LP.isCatch(I)) 3032 Vals.push_back(LandingPadInst::Catch); 3033 else 3034 Vals.push_back(LandingPadInst::Filter); 3035 pushValueAndType(LP.getClause(I), InstID, Vals); 3036 } 3037 break; 3038 } 3039 3040 case Instruction::Alloca: { 3041 Code = bitc::FUNC_CODE_INST_ALLOCA; 3042 const AllocaInst &AI = cast<AllocaInst>(I); 3043 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3044 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3045 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3046 using APV = AllocaPackedValues; 3047 unsigned Record = 0; 3048 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 3049 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3050 Bitfield::set<APV::ExplicitType>(Record, true); 3051 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3052 Vals.push_back(Record); 3053 break; 3054 } 3055 3056 case Instruction::Load: 3057 if (cast<LoadInst>(I).isAtomic()) { 3058 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3059 pushValueAndType(I.getOperand(0), InstID, Vals); 3060 } else { 3061 Code = bitc::FUNC_CODE_INST_LOAD; 3062 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3063 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3064 } 3065 Vals.push_back(VE.getTypeID(I.getType())); 3066 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3067 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3068 if (cast<LoadInst>(I).isAtomic()) { 3069 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3070 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3071 } 3072 break; 3073 case Instruction::Store: 3074 if (cast<StoreInst>(I).isAtomic()) 3075 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3076 else 3077 Code = bitc::FUNC_CODE_INST_STORE; 3078 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3079 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3080 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3081 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3082 if (cast<StoreInst>(I).isAtomic()) { 3083 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3084 Vals.push_back( 3085 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3086 } 3087 break; 3088 case Instruction::AtomicCmpXchg: 3089 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3090 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3091 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3092 pushValue(I.getOperand(2), InstID, Vals); // newval. 3093 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3094 Vals.push_back( 3095 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3096 Vals.push_back( 3097 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3098 Vals.push_back( 3099 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3100 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3101 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3102 break; 3103 case Instruction::AtomicRMW: 3104 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3105 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3106 pushValue(I.getOperand(1), InstID, Vals); // val. 3107 Vals.push_back( 3108 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3109 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3110 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3111 Vals.push_back( 3112 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3113 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3114 break; 3115 case Instruction::Fence: 3116 Code = bitc::FUNC_CODE_INST_FENCE; 3117 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3118 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3119 break; 3120 case Instruction::Call: { 3121 const CallInst &CI = cast<CallInst>(I); 3122 FunctionType *FTy = CI.getFunctionType(); 3123 3124 if (CI.hasOperandBundles()) 3125 writeOperandBundles(CI, InstID); 3126 3127 Code = bitc::FUNC_CODE_INST_CALL; 3128 3129 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3130 3131 unsigned Flags = getOptimizationFlags(&I); 3132 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3133 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3134 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3135 1 << bitc::CALL_EXPLICIT_TYPE | 3136 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3137 unsigned(Flags != 0) << bitc::CALL_FMF); 3138 if (Flags != 0) 3139 Vals.push_back(Flags); 3140 3141 Vals.push_back(VE.getTypeID(FTy)); 3142 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3143 3144 // Emit value #'s for the fixed parameters. 3145 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3146 // Check for labels (can happen with asm labels). 3147 if (FTy->getParamType(i)->isLabelTy()) 3148 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3149 else 3150 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3151 } 3152 3153 // Emit type/value pairs for varargs params. 3154 if (FTy->isVarArg()) { 3155 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3156 i != e; ++i) 3157 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3158 } 3159 break; 3160 } 3161 case Instruction::VAArg: 3162 Code = bitc::FUNC_CODE_INST_VAARG; 3163 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3164 pushValue(I.getOperand(0), InstID, Vals); // valist. 3165 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3166 break; 3167 case Instruction::Freeze: 3168 Code = bitc::FUNC_CODE_INST_FREEZE; 3169 pushValueAndType(I.getOperand(0), InstID, Vals); 3170 break; 3171 } 3172 3173 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3174 Vals.clear(); 3175 } 3176 3177 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3178 /// to allow clients to efficiently find the function body. 3179 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3180 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3181 // Get the offset of the VST we are writing, and backpatch it into 3182 // the VST forward declaration record. 3183 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3184 // The BitcodeStartBit was the stream offset of the identification block. 3185 VSTOffset -= bitcodeStartBit(); 3186 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3187 // Note that we add 1 here because the offset is relative to one word 3188 // before the start of the identification block, which was historically 3189 // always the start of the regular bitcode header. 3190 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3191 3192 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3193 3194 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3195 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3198 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3199 3200 for (const Function &F : M) { 3201 uint64_t Record[2]; 3202 3203 if (F.isDeclaration()) 3204 continue; 3205 3206 Record[0] = VE.getValueID(&F); 3207 3208 // Save the word offset of the function (from the start of the 3209 // actual bitcode written to the stream). 3210 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3211 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3212 // Note that we add 1 here because the offset is relative to one word 3213 // before the start of the identification block, which was historically 3214 // always the start of the regular bitcode header. 3215 Record[1] = BitcodeIndex / 32 + 1; 3216 3217 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3218 } 3219 3220 Stream.ExitBlock(); 3221 } 3222 3223 /// Emit names for arguments, instructions and basic blocks in a function. 3224 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3225 const ValueSymbolTable &VST) { 3226 if (VST.empty()) 3227 return; 3228 3229 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3230 3231 // FIXME: Set up the abbrev, we know how many values there are! 3232 // FIXME: We know if the type names can use 7-bit ascii. 3233 SmallVector<uint64_t, 64> NameVals; 3234 3235 for (const ValueName &Name : VST) { 3236 // Figure out the encoding to use for the name. 3237 StringEncoding Bits = getStringEncoding(Name.getKey()); 3238 3239 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3240 NameVals.push_back(VE.getValueID(Name.getValue())); 3241 3242 // VST_CODE_ENTRY: [valueid, namechar x N] 3243 // VST_CODE_BBENTRY: [bbid, namechar x N] 3244 unsigned Code; 3245 if (isa<BasicBlock>(Name.getValue())) { 3246 Code = bitc::VST_CODE_BBENTRY; 3247 if (Bits == SE_Char6) 3248 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3249 } else { 3250 Code = bitc::VST_CODE_ENTRY; 3251 if (Bits == SE_Char6) 3252 AbbrevToUse = VST_ENTRY_6_ABBREV; 3253 else if (Bits == SE_Fixed7) 3254 AbbrevToUse = VST_ENTRY_7_ABBREV; 3255 } 3256 3257 for (const auto P : Name.getKey()) 3258 NameVals.push_back((unsigned char)P); 3259 3260 // Emit the finished record. 3261 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3262 NameVals.clear(); 3263 } 3264 3265 Stream.ExitBlock(); 3266 } 3267 3268 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3269 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3270 unsigned Code; 3271 if (isa<BasicBlock>(Order.V)) 3272 Code = bitc::USELIST_CODE_BB; 3273 else 3274 Code = bitc::USELIST_CODE_DEFAULT; 3275 3276 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3277 Record.push_back(VE.getValueID(Order.V)); 3278 Stream.EmitRecord(Code, Record); 3279 } 3280 3281 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3282 assert(VE.shouldPreserveUseListOrder() && 3283 "Expected to be preserving use-list order"); 3284 3285 auto hasMore = [&]() { 3286 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3287 }; 3288 if (!hasMore()) 3289 // Nothing to do. 3290 return; 3291 3292 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3293 while (hasMore()) { 3294 writeUseList(std::move(VE.UseListOrders.back())); 3295 VE.UseListOrders.pop_back(); 3296 } 3297 Stream.ExitBlock(); 3298 } 3299 3300 /// Emit a function body to the module stream. 3301 void ModuleBitcodeWriter::writeFunction( 3302 const Function &F, 3303 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3304 // Save the bitcode index of the start of this function block for recording 3305 // in the VST. 3306 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3307 3308 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3309 VE.incorporateFunction(F); 3310 3311 SmallVector<unsigned, 64> Vals; 3312 3313 // Emit the number of basic blocks, so the reader can create them ahead of 3314 // time. 3315 Vals.push_back(VE.getBasicBlocks().size()); 3316 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3317 Vals.clear(); 3318 3319 // If there are function-local constants, emit them now. 3320 unsigned CstStart, CstEnd; 3321 VE.getFunctionConstantRange(CstStart, CstEnd); 3322 writeConstants(CstStart, CstEnd, false); 3323 3324 // If there is function-local metadata, emit it now. 3325 writeFunctionMetadata(F); 3326 3327 // Keep a running idea of what the instruction ID is. 3328 unsigned InstID = CstEnd; 3329 3330 bool NeedsMetadataAttachment = F.hasMetadata(); 3331 3332 DILocation *LastDL = nullptr; 3333 // Finally, emit all the instructions, in order. 3334 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3335 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3336 I != E; ++I) { 3337 writeInstruction(*I, InstID, Vals); 3338 3339 if (!I->getType()->isVoidTy()) 3340 ++InstID; 3341 3342 // If the instruction has metadata, write a metadata attachment later. 3343 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3344 3345 // If the instruction has a debug location, emit it. 3346 DILocation *DL = I->getDebugLoc(); 3347 if (!DL) 3348 continue; 3349 3350 if (DL == LastDL) { 3351 // Just repeat the same debug loc as last time. 3352 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3353 continue; 3354 } 3355 3356 Vals.push_back(DL->getLine()); 3357 Vals.push_back(DL->getColumn()); 3358 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3359 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3360 Vals.push_back(DL->isImplicitCode()); 3361 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3362 Vals.clear(); 3363 3364 LastDL = DL; 3365 } 3366 3367 // Emit names for all the instructions etc. 3368 if (auto *Symtab = F.getValueSymbolTable()) 3369 writeFunctionLevelValueSymbolTable(*Symtab); 3370 3371 if (NeedsMetadataAttachment) 3372 writeFunctionMetadataAttachment(F); 3373 if (VE.shouldPreserveUseListOrder()) 3374 writeUseListBlock(&F); 3375 VE.purgeFunction(); 3376 Stream.ExitBlock(); 3377 } 3378 3379 // Emit blockinfo, which defines the standard abbreviations etc. 3380 void ModuleBitcodeWriter::writeBlockInfo() { 3381 // We only want to emit block info records for blocks that have multiple 3382 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3383 // Other blocks can define their abbrevs inline. 3384 Stream.EnterBlockInfoBlock(); 3385 3386 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3387 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3392 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3393 VST_ENTRY_8_ABBREV) 3394 llvm_unreachable("Unexpected abbrev ordering!"); 3395 } 3396 3397 { // 7-bit fixed width VST_CODE_ENTRY strings. 3398 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3399 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3403 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3404 VST_ENTRY_7_ABBREV) 3405 llvm_unreachable("Unexpected abbrev ordering!"); 3406 } 3407 { // 6-bit char6 VST_CODE_ENTRY strings. 3408 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3409 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3413 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3414 VST_ENTRY_6_ABBREV) 3415 llvm_unreachable("Unexpected abbrev ordering!"); 3416 } 3417 { // 6-bit char6 VST_CODE_BBENTRY strings. 3418 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3419 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3423 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3424 VST_BBENTRY_6_ABBREV) 3425 llvm_unreachable("Unexpected abbrev ordering!"); 3426 } 3427 3428 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3429 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3430 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3432 VE.computeBitsRequiredForTypeIndicies())); 3433 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3434 CONSTANTS_SETTYPE_ABBREV) 3435 llvm_unreachable("Unexpected abbrev ordering!"); 3436 } 3437 3438 { // INTEGER abbrev for CONSTANTS_BLOCK. 3439 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3440 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3442 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3443 CONSTANTS_INTEGER_ABBREV) 3444 llvm_unreachable("Unexpected abbrev ordering!"); 3445 } 3446 3447 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3448 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3449 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3452 VE.computeBitsRequiredForTypeIndicies())); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3454 3455 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3456 CONSTANTS_CE_CAST_Abbrev) 3457 llvm_unreachable("Unexpected abbrev ordering!"); 3458 } 3459 { // NULL abbrev for CONSTANTS_BLOCK. 3460 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3461 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3462 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3463 CONSTANTS_NULL_Abbrev) 3464 llvm_unreachable("Unexpected abbrev ordering!"); 3465 } 3466 3467 // FIXME: This should only use space for first class types! 3468 3469 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3470 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3471 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3474 VE.computeBitsRequiredForTypeIndicies())); 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3477 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3478 FUNCTION_INST_LOAD_ABBREV) 3479 llvm_unreachable("Unexpected abbrev ordering!"); 3480 } 3481 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3482 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3483 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3486 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3487 FUNCTION_INST_UNOP_ABBREV) 3488 llvm_unreachable("Unexpected abbrev ordering!"); 3489 } 3490 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3491 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3492 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3496 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3497 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3498 llvm_unreachable("Unexpected abbrev ordering!"); 3499 } 3500 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3501 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3502 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3506 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3507 FUNCTION_INST_BINOP_ABBREV) 3508 llvm_unreachable("Unexpected abbrev ordering!"); 3509 } 3510 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3511 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3512 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3517 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3518 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3519 llvm_unreachable("Unexpected abbrev ordering!"); 3520 } 3521 { // INST_CAST abbrev for FUNCTION_BLOCK. 3522 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3523 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3526 VE.computeBitsRequiredForTypeIndicies())); 3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3528 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3529 FUNCTION_INST_CAST_ABBREV) 3530 llvm_unreachable("Unexpected abbrev ordering!"); 3531 } 3532 3533 { // INST_RET abbrev for FUNCTION_BLOCK. 3534 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3535 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3536 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3537 FUNCTION_INST_RET_VOID_ABBREV) 3538 llvm_unreachable("Unexpected abbrev ordering!"); 3539 } 3540 { // INST_RET abbrev for FUNCTION_BLOCK. 3541 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3542 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3544 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3545 FUNCTION_INST_RET_VAL_ABBREV) 3546 llvm_unreachable("Unexpected abbrev ordering!"); 3547 } 3548 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3549 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3550 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3551 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3552 FUNCTION_INST_UNREACHABLE_ABBREV) 3553 llvm_unreachable("Unexpected abbrev ordering!"); 3554 } 3555 { 3556 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3557 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3560 Log2_32_Ceil(VE.getTypes().size() + 1))); 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3563 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3564 FUNCTION_INST_GEP_ABBREV) 3565 llvm_unreachable("Unexpected abbrev ordering!"); 3566 } 3567 3568 Stream.ExitBlock(); 3569 } 3570 3571 /// Write the module path strings, currently only used when generating 3572 /// a combined index file. 3573 void IndexBitcodeWriter::writeModStrings() { 3574 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3575 3576 // TODO: See which abbrev sizes we actually need to emit 3577 3578 // 8-bit fixed-width MST_ENTRY strings. 3579 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3580 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3584 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3585 3586 // 7-bit fixed width MST_ENTRY strings. 3587 Abbv = std::make_shared<BitCodeAbbrev>(); 3588 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3592 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3593 3594 // 6-bit char6 MST_ENTRY strings. 3595 Abbv = std::make_shared<BitCodeAbbrev>(); 3596 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3600 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3601 3602 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3603 Abbv = std::make_shared<BitCodeAbbrev>(); 3604 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3610 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3611 3612 SmallVector<unsigned, 64> Vals; 3613 forEachModule( 3614 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3615 StringRef Key = MPSE.getKey(); 3616 const auto &Value = MPSE.getValue(); 3617 StringEncoding Bits = getStringEncoding(Key); 3618 unsigned AbbrevToUse = Abbrev8Bit; 3619 if (Bits == SE_Char6) 3620 AbbrevToUse = Abbrev6Bit; 3621 else if (Bits == SE_Fixed7) 3622 AbbrevToUse = Abbrev7Bit; 3623 3624 Vals.push_back(Value.first); 3625 Vals.append(Key.begin(), Key.end()); 3626 3627 // Emit the finished record. 3628 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3629 3630 // Emit an optional hash for the module now 3631 const auto &Hash = Value.second; 3632 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3633 Vals.assign(Hash.begin(), Hash.end()); 3634 // Emit the hash record. 3635 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3636 } 3637 3638 Vals.clear(); 3639 }); 3640 Stream.ExitBlock(); 3641 } 3642 3643 /// Write the function type metadata related records that need to appear before 3644 /// a function summary entry (whether per-module or combined). 3645 template <typename Fn> 3646 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3647 FunctionSummary *FS, 3648 Fn GetValueID) { 3649 if (!FS->type_tests().empty()) 3650 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3651 3652 SmallVector<uint64_t, 64> Record; 3653 3654 auto WriteVFuncIdVec = [&](uint64_t Ty, 3655 ArrayRef<FunctionSummary::VFuncId> VFs) { 3656 if (VFs.empty()) 3657 return; 3658 Record.clear(); 3659 for (auto &VF : VFs) { 3660 Record.push_back(VF.GUID); 3661 Record.push_back(VF.Offset); 3662 } 3663 Stream.EmitRecord(Ty, Record); 3664 }; 3665 3666 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3667 FS->type_test_assume_vcalls()); 3668 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3669 FS->type_checked_load_vcalls()); 3670 3671 auto WriteConstVCallVec = [&](uint64_t Ty, 3672 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3673 for (auto &VC : VCs) { 3674 Record.clear(); 3675 Record.push_back(VC.VFunc.GUID); 3676 Record.push_back(VC.VFunc.Offset); 3677 llvm::append_range(Record, VC.Args); 3678 Stream.EmitRecord(Ty, Record); 3679 } 3680 }; 3681 3682 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3683 FS->type_test_assume_const_vcalls()); 3684 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3685 FS->type_checked_load_const_vcalls()); 3686 3687 auto WriteRange = [&](ConstantRange Range) { 3688 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3689 assert(Range.getLower().getNumWords() == 1); 3690 assert(Range.getUpper().getNumWords() == 1); 3691 emitSignedInt64(Record, *Range.getLower().getRawData()); 3692 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3693 }; 3694 3695 if (!FS->paramAccesses().empty()) { 3696 Record.clear(); 3697 for (auto &Arg : FS->paramAccesses()) { 3698 size_t UndoSize = Record.size(); 3699 Record.push_back(Arg.ParamNo); 3700 WriteRange(Arg.Use); 3701 Record.push_back(Arg.Calls.size()); 3702 for (auto &Call : Arg.Calls) { 3703 Record.push_back(Call.ParamNo); 3704 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3705 if (!ValueID) { 3706 // If ValueID is unknown we can't drop just this call, we must drop 3707 // entire parameter. 3708 Record.resize(UndoSize); 3709 break; 3710 } 3711 Record.push_back(*ValueID); 3712 WriteRange(Call.Offsets); 3713 } 3714 } 3715 if (!Record.empty()) 3716 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3717 } 3718 } 3719 3720 /// Collect type IDs from type tests used by function. 3721 static void 3722 getReferencedTypeIds(FunctionSummary *FS, 3723 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3724 if (!FS->type_tests().empty()) 3725 for (auto &TT : FS->type_tests()) 3726 ReferencedTypeIds.insert(TT); 3727 3728 auto GetReferencedTypesFromVFuncIdVec = 3729 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3730 for (auto &VF : VFs) 3731 ReferencedTypeIds.insert(VF.GUID); 3732 }; 3733 3734 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3735 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3736 3737 auto GetReferencedTypesFromConstVCallVec = 3738 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3739 for (auto &VC : VCs) 3740 ReferencedTypeIds.insert(VC.VFunc.GUID); 3741 }; 3742 3743 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3744 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3745 } 3746 3747 static void writeWholeProgramDevirtResolutionByArg( 3748 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3749 const WholeProgramDevirtResolution::ByArg &ByArg) { 3750 NameVals.push_back(args.size()); 3751 llvm::append_range(NameVals, args); 3752 3753 NameVals.push_back(ByArg.TheKind); 3754 NameVals.push_back(ByArg.Info); 3755 NameVals.push_back(ByArg.Byte); 3756 NameVals.push_back(ByArg.Bit); 3757 } 3758 3759 static void writeWholeProgramDevirtResolution( 3760 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3761 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3762 NameVals.push_back(Id); 3763 3764 NameVals.push_back(Wpd.TheKind); 3765 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3766 NameVals.push_back(Wpd.SingleImplName.size()); 3767 3768 NameVals.push_back(Wpd.ResByArg.size()); 3769 for (auto &A : Wpd.ResByArg) 3770 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3771 } 3772 3773 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3774 StringTableBuilder &StrtabBuilder, 3775 const std::string &Id, 3776 const TypeIdSummary &Summary) { 3777 NameVals.push_back(StrtabBuilder.add(Id)); 3778 NameVals.push_back(Id.size()); 3779 3780 NameVals.push_back(Summary.TTRes.TheKind); 3781 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3782 NameVals.push_back(Summary.TTRes.AlignLog2); 3783 NameVals.push_back(Summary.TTRes.SizeM1); 3784 NameVals.push_back(Summary.TTRes.BitMask); 3785 NameVals.push_back(Summary.TTRes.InlineBits); 3786 3787 for (auto &W : Summary.WPDRes) 3788 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3789 W.second); 3790 } 3791 3792 static void writeTypeIdCompatibleVtableSummaryRecord( 3793 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3794 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3795 ValueEnumerator &VE) { 3796 NameVals.push_back(StrtabBuilder.add(Id)); 3797 NameVals.push_back(Id.size()); 3798 3799 for (auto &P : Summary) { 3800 NameVals.push_back(P.AddressPointOffset); 3801 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3802 } 3803 } 3804 3805 // Helper to emit a single function summary record. 3806 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3807 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3808 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3809 const Function &F) { 3810 NameVals.push_back(ValueID); 3811 3812 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3813 3814 writeFunctionTypeMetadataRecords( 3815 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3816 return {VE.getValueID(VI.getValue())}; 3817 }); 3818 3819 auto SpecialRefCnts = FS->specialRefCounts(); 3820 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3821 NameVals.push_back(FS->instCount()); 3822 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3823 NameVals.push_back(FS->refs().size()); 3824 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3825 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3826 3827 for (auto &RI : FS->refs()) 3828 NameVals.push_back(VE.getValueID(RI.getValue())); 3829 3830 bool HasProfileData = 3831 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3832 for (auto &ECI : FS->calls()) { 3833 NameVals.push_back(getValueId(ECI.first)); 3834 if (HasProfileData) 3835 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3836 else if (WriteRelBFToSummary) 3837 NameVals.push_back(ECI.second.RelBlockFreq); 3838 } 3839 3840 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3841 unsigned Code = 3842 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3843 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3844 : bitc::FS_PERMODULE)); 3845 3846 // Emit the finished record. 3847 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3848 NameVals.clear(); 3849 } 3850 3851 // Collect the global value references in the given variable's initializer, 3852 // and emit them in a summary record. 3853 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3854 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3855 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3856 auto VI = Index->getValueInfo(V.getGUID()); 3857 if (!VI || VI.getSummaryList().empty()) { 3858 // Only declarations should not have a summary (a declaration might however 3859 // have a summary if the def was in module level asm). 3860 assert(V.isDeclaration()); 3861 return; 3862 } 3863 auto *Summary = VI.getSummaryList()[0].get(); 3864 NameVals.push_back(VE.getValueID(&V)); 3865 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3866 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3867 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3868 3869 auto VTableFuncs = VS->vTableFuncs(); 3870 if (!VTableFuncs.empty()) 3871 NameVals.push_back(VS->refs().size()); 3872 3873 unsigned SizeBeforeRefs = NameVals.size(); 3874 for (auto &RI : VS->refs()) 3875 NameVals.push_back(VE.getValueID(RI.getValue())); 3876 // Sort the refs for determinism output, the vector returned by FS->refs() has 3877 // been initialized from a DenseSet. 3878 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3879 3880 if (VTableFuncs.empty()) 3881 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3882 FSModRefsAbbrev); 3883 else { 3884 // VTableFuncs pairs should already be sorted by offset. 3885 for (auto &P : VTableFuncs) { 3886 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3887 NameVals.push_back(P.VTableOffset); 3888 } 3889 3890 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3891 FSModVTableRefsAbbrev); 3892 } 3893 NameVals.clear(); 3894 } 3895 3896 /// Emit the per-module summary section alongside the rest of 3897 /// the module's bitcode. 3898 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3899 // By default we compile with ThinLTO if the module has a summary, but the 3900 // client can request full LTO with a module flag. 3901 bool IsThinLTO = true; 3902 if (auto *MD = 3903 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3904 IsThinLTO = MD->getZExtValue(); 3905 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3906 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3907 4); 3908 3909 Stream.EmitRecord( 3910 bitc::FS_VERSION, 3911 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3912 3913 // Write the index flags. 3914 uint64_t Flags = 0; 3915 // Bits 1-3 are set only in the combined index, skip them. 3916 if (Index->enableSplitLTOUnit()) 3917 Flags |= 0x8; 3918 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3919 3920 if (Index->begin() == Index->end()) { 3921 Stream.ExitBlock(); 3922 return; 3923 } 3924 3925 for (const auto &GVI : valueIds()) { 3926 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3927 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3928 } 3929 3930 // Abbrev for FS_PERMODULE_PROFILE. 3931 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3932 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3940 // numrefs x valueid, n x (valueid, hotness) 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3943 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3944 3945 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3946 Abbv = std::make_shared<BitCodeAbbrev>(); 3947 if (WriteRelBFToSummary) 3948 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3949 else 3950 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3958 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3961 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3962 3963 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3964 Abbv = std::make_shared<BitCodeAbbrev>(); 3965 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3970 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3971 3972 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3973 Abbv = std::make_shared<BitCodeAbbrev>(); 3974 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3978 // numrefs x valueid, n x (valueid , offset) 3979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3981 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3982 3983 // Abbrev for FS_ALIAS. 3984 Abbv = std::make_shared<BitCodeAbbrev>(); 3985 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3989 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3990 3991 // Abbrev for FS_TYPE_ID_METADATA 3992 Abbv = std::make_shared<BitCodeAbbrev>(); 3993 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3996 // n x (valueid , offset) 3997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3999 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4000 4001 SmallVector<uint64_t, 64> NameVals; 4002 // Iterate over the list of functions instead of the Index to 4003 // ensure the ordering is stable. 4004 for (const Function &F : M) { 4005 // Summary emission does not support anonymous functions, they have to 4006 // renamed using the anonymous function renaming pass. 4007 if (!F.hasName()) 4008 report_fatal_error("Unexpected anonymous function when writing summary"); 4009 4010 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4011 if (!VI || VI.getSummaryList().empty()) { 4012 // Only declarations should not have a summary (a declaration might 4013 // however have a summary if the def was in module level asm). 4014 assert(F.isDeclaration()); 4015 continue; 4016 } 4017 auto *Summary = VI.getSummaryList()[0].get(); 4018 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4019 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4020 } 4021 4022 // Capture references from GlobalVariable initializers, which are outside 4023 // of a function scope. 4024 for (const GlobalVariable &G : M.globals()) 4025 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4026 FSModVTableRefsAbbrev); 4027 4028 for (const GlobalAlias &A : M.aliases()) { 4029 auto *Aliasee = A.getBaseObject(); 4030 if (!Aliasee->hasName()) 4031 // Nameless function don't have an entry in the summary, skip it. 4032 continue; 4033 auto AliasId = VE.getValueID(&A); 4034 auto AliaseeId = VE.getValueID(Aliasee); 4035 NameVals.push_back(AliasId); 4036 auto *Summary = Index->getGlobalValueSummary(A); 4037 AliasSummary *AS = cast<AliasSummary>(Summary); 4038 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4039 NameVals.push_back(AliaseeId); 4040 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4041 NameVals.clear(); 4042 } 4043 4044 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4045 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4046 S.second, VE); 4047 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4048 TypeIdCompatibleVtableAbbrev); 4049 NameVals.clear(); 4050 } 4051 4052 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4053 ArrayRef<uint64_t>{Index->getBlockCount()}); 4054 4055 Stream.ExitBlock(); 4056 } 4057 4058 /// Emit the combined summary section into the combined index file. 4059 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4060 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4061 Stream.EmitRecord( 4062 bitc::FS_VERSION, 4063 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4064 4065 // Write the index flags. 4066 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4067 4068 for (const auto &GVI : valueIds()) { 4069 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4070 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4071 } 4072 4073 // Abbrev for FS_COMBINED. 4074 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4075 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4085 // numrefs x valueid, n x (valueid) 4086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4088 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4089 4090 // Abbrev for FS_COMBINED_PROFILE. 4091 Abbv = std::make_shared<BitCodeAbbrev>(); 4092 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4102 // numrefs x valueid, n x (valueid, hotness) 4103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4105 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4106 4107 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4108 Abbv = std::make_shared<BitCodeAbbrev>(); 4109 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4115 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4116 4117 // Abbrev for FS_COMBINED_ALIAS. 4118 Abbv = std::make_shared<BitCodeAbbrev>(); 4119 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4124 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4125 4126 // The aliases are emitted as a post-pass, and will point to the value 4127 // id of the aliasee. Save them in a vector for post-processing. 4128 SmallVector<AliasSummary *, 64> Aliases; 4129 4130 // Save the value id for each summary for alias emission. 4131 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4132 4133 SmallVector<uint64_t, 64> NameVals; 4134 4135 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4136 // with the type ids referenced by this index file. 4137 std::set<GlobalValue::GUID> ReferencedTypeIds; 4138 4139 // For local linkage, we also emit the original name separately 4140 // immediately after the record. 4141 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4142 if (!GlobalValue::isLocalLinkage(S.linkage())) 4143 return; 4144 NameVals.push_back(S.getOriginalName()); 4145 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4146 NameVals.clear(); 4147 }; 4148 4149 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4150 forEachSummary([&](GVInfo I, bool IsAliasee) { 4151 GlobalValueSummary *S = I.second; 4152 assert(S); 4153 DefOrUseGUIDs.insert(I.first); 4154 for (const ValueInfo &VI : S->refs()) 4155 DefOrUseGUIDs.insert(VI.getGUID()); 4156 4157 auto ValueId = getValueId(I.first); 4158 assert(ValueId); 4159 SummaryToValueIdMap[S] = *ValueId; 4160 4161 // If this is invoked for an aliasee, we want to record the above 4162 // mapping, but then not emit a summary entry (if the aliasee is 4163 // to be imported, we will invoke this separately with IsAliasee=false). 4164 if (IsAliasee) 4165 return; 4166 4167 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4168 // Will process aliases as a post-pass because the reader wants all 4169 // global to be loaded first. 4170 Aliases.push_back(AS); 4171 return; 4172 } 4173 4174 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4175 NameVals.push_back(*ValueId); 4176 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4177 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4178 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4179 for (auto &RI : VS->refs()) { 4180 auto RefValueId = getValueId(RI.getGUID()); 4181 if (!RefValueId) 4182 continue; 4183 NameVals.push_back(*RefValueId); 4184 } 4185 4186 // Emit the finished record. 4187 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4188 FSModRefsAbbrev); 4189 NameVals.clear(); 4190 MaybeEmitOriginalName(*S); 4191 return; 4192 } 4193 4194 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4195 GlobalValue::GUID GUID = VI.getGUID(); 4196 Optional<unsigned> CallValueId = getValueId(GUID); 4197 if (CallValueId) 4198 return CallValueId; 4199 // For SamplePGO, the indirect call targets for local functions will 4200 // have its original name annotated in profile. We try to find the 4201 // corresponding PGOFuncName as the GUID. 4202 GUID = Index.getGUIDFromOriginalID(GUID); 4203 if (!GUID) 4204 return None; 4205 CallValueId = getValueId(GUID); 4206 if (!CallValueId) 4207 return None; 4208 // The mapping from OriginalId to GUID may return a GUID 4209 // that corresponds to a static variable. Filter it out here. 4210 // This can happen when 4211 // 1) There is a call to a library function which does not have 4212 // a CallValidId; 4213 // 2) There is a static variable with the OriginalGUID identical 4214 // to the GUID of the library function in 1); 4215 // When this happens, the logic for SamplePGO kicks in and 4216 // the static variable in 2) will be found, which needs to be 4217 // filtered out. 4218 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4219 if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4220 return None; 4221 return CallValueId; 4222 }; 4223 4224 auto *FS = cast<FunctionSummary>(S); 4225 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4226 getReferencedTypeIds(FS, ReferencedTypeIds); 4227 4228 NameVals.push_back(*ValueId); 4229 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4230 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4231 NameVals.push_back(FS->instCount()); 4232 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4233 NameVals.push_back(FS->entryCount()); 4234 4235 // Fill in below 4236 NameVals.push_back(0); // numrefs 4237 NameVals.push_back(0); // rorefcnt 4238 NameVals.push_back(0); // worefcnt 4239 4240 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4241 for (auto &RI : FS->refs()) { 4242 auto RefValueId = getValueId(RI.getGUID()); 4243 if (!RefValueId) 4244 continue; 4245 NameVals.push_back(*RefValueId); 4246 if (RI.isReadOnly()) 4247 RORefCnt++; 4248 else if (RI.isWriteOnly()) 4249 WORefCnt++; 4250 Count++; 4251 } 4252 NameVals[6] = Count; 4253 NameVals[7] = RORefCnt; 4254 NameVals[8] = WORefCnt; 4255 4256 bool HasProfileData = false; 4257 for (auto &EI : FS->calls()) { 4258 HasProfileData |= 4259 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4260 if (HasProfileData) 4261 break; 4262 } 4263 4264 for (auto &EI : FS->calls()) { 4265 // If this GUID doesn't have a value id, it doesn't have a function 4266 // summary and we don't need to record any calls to it. 4267 Optional<unsigned> CallValueId = GetValueId(EI.first); 4268 if (!CallValueId) 4269 continue; 4270 NameVals.push_back(*CallValueId); 4271 if (HasProfileData) 4272 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4273 } 4274 4275 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4276 unsigned Code = 4277 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4278 4279 // Emit the finished record. 4280 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4281 NameVals.clear(); 4282 MaybeEmitOriginalName(*S); 4283 }); 4284 4285 for (auto *AS : Aliases) { 4286 auto AliasValueId = SummaryToValueIdMap[AS]; 4287 assert(AliasValueId); 4288 NameVals.push_back(AliasValueId); 4289 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4290 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4291 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4292 assert(AliaseeValueId); 4293 NameVals.push_back(AliaseeValueId); 4294 4295 // Emit the finished record. 4296 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4297 NameVals.clear(); 4298 MaybeEmitOriginalName(*AS); 4299 4300 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4301 getReferencedTypeIds(FS, ReferencedTypeIds); 4302 } 4303 4304 if (!Index.cfiFunctionDefs().empty()) { 4305 for (auto &S : Index.cfiFunctionDefs()) { 4306 if (DefOrUseGUIDs.count( 4307 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4308 NameVals.push_back(StrtabBuilder.add(S)); 4309 NameVals.push_back(S.size()); 4310 } 4311 } 4312 if (!NameVals.empty()) { 4313 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4314 NameVals.clear(); 4315 } 4316 } 4317 4318 if (!Index.cfiFunctionDecls().empty()) { 4319 for (auto &S : Index.cfiFunctionDecls()) { 4320 if (DefOrUseGUIDs.count( 4321 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4322 NameVals.push_back(StrtabBuilder.add(S)); 4323 NameVals.push_back(S.size()); 4324 } 4325 } 4326 if (!NameVals.empty()) { 4327 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4328 NameVals.clear(); 4329 } 4330 } 4331 4332 // Walk the GUIDs that were referenced, and write the 4333 // corresponding type id records. 4334 for (auto &T : ReferencedTypeIds) { 4335 auto TidIter = Index.typeIds().equal_range(T); 4336 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4337 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4338 It->second.second); 4339 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4340 NameVals.clear(); 4341 } 4342 } 4343 4344 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4345 ArrayRef<uint64_t>{Index.getBlockCount()}); 4346 4347 Stream.ExitBlock(); 4348 } 4349 4350 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4351 /// current llvm version, and a record for the epoch number. 4352 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4353 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4354 4355 // Write the "user readable" string identifying the bitcode producer 4356 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4357 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4360 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4361 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4362 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4363 4364 // Write the epoch version 4365 Abbv = std::make_shared<BitCodeAbbrev>(); 4366 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4368 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4369 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4370 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4371 Stream.ExitBlock(); 4372 } 4373 4374 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4375 // Emit the module's hash. 4376 // MODULE_CODE_HASH: [5*i32] 4377 if (GenerateHash) { 4378 uint32_t Vals[5]; 4379 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4380 Buffer.size() - BlockStartPos)); 4381 StringRef Hash = Hasher.result(); 4382 for (int Pos = 0; Pos < 20; Pos += 4) { 4383 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4384 } 4385 4386 // Emit the finished record. 4387 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4388 4389 if (ModHash) 4390 // Save the written hash value. 4391 llvm::copy(Vals, std::begin(*ModHash)); 4392 } 4393 } 4394 4395 void ModuleBitcodeWriter::write() { 4396 writeIdentificationBlock(Stream); 4397 4398 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4399 size_t BlockStartPos = Buffer.size(); 4400 4401 writeModuleVersion(); 4402 4403 // Emit blockinfo, which defines the standard abbreviations etc. 4404 writeBlockInfo(); 4405 4406 // Emit information describing all of the types in the module. 4407 writeTypeTable(); 4408 4409 // Emit information about attribute groups. 4410 writeAttributeGroupTable(); 4411 4412 // Emit information about parameter attributes. 4413 writeAttributeTable(); 4414 4415 writeComdats(); 4416 4417 // Emit top-level description of module, including target triple, inline asm, 4418 // descriptors for global variables, and function prototype info. 4419 writeModuleInfo(); 4420 4421 // Emit constants. 4422 writeModuleConstants(); 4423 4424 // Emit metadata kind names. 4425 writeModuleMetadataKinds(); 4426 4427 // Emit metadata. 4428 writeModuleMetadata(); 4429 4430 // Emit module-level use-lists. 4431 if (VE.shouldPreserveUseListOrder()) 4432 writeUseListBlock(nullptr); 4433 4434 writeOperandBundleTags(); 4435 writeSyncScopeNames(); 4436 4437 // Emit function bodies. 4438 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4439 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4440 if (!F->isDeclaration()) 4441 writeFunction(*F, FunctionToBitcodeIndex); 4442 4443 // Need to write after the above call to WriteFunction which populates 4444 // the summary information in the index. 4445 if (Index) 4446 writePerModuleGlobalValueSummary(); 4447 4448 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4449 4450 writeModuleHash(BlockStartPos); 4451 4452 Stream.ExitBlock(); 4453 } 4454 4455 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4456 uint32_t &Position) { 4457 support::endian::write32le(&Buffer[Position], Value); 4458 Position += 4; 4459 } 4460 4461 /// If generating a bc file on darwin, we have to emit a 4462 /// header and trailer to make it compatible with the system archiver. To do 4463 /// this we emit the following header, and then emit a trailer that pads the 4464 /// file out to be a multiple of 16 bytes. 4465 /// 4466 /// struct bc_header { 4467 /// uint32_t Magic; // 0x0B17C0DE 4468 /// uint32_t Version; // Version, currently always 0. 4469 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4470 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4471 /// uint32_t CPUType; // CPU specifier. 4472 /// ... potentially more later ... 4473 /// }; 4474 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4475 const Triple &TT) { 4476 unsigned CPUType = ~0U; 4477 4478 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4479 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4480 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4481 // specific constants here because they are implicitly part of the Darwin ABI. 4482 enum { 4483 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4484 DARWIN_CPU_TYPE_X86 = 7, 4485 DARWIN_CPU_TYPE_ARM = 12, 4486 DARWIN_CPU_TYPE_POWERPC = 18 4487 }; 4488 4489 Triple::ArchType Arch = TT.getArch(); 4490 if (Arch == Triple::x86_64) 4491 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4492 else if (Arch == Triple::x86) 4493 CPUType = DARWIN_CPU_TYPE_X86; 4494 else if (Arch == Triple::ppc) 4495 CPUType = DARWIN_CPU_TYPE_POWERPC; 4496 else if (Arch == Triple::ppc64) 4497 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4498 else if (Arch == Triple::arm || Arch == Triple::thumb) 4499 CPUType = DARWIN_CPU_TYPE_ARM; 4500 4501 // Traditional Bitcode starts after header. 4502 assert(Buffer.size() >= BWH_HeaderSize && 4503 "Expected header size to be reserved"); 4504 unsigned BCOffset = BWH_HeaderSize; 4505 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4506 4507 // Write the magic and version. 4508 unsigned Position = 0; 4509 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4510 writeInt32ToBuffer(0, Buffer, Position); // Version. 4511 writeInt32ToBuffer(BCOffset, Buffer, Position); 4512 writeInt32ToBuffer(BCSize, Buffer, Position); 4513 writeInt32ToBuffer(CPUType, Buffer, Position); 4514 4515 // If the file is not a multiple of 16 bytes, insert dummy padding. 4516 while (Buffer.size() & 15) 4517 Buffer.push_back(0); 4518 } 4519 4520 /// Helper to write the header common to all bitcode files. 4521 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4522 // Emit the file header. 4523 Stream.Emit((unsigned)'B', 8); 4524 Stream.Emit((unsigned)'C', 8); 4525 Stream.Emit(0x0, 4); 4526 Stream.Emit(0xC, 4); 4527 Stream.Emit(0xE, 4); 4528 Stream.Emit(0xD, 4); 4529 } 4530 4531 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4532 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4533 writeBitcodeHeader(*Stream); 4534 } 4535 4536 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4537 4538 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4539 Stream->EnterSubblock(Block, 3); 4540 4541 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4542 Abbv->Add(BitCodeAbbrevOp(Record)); 4543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4544 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4545 4546 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4547 4548 Stream->ExitBlock(); 4549 } 4550 4551 void BitcodeWriter::writeSymtab() { 4552 assert(!WroteStrtab && !WroteSymtab); 4553 4554 // If any module has module-level inline asm, we will require a registered asm 4555 // parser for the target so that we can create an accurate symbol table for 4556 // the module. 4557 for (Module *M : Mods) { 4558 if (M->getModuleInlineAsm().empty()) 4559 continue; 4560 4561 std::string Err; 4562 const Triple TT(M->getTargetTriple()); 4563 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4564 if (!T || !T->hasMCAsmParser()) 4565 return; 4566 } 4567 4568 WroteSymtab = true; 4569 SmallVector<char, 0> Symtab; 4570 // The irsymtab::build function may be unable to create a symbol table if the 4571 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4572 // table is not required for correctness, but we still want to be able to 4573 // write malformed modules to bitcode files, so swallow the error. 4574 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4575 consumeError(std::move(E)); 4576 return; 4577 } 4578 4579 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4580 {Symtab.data(), Symtab.size()}); 4581 } 4582 4583 void BitcodeWriter::writeStrtab() { 4584 assert(!WroteStrtab); 4585 4586 std::vector<char> Strtab; 4587 StrtabBuilder.finalizeInOrder(); 4588 Strtab.resize(StrtabBuilder.getSize()); 4589 StrtabBuilder.write((uint8_t *)Strtab.data()); 4590 4591 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4592 {Strtab.data(), Strtab.size()}); 4593 4594 WroteStrtab = true; 4595 } 4596 4597 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4598 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4599 WroteStrtab = true; 4600 } 4601 4602 void BitcodeWriter::writeModule(const Module &M, 4603 bool ShouldPreserveUseListOrder, 4604 const ModuleSummaryIndex *Index, 4605 bool GenerateHash, ModuleHash *ModHash) { 4606 assert(!WroteStrtab); 4607 4608 // The Mods vector is used by irsymtab::build, which requires non-const 4609 // Modules in case it needs to materialize metadata. But the bitcode writer 4610 // requires that the module is materialized, so we can cast to non-const here, 4611 // after checking that it is in fact materialized. 4612 assert(M.isMaterialized()); 4613 Mods.push_back(const_cast<Module *>(&M)); 4614 4615 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4616 ShouldPreserveUseListOrder, Index, 4617 GenerateHash, ModHash); 4618 ModuleWriter.write(); 4619 } 4620 4621 void BitcodeWriter::writeIndex( 4622 const ModuleSummaryIndex *Index, 4623 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4624 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4625 ModuleToSummariesForIndex); 4626 IndexWriter.write(); 4627 } 4628 4629 /// Write the specified module to the specified output stream. 4630 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4631 bool ShouldPreserveUseListOrder, 4632 const ModuleSummaryIndex *Index, 4633 bool GenerateHash, ModuleHash *ModHash) { 4634 SmallVector<char, 0> Buffer; 4635 Buffer.reserve(256*1024); 4636 4637 // If this is darwin or another generic macho target, reserve space for the 4638 // header. 4639 Triple TT(M.getTargetTriple()); 4640 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4641 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4642 4643 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4644 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4645 ModHash); 4646 Writer.writeSymtab(); 4647 Writer.writeStrtab(); 4648 4649 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4650 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4651 4652 // Write the generated bitstream to "Out". 4653 if (!Buffer.empty()) 4654 Out.write((char *)&Buffer.front(), Buffer.size()); 4655 } 4656 4657 void IndexBitcodeWriter::write() { 4658 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4659 4660 writeModuleVersion(); 4661 4662 // Write the module paths in the combined index. 4663 writeModStrings(); 4664 4665 // Write the summary combined index records. 4666 writeCombinedGlobalValueSummary(); 4667 4668 Stream.ExitBlock(); 4669 } 4670 4671 // Write the specified module summary index to the given raw output stream, 4672 // where it will be written in a new bitcode block. This is used when 4673 // writing the combined index file for ThinLTO. When writing a subset of the 4674 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4675 void llvm::WriteIndexToFile( 4676 const ModuleSummaryIndex &Index, raw_ostream &Out, 4677 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4678 SmallVector<char, 0> Buffer; 4679 Buffer.reserve(256 * 1024); 4680 4681 BitcodeWriter Writer(Buffer); 4682 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4683 Writer.writeStrtab(); 4684 4685 Out.write((char *)&Buffer.front(), Buffer.size()); 4686 } 4687 4688 namespace { 4689 4690 /// Class to manage the bitcode writing for a thin link bitcode file. 4691 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4692 /// ModHash is for use in ThinLTO incremental build, generated while writing 4693 /// the module bitcode file. 4694 const ModuleHash *ModHash; 4695 4696 public: 4697 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4698 BitstreamWriter &Stream, 4699 const ModuleSummaryIndex &Index, 4700 const ModuleHash &ModHash) 4701 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4702 /*ShouldPreserveUseListOrder=*/false, &Index), 4703 ModHash(&ModHash) {} 4704 4705 void write(); 4706 4707 private: 4708 void writeSimplifiedModuleInfo(); 4709 }; 4710 4711 } // end anonymous namespace 4712 4713 // This function writes a simpilified module info for thin link bitcode file. 4714 // It only contains the source file name along with the name(the offset and 4715 // size in strtab) and linkage for global values. For the global value info 4716 // entry, in order to keep linkage at offset 5, there are three zeros used 4717 // as padding. 4718 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4719 SmallVector<unsigned, 64> Vals; 4720 // Emit the module's source file name. 4721 { 4722 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4723 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4724 if (Bits == SE_Char6) 4725 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4726 else if (Bits == SE_Fixed7) 4727 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4728 4729 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4730 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4731 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4733 Abbv->Add(AbbrevOpToUse); 4734 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4735 4736 for (const auto P : M.getSourceFileName()) 4737 Vals.push_back((unsigned char)P); 4738 4739 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4740 Vals.clear(); 4741 } 4742 4743 // Emit the global variable information. 4744 for (const GlobalVariable &GV : M.globals()) { 4745 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4746 Vals.push_back(StrtabBuilder.add(GV.getName())); 4747 Vals.push_back(GV.getName().size()); 4748 Vals.push_back(0); 4749 Vals.push_back(0); 4750 Vals.push_back(0); 4751 Vals.push_back(getEncodedLinkage(GV)); 4752 4753 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4754 Vals.clear(); 4755 } 4756 4757 // Emit the function proto information. 4758 for (const Function &F : M) { 4759 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4760 Vals.push_back(StrtabBuilder.add(F.getName())); 4761 Vals.push_back(F.getName().size()); 4762 Vals.push_back(0); 4763 Vals.push_back(0); 4764 Vals.push_back(0); 4765 Vals.push_back(getEncodedLinkage(F)); 4766 4767 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4768 Vals.clear(); 4769 } 4770 4771 // Emit the alias information. 4772 for (const GlobalAlias &A : M.aliases()) { 4773 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4774 Vals.push_back(StrtabBuilder.add(A.getName())); 4775 Vals.push_back(A.getName().size()); 4776 Vals.push_back(0); 4777 Vals.push_back(0); 4778 Vals.push_back(0); 4779 Vals.push_back(getEncodedLinkage(A)); 4780 4781 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4782 Vals.clear(); 4783 } 4784 4785 // Emit the ifunc information. 4786 for (const GlobalIFunc &I : M.ifuncs()) { 4787 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4788 Vals.push_back(StrtabBuilder.add(I.getName())); 4789 Vals.push_back(I.getName().size()); 4790 Vals.push_back(0); 4791 Vals.push_back(0); 4792 Vals.push_back(0); 4793 Vals.push_back(getEncodedLinkage(I)); 4794 4795 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4796 Vals.clear(); 4797 } 4798 } 4799 4800 void ThinLinkBitcodeWriter::write() { 4801 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4802 4803 writeModuleVersion(); 4804 4805 writeSimplifiedModuleInfo(); 4806 4807 writePerModuleGlobalValueSummary(); 4808 4809 // Write module hash. 4810 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4811 4812 Stream.ExitBlock(); 4813 } 4814 4815 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4816 const ModuleSummaryIndex &Index, 4817 const ModuleHash &ModHash) { 4818 assert(!WroteStrtab); 4819 4820 // The Mods vector is used by irsymtab::build, which requires non-const 4821 // Modules in case it needs to materialize metadata. But the bitcode writer 4822 // requires that the module is materialized, so we can cast to non-const here, 4823 // after checking that it is in fact materialized. 4824 assert(M.isMaterialized()); 4825 Mods.push_back(const_cast<Module *>(&M)); 4826 4827 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4828 ModHash); 4829 ThinLinkWriter.write(); 4830 } 4831 4832 // Write the specified thin link bitcode file to the given raw output stream, 4833 // where it will be written in a new bitcode block. This is used when 4834 // writing the per-module index file for ThinLTO. 4835 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4836 const ModuleSummaryIndex &Index, 4837 const ModuleHash &ModHash) { 4838 SmallVector<char, 0> Buffer; 4839 Buffer.reserve(256 * 1024); 4840 4841 BitcodeWriter Writer(Buffer); 4842 Writer.writeThinLinkBitcode(M, Index, ModHash); 4843 Writer.writeSymtab(); 4844 Writer.writeStrtab(); 4845 4846 Out.write((char *)&Buffer.front(), Buffer.size()); 4847 } 4848 4849 static const char *getSectionNameForBitcode(const Triple &T) { 4850 switch (T.getObjectFormat()) { 4851 case Triple::MachO: 4852 return "__LLVM,__bitcode"; 4853 case Triple::COFF: 4854 case Triple::ELF: 4855 case Triple::Wasm: 4856 case Triple::UnknownObjectFormat: 4857 return ".llvmbc"; 4858 case Triple::GOFF: 4859 llvm_unreachable("GOFF is not yet implemented"); 4860 break; 4861 case Triple::XCOFF: 4862 llvm_unreachable("XCOFF is not yet implemented"); 4863 break; 4864 } 4865 llvm_unreachable("Unimplemented ObjectFormatType"); 4866 } 4867 4868 static const char *getSectionNameForCommandline(const Triple &T) { 4869 switch (T.getObjectFormat()) { 4870 case Triple::MachO: 4871 return "__LLVM,__cmdline"; 4872 case Triple::COFF: 4873 case Triple::ELF: 4874 case Triple::Wasm: 4875 case Triple::UnknownObjectFormat: 4876 return ".llvmcmd"; 4877 case Triple::GOFF: 4878 llvm_unreachable("GOFF is not yet implemented"); 4879 break; 4880 case Triple::XCOFF: 4881 llvm_unreachable("XCOFF is not yet implemented"); 4882 break; 4883 } 4884 llvm_unreachable("Unimplemented ObjectFormatType"); 4885 } 4886 4887 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4888 bool EmbedBitcode, bool EmbedCmdline, 4889 const std::vector<uint8_t> &CmdArgs) { 4890 // Save llvm.compiler.used and remove it. 4891 SmallVector<Constant *, 2> UsedArray; 4892 SmallVector<GlobalValue *, 4> UsedGlobals; 4893 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4894 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4895 for (auto *GV : UsedGlobals) { 4896 if (GV->getName() != "llvm.embedded.module" && 4897 GV->getName() != "llvm.cmdline") 4898 UsedArray.push_back( 4899 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4900 } 4901 if (Used) 4902 Used->eraseFromParent(); 4903 4904 // Embed the bitcode for the llvm module. 4905 std::string Data; 4906 ArrayRef<uint8_t> ModuleData; 4907 Triple T(M.getTargetTriple()); 4908 4909 if (EmbedBitcode) { 4910 if (Buf.getBufferSize() == 0 || 4911 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4912 (const unsigned char *)Buf.getBufferEnd())) { 4913 // If the input is LLVM Assembly, bitcode is produced by serializing 4914 // the module. Use-lists order need to be preserved in this case. 4915 llvm::raw_string_ostream OS(Data); 4916 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4917 ModuleData = 4918 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4919 } else 4920 // If the input is LLVM bitcode, write the input byte stream directly. 4921 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4922 Buf.getBufferSize()); 4923 } 4924 llvm::Constant *ModuleConstant = 4925 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4926 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4927 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4928 ModuleConstant); 4929 GV->setSection(getSectionNameForBitcode(T)); 4930 // Set alignment to 1 to prevent padding between two contributions from input 4931 // sections after linking. 4932 GV->setAlignment(Align(1)); 4933 UsedArray.push_back( 4934 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4935 if (llvm::GlobalVariable *Old = 4936 M.getGlobalVariable("llvm.embedded.module", true)) { 4937 assert(Old->hasOneUse() && 4938 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4939 GV->takeName(Old); 4940 Old->eraseFromParent(); 4941 } else { 4942 GV->setName("llvm.embedded.module"); 4943 } 4944 4945 // Skip if only bitcode needs to be embedded. 4946 if (EmbedCmdline) { 4947 // Embed command-line options. 4948 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4949 CmdArgs.size()); 4950 llvm::Constant *CmdConstant = 4951 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4952 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4953 llvm::GlobalValue::PrivateLinkage, 4954 CmdConstant); 4955 GV->setSection(getSectionNameForCommandline(T)); 4956 GV->setAlignment(Align(1)); 4957 UsedArray.push_back( 4958 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4959 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4960 assert(Old->hasOneUse() && 4961 "llvm.cmdline can only be used once in llvm.compiler.used"); 4962 GV->takeName(Old); 4963 Old->eraseFromParent(); 4964 } else { 4965 GV->setName("llvm.cmdline"); 4966 } 4967 } 4968 4969 if (UsedArray.empty()) 4970 return; 4971 4972 // Recreate llvm.compiler.used. 4973 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4974 auto *NewUsed = new GlobalVariable( 4975 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4976 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4977 NewUsed->setSection("llvm.metadata"); 4978 } 4979