1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitcodeCommon.h" 29 #include "llvm/Bitcode/BitcodeReader.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/Bitstream/BitCodes.h" 32 #include "llvm/Bitstream/BitstreamWriter.h" 33 #include "llvm/Config/llvm-config.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/Comdat.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSummaryIndex.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/UseListOrder.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/ValueSymbolTable.h" 61 #include "llvm/MC/StringTableBuilder.h" 62 #include "llvm/MC/TargetRegistry.h" 63 #include "llvm/Object/IRSymtab.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/SHA1.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <memory> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 99 100 namespace { 101 102 /// These are manifest constants used by the bitcode writer. They do not need to 103 /// be kept in sync with the reader, but need to be consistent within this file. 104 enum { 105 // VALUE_SYMTAB_BLOCK abbrev id's. 106 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 107 VST_ENTRY_7_ABBREV, 108 VST_ENTRY_6_ABBREV, 109 VST_BBENTRY_6_ABBREV, 110 111 // CONSTANTS_BLOCK abbrev id's. 112 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 113 CONSTANTS_INTEGER_ABBREV, 114 CONSTANTS_CE_CAST_Abbrev, 115 CONSTANTS_NULL_Abbrev, 116 117 // FUNCTION_BLOCK abbrev id's. 118 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 119 FUNCTION_INST_UNOP_ABBREV, 120 FUNCTION_INST_UNOP_FLAGS_ABBREV, 121 FUNCTION_INST_BINOP_ABBREV, 122 FUNCTION_INST_BINOP_FLAGS_ABBREV, 123 FUNCTION_INST_CAST_ABBREV, 124 FUNCTION_INST_RET_VOID_ABBREV, 125 FUNCTION_INST_RET_VAL_ABBREV, 126 FUNCTION_INST_UNREACHABLE_ABBREV, 127 FUNCTION_INST_GEP_ABBREV, 128 }; 129 130 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 131 /// file type. 132 class BitcodeWriterBase { 133 protected: 134 /// The stream created and owned by the client. 135 BitstreamWriter &Stream; 136 137 StringTableBuilder &StrtabBuilder; 138 139 public: 140 /// Constructs a BitcodeWriterBase object that writes to the provided 141 /// \p Stream. 142 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 143 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 144 145 protected: 146 void writeModuleVersion(); 147 }; 148 149 void BitcodeWriterBase::writeModuleVersion() { 150 // VERSION: [version#] 151 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 152 } 153 154 /// Base class to manage the module bitcode writing, currently subclassed for 155 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 156 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 157 protected: 158 /// The Module to write to bitcode. 159 const Module &M; 160 161 /// Enumerates ids for all values in the module. 162 ValueEnumerator VE; 163 164 /// Optional per-module index to write for ThinLTO. 165 const ModuleSummaryIndex *Index; 166 167 /// Map that holds the correspondence between GUIDs in the summary index, 168 /// that came from indirect call profiles, and a value id generated by this 169 /// class to use in the VST and summary block records. 170 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 171 172 /// Tracks the last value id recorded in the GUIDToValueMap. 173 unsigned GlobalValueId; 174 175 /// Saves the offset of the VSTOffset record that must eventually be 176 /// backpatched with the offset of the actual VST. 177 uint64_t VSTOffsetPlaceholder = 0; 178 179 public: 180 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 181 /// writing to the provided \p Buffer. 182 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 183 BitstreamWriter &Stream, 184 bool ShouldPreserveUseListOrder, 185 const ModuleSummaryIndex *Index) 186 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 187 VE(M, ShouldPreserveUseListOrder), Index(Index) { 188 // Assign ValueIds to any callee values in the index that came from 189 // indirect call profiles and were recorded as a GUID not a Value* 190 // (which would have been assigned an ID by the ValueEnumerator). 191 // The starting ValueId is just after the number of values in the 192 // ValueEnumerator, so that they can be emitted in the VST. 193 GlobalValueId = VE.getValues().size(); 194 if (!Index) 195 return; 196 for (const auto &GUIDSummaryLists : *Index) 197 // Examine all summaries for this GUID. 198 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 199 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 200 // For each call in the function summary, see if the call 201 // is to a GUID (which means it is for an indirect call, 202 // otherwise we would have a Value for it). If so, synthesize 203 // a value id. 204 for (auto &CallEdge : FS->calls()) 205 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 206 assignValueId(CallEdge.first.getGUID()); 207 } 208 209 protected: 210 void writePerModuleGlobalValueSummary(); 211 212 private: 213 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 214 GlobalValueSummary *Summary, 215 unsigned ValueID, 216 unsigned FSCallsAbbrev, 217 unsigned FSCallsProfileAbbrev, 218 const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDIGlobalVariable(const DIGlobalVariable *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDILocalVariable(const DILocalVariable *N, 352 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 353 void writeDILabel(const DILabel *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDIExpression(const DIExpression *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIObjCProperty(const DIObjCProperty *N, 361 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 362 void writeDIImportedEntity(const DIImportedEntity *N, 363 SmallVectorImpl<uint64_t> &Record, 364 unsigned Abbrev); 365 unsigned createNamedMetadataAbbrev(); 366 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 367 unsigned createMetadataStringsAbbrev(); 368 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 369 SmallVectorImpl<uint64_t> &Record); 370 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 371 SmallVectorImpl<uint64_t> &Record, 372 std::vector<unsigned> *MDAbbrevs = nullptr, 373 std::vector<uint64_t> *IndexPos = nullptr); 374 void writeModuleMetadata(); 375 void writeFunctionMetadata(const Function &F); 376 void writeFunctionMetadataAttachment(const Function &F); 377 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 378 const GlobalObject &GO); 379 void writeModuleMetadataKinds(); 380 void writeOperandBundleTags(); 381 void writeSyncScopeNames(); 382 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 383 void writeModuleConstants(); 384 bool pushValueAndType(const Value *V, unsigned InstID, 385 SmallVectorImpl<unsigned> &Vals); 386 void writeOperandBundles(const CallBase &CB, unsigned InstID); 387 void pushValue(const Value *V, unsigned InstID, 388 SmallVectorImpl<unsigned> &Vals); 389 void pushValueSigned(const Value *V, unsigned InstID, 390 SmallVectorImpl<uint64_t> &Vals); 391 void writeInstruction(const Instruction &I, unsigned InstID, 392 SmallVectorImpl<unsigned> &Vals); 393 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 394 void writeGlobalValueSymbolTable( 395 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 396 void writeUseList(UseListOrder &&Order); 397 void writeUseListBlock(const Function *F); 398 void 399 writeFunction(const Function &F, 400 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 401 void writeBlockInfo(); 402 void writeModuleHash(size_t BlockStartPos); 403 404 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 405 return unsigned(SSID); 406 } 407 408 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 409 }; 410 411 /// Class to manage the bitcode writing for a combined index. 412 class IndexBitcodeWriter : public BitcodeWriterBase { 413 /// The combined index to write to bitcode. 414 const ModuleSummaryIndex &Index; 415 416 /// When writing a subset of the index for distributed backends, client 417 /// provides a map of modules to the corresponding GUIDs/summaries to write. 418 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 419 420 /// Map that holds the correspondence between the GUID used in the combined 421 /// index and a value id generated by this class to use in references. 422 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 423 424 /// Tracks the last value id recorded in the GUIDToValueMap. 425 unsigned GlobalValueId = 0; 426 427 public: 428 /// Constructs a IndexBitcodeWriter object for the given combined index, 429 /// writing to the provided \p Buffer. When writing a subset of the index 430 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 431 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 432 const ModuleSummaryIndex &Index, 433 const std::map<std::string, GVSummaryMapTy> 434 *ModuleToSummariesForIndex = nullptr) 435 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 436 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 437 // Assign unique value ids to all summaries to be written, for use 438 // in writing out the call graph edges. Save the mapping from GUID 439 // to the new global value id to use when writing those edges, which 440 // are currently saved in the index in terms of GUID. 441 forEachSummary([&](GVInfo I, bool) { 442 GUIDToValueIdMap[I.first] = ++GlobalValueId; 443 }); 444 } 445 446 /// The below iterator returns the GUID and associated summary. 447 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 448 449 /// Calls the callback for each value GUID and summary to be written to 450 /// bitcode. This hides the details of whether they are being pulled from the 451 /// entire index or just those in a provided ModuleToSummariesForIndex map. 452 template<typename Functor> 453 void forEachSummary(Functor Callback) { 454 if (ModuleToSummariesForIndex) { 455 for (auto &M : *ModuleToSummariesForIndex) 456 for (auto &Summary : M.second) { 457 Callback(Summary, false); 458 // Ensure aliasee is handled, e.g. for assigning a valueId, 459 // even if we are not importing the aliasee directly (the 460 // imported alias will contain a copy of aliasee). 461 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 462 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 463 } 464 } else { 465 for (auto &Summaries : Index) 466 for (auto &Summary : Summaries.second.SummaryList) 467 Callback({Summaries.first, Summary.get()}, false); 468 } 469 } 470 471 /// Calls the callback for each entry in the modulePaths StringMap that 472 /// should be written to the module path string table. This hides the details 473 /// of whether they are being pulled from the entire index or just those in a 474 /// provided ModuleToSummariesForIndex map. 475 template <typename Functor> void forEachModule(Functor Callback) { 476 if (ModuleToSummariesForIndex) { 477 for (const auto &M : *ModuleToSummariesForIndex) { 478 const auto &MPI = Index.modulePaths().find(M.first); 479 if (MPI == Index.modulePaths().end()) { 480 // This should only happen if the bitcode file was empty, in which 481 // case we shouldn't be importing (the ModuleToSummariesForIndex 482 // would only include the module we are writing and index for). 483 assert(ModuleToSummariesForIndex->size() == 1); 484 continue; 485 } 486 Callback(*MPI); 487 } 488 } else { 489 for (const auto &MPSE : Index.modulePaths()) 490 Callback(MPSE); 491 } 492 } 493 494 /// Main entry point for writing a combined index to bitcode. 495 void write(); 496 497 private: 498 void writeModStrings(); 499 void writeCombinedGlobalValueSummary(); 500 501 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 502 auto VMI = GUIDToValueIdMap.find(ValGUID); 503 if (VMI == GUIDToValueIdMap.end()) 504 return None; 505 return VMI->second; 506 } 507 508 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 509 }; 510 511 } // end anonymous namespace 512 513 static unsigned getEncodedCastOpcode(unsigned Opcode) { 514 switch (Opcode) { 515 default: llvm_unreachable("Unknown cast instruction!"); 516 case Instruction::Trunc : return bitc::CAST_TRUNC; 517 case Instruction::ZExt : return bitc::CAST_ZEXT; 518 case Instruction::SExt : return bitc::CAST_SEXT; 519 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 520 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 521 case Instruction::UIToFP : return bitc::CAST_UITOFP; 522 case Instruction::SIToFP : return bitc::CAST_SITOFP; 523 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 524 case Instruction::FPExt : return bitc::CAST_FPEXT; 525 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 526 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 527 case Instruction::BitCast : return bitc::CAST_BITCAST; 528 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 529 } 530 } 531 532 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 533 switch (Opcode) { 534 default: llvm_unreachable("Unknown binary instruction!"); 535 case Instruction::FNeg: return bitc::UNOP_FNEG; 536 } 537 } 538 539 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 540 switch (Opcode) { 541 default: llvm_unreachable("Unknown binary instruction!"); 542 case Instruction::Add: 543 case Instruction::FAdd: return bitc::BINOP_ADD; 544 case Instruction::Sub: 545 case Instruction::FSub: return bitc::BINOP_SUB; 546 case Instruction::Mul: 547 case Instruction::FMul: return bitc::BINOP_MUL; 548 case Instruction::UDiv: return bitc::BINOP_UDIV; 549 case Instruction::FDiv: 550 case Instruction::SDiv: return bitc::BINOP_SDIV; 551 case Instruction::URem: return bitc::BINOP_UREM; 552 case Instruction::FRem: 553 case Instruction::SRem: return bitc::BINOP_SREM; 554 case Instruction::Shl: return bitc::BINOP_SHL; 555 case Instruction::LShr: return bitc::BINOP_LSHR; 556 case Instruction::AShr: return bitc::BINOP_ASHR; 557 case Instruction::And: return bitc::BINOP_AND; 558 case Instruction::Or: return bitc::BINOP_OR; 559 case Instruction::Xor: return bitc::BINOP_XOR; 560 } 561 } 562 563 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 564 switch (Op) { 565 default: llvm_unreachable("Unknown RMW operation!"); 566 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 567 case AtomicRMWInst::Add: return bitc::RMW_ADD; 568 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 569 case AtomicRMWInst::And: return bitc::RMW_AND; 570 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 571 case AtomicRMWInst::Or: return bitc::RMW_OR; 572 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 573 case AtomicRMWInst::Max: return bitc::RMW_MAX; 574 case AtomicRMWInst::Min: return bitc::RMW_MIN; 575 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 576 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 577 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 578 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 579 } 580 } 581 582 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 583 switch (Ordering) { 584 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 585 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 586 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 587 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 588 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 589 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 590 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 591 } 592 llvm_unreachable("Invalid ordering"); 593 } 594 595 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 596 StringRef Str, unsigned AbbrevToUse) { 597 SmallVector<unsigned, 64> Vals; 598 599 // Code: [strchar x N] 600 for (char C : Str) { 601 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 602 AbbrevToUse = 0; 603 Vals.push_back(C); 604 } 605 606 // Emit the finished record. 607 Stream.EmitRecord(Code, Vals, AbbrevToUse); 608 } 609 610 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 611 switch (Kind) { 612 case Attribute::Alignment: 613 return bitc::ATTR_KIND_ALIGNMENT; 614 case Attribute::AllocAlign: 615 return bitc::ATTR_KIND_ALLOC_ALIGN; 616 case Attribute::AllocSize: 617 return bitc::ATTR_KIND_ALLOC_SIZE; 618 case Attribute::AlwaysInline: 619 return bitc::ATTR_KIND_ALWAYS_INLINE; 620 case Attribute::ArgMemOnly: 621 return bitc::ATTR_KIND_ARGMEMONLY; 622 case Attribute::Builtin: 623 return bitc::ATTR_KIND_BUILTIN; 624 case Attribute::ByVal: 625 return bitc::ATTR_KIND_BY_VAL; 626 case Attribute::Convergent: 627 return bitc::ATTR_KIND_CONVERGENT; 628 case Attribute::InAlloca: 629 return bitc::ATTR_KIND_IN_ALLOCA; 630 case Attribute::Cold: 631 return bitc::ATTR_KIND_COLD; 632 case Attribute::DisableSanitizerInstrumentation: 633 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 634 case Attribute::Hot: 635 return bitc::ATTR_KIND_HOT; 636 case Attribute::ElementType: 637 return bitc::ATTR_KIND_ELEMENTTYPE; 638 case Attribute::InaccessibleMemOnly: 639 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 640 case Attribute::InaccessibleMemOrArgMemOnly: 641 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 642 case Attribute::InlineHint: 643 return bitc::ATTR_KIND_INLINE_HINT; 644 case Attribute::InReg: 645 return bitc::ATTR_KIND_IN_REG; 646 case Attribute::JumpTable: 647 return bitc::ATTR_KIND_JUMP_TABLE; 648 case Attribute::MinSize: 649 return bitc::ATTR_KIND_MIN_SIZE; 650 case Attribute::Naked: 651 return bitc::ATTR_KIND_NAKED; 652 case Attribute::Nest: 653 return bitc::ATTR_KIND_NEST; 654 case Attribute::NoAlias: 655 return bitc::ATTR_KIND_NO_ALIAS; 656 case Attribute::NoBuiltin: 657 return bitc::ATTR_KIND_NO_BUILTIN; 658 case Attribute::NoCallback: 659 return bitc::ATTR_KIND_NO_CALLBACK; 660 case Attribute::NoCapture: 661 return bitc::ATTR_KIND_NO_CAPTURE; 662 case Attribute::NoDuplicate: 663 return bitc::ATTR_KIND_NO_DUPLICATE; 664 case Attribute::NoFree: 665 return bitc::ATTR_KIND_NOFREE; 666 case Attribute::NoImplicitFloat: 667 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 668 case Attribute::NoInline: 669 return bitc::ATTR_KIND_NO_INLINE; 670 case Attribute::NoRecurse: 671 return bitc::ATTR_KIND_NO_RECURSE; 672 case Attribute::NoMerge: 673 return bitc::ATTR_KIND_NO_MERGE; 674 case Attribute::NonLazyBind: 675 return bitc::ATTR_KIND_NON_LAZY_BIND; 676 case Attribute::NonNull: 677 return bitc::ATTR_KIND_NON_NULL; 678 case Attribute::Dereferenceable: 679 return bitc::ATTR_KIND_DEREFERENCEABLE; 680 case Attribute::DereferenceableOrNull: 681 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 682 case Attribute::NoRedZone: 683 return bitc::ATTR_KIND_NO_RED_ZONE; 684 case Attribute::NoReturn: 685 return bitc::ATTR_KIND_NO_RETURN; 686 case Attribute::NoSync: 687 return bitc::ATTR_KIND_NOSYNC; 688 case Attribute::NoCfCheck: 689 return bitc::ATTR_KIND_NOCF_CHECK; 690 case Attribute::NoProfile: 691 return bitc::ATTR_KIND_NO_PROFILE; 692 case Attribute::NoUnwind: 693 return bitc::ATTR_KIND_NO_UNWIND; 694 case Attribute::NoSanitizeBounds: 695 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 696 case Attribute::NoSanitizeCoverage: 697 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 698 case Attribute::NullPointerIsValid: 699 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 700 case Attribute::OptForFuzzing: 701 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 702 case Attribute::OptimizeForSize: 703 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 704 case Attribute::OptimizeNone: 705 return bitc::ATTR_KIND_OPTIMIZE_NONE; 706 case Attribute::ReadNone: 707 return bitc::ATTR_KIND_READ_NONE; 708 case Attribute::ReadOnly: 709 return bitc::ATTR_KIND_READ_ONLY; 710 case Attribute::Returned: 711 return bitc::ATTR_KIND_RETURNED; 712 case Attribute::ReturnsTwice: 713 return bitc::ATTR_KIND_RETURNS_TWICE; 714 case Attribute::SExt: 715 return bitc::ATTR_KIND_S_EXT; 716 case Attribute::Speculatable: 717 return bitc::ATTR_KIND_SPECULATABLE; 718 case Attribute::StackAlignment: 719 return bitc::ATTR_KIND_STACK_ALIGNMENT; 720 case Attribute::StackProtect: 721 return bitc::ATTR_KIND_STACK_PROTECT; 722 case Attribute::StackProtectReq: 723 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 724 case Attribute::StackProtectStrong: 725 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 726 case Attribute::SafeStack: 727 return bitc::ATTR_KIND_SAFESTACK; 728 case Attribute::ShadowCallStack: 729 return bitc::ATTR_KIND_SHADOWCALLSTACK; 730 case Attribute::StrictFP: 731 return bitc::ATTR_KIND_STRICT_FP; 732 case Attribute::StructRet: 733 return bitc::ATTR_KIND_STRUCT_RET; 734 case Attribute::SanitizeAddress: 735 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 736 case Attribute::SanitizeHWAddress: 737 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 738 case Attribute::SanitizeThread: 739 return bitc::ATTR_KIND_SANITIZE_THREAD; 740 case Attribute::SanitizeMemory: 741 return bitc::ATTR_KIND_SANITIZE_MEMORY; 742 case Attribute::SpeculativeLoadHardening: 743 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 744 case Attribute::SwiftError: 745 return bitc::ATTR_KIND_SWIFT_ERROR; 746 case Attribute::SwiftSelf: 747 return bitc::ATTR_KIND_SWIFT_SELF; 748 case Attribute::SwiftAsync: 749 return bitc::ATTR_KIND_SWIFT_ASYNC; 750 case Attribute::UWTable: 751 return bitc::ATTR_KIND_UW_TABLE; 752 case Attribute::VScaleRange: 753 return bitc::ATTR_KIND_VSCALE_RANGE; 754 case Attribute::WillReturn: 755 return bitc::ATTR_KIND_WILLRETURN; 756 case Attribute::WriteOnly: 757 return bitc::ATTR_KIND_WRITEONLY; 758 case Attribute::ZExt: 759 return bitc::ATTR_KIND_Z_EXT; 760 case Attribute::ImmArg: 761 return bitc::ATTR_KIND_IMMARG; 762 case Attribute::SanitizeMemTag: 763 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 764 case Attribute::Preallocated: 765 return bitc::ATTR_KIND_PREALLOCATED; 766 case Attribute::NoUndef: 767 return bitc::ATTR_KIND_NOUNDEF; 768 case Attribute::ByRef: 769 return bitc::ATTR_KIND_BYREF; 770 case Attribute::MustProgress: 771 return bitc::ATTR_KIND_MUSTPROGRESS; 772 case Attribute::EndAttrKinds: 773 llvm_unreachable("Can not encode end-attribute kinds marker."); 774 case Attribute::None: 775 llvm_unreachable("Can not encode none-attribute."); 776 case Attribute::EmptyKey: 777 case Attribute::TombstoneKey: 778 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 779 } 780 781 llvm_unreachable("Trying to encode unknown attribute"); 782 } 783 784 void ModuleBitcodeWriter::writeAttributeGroupTable() { 785 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 786 VE.getAttributeGroups(); 787 if (AttrGrps.empty()) return; 788 789 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 790 791 SmallVector<uint64_t, 64> Record; 792 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 793 unsigned AttrListIndex = Pair.first; 794 AttributeSet AS = Pair.second; 795 Record.push_back(VE.getAttributeGroupID(Pair)); 796 Record.push_back(AttrListIndex); 797 798 for (Attribute Attr : AS) { 799 if (Attr.isEnumAttribute()) { 800 Record.push_back(0); 801 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 802 } else if (Attr.isIntAttribute()) { 803 Record.push_back(1); 804 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 805 Record.push_back(Attr.getValueAsInt()); 806 } else if (Attr.isStringAttribute()) { 807 StringRef Kind = Attr.getKindAsString(); 808 StringRef Val = Attr.getValueAsString(); 809 810 Record.push_back(Val.empty() ? 3 : 4); 811 Record.append(Kind.begin(), Kind.end()); 812 Record.push_back(0); 813 if (!Val.empty()) { 814 Record.append(Val.begin(), Val.end()); 815 Record.push_back(0); 816 } 817 } else { 818 assert(Attr.isTypeAttribute()); 819 Type *Ty = Attr.getValueAsType(); 820 Record.push_back(Ty ? 6 : 5); 821 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 822 if (Ty) 823 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 824 } 825 } 826 827 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 828 Record.clear(); 829 } 830 831 Stream.ExitBlock(); 832 } 833 834 void ModuleBitcodeWriter::writeAttributeTable() { 835 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 836 if (Attrs.empty()) return; 837 838 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 839 840 SmallVector<uint64_t, 64> Record; 841 for (const AttributeList &AL : Attrs) { 842 for (unsigned i : AL.indexes()) { 843 AttributeSet AS = AL.getAttributes(i); 844 if (AS.hasAttributes()) 845 Record.push_back(VE.getAttributeGroupID({i, AS})); 846 } 847 848 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 849 Record.clear(); 850 } 851 852 Stream.ExitBlock(); 853 } 854 855 /// WriteTypeTable - Write out the type table for a module. 856 void ModuleBitcodeWriter::writeTypeTable() { 857 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 858 859 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 860 SmallVector<uint64_t, 64> TypeVals; 861 862 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 863 864 // Abbrev for TYPE_CODE_POINTER. 865 auto Abbv = std::make_shared<BitCodeAbbrev>(); 866 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 868 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 869 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 870 871 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 872 Abbv = std::make_shared<BitCodeAbbrev>(); 873 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 874 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 875 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 876 877 // Abbrev for TYPE_CODE_FUNCTION. 878 Abbv = std::make_shared<BitCodeAbbrev>(); 879 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 883 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 884 885 // Abbrev for TYPE_CODE_STRUCT_ANON. 886 Abbv = std::make_shared<BitCodeAbbrev>(); 887 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 891 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 892 893 // Abbrev for TYPE_CODE_STRUCT_NAME. 894 Abbv = std::make_shared<BitCodeAbbrev>(); 895 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 898 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 899 900 // Abbrev for TYPE_CODE_STRUCT_NAMED. 901 Abbv = std::make_shared<BitCodeAbbrev>(); 902 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 906 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 907 908 // Abbrev for TYPE_CODE_ARRAY. 909 Abbv = std::make_shared<BitCodeAbbrev>(); 910 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 913 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 914 915 // Emit an entry count so the reader can reserve space. 916 TypeVals.push_back(TypeList.size()); 917 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 918 TypeVals.clear(); 919 920 // Loop over all of the types, emitting each in turn. 921 for (Type *T : TypeList) { 922 int AbbrevToUse = 0; 923 unsigned Code = 0; 924 925 switch (T->getTypeID()) { 926 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 927 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 928 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 929 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 930 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 931 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 932 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 933 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 934 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 935 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 936 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 937 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 938 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 939 case Type::IntegerTyID: 940 // INTEGER: [width] 941 Code = bitc::TYPE_CODE_INTEGER; 942 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 943 break; 944 case Type::PointerTyID: { 945 PointerType *PTy = cast<PointerType>(T); 946 unsigned AddressSpace = PTy->getAddressSpace(); 947 if (PTy->isOpaque()) { 948 // OPAQUE_POINTER: [address space] 949 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 950 TypeVals.push_back(AddressSpace); 951 if (AddressSpace == 0) 952 AbbrevToUse = OpaquePtrAbbrev; 953 } else { 954 // POINTER: [pointee type, address space] 955 Code = bitc::TYPE_CODE_POINTER; 956 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 957 TypeVals.push_back(AddressSpace); 958 if (AddressSpace == 0) 959 AbbrevToUse = PtrAbbrev; 960 } 961 break; 962 } 963 case Type::FunctionTyID: { 964 FunctionType *FT = cast<FunctionType>(T); 965 // FUNCTION: [isvararg, retty, paramty x N] 966 Code = bitc::TYPE_CODE_FUNCTION; 967 TypeVals.push_back(FT->isVarArg()); 968 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 969 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 970 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 971 AbbrevToUse = FunctionAbbrev; 972 break; 973 } 974 case Type::StructTyID: { 975 StructType *ST = cast<StructType>(T); 976 // STRUCT: [ispacked, eltty x N] 977 TypeVals.push_back(ST->isPacked()); 978 // Output all of the element types. 979 for (Type *ET : ST->elements()) 980 TypeVals.push_back(VE.getTypeID(ET)); 981 982 if (ST->isLiteral()) { 983 Code = bitc::TYPE_CODE_STRUCT_ANON; 984 AbbrevToUse = StructAnonAbbrev; 985 } else { 986 if (ST->isOpaque()) { 987 Code = bitc::TYPE_CODE_OPAQUE; 988 } else { 989 Code = bitc::TYPE_CODE_STRUCT_NAMED; 990 AbbrevToUse = StructNamedAbbrev; 991 } 992 993 // Emit the name if it is present. 994 if (!ST->getName().empty()) 995 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 996 StructNameAbbrev); 997 } 998 break; 999 } 1000 case Type::ArrayTyID: { 1001 ArrayType *AT = cast<ArrayType>(T); 1002 // ARRAY: [numelts, eltty] 1003 Code = bitc::TYPE_CODE_ARRAY; 1004 TypeVals.push_back(AT->getNumElements()); 1005 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1006 AbbrevToUse = ArrayAbbrev; 1007 break; 1008 } 1009 case Type::FixedVectorTyID: 1010 case Type::ScalableVectorTyID: { 1011 VectorType *VT = cast<VectorType>(T); 1012 // VECTOR [numelts, eltty] or 1013 // [numelts, eltty, scalable] 1014 Code = bitc::TYPE_CODE_VECTOR; 1015 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1016 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1017 if (isa<ScalableVectorType>(VT)) 1018 TypeVals.push_back(true); 1019 break; 1020 } 1021 } 1022 1023 // Emit the finished record. 1024 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1025 TypeVals.clear(); 1026 } 1027 1028 Stream.ExitBlock(); 1029 } 1030 1031 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1032 switch (Linkage) { 1033 case GlobalValue::ExternalLinkage: 1034 return 0; 1035 case GlobalValue::WeakAnyLinkage: 1036 return 16; 1037 case GlobalValue::AppendingLinkage: 1038 return 2; 1039 case GlobalValue::InternalLinkage: 1040 return 3; 1041 case GlobalValue::LinkOnceAnyLinkage: 1042 return 18; 1043 case GlobalValue::ExternalWeakLinkage: 1044 return 7; 1045 case GlobalValue::CommonLinkage: 1046 return 8; 1047 case GlobalValue::PrivateLinkage: 1048 return 9; 1049 case GlobalValue::WeakODRLinkage: 1050 return 17; 1051 case GlobalValue::LinkOnceODRLinkage: 1052 return 19; 1053 case GlobalValue::AvailableExternallyLinkage: 1054 return 12; 1055 } 1056 llvm_unreachable("Invalid linkage"); 1057 } 1058 1059 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1060 return getEncodedLinkage(GV.getLinkage()); 1061 } 1062 1063 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1064 uint64_t RawFlags = 0; 1065 RawFlags |= Flags.ReadNone; 1066 RawFlags |= (Flags.ReadOnly << 1); 1067 RawFlags |= (Flags.NoRecurse << 2); 1068 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1069 RawFlags |= (Flags.NoInline << 4); 1070 RawFlags |= (Flags.AlwaysInline << 5); 1071 RawFlags |= (Flags.NoUnwind << 6); 1072 RawFlags |= (Flags.MayThrow << 7); 1073 RawFlags |= (Flags.HasUnknownCall << 8); 1074 RawFlags |= (Flags.MustBeUnreachable << 9); 1075 return RawFlags; 1076 } 1077 1078 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1079 // in BitcodeReader.cpp. 1080 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1081 uint64_t RawFlags = 0; 1082 1083 RawFlags |= Flags.NotEligibleToImport; // bool 1084 RawFlags |= (Flags.Live << 1); 1085 RawFlags |= (Flags.DSOLocal << 2); 1086 RawFlags |= (Flags.CanAutoHide << 3); 1087 1088 // Linkage don't need to be remapped at that time for the summary. Any future 1089 // change to the getEncodedLinkage() function will need to be taken into 1090 // account here as well. 1091 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1092 1093 RawFlags |= (Flags.Visibility << 8); // 2 bits 1094 1095 return RawFlags; 1096 } 1097 1098 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1099 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1100 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1101 return RawFlags; 1102 } 1103 1104 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1105 switch (GV.getVisibility()) { 1106 case GlobalValue::DefaultVisibility: return 0; 1107 case GlobalValue::HiddenVisibility: return 1; 1108 case GlobalValue::ProtectedVisibility: return 2; 1109 } 1110 llvm_unreachable("Invalid visibility"); 1111 } 1112 1113 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1114 switch (GV.getDLLStorageClass()) { 1115 case GlobalValue::DefaultStorageClass: return 0; 1116 case GlobalValue::DLLImportStorageClass: return 1; 1117 case GlobalValue::DLLExportStorageClass: return 2; 1118 } 1119 llvm_unreachable("Invalid DLL storage class"); 1120 } 1121 1122 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1123 switch (GV.getThreadLocalMode()) { 1124 case GlobalVariable::NotThreadLocal: return 0; 1125 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1126 case GlobalVariable::LocalDynamicTLSModel: return 2; 1127 case GlobalVariable::InitialExecTLSModel: return 3; 1128 case GlobalVariable::LocalExecTLSModel: return 4; 1129 } 1130 llvm_unreachable("Invalid TLS model"); 1131 } 1132 1133 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1134 switch (C.getSelectionKind()) { 1135 case Comdat::Any: 1136 return bitc::COMDAT_SELECTION_KIND_ANY; 1137 case Comdat::ExactMatch: 1138 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1139 case Comdat::Largest: 1140 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1141 case Comdat::NoDeduplicate: 1142 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1143 case Comdat::SameSize: 1144 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1145 } 1146 llvm_unreachable("Invalid selection kind"); 1147 } 1148 1149 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1150 switch (GV.getUnnamedAddr()) { 1151 case GlobalValue::UnnamedAddr::None: return 0; 1152 case GlobalValue::UnnamedAddr::Local: return 2; 1153 case GlobalValue::UnnamedAddr::Global: return 1; 1154 } 1155 llvm_unreachable("Invalid unnamed_addr"); 1156 } 1157 1158 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1159 if (GenerateHash) 1160 Hasher.update(Str); 1161 return StrtabBuilder.add(Str); 1162 } 1163 1164 void ModuleBitcodeWriter::writeComdats() { 1165 SmallVector<unsigned, 64> Vals; 1166 for (const Comdat *C : VE.getComdats()) { 1167 // COMDAT: [strtab offset, strtab size, selection_kind] 1168 Vals.push_back(addToStrtab(C->getName())); 1169 Vals.push_back(C->getName().size()); 1170 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1171 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1172 Vals.clear(); 1173 } 1174 } 1175 1176 /// Write a record that will eventually hold the word offset of the 1177 /// module-level VST. For now the offset is 0, which will be backpatched 1178 /// after the real VST is written. Saves the bit offset to backpatch. 1179 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1180 // Write a placeholder value in for the offset of the real VST, 1181 // which is written after the function blocks so that it can include 1182 // the offset of each function. The placeholder offset will be 1183 // updated when the real VST is written. 1184 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1185 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1186 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1187 // hold the real VST offset. Must use fixed instead of VBR as we don't 1188 // know how many VBR chunks to reserve ahead of time. 1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1190 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1191 1192 // Emit the placeholder 1193 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1194 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1195 1196 // Compute and save the bit offset to the placeholder, which will be 1197 // patched when the real VST is written. We can simply subtract the 32-bit 1198 // fixed size from the current bit number to get the location to backpatch. 1199 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1200 } 1201 1202 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1203 1204 /// Determine the encoding to use for the given string name and length. 1205 static StringEncoding getStringEncoding(StringRef Str) { 1206 bool isChar6 = true; 1207 for (char C : Str) { 1208 if (isChar6) 1209 isChar6 = BitCodeAbbrevOp::isChar6(C); 1210 if ((unsigned char)C & 128) 1211 // don't bother scanning the rest. 1212 return SE_Fixed8; 1213 } 1214 if (isChar6) 1215 return SE_Char6; 1216 return SE_Fixed7; 1217 } 1218 1219 /// Emit top-level description of module, including target triple, inline asm, 1220 /// descriptors for global variables, and function prototype info. 1221 /// Returns the bit offset to backpatch with the location of the real VST. 1222 void ModuleBitcodeWriter::writeModuleInfo() { 1223 // Emit various pieces of data attached to a module. 1224 if (!M.getTargetTriple().empty()) 1225 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1226 0 /*TODO*/); 1227 const std::string &DL = M.getDataLayoutStr(); 1228 if (!DL.empty()) 1229 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1230 if (!M.getModuleInlineAsm().empty()) 1231 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1232 0 /*TODO*/); 1233 1234 // Emit information about sections and GC, computing how many there are. Also 1235 // compute the maximum alignment value. 1236 std::map<std::string, unsigned> SectionMap; 1237 std::map<std::string, unsigned> GCMap; 1238 MaybeAlign MaxAlignment; 1239 unsigned MaxGlobalType = 0; 1240 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1241 if (A) 1242 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1243 }; 1244 for (const GlobalVariable &GV : M.globals()) { 1245 UpdateMaxAlignment(GV.getAlign()); 1246 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1247 if (GV.hasSection()) { 1248 // Give section names unique ID's. 1249 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1250 if (!Entry) { 1251 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1252 0 /*TODO*/); 1253 Entry = SectionMap.size(); 1254 } 1255 } 1256 } 1257 for (const Function &F : M) { 1258 UpdateMaxAlignment(F.getAlign()); 1259 if (F.hasSection()) { 1260 // Give section names unique ID's. 1261 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1262 if (!Entry) { 1263 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1264 0 /*TODO*/); 1265 Entry = SectionMap.size(); 1266 } 1267 } 1268 if (F.hasGC()) { 1269 // Same for GC names. 1270 unsigned &Entry = GCMap[F.getGC()]; 1271 if (!Entry) { 1272 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1273 0 /*TODO*/); 1274 Entry = GCMap.size(); 1275 } 1276 } 1277 } 1278 1279 // Emit abbrev for globals, now that we know # sections and max alignment. 1280 unsigned SimpleGVarAbbrev = 0; 1281 if (!M.global_empty()) { 1282 // Add an abbrev for common globals with no visibility or thread localness. 1283 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1284 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1288 Log2_32_Ceil(MaxGlobalType+1))); 1289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1290 //| explicitType << 1 1291 //| constant 1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1294 if (!MaxAlignment) // Alignment. 1295 Abbv->Add(BitCodeAbbrevOp(0)); 1296 else { 1297 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1299 Log2_32_Ceil(MaxEncAlignment+1))); 1300 } 1301 if (SectionMap.empty()) // Section. 1302 Abbv->Add(BitCodeAbbrevOp(0)); 1303 else 1304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1305 Log2_32_Ceil(SectionMap.size()+1))); 1306 // Don't bother emitting vis + thread local. 1307 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1308 } 1309 1310 SmallVector<unsigned, 64> Vals; 1311 // Emit the module's source file name. 1312 { 1313 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1314 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1315 if (Bits == SE_Char6) 1316 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1317 else if (Bits == SE_Fixed7) 1318 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1319 1320 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1321 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1322 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1324 Abbv->Add(AbbrevOpToUse); 1325 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1326 1327 for (const auto P : M.getSourceFileName()) 1328 Vals.push_back((unsigned char)P); 1329 1330 // Emit the finished record. 1331 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1332 Vals.clear(); 1333 } 1334 1335 // Emit the global variable information. 1336 for (const GlobalVariable &GV : M.globals()) { 1337 unsigned AbbrevToUse = 0; 1338 1339 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1340 // linkage, alignment, section, visibility, threadlocal, 1341 // unnamed_addr, externally_initialized, dllstorageclass, 1342 // comdat, attributes, DSO_Local] 1343 Vals.push_back(addToStrtab(GV.getName())); 1344 Vals.push_back(GV.getName().size()); 1345 Vals.push_back(VE.getTypeID(GV.getValueType())); 1346 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1347 Vals.push_back(GV.isDeclaration() ? 0 : 1348 (VE.getValueID(GV.getInitializer()) + 1)); 1349 Vals.push_back(getEncodedLinkage(GV)); 1350 Vals.push_back(getEncodedAlign(GV.getAlign())); 1351 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1352 : 0); 1353 if (GV.isThreadLocal() || 1354 GV.getVisibility() != GlobalValue::DefaultVisibility || 1355 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1356 GV.isExternallyInitialized() || 1357 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1358 GV.hasComdat() || 1359 GV.hasAttributes() || 1360 GV.isDSOLocal() || 1361 GV.hasPartition()) { 1362 Vals.push_back(getEncodedVisibility(GV)); 1363 Vals.push_back(getEncodedThreadLocalMode(GV)); 1364 Vals.push_back(getEncodedUnnamedAddr(GV)); 1365 Vals.push_back(GV.isExternallyInitialized()); 1366 Vals.push_back(getEncodedDLLStorageClass(GV)); 1367 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1368 1369 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1370 Vals.push_back(VE.getAttributeListID(AL)); 1371 1372 Vals.push_back(GV.isDSOLocal()); 1373 Vals.push_back(addToStrtab(GV.getPartition())); 1374 Vals.push_back(GV.getPartition().size()); 1375 } else { 1376 AbbrevToUse = SimpleGVarAbbrev; 1377 } 1378 1379 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1380 Vals.clear(); 1381 } 1382 1383 // Emit the function proto information. 1384 for (const Function &F : M) { 1385 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1386 // linkage, paramattrs, alignment, section, visibility, gc, 1387 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1388 // prefixdata, personalityfn, DSO_Local, addrspace] 1389 Vals.push_back(addToStrtab(F.getName())); 1390 Vals.push_back(F.getName().size()); 1391 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1392 Vals.push_back(F.getCallingConv()); 1393 Vals.push_back(F.isDeclaration()); 1394 Vals.push_back(getEncodedLinkage(F)); 1395 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1396 Vals.push_back(getEncodedAlign(F.getAlign())); 1397 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1398 : 0); 1399 Vals.push_back(getEncodedVisibility(F)); 1400 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1401 Vals.push_back(getEncodedUnnamedAddr(F)); 1402 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1403 : 0); 1404 Vals.push_back(getEncodedDLLStorageClass(F)); 1405 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1406 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1407 : 0); 1408 Vals.push_back( 1409 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1410 1411 Vals.push_back(F.isDSOLocal()); 1412 Vals.push_back(F.getAddressSpace()); 1413 Vals.push_back(addToStrtab(F.getPartition())); 1414 Vals.push_back(F.getPartition().size()); 1415 1416 unsigned AbbrevToUse = 0; 1417 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1418 Vals.clear(); 1419 } 1420 1421 // Emit the alias information. 1422 for (const GlobalAlias &A : M.aliases()) { 1423 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1424 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1425 // DSO_Local] 1426 Vals.push_back(addToStrtab(A.getName())); 1427 Vals.push_back(A.getName().size()); 1428 Vals.push_back(VE.getTypeID(A.getValueType())); 1429 Vals.push_back(A.getType()->getAddressSpace()); 1430 Vals.push_back(VE.getValueID(A.getAliasee())); 1431 Vals.push_back(getEncodedLinkage(A)); 1432 Vals.push_back(getEncodedVisibility(A)); 1433 Vals.push_back(getEncodedDLLStorageClass(A)); 1434 Vals.push_back(getEncodedThreadLocalMode(A)); 1435 Vals.push_back(getEncodedUnnamedAddr(A)); 1436 Vals.push_back(A.isDSOLocal()); 1437 Vals.push_back(addToStrtab(A.getPartition())); 1438 Vals.push_back(A.getPartition().size()); 1439 1440 unsigned AbbrevToUse = 0; 1441 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1442 Vals.clear(); 1443 } 1444 1445 // Emit the ifunc information. 1446 for (const GlobalIFunc &I : M.ifuncs()) { 1447 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1448 // val#, linkage, visibility, DSO_Local] 1449 Vals.push_back(addToStrtab(I.getName())); 1450 Vals.push_back(I.getName().size()); 1451 Vals.push_back(VE.getTypeID(I.getValueType())); 1452 Vals.push_back(I.getType()->getAddressSpace()); 1453 Vals.push_back(VE.getValueID(I.getResolver())); 1454 Vals.push_back(getEncodedLinkage(I)); 1455 Vals.push_back(getEncodedVisibility(I)); 1456 Vals.push_back(I.isDSOLocal()); 1457 Vals.push_back(addToStrtab(I.getPartition())); 1458 Vals.push_back(I.getPartition().size()); 1459 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1460 Vals.clear(); 1461 } 1462 1463 writeValueSymbolTableForwardDecl(); 1464 } 1465 1466 static uint64_t getOptimizationFlags(const Value *V) { 1467 uint64_t Flags = 0; 1468 1469 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1470 if (OBO->hasNoSignedWrap()) 1471 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1472 if (OBO->hasNoUnsignedWrap()) 1473 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1474 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1475 if (PEO->isExact()) 1476 Flags |= 1 << bitc::PEO_EXACT; 1477 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1478 if (FPMO->hasAllowReassoc()) 1479 Flags |= bitc::AllowReassoc; 1480 if (FPMO->hasNoNaNs()) 1481 Flags |= bitc::NoNaNs; 1482 if (FPMO->hasNoInfs()) 1483 Flags |= bitc::NoInfs; 1484 if (FPMO->hasNoSignedZeros()) 1485 Flags |= bitc::NoSignedZeros; 1486 if (FPMO->hasAllowReciprocal()) 1487 Flags |= bitc::AllowReciprocal; 1488 if (FPMO->hasAllowContract()) 1489 Flags |= bitc::AllowContract; 1490 if (FPMO->hasApproxFunc()) 1491 Flags |= bitc::ApproxFunc; 1492 } 1493 1494 return Flags; 1495 } 1496 1497 void ModuleBitcodeWriter::writeValueAsMetadata( 1498 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1499 // Mimic an MDNode with a value as one operand. 1500 Value *V = MD->getValue(); 1501 Record.push_back(VE.getTypeID(V->getType())); 1502 Record.push_back(VE.getValueID(V)); 1503 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1504 Record.clear(); 1505 } 1506 1507 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1508 SmallVectorImpl<uint64_t> &Record, 1509 unsigned Abbrev) { 1510 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1511 Metadata *MD = N->getOperand(i); 1512 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1513 "Unexpected function-local metadata"); 1514 Record.push_back(VE.getMetadataOrNullID(MD)); 1515 } 1516 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1517 : bitc::METADATA_NODE, 1518 Record, Abbrev); 1519 Record.clear(); 1520 } 1521 1522 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1523 // Assume the column is usually under 128, and always output the inlined-at 1524 // location (it's never more expensive than building an array size 1). 1525 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1526 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1533 return Stream.EmitAbbrev(std::move(Abbv)); 1534 } 1535 1536 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1537 SmallVectorImpl<uint64_t> &Record, 1538 unsigned &Abbrev) { 1539 if (!Abbrev) 1540 Abbrev = createDILocationAbbrev(); 1541 1542 Record.push_back(N->isDistinct()); 1543 Record.push_back(N->getLine()); 1544 Record.push_back(N->getColumn()); 1545 Record.push_back(VE.getMetadataID(N->getScope())); 1546 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1547 Record.push_back(N->isImplicitCode()); 1548 1549 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1550 Record.clear(); 1551 } 1552 1553 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1554 // Assume the column is usually under 128, and always output the inlined-at 1555 // location (it's never more expensive than building an array size 1). 1556 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1557 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1564 return Stream.EmitAbbrev(std::move(Abbv)); 1565 } 1566 1567 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1568 SmallVectorImpl<uint64_t> &Record, 1569 unsigned &Abbrev) { 1570 if (!Abbrev) 1571 Abbrev = createGenericDINodeAbbrev(); 1572 1573 Record.push_back(N->isDistinct()); 1574 Record.push_back(N->getTag()); 1575 Record.push_back(0); // Per-tag version field; unused for now. 1576 1577 for (auto &I : N->operands()) 1578 Record.push_back(VE.getMetadataOrNullID(I)); 1579 1580 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1581 Record.clear(); 1582 } 1583 1584 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1585 SmallVectorImpl<uint64_t> &Record, 1586 unsigned Abbrev) { 1587 const uint64_t Version = 2 << 1; 1588 Record.push_back((uint64_t)N->isDistinct() | Version); 1589 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1590 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1591 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1593 1594 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1595 Record.clear(); 1596 } 1597 1598 void ModuleBitcodeWriter::writeDIGenericSubrange( 1599 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1600 unsigned Abbrev) { 1601 Record.push_back((uint64_t)N->isDistinct()); 1602 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1603 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1604 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1605 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1606 1607 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1608 Record.clear(); 1609 } 1610 1611 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1612 if ((int64_t)V >= 0) 1613 Vals.push_back(V << 1); 1614 else 1615 Vals.push_back((-V << 1) | 1); 1616 } 1617 1618 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1619 // We have an arbitrary precision integer value to write whose 1620 // bit width is > 64. However, in canonical unsigned integer 1621 // format it is likely that the high bits are going to be zero. 1622 // So, we only write the number of active words. 1623 unsigned NumWords = A.getActiveWords(); 1624 const uint64_t *RawData = A.getRawData(); 1625 for (unsigned i = 0; i < NumWords; i++) 1626 emitSignedInt64(Vals, RawData[i]); 1627 } 1628 1629 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1630 SmallVectorImpl<uint64_t> &Record, 1631 unsigned Abbrev) { 1632 const uint64_t IsBigInt = 1 << 2; 1633 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1634 Record.push_back(N->getValue().getBitWidth()); 1635 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1636 emitWideAPInt(Record, N->getValue()); 1637 1638 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1639 Record.clear(); 1640 } 1641 1642 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1643 SmallVectorImpl<uint64_t> &Record, 1644 unsigned Abbrev) { 1645 Record.push_back(N->isDistinct()); 1646 Record.push_back(N->getTag()); 1647 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1648 Record.push_back(N->getSizeInBits()); 1649 Record.push_back(N->getAlignInBits()); 1650 Record.push_back(N->getEncoding()); 1651 Record.push_back(N->getFlags()); 1652 1653 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1654 Record.clear(); 1655 } 1656 1657 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1658 SmallVectorImpl<uint64_t> &Record, 1659 unsigned Abbrev) { 1660 Record.push_back(N->isDistinct()); 1661 Record.push_back(N->getTag()); 1662 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1663 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1664 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1665 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1666 Record.push_back(N->getSizeInBits()); 1667 Record.push_back(N->getAlignInBits()); 1668 Record.push_back(N->getEncoding()); 1669 1670 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1671 Record.clear(); 1672 } 1673 1674 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1675 SmallVectorImpl<uint64_t> &Record, 1676 unsigned Abbrev) { 1677 Record.push_back(N->isDistinct()); 1678 Record.push_back(N->getTag()); 1679 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1680 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1681 Record.push_back(N->getLine()); 1682 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1684 Record.push_back(N->getSizeInBits()); 1685 Record.push_back(N->getAlignInBits()); 1686 Record.push_back(N->getOffsetInBits()); 1687 Record.push_back(N->getFlags()); 1688 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1689 1690 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1691 // that there is no DWARF address space associated with DIDerivedType. 1692 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1693 Record.push_back(*DWARFAddressSpace + 1); 1694 else 1695 Record.push_back(0); 1696 1697 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1698 1699 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1700 Record.clear(); 1701 } 1702 1703 void ModuleBitcodeWriter::writeDICompositeType( 1704 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1705 unsigned Abbrev) { 1706 const unsigned IsNotUsedInOldTypeRef = 0x2; 1707 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1708 Record.push_back(N->getTag()); 1709 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1711 Record.push_back(N->getLine()); 1712 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1714 Record.push_back(N->getSizeInBits()); 1715 Record.push_back(N->getAlignInBits()); 1716 Record.push_back(N->getOffsetInBits()); 1717 Record.push_back(N->getFlags()); 1718 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1719 Record.push_back(N->getRuntimeLang()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1727 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1728 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1729 1730 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1731 Record.clear(); 1732 } 1733 1734 void ModuleBitcodeWriter::writeDISubroutineType( 1735 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1736 unsigned Abbrev) { 1737 const unsigned HasNoOldTypeRefs = 0x2; 1738 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1739 Record.push_back(N->getFlags()); 1740 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1741 Record.push_back(N->getCC()); 1742 1743 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1744 Record.clear(); 1745 } 1746 1747 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1748 SmallVectorImpl<uint64_t> &Record, 1749 unsigned Abbrev) { 1750 Record.push_back(N->isDistinct()); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1753 if (N->getRawChecksum()) { 1754 Record.push_back(N->getRawChecksum()->Kind); 1755 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1756 } else { 1757 // Maintain backwards compatibility with the old internal representation of 1758 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1759 Record.push_back(0); 1760 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1761 } 1762 auto Source = N->getRawSource(); 1763 if (Source) 1764 Record.push_back(VE.getMetadataOrNullID(*Source)); 1765 1766 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1767 Record.clear(); 1768 } 1769 1770 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1771 SmallVectorImpl<uint64_t> &Record, 1772 unsigned Abbrev) { 1773 assert(N->isDistinct() && "Expected distinct compile units"); 1774 Record.push_back(/* IsDistinct */ true); 1775 Record.push_back(N->getSourceLanguage()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1778 Record.push_back(N->isOptimized()); 1779 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1780 Record.push_back(N->getRuntimeVersion()); 1781 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1782 Record.push_back(N->getEmissionKind()); 1783 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1785 Record.push_back(/* subprograms */ 0); 1786 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1787 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1788 Record.push_back(N->getDWOId()); 1789 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1790 Record.push_back(N->getSplitDebugInlining()); 1791 Record.push_back(N->getDebugInfoForProfiling()); 1792 Record.push_back((unsigned)N->getNameTableKind()); 1793 Record.push_back(N->getRangesBaseAddress()); 1794 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1795 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1796 1797 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1798 Record.clear(); 1799 } 1800 1801 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1802 SmallVectorImpl<uint64_t> &Record, 1803 unsigned Abbrev) { 1804 const uint64_t HasUnitFlag = 1 << 1; 1805 const uint64_t HasSPFlagsFlag = 1 << 2; 1806 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1807 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1808 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1809 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1810 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1811 Record.push_back(N->getLine()); 1812 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1813 Record.push_back(N->getScopeLine()); 1814 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1815 Record.push_back(N->getSPFlags()); 1816 Record.push_back(N->getVirtualIndex()); 1817 Record.push_back(N->getFlags()); 1818 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1819 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1820 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1821 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1822 Record.push_back(N->getThisAdjustment()); 1823 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1824 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1825 1826 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1827 Record.clear(); 1828 } 1829 1830 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1831 SmallVectorImpl<uint64_t> &Record, 1832 unsigned Abbrev) { 1833 Record.push_back(N->isDistinct()); 1834 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1835 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1836 Record.push_back(N->getLine()); 1837 Record.push_back(N->getColumn()); 1838 1839 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1840 Record.clear(); 1841 } 1842 1843 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1844 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1845 unsigned Abbrev) { 1846 Record.push_back(N->isDistinct()); 1847 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1848 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1849 Record.push_back(N->getDiscriminator()); 1850 1851 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1852 Record.clear(); 1853 } 1854 1855 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1856 SmallVectorImpl<uint64_t> &Record, 1857 unsigned Abbrev) { 1858 Record.push_back(N->isDistinct()); 1859 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1860 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1861 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1862 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1863 Record.push_back(N->getLineNo()); 1864 1865 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1866 Record.clear(); 1867 } 1868 1869 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1870 SmallVectorImpl<uint64_t> &Record, 1871 unsigned Abbrev) { 1872 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1873 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1874 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1875 1876 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1877 Record.clear(); 1878 } 1879 1880 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1881 SmallVectorImpl<uint64_t> &Record, 1882 unsigned Abbrev) { 1883 Record.push_back(N->isDistinct()); 1884 Record.push_back(N->getMacinfoType()); 1885 Record.push_back(N->getLine()); 1886 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1887 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1888 1889 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1890 Record.clear(); 1891 } 1892 1893 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1894 SmallVectorImpl<uint64_t> &Record, 1895 unsigned Abbrev) { 1896 Record.push_back(N->isDistinct()); 1897 Record.push_back(N->getMacinfoType()); 1898 Record.push_back(N->getLine()); 1899 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1900 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1901 1902 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1903 Record.clear(); 1904 } 1905 1906 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1907 SmallVectorImpl<uint64_t> &Record, 1908 unsigned Abbrev) { 1909 Record.reserve(N->getArgs().size()); 1910 for (ValueAsMetadata *MD : N->getArgs()) 1911 Record.push_back(VE.getMetadataID(MD)); 1912 1913 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1914 Record.clear(); 1915 } 1916 1917 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1918 SmallVectorImpl<uint64_t> &Record, 1919 unsigned Abbrev) { 1920 Record.push_back(N->isDistinct()); 1921 for (auto &I : N->operands()) 1922 Record.push_back(VE.getMetadataOrNullID(I)); 1923 Record.push_back(N->getLineNo()); 1924 Record.push_back(N->getIsDecl()); 1925 1926 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1927 Record.clear(); 1928 } 1929 1930 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1931 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1932 unsigned Abbrev) { 1933 Record.push_back(N->isDistinct()); 1934 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1935 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1936 Record.push_back(N->isDefault()); 1937 1938 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1939 Record.clear(); 1940 } 1941 1942 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1943 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1944 unsigned Abbrev) { 1945 Record.push_back(N->isDistinct()); 1946 Record.push_back(N->getTag()); 1947 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1948 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1949 Record.push_back(N->isDefault()); 1950 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1951 1952 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1953 Record.clear(); 1954 } 1955 1956 void ModuleBitcodeWriter::writeDIGlobalVariable( 1957 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1958 unsigned Abbrev) { 1959 const uint64_t Version = 2 << 1; 1960 Record.push_back((uint64_t)N->isDistinct() | Version); 1961 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1962 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1963 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1964 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1965 Record.push_back(N->getLine()); 1966 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1967 Record.push_back(N->isLocalToUnit()); 1968 Record.push_back(N->isDefinition()); 1969 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1970 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1971 Record.push_back(N->getAlignInBits()); 1972 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1973 1974 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1975 Record.clear(); 1976 } 1977 1978 void ModuleBitcodeWriter::writeDILocalVariable( 1979 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1980 unsigned Abbrev) { 1981 // In order to support all possible bitcode formats in BitcodeReader we need 1982 // to distinguish the following cases: 1983 // 1) Record has no artificial tag (Record[1]), 1984 // has no obsolete inlinedAt field (Record[9]). 1985 // In this case Record size will be 8, HasAlignment flag is false. 1986 // 2) Record has artificial tag (Record[1]), 1987 // has no obsolete inlignedAt field (Record[9]). 1988 // In this case Record size will be 9, HasAlignment flag is false. 1989 // 3) Record has both artificial tag (Record[1]) and 1990 // obsolete inlignedAt field (Record[9]). 1991 // In this case Record size will be 10, HasAlignment flag is false. 1992 // 4) Record has neither artificial tag, nor inlignedAt field, but 1993 // HasAlignment flag is true and Record[8] contains alignment value. 1994 const uint64_t HasAlignmentFlag = 1 << 1; 1995 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1996 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1997 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1998 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1999 Record.push_back(N->getLine()); 2000 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2001 Record.push_back(N->getArg()); 2002 Record.push_back(N->getFlags()); 2003 Record.push_back(N->getAlignInBits()); 2004 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2005 2006 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2007 Record.clear(); 2008 } 2009 2010 void ModuleBitcodeWriter::writeDILabel( 2011 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2012 unsigned Abbrev) { 2013 Record.push_back((uint64_t)N->isDistinct()); 2014 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2015 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2016 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2017 Record.push_back(N->getLine()); 2018 2019 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2020 Record.clear(); 2021 } 2022 2023 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2024 SmallVectorImpl<uint64_t> &Record, 2025 unsigned Abbrev) { 2026 Record.reserve(N->getElements().size() + 1); 2027 const uint64_t Version = 3 << 1; 2028 Record.push_back((uint64_t)N->isDistinct() | Version); 2029 Record.append(N->elements_begin(), N->elements_end()); 2030 2031 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2032 Record.clear(); 2033 } 2034 2035 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2036 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2037 unsigned Abbrev) { 2038 Record.push_back(N->isDistinct()); 2039 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2040 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2041 2042 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2043 Record.clear(); 2044 } 2045 2046 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2047 SmallVectorImpl<uint64_t> &Record, 2048 unsigned Abbrev) { 2049 Record.push_back(N->isDistinct()); 2050 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2051 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2052 Record.push_back(N->getLine()); 2053 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2054 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2055 Record.push_back(N->getAttributes()); 2056 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2057 2058 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2059 Record.clear(); 2060 } 2061 2062 void ModuleBitcodeWriter::writeDIImportedEntity( 2063 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2064 unsigned Abbrev) { 2065 Record.push_back(N->isDistinct()); 2066 Record.push_back(N->getTag()); 2067 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2068 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2069 Record.push_back(N->getLine()); 2070 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2071 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2072 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2073 2074 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2075 Record.clear(); 2076 } 2077 2078 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2079 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2080 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2083 return Stream.EmitAbbrev(std::move(Abbv)); 2084 } 2085 2086 void ModuleBitcodeWriter::writeNamedMetadata( 2087 SmallVectorImpl<uint64_t> &Record) { 2088 if (M.named_metadata_empty()) 2089 return; 2090 2091 unsigned Abbrev = createNamedMetadataAbbrev(); 2092 for (const NamedMDNode &NMD : M.named_metadata()) { 2093 // Write name. 2094 StringRef Str = NMD.getName(); 2095 Record.append(Str.bytes_begin(), Str.bytes_end()); 2096 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2097 Record.clear(); 2098 2099 // Write named metadata operands. 2100 for (const MDNode *N : NMD.operands()) 2101 Record.push_back(VE.getMetadataID(N)); 2102 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2103 Record.clear(); 2104 } 2105 } 2106 2107 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2108 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2109 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2113 return Stream.EmitAbbrev(std::move(Abbv)); 2114 } 2115 2116 /// Write out a record for MDString. 2117 /// 2118 /// All the metadata strings in a metadata block are emitted in a single 2119 /// record. The sizes and strings themselves are shoved into a blob. 2120 void ModuleBitcodeWriter::writeMetadataStrings( 2121 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2122 if (Strings.empty()) 2123 return; 2124 2125 // Start the record with the number of strings. 2126 Record.push_back(bitc::METADATA_STRINGS); 2127 Record.push_back(Strings.size()); 2128 2129 // Emit the sizes of the strings in the blob. 2130 SmallString<256> Blob; 2131 { 2132 BitstreamWriter W(Blob); 2133 for (const Metadata *MD : Strings) 2134 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2135 W.FlushToWord(); 2136 } 2137 2138 // Add the offset to the strings to the record. 2139 Record.push_back(Blob.size()); 2140 2141 // Add the strings to the blob. 2142 for (const Metadata *MD : Strings) 2143 Blob.append(cast<MDString>(MD)->getString()); 2144 2145 // Emit the final record. 2146 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2147 Record.clear(); 2148 } 2149 2150 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2151 enum MetadataAbbrev : unsigned { 2152 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2153 #include "llvm/IR/Metadata.def" 2154 LastPlusOne 2155 }; 2156 2157 void ModuleBitcodeWriter::writeMetadataRecords( 2158 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2159 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2160 if (MDs.empty()) 2161 return; 2162 2163 // Initialize MDNode abbreviations. 2164 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2165 #include "llvm/IR/Metadata.def" 2166 2167 for (const Metadata *MD : MDs) { 2168 if (IndexPos) 2169 IndexPos->push_back(Stream.GetCurrentBitNo()); 2170 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2171 assert(N->isResolved() && "Expected forward references to be resolved"); 2172 2173 switch (N->getMetadataID()) { 2174 default: 2175 llvm_unreachable("Invalid MDNode subclass"); 2176 #define HANDLE_MDNODE_LEAF(CLASS) \ 2177 case Metadata::CLASS##Kind: \ 2178 if (MDAbbrevs) \ 2179 write##CLASS(cast<CLASS>(N), Record, \ 2180 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2181 else \ 2182 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2183 continue; 2184 #include "llvm/IR/Metadata.def" 2185 } 2186 } 2187 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2188 } 2189 } 2190 2191 void ModuleBitcodeWriter::writeModuleMetadata() { 2192 if (!VE.hasMDs() && M.named_metadata_empty()) 2193 return; 2194 2195 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2196 SmallVector<uint64_t, 64> Record; 2197 2198 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2199 // block and load any metadata. 2200 std::vector<unsigned> MDAbbrevs; 2201 2202 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2203 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2204 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2205 createGenericDINodeAbbrev(); 2206 2207 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2208 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2211 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2212 2213 Abbv = std::make_shared<BitCodeAbbrev>(); 2214 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2217 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2218 2219 // Emit MDStrings together upfront. 2220 writeMetadataStrings(VE.getMDStrings(), Record); 2221 2222 // We only emit an index for the metadata record if we have more than a given 2223 // (naive) threshold of metadatas, otherwise it is not worth it. 2224 if (VE.getNonMDStrings().size() > IndexThreshold) { 2225 // Write a placeholder value in for the offset of the metadata index, 2226 // which is written after the records, so that it can include 2227 // the offset of each entry. The placeholder offset will be 2228 // updated after all records are emitted. 2229 uint64_t Vals[] = {0, 0}; 2230 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2231 } 2232 2233 // Compute and save the bit offset to the current position, which will be 2234 // patched when we emit the index later. We can simply subtract the 64-bit 2235 // fixed size from the current bit number to get the location to backpatch. 2236 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2237 2238 // This index will contain the bitpos for each individual record. 2239 std::vector<uint64_t> IndexPos; 2240 IndexPos.reserve(VE.getNonMDStrings().size()); 2241 2242 // Write all the records 2243 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2244 2245 if (VE.getNonMDStrings().size() > IndexThreshold) { 2246 // Now that we have emitted all the records we will emit the index. But 2247 // first 2248 // backpatch the forward reference so that the reader can skip the records 2249 // efficiently. 2250 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2251 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2252 2253 // Delta encode the index. 2254 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2255 for (auto &Elt : IndexPos) { 2256 auto EltDelta = Elt - PreviousValue; 2257 PreviousValue = Elt; 2258 Elt = EltDelta; 2259 } 2260 // Emit the index record. 2261 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2262 IndexPos.clear(); 2263 } 2264 2265 // Write the named metadata now. 2266 writeNamedMetadata(Record); 2267 2268 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2269 SmallVector<uint64_t, 4> Record; 2270 Record.push_back(VE.getValueID(&GO)); 2271 pushGlobalMetadataAttachment(Record, GO); 2272 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2273 }; 2274 for (const Function &F : M) 2275 if (F.isDeclaration() && F.hasMetadata()) 2276 AddDeclAttachedMetadata(F); 2277 // FIXME: Only store metadata for declarations here, and move data for global 2278 // variable definitions to a separate block (PR28134). 2279 for (const GlobalVariable &GV : M.globals()) 2280 if (GV.hasMetadata()) 2281 AddDeclAttachedMetadata(GV); 2282 2283 Stream.ExitBlock(); 2284 } 2285 2286 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2287 if (!VE.hasMDs()) 2288 return; 2289 2290 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2291 SmallVector<uint64_t, 64> Record; 2292 writeMetadataStrings(VE.getMDStrings(), Record); 2293 writeMetadataRecords(VE.getNonMDStrings(), Record); 2294 Stream.ExitBlock(); 2295 } 2296 2297 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2298 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2299 // [n x [id, mdnode]] 2300 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2301 GO.getAllMetadata(MDs); 2302 for (const auto &I : MDs) { 2303 Record.push_back(I.first); 2304 Record.push_back(VE.getMetadataID(I.second)); 2305 } 2306 } 2307 2308 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2309 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2310 2311 SmallVector<uint64_t, 64> Record; 2312 2313 if (F.hasMetadata()) { 2314 pushGlobalMetadataAttachment(Record, F); 2315 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2316 Record.clear(); 2317 } 2318 2319 // Write metadata attachments 2320 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2321 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2322 for (const BasicBlock &BB : F) 2323 for (const Instruction &I : BB) { 2324 MDs.clear(); 2325 I.getAllMetadataOtherThanDebugLoc(MDs); 2326 2327 // If no metadata, ignore instruction. 2328 if (MDs.empty()) continue; 2329 2330 Record.push_back(VE.getInstructionID(&I)); 2331 2332 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2333 Record.push_back(MDs[i].first); 2334 Record.push_back(VE.getMetadataID(MDs[i].second)); 2335 } 2336 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2337 Record.clear(); 2338 } 2339 2340 Stream.ExitBlock(); 2341 } 2342 2343 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2344 SmallVector<uint64_t, 64> Record; 2345 2346 // Write metadata kinds 2347 // METADATA_KIND - [n x [id, name]] 2348 SmallVector<StringRef, 8> Names; 2349 M.getMDKindNames(Names); 2350 2351 if (Names.empty()) return; 2352 2353 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2354 2355 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2356 Record.push_back(MDKindID); 2357 StringRef KName = Names[MDKindID]; 2358 Record.append(KName.begin(), KName.end()); 2359 2360 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2361 Record.clear(); 2362 } 2363 2364 Stream.ExitBlock(); 2365 } 2366 2367 void ModuleBitcodeWriter::writeOperandBundleTags() { 2368 // Write metadata kinds 2369 // 2370 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2371 // 2372 // OPERAND_BUNDLE_TAG - [strchr x N] 2373 2374 SmallVector<StringRef, 8> Tags; 2375 M.getOperandBundleTags(Tags); 2376 2377 if (Tags.empty()) 2378 return; 2379 2380 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2381 2382 SmallVector<uint64_t, 64> Record; 2383 2384 for (auto Tag : Tags) { 2385 Record.append(Tag.begin(), Tag.end()); 2386 2387 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2388 Record.clear(); 2389 } 2390 2391 Stream.ExitBlock(); 2392 } 2393 2394 void ModuleBitcodeWriter::writeSyncScopeNames() { 2395 SmallVector<StringRef, 8> SSNs; 2396 M.getContext().getSyncScopeNames(SSNs); 2397 if (SSNs.empty()) 2398 return; 2399 2400 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2401 2402 SmallVector<uint64_t, 64> Record; 2403 for (auto SSN : SSNs) { 2404 Record.append(SSN.begin(), SSN.end()); 2405 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2406 Record.clear(); 2407 } 2408 2409 Stream.ExitBlock(); 2410 } 2411 2412 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2413 bool isGlobal) { 2414 if (FirstVal == LastVal) return; 2415 2416 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2417 2418 unsigned AggregateAbbrev = 0; 2419 unsigned String8Abbrev = 0; 2420 unsigned CString7Abbrev = 0; 2421 unsigned CString6Abbrev = 0; 2422 // If this is a constant pool for the module, emit module-specific abbrevs. 2423 if (isGlobal) { 2424 // Abbrev for CST_CODE_AGGREGATE. 2425 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2426 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2429 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2430 2431 // Abbrev for CST_CODE_STRING. 2432 Abbv = std::make_shared<BitCodeAbbrev>(); 2433 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2436 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2437 // Abbrev for CST_CODE_CSTRING. 2438 Abbv = std::make_shared<BitCodeAbbrev>(); 2439 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2442 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2443 // Abbrev for CST_CODE_CSTRING. 2444 Abbv = std::make_shared<BitCodeAbbrev>(); 2445 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2448 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2449 } 2450 2451 SmallVector<uint64_t, 64> Record; 2452 2453 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2454 Type *LastTy = nullptr; 2455 for (unsigned i = FirstVal; i != LastVal; ++i) { 2456 const Value *V = Vals[i].first; 2457 // If we need to switch types, do so now. 2458 if (V->getType() != LastTy) { 2459 LastTy = V->getType(); 2460 Record.push_back(VE.getTypeID(LastTy)); 2461 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2462 CONSTANTS_SETTYPE_ABBREV); 2463 Record.clear(); 2464 } 2465 2466 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2467 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2468 Record.push_back( 2469 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2470 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2471 2472 // Add the asm string. 2473 const std::string &AsmStr = IA->getAsmString(); 2474 Record.push_back(AsmStr.size()); 2475 Record.append(AsmStr.begin(), AsmStr.end()); 2476 2477 // Add the constraint string. 2478 const std::string &ConstraintStr = IA->getConstraintString(); 2479 Record.push_back(ConstraintStr.size()); 2480 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2481 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2482 Record.clear(); 2483 continue; 2484 } 2485 const Constant *C = cast<Constant>(V); 2486 unsigned Code = -1U; 2487 unsigned AbbrevToUse = 0; 2488 if (C->isNullValue()) { 2489 Code = bitc::CST_CODE_NULL; 2490 } else if (isa<PoisonValue>(C)) { 2491 Code = bitc::CST_CODE_POISON; 2492 } else if (isa<UndefValue>(C)) { 2493 Code = bitc::CST_CODE_UNDEF; 2494 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2495 if (IV->getBitWidth() <= 64) { 2496 uint64_t V = IV->getSExtValue(); 2497 emitSignedInt64(Record, V); 2498 Code = bitc::CST_CODE_INTEGER; 2499 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2500 } else { // Wide integers, > 64 bits in size. 2501 emitWideAPInt(Record, IV->getValue()); 2502 Code = bitc::CST_CODE_WIDE_INTEGER; 2503 } 2504 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2505 Code = bitc::CST_CODE_FLOAT; 2506 Type *Ty = CFP->getType(); 2507 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2508 Ty->isDoubleTy()) { 2509 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2510 } else if (Ty->isX86_FP80Ty()) { 2511 // api needed to prevent premature destruction 2512 // bits are not in the same order as a normal i80 APInt, compensate. 2513 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2514 const uint64_t *p = api.getRawData(); 2515 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2516 Record.push_back(p[0] & 0xffffLL); 2517 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2518 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2519 const uint64_t *p = api.getRawData(); 2520 Record.push_back(p[0]); 2521 Record.push_back(p[1]); 2522 } else { 2523 assert(0 && "Unknown FP type!"); 2524 } 2525 } else if (isa<ConstantDataSequential>(C) && 2526 cast<ConstantDataSequential>(C)->isString()) { 2527 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2528 // Emit constant strings specially. 2529 unsigned NumElts = Str->getNumElements(); 2530 // If this is a null-terminated string, use the denser CSTRING encoding. 2531 if (Str->isCString()) { 2532 Code = bitc::CST_CODE_CSTRING; 2533 --NumElts; // Don't encode the null, which isn't allowed by char6. 2534 } else { 2535 Code = bitc::CST_CODE_STRING; 2536 AbbrevToUse = String8Abbrev; 2537 } 2538 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2539 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2540 for (unsigned i = 0; i != NumElts; ++i) { 2541 unsigned char V = Str->getElementAsInteger(i); 2542 Record.push_back(V); 2543 isCStr7 &= (V & 128) == 0; 2544 if (isCStrChar6) 2545 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2546 } 2547 2548 if (isCStrChar6) 2549 AbbrevToUse = CString6Abbrev; 2550 else if (isCStr7) 2551 AbbrevToUse = CString7Abbrev; 2552 } else if (const ConstantDataSequential *CDS = 2553 dyn_cast<ConstantDataSequential>(C)) { 2554 Code = bitc::CST_CODE_DATA; 2555 Type *EltTy = CDS->getElementType(); 2556 if (isa<IntegerType>(EltTy)) { 2557 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2558 Record.push_back(CDS->getElementAsInteger(i)); 2559 } else { 2560 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2561 Record.push_back( 2562 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2563 } 2564 } else if (isa<ConstantAggregate>(C)) { 2565 Code = bitc::CST_CODE_AGGREGATE; 2566 for (const Value *Op : C->operands()) 2567 Record.push_back(VE.getValueID(Op)); 2568 AbbrevToUse = AggregateAbbrev; 2569 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2570 switch (CE->getOpcode()) { 2571 default: 2572 if (Instruction::isCast(CE->getOpcode())) { 2573 Code = bitc::CST_CODE_CE_CAST; 2574 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2575 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2576 Record.push_back(VE.getValueID(C->getOperand(0))); 2577 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2578 } else { 2579 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2580 Code = bitc::CST_CODE_CE_BINOP; 2581 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2582 Record.push_back(VE.getValueID(C->getOperand(0))); 2583 Record.push_back(VE.getValueID(C->getOperand(1))); 2584 uint64_t Flags = getOptimizationFlags(CE); 2585 if (Flags != 0) 2586 Record.push_back(Flags); 2587 } 2588 break; 2589 case Instruction::FNeg: { 2590 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2591 Code = bitc::CST_CODE_CE_UNOP; 2592 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2593 Record.push_back(VE.getValueID(C->getOperand(0))); 2594 uint64_t Flags = getOptimizationFlags(CE); 2595 if (Flags != 0) 2596 Record.push_back(Flags); 2597 break; 2598 } 2599 case Instruction::GetElementPtr: { 2600 Code = bitc::CST_CODE_CE_GEP; 2601 const auto *GO = cast<GEPOperator>(C); 2602 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2603 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2604 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2605 Record.push_back((*Idx << 1) | GO->isInBounds()); 2606 } else if (GO->isInBounds()) 2607 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2608 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2609 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2610 Record.push_back(VE.getValueID(C->getOperand(i))); 2611 } 2612 break; 2613 } 2614 case Instruction::Select: 2615 Code = bitc::CST_CODE_CE_SELECT; 2616 Record.push_back(VE.getValueID(C->getOperand(0))); 2617 Record.push_back(VE.getValueID(C->getOperand(1))); 2618 Record.push_back(VE.getValueID(C->getOperand(2))); 2619 break; 2620 case Instruction::ExtractElement: 2621 Code = bitc::CST_CODE_CE_EXTRACTELT; 2622 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2623 Record.push_back(VE.getValueID(C->getOperand(0))); 2624 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2625 Record.push_back(VE.getValueID(C->getOperand(1))); 2626 break; 2627 case Instruction::InsertElement: 2628 Code = bitc::CST_CODE_CE_INSERTELT; 2629 Record.push_back(VE.getValueID(C->getOperand(0))); 2630 Record.push_back(VE.getValueID(C->getOperand(1))); 2631 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2632 Record.push_back(VE.getValueID(C->getOperand(2))); 2633 break; 2634 case Instruction::ShuffleVector: 2635 // If the return type and argument types are the same, this is a 2636 // standard shufflevector instruction. If the types are different, 2637 // then the shuffle is widening or truncating the input vectors, and 2638 // the argument type must also be encoded. 2639 if (C->getType() == C->getOperand(0)->getType()) { 2640 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2641 } else { 2642 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2643 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2644 } 2645 Record.push_back(VE.getValueID(C->getOperand(0))); 2646 Record.push_back(VE.getValueID(C->getOperand(1))); 2647 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2648 break; 2649 case Instruction::ICmp: 2650 case Instruction::FCmp: 2651 Code = bitc::CST_CODE_CE_CMP; 2652 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2653 Record.push_back(VE.getValueID(C->getOperand(0))); 2654 Record.push_back(VE.getValueID(C->getOperand(1))); 2655 Record.push_back(CE->getPredicate()); 2656 break; 2657 case Instruction::ExtractValue: 2658 case Instruction::InsertValue: 2659 report_fatal_error("extractvalue/insertvalue constexprs not supported"); 2660 break; 2661 } 2662 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2663 Code = bitc::CST_CODE_BLOCKADDRESS; 2664 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2665 Record.push_back(VE.getValueID(BA->getFunction())); 2666 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2667 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2668 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2669 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2670 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2671 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2672 Code = bitc::CST_CODE_NO_CFI_VALUE; 2673 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2674 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2675 } else { 2676 #ifndef NDEBUG 2677 C->dump(); 2678 #endif 2679 llvm_unreachable("Unknown constant!"); 2680 } 2681 Stream.EmitRecord(Code, Record, AbbrevToUse); 2682 Record.clear(); 2683 } 2684 2685 Stream.ExitBlock(); 2686 } 2687 2688 void ModuleBitcodeWriter::writeModuleConstants() { 2689 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2690 2691 // Find the first constant to emit, which is the first non-globalvalue value. 2692 // We know globalvalues have been emitted by WriteModuleInfo. 2693 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2694 if (!isa<GlobalValue>(Vals[i].first)) { 2695 writeConstants(i, Vals.size(), true); 2696 return; 2697 } 2698 } 2699 } 2700 2701 /// pushValueAndType - The file has to encode both the value and type id for 2702 /// many values, because we need to know what type to create for forward 2703 /// references. However, most operands are not forward references, so this type 2704 /// field is not needed. 2705 /// 2706 /// This function adds V's value ID to Vals. If the value ID is higher than the 2707 /// instruction ID, then it is a forward reference, and it also includes the 2708 /// type ID. The value ID that is written is encoded relative to the InstID. 2709 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2710 SmallVectorImpl<unsigned> &Vals) { 2711 unsigned ValID = VE.getValueID(V); 2712 // Make encoding relative to the InstID. 2713 Vals.push_back(InstID - ValID); 2714 if (ValID >= InstID) { 2715 Vals.push_back(VE.getTypeID(V->getType())); 2716 return true; 2717 } 2718 return false; 2719 } 2720 2721 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2722 unsigned InstID) { 2723 SmallVector<unsigned, 64> Record; 2724 LLVMContext &C = CS.getContext(); 2725 2726 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2727 const auto &Bundle = CS.getOperandBundleAt(i); 2728 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2729 2730 for (auto &Input : Bundle.Inputs) 2731 pushValueAndType(Input, InstID, Record); 2732 2733 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2734 Record.clear(); 2735 } 2736 } 2737 2738 /// pushValue - Like pushValueAndType, but where the type of the value is 2739 /// omitted (perhaps it was already encoded in an earlier operand). 2740 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2741 SmallVectorImpl<unsigned> &Vals) { 2742 unsigned ValID = VE.getValueID(V); 2743 Vals.push_back(InstID - ValID); 2744 } 2745 2746 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2747 SmallVectorImpl<uint64_t> &Vals) { 2748 unsigned ValID = VE.getValueID(V); 2749 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2750 emitSignedInt64(Vals, diff); 2751 } 2752 2753 /// WriteInstruction - Emit an instruction to the specified stream. 2754 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2755 unsigned InstID, 2756 SmallVectorImpl<unsigned> &Vals) { 2757 unsigned Code = 0; 2758 unsigned AbbrevToUse = 0; 2759 VE.setInstructionID(&I); 2760 switch (I.getOpcode()) { 2761 default: 2762 if (Instruction::isCast(I.getOpcode())) { 2763 Code = bitc::FUNC_CODE_INST_CAST; 2764 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2765 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2766 Vals.push_back(VE.getTypeID(I.getType())); 2767 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2768 } else { 2769 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2770 Code = bitc::FUNC_CODE_INST_BINOP; 2771 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2772 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2773 pushValue(I.getOperand(1), InstID, Vals); 2774 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2775 uint64_t Flags = getOptimizationFlags(&I); 2776 if (Flags != 0) { 2777 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2778 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2779 Vals.push_back(Flags); 2780 } 2781 } 2782 break; 2783 case Instruction::FNeg: { 2784 Code = bitc::FUNC_CODE_INST_UNOP; 2785 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2786 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2787 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2788 uint64_t Flags = getOptimizationFlags(&I); 2789 if (Flags != 0) { 2790 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2791 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2792 Vals.push_back(Flags); 2793 } 2794 break; 2795 } 2796 case Instruction::GetElementPtr: { 2797 Code = bitc::FUNC_CODE_INST_GEP; 2798 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2799 auto &GEPInst = cast<GetElementPtrInst>(I); 2800 Vals.push_back(GEPInst.isInBounds()); 2801 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2802 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2803 pushValueAndType(I.getOperand(i), InstID, Vals); 2804 break; 2805 } 2806 case Instruction::ExtractValue: { 2807 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2808 pushValueAndType(I.getOperand(0), InstID, Vals); 2809 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2810 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2811 break; 2812 } 2813 case Instruction::InsertValue: { 2814 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2815 pushValueAndType(I.getOperand(0), InstID, Vals); 2816 pushValueAndType(I.getOperand(1), InstID, Vals); 2817 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2818 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2819 break; 2820 } 2821 case Instruction::Select: { 2822 Code = bitc::FUNC_CODE_INST_VSELECT; 2823 pushValueAndType(I.getOperand(1), InstID, Vals); 2824 pushValue(I.getOperand(2), InstID, Vals); 2825 pushValueAndType(I.getOperand(0), InstID, Vals); 2826 uint64_t Flags = getOptimizationFlags(&I); 2827 if (Flags != 0) 2828 Vals.push_back(Flags); 2829 break; 2830 } 2831 case Instruction::ExtractElement: 2832 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2833 pushValueAndType(I.getOperand(0), InstID, Vals); 2834 pushValueAndType(I.getOperand(1), InstID, Vals); 2835 break; 2836 case Instruction::InsertElement: 2837 Code = bitc::FUNC_CODE_INST_INSERTELT; 2838 pushValueAndType(I.getOperand(0), InstID, Vals); 2839 pushValue(I.getOperand(1), InstID, Vals); 2840 pushValueAndType(I.getOperand(2), InstID, Vals); 2841 break; 2842 case Instruction::ShuffleVector: 2843 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2844 pushValueAndType(I.getOperand(0), InstID, Vals); 2845 pushValue(I.getOperand(1), InstID, Vals); 2846 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2847 Vals); 2848 break; 2849 case Instruction::ICmp: 2850 case Instruction::FCmp: { 2851 // compare returning Int1Ty or vector of Int1Ty 2852 Code = bitc::FUNC_CODE_INST_CMP2; 2853 pushValueAndType(I.getOperand(0), InstID, Vals); 2854 pushValue(I.getOperand(1), InstID, Vals); 2855 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2856 uint64_t Flags = getOptimizationFlags(&I); 2857 if (Flags != 0) 2858 Vals.push_back(Flags); 2859 break; 2860 } 2861 2862 case Instruction::Ret: 2863 { 2864 Code = bitc::FUNC_CODE_INST_RET; 2865 unsigned NumOperands = I.getNumOperands(); 2866 if (NumOperands == 0) 2867 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2868 else if (NumOperands == 1) { 2869 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2870 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2871 } else { 2872 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2873 pushValueAndType(I.getOperand(i), InstID, Vals); 2874 } 2875 } 2876 break; 2877 case Instruction::Br: 2878 { 2879 Code = bitc::FUNC_CODE_INST_BR; 2880 const BranchInst &II = cast<BranchInst>(I); 2881 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2882 if (II.isConditional()) { 2883 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2884 pushValue(II.getCondition(), InstID, Vals); 2885 } 2886 } 2887 break; 2888 case Instruction::Switch: 2889 { 2890 Code = bitc::FUNC_CODE_INST_SWITCH; 2891 const SwitchInst &SI = cast<SwitchInst>(I); 2892 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2893 pushValue(SI.getCondition(), InstID, Vals); 2894 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2895 for (auto Case : SI.cases()) { 2896 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2897 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2898 } 2899 } 2900 break; 2901 case Instruction::IndirectBr: 2902 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2903 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2904 // Encode the address operand as relative, but not the basic blocks. 2905 pushValue(I.getOperand(0), InstID, Vals); 2906 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2907 Vals.push_back(VE.getValueID(I.getOperand(i))); 2908 break; 2909 2910 case Instruction::Invoke: { 2911 const InvokeInst *II = cast<InvokeInst>(&I); 2912 const Value *Callee = II->getCalledOperand(); 2913 FunctionType *FTy = II->getFunctionType(); 2914 2915 if (II->hasOperandBundles()) 2916 writeOperandBundles(*II, InstID); 2917 2918 Code = bitc::FUNC_CODE_INST_INVOKE; 2919 2920 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2921 Vals.push_back(II->getCallingConv() | 1 << 13); 2922 Vals.push_back(VE.getValueID(II->getNormalDest())); 2923 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2924 Vals.push_back(VE.getTypeID(FTy)); 2925 pushValueAndType(Callee, InstID, Vals); 2926 2927 // Emit value #'s for the fixed parameters. 2928 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2929 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2930 2931 // Emit type/value pairs for varargs params. 2932 if (FTy->isVarArg()) { 2933 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2934 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2935 } 2936 break; 2937 } 2938 case Instruction::Resume: 2939 Code = bitc::FUNC_CODE_INST_RESUME; 2940 pushValueAndType(I.getOperand(0), InstID, Vals); 2941 break; 2942 case Instruction::CleanupRet: { 2943 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2944 const auto &CRI = cast<CleanupReturnInst>(I); 2945 pushValue(CRI.getCleanupPad(), InstID, Vals); 2946 if (CRI.hasUnwindDest()) 2947 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2948 break; 2949 } 2950 case Instruction::CatchRet: { 2951 Code = bitc::FUNC_CODE_INST_CATCHRET; 2952 const auto &CRI = cast<CatchReturnInst>(I); 2953 pushValue(CRI.getCatchPad(), InstID, Vals); 2954 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2955 break; 2956 } 2957 case Instruction::CleanupPad: 2958 case Instruction::CatchPad: { 2959 const auto &FuncletPad = cast<FuncletPadInst>(I); 2960 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2961 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2962 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2963 2964 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2965 Vals.push_back(NumArgOperands); 2966 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2967 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2968 break; 2969 } 2970 case Instruction::CatchSwitch: { 2971 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2972 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2973 2974 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2975 2976 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2977 Vals.push_back(NumHandlers); 2978 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2979 Vals.push_back(VE.getValueID(CatchPadBB)); 2980 2981 if (CatchSwitch.hasUnwindDest()) 2982 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2983 break; 2984 } 2985 case Instruction::CallBr: { 2986 const CallBrInst *CBI = cast<CallBrInst>(&I); 2987 const Value *Callee = CBI->getCalledOperand(); 2988 FunctionType *FTy = CBI->getFunctionType(); 2989 2990 if (CBI->hasOperandBundles()) 2991 writeOperandBundles(*CBI, InstID); 2992 2993 Code = bitc::FUNC_CODE_INST_CALLBR; 2994 2995 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2996 2997 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2998 1 << bitc::CALL_EXPLICIT_TYPE); 2999 3000 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3001 Vals.push_back(CBI->getNumIndirectDests()); 3002 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3003 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3004 3005 Vals.push_back(VE.getTypeID(FTy)); 3006 pushValueAndType(Callee, InstID, Vals); 3007 3008 // Emit value #'s for the fixed parameters. 3009 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3010 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3011 3012 // Emit type/value pairs for varargs params. 3013 if (FTy->isVarArg()) { 3014 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3015 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3016 } 3017 break; 3018 } 3019 case Instruction::Unreachable: 3020 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3021 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3022 break; 3023 3024 case Instruction::PHI: { 3025 const PHINode &PN = cast<PHINode>(I); 3026 Code = bitc::FUNC_CODE_INST_PHI; 3027 // With the newer instruction encoding, forward references could give 3028 // negative valued IDs. This is most common for PHIs, so we use 3029 // signed VBRs. 3030 SmallVector<uint64_t, 128> Vals64; 3031 Vals64.push_back(VE.getTypeID(PN.getType())); 3032 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3033 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3034 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3035 } 3036 3037 uint64_t Flags = getOptimizationFlags(&I); 3038 if (Flags != 0) 3039 Vals64.push_back(Flags); 3040 3041 // Emit a Vals64 vector and exit. 3042 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3043 Vals64.clear(); 3044 return; 3045 } 3046 3047 case Instruction::LandingPad: { 3048 const LandingPadInst &LP = cast<LandingPadInst>(I); 3049 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3050 Vals.push_back(VE.getTypeID(LP.getType())); 3051 Vals.push_back(LP.isCleanup()); 3052 Vals.push_back(LP.getNumClauses()); 3053 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3054 if (LP.isCatch(I)) 3055 Vals.push_back(LandingPadInst::Catch); 3056 else 3057 Vals.push_back(LandingPadInst::Filter); 3058 pushValueAndType(LP.getClause(I), InstID, Vals); 3059 } 3060 break; 3061 } 3062 3063 case Instruction::Alloca: { 3064 Code = bitc::FUNC_CODE_INST_ALLOCA; 3065 const AllocaInst &AI = cast<AllocaInst>(I); 3066 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3067 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3068 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3069 using APV = AllocaPackedValues; 3070 unsigned Record = 0; 3071 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3072 Bitfield::set<APV::AlignLower>( 3073 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3074 Bitfield::set<APV::AlignUpper>(Record, 3075 EncodedAlign >> APV::AlignLower::Bits); 3076 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3077 Bitfield::set<APV::ExplicitType>(Record, true); 3078 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3079 Vals.push_back(Record); 3080 3081 unsigned AS = AI.getAddressSpace(); 3082 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3083 Vals.push_back(AS); 3084 break; 3085 } 3086 3087 case Instruction::Load: 3088 if (cast<LoadInst>(I).isAtomic()) { 3089 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3090 pushValueAndType(I.getOperand(0), InstID, Vals); 3091 } else { 3092 Code = bitc::FUNC_CODE_INST_LOAD; 3093 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3094 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3095 } 3096 Vals.push_back(VE.getTypeID(I.getType())); 3097 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3098 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3099 if (cast<LoadInst>(I).isAtomic()) { 3100 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3101 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3102 } 3103 break; 3104 case Instruction::Store: 3105 if (cast<StoreInst>(I).isAtomic()) 3106 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3107 else 3108 Code = bitc::FUNC_CODE_INST_STORE; 3109 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3110 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3111 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3112 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3113 if (cast<StoreInst>(I).isAtomic()) { 3114 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3115 Vals.push_back( 3116 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3117 } 3118 break; 3119 case Instruction::AtomicCmpXchg: 3120 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3121 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3122 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3123 pushValue(I.getOperand(2), InstID, Vals); // newval. 3124 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3125 Vals.push_back( 3126 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3127 Vals.push_back( 3128 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3129 Vals.push_back( 3130 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3131 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3132 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3133 break; 3134 case Instruction::AtomicRMW: 3135 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3136 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3137 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3138 Vals.push_back( 3139 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3140 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3141 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3142 Vals.push_back( 3143 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3144 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3145 break; 3146 case Instruction::Fence: 3147 Code = bitc::FUNC_CODE_INST_FENCE; 3148 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3149 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3150 break; 3151 case Instruction::Call: { 3152 const CallInst &CI = cast<CallInst>(I); 3153 FunctionType *FTy = CI.getFunctionType(); 3154 3155 if (CI.hasOperandBundles()) 3156 writeOperandBundles(CI, InstID); 3157 3158 Code = bitc::FUNC_CODE_INST_CALL; 3159 3160 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3161 3162 unsigned Flags = getOptimizationFlags(&I); 3163 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3164 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3165 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3166 1 << bitc::CALL_EXPLICIT_TYPE | 3167 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3168 unsigned(Flags != 0) << bitc::CALL_FMF); 3169 if (Flags != 0) 3170 Vals.push_back(Flags); 3171 3172 Vals.push_back(VE.getTypeID(FTy)); 3173 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3174 3175 // Emit value #'s for the fixed parameters. 3176 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3177 // Check for labels (can happen with asm labels). 3178 if (FTy->getParamType(i)->isLabelTy()) 3179 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3180 else 3181 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3182 } 3183 3184 // Emit type/value pairs for varargs params. 3185 if (FTy->isVarArg()) { 3186 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3187 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3188 } 3189 break; 3190 } 3191 case Instruction::VAArg: 3192 Code = bitc::FUNC_CODE_INST_VAARG; 3193 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3194 pushValue(I.getOperand(0), InstID, Vals); // valist. 3195 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3196 break; 3197 case Instruction::Freeze: 3198 Code = bitc::FUNC_CODE_INST_FREEZE; 3199 pushValueAndType(I.getOperand(0), InstID, Vals); 3200 break; 3201 } 3202 3203 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3204 Vals.clear(); 3205 } 3206 3207 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3208 /// to allow clients to efficiently find the function body. 3209 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3210 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3211 // Get the offset of the VST we are writing, and backpatch it into 3212 // the VST forward declaration record. 3213 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3214 // The BitcodeStartBit was the stream offset of the identification block. 3215 VSTOffset -= bitcodeStartBit(); 3216 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3217 // Note that we add 1 here because the offset is relative to one word 3218 // before the start of the identification block, which was historically 3219 // always the start of the regular bitcode header. 3220 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3221 3222 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3223 3224 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3225 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3228 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3229 3230 for (const Function &F : M) { 3231 uint64_t Record[2]; 3232 3233 if (F.isDeclaration()) 3234 continue; 3235 3236 Record[0] = VE.getValueID(&F); 3237 3238 // Save the word offset of the function (from the start of the 3239 // actual bitcode written to the stream). 3240 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3241 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3242 // Note that we add 1 here because the offset is relative to one word 3243 // before the start of the identification block, which was historically 3244 // always the start of the regular bitcode header. 3245 Record[1] = BitcodeIndex / 32 + 1; 3246 3247 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3248 } 3249 3250 Stream.ExitBlock(); 3251 } 3252 3253 /// Emit names for arguments, instructions and basic blocks in a function. 3254 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3255 const ValueSymbolTable &VST) { 3256 if (VST.empty()) 3257 return; 3258 3259 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3260 3261 // FIXME: Set up the abbrev, we know how many values there are! 3262 // FIXME: We know if the type names can use 7-bit ascii. 3263 SmallVector<uint64_t, 64> NameVals; 3264 3265 for (const ValueName &Name : VST) { 3266 // Figure out the encoding to use for the name. 3267 StringEncoding Bits = getStringEncoding(Name.getKey()); 3268 3269 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3270 NameVals.push_back(VE.getValueID(Name.getValue())); 3271 3272 // VST_CODE_ENTRY: [valueid, namechar x N] 3273 // VST_CODE_BBENTRY: [bbid, namechar x N] 3274 unsigned Code; 3275 if (isa<BasicBlock>(Name.getValue())) { 3276 Code = bitc::VST_CODE_BBENTRY; 3277 if (Bits == SE_Char6) 3278 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3279 } else { 3280 Code = bitc::VST_CODE_ENTRY; 3281 if (Bits == SE_Char6) 3282 AbbrevToUse = VST_ENTRY_6_ABBREV; 3283 else if (Bits == SE_Fixed7) 3284 AbbrevToUse = VST_ENTRY_7_ABBREV; 3285 } 3286 3287 for (const auto P : Name.getKey()) 3288 NameVals.push_back((unsigned char)P); 3289 3290 // Emit the finished record. 3291 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3292 NameVals.clear(); 3293 } 3294 3295 Stream.ExitBlock(); 3296 } 3297 3298 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3299 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3300 unsigned Code; 3301 if (isa<BasicBlock>(Order.V)) 3302 Code = bitc::USELIST_CODE_BB; 3303 else 3304 Code = bitc::USELIST_CODE_DEFAULT; 3305 3306 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3307 Record.push_back(VE.getValueID(Order.V)); 3308 Stream.EmitRecord(Code, Record); 3309 } 3310 3311 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3312 assert(VE.shouldPreserveUseListOrder() && 3313 "Expected to be preserving use-list order"); 3314 3315 auto hasMore = [&]() { 3316 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3317 }; 3318 if (!hasMore()) 3319 // Nothing to do. 3320 return; 3321 3322 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3323 while (hasMore()) { 3324 writeUseList(std::move(VE.UseListOrders.back())); 3325 VE.UseListOrders.pop_back(); 3326 } 3327 Stream.ExitBlock(); 3328 } 3329 3330 /// Emit a function body to the module stream. 3331 void ModuleBitcodeWriter::writeFunction( 3332 const Function &F, 3333 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3334 // Save the bitcode index of the start of this function block for recording 3335 // in the VST. 3336 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3337 3338 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3339 VE.incorporateFunction(F); 3340 3341 SmallVector<unsigned, 64> Vals; 3342 3343 // Emit the number of basic blocks, so the reader can create them ahead of 3344 // time. 3345 Vals.push_back(VE.getBasicBlocks().size()); 3346 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3347 Vals.clear(); 3348 3349 // If there are function-local constants, emit them now. 3350 unsigned CstStart, CstEnd; 3351 VE.getFunctionConstantRange(CstStart, CstEnd); 3352 writeConstants(CstStart, CstEnd, false); 3353 3354 // If there is function-local metadata, emit it now. 3355 writeFunctionMetadata(F); 3356 3357 // Keep a running idea of what the instruction ID is. 3358 unsigned InstID = CstEnd; 3359 3360 bool NeedsMetadataAttachment = F.hasMetadata(); 3361 3362 DILocation *LastDL = nullptr; 3363 SmallPtrSet<Function *, 4> BlockAddressUsers; 3364 3365 // Finally, emit all the instructions, in order. 3366 for (const BasicBlock &BB : F) { 3367 for (const Instruction &I : BB) { 3368 writeInstruction(I, InstID, Vals); 3369 3370 if (!I.getType()->isVoidTy()) 3371 ++InstID; 3372 3373 // If the instruction has metadata, write a metadata attachment later. 3374 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3375 3376 // If the instruction has a debug location, emit it. 3377 DILocation *DL = I.getDebugLoc(); 3378 if (!DL) 3379 continue; 3380 3381 if (DL == LastDL) { 3382 // Just repeat the same debug loc as last time. 3383 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3384 continue; 3385 } 3386 3387 Vals.push_back(DL->getLine()); 3388 Vals.push_back(DL->getColumn()); 3389 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3390 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3391 Vals.push_back(DL->isImplicitCode()); 3392 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3393 Vals.clear(); 3394 3395 LastDL = DL; 3396 } 3397 3398 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3399 for (User *U : BA->users()) { 3400 if (auto *I = dyn_cast<Instruction>(U)) { 3401 Function *P = I->getParent()->getParent(); 3402 if (P != &F) 3403 BlockAddressUsers.insert(P); 3404 } 3405 } 3406 } 3407 } 3408 3409 if (!BlockAddressUsers.empty()) { 3410 SmallVector<uint64_t, 4> Record; 3411 Record.reserve(BlockAddressUsers.size()); 3412 for (Function *F : BlockAddressUsers) 3413 Record.push_back(VE.getValueID(F)); 3414 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Record); 3415 } 3416 3417 // Emit names for all the instructions etc. 3418 if (auto *Symtab = F.getValueSymbolTable()) 3419 writeFunctionLevelValueSymbolTable(*Symtab); 3420 3421 if (NeedsMetadataAttachment) 3422 writeFunctionMetadataAttachment(F); 3423 if (VE.shouldPreserveUseListOrder()) 3424 writeUseListBlock(&F); 3425 VE.purgeFunction(); 3426 Stream.ExitBlock(); 3427 } 3428 3429 // Emit blockinfo, which defines the standard abbreviations etc. 3430 void ModuleBitcodeWriter::writeBlockInfo() { 3431 // We only want to emit block info records for blocks that have multiple 3432 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3433 // Other blocks can define their abbrevs inline. 3434 Stream.EnterBlockInfoBlock(); 3435 3436 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3437 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3442 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3443 VST_ENTRY_8_ABBREV) 3444 llvm_unreachable("Unexpected abbrev ordering!"); 3445 } 3446 3447 { // 7-bit fixed width VST_CODE_ENTRY strings. 3448 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3449 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3453 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3454 VST_ENTRY_7_ABBREV) 3455 llvm_unreachable("Unexpected abbrev ordering!"); 3456 } 3457 { // 6-bit char6 VST_CODE_ENTRY strings. 3458 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3459 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3463 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3464 VST_ENTRY_6_ABBREV) 3465 llvm_unreachable("Unexpected abbrev ordering!"); 3466 } 3467 { // 6-bit char6 VST_CODE_BBENTRY strings. 3468 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3469 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3473 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3474 VST_BBENTRY_6_ABBREV) 3475 llvm_unreachable("Unexpected abbrev ordering!"); 3476 } 3477 3478 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3479 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3480 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3482 VE.computeBitsRequiredForTypeIndicies())); 3483 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3484 CONSTANTS_SETTYPE_ABBREV) 3485 llvm_unreachable("Unexpected abbrev ordering!"); 3486 } 3487 3488 { // INTEGER abbrev for CONSTANTS_BLOCK. 3489 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3490 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3492 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3493 CONSTANTS_INTEGER_ABBREV) 3494 llvm_unreachable("Unexpected abbrev ordering!"); 3495 } 3496 3497 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3498 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3499 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3502 VE.computeBitsRequiredForTypeIndicies())); 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3504 3505 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3506 CONSTANTS_CE_CAST_Abbrev) 3507 llvm_unreachable("Unexpected abbrev ordering!"); 3508 } 3509 { // NULL abbrev for CONSTANTS_BLOCK. 3510 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3511 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3512 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3513 CONSTANTS_NULL_Abbrev) 3514 llvm_unreachable("Unexpected abbrev ordering!"); 3515 } 3516 3517 // FIXME: This should only use space for first class types! 3518 3519 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3520 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3521 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3524 VE.computeBitsRequiredForTypeIndicies())); 3525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3527 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3528 FUNCTION_INST_LOAD_ABBREV) 3529 llvm_unreachable("Unexpected abbrev ordering!"); 3530 } 3531 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3532 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3533 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3536 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3537 FUNCTION_INST_UNOP_ABBREV) 3538 llvm_unreachable("Unexpected abbrev ordering!"); 3539 } 3540 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3541 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3542 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3546 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3547 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3548 llvm_unreachable("Unexpected abbrev ordering!"); 3549 } 3550 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3551 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3552 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3556 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3557 FUNCTION_INST_BINOP_ABBREV) 3558 llvm_unreachable("Unexpected abbrev ordering!"); 3559 } 3560 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3561 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3562 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3567 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3568 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3569 llvm_unreachable("Unexpected abbrev ordering!"); 3570 } 3571 { // INST_CAST abbrev for FUNCTION_BLOCK. 3572 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3573 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3576 VE.computeBitsRequiredForTypeIndicies())); 3577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3578 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3579 FUNCTION_INST_CAST_ABBREV) 3580 llvm_unreachable("Unexpected abbrev ordering!"); 3581 } 3582 3583 { // INST_RET abbrev for FUNCTION_BLOCK. 3584 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3585 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3586 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3587 FUNCTION_INST_RET_VOID_ABBREV) 3588 llvm_unreachable("Unexpected abbrev ordering!"); 3589 } 3590 { // INST_RET abbrev for FUNCTION_BLOCK. 3591 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3592 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3594 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3595 FUNCTION_INST_RET_VAL_ABBREV) 3596 llvm_unreachable("Unexpected abbrev ordering!"); 3597 } 3598 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3599 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3600 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3601 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3602 FUNCTION_INST_UNREACHABLE_ABBREV) 3603 llvm_unreachable("Unexpected abbrev ordering!"); 3604 } 3605 { 3606 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3607 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3610 Log2_32_Ceil(VE.getTypes().size() + 1))); 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3613 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3614 FUNCTION_INST_GEP_ABBREV) 3615 llvm_unreachable("Unexpected abbrev ordering!"); 3616 } 3617 3618 Stream.ExitBlock(); 3619 } 3620 3621 /// Write the module path strings, currently only used when generating 3622 /// a combined index file. 3623 void IndexBitcodeWriter::writeModStrings() { 3624 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3625 3626 // TODO: See which abbrev sizes we actually need to emit 3627 3628 // 8-bit fixed-width MST_ENTRY strings. 3629 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3630 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3634 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3635 3636 // 7-bit fixed width MST_ENTRY strings. 3637 Abbv = std::make_shared<BitCodeAbbrev>(); 3638 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3642 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3643 3644 // 6-bit char6 MST_ENTRY strings. 3645 Abbv = std::make_shared<BitCodeAbbrev>(); 3646 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3650 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3651 3652 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3653 Abbv = std::make_shared<BitCodeAbbrev>(); 3654 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3660 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3661 3662 SmallVector<unsigned, 64> Vals; 3663 forEachModule( 3664 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3665 StringRef Key = MPSE.getKey(); 3666 const auto &Value = MPSE.getValue(); 3667 StringEncoding Bits = getStringEncoding(Key); 3668 unsigned AbbrevToUse = Abbrev8Bit; 3669 if (Bits == SE_Char6) 3670 AbbrevToUse = Abbrev6Bit; 3671 else if (Bits == SE_Fixed7) 3672 AbbrevToUse = Abbrev7Bit; 3673 3674 Vals.push_back(Value.first); 3675 Vals.append(Key.begin(), Key.end()); 3676 3677 // Emit the finished record. 3678 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3679 3680 // Emit an optional hash for the module now 3681 const auto &Hash = Value.second; 3682 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3683 Vals.assign(Hash.begin(), Hash.end()); 3684 // Emit the hash record. 3685 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3686 } 3687 3688 Vals.clear(); 3689 }); 3690 Stream.ExitBlock(); 3691 } 3692 3693 /// Write the function type metadata related records that need to appear before 3694 /// a function summary entry (whether per-module or combined). 3695 template <typename Fn> 3696 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3697 FunctionSummary *FS, 3698 Fn GetValueID) { 3699 if (!FS->type_tests().empty()) 3700 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3701 3702 SmallVector<uint64_t, 64> Record; 3703 3704 auto WriteVFuncIdVec = [&](uint64_t Ty, 3705 ArrayRef<FunctionSummary::VFuncId> VFs) { 3706 if (VFs.empty()) 3707 return; 3708 Record.clear(); 3709 for (auto &VF : VFs) { 3710 Record.push_back(VF.GUID); 3711 Record.push_back(VF.Offset); 3712 } 3713 Stream.EmitRecord(Ty, Record); 3714 }; 3715 3716 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3717 FS->type_test_assume_vcalls()); 3718 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3719 FS->type_checked_load_vcalls()); 3720 3721 auto WriteConstVCallVec = [&](uint64_t Ty, 3722 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3723 for (auto &VC : VCs) { 3724 Record.clear(); 3725 Record.push_back(VC.VFunc.GUID); 3726 Record.push_back(VC.VFunc.Offset); 3727 llvm::append_range(Record, VC.Args); 3728 Stream.EmitRecord(Ty, Record); 3729 } 3730 }; 3731 3732 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3733 FS->type_test_assume_const_vcalls()); 3734 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3735 FS->type_checked_load_const_vcalls()); 3736 3737 auto WriteRange = [&](ConstantRange Range) { 3738 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3739 assert(Range.getLower().getNumWords() == 1); 3740 assert(Range.getUpper().getNumWords() == 1); 3741 emitSignedInt64(Record, *Range.getLower().getRawData()); 3742 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3743 }; 3744 3745 if (!FS->paramAccesses().empty()) { 3746 Record.clear(); 3747 for (auto &Arg : FS->paramAccesses()) { 3748 size_t UndoSize = Record.size(); 3749 Record.push_back(Arg.ParamNo); 3750 WriteRange(Arg.Use); 3751 Record.push_back(Arg.Calls.size()); 3752 for (auto &Call : Arg.Calls) { 3753 Record.push_back(Call.ParamNo); 3754 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3755 if (!ValueID) { 3756 // If ValueID is unknown we can't drop just this call, we must drop 3757 // entire parameter. 3758 Record.resize(UndoSize); 3759 break; 3760 } 3761 Record.push_back(*ValueID); 3762 WriteRange(Call.Offsets); 3763 } 3764 } 3765 if (!Record.empty()) 3766 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3767 } 3768 } 3769 3770 /// Collect type IDs from type tests used by function. 3771 static void 3772 getReferencedTypeIds(FunctionSummary *FS, 3773 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3774 if (!FS->type_tests().empty()) 3775 for (auto &TT : FS->type_tests()) 3776 ReferencedTypeIds.insert(TT); 3777 3778 auto GetReferencedTypesFromVFuncIdVec = 3779 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3780 for (auto &VF : VFs) 3781 ReferencedTypeIds.insert(VF.GUID); 3782 }; 3783 3784 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3785 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3786 3787 auto GetReferencedTypesFromConstVCallVec = 3788 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3789 for (auto &VC : VCs) 3790 ReferencedTypeIds.insert(VC.VFunc.GUID); 3791 }; 3792 3793 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3794 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3795 } 3796 3797 static void writeWholeProgramDevirtResolutionByArg( 3798 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3799 const WholeProgramDevirtResolution::ByArg &ByArg) { 3800 NameVals.push_back(args.size()); 3801 llvm::append_range(NameVals, args); 3802 3803 NameVals.push_back(ByArg.TheKind); 3804 NameVals.push_back(ByArg.Info); 3805 NameVals.push_back(ByArg.Byte); 3806 NameVals.push_back(ByArg.Bit); 3807 } 3808 3809 static void writeWholeProgramDevirtResolution( 3810 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3811 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3812 NameVals.push_back(Id); 3813 3814 NameVals.push_back(Wpd.TheKind); 3815 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3816 NameVals.push_back(Wpd.SingleImplName.size()); 3817 3818 NameVals.push_back(Wpd.ResByArg.size()); 3819 for (auto &A : Wpd.ResByArg) 3820 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3821 } 3822 3823 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3824 StringTableBuilder &StrtabBuilder, 3825 const std::string &Id, 3826 const TypeIdSummary &Summary) { 3827 NameVals.push_back(StrtabBuilder.add(Id)); 3828 NameVals.push_back(Id.size()); 3829 3830 NameVals.push_back(Summary.TTRes.TheKind); 3831 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3832 NameVals.push_back(Summary.TTRes.AlignLog2); 3833 NameVals.push_back(Summary.TTRes.SizeM1); 3834 NameVals.push_back(Summary.TTRes.BitMask); 3835 NameVals.push_back(Summary.TTRes.InlineBits); 3836 3837 for (auto &W : Summary.WPDRes) 3838 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3839 W.second); 3840 } 3841 3842 static void writeTypeIdCompatibleVtableSummaryRecord( 3843 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3844 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3845 ValueEnumerator &VE) { 3846 NameVals.push_back(StrtabBuilder.add(Id)); 3847 NameVals.push_back(Id.size()); 3848 3849 for (auto &P : Summary) { 3850 NameVals.push_back(P.AddressPointOffset); 3851 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3852 } 3853 } 3854 3855 // Helper to emit a single function summary record. 3856 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3857 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3858 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3859 const Function &F) { 3860 NameVals.push_back(ValueID); 3861 3862 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3863 3864 writeFunctionTypeMetadataRecords( 3865 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3866 return {VE.getValueID(VI.getValue())}; 3867 }); 3868 3869 auto SpecialRefCnts = FS->specialRefCounts(); 3870 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3871 NameVals.push_back(FS->instCount()); 3872 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3873 NameVals.push_back(FS->refs().size()); 3874 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3875 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3876 3877 for (auto &RI : FS->refs()) 3878 NameVals.push_back(VE.getValueID(RI.getValue())); 3879 3880 bool HasProfileData = 3881 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3882 for (auto &ECI : FS->calls()) { 3883 NameVals.push_back(getValueId(ECI.first)); 3884 if (HasProfileData) 3885 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3886 else if (WriteRelBFToSummary) 3887 NameVals.push_back(ECI.second.RelBlockFreq); 3888 } 3889 3890 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3891 unsigned Code = 3892 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3893 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3894 : bitc::FS_PERMODULE)); 3895 3896 // Emit the finished record. 3897 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3898 NameVals.clear(); 3899 } 3900 3901 // Collect the global value references in the given variable's initializer, 3902 // and emit them in a summary record. 3903 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3904 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3905 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3906 auto VI = Index->getValueInfo(V.getGUID()); 3907 if (!VI || VI.getSummaryList().empty()) { 3908 // Only declarations should not have a summary (a declaration might however 3909 // have a summary if the def was in module level asm). 3910 assert(V.isDeclaration()); 3911 return; 3912 } 3913 auto *Summary = VI.getSummaryList()[0].get(); 3914 NameVals.push_back(VE.getValueID(&V)); 3915 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3916 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3917 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3918 3919 auto VTableFuncs = VS->vTableFuncs(); 3920 if (!VTableFuncs.empty()) 3921 NameVals.push_back(VS->refs().size()); 3922 3923 unsigned SizeBeforeRefs = NameVals.size(); 3924 for (auto &RI : VS->refs()) 3925 NameVals.push_back(VE.getValueID(RI.getValue())); 3926 // Sort the refs for determinism output, the vector returned by FS->refs() has 3927 // been initialized from a DenseSet. 3928 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3929 3930 if (VTableFuncs.empty()) 3931 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3932 FSModRefsAbbrev); 3933 else { 3934 // VTableFuncs pairs should already be sorted by offset. 3935 for (auto &P : VTableFuncs) { 3936 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3937 NameVals.push_back(P.VTableOffset); 3938 } 3939 3940 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3941 FSModVTableRefsAbbrev); 3942 } 3943 NameVals.clear(); 3944 } 3945 3946 /// Emit the per-module summary section alongside the rest of 3947 /// the module's bitcode. 3948 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3949 // By default we compile with ThinLTO if the module has a summary, but the 3950 // client can request full LTO with a module flag. 3951 bool IsThinLTO = true; 3952 if (auto *MD = 3953 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3954 IsThinLTO = MD->getZExtValue(); 3955 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3956 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3957 4); 3958 3959 Stream.EmitRecord( 3960 bitc::FS_VERSION, 3961 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3962 3963 // Write the index flags. 3964 uint64_t Flags = 0; 3965 // Bits 1-3 are set only in the combined index, skip them. 3966 if (Index->enableSplitLTOUnit()) 3967 Flags |= 0x8; 3968 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3969 3970 if (Index->begin() == Index->end()) { 3971 Stream.ExitBlock(); 3972 return; 3973 } 3974 3975 for (const auto &GVI : valueIds()) { 3976 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3977 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3978 } 3979 3980 // Abbrev for FS_PERMODULE_PROFILE. 3981 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3982 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3990 // numrefs x valueid, n x (valueid, hotness) 3991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3993 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3994 3995 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3996 Abbv = std::make_shared<BitCodeAbbrev>(); 3997 if (WriteRelBFToSummary) 3998 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3999 else 4000 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4008 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4011 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4012 4013 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4014 Abbv = std::make_shared<BitCodeAbbrev>(); 4015 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4020 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4021 4022 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4023 Abbv = std::make_shared<BitCodeAbbrev>(); 4024 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4028 // numrefs x valueid, n x (valueid , offset) 4029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4031 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4032 4033 // Abbrev for FS_ALIAS. 4034 Abbv = std::make_shared<BitCodeAbbrev>(); 4035 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4039 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4040 4041 // Abbrev for FS_TYPE_ID_METADATA 4042 Abbv = std::make_shared<BitCodeAbbrev>(); 4043 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4046 // n x (valueid , offset) 4047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4049 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4050 4051 SmallVector<uint64_t, 64> NameVals; 4052 // Iterate over the list of functions instead of the Index to 4053 // ensure the ordering is stable. 4054 for (const Function &F : M) { 4055 // Summary emission does not support anonymous functions, they have to 4056 // renamed using the anonymous function renaming pass. 4057 if (!F.hasName()) 4058 report_fatal_error("Unexpected anonymous function when writing summary"); 4059 4060 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4061 if (!VI || VI.getSummaryList().empty()) { 4062 // Only declarations should not have a summary (a declaration might 4063 // however have a summary if the def was in module level asm). 4064 assert(F.isDeclaration()); 4065 continue; 4066 } 4067 auto *Summary = VI.getSummaryList()[0].get(); 4068 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4069 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4070 } 4071 4072 // Capture references from GlobalVariable initializers, which are outside 4073 // of a function scope. 4074 for (const GlobalVariable &G : M.globals()) 4075 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4076 FSModVTableRefsAbbrev); 4077 4078 for (const GlobalAlias &A : M.aliases()) { 4079 auto *Aliasee = A.getAliaseeObject(); 4080 if (!Aliasee->hasName()) 4081 // Nameless function don't have an entry in the summary, skip it. 4082 continue; 4083 auto AliasId = VE.getValueID(&A); 4084 auto AliaseeId = VE.getValueID(Aliasee); 4085 NameVals.push_back(AliasId); 4086 auto *Summary = Index->getGlobalValueSummary(A); 4087 AliasSummary *AS = cast<AliasSummary>(Summary); 4088 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4089 NameVals.push_back(AliaseeId); 4090 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4091 NameVals.clear(); 4092 } 4093 4094 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4095 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4096 S.second, VE); 4097 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4098 TypeIdCompatibleVtableAbbrev); 4099 NameVals.clear(); 4100 } 4101 4102 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4103 ArrayRef<uint64_t>{Index->getBlockCount()}); 4104 4105 Stream.ExitBlock(); 4106 } 4107 4108 /// Emit the combined summary section into the combined index file. 4109 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4110 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4111 Stream.EmitRecord( 4112 bitc::FS_VERSION, 4113 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4114 4115 // Write the index flags. 4116 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4117 4118 for (const auto &GVI : valueIds()) { 4119 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4120 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4121 } 4122 4123 // Abbrev for FS_COMBINED. 4124 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4125 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4135 // numrefs x valueid, n x (valueid) 4136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4138 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4139 4140 // Abbrev for FS_COMBINED_PROFILE. 4141 Abbv = std::make_shared<BitCodeAbbrev>(); 4142 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4152 // numrefs x valueid, n x (valueid, hotness) 4153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4155 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4156 4157 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4158 Abbv = std::make_shared<BitCodeAbbrev>(); 4159 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4165 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4166 4167 // Abbrev for FS_COMBINED_ALIAS. 4168 Abbv = std::make_shared<BitCodeAbbrev>(); 4169 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4174 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4175 4176 // The aliases are emitted as a post-pass, and will point to the value 4177 // id of the aliasee. Save them in a vector for post-processing. 4178 SmallVector<AliasSummary *, 64> Aliases; 4179 4180 // Save the value id for each summary for alias emission. 4181 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4182 4183 SmallVector<uint64_t, 64> NameVals; 4184 4185 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4186 // with the type ids referenced by this index file. 4187 std::set<GlobalValue::GUID> ReferencedTypeIds; 4188 4189 // For local linkage, we also emit the original name separately 4190 // immediately after the record. 4191 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4192 // We don't need to emit the original name if we are writing the index for 4193 // distributed backends (in which case ModuleToSummariesForIndex is 4194 // non-null). The original name is only needed during the thin link, since 4195 // for SamplePGO the indirect call targets for local functions have 4196 // have the original name annotated in profile. 4197 // Continue to emit it when writing out the entire combined index, which is 4198 // used in testing the thin link via llvm-lto. 4199 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4200 return; 4201 NameVals.push_back(S.getOriginalName()); 4202 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4203 NameVals.clear(); 4204 }; 4205 4206 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4207 forEachSummary([&](GVInfo I, bool IsAliasee) { 4208 GlobalValueSummary *S = I.second; 4209 assert(S); 4210 DefOrUseGUIDs.insert(I.first); 4211 for (const ValueInfo &VI : S->refs()) 4212 DefOrUseGUIDs.insert(VI.getGUID()); 4213 4214 auto ValueId = getValueId(I.first); 4215 assert(ValueId); 4216 SummaryToValueIdMap[S] = *ValueId; 4217 4218 // If this is invoked for an aliasee, we want to record the above 4219 // mapping, but then not emit a summary entry (if the aliasee is 4220 // to be imported, we will invoke this separately with IsAliasee=false). 4221 if (IsAliasee) 4222 return; 4223 4224 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4225 // Will process aliases as a post-pass because the reader wants all 4226 // global to be loaded first. 4227 Aliases.push_back(AS); 4228 return; 4229 } 4230 4231 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4232 NameVals.push_back(*ValueId); 4233 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4234 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4235 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4236 for (auto &RI : VS->refs()) { 4237 auto RefValueId = getValueId(RI.getGUID()); 4238 if (!RefValueId) 4239 continue; 4240 NameVals.push_back(*RefValueId); 4241 } 4242 4243 // Emit the finished record. 4244 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4245 FSModRefsAbbrev); 4246 NameVals.clear(); 4247 MaybeEmitOriginalName(*S); 4248 return; 4249 } 4250 4251 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4252 return getValueId(VI.getGUID()); 4253 }; 4254 4255 auto *FS = cast<FunctionSummary>(S); 4256 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4257 getReferencedTypeIds(FS, ReferencedTypeIds); 4258 4259 NameVals.push_back(*ValueId); 4260 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4261 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4262 NameVals.push_back(FS->instCount()); 4263 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4264 NameVals.push_back(FS->entryCount()); 4265 4266 // Fill in below 4267 NameVals.push_back(0); // numrefs 4268 NameVals.push_back(0); // rorefcnt 4269 NameVals.push_back(0); // worefcnt 4270 4271 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4272 for (auto &RI : FS->refs()) { 4273 auto RefValueId = getValueId(RI.getGUID()); 4274 if (!RefValueId) 4275 continue; 4276 NameVals.push_back(*RefValueId); 4277 if (RI.isReadOnly()) 4278 RORefCnt++; 4279 else if (RI.isWriteOnly()) 4280 WORefCnt++; 4281 Count++; 4282 } 4283 NameVals[6] = Count; 4284 NameVals[7] = RORefCnt; 4285 NameVals[8] = WORefCnt; 4286 4287 bool HasProfileData = false; 4288 for (auto &EI : FS->calls()) { 4289 HasProfileData |= 4290 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4291 if (HasProfileData) 4292 break; 4293 } 4294 4295 for (auto &EI : FS->calls()) { 4296 // If this GUID doesn't have a value id, it doesn't have a function 4297 // summary and we don't need to record any calls to it. 4298 Optional<unsigned> CallValueId = GetValueId(EI.first); 4299 if (!CallValueId) 4300 continue; 4301 NameVals.push_back(*CallValueId); 4302 if (HasProfileData) 4303 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4304 } 4305 4306 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4307 unsigned Code = 4308 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4309 4310 // Emit the finished record. 4311 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4312 NameVals.clear(); 4313 MaybeEmitOriginalName(*S); 4314 }); 4315 4316 for (auto *AS : Aliases) { 4317 auto AliasValueId = SummaryToValueIdMap[AS]; 4318 assert(AliasValueId); 4319 NameVals.push_back(AliasValueId); 4320 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4321 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4322 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4323 assert(AliaseeValueId); 4324 NameVals.push_back(AliaseeValueId); 4325 4326 // Emit the finished record. 4327 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4328 NameVals.clear(); 4329 MaybeEmitOriginalName(*AS); 4330 4331 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4332 getReferencedTypeIds(FS, ReferencedTypeIds); 4333 } 4334 4335 if (!Index.cfiFunctionDefs().empty()) { 4336 for (auto &S : Index.cfiFunctionDefs()) { 4337 if (DefOrUseGUIDs.count( 4338 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4339 NameVals.push_back(StrtabBuilder.add(S)); 4340 NameVals.push_back(S.size()); 4341 } 4342 } 4343 if (!NameVals.empty()) { 4344 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4345 NameVals.clear(); 4346 } 4347 } 4348 4349 if (!Index.cfiFunctionDecls().empty()) { 4350 for (auto &S : Index.cfiFunctionDecls()) { 4351 if (DefOrUseGUIDs.count( 4352 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4353 NameVals.push_back(StrtabBuilder.add(S)); 4354 NameVals.push_back(S.size()); 4355 } 4356 } 4357 if (!NameVals.empty()) { 4358 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4359 NameVals.clear(); 4360 } 4361 } 4362 4363 // Walk the GUIDs that were referenced, and write the 4364 // corresponding type id records. 4365 for (auto &T : ReferencedTypeIds) { 4366 auto TidIter = Index.typeIds().equal_range(T); 4367 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4368 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4369 It->second.second); 4370 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4371 NameVals.clear(); 4372 } 4373 } 4374 4375 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4376 ArrayRef<uint64_t>{Index.getBlockCount()}); 4377 4378 Stream.ExitBlock(); 4379 } 4380 4381 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4382 /// current llvm version, and a record for the epoch number. 4383 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4384 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4385 4386 // Write the "user readable" string identifying the bitcode producer 4387 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4388 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4391 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4392 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4393 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4394 4395 // Write the epoch version 4396 Abbv = std::make_shared<BitCodeAbbrev>(); 4397 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4399 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4400 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4401 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4402 Stream.ExitBlock(); 4403 } 4404 4405 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4406 // Emit the module's hash. 4407 // MODULE_CODE_HASH: [5*i32] 4408 if (GenerateHash) { 4409 uint32_t Vals[5]; 4410 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4411 Buffer.size() - BlockStartPos)); 4412 std::array<uint8_t, 20> Hash = Hasher.result(); 4413 for (int Pos = 0; Pos < 20; Pos += 4) { 4414 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4415 } 4416 4417 // Emit the finished record. 4418 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4419 4420 if (ModHash) 4421 // Save the written hash value. 4422 llvm::copy(Vals, std::begin(*ModHash)); 4423 } 4424 } 4425 4426 void ModuleBitcodeWriter::write() { 4427 writeIdentificationBlock(Stream); 4428 4429 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4430 size_t BlockStartPos = Buffer.size(); 4431 4432 writeModuleVersion(); 4433 4434 // Emit blockinfo, which defines the standard abbreviations etc. 4435 writeBlockInfo(); 4436 4437 // Emit information describing all of the types in the module. 4438 writeTypeTable(); 4439 4440 // Emit information about attribute groups. 4441 writeAttributeGroupTable(); 4442 4443 // Emit information about parameter attributes. 4444 writeAttributeTable(); 4445 4446 writeComdats(); 4447 4448 // Emit top-level description of module, including target triple, inline asm, 4449 // descriptors for global variables, and function prototype info. 4450 writeModuleInfo(); 4451 4452 // Emit constants. 4453 writeModuleConstants(); 4454 4455 // Emit metadata kind names. 4456 writeModuleMetadataKinds(); 4457 4458 // Emit metadata. 4459 writeModuleMetadata(); 4460 4461 // Emit module-level use-lists. 4462 if (VE.shouldPreserveUseListOrder()) 4463 writeUseListBlock(nullptr); 4464 4465 writeOperandBundleTags(); 4466 writeSyncScopeNames(); 4467 4468 // Emit function bodies. 4469 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4470 for (const Function &F : M) 4471 if (!F.isDeclaration()) 4472 writeFunction(F, FunctionToBitcodeIndex); 4473 4474 // Need to write after the above call to WriteFunction which populates 4475 // the summary information in the index. 4476 if (Index) 4477 writePerModuleGlobalValueSummary(); 4478 4479 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4480 4481 writeModuleHash(BlockStartPos); 4482 4483 Stream.ExitBlock(); 4484 } 4485 4486 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4487 uint32_t &Position) { 4488 support::endian::write32le(&Buffer[Position], Value); 4489 Position += 4; 4490 } 4491 4492 /// If generating a bc file on darwin, we have to emit a 4493 /// header and trailer to make it compatible with the system archiver. To do 4494 /// this we emit the following header, and then emit a trailer that pads the 4495 /// file out to be a multiple of 16 bytes. 4496 /// 4497 /// struct bc_header { 4498 /// uint32_t Magic; // 0x0B17C0DE 4499 /// uint32_t Version; // Version, currently always 0. 4500 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4501 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4502 /// uint32_t CPUType; // CPU specifier. 4503 /// ... potentially more later ... 4504 /// }; 4505 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4506 const Triple &TT) { 4507 unsigned CPUType = ~0U; 4508 4509 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4510 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4511 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4512 // specific constants here because they are implicitly part of the Darwin ABI. 4513 enum { 4514 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4515 DARWIN_CPU_TYPE_X86 = 7, 4516 DARWIN_CPU_TYPE_ARM = 12, 4517 DARWIN_CPU_TYPE_POWERPC = 18 4518 }; 4519 4520 Triple::ArchType Arch = TT.getArch(); 4521 if (Arch == Triple::x86_64) 4522 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4523 else if (Arch == Triple::x86) 4524 CPUType = DARWIN_CPU_TYPE_X86; 4525 else if (Arch == Triple::ppc) 4526 CPUType = DARWIN_CPU_TYPE_POWERPC; 4527 else if (Arch == Triple::ppc64) 4528 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4529 else if (Arch == Triple::arm || Arch == Triple::thumb) 4530 CPUType = DARWIN_CPU_TYPE_ARM; 4531 4532 // Traditional Bitcode starts after header. 4533 assert(Buffer.size() >= BWH_HeaderSize && 4534 "Expected header size to be reserved"); 4535 unsigned BCOffset = BWH_HeaderSize; 4536 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4537 4538 // Write the magic and version. 4539 unsigned Position = 0; 4540 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4541 writeInt32ToBuffer(0, Buffer, Position); // Version. 4542 writeInt32ToBuffer(BCOffset, Buffer, Position); 4543 writeInt32ToBuffer(BCSize, Buffer, Position); 4544 writeInt32ToBuffer(CPUType, Buffer, Position); 4545 4546 // If the file is not a multiple of 16 bytes, insert dummy padding. 4547 while (Buffer.size() & 15) 4548 Buffer.push_back(0); 4549 } 4550 4551 /// Helper to write the header common to all bitcode files. 4552 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4553 // Emit the file header. 4554 Stream.Emit((unsigned)'B', 8); 4555 Stream.Emit((unsigned)'C', 8); 4556 Stream.Emit(0x0, 4); 4557 Stream.Emit(0xC, 4); 4558 Stream.Emit(0xE, 4); 4559 Stream.Emit(0xD, 4); 4560 } 4561 4562 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4563 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4564 writeBitcodeHeader(*Stream); 4565 } 4566 4567 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4568 4569 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4570 Stream->EnterSubblock(Block, 3); 4571 4572 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4573 Abbv->Add(BitCodeAbbrevOp(Record)); 4574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4575 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4576 4577 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4578 4579 Stream->ExitBlock(); 4580 } 4581 4582 void BitcodeWriter::writeSymtab() { 4583 assert(!WroteStrtab && !WroteSymtab); 4584 4585 // If any module has module-level inline asm, we will require a registered asm 4586 // parser for the target so that we can create an accurate symbol table for 4587 // the module. 4588 for (Module *M : Mods) { 4589 if (M->getModuleInlineAsm().empty()) 4590 continue; 4591 4592 std::string Err; 4593 const Triple TT(M->getTargetTriple()); 4594 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4595 if (!T || !T->hasMCAsmParser()) 4596 return; 4597 } 4598 4599 WroteSymtab = true; 4600 SmallVector<char, 0> Symtab; 4601 // The irsymtab::build function may be unable to create a symbol table if the 4602 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4603 // table is not required for correctness, but we still want to be able to 4604 // write malformed modules to bitcode files, so swallow the error. 4605 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4606 consumeError(std::move(E)); 4607 return; 4608 } 4609 4610 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4611 {Symtab.data(), Symtab.size()}); 4612 } 4613 4614 void BitcodeWriter::writeStrtab() { 4615 assert(!WroteStrtab); 4616 4617 std::vector<char> Strtab; 4618 StrtabBuilder.finalizeInOrder(); 4619 Strtab.resize(StrtabBuilder.getSize()); 4620 StrtabBuilder.write((uint8_t *)Strtab.data()); 4621 4622 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4623 {Strtab.data(), Strtab.size()}); 4624 4625 WroteStrtab = true; 4626 } 4627 4628 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4629 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4630 WroteStrtab = true; 4631 } 4632 4633 void BitcodeWriter::writeModule(const Module &M, 4634 bool ShouldPreserveUseListOrder, 4635 const ModuleSummaryIndex *Index, 4636 bool GenerateHash, ModuleHash *ModHash) { 4637 assert(!WroteStrtab); 4638 4639 // The Mods vector is used by irsymtab::build, which requires non-const 4640 // Modules in case it needs to materialize metadata. But the bitcode writer 4641 // requires that the module is materialized, so we can cast to non-const here, 4642 // after checking that it is in fact materialized. 4643 assert(M.isMaterialized()); 4644 Mods.push_back(const_cast<Module *>(&M)); 4645 4646 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4647 ShouldPreserveUseListOrder, Index, 4648 GenerateHash, ModHash); 4649 ModuleWriter.write(); 4650 } 4651 4652 void BitcodeWriter::writeIndex( 4653 const ModuleSummaryIndex *Index, 4654 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4655 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4656 ModuleToSummariesForIndex); 4657 IndexWriter.write(); 4658 } 4659 4660 /// Write the specified module to the specified output stream. 4661 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4662 bool ShouldPreserveUseListOrder, 4663 const ModuleSummaryIndex *Index, 4664 bool GenerateHash, ModuleHash *ModHash) { 4665 SmallVector<char, 0> Buffer; 4666 Buffer.reserve(256*1024); 4667 4668 // If this is darwin or another generic macho target, reserve space for the 4669 // header. 4670 Triple TT(M.getTargetTriple()); 4671 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4672 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4673 4674 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4675 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4676 ModHash); 4677 Writer.writeSymtab(); 4678 Writer.writeStrtab(); 4679 4680 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4681 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4682 4683 // Write the generated bitstream to "Out". 4684 if (!Buffer.empty()) 4685 Out.write((char *)&Buffer.front(), Buffer.size()); 4686 } 4687 4688 void IndexBitcodeWriter::write() { 4689 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4690 4691 writeModuleVersion(); 4692 4693 // Write the module paths in the combined index. 4694 writeModStrings(); 4695 4696 // Write the summary combined index records. 4697 writeCombinedGlobalValueSummary(); 4698 4699 Stream.ExitBlock(); 4700 } 4701 4702 // Write the specified module summary index to the given raw output stream, 4703 // where it will be written in a new bitcode block. This is used when 4704 // writing the combined index file for ThinLTO. When writing a subset of the 4705 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4706 void llvm::writeIndexToFile( 4707 const ModuleSummaryIndex &Index, raw_ostream &Out, 4708 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4709 SmallVector<char, 0> Buffer; 4710 Buffer.reserve(256 * 1024); 4711 4712 BitcodeWriter Writer(Buffer); 4713 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4714 Writer.writeStrtab(); 4715 4716 Out.write((char *)&Buffer.front(), Buffer.size()); 4717 } 4718 4719 namespace { 4720 4721 /// Class to manage the bitcode writing for a thin link bitcode file. 4722 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4723 /// ModHash is for use in ThinLTO incremental build, generated while writing 4724 /// the module bitcode file. 4725 const ModuleHash *ModHash; 4726 4727 public: 4728 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4729 BitstreamWriter &Stream, 4730 const ModuleSummaryIndex &Index, 4731 const ModuleHash &ModHash) 4732 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4733 /*ShouldPreserveUseListOrder=*/false, &Index), 4734 ModHash(&ModHash) {} 4735 4736 void write(); 4737 4738 private: 4739 void writeSimplifiedModuleInfo(); 4740 }; 4741 4742 } // end anonymous namespace 4743 4744 // This function writes a simpilified module info for thin link bitcode file. 4745 // It only contains the source file name along with the name(the offset and 4746 // size in strtab) and linkage for global values. For the global value info 4747 // entry, in order to keep linkage at offset 5, there are three zeros used 4748 // as padding. 4749 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4750 SmallVector<unsigned, 64> Vals; 4751 // Emit the module's source file name. 4752 { 4753 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4754 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4755 if (Bits == SE_Char6) 4756 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4757 else if (Bits == SE_Fixed7) 4758 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4759 4760 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4761 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4762 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4764 Abbv->Add(AbbrevOpToUse); 4765 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4766 4767 for (const auto P : M.getSourceFileName()) 4768 Vals.push_back((unsigned char)P); 4769 4770 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4771 Vals.clear(); 4772 } 4773 4774 // Emit the global variable information. 4775 for (const GlobalVariable &GV : M.globals()) { 4776 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4777 Vals.push_back(StrtabBuilder.add(GV.getName())); 4778 Vals.push_back(GV.getName().size()); 4779 Vals.push_back(0); 4780 Vals.push_back(0); 4781 Vals.push_back(0); 4782 Vals.push_back(getEncodedLinkage(GV)); 4783 4784 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4785 Vals.clear(); 4786 } 4787 4788 // Emit the function proto information. 4789 for (const Function &F : M) { 4790 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4791 Vals.push_back(StrtabBuilder.add(F.getName())); 4792 Vals.push_back(F.getName().size()); 4793 Vals.push_back(0); 4794 Vals.push_back(0); 4795 Vals.push_back(0); 4796 Vals.push_back(getEncodedLinkage(F)); 4797 4798 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4799 Vals.clear(); 4800 } 4801 4802 // Emit the alias information. 4803 for (const GlobalAlias &A : M.aliases()) { 4804 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4805 Vals.push_back(StrtabBuilder.add(A.getName())); 4806 Vals.push_back(A.getName().size()); 4807 Vals.push_back(0); 4808 Vals.push_back(0); 4809 Vals.push_back(0); 4810 Vals.push_back(getEncodedLinkage(A)); 4811 4812 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4813 Vals.clear(); 4814 } 4815 4816 // Emit the ifunc information. 4817 for (const GlobalIFunc &I : M.ifuncs()) { 4818 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4819 Vals.push_back(StrtabBuilder.add(I.getName())); 4820 Vals.push_back(I.getName().size()); 4821 Vals.push_back(0); 4822 Vals.push_back(0); 4823 Vals.push_back(0); 4824 Vals.push_back(getEncodedLinkage(I)); 4825 4826 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4827 Vals.clear(); 4828 } 4829 } 4830 4831 void ThinLinkBitcodeWriter::write() { 4832 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4833 4834 writeModuleVersion(); 4835 4836 writeSimplifiedModuleInfo(); 4837 4838 writePerModuleGlobalValueSummary(); 4839 4840 // Write module hash. 4841 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4842 4843 Stream.ExitBlock(); 4844 } 4845 4846 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4847 const ModuleSummaryIndex &Index, 4848 const ModuleHash &ModHash) { 4849 assert(!WroteStrtab); 4850 4851 // The Mods vector is used by irsymtab::build, which requires non-const 4852 // Modules in case it needs to materialize metadata. But the bitcode writer 4853 // requires that the module is materialized, so we can cast to non-const here, 4854 // after checking that it is in fact materialized. 4855 assert(M.isMaterialized()); 4856 Mods.push_back(const_cast<Module *>(&M)); 4857 4858 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4859 ModHash); 4860 ThinLinkWriter.write(); 4861 } 4862 4863 // Write the specified thin link bitcode file to the given raw output stream, 4864 // where it will be written in a new bitcode block. This is used when 4865 // writing the per-module index file for ThinLTO. 4866 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4867 const ModuleSummaryIndex &Index, 4868 const ModuleHash &ModHash) { 4869 SmallVector<char, 0> Buffer; 4870 Buffer.reserve(256 * 1024); 4871 4872 BitcodeWriter Writer(Buffer); 4873 Writer.writeThinLinkBitcode(M, Index, ModHash); 4874 Writer.writeSymtab(); 4875 Writer.writeStrtab(); 4876 4877 Out.write((char *)&Buffer.front(), Buffer.size()); 4878 } 4879 4880 static const char *getSectionNameForBitcode(const Triple &T) { 4881 switch (T.getObjectFormat()) { 4882 case Triple::MachO: 4883 return "__LLVM,__bitcode"; 4884 case Triple::COFF: 4885 case Triple::ELF: 4886 case Triple::Wasm: 4887 case Triple::UnknownObjectFormat: 4888 return ".llvmbc"; 4889 case Triple::GOFF: 4890 llvm_unreachable("GOFF is not yet implemented"); 4891 break; 4892 case Triple::XCOFF: 4893 llvm_unreachable("XCOFF is not yet implemented"); 4894 break; 4895 case Triple::DXContainer: 4896 llvm_unreachable("DXContainer is not yet implemented"); 4897 break; 4898 } 4899 llvm_unreachable("Unimplemented ObjectFormatType"); 4900 } 4901 4902 static const char *getSectionNameForCommandline(const Triple &T) { 4903 switch (T.getObjectFormat()) { 4904 case Triple::MachO: 4905 return "__LLVM,__cmdline"; 4906 case Triple::COFF: 4907 case Triple::ELF: 4908 case Triple::Wasm: 4909 case Triple::UnknownObjectFormat: 4910 return ".llvmcmd"; 4911 case Triple::GOFF: 4912 llvm_unreachable("GOFF is not yet implemented"); 4913 break; 4914 case Triple::XCOFF: 4915 llvm_unreachable("XCOFF is not yet implemented"); 4916 break; 4917 case Triple::DXContainer: 4918 llvm_unreachable("DXC is not yet implemented"); 4919 break; 4920 } 4921 llvm_unreachable("Unimplemented ObjectFormatType"); 4922 } 4923 4924 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4925 bool EmbedBitcode, bool EmbedCmdline, 4926 const std::vector<uint8_t> &CmdArgs) { 4927 // Save llvm.compiler.used and remove it. 4928 SmallVector<Constant *, 2> UsedArray; 4929 SmallVector<GlobalValue *, 4> UsedGlobals; 4930 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4931 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4932 for (auto *GV : UsedGlobals) { 4933 if (GV->getName() != "llvm.embedded.module" && 4934 GV->getName() != "llvm.cmdline") 4935 UsedArray.push_back( 4936 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4937 } 4938 if (Used) 4939 Used->eraseFromParent(); 4940 4941 // Embed the bitcode for the llvm module. 4942 std::string Data; 4943 ArrayRef<uint8_t> ModuleData; 4944 Triple T(M.getTargetTriple()); 4945 4946 if (EmbedBitcode) { 4947 if (Buf.getBufferSize() == 0 || 4948 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4949 (const unsigned char *)Buf.getBufferEnd())) { 4950 // If the input is LLVM Assembly, bitcode is produced by serializing 4951 // the module. Use-lists order need to be preserved in this case. 4952 llvm::raw_string_ostream OS(Data); 4953 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4954 ModuleData = 4955 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4956 } else 4957 // If the input is LLVM bitcode, write the input byte stream directly. 4958 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4959 Buf.getBufferSize()); 4960 } 4961 llvm::Constant *ModuleConstant = 4962 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4963 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4964 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4965 ModuleConstant); 4966 GV->setSection(getSectionNameForBitcode(T)); 4967 // Set alignment to 1 to prevent padding between two contributions from input 4968 // sections after linking. 4969 GV->setAlignment(Align(1)); 4970 UsedArray.push_back( 4971 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4972 if (llvm::GlobalVariable *Old = 4973 M.getGlobalVariable("llvm.embedded.module", true)) { 4974 assert(Old->hasZeroLiveUses() && 4975 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4976 GV->takeName(Old); 4977 Old->eraseFromParent(); 4978 } else { 4979 GV->setName("llvm.embedded.module"); 4980 } 4981 4982 // Skip if only bitcode needs to be embedded. 4983 if (EmbedCmdline) { 4984 // Embed command-line options. 4985 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4986 CmdArgs.size()); 4987 llvm::Constant *CmdConstant = 4988 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4989 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4990 llvm::GlobalValue::PrivateLinkage, 4991 CmdConstant); 4992 GV->setSection(getSectionNameForCommandline(T)); 4993 GV->setAlignment(Align(1)); 4994 UsedArray.push_back( 4995 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4996 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4997 assert(Old->hasZeroLiveUses() && 4998 "llvm.cmdline can only be used once in llvm.compiler.used"); 4999 GV->takeName(Old); 5000 Old->eraseFromParent(); 5001 } else { 5002 GV->setName("llvm.cmdline"); 5003 } 5004 } 5005 5006 if (UsedArray.empty()) 5007 return; 5008 5009 // Recreate llvm.compiler.used. 5010 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5011 auto *NewUsed = new GlobalVariable( 5012 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5013 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5014 NewUsed->setSection("llvm.metadata"); 5015 } 5016