xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 236cdaf84c684a985fa501721bf99b93ce2614da)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Bitcode/BitCodes.h"
29 #include "llvm/Bitcode/BitstreamWriter.h"
30 #include "llvm/Bitcode/LLVMBitCodes.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/Object/IRSymtab.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Endian.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/SHA1.h"
69 #include "llvm/Support/TargetRegistry.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 static cl::opt<unsigned>
85     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
86                    cl::desc("Number of metadatas above which we emit an index "
87                             "to enable lazy-loading"));
88 
89 cl::opt<bool> WriteRelBFToSummary(
90     "write-relbf-to-summary", cl::Hidden, cl::init(false),
91     cl::desc("Write relative block frequency to function summary "));
92 namespace {
93 
94 /// These are manifest constants used by the bitcode writer. They do not need to
95 /// be kept in sync with the reader, but need to be consistent within this file.
96 enum {
97   // VALUE_SYMTAB_BLOCK abbrev id's.
98   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
99   VST_ENTRY_7_ABBREV,
100   VST_ENTRY_6_ABBREV,
101   VST_BBENTRY_6_ABBREV,
102 
103   // CONSTANTS_BLOCK abbrev id's.
104   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
105   CONSTANTS_INTEGER_ABBREV,
106   CONSTANTS_CE_CAST_Abbrev,
107   CONSTANTS_NULL_Abbrev,
108 
109   // FUNCTION_BLOCK abbrev id's.
110   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
111   FUNCTION_INST_BINOP_ABBREV,
112   FUNCTION_INST_BINOP_FLAGS_ABBREV,
113   FUNCTION_INST_CAST_ABBREV,
114   FUNCTION_INST_RET_VOID_ABBREV,
115   FUNCTION_INST_RET_VAL_ABBREV,
116   FUNCTION_INST_UNREACHABLE_ABBREV,
117   FUNCTION_INST_GEP_ABBREV,
118 };
119 
120 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
121 /// file type.
122 class BitcodeWriterBase {
123 protected:
124   /// The stream created and owned by the client.
125   BitstreamWriter &Stream;
126 
127   StringTableBuilder &StrtabBuilder;
128 
129 public:
130   /// Constructs a BitcodeWriterBase object that writes to the provided
131   /// \p Stream.
132   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
133       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
134 
135 protected:
136   void writeBitcodeHeader();
137   void writeModuleVersion();
138 };
139 
140 void BitcodeWriterBase::writeModuleVersion() {
141   // VERSION: [version#]
142   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
143 }
144 
145 /// Base class to manage the module bitcode writing, currently subclassed for
146 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
147 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
148 protected:
149   /// The Module to write to bitcode.
150   const Module &M;
151 
152   /// Enumerates ids for all values in the module.
153   ValueEnumerator VE;
154 
155   /// Optional per-module index to write for ThinLTO.
156   const ModuleSummaryIndex *Index;
157 
158   /// Map that holds the correspondence between GUIDs in the summary index,
159   /// that came from indirect call profiles, and a value id generated by this
160   /// class to use in the VST and summary block records.
161   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
162 
163   /// Tracks the last value id recorded in the GUIDToValueMap.
164   unsigned GlobalValueId;
165 
166   /// Saves the offset of the VSTOffset record that must eventually be
167   /// backpatched with the offset of the actual VST.
168   uint64_t VSTOffsetPlaceholder = 0;
169 
170 public:
171   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
172   /// writing to the provided \p Buffer.
173   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
174                           BitstreamWriter &Stream,
175                           bool ShouldPreserveUseListOrder,
176                           const ModuleSummaryIndex *Index)
177       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
178         VE(M, ShouldPreserveUseListOrder), Index(Index) {
179     // Assign ValueIds to any callee values in the index that came from
180     // indirect call profiles and were recorded as a GUID not a Value*
181     // (which would have been assigned an ID by the ValueEnumerator).
182     // The starting ValueId is just after the number of values in the
183     // ValueEnumerator, so that they can be emitted in the VST.
184     GlobalValueId = VE.getValues().size();
185     if (!Index)
186       return;
187     for (const auto &GUIDSummaryLists : *Index)
188       // Examine all summaries for this GUID.
189       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
190         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
191           // For each call in the function summary, see if the call
192           // is to a GUID (which means it is for an indirect call,
193           // otherwise we would have a Value for it). If so, synthesize
194           // a value id.
195           for (auto &CallEdge : FS->calls())
196             if (!CallEdge.first.getValue())
197               assignValueId(CallEdge.first.getGUID());
198   }
199 
200 protected:
201   void writePerModuleGlobalValueSummary();
202 
203 private:
204   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
205                                            GlobalValueSummary *Summary,
206                                            unsigned ValueID,
207                                            unsigned FSCallsAbbrev,
208                                            unsigned FSCallsProfileAbbrev,
209                                            const Function &F);
210   void writeModuleLevelReferences(const GlobalVariable &V,
211                                   SmallVector<uint64_t, 64> &NameVals,
212                                   unsigned FSModRefsAbbrev);
213 
214   void assignValueId(GlobalValue::GUID ValGUID) {
215     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
216   }
217 
218   unsigned getValueId(GlobalValue::GUID ValGUID) {
219     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
220     // Expect that any GUID value had a value Id assigned by an
221     // earlier call to assignValueId.
222     assert(VMI != GUIDToValueIdMap.end() &&
223            "GUID does not have assigned value Id");
224     return VMI->second;
225   }
226 
227   // Helper to get the valueId for the type of value recorded in VI.
228   unsigned getValueId(ValueInfo VI) {
229     if (!VI.getValue())
230       return getValueId(VI.getGUID());
231     return VE.getValueID(VI.getValue());
232   }
233 
234   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
235 };
236 
237 /// Class to manage the bitcode writing for a module.
238 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
239   /// Pointer to the buffer allocated by caller for bitcode writing.
240   const SmallVectorImpl<char> &Buffer;
241 
242   /// True if a module hash record should be written.
243   bool GenerateHash;
244 
245   /// If non-null, when GenerateHash is true, the resulting hash is written
246   /// into ModHash.
247   ModuleHash *ModHash;
248 
249   SHA1 Hasher;
250 
251   /// The start bit of the identification block.
252   uint64_t BitcodeStartBit;
253 
254 public:
255   /// Constructs a ModuleBitcodeWriter object for the given Module,
256   /// writing to the provided \p Buffer.
257   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
258                       StringTableBuilder &StrtabBuilder,
259                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
260                       const ModuleSummaryIndex *Index, bool GenerateHash,
261                       ModuleHash *ModHash = nullptr)
262       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
263                                 ShouldPreserveUseListOrder, Index),
264         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
265         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
266 
267   /// Emit the current module to the bitstream.
268   void write();
269 
270 private:
271   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
272 
273   size_t addToStrtab(StringRef Str);
274 
275   void writeAttributeGroupTable();
276   void writeAttributeTable();
277   void writeTypeTable();
278   void writeComdats();
279   void writeValueSymbolTableForwardDecl();
280   void writeModuleInfo();
281   void writeValueAsMetadata(const ValueAsMetadata *MD,
282                             SmallVectorImpl<uint64_t> &Record);
283   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
284                     unsigned Abbrev);
285   unsigned createDILocationAbbrev();
286   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
287                        unsigned &Abbrev);
288   unsigned createGenericDINodeAbbrev();
289   void writeGenericDINode(const GenericDINode *N,
290                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
291   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
292                        unsigned Abbrev);
293   void writeDIEnumerator(const DIEnumerator *N,
294                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
295   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
296                         unsigned Abbrev);
297   void writeDIDerivedType(const DIDerivedType *N,
298                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
299   void writeDICompositeType(const DICompositeType *N,
300                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
301   void writeDISubroutineType(const DISubroutineType *N,
302                              SmallVectorImpl<uint64_t> &Record,
303                              unsigned Abbrev);
304   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
305                    unsigned Abbrev);
306   void writeDICompileUnit(const DICompileUnit *N,
307                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
308   void writeDISubprogram(const DISubprogram *N,
309                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
310   void writeDILexicalBlock(const DILexicalBlock *N,
311                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
312   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
313                                SmallVectorImpl<uint64_t> &Record,
314                                unsigned Abbrev);
315   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
316                         unsigned Abbrev);
317   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
318                     unsigned Abbrev);
319   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
320                         unsigned Abbrev);
321   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
322                      unsigned Abbrev);
323   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
324                                     SmallVectorImpl<uint64_t> &Record,
325                                     unsigned Abbrev);
326   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
327                                      SmallVectorImpl<uint64_t> &Record,
328                                      unsigned Abbrev);
329   void writeDIGlobalVariable(const DIGlobalVariable *N,
330                              SmallVectorImpl<uint64_t> &Record,
331                              unsigned Abbrev);
332   void writeDILocalVariable(const DILocalVariable *N,
333                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
334   void writeDIExpression(const DIExpression *N,
335                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
336   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
337                                        SmallVectorImpl<uint64_t> &Record,
338                                        unsigned Abbrev);
339   void writeDIObjCProperty(const DIObjCProperty *N,
340                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
341   void writeDIImportedEntity(const DIImportedEntity *N,
342                              SmallVectorImpl<uint64_t> &Record,
343                              unsigned Abbrev);
344   unsigned createNamedMetadataAbbrev();
345   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
346   unsigned createMetadataStringsAbbrev();
347   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
348                             SmallVectorImpl<uint64_t> &Record);
349   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
350                             SmallVectorImpl<uint64_t> &Record,
351                             std::vector<unsigned> *MDAbbrevs = nullptr,
352                             std::vector<uint64_t> *IndexPos = nullptr);
353   void writeModuleMetadata();
354   void writeFunctionMetadata(const Function &F);
355   void writeFunctionMetadataAttachment(const Function &F);
356   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
357   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
358                                     const GlobalObject &GO);
359   void writeModuleMetadataKinds();
360   void writeOperandBundleTags();
361   void writeSyncScopeNames();
362   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
363   void writeModuleConstants();
364   bool pushValueAndType(const Value *V, unsigned InstID,
365                         SmallVectorImpl<unsigned> &Vals);
366   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
367   void pushValue(const Value *V, unsigned InstID,
368                  SmallVectorImpl<unsigned> &Vals);
369   void pushValueSigned(const Value *V, unsigned InstID,
370                        SmallVectorImpl<uint64_t> &Vals);
371   void writeInstruction(const Instruction &I, unsigned InstID,
372                         SmallVectorImpl<unsigned> &Vals);
373   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
374   void writeGlobalValueSymbolTable(
375       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
376   void writeUseList(UseListOrder &&Order);
377   void writeUseListBlock(const Function *F);
378   void
379   writeFunction(const Function &F,
380                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
381   void writeBlockInfo();
382   void writeModuleHash(size_t BlockStartPos);
383 
384   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
385     return unsigned(SSID);
386   }
387 };
388 
389 /// Class to manage the bitcode writing for a combined index.
390 class IndexBitcodeWriter : public BitcodeWriterBase {
391   /// The combined index to write to bitcode.
392   const ModuleSummaryIndex &Index;
393 
394   /// When writing a subset of the index for distributed backends, client
395   /// provides a map of modules to the corresponding GUIDs/summaries to write.
396   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
397 
398   /// Map that holds the correspondence between the GUID used in the combined
399   /// index and a value id generated by this class to use in references.
400   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
401 
402   /// Tracks the last value id recorded in the GUIDToValueMap.
403   unsigned GlobalValueId = 0;
404 
405 public:
406   /// Constructs a IndexBitcodeWriter object for the given combined index,
407   /// writing to the provided \p Buffer. When writing a subset of the index
408   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
409   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
410                      const ModuleSummaryIndex &Index,
411                      const std::map<std::string, GVSummaryMapTy>
412                          *ModuleToSummariesForIndex = nullptr)
413       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
414         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
415     // Assign unique value ids to all summaries to be written, for use
416     // in writing out the call graph edges. Save the mapping from GUID
417     // to the new global value id to use when writing those edges, which
418     // are currently saved in the index in terms of GUID.
419     forEachSummary([&](GVInfo I, bool) {
420       GUIDToValueIdMap[I.first] = ++GlobalValueId;
421     });
422   }
423 
424   /// The below iterator returns the GUID and associated summary.
425   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
426 
427   /// Calls the callback for each value GUID and summary to be written to
428   /// bitcode. This hides the details of whether they are being pulled from the
429   /// entire index or just those in a provided ModuleToSummariesForIndex map.
430   template<typename Functor>
431   void forEachSummary(Functor Callback) {
432     if (ModuleToSummariesForIndex) {
433       for (auto &M : *ModuleToSummariesForIndex)
434         for (auto &Summary : M.second) {
435           Callback(Summary, false);
436           // Ensure aliasee is handled, e.g. for assigning a valueId,
437           // even if we are not importing the aliasee directly (the
438           // imported alias will contain a copy of aliasee).
439           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
440             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
441         }
442     } else {
443       for (auto &Summaries : Index)
444         for (auto &Summary : Summaries.second.SummaryList)
445           Callback({Summaries.first, Summary.get()}, false);
446     }
447   }
448 
449   /// Calls the callback for each entry in the modulePaths StringMap that
450   /// should be written to the module path string table. This hides the details
451   /// of whether they are being pulled from the entire index or just those in a
452   /// provided ModuleToSummariesForIndex map.
453   template <typename Functor> void forEachModule(Functor Callback) {
454     if (ModuleToSummariesForIndex) {
455       for (const auto &M : *ModuleToSummariesForIndex) {
456         const auto &MPI = Index.modulePaths().find(M.first);
457         if (MPI == Index.modulePaths().end()) {
458           // This should only happen if the bitcode file was empty, in which
459           // case we shouldn't be importing (the ModuleToSummariesForIndex
460           // would only include the module we are writing and index for).
461           assert(ModuleToSummariesForIndex->size() == 1);
462           continue;
463         }
464         Callback(*MPI);
465       }
466     } else {
467       for (const auto &MPSE : Index.modulePaths())
468         Callback(MPSE);
469     }
470   }
471 
472   /// Main entry point for writing a combined index to bitcode.
473   void write();
474 
475 private:
476   void writeModStrings();
477   void writeCombinedGlobalValueSummary();
478 
479   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
480     auto VMI = GUIDToValueIdMap.find(ValGUID);
481     if (VMI == GUIDToValueIdMap.end())
482       return None;
483     return VMI->second;
484   }
485 
486   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
487 };
488 
489 } // end anonymous namespace
490 
491 static unsigned getEncodedCastOpcode(unsigned Opcode) {
492   switch (Opcode) {
493   default: llvm_unreachable("Unknown cast instruction!");
494   case Instruction::Trunc   : return bitc::CAST_TRUNC;
495   case Instruction::ZExt    : return bitc::CAST_ZEXT;
496   case Instruction::SExt    : return bitc::CAST_SEXT;
497   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
498   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
499   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
500   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
501   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
502   case Instruction::FPExt   : return bitc::CAST_FPEXT;
503   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
504   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
505   case Instruction::BitCast : return bitc::CAST_BITCAST;
506   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
507   }
508 }
509 
510 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
511   switch (Opcode) {
512   default: llvm_unreachable("Unknown binary instruction!");
513   case Instruction::Add:
514   case Instruction::FAdd: return bitc::BINOP_ADD;
515   case Instruction::Sub:
516   case Instruction::FSub: return bitc::BINOP_SUB;
517   case Instruction::Mul:
518   case Instruction::FMul: return bitc::BINOP_MUL;
519   case Instruction::UDiv: return bitc::BINOP_UDIV;
520   case Instruction::FDiv:
521   case Instruction::SDiv: return bitc::BINOP_SDIV;
522   case Instruction::URem: return bitc::BINOP_UREM;
523   case Instruction::FRem:
524   case Instruction::SRem: return bitc::BINOP_SREM;
525   case Instruction::Shl:  return bitc::BINOP_SHL;
526   case Instruction::LShr: return bitc::BINOP_LSHR;
527   case Instruction::AShr: return bitc::BINOP_ASHR;
528   case Instruction::And:  return bitc::BINOP_AND;
529   case Instruction::Or:   return bitc::BINOP_OR;
530   case Instruction::Xor:  return bitc::BINOP_XOR;
531   }
532 }
533 
534 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
535   switch (Op) {
536   default: llvm_unreachable("Unknown RMW operation!");
537   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
538   case AtomicRMWInst::Add: return bitc::RMW_ADD;
539   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
540   case AtomicRMWInst::And: return bitc::RMW_AND;
541   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
542   case AtomicRMWInst::Or: return bitc::RMW_OR;
543   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
544   case AtomicRMWInst::Max: return bitc::RMW_MAX;
545   case AtomicRMWInst::Min: return bitc::RMW_MIN;
546   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
547   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
548   }
549 }
550 
551 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
552   switch (Ordering) {
553   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
554   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
555   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
556   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
557   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
558   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
559   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
560   }
561   llvm_unreachable("Invalid ordering");
562 }
563 
564 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
565                               StringRef Str, unsigned AbbrevToUse) {
566   SmallVector<unsigned, 64> Vals;
567 
568   // Code: [strchar x N]
569   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
570     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
571       AbbrevToUse = 0;
572     Vals.push_back(Str[i]);
573   }
574 
575   // Emit the finished record.
576   Stream.EmitRecord(Code, Vals, AbbrevToUse);
577 }
578 
579 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
580   switch (Kind) {
581   case Attribute::Alignment:
582     return bitc::ATTR_KIND_ALIGNMENT;
583   case Attribute::AllocSize:
584     return bitc::ATTR_KIND_ALLOC_SIZE;
585   case Attribute::AlwaysInline:
586     return bitc::ATTR_KIND_ALWAYS_INLINE;
587   case Attribute::ArgMemOnly:
588     return bitc::ATTR_KIND_ARGMEMONLY;
589   case Attribute::Builtin:
590     return bitc::ATTR_KIND_BUILTIN;
591   case Attribute::ByVal:
592     return bitc::ATTR_KIND_BY_VAL;
593   case Attribute::Convergent:
594     return bitc::ATTR_KIND_CONVERGENT;
595   case Attribute::InAlloca:
596     return bitc::ATTR_KIND_IN_ALLOCA;
597   case Attribute::Cold:
598     return bitc::ATTR_KIND_COLD;
599   case Attribute::InaccessibleMemOnly:
600     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
601   case Attribute::InaccessibleMemOrArgMemOnly:
602     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
603   case Attribute::InlineHint:
604     return bitc::ATTR_KIND_INLINE_HINT;
605   case Attribute::InReg:
606     return bitc::ATTR_KIND_IN_REG;
607   case Attribute::JumpTable:
608     return bitc::ATTR_KIND_JUMP_TABLE;
609   case Attribute::MinSize:
610     return bitc::ATTR_KIND_MIN_SIZE;
611   case Attribute::Naked:
612     return bitc::ATTR_KIND_NAKED;
613   case Attribute::Nest:
614     return bitc::ATTR_KIND_NEST;
615   case Attribute::NoAlias:
616     return bitc::ATTR_KIND_NO_ALIAS;
617   case Attribute::NoBuiltin:
618     return bitc::ATTR_KIND_NO_BUILTIN;
619   case Attribute::NoCapture:
620     return bitc::ATTR_KIND_NO_CAPTURE;
621   case Attribute::NoDuplicate:
622     return bitc::ATTR_KIND_NO_DUPLICATE;
623   case Attribute::NoImplicitFloat:
624     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
625   case Attribute::NoInline:
626     return bitc::ATTR_KIND_NO_INLINE;
627   case Attribute::NoRecurse:
628     return bitc::ATTR_KIND_NO_RECURSE;
629   case Attribute::NonLazyBind:
630     return bitc::ATTR_KIND_NON_LAZY_BIND;
631   case Attribute::NonNull:
632     return bitc::ATTR_KIND_NON_NULL;
633   case Attribute::Dereferenceable:
634     return bitc::ATTR_KIND_DEREFERENCEABLE;
635   case Attribute::DereferenceableOrNull:
636     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
637   case Attribute::NoRedZone:
638     return bitc::ATTR_KIND_NO_RED_ZONE;
639   case Attribute::NoReturn:
640     return bitc::ATTR_KIND_NO_RETURN;
641   case Attribute::NoCfCheck:
642     return bitc::ATTR_KIND_NOCF_CHECK;
643   case Attribute::NoUnwind:
644     return bitc::ATTR_KIND_NO_UNWIND;
645   case Attribute::OptForFuzzing:
646     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
647   case Attribute::OptimizeForSize:
648     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
649   case Attribute::OptimizeNone:
650     return bitc::ATTR_KIND_OPTIMIZE_NONE;
651   case Attribute::ReadNone:
652     return bitc::ATTR_KIND_READ_NONE;
653   case Attribute::ReadOnly:
654     return bitc::ATTR_KIND_READ_ONLY;
655   case Attribute::Returned:
656     return bitc::ATTR_KIND_RETURNED;
657   case Attribute::ReturnsTwice:
658     return bitc::ATTR_KIND_RETURNS_TWICE;
659   case Attribute::SExt:
660     return bitc::ATTR_KIND_S_EXT;
661   case Attribute::Speculatable:
662     return bitc::ATTR_KIND_SPECULATABLE;
663   case Attribute::StackAlignment:
664     return bitc::ATTR_KIND_STACK_ALIGNMENT;
665   case Attribute::StackProtect:
666     return bitc::ATTR_KIND_STACK_PROTECT;
667   case Attribute::StackProtectReq:
668     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
669   case Attribute::StackProtectStrong:
670     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
671   case Attribute::SafeStack:
672     return bitc::ATTR_KIND_SAFESTACK;
673   case Attribute::StrictFP:
674     return bitc::ATTR_KIND_STRICT_FP;
675   case Attribute::StructRet:
676     return bitc::ATTR_KIND_STRUCT_RET;
677   case Attribute::SanitizeAddress:
678     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
679   case Attribute::SanitizeHWAddress:
680     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
681   case Attribute::SanitizeThread:
682     return bitc::ATTR_KIND_SANITIZE_THREAD;
683   case Attribute::SanitizeMemory:
684     return bitc::ATTR_KIND_SANITIZE_MEMORY;
685   case Attribute::SwiftError:
686     return bitc::ATTR_KIND_SWIFT_ERROR;
687   case Attribute::SwiftSelf:
688     return bitc::ATTR_KIND_SWIFT_SELF;
689   case Attribute::UWTable:
690     return bitc::ATTR_KIND_UW_TABLE;
691   case Attribute::WriteOnly:
692     return bitc::ATTR_KIND_WRITEONLY;
693   case Attribute::ZExt:
694     return bitc::ATTR_KIND_Z_EXT;
695   case Attribute::EndAttrKinds:
696     llvm_unreachable("Can not encode end-attribute kinds marker.");
697   case Attribute::None:
698     llvm_unreachable("Can not encode none-attribute.");
699   }
700 
701   llvm_unreachable("Trying to encode unknown attribute");
702 }
703 
704 void ModuleBitcodeWriter::writeAttributeGroupTable() {
705   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
706       VE.getAttributeGroups();
707   if (AttrGrps.empty()) return;
708 
709   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
710 
711   SmallVector<uint64_t, 64> Record;
712   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
713     unsigned AttrListIndex = Pair.first;
714     AttributeSet AS = Pair.second;
715     Record.push_back(VE.getAttributeGroupID(Pair));
716     Record.push_back(AttrListIndex);
717 
718     for (Attribute Attr : AS) {
719       if (Attr.isEnumAttribute()) {
720         Record.push_back(0);
721         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
722       } else if (Attr.isIntAttribute()) {
723         Record.push_back(1);
724         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
725         Record.push_back(Attr.getValueAsInt());
726       } else {
727         StringRef Kind = Attr.getKindAsString();
728         StringRef Val = Attr.getValueAsString();
729 
730         Record.push_back(Val.empty() ? 3 : 4);
731         Record.append(Kind.begin(), Kind.end());
732         Record.push_back(0);
733         if (!Val.empty()) {
734           Record.append(Val.begin(), Val.end());
735           Record.push_back(0);
736         }
737       }
738     }
739 
740     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
741     Record.clear();
742   }
743 
744   Stream.ExitBlock();
745 }
746 
747 void ModuleBitcodeWriter::writeAttributeTable() {
748   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
749   if (Attrs.empty()) return;
750 
751   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
752 
753   SmallVector<uint64_t, 64> Record;
754   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
755     AttributeList AL = Attrs[i];
756     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
757       AttributeSet AS = AL.getAttributes(i);
758       if (AS.hasAttributes())
759         Record.push_back(VE.getAttributeGroupID({i, AS}));
760     }
761 
762     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
763     Record.clear();
764   }
765 
766   Stream.ExitBlock();
767 }
768 
769 /// WriteTypeTable - Write out the type table for a module.
770 void ModuleBitcodeWriter::writeTypeTable() {
771   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
772 
773   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
774   SmallVector<uint64_t, 64> TypeVals;
775 
776   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
777 
778   // Abbrev for TYPE_CODE_POINTER.
779   auto Abbv = std::make_shared<BitCodeAbbrev>();
780   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
781   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
782   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
783   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
784 
785   // Abbrev for TYPE_CODE_FUNCTION.
786   Abbv = std::make_shared<BitCodeAbbrev>();
787   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
788   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
789   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
790   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
791   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
792 
793   // Abbrev for TYPE_CODE_STRUCT_ANON.
794   Abbv = std::make_shared<BitCodeAbbrev>();
795   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
796   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
797   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
798   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
799   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
800 
801   // Abbrev for TYPE_CODE_STRUCT_NAME.
802   Abbv = std::make_shared<BitCodeAbbrev>();
803   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
804   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
805   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
806   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
807 
808   // Abbrev for TYPE_CODE_STRUCT_NAMED.
809   Abbv = std::make_shared<BitCodeAbbrev>();
810   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
811   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
812   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
813   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
814   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
815 
816   // Abbrev for TYPE_CODE_ARRAY.
817   Abbv = std::make_shared<BitCodeAbbrev>();
818   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
819   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
820   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
821   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
822 
823   // Emit an entry count so the reader can reserve space.
824   TypeVals.push_back(TypeList.size());
825   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
826   TypeVals.clear();
827 
828   // Loop over all of the types, emitting each in turn.
829   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
830     Type *T = TypeList[i];
831     int AbbrevToUse = 0;
832     unsigned Code = 0;
833 
834     switch (T->getTypeID()) {
835     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
836     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
837     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
838     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
839     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
840     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
841     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
842     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
843     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
844     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
845     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
846     case Type::IntegerTyID:
847       // INTEGER: [width]
848       Code = bitc::TYPE_CODE_INTEGER;
849       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
850       break;
851     case Type::PointerTyID: {
852       PointerType *PTy = cast<PointerType>(T);
853       // POINTER: [pointee type, address space]
854       Code = bitc::TYPE_CODE_POINTER;
855       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
856       unsigned AddressSpace = PTy->getAddressSpace();
857       TypeVals.push_back(AddressSpace);
858       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
859       break;
860     }
861     case Type::FunctionTyID: {
862       FunctionType *FT = cast<FunctionType>(T);
863       // FUNCTION: [isvararg, retty, paramty x N]
864       Code = bitc::TYPE_CODE_FUNCTION;
865       TypeVals.push_back(FT->isVarArg());
866       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
867       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
868         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
869       AbbrevToUse = FunctionAbbrev;
870       break;
871     }
872     case Type::StructTyID: {
873       StructType *ST = cast<StructType>(T);
874       // STRUCT: [ispacked, eltty x N]
875       TypeVals.push_back(ST->isPacked());
876       // Output all of the element types.
877       for (StructType::element_iterator I = ST->element_begin(),
878            E = ST->element_end(); I != E; ++I)
879         TypeVals.push_back(VE.getTypeID(*I));
880 
881       if (ST->isLiteral()) {
882         Code = bitc::TYPE_CODE_STRUCT_ANON;
883         AbbrevToUse = StructAnonAbbrev;
884       } else {
885         if (ST->isOpaque()) {
886           Code = bitc::TYPE_CODE_OPAQUE;
887         } else {
888           Code = bitc::TYPE_CODE_STRUCT_NAMED;
889           AbbrevToUse = StructNamedAbbrev;
890         }
891 
892         // Emit the name if it is present.
893         if (!ST->getName().empty())
894           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
895                             StructNameAbbrev);
896       }
897       break;
898     }
899     case Type::ArrayTyID: {
900       ArrayType *AT = cast<ArrayType>(T);
901       // ARRAY: [numelts, eltty]
902       Code = bitc::TYPE_CODE_ARRAY;
903       TypeVals.push_back(AT->getNumElements());
904       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
905       AbbrevToUse = ArrayAbbrev;
906       break;
907     }
908     case Type::VectorTyID: {
909       VectorType *VT = cast<VectorType>(T);
910       // VECTOR [numelts, eltty]
911       Code = bitc::TYPE_CODE_VECTOR;
912       TypeVals.push_back(VT->getNumElements());
913       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
914       break;
915     }
916     }
917 
918     // Emit the finished record.
919     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
920     TypeVals.clear();
921   }
922 
923   Stream.ExitBlock();
924 }
925 
926 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
927   switch (Linkage) {
928   case GlobalValue::ExternalLinkage:
929     return 0;
930   case GlobalValue::WeakAnyLinkage:
931     return 16;
932   case GlobalValue::AppendingLinkage:
933     return 2;
934   case GlobalValue::InternalLinkage:
935     return 3;
936   case GlobalValue::LinkOnceAnyLinkage:
937     return 18;
938   case GlobalValue::ExternalWeakLinkage:
939     return 7;
940   case GlobalValue::CommonLinkage:
941     return 8;
942   case GlobalValue::PrivateLinkage:
943     return 9;
944   case GlobalValue::WeakODRLinkage:
945     return 17;
946   case GlobalValue::LinkOnceODRLinkage:
947     return 19;
948   case GlobalValue::AvailableExternallyLinkage:
949     return 12;
950   }
951   llvm_unreachable("Invalid linkage");
952 }
953 
954 static unsigned getEncodedLinkage(const GlobalValue &GV) {
955   return getEncodedLinkage(GV.getLinkage());
956 }
957 
958 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
959   uint64_t RawFlags = 0;
960   RawFlags |= Flags.ReadNone;
961   RawFlags |= (Flags.ReadOnly << 1);
962   RawFlags |= (Flags.NoRecurse << 2);
963   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
964   return RawFlags;
965 }
966 
967 // Decode the flags for GlobalValue in the summary
968 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
969   uint64_t RawFlags = 0;
970 
971   RawFlags |= Flags.NotEligibleToImport; // bool
972   RawFlags |= (Flags.Live << 1);
973   RawFlags |= (Flags.DSOLocal << 2);
974 
975   // Linkage don't need to be remapped at that time for the summary. Any future
976   // change to the getEncodedLinkage() function will need to be taken into
977   // account here as well.
978   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
979 
980   return RawFlags;
981 }
982 
983 static unsigned getEncodedVisibility(const GlobalValue &GV) {
984   switch (GV.getVisibility()) {
985   case GlobalValue::DefaultVisibility:   return 0;
986   case GlobalValue::HiddenVisibility:    return 1;
987   case GlobalValue::ProtectedVisibility: return 2;
988   }
989   llvm_unreachable("Invalid visibility");
990 }
991 
992 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
993   switch (GV.getDLLStorageClass()) {
994   case GlobalValue::DefaultStorageClass:   return 0;
995   case GlobalValue::DLLImportStorageClass: return 1;
996   case GlobalValue::DLLExportStorageClass: return 2;
997   }
998   llvm_unreachable("Invalid DLL storage class");
999 }
1000 
1001 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1002   switch (GV.getThreadLocalMode()) {
1003     case GlobalVariable::NotThreadLocal:         return 0;
1004     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1005     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1006     case GlobalVariable::InitialExecTLSModel:    return 3;
1007     case GlobalVariable::LocalExecTLSModel:      return 4;
1008   }
1009   llvm_unreachable("Invalid TLS model");
1010 }
1011 
1012 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1013   switch (C.getSelectionKind()) {
1014   case Comdat::Any:
1015     return bitc::COMDAT_SELECTION_KIND_ANY;
1016   case Comdat::ExactMatch:
1017     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1018   case Comdat::Largest:
1019     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1020   case Comdat::NoDuplicates:
1021     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1022   case Comdat::SameSize:
1023     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1024   }
1025   llvm_unreachable("Invalid selection kind");
1026 }
1027 
1028 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1029   switch (GV.getUnnamedAddr()) {
1030   case GlobalValue::UnnamedAddr::None:   return 0;
1031   case GlobalValue::UnnamedAddr::Local:  return 2;
1032   case GlobalValue::UnnamedAddr::Global: return 1;
1033   }
1034   llvm_unreachable("Invalid unnamed_addr");
1035 }
1036 
1037 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1038   if (GenerateHash)
1039     Hasher.update(Str);
1040   return StrtabBuilder.add(Str);
1041 }
1042 
1043 void ModuleBitcodeWriter::writeComdats() {
1044   SmallVector<unsigned, 64> Vals;
1045   for (const Comdat *C : VE.getComdats()) {
1046     // COMDAT: [strtab offset, strtab size, selection_kind]
1047     Vals.push_back(addToStrtab(C->getName()));
1048     Vals.push_back(C->getName().size());
1049     Vals.push_back(getEncodedComdatSelectionKind(*C));
1050     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1051     Vals.clear();
1052   }
1053 }
1054 
1055 /// Write a record that will eventually hold the word offset of the
1056 /// module-level VST. For now the offset is 0, which will be backpatched
1057 /// after the real VST is written. Saves the bit offset to backpatch.
1058 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1059   // Write a placeholder value in for the offset of the real VST,
1060   // which is written after the function blocks so that it can include
1061   // the offset of each function. The placeholder offset will be
1062   // updated when the real VST is written.
1063   auto Abbv = std::make_shared<BitCodeAbbrev>();
1064   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1065   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1066   // hold the real VST offset. Must use fixed instead of VBR as we don't
1067   // know how many VBR chunks to reserve ahead of time.
1068   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1069   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1070 
1071   // Emit the placeholder
1072   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1073   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1074 
1075   // Compute and save the bit offset to the placeholder, which will be
1076   // patched when the real VST is written. We can simply subtract the 32-bit
1077   // fixed size from the current bit number to get the location to backpatch.
1078   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1079 }
1080 
1081 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1082 
1083 /// Determine the encoding to use for the given string name and length.
1084 static StringEncoding getStringEncoding(StringRef Str) {
1085   bool isChar6 = true;
1086   for (char C : Str) {
1087     if (isChar6)
1088       isChar6 = BitCodeAbbrevOp::isChar6(C);
1089     if ((unsigned char)C & 128)
1090       // don't bother scanning the rest.
1091       return SE_Fixed8;
1092   }
1093   if (isChar6)
1094     return SE_Char6;
1095   return SE_Fixed7;
1096 }
1097 
1098 /// Emit top-level description of module, including target triple, inline asm,
1099 /// descriptors for global variables, and function prototype info.
1100 /// Returns the bit offset to backpatch with the location of the real VST.
1101 void ModuleBitcodeWriter::writeModuleInfo() {
1102   // Emit various pieces of data attached to a module.
1103   if (!M.getTargetTriple().empty())
1104     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1105                       0 /*TODO*/);
1106   const std::string &DL = M.getDataLayoutStr();
1107   if (!DL.empty())
1108     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1109   if (!M.getModuleInlineAsm().empty())
1110     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1111                       0 /*TODO*/);
1112 
1113   // Emit information about sections and GC, computing how many there are. Also
1114   // compute the maximum alignment value.
1115   std::map<std::string, unsigned> SectionMap;
1116   std::map<std::string, unsigned> GCMap;
1117   unsigned MaxAlignment = 0;
1118   unsigned MaxGlobalType = 0;
1119   for (const GlobalValue &GV : M.globals()) {
1120     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1121     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1122     if (GV.hasSection()) {
1123       // Give section names unique ID's.
1124       unsigned &Entry = SectionMap[GV.getSection()];
1125       if (!Entry) {
1126         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1127                           0 /*TODO*/);
1128         Entry = SectionMap.size();
1129       }
1130     }
1131   }
1132   for (const Function &F : M) {
1133     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1134     if (F.hasSection()) {
1135       // Give section names unique ID's.
1136       unsigned &Entry = SectionMap[F.getSection()];
1137       if (!Entry) {
1138         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1139                           0 /*TODO*/);
1140         Entry = SectionMap.size();
1141       }
1142     }
1143     if (F.hasGC()) {
1144       // Same for GC names.
1145       unsigned &Entry = GCMap[F.getGC()];
1146       if (!Entry) {
1147         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1148                           0 /*TODO*/);
1149         Entry = GCMap.size();
1150       }
1151     }
1152   }
1153 
1154   // Emit abbrev for globals, now that we know # sections and max alignment.
1155   unsigned SimpleGVarAbbrev = 0;
1156   if (!M.global_empty()) {
1157     // Add an abbrev for common globals with no visibility or thread localness.
1158     auto Abbv = std::make_shared<BitCodeAbbrev>();
1159     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1160     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1161     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1162     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1163                               Log2_32_Ceil(MaxGlobalType+1)));
1164     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1165                                                            //| explicitType << 1
1166                                                            //| constant
1167     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1168     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1169     if (MaxAlignment == 0)                                 // Alignment.
1170       Abbv->Add(BitCodeAbbrevOp(0));
1171     else {
1172       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1173       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1174                                Log2_32_Ceil(MaxEncAlignment+1)));
1175     }
1176     if (SectionMap.empty())                                    // Section.
1177       Abbv->Add(BitCodeAbbrevOp(0));
1178     else
1179       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1180                                Log2_32_Ceil(SectionMap.size()+1)));
1181     // Don't bother emitting vis + thread local.
1182     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1183   }
1184 
1185   SmallVector<unsigned, 64> Vals;
1186   // Emit the module's source file name.
1187   {
1188     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1189     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1190     if (Bits == SE_Char6)
1191       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1192     else if (Bits == SE_Fixed7)
1193       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1194 
1195     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1196     auto Abbv = std::make_shared<BitCodeAbbrev>();
1197     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1198     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1199     Abbv->Add(AbbrevOpToUse);
1200     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1201 
1202     for (const auto P : M.getSourceFileName())
1203       Vals.push_back((unsigned char)P);
1204 
1205     // Emit the finished record.
1206     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1207     Vals.clear();
1208   }
1209 
1210   // Emit the global variable information.
1211   for (const GlobalVariable &GV : M.globals()) {
1212     unsigned AbbrevToUse = 0;
1213 
1214     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1215     //             linkage, alignment, section, visibility, threadlocal,
1216     //             unnamed_addr, externally_initialized, dllstorageclass,
1217     //             comdat, attributes, DSO_Local]
1218     Vals.push_back(addToStrtab(GV.getName()));
1219     Vals.push_back(GV.getName().size());
1220     Vals.push_back(VE.getTypeID(GV.getValueType()));
1221     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1222     Vals.push_back(GV.isDeclaration() ? 0 :
1223                    (VE.getValueID(GV.getInitializer()) + 1));
1224     Vals.push_back(getEncodedLinkage(GV));
1225     Vals.push_back(Log2_32(GV.getAlignment())+1);
1226     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1227     if (GV.isThreadLocal() ||
1228         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1229         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1230         GV.isExternallyInitialized() ||
1231         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1232         GV.hasComdat() ||
1233         GV.hasAttributes() ||
1234         GV.isDSOLocal()) {
1235       Vals.push_back(getEncodedVisibility(GV));
1236       Vals.push_back(getEncodedThreadLocalMode(GV));
1237       Vals.push_back(getEncodedUnnamedAddr(GV));
1238       Vals.push_back(GV.isExternallyInitialized());
1239       Vals.push_back(getEncodedDLLStorageClass(GV));
1240       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1241 
1242       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1243       Vals.push_back(VE.getAttributeListID(AL));
1244 
1245       Vals.push_back(GV.isDSOLocal());
1246     } else {
1247       AbbrevToUse = SimpleGVarAbbrev;
1248     }
1249 
1250     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1251     Vals.clear();
1252   }
1253 
1254   // Emit the function proto information.
1255   for (const Function &F : M) {
1256     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1257     //             linkage, paramattrs, alignment, section, visibility, gc,
1258     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1259     //             prefixdata, personalityfn, DSO_Local]
1260     Vals.push_back(addToStrtab(F.getName()));
1261     Vals.push_back(F.getName().size());
1262     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1263     Vals.push_back(F.getCallingConv());
1264     Vals.push_back(F.isDeclaration());
1265     Vals.push_back(getEncodedLinkage(F));
1266     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1267     Vals.push_back(Log2_32(F.getAlignment())+1);
1268     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1269     Vals.push_back(getEncodedVisibility(F));
1270     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1271     Vals.push_back(getEncodedUnnamedAddr(F));
1272     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1273                                        : 0);
1274     Vals.push_back(getEncodedDLLStorageClass(F));
1275     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1276     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1277                                      : 0);
1278     Vals.push_back(
1279         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1280 
1281     Vals.push_back(F.isDSOLocal());
1282     unsigned AbbrevToUse = 0;
1283     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1284     Vals.clear();
1285   }
1286 
1287   // Emit the alias information.
1288   for (const GlobalAlias &A : M.aliases()) {
1289     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1290     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1291     //         DSO_Local]
1292     Vals.push_back(addToStrtab(A.getName()));
1293     Vals.push_back(A.getName().size());
1294     Vals.push_back(VE.getTypeID(A.getValueType()));
1295     Vals.push_back(A.getType()->getAddressSpace());
1296     Vals.push_back(VE.getValueID(A.getAliasee()));
1297     Vals.push_back(getEncodedLinkage(A));
1298     Vals.push_back(getEncodedVisibility(A));
1299     Vals.push_back(getEncodedDLLStorageClass(A));
1300     Vals.push_back(getEncodedThreadLocalMode(A));
1301     Vals.push_back(getEncodedUnnamedAddr(A));
1302     Vals.push_back(A.isDSOLocal());
1303 
1304     unsigned AbbrevToUse = 0;
1305     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1306     Vals.clear();
1307   }
1308 
1309   // Emit the ifunc information.
1310   for (const GlobalIFunc &I : M.ifuncs()) {
1311     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1312     //         val#, linkage, visibility, DSO_Local]
1313     Vals.push_back(addToStrtab(I.getName()));
1314     Vals.push_back(I.getName().size());
1315     Vals.push_back(VE.getTypeID(I.getValueType()));
1316     Vals.push_back(I.getType()->getAddressSpace());
1317     Vals.push_back(VE.getValueID(I.getResolver()));
1318     Vals.push_back(getEncodedLinkage(I));
1319     Vals.push_back(getEncodedVisibility(I));
1320     Vals.push_back(I.isDSOLocal());
1321     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1322     Vals.clear();
1323   }
1324 
1325   writeValueSymbolTableForwardDecl();
1326 }
1327 
1328 static uint64_t getOptimizationFlags(const Value *V) {
1329   uint64_t Flags = 0;
1330 
1331   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1332     if (OBO->hasNoSignedWrap())
1333       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1334     if (OBO->hasNoUnsignedWrap())
1335       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1336   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1337     if (PEO->isExact())
1338       Flags |= 1 << bitc::PEO_EXACT;
1339   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1340     if (FPMO->hasAllowReassoc())
1341       Flags |= bitc::AllowReassoc;
1342     if (FPMO->hasNoNaNs())
1343       Flags |= bitc::NoNaNs;
1344     if (FPMO->hasNoInfs())
1345       Flags |= bitc::NoInfs;
1346     if (FPMO->hasNoSignedZeros())
1347       Flags |= bitc::NoSignedZeros;
1348     if (FPMO->hasAllowReciprocal())
1349       Flags |= bitc::AllowReciprocal;
1350     if (FPMO->hasAllowContract())
1351       Flags |= bitc::AllowContract;
1352     if (FPMO->hasApproxFunc())
1353       Flags |= bitc::ApproxFunc;
1354   }
1355 
1356   return Flags;
1357 }
1358 
1359 void ModuleBitcodeWriter::writeValueAsMetadata(
1360     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1361   // Mimic an MDNode with a value as one operand.
1362   Value *V = MD->getValue();
1363   Record.push_back(VE.getTypeID(V->getType()));
1364   Record.push_back(VE.getValueID(V));
1365   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1366   Record.clear();
1367 }
1368 
1369 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1370                                        SmallVectorImpl<uint64_t> &Record,
1371                                        unsigned Abbrev) {
1372   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1373     Metadata *MD = N->getOperand(i);
1374     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1375            "Unexpected function-local metadata");
1376     Record.push_back(VE.getMetadataOrNullID(MD));
1377   }
1378   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1379                                     : bitc::METADATA_NODE,
1380                     Record, Abbrev);
1381   Record.clear();
1382 }
1383 
1384 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1385   // Assume the column is usually under 128, and always output the inlined-at
1386   // location (it's never more expensive than building an array size 1).
1387   auto Abbv = std::make_shared<BitCodeAbbrev>();
1388   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1389   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1390   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1391   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1392   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1393   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1394   return Stream.EmitAbbrev(std::move(Abbv));
1395 }
1396 
1397 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1398                                           SmallVectorImpl<uint64_t> &Record,
1399                                           unsigned &Abbrev) {
1400   if (!Abbrev)
1401     Abbrev = createDILocationAbbrev();
1402 
1403   Record.push_back(N->isDistinct());
1404   Record.push_back(N->getLine());
1405   Record.push_back(N->getColumn());
1406   Record.push_back(VE.getMetadataID(N->getScope()));
1407   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1408 
1409   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1410   Record.clear();
1411 }
1412 
1413 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1414   // Assume the column is usually under 128, and always output the inlined-at
1415   // location (it's never more expensive than building an array size 1).
1416   auto Abbv = std::make_shared<BitCodeAbbrev>();
1417   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1418   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1419   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1420   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1421   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1422   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1423   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1424   return Stream.EmitAbbrev(std::move(Abbv));
1425 }
1426 
1427 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1428                                              SmallVectorImpl<uint64_t> &Record,
1429                                              unsigned &Abbrev) {
1430   if (!Abbrev)
1431     Abbrev = createGenericDINodeAbbrev();
1432 
1433   Record.push_back(N->isDistinct());
1434   Record.push_back(N->getTag());
1435   Record.push_back(0); // Per-tag version field; unused for now.
1436 
1437   for (auto &I : N->operands())
1438     Record.push_back(VE.getMetadataOrNullID(I));
1439 
1440   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1441   Record.clear();
1442 }
1443 
1444 static uint64_t rotateSign(int64_t I) {
1445   uint64_t U = I;
1446   return I < 0 ? ~(U << 1) : U << 1;
1447 }
1448 
1449 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1450                                           SmallVectorImpl<uint64_t> &Record,
1451                                           unsigned Abbrev) {
1452   const uint64_t Version = 1 << 1;
1453   Record.push_back((uint64_t)N->isDistinct() | Version);
1454   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1455   Record.push_back(rotateSign(N->getLowerBound()));
1456 
1457   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1458   Record.clear();
1459 }
1460 
1461 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1462                                             SmallVectorImpl<uint64_t> &Record,
1463                                             unsigned Abbrev) {
1464   Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1465   Record.push_back(rotateSign(N->getValue()));
1466   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1467 
1468   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1469   Record.clear();
1470 }
1471 
1472 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1473                                            SmallVectorImpl<uint64_t> &Record,
1474                                            unsigned Abbrev) {
1475   Record.push_back(N->isDistinct());
1476   Record.push_back(N->getTag());
1477   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1478   Record.push_back(N->getSizeInBits());
1479   Record.push_back(N->getAlignInBits());
1480   Record.push_back(N->getEncoding());
1481 
1482   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1483   Record.clear();
1484 }
1485 
1486 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1487                                              SmallVectorImpl<uint64_t> &Record,
1488                                              unsigned Abbrev) {
1489   Record.push_back(N->isDistinct());
1490   Record.push_back(N->getTag());
1491   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1492   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1493   Record.push_back(N->getLine());
1494   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1495   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1496   Record.push_back(N->getSizeInBits());
1497   Record.push_back(N->getAlignInBits());
1498   Record.push_back(N->getOffsetInBits());
1499   Record.push_back(N->getFlags());
1500   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1501 
1502   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1503   // that there is no DWARF address space associated with DIDerivedType.
1504   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1505     Record.push_back(*DWARFAddressSpace + 1);
1506   else
1507     Record.push_back(0);
1508 
1509   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1510   Record.clear();
1511 }
1512 
1513 void ModuleBitcodeWriter::writeDICompositeType(
1514     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1515     unsigned Abbrev) {
1516   const unsigned IsNotUsedInOldTypeRef = 0x2;
1517   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1518   Record.push_back(N->getTag());
1519   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1520   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1521   Record.push_back(N->getLine());
1522   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1523   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1524   Record.push_back(N->getSizeInBits());
1525   Record.push_back(N->getAlignInBits());
1526   Record.push_back(N->getOffsetInBits());
1527   Record.push_back(N->getFlags());
1528   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1529   Record.push_back(N->getRuntimeLang());
1530   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1531   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1532   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1533   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1534 
1535   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1536   Record.clear();
1537 }
1538 
1539 void ModuleBitcodeWriter::writeDISubroutineType(
1540     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1541     unsigned Abbrev) {
1542   const unsigned HasNoOldTypeRefs = 0x2;
1543   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1544   Record.push_back(N->getFlags());
1545   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1546   Record.push_back(N->getCC());
1547 
1548   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1549   Record.clear();
1550 }
1551 
1552 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1553                                       SmallVectorImpl<uint64_t> &Record,
1554                                       unsigned Abbrev) {
1555   Record.push_back(N->isDistinct());
1556   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1557   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1558   if (N->getRawChecksum()) {
1559     Record.push_back(N->getRawChecksum()->Kind);
1560     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1561   } else {
1562     // Maintain backwards compatibility with the old internal representation of
1563     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1564     Record.push_back(0);
1565     Record.push_back(VE.getMetadataOrNullID(nullptr));
1566   }
1567   auto Source = N->getRawSource();
1568   if (Source)
1569     Record.push_back(VE.getMetadataOrNullID(*Source));
1570 
1571   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1572   Record.clear();
1573 }
1574 
1575 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1576                                              SmallVectorImpl<uint64_t> &Record,
1577                                              unsigned Abbrev) {
1578   assert(N->isDistinct() && "Expected distinct compile units");
1579   Record.push_back(/* IsDistinct */ true);
1580   Record.push_back(N->getSourceLanguage());
1581   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1582   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1583   Record.push_back(N->isOptimized());
1584   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1585   Record.push_back(N->getRuntimeVersion());
1586   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1587   Record.push_back(N->getEmissionKind());
1588   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1589   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1590   Record.push_back(/* subprograms */ 0);
1591   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1592   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1593   Record.push_back(N->getDWOId());
1594   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1595   Record.push_back(N->getSplitDebugInlining());
1596   Record.push_back(N->getDebugInfoForProfiling());
1597   Record.push_back(N->getGnuPubnames());
1598 
1599   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1600   Record.clear();
1601 }
1602 
1603 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1604                                             SmallVectorImpl<uint64_t> &Record,
1605                                             unsigned Abbrev) {
1606   uint64_t HasUnitFlag = 1 << 1;
1607   Record.push_back(N->isDistinct() | HasUnitFlag);
1608   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1609   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1610   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1611   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1612   Record.push_back(N->getLine());
1613   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1614   Record.push_back(N->isLocalToUnit());
1615   Record.push_back(N->isDefinition());
1616   Record.push_back(N->getScopeLine());
1617   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1618   Record.push_back(N->getVirtuality());
1619   Record.push_back(N->getVirtualIndex());
1620   Record.push_back(N->getFlags());
1621   Record.push_back(N->isOptimized());
1622   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1623   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1624   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1625   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1626   Record.push_back(N->getThisAdjustment());
1627   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1628 
1629   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1630   Record.clear();
1631 }
1632 
1633 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1634                                               SmallVectorImpl<uint64_t> &Record,
1635                                               unsigned Abbrev) {
1636   Record.push_back(N->isDistinct());
1637   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1638   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1639   Record.push_back(N->getLine());
1640   Record.push_back(N->getColumn());
1641 
1642   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1643   Record.clear();
1644 }
1645 
1646 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1647     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1648     unsigned Abbrev) {
1649   Record.push_back(N->isDistinct());
1650   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1651   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1652   Record.push_back(N->getDiscriminator());
1653 
1654   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1655   Record.clear();
1656 }
1657 
1658 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1659                                            SmallVectorImpl<uint64_t> &Record,
1660                                            unsigned Abbrev) {
1661   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1662   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1663   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1664 
1665   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1666   Record.clear();
1667 }
1668 
1669 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1670                                        SmallVectorImpl<uint64_t> &Record,
1671                                        unsigned Abbrev) {
1672   Record.push_back(N->isDistinct());
1673   Record.push_back(N->getMacinfoType());
1674   Record.push_back(N->getLine());
1675   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1676   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1677 
1678   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1679   Record.clear();
1680 }
1681 
1682 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1683                                            SmallVectorImpl<uint64_t> &Record,
1684                                            unsigned Abbrev) {
1685   Record.push_back(N->isDistinct());
1686   Record.push_back(N->getMacinfoType());
1687   Record.push_back(N->getLine());
1688   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1689   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1690 
1691   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1692   Record.clear();
1693 }
1694 
1695 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1696                                         SmallVectorImpl<uint64_t> &Record,
1697                                         unsigned Abbrev) {
1698   Record.push_back(N->isDistinct());
1699   for (auto &I : N->operands())
1700     Record.push_back(VE.getMetadataOrNullID(I));
1701 
1702   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1703   Record.clear();
1704 }
1705 
1706 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1707     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1708     unsigned Abbrev) {
1709   Record.push_back(N->isDistinct());
1710   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1711   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1712 
1713   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1714   Record.clear();
1715 }
1716 
1717 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1718     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1719     unsigned Abbrev) {
1720   Record.push_back(N->isDistinct());
1721   Record.push_back(N->getTag());
1722   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1723   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1724   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1725 
1726   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1727   Record.clear();
1728 }
1729 
1730 void ModuleBitcodeWriter::writeDIGlobalVariable(
1731     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1732     unsigned Abbrev) {
1733   const uint64_t Version = 1 << 1;
1734   Record.push_back((uint64_t)N->isDistinct() | Version);
1735   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1736   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1737   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1738   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1739   Record.push_back(N->getLine());
1740   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1741   Record.push_back(N->isLocalToUnit());
1742   Record.push_back(N->isDefinition());
1743   Record.push_back(/* expr */ 0);
1744   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1745   Record.push_back(N->getAlignInBits());
1746 
1747   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1748   Record.clear();
1749 }
1750 
1751 void ModuleBitcodeWriter::writeDILocalVariable(
1752     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1753     unsigned Abbrev) {
1754   // In order to support all possible bitcode formats in BitcodeReader we need
1755   // to distinguish the following cases:
1756   // 1) Record has no artificial tag (Record[1]),
1757   //   has no obsolete inlinedAt field (Record[9]).
1758   //   In this case Record size will be 8, HasAlignment flag is false.
1759   // 2) Record has artificial tag (Record[1]),
1760   //   has no obsolete inlignedAt field (Record[9]).
1761   //   In this case Record size will be 9, HasAlignment flag is false.
1762   // 3) Record has both artificial tag (Record[1]) and
1763   //   obsolete inlignedAt field (Record[9]).
1764   //   In this case Record size will be 10, HasAlignment flag is false.
1765   // 4) Record has neither artificial tag, nor inlignedAt field, but
1766   //   HasAlignment flag is true and Record[8] contains alignment value.
1767   const uint64_t HasAlignmentFlag = 1 << 1;
1768   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1769   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1770   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1771   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1772   Record.push_back(N->getLine());
1773   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1774   Record.push_back(N->getArg());
1775   Record.push_back(N->getFlags());
1776   Record.push_back(N->getAlignInBits());
1777 
1778   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1779   Record.clear();
1780 }
1781 
1782 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1783                                             SmallVectorImpl<uint64_t> &Record,
1784                                             unsigned Abbrev) {
1785   Record.reserve(N->getElements().size() + 1);
1786   const uint64_t Version = 3 << 1;
1787   Record.push_back((uint64_t)N->isDistinct() | Version);
1788   Record.append(N->elements_begin(), N->elements_end());
1789 
1790   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1791   Record.clear();
1792 }
1793 
1794 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1795     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1796     unsigned Abbrev) {
1797   Record.push_back(N->isDistinct());
1798   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1799   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1800 
1801   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1802   Record.clear();
1803 }
1804 
1805 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1806                                               SmallVectorImpl<uint64_t> &Record,
1807                                               unsigned Abbrev) {
1808   Record.push_back(N->isDistinct());
1809   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1810   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1811   Record.push_back(N->getLine());
1812   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1813   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1814   Record.push_back(N->getAttributes());
1815   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1816 
1817   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1818   Record.clear();
1819 }
1820 
1821 void ModuleBitcodeWriter::writeDIImportedEntity(
1822     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1823     unsigned Abbrev) {
1824   Record.push_back(N->isDistinct());
1825   Record.push_back(N->getTag());
1826   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1827   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1828   Record.push_back(N->getLine());
1829   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1830   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1831 
1832   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1833   Record.clear();
1834 }
1835 
1836 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1837   auto Abbv = std::make_shared<BitCodeAbbrev>();
1838   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1839   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1840   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1841   return Stream.EmitAbbrev(std::move(Abbv));
1842 }
1843 
1844 void ModuleBitcodeWriter::writeNamedMetadata(
1845     SmallVectorImpl<uint64_t> &Record) {
1846   if (M.named_metadata_empty())
1847     return;
1848 
1849   unsigned Abbrev = createNamedMetadataAbbrev();
1850   for (const NamedMDNode &NMD : M.named_metadata()) {
1851     // Write name.
1852     StringRef Str = NMD.getName();
1853     Record.append(Str.bytes_begin(), Str.bytes_end());
1854     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1855     Record.clear();
1856 
1857     // Write named metadata operands.
1858     for (const MDNode *N : NMD.operands())
1859       Record.push_back(VE.getMetadataID(N));
1860     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1861     Record.clear();
1862   }
1863 }
1864 
1865 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1866   auto Abbv = std::make_shared<BitCodeAbbrev>();
1867   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1868   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1869   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1870   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1871   return Stream.EmitAbbrev(std::move(Abbv));
1872 }
1873 
1874 /// Write out a record for MDString.
1875 ///
1876 /// All the metadata strings in a metadata block are emitted in a single
1877 /// record.  The sizes and strings themselves are shoved into a blob.
1878 void ModuleBitcodeWriter::writeMetadataStrings(
1879     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1880   if (Strings.empty())
1881     return;
1882 
1883   // Start the record with the number of strings.
1884   Record.push_back(bitc::METADATA_STRINGS);
1885   Record.push_back(Strings.size());
1886 
1887   // Emit the sizes of the strings in the blob.
1888   SmallString<256> Blob;
1889   {
1890     BitstreamWriter W(Blob);
1891     for (const Metadata *MD : Strings)
1892       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1893     W.FlushToWord();
1894   }
1895 
1896   // Add the offset to the strings to the record.
1897   Record.push_back(Blob.size());
1898 
1899   // Add the strings to the blob.
1900   for (const Metadata *MD : Strings)
1901     Blob.append(cast<MDString>(MD)->getString());
1902 
1903   // Emit the final record.
1904   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1905   Record.clear();
1906 }
1907 
1908 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1909 enum MetadataAbbrev : unsigned {
1910 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1911 #include "llvm/IR/Metadata.def"
1912   LastPlusOne
1913 };
1914 
1915 void ModuleBitcodeWriter::writeMetadataRecords(
1916     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
1917     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1918   if (MDs.empty())
1919     return;
1920 
1921   // Initialize MDNode abbreviations.
1922 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1923 #include "llvm/IR/Metadata.def"
1924 
1925   for (const Metadata *MD : MDs) {
1926     if (IndexPos)
1927       IndexPos->push_back(Stream.GetCurrentBitNo());
1928     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1929       assert(N->isResolved() && "Expected forward references to be resolved");
1930 
1931       switch (N->getMetadataID()) {
1932       default:
1933         llvm_unreachable("Invalid MDNode subclass");
1934 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1935   case Metadata::CLASS##Kind:                                                  \
1936     if (MDAbbrevs)                                                             \
1937       write##CLASS(cast<CLASS>(N), Record,                                     \
1938                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1939     else                                                                       \
1940       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1941     continue;
1942 #include "llvm/IR/Metadata.def"
1943       }
1944     }
1945     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1946   }
1947 }
1948 
1949 void ModuleBitcodeWriter::writeModuleMetadata() {
1950   if (!VE.hasMDs() && M.named_metadata_empty())
1951     return;
1952 
1953   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1954   SmallVector<uint64_t, 64> Record;
1955 
1956   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1957   // block and load any metadata.
1958   std::vector<unsigned> MDAbbrevs;
1959 
1960   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1961   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1962   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1963       createGenericDINodeAbbrev();
1964 
1965   auto Abbv = std::make_shared<BitCodeAbbrev>();
1966   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
1967   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1968   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1969   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1970 
1971   Abbv = std::make_shared<BitCodeAbbrev>();
1972   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
1973   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1974   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1975   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1976 
1977   // Emit MDStrings together upfront.
1978   writeMetadataStrings(VE.getMDStrings(), Record);
1979 
1980   // We only emit an index for the metadata record if we have more than a given
1981   // (naive) threshold of metadatas, otherwise it is not worth it.
1982   if (VE.getNonMDStrings().size() > IndexThreshold) {
1983     // Write a placeholder value in for the offset of the metadata index,
1984     // which is written after the records, so that it can include
1985     // the offset of each entry. The placeholder offset will be
1986     // updated after all records are emitted.
1987     uint64_t Vals[] = {0, 0};
1988     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
1989   }
1990 
1991   // Compute and save the bit offset to the current position, which will be
1992   // patched when we emit the index later. We can simply subtract the 64-bit
1993   // fixed size from the current bit number to get the location to backpatch.
1994   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
1995 
1996   // This index will contain the bitpos for each individual record.
1997   std::vector<uint64_t> IndexPos;
1998   IndexPos.reserve(VE.getNonMDStrings().size());
1999 
2000   // Write all the records
2001   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2002 
2003   if (VE.getNonMDStrings().size() > IndexThreshold) {
2004     // Now that we have emitted all the records we will emit the index. But
2005     // first
2006     // backpatch the forward reference so that the reader can skip the records
2007     // efficiently.
2008     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2009                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2010 
2011     // Delta encode the index.
2012     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2013     for (auto &Elt : IndexPos) {
2014       auto EltDelta = Elt - PreviousValue;
2015       PreviousValue = Elt;
2016       Elt = EltDelta;
2017     }
2018     // Emit the index record.
2019     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2020     IndexPos.clear();
2021   }
2022 
2023   // Write the named metadata now.
2024   writeNamedMetadata(Record);
2025 
2026   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2027     SmallVector<uint64_t, 4> Record;
2028     Record.push_back(VE.getValueID(&GO));
2029     pushGlobalMetadataAttachment(Record, GO);
2030     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2031   };
2032   for (const Function &F : M)
2033     if (F.isDeclaration() && F.hasMetadata())
2034       AddDeclAttachedMetadata(F);
2035   // FIXME: Only store metadata for declarations here, and move data for global
2036   // variable definitions to a separate block (PR28134).
2037   for (const GlobalVariable &GV : M.globals())
2038     if (GV.hasMetadata())
2039       AddDeclAttachedMetadata(GV);
2040 
2041   Stream.ExitBlock();
2042 }
2043 
2044 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2045   if (!VE.hasMDs())
2046     return;
2047 
2048   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2049   SmallVector<uint64_t, 64> Record;
2050   writeMetadataStrings(VE.getMDStrings(), Record);
2051   writeMetadataRecords(VE.getNonMDStrings(), Record);
2052   Stream.ExitBlock();
2053 }
2054 
2055 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2056     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2057   // [n x [id, mdnode]]
2058   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2059   GO.getAllMetadata(MDs);
2060   for (const auto &I : MDs) {
2061     Record.push_back(I.first);
2062     Record.push_back(VE.getMetadataID(I.second));
2063   }
2064 }
2065 
2066 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2067   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2068 
2069   SmallVector<uint64_t, 64> Record;
2070 
2071   if (F.hasMetadata()) {
2072     pushGlobalMetadataAttachment(Record, F);
2073     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2074     Record.clear();
2075   }
2076 
2077   // Write metadata attachments
2078   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2079   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2080   for (const BasicBlock &BB : F)
2081     for (const Instruction &I : BB) {
2082       MDs.clear();
2083       I.getAllMetadataOtherThanDebugLoc(MDs);
2084 
2085       // If no metadata, ignore instruction.
2086       if (MDs.empty()) continue;
2087 
2088       Record.push_back(VE.getInstructionID(&I));
2089 
2090       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2091         Record.push_back(MDs[i].first);
2092         Record.push_back(VE.getMetadataID(MDs[i].second));
2093       }
2094       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2095       Record.clear();
2096     }
2097 
2098   Stream.ExitBlock();
2099 }
2100 
2101 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2102   SmallVector<uint64_t, 64> Record;
2103 
2104   // Write metadata kinds
2105   // METADATA_KIND - [n x [id, name]]
2106   SmallVector<StringRef, 8> Names;
2107   M.getMDKindNames(Names);
2108 
2109   if (Names.empty()) return;
2110 
2111   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2112 
2113   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2114     Record.push_back(MDKindID);
2115     StringRef KName = Names[MDKindID];
2116     Record.append(KName.begin(), KName.end());
2117 
2118     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2119     Record.clear();
2120   }
2121 
2122   Stream.ExitBlock();
2123 }
2124 
2125 void ModuleBitcodeWriter::writeOperandBundleTags() {
2126   // Write metadata kinds
2127   //
2128   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2129   //
2130   // OPERAND_BUNDLE_TAG - [strchr x N]
2131 
2132   SmallVector<StringRef, 8> Tags;
2133   M.getOperandBundleTags(Tags);
2134 
2135   if (Tags.empty())
2136     return;
2137 
2138   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2139 
2140   SmallVector<uint64_t, 64> Record;
2141 
2142   for (auto Tag : Tags) {
2143     Record.append(Tag.begin(), Tag.end());
2144 
2145     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2146     Record.clear();
2147   }
2148 
2149   Stream.ExitBlock();
2150 }
2151 
2152 void ModuleBitcodeWriter::writeSyncScopeNames() {
2153   SmallVector<StringRef, 8> SSNs;
2154   M.getContext().getSyncScopeNames(SSNs);
2155   if (SSNs.empty())
2156     return;
2157 
2158   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2159 
2160   SmallVector<uint64_t, 64> Record;
2161   for (auto SSN : SSNs) {
2162     Record.append(SSN.begin(), SSN.end());
2163     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2164     Record.clear();
2165   }
2166 
2167   Stream.ExitBlock();
2168 }
2169 
2170 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2171   if ((int64_t)V >= 0)
2172     Vals.push_back(V << 1);
2173   else
2174     Vals.push_back((-V << 1) | 1);
2175 }
2176 
2177 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2178                                          bool isGlobal) {
2179   if (FirstVal == LastVal) return;
2180 
2181   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2182 
2183   unsigned AggregateAbbrev = 0;
2184   unsigned String8Abbrev = 0;
2185   unsigned CString7Abbrev = 0;
2186   unsigned CString6Abbrev = 0;
2187   // If this is a constant pool for the module, emit module-specific abbrevs.
2188   if (isGlobal) {
2189     // Abbrev for CST_CODE_AGGREGATE.
2190     auto Abbv = std::make_shared<BitCodeAbbrev>();
2191     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2192     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2193     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2194     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2195 
2196     // Abbrev for CST_CODE_STRING.
2197     Abbv = std::make_shared<BitCodeAbbrev>();
2198     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2199     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2200     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2201     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2202     // Abbrev for CST_CODE_CSTRING.
2203     Abbv = std::make_shared<BitCodeAbbrev>();
2204     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2205     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2206     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2207     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2208     // Abbrev for CST_CODE_CSTRING.
2209     Abbv = std::make_shared<BitCodeAbbrev>();
2210     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2211     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2212     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2213     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2214   }
2215 
2216   SmallVector<uint64_t, 64> Record;
2217 
2218   const ValueEnumerator::ValueList &Vals = VE.getValues();
2219   Type *LastTy = nullptr;
2220   for (unsigned i = FirstVal; i != LastVal; ++i) {
2221     const Value *V = Vals[i].first;
2222     // If we need to switch types, do so now.
2223     if (V->getType() != LastTy) {
2224       LastTy = V->getType();
2225       Record.push_back(VE.getTypeID(LastTy));
2226       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2227                         CONSTANTS_SETTYPE_ABBREV);
2228       Record.clear();
2229     }
2230 
2231     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2232       Record.push_back(unsigned(IA->hasSideEffects()) |
2233                        unsigned(IA->isAlignStack()) << 1 |
2234                        unsigned(IA->getDialect()&1) << 2);
2235 
2236       // Add the asm string.
2237       const std::string &AsmStr = IA->getAsmString();
2238       Record.push_back(AsmStr.size());
2239       Record.append(AsmStr.begin(), AsmStr.end());
2240 
2241       // Add the constraint string.
2242       const std::string &ConstraintStr = IA->getConstraintString();
2243       Record.push_back(ConstraintStr.size());
2244       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2245       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2246       Record.clear();
2247       continue;
2248     }
2249     const Constant *C = cast<Constant>(V);
2250     unsigned Code = -1U;
2251     unsigned AbbrevToUse = 0;
2252     if (C->isNullValue()) {
2253       Code = bitc::CST_CODE_NULL;
2254     } else if (isa<UndefValue>(C)) {
2255       Code = bitc::CST_CODE_UNDEF;
2256     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2257       if (IV->getBitWidth() <= 64) {
2258         uint64_t V = IV->getSExtValue();
2259         emitSignedInt64(Record, V);
2260         Code = bitc::CST_CODE_INTEGER;
2261         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2262       } else {                             // Wide integers, > 64 bits in size.
2263         // We have an arbitrary precision integer value to write whose
2264         // bit width is > 64. However, in canonical unsigned integer
2265         // format it is likely that the high bits are going to be zero.
2266         // So, we only write the number of active words.
2267         unsigned NWords = IV->getValue().getActiveWords();
2268         const uint64_t *RawWords = IV->getValue().getRawData();
2269         for (unsigned i = 0; i != NWords; ++i) {
2270           emitSignedInt64(Record, RawWords[i]);
2271         }
2272         Code = bitc::CST_CODE_WIDE_INTEGER;
2273       }
2274     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2275       Code = bitc::CST_CODE_FLOAT;
2276       Type *Ty = CFP->getType();
2277       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2278         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2279       } else if (Ty->isX86_FP80Ty()) {
2280         // api needed to prevent premature destruction
2281         // bits are not in the same order as a normal i80 APInt, compensate.
2282         APInt api = CFP->getValueAPF().bitcastToAPInt();
2283         const uint64_t *p = api.getRawData();
2284         Record.push_back((p[1] << 48) | (p[0] >> 16));
2285         Record.push_back(p[0] & 0xffffLL);
2286       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2287         APInt api = CFP->getValueAPF().bitcastToAPInt();
2288         const uint64_t *p = api.getRawData();
2289         Record.push_back(p[0]);
2290         Record.push_back(p[1]);
2291       } else {
2292         assert(0 && "Unknown FP type!");
2293       }
2294     } else if (isa<ConstantDataSequential>(C) &&
2295                cast<ConstantDataSequential>(C)->isString()) {
2296       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2297       // Emit constant strings specially.
2298       unsigned NumElts = Str->getNumElements();
2299       // If this is a null-terminated string, use the denser CSTRING encoding.
2300       if (Str->isCString()) {
2301         Code = bitc::CST_CODE_CSTRING;
2302         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2303       } else {
2304         Code = bitc::CST_CODE_STRING;
2305         AbbrevToUse = String8Abbrev;
2306       }
2307       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2308       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2309       for (unsigned i = 0; i != NumElts; ++i) {
2310         unsigned char V = Str->getElementAsInteger(i);
2311         Record.push_back(V);
2312         isCStr7 &= (V & 128) == 0;
2313         if (isCStrChar6)
2314           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2315       }
2316 
2317       if (isCStrChar6)
2318         AbbrevToUse = CString6Abbrev;
2319       else if (isCStr7)
2320         AbbrevToUse = CString7Abbrev;
2321     } else if (const ConstantDataSequential *CDS =
2322                   dyn_cast<ConstantDataSequential>(C)) {
2323       Code = bitc::CST_CODE_DATA;
2324       Type *EltTy = CDS->getType()->getElementType();
2325       if (isa<IntegerType>(EltTy)) {
2326         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2327           Record.push_back(CDS->getElementAsInteger(i));
2328       } else {
2329         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2330           Record.push_back(
2331               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2332       }
2333     } else if (isa<ConstantAggregate>(C)) {
2334       Code = bitc::CST_CODE_AGGREGATE;
2335       for (const Value *Op : C->operands())
2336         Record.push_back(VE.getValueID(Op));
2337       AbbrevToUse = AggregateAbbrev;
2338     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2339       switch (CE->getOpcode()) {
2340       default:
2341         if (Instruction::isCast(CE->getOpcode())) {
2342           Code = bitc::CST_CODE_CE_CAST;
2343           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2344           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2345           Record.push_back(VE.getValueID(C->getOperand(0)));
2346           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2347         } else {
2348           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2349           Code = bitc::CST_CODE_CE_BINOP;
2350           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2351           Record.push_back(VE.getValueID(C->getOperand(0)));
2352           Record.push_back(VE.getValueID(C->getOperand(1)));
2353           uint64_t Flags = getOptimizationFlags(CE);
2354           if (Flags != 0)
2355             Record.push_back(Flags);
2356         }
2357         break;
2358       case Instruction::GetElementPtr: {
2359         Code = bitc::CST_CODE_CE_GEP;
2360         const auto *GO = cast<GEPOperator>(C);
2361         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2362         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2363           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2364           Record.push_back((*Idx << 1) | GO->isInBounds());
2365         } else if (GO->isInBounds())
2366           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2367         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2368           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2369           Record.push_back(VE.getValueID(C->getOperand(i)));
2370         }
2371         break;
2372       }
2373       case Instruction::Select:
2374         Code = bitc::CST_CODE_CE_SELECT;
2375         Record.push_back(VE.getValueID(C->getOperand(0)));
2376         Record.push_back(VE.getValueID(C->getOperand(1)));
2377         Record.push_back(VE.getValueID(C->getOperand(2)));
2378         break;
2379       case Instruction::ExtractElement:
2380         Code = bitc::CST_CODE_CE_EXTRACTELT;
2381         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2382         Record.push_back(VE.getValueID(C->getOperand(0)));
2383         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2384         Record.push_back(VE.getValueID(C->getOperand(1)));
2385         break;
2386       case Instruction::InsertElement:
2387         Code = bitc::CST_CODE_CE_INSERTELT;
2388         Record.push_back(VE.getValueID(C->getOperand(0)));
2389         Record.push_back(VE.getValueID(C->getOperand(1)));
2390         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2391         Record.push_back(VE.getValueID(C->getOperand(2)));
2392         break;
2393       case Instruction::ShuffleVector:
2394         // If the return type and argument types are the same, this is a
2395         // standard shufflevector instruction.  If the types are different,
2396         // then the shuffle is widening or truncating the input vectors, and
2397         // the argument type must also be encoded.
2398         if (C->getType() == C->getOperand(0)->getType()) {
2399           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2400         } else {
2401           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2402           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2403         }
2404         Record.push_back(VE.getValueID(C->getOperand(0)));
2405         Record.push_back(VE.getValueID(C->getOperand(1)));
2406         Record.push_back(VE.getValueID(C->getOperand(2)));
2407         break;
2408       case Instruction::ICmp:
2409       case Instruction::FCmp:
2410         Code = bitc::CST_CODE_CE_CMP;
2411         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2412         Record.push_back(VE.getValueID(C->getOperand(0)));
2413         Record.push_back(VE.getValueID(C->getOperand(1)));
2414         Record.push_back(CE->getPredicate());
2415         break;
2416       }
2417     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2418       Code = bitc::CST_CODE_BLOCKADDRESS;
2419       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2420       Record.push_back(VE.getValueID(BA->getFunction()));
2421       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2422     } else {
2423 #ifndef NDEBUG
2424       C->dump();
2425 #endif
2426       llvm_unreachable("Unknown constant!");
2427     }
2428     Stream.EmitRecord(Code, Record, AbbrevToUse);
2429     Record.clear();
2430   }
2431 
2432   Stream.ExitBlock();
2433 }
2434 
2435 void ModuleBitcodeWriter::writeModuleConstants() {
2436   const ValueEnumerator::ValueList &Vals = VE.getValues();
2437 
2438   // Find the first constant to emit, which is the first non-globalvalue value.
2439   // We know globalvalues have been emitted by WriteModuleInfo.
2440   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2441     if (!isa<GlobalValue>(Vals[i].first)) {
2442       writeConstants(i, Vals.size(), true);
2443       return;
2444     }
2445   }
2446 }
2447 
2448 /// pushValueAndType - The file has to encode both the value and type id for
2449 /// many values, because we need to know what type to create for forward
2450 /// references.  However, most operands are not forward references, so this type
2451 /// field is not needed.
2452 ///
2453 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2454 /// instruction ID, then it is a forward reference, and it also includes the
2455 /// type ID.  The value ID that is written is encoded relative to the InstID.
2456 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2457                                            SmallVectorImpl<unsigned> &Vals) {
2458   unsigned ValID = VE.getValueID(V);
2459   // Make encoding relative to the InstID.
2460   Vals.push_back(InstID - ValID);
2461   if (ValID >= InstID) {
2462     Vals.push_back(VE.getTypeID(V->getType()));
2463     return true;
2464   }
2465   return false;
2466 }
2467 
2468 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2469                                               unsigned InstID) {
2470   SmallVector<unsigned, 64> Record;
2471   LLVMContext &C = CS.getInstruction()->getContext();
2472 
2473   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2474     const auto &Bundle = CS.getOperandBundleAt(i);
2475     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2476 
2477     for (auto &Input : Bundle.Inputs)
2478       pushValueAndType(Input, InstID, Record);
2479 
2480     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2481     Record.clear();
2482   }
2483 }
2484 
2485 /// pushValue - Like pushValueAndType, but where the type of the value is
2486 /// omitted (perhaps it was already encoded in an earlier operand).
2487 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2488                                     SmallVectorImpl<unsigned> &Vals) {
2489   unsigned ValID = VE.getValueID(V);
2490   Vals.push_back(InstID - ValID);
2491 }
2492 
2493 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2494                                           SmallVectorImpl<uint64_t> &Vals) {
2495   unsigned ValID = VE.getValueID(V);
2496   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2497   emitSignedInt64(Vals, diff);
2498 }
2499 
2500 /// WriteInstruction - Emit an instruction to the specified stream.
2501 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2502                                            unsigned InstID,
2503                                            SmallVectorImpl<unsigned> &Vals) {
2504   unsigned Code = 0;
2505   unsigned AbbrevToUse = 0;
2506   VE.setInstructionID(&I);
2507   switch (I.getOpcode()) {
2508   default:
2509     if (Instruction::isCast(I.getOpcode())) {
2510       Code = bitc::FUNC_CODE_INST_CAST;
2511       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2512         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2513       Vals.push_back(VE.getTypeID(I.getType()));
2514       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2515     } else {
2516       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2517       Code = bitc::FUNC_CODE_INST_BINOP;
2518       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2519         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2520       pushValue(I.getOperand(1), InstID, Vals);
2521       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2522       uint64_t Flags = getOptimizationFlags(&I);
2523       if (Flags != 0) {
2524         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2525           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2526         Vals.push_back(Flags);
2527       }
2528     }
2529     break;
2530 
2531   case Instruction::GetElementPtr: {
2532     Code = bitc::FUNC_CODE_INST_GEP;
2533     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2534     auto &GEPInst = cast<GetElementPtrInst>(I);
2535     Vals.push_back(GEPInst.isInBounds());
2536     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2537     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2538       pushValueAndType(I.getOperand(i), InstID, Vals);
2539     break;
2540   }
2541   case Instruction::ExtractValue: {
2542     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2543     pushValueAndType(I.getOperand(0), InstID, Vals);
2544     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2545     Vals.append(EVI->idx_begin(), EVI->idx_end());
2546     break;
2547   }
2548   case Instruction::InsertValue: {
2549     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2550     pushValueAndType(I.getOperand(0), InstID, Vals);
2551     pushValueAndType(I.getOperand(1), InstID, Vals);
2552     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2553     Vals.append(IVI->idx_begin(), IVI->idx_end());
2554     break;
2555   }
2556   case Instruction::Select:
2557     Code = bitc::FUNC_CODE_INST_VSELECT;
2558     pushValueAndType(I.getOperand(1), InstID, Vals);
2559     pushValue(I.getOperand(2), InstID, Vals);
2560     pushValueAndType(I.getOperand(0), InstID, Vals);
2561     break;
2562   case Instruction::ExtractElement:
2563     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2564     pushValueAndType(I.getOperand(0), InstID, Vals);
2565     pushValueAndType(I.getOperand(1), InstID, Vals);
2566     break;
2567   case Instruction::InsertElement:
2568     Code = bitc::FUNC_CODE_INST_INSERTELT;
2569     pushValueAndType(I.getOperand(0), InstID, Vals);
2570     pushValue(I.getOperand(1), InstID, Vals);
2571     pushValueAndType(I.getOperand(2), InstID, Vals);
2572     break;
2573   case Instruction::ShuffleVector:
2574     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2575     pushValueAndType(I.getOperand(0), InstID, Vals);
2576     pushValue(I.getOperand(1), InstID, Vals);
2577     pushValue(I.getOperand(2), InstID, Vals);
2578     break;
2579   case Instruction::ICmp:
2580   case Instruction::FCmp: {
2581     // compare returning Int1Ty or vector of Int1Ty
2582     Code = bitc::FUNC_CODE_INST_CMP2;
2583     pushValueAndType(I.getOperand(0), InstID, Vals);
2584     pushValue(I.getOperand(1), InstID, Vals);
2585     Vals.push_back(cast<CmpInst>(I).getPredicate());
2586     uint64_t Flags = getOptimizationFlags(&I);
2587     if (Flags != 0)
2588       Vals.push_back(Flags);
2589     break;
2590   }
2591 
2592   case Instruction::Ret:
2593     {
2594       Code = bitc::FUNC_CODE_INST_RET;
2595       unsigned NumOperands = I.getNumOperands();
2596       if (NumOperands == 0)
2597         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2598       else if (NumOperands == 1) {
2599         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2600           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2601       } else {
2602         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2603           pushValueAndType(I.getOperand(i), InstID, Vals);
2604       }
2605     }
2606     break;
2607   case Instruction::Br:
2608     {
2609       Code = bitc::FUNC_CODE_INST_BR;
2610       const BranchInst &II = cast<BranchInst>(I);
2611       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2612       if (II.isConditional()) {
2613         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2614         pushValue(II.getCondition(), InstID, Vals);
2615       }
2616     }
2617     break;
2618   case Instruction::Switch:
2619     {
2620       Code = bitc::FUNC_CODE_INST_SWITCH;
2621       const SwitchInst &SI = cast<SwitchInst>(I);
2622       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2623       pushValue(SI.getCondition(), InstID, Vals);
2624       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2625       for (auto Case : SI.cases()) {
2626         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2627         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2628       }
2629     }
2630     break;
2631   case Instruction::IndirectBr:
2632     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2633     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2634     // Encode the address operand as relative, but not the basic blocks.
2635     pushValue(I.getOperand(0), InstID, Vals);
2636     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2637       Vals.push_back(VE.getValueID(I.getOperand(i)));
2638     break;
2639 
2640   case Instruction::Invoke: {
2641     const InvokeInst *II = cast<InvokeInst>(&I);
2642     const Value *Callee = II->getCalledValue();
2643     FunctionType *FTy = II->getFunctionType();
2644 
2645     if (II->hasOperandBundles())
2646       writeOperandBundles(II, InstID);
2647 
2648     Code = bitc::FUNC_CODE_INST_INVOKE;
2649 
2650     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2651     Vals.push_back(II->getCallingConv() | 1 << 13);
2652     Vals.push_back(VE.getValueID(II->getNormalDest()));
2653     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2654     Vals.push_back(VE.getTypeID(FTy));
2655     pushValueAndType(Callee, InstID, Vals);
2656 
2657     // Emit value #'s for the fixed parameters.
2658     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2659       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2660 
2661     // Emit type/value pairs for varargs params.
2662     if (FTy->isVarArg()) {
2663       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2664            i != e; ++i)
2665         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2666     }
2667     break;
2668   }
2669   case Instruction::Resume:
2670     Code = bitc::FUNC_CODE_INST_RESUME;
2671     pushValueAndType(I.getOperand(0), InstID, Vals);
2672     break;
2673   case Instruction::CleanupRet: {
2674     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2675     const auto &CRI = cast<CleanupReturnInst>(I);
2676     pushValue(CRI.getCleanupPad(), InstID, Vals);
2677     if (CRI.hasUnwindDest())
2678       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2679     break;
2680   }
2681   case Instruction::CatchRet: {
2682     Code = bitc::FUNC_CODE_INST_CATCHRET;
2683     const auto &CRI = cast<CatchReturnInst>(I);
2684     pushValue(CRI.getCatchPad(), InstID, Vals);
2685     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2686     break;
2687   }
2688   case Instruction::CleanupPad:
2689   case Instruction::CatchPad: {
2690     const auto &FuncletPad = cast<FuncletPadInst>(I);
2691     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2692                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2693     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2694 
2695     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2696     Vals.push_back(NumArgOperands);
2697     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2698       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2699     break;
2700   }
2701   case Instruction::CatchSwitch: {
2702     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2703     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2704 
2705     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2706 
2707     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2708     Vals.push_back(NumHandlers);
2709     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2710       Vals.push_back(VE.getValueID(CatchPadBB));
2711 
2712     if (CatchSwitch.hasUnwindDest())
2713       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2714     break;
2715   }
2716   case Instruction::Unreachable:
2717     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2718     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2719     break;
2720 
2721   case Instruction::PHI: {
2722     const PHINode &PN = cast<PHINode>(I);
2723     Code = bitc::FUNC_CODE_INST_PHI;
2724     // With the newer instruction encoding, forward references could give
2725     // negative valued IDs.  This is most common for PHIs, so we use
2726     // signed VBRs.
2727     SmallVector<uint64_t, 128> Vals64;
2728     Vals64.push_back(VE.getTypeID(PN.getType()));
2729     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2730       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2731       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2732     }
2733     // Emit a Vals64 vector and exit.
2734     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2735     Vals64.clear();
2736     return;
2737   }
2738 
2739   case Instruction::LandingPad: {
2740     const LandingPadInst &LP = cast<LandingPadInst>(I);
2741     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2742     Vals.push_back(VE.getTypeID(LP.getType()));
2743     Vals.push_back(LP.isCleanup());
2744     Vals.push_back(LP.getNumClauses());
2745     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2746       if (LP.isCatch(I))
2747         Vals.push_back(LandingPadInst::Catch);
2748       else
2749         Vals.push_back(LandingPadInst::Filter);
2750       pushValueAndType(LP.getClause(I), InstID, Vals);
2751     }
2752     break;
2753   }
2754 
2755   case Instruction::Alloca: {
2756     Code = bitc::FUNC_CODE_INST_ALLOCA;
2757     const AllocaInst &AI = cast<AllocaInst>(I);
2758     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2759     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2760     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2761     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2762     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2763            "not enough bits for maximum alignment");
2764     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2765     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2766     AlignRecord |= 1 << 6;
2767     AlignRecord |= AI.isSwiftError() << 7;
2768     Vals.push_back(AlignRecord);
2769     break;
2770   }
2771 
2772   case Instruction::Load:
2773     if (cast<LoadInst>(I).isAtomic()) {
2774       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2775       pushValueAndType(I.getOperand(0), InstID, Vals);
2776     } else {
2777       Code = bitc::FUNC_CODE_INST_LOAD;
2778       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2779         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2780     }
2781     Vals.push_back(VE.getTypeID(I.getType()));
2782     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2783     Vals.push_back(cast<LoadInst>(I).isVolatile());
2784     if (cast<LoadInst>(I).isAtomic()) {
2785       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2786       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2787     }
2788     break;
2789   case Instruction::Store:
2790     if (cast<StoreInst>(I).isAtomic())
2791       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2792     else
2793       Code = bitc::FUNC_CODE_INST_STORE;
2794     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2795     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2796     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2797     Vals.push_back(cast<StoreInst>(I).isVolatile());
2798     if (cast<StoreInst>(I).isAtomic()) {
2799       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2800       Vals.push_back(
2801           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2802     }
2803     break;
2804   case Instruction::AtomicCmpXchg:
2805     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2806     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2807     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2808     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2809     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2810     Vals.push_back(
2811         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2812     Vals.push_back(
2813         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2814     Vals.push_back(
2815         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2816     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2817     break;
2818   case Instruction::AtomicRMW:
2819     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2820     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2821     pushValue(I.getOperand(1), InstID, Vals);        // val.
2822     Vals.push_back(
2823         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2824     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2825     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2826     Vals.push_back(
2827         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2828     break;
2829   case Instruction::Fence:
2830     Code = bitc::FUNC_CODE_INST_FENCE;
2831     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2832     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2833     break;
2834   case Instruction::Call: {
2835     const CallInst &CI = cast<CallInst>(I);
2836     FunctionType *FTy = CI.getFunctionType();
2837 
2838     if (CI.hasOperandBundles())
2839       writeOperandBundles(&CI, InstID);
2840 
2841     Code = bitc::FUNC_CODE_INST_CALL;
2842 
2843     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2844 
2845     unsigned Flags = getOptimizationFlags(&I);
2846     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2847                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2848                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2849                    1 << bitc::CALL_EXPLICIT_TYPE |
2850                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2851                    unsigned(Flags != 0) << bitc::CALL_FMF);
2852     if (Flags != 0)
2853       Vals.push_back(Flags);
2854 
2855     Vals.push_back(VE.getTypeID(FTy));
2856     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2857 
2858     // Emit value #'s for the fixed parameters.
2859     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2860       // Check for labels (can happen with asm labels).
2861       if (FTy->getParamType(i)->isLabelTy())
2862         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2863       else
2864         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2865     }
2866 
2867     // Emit type/value pairs for varargs params.
2868     if (FTy->isVarArg()) {
2869       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2870            i != e; ++i)
2871         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2872     }
2873     break;
2874   }
2875   case Instruction::VAArg:
2876     Code = bitc::FUNC_CODE_INST_VAARG;
2877     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2878     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2879     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2880     break;
2881   }
2882 
2883   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2884   Vals.clear();
2885 }
2886 
2887 /// Write a GlobalValue VST to the module. The purpose of this data structure is
2888 /// to allow clients to efficiently find the function body.
2889 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
2890   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2891   // Get the offset of the VST we are writing, and backpatch it into
2892   // the VST forward declaration record.
2893   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2894   // The BitcodeStartBit was the stream offset of the identification block.
2895   VSTOffset -= bitcodeStartBit();
2896   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2897   // Note that we add 1 here because the offset is relative to one word
2898   // before the start of the identification block, which was historically
2899   // always the start of the regular bitcode header.
2900   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
2901 
2902   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2903 
2904   auto Abbv = std::make_shared<BitCodeAbbrev>();
2905   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2906   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2907   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2908   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2909 
2910   for (const Function &F : M) {
2911     uint64_t Record[2];
2912 
2913     if (F.isDeclaration())
2914       continue;
2915 
2916     Record[0] = VE.getValueID(&F);
2917 
2918     // Save the word offset of the function (from the start of the
2919     // actual bitcode written to the stream).
2920     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
2921     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2922     // Note that we add 1 here because the offset is relative to one word
2923     // before the start of the identification block, which was historically
2924     // always the start of the regular bitcode header.
2925     Record[1] = BitcodeIndex / 32 + 1;
2926 
2927     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
2928   }
2929 
2930   Stream.ExitBlock();
2931 }
2932 
2933 /// Emit names for arguments, instructions and basic blocks in a function.
2934 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
2935     const ValueSymbolTable &VST) {
2936   if (VST.empty())
2937     return;
2938 
2939   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2940 
2941   // FIXME: Set up the abbrev, we know how many values there are!
2942   // FIXME: We know if the type names can use 7-bit ascii.
2943   SmallVector<uint64_t, 64> NameVals;
2944 
2945   for (const ValueName &Name : VST) {
2946     // Figure out the encoding to use for the name.
2947     StringEncoding Bits = getStringEncoding(Name.getKey());
2948 
2949     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2950     NameVals.push_back(VE.getValueID(Name.getValue()));
2951 
2952     // VST_CODE_ENTRY:   [valueid, namechar x N]
2953     // VST_CODE_BBENTRY: [bbid, namechar x N]
2954     unsigned Code;
2955     if (isa<BasicBlock>(Name.getValue())) {
2956       Code = bitc::VST_CODE_BBENTRY;
2957       if (Bits == SE_Char6)
2958         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2959     } else {
2960       Code = bitc::VST_CODE_ENTRY;
2961       if (Bits == SE_Char6)
2962         AbbrevToUse = VST_ENTRY_6_ABBREV;
2963       else if (Bits == SE_Fixed7)
2964         AbbrevToUse = VST_ENTRY_7_ABBREV;
2965     }
2966 
2967     for (const auto P : Name.getKey())
2968       NameVals.push_back((unsigned char)P);
2969 
2970     // Emit the finished record.
2971     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2972     NameVals.clear();
2973   }
2974 
2975   Stream.ExitBlock();
2976 }
2977 
2978 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
2979   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2980   unsigned Code;
2981   if (isa<BasicBlock>(Order.V))
2982     Code = bitc::USELIST_CODE_BB;
2983   else
2984     Code = bitc::USELIST_CODE_DEFAULT;
2985 
2986   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2987   Record.push_back(VE.getValueID(Order.V));
2988   Stream.EmitRecord(Code, Record);
2989 }
2990 
2991 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
2992   assert(VE.shouldPreserveUseListOrder() &&
2993          "Expected to be preserving use-list order");
2994 
2995   auto hasMore = [&]() {
2996     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2997   };
2998   if (!hasMore())
2999     // Nothing to do.
3000     return;
3001 
3002   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3003   while (hasMore()) {
3004     writeUseList(std::move(VE.UseListOrders.back()));
3005     VE.UseListOrders.pop_back();
3006   }
3007   Stream.ExitBlock();
3008 }
3009 
3010 /// Emit a function body to the module stream.
3011 void ModuleBitcodeWriter::writeFunction(
3012     const Function &F,
3013     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3014   // Save the bitcode index of the start of this function block for recording
3015   // in the VST.
3016   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3017 
3018   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3019   VE.incorporateFunction(F);
3020 
3021   SmallVector<unsigned, 64> Vals;
3022 
3023   // Emit the number of basic blocks, so the reader can create them ahead of
3024   // time.
3025   Vals.push_back(VE.getBasicBlocks().size());
3026   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3027   Vals.clear();
3028 
3029   // If there are function-local constants, emit them now.
3030   unsigned CstStart, CstEnd;
3031   VE.getFunctionConstantRange(CstStart, CstEnd);
3032   writeConstants(CstStart, CstEnd, false);
3033 
3034   // If there is function-local metadata, emit it now.
3035   writeFunctionMetadata(F);
3036 
3037   // Keep a running idea of what the instruction ID is.
3038   unsigned InstID = CstEnd;
3039 
3040   bool NeedsMetadataAttachment = F.hasMetadata();
3041 
3042   DILocation *LastDL = nullptr;
3043   // Finally, emit all the instructions, in order.
3044   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3045     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3046          I != E; ++I) {
3047       writeInstruction(*I, InstID, Vals);
3048 
3049       if (!I->getType()->isVoidTy())
3050         ++InstID;
3051 
3052       // If the instruction has metadata, write a metadata attachment later.
3053       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3054 
3055       // If the instruction has a debug location, emit it.
3056       DILocation *DL = I->getDebugLoc();
3057       if (!DL)
3058         continue;
3059 
3060       if (DL == LastDL) {
3061         // Just repeat the same debug loc as last time.
3062         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3063         continue;
3064       }
3065 
3066       Vals.push_back(DL->getLine());
3067       Vals.push_back(DL->getColumn());
3068       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3069       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3070       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3071       Vals.clear();
3072 
3073       LastDL = DL;
3074     }
3075 
3076   // Emit names for all the instructions etc.
3077   if (auto *Symtab = F.getValueSymbolTable())
3078     writeFunctionLevelValueSymbolTable(*Symtab);
3079 
3080   if (NeedsMetadataAttachment)
3081     writeFunctionMetadataAttachment(F);
3082   if (VE.shouldPreserveUseListOrder())
3083     writeUseListBlock(&F);
3084   VE.purgeFunction();
3085   Stream.ExitBlock();
3086 }
3087 
3088 // Emit blockinfo, which defines the standard abbreviations etc.
3089 void ModuleBitcodeWriter::writeBlockInfo() {
3090   // We only want to emit block info records for blocks that have multiple
3091   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3092   // Other blocks can define their abbrevs inline.
3093   Stream.EnterBlockInfoBlock();
3094 
3095   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3096     auto Abbv = std::make_shared<BitCodeAbbrev>();
3097     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3098     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3099     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3100     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3101     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3102         VST_ENTRY_8_ABBREV)
3103       llvm_unreachable("Unexpected abbrev ordering!");
3104   }
3105 
3106   { // 7-bit fixed width VST_CODE_ENTRY strings.
3107     auto Abbv = std::make_shared<BitCodeAbbrev>();
3108     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3109     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3110     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3111     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3112     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3113         VST_ENTRY_7_ABBREV)
3114       llvm_unreachable("Unexpected abbrev ordering!");
3115   }
3116   { // 6-bit char6 VST_CODE_ENTRY strings.
3117     auto Abbv = std::make_shared<BitCodeAbbrev>();
3118     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3119     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3120     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3121     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3122     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3123         VST_ENTRY_6_ABBREV)
3124       llvm_unreachable("Unexpected abbrev ordering!");
3125   }
3126   { // 6-bit char6 VST_CODE_BBENTRY strings.
3127     auto Abbv = std::make_shared<BitCodeAbbrev>();
3128     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3129     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3130     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3131     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3132     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3133         VST_BBENTRY_6_ABBREV)
3134       llvm_unreachable("Unexpected abbrev ordering!");
3135   }
3136 
3137   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3138     auto Abbv = std::make_shared<BitCodeAbbrev>();
3139     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3140     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3141                               VE.computeBitsRequiredForTypeIndicies()));
3142     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3143         CONSTANTS_SETTYPE_ABBREV)
3144       llvm_unreachable("Unexpected abbrev ordering!");
3145   }
3146 
3147   { // INTEGER abbrev for CONSTANTS_BLOCK.
3148     auto Abbv = std::make_shared<BitCodeAbbrev>();
3149     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3150     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3151     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3152         CONSTANTS_INTEGER_ABBREV)
3153       llvm_unreachable("Unexpected abbrev ordering!");
3154   }
3155 
3156   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3157     auto Abbv = std::make_shared<BitCodeAbbrev>();
3158     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3159     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3160     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3161                               VE.computeBitsRequiredForTypeIndicies()));
3162     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3163 
3164     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3165         CONSTANTS_CE_CAST_Abbrev)
3166       llvm_unreachable("Unexpected abbrev ordering!");
3167   }
3168   { // NULL abbrev for CONSTANTS_BLOCK.
3169     auto Abbv = std::make_shared<BitCodeAbbrev>();
3170     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3171     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3172         CONSTANTS_NULL_Abbrev)
3173       llvm_unreachable("Unexpected abbrev ordering!");
3174   }
3175 
3176   // FIXME: This should only use space for first class types!
3177 
3178   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3179     auto Abbv = std::make_shared<BitCodeAbbrev>();
3180     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3181     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3182     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3183                               VE.computeBitsRequiredForTypeIndicies()));
3184     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3185     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3186     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3187         FUNCTION_INST_LOAD_ABBREV)
3188       llvm_unreachable("Unexpected abbrev ordering!");
3189   }
3190   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3191     auto Abbv = std::make_shared<BitCodeAbbrev>();
3192     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3193     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3194     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3195     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3196     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3197         FUNCTION_INST_BINOP_ABBREV)
3198       llvm_unreachable("Unexpected abbrev ordering!");
3199   }
3200   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3201     auto Abbv = std::make_shared<BitCodeAbbrev>();
3202     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3203     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3204     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3205     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3206     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3207     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3208         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3209       llvm_unreachable("Unexpected abbrev ordering!");
3210   }
3211   { // INST_CAST abbrev for FUNCTION_BLOCK.
3212     auto Abbv = std::make_shared<BitCodeAbbrev>();
3213     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3214     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3215     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3216                               VE.computeBitsRequiredForTypeIndicies()));
3217     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3218     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3219         FUNCTION_INST_CAST_ABBREV)
3220       llvm_unreachable("Unexpected abbrev ordering!");
3221   }
3222 
3223   { // INST_RET abbrev for FUNCTION_BLOCK.
3224     auto Abbv = std::make_shared<BitCodeAbbrev>();
3225     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3226     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3227         FUNCTION_INST_RET_VOID_ABBREV)
3228       llvm_unreachable("Unexpected abbrev ordering!");
3229   }
3230   { // INST_RET abbrev for FUNCTION_BLOCK.
3231     auto Abbv = std::make_shared<BitCodeAbbrev>();
3232     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3233     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3234     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3235         FUNCTION_INST_RET_VAL_ABBREV)
3236       llvm_unreachable("Unexpected abbrev ordering!");
3237   }
3238   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3239     auto Abbv = std::make_shared<BitCodeAbbrev>();
3240     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3241     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3242         FUNCTION_INST_UNREACHABLE_ABBREV)
3243       llvm_unreachable("Unexpected abbrev ordering!");
3244   }
3245   {
3246     auto Abbv = std::make_shared<BitCodeAbbrev>();
3247     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3248     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3249     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3250                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3251     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3252     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3253     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3254         FUNCTION_INST_GEP_ABBREV)
3255       llvm_unreachable("Unexpected abbrev ordering!");
3256   }
3257 
3258   Stream.ExitBlock();
3259 }
3260 
3261 /// Write the module path strings, currently only used when generating
3262 /// a combined index file.
3263 void IndexBitcodeWriter::writeModStrings() {
3264   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3265 
3266   // TODO: See which abbrev sizes we actually need to emit
3267 
3268   // 8-bit fixed-width MST_ENTRY strings.
3269   auto Abbv = std::make_shared<BitCodeAbbrev>();
3270   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3271   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3272   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3273   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3274   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3275 
3276   // 7-bit fixed width MST_ENTRY strings.
3277   Abbv = std::make_shared<BitCodeAbbrev>();
3278   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3279   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3280   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3281   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3282   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3283 
3284   // 6-bit char6 MST_ENTRY strings.
3285   Abbv = std::make_shared<BitCodeAbbrev>();
3286   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3287   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3288   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3289   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3290   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3291 
3292   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3293   Abbv = std::make_shared<BitCodeAbbrev>();
3294   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3295   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3296   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3297   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3298   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3299   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3300   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3301 
3302   SmallVector<unsigned, 64> Vals;
3303   forEachModule(
3304       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3305         StringRef Key = MPSE.getKey();
3306         const auto &Value = MPSE.getValue();
3307         StringEncoding Bits = getStringEncoding(Key);
3308         unsigned AbbrevToUse = Abbrev8Bit;
3309         if (Bits == SE_Char6)
3310           AbbrevToUse = Abbrev6Bit;
3311         else if (Bits == SE_Fixed7)
3312           AbbrevToUse = Abbrev7Bit;
3313 
3314         Vals.push_back(Value.first);
3315         Vals.append(Key.begin(), Key.end());
3316 
3317         // Emit the finished record.
3318         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3319 
3320         // Emit an optional hash for the module now
3321         const auto &Hash = Value.second;
3322         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3323           Vals.assign(Hash.begin(), Hash.end());
3324           // Emit the hash record.
3325           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3326         }
3327 
3328         Vals.clear();
3329       });
3330   Stream.ExitBlock();
3331 }
3332 
3333 /// Write the function type metadata related records that need to appear before
3334 /// a function summary entry (whether per-module or combined).
3335 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3336                                              FunctionSummary *FS) {
3337   if (!FS->type_tests().empty())
3338     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3339 
3340   SmallVector<uint64_t, 64> Record;
3341 
3342   auto WriteVFuncIdVec = [&](uint64_t Ty,
3343                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3344     if (VFs.empty())
3345       return;
3346     Record.clear();
3347     for (auto &VF : VFs) {
3348       Record.push_back(VF.GUID);
3349       Record.push_back(VF.Offset);
3350     }
3351     Stream.EmitRecord(Ty, Record);
3352   };
3353 
3354   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3355                   FS->type_test_assume_vcalls());
3356   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3357                   FS->type_checked_load_vcalls());
3358 
3359   auto WriteConstVCallVec = [&](uint64_t Ty,
3360                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3361     for (auto &VC : VCs) {
3362       Record.clear();
3363       Record.push_back(VC.VFunc.GUID);
3364       Record.push_back(VC.VFunc.Offset);
3365       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3366       Stream.EmitRecord(Ty, Record);
3367     }
3368   };
3369 
3370   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3371                      FS->type_test_assume_const_vcalls());
3372   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3373                      FS->type_checked_load_const_vcalls());
3374 }
3375 
3376 static void writeWholeProgramDevirtResolutionByArg(
3377     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3378     const WholeProgramDevirtResolution::ByArg &ByArg) {
3379   NameVals.push_back(args.size());
3380   NameVals.insert(NameVals.end(), args.begin(), args.end());
3381 
3382   NameVals.push_back(ByArg.TheKind);
3383   NameVals.push_back(ByArg.Info);
3384   NameVals.push_back(ByArg.Byte);
3385   NameVals.push_back(ByArg.Bit);
3386 }
3387 
3388 static void writeWholeProgramDevirtResolution(
3389     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3390     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3391   NameVals.push_back(Id);
3392 
3393   NameVals.push_back(Wpd.TheKind);
3394   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3395   NameVals.push_back(Wpd.SingleImplName.size());
3396 
3397   NameVals.push_back(Wpd.ResByArg.size());
3398   for (auto &A : Wpd.ResByArg)
3399     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3400 }
3401 
3402 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3403                                      StringTableBuilder &StrtabBuilder,
3404                                      const std::string &Id,
3405                                      const TypeIdSummary &Summary) {
3406   NameVals.push_back(StrtabBuilder.add(Id));
3407   NameVals.push_back(Id.size());
3408 
3409   NameVals.push_back(Summary.TTRes.TheKind);
3410   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3411   NameVals.push_back(Summary.TTRes.AlignLog2);
3412   NameVals.push_back(Summary.TTRes.SizeM1);
3413   NameVals.push_back(Summary.TTRes.BitMask);
3414   NameVals.push_back(Summary.TTRes.InlineBits);
3415 
3416   for (auto &W : Summary.WPDRes)
3417     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3418                                       W.second);
3419 }
3420 
3421 // Helper to emit a single function summary record.
3422 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3423     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3424     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3425     const Function &F) {
3426   NameVals.push_back(ValueID);
3427 
3428   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3429   writeFunctionTypeMetadataRecords(Stream, FS);
3430 
3431   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3432   NameVals.push_back(FS->instCount());
3433   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3434   NameVals.push_back(FS->refs().size());
3435 
3436   for (auto &RI : FS->refs())
3437     NameVals.push_back(VE.getValueID(RI.getValue()));
3438 
3439   bool HasProfileData = F.hasProfileData();
3440   for (auto &ECI : FS->calls()) {
3441     NameVals.push_back(getValueId(ECI.first));
3442     if (HasProfileData)
3443       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3444     else if (WriteRelBFToSummary)
3445       NameVals.push_back(ECI.second.RelBlockFreq);
3446   }
3447 
3448   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3449   unsigned Code =
3450       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3451                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3452                                              : bitc::FS_PERMODULE));
3453 
3454   // Emit the finished record.
3455   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3456   NameVals.clear();
3457 }
3458 
3459 // Collect the global value references in the given variable's initializer,
3460 // and emit them in a summary record.
3461 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3462     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3463     unsigned FSModRefsAbbrev) {
3464   auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName()));
3465   if (!VI || VI.getSummaryList().empty()) {
3466     // Only declarations should not have a summary (a declaration might however
3467     // have a summary if the def was in module level asm).
3468     assert(V.isDeclaration());
3469     return;
3470   }
3471   auto *Summary = VI.getSummaryList()[0].get();
3472   NameVals.push_back(VE.getValueID(&V));
3473   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3474   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3475 
3476   unsigned SizeBeforeRefs = NameVals.size();
3477   for (auto &RI : VS->refs())
3478     NameVals.push_back(VE.getValueID(RI.getValue()));
3479   // Sort the refs for determinism output, the vector returned by FS->refs() has
3480   // been initialized from a DenseSet.
3481   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3482 
3483   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3484                     FSModRefsAbbrev);
3485   NameVals.clear();
3486 }
3487 
3488 // Current version for the summary.
3489 // This is bumped whenever we introduce changes in the way some record are
3490 // interpreted, like flags for instance.
3491 static const uint64_t INDEX_VERSION = 4;
3492 
3493 /// Emit the per-module summary section alongside the rest of
3494 /// the module's bitcode.
3495 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3496   // By default we compile with ThinLTO if the module has a summary, but the
3497   // client can request full LTO with a module flag.
3498   bool IsThinLTO = true;
3499   if (auto *MD =
3500           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3501     IsThinLTO = MD->getZExtValue();
3502   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3503                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3504                        4);
3505 
3506   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3507 
3508   if (Index->begin() == Index->end()) {
3509     Stream.ExitBlock();
3510     return;
3511   }
3512 
3513   for (const auto &GVI : valueIds()) {
3514     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3515                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3516   }
3517 
3518   // Abbrev for FS_PERMODULE_PROFILE.
3519   auto Abbv = std::make_shared<BitCodeAbbrev>();
3520   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3521   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3522   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3523   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3524   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3525   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3526   // numrefs x valueid, n x (valueid, hotness)
3527   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3528   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3529   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3530 
3531   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3532   Abbv = std::make_shared<BitCodeAbbrev>();
3533   if (WriteRelBFToSummary)
3534     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3535   else
3536     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3537   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3538   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3539   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3540   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3541   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3542   // numrefs x valueid, n x (valueid [, rel_block_freq])
3543   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3544   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3545   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3546 
3547   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3548   Abbv = std::make_shared<BitCodeAbbrev>();
3549   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3550   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3551   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3552   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3553   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3554   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3555 
3556   // Abbrev for FS_ALIAS.
3557   Abbv = std::make_shared<BitCodeAbbrev>();
3558   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3559   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3560   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3561   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3562   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3563 
3564   SmallVector<uint64_t, 64> NameVals;
3565   // Iterate over the list of functions instead of the Index to
3566   // ensure the ordering is stable.
3567   for (const Function &F : M) {
3568     // Summary emission does not support anonymous functions, they have to
3569     // renamed using the anonymous function renaming pass.
3570     if (!F.hasName())
3571       report_fatal_error("Unexpected anonymous function when writing summary");
3572 
3573     ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName()));
3574     if (!VI || VI.getSummaryList().empty()) {
3575       // Only declarations should not have a summary (a declaration might
3576       // however have a summary if the def was in module level asm).
3577       assert(F.isDeclaration());
3578       continue;
3579     }
3580     auto *Summary = VI.getSummaryList()[0].get();
3581     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3582                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3583   }
3584 
3585   // Capture references from GlobalVariable initializers, which are outside
3586   // of a function scope.
3587   for (const GlobalVariable &G : M.globals())
3588     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3589 
3590   for (const GlobalAlias &A : M.aliases()) {
3591     auto *Aliasee = A.getBaseObject();
3592     if (!Aliasee->hasName())
3593       // Nameless function don't have an entry in the summary, skip it.
3594       continue;
3595     auto AliasId = VE.getValueID(&A);
3596     auto AliaseeId = VE.getValueID(Aliasee);
3597     NameVals.push_back(AliasId);
3598     auto *Summary = Index->getGlobalValueSummary(A);
3599     AliasSummary *AS = cast<AliasSummary>(Summary);
3600     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3601     NameVals.push_back(AliaseeId);
3602     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3603     NameVals.clear();
3604   }
3605 
3606   Stream.ExitBlock();
3607 }
3608 
3609 /// Emit the combined summary section into the combined index file.
3610 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3611   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3612   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3613 
3614   // Write the index flags.
3615   uint64_t Flags = 0;
3616   if (Index.withGlobalValueDeadStripping())
3617     Flags |= 0x1;
3618   if (Index.skipModuleByDistributedBackend())
3619     Flags |= 0x2;
3620   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3621 
3622   for (const auto &GVI : valueIds()) {
3623     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3624                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3625   }
3626 
3627   // Abbrev for FS_COMBINED.
3628   auto Abbv = std::make_shared<BitCodeAbbrev>();
3629   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3630   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3631   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3632   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3633   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3634   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3635   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3636   // numrefs x valueid, n x (valueid)
3637   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3638   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3639   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3640 
3641   // Abbrev for FS_COMBINED_PROFILE.
3642   Abbv = std::make_shared<BitCodeAbbrev>();
3643   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3644   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3645   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3646   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3647   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3648   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3649   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3650   // numrefs x valueid, n x (valueid, hotness)
3651   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3652   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3653   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3654 
3655   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3656   Abbv = std::make_shared<BitCodeAbbrev>();
3657   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3658   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3659   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3660   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3661   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3662   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3663   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3664 
3665   // Abbrev for FS_COMBINED_ALIAS.
3666   Abbv = std::make_shared<BitCodeAbbrev>();
3667   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3668   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3669   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3670   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3671   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3672   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3673 
3674   // The aliases are emitted as a post-pass, and will point to the value
3675   // id of the aliasee. Save them in a vector for post-processing.
3676   SmallVector<AliasSummary *, 64> Aliases;
3677 
3678   // Save the value id for each summary for alias emission.
3679   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3680 
3681   SmallVector<uint64_t, 64> NameVals;
3682 
3683   // For local linkage, we also emit the original name separately
3684   // immediately after the record.
3685   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3686     if (!GlobalValue::isLocalLinkage(S.linkage()))
3687       return;
3688     NameVals.push_back(S.getOriginalName());
3689     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3690     NameVals.clear();
3691   };
3692 
3693   forEachSummary([&](GVInfo I, bool IsAliasee) {
3694     GlobalValueSummary *S = I.second;
3695     assert(S);
3696 
3697     auto ValueId = getValueId(I.first);
3698     assert(ValueId);
3699     SummaryToValueIdMap[S] = *ValueId;
3700 
3701     // If this is invoked for an aliasee, we want to record the above
3702     // mapping, but then not emit a summary entry (if the aliasee is
3703     // to be imported, we will invoke this separately with IsAliasee=false).
3704     if (IsAliasee)
3705       return;
3706 
3707     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3708       // Will process aliases as a post-pass because the reader wants all
3709       // global to be loaded first.
3710       Aliases.push_back(AS);
3711       return;
3712     }
3713 
3714     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3715       NameVals.push_back(*ValueId);
3716       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3717       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3718       for (auto &RI : VS->refs()) {
3719         auto RefValueId = getValueId(RI.getGUID());
3720         if (!RefValueId)
3721           continue;
3722         NameVals.push_back(*RefValueId);
3723       }
3724 
3725       // Emit the finished record.
3726       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3727                         FSModRefsAbbrev);
3728       NameVals.clear();
3729       MaybeEmitOriginalName(*S);
3730       return;
3731     }
3732 
3733     auto *FS = cast<FunctionSummary>(S);
3734     writeFunctionTypeMetadataRecords(Stream, FS);
3735 
3736     NameVals.push_back(*ValueId);
3737     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3738     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3739     NameVals.push_back(FS->instCount());
3740     NameVals.push_back(getEncodedFFlags(FS->fflags()));
3741     // Fill in below
3742     NameVals.push_back(0);
3743 
3744     unsigned Count = 0;
3745     for (auto &RI : FS->refs()) {
3746       auto RefValueId = getValueId(RI.getGUID());
3747       if (!RefValueId)
3748         continue;
3749       NameVals.push_back(*RefValueId);
3750       Count++;
3751     }
3752     NameVals[5] = Count;
3753 
3754     bool HasProfileData = false;
3755     for (auto &EI : FS->calls()) {
3756       HasProfileData |=
3757           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
3758       if (HasProfileData)
3759         break;
3760     }
3761 
3762     for (auto &EI : FS->calls()) {
3763       // If this GUID doesn't have a value id, it doesn't have a function
3764       // summary and we don't need to record any calls to it.
3765       GlobalValue::GUID GUID = EI.first.getGUID();
3766       auto CallValueId = getValueId(GUID);
3767       if (!CallValueId) {
3768         // For SamplePGO, the indirect call targets for local functions will
3769         // have its original name annotated in profile. We try to find the
3770         // corresponding PGOFuncName as the GUID.
3771         GUID = Index.getGUIDFromOriginalID(GUID);
3772         if (GUID == 0)
3773           continue;
3774         CallValueId = getValueId(GUID);
3775         if (!CallValueId)
3776           continue;
3777         // The mapping from OriginalId to GUID may return a GUID
3778         // that corresponds to a static variable. Filter it out here.
3779         // This can happen when
3780         // 1) There is a call to a library function which does not have
3781         // a CallValidId;
3782         // 2) There is a static variable with the  OriginalGUID identical
3783         // to the GUID of the library function in 1);
3784         // When this happens, the logic for SamplePGO kicks in and
3785         // the static variable in 2) will be found, which needs to be
3786         // filtered out.
3787         auto *GVSum = Index.getGlobalValueSummary(GUID, false);
3788         if (GVSum &&
3789             GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
3790           continue;
3791       }
3792       NameVals.push_back(*CallValueId);
3793       if (HasProfileData)
3794         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3795     }
3796 
3797     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3798     unsigned Code =
3799         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3800 
3801     // Emit the finished record.
3802     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3803     NameVals.clear();
3804     MaybeEmitOriginalName(*S);
3805   });
3806 
3807   for (auto *AS : Aliases) {
3808     auto AliasValueId = SummaryToValueIdMap[AS];
3809     assert(AliasValueId);
3810     NameVals.push_back(AliasValueId);
3811     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3812     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3813     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3814     assert(AliaseeValueId);
3815     NameVals.push_back(AliaseeValueId);
3816 
3817     // Emit the finished record.
3818     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3819     NameVals.clear();
3820     MaybeEmitOriginalName(*AS);
3821   }
3822 
3823   if (!Index.cfiFunctionDefs().empty()) {
3824     for (auto &S : Index.cfiFunctionDefs()) {
3825       NameVals.push_back(StrtabBuilder.add(S));
3826       NameVals.push_back(S.size());
3827     }
3828     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
3829     NameVals.clear();
3830   }
3831 
3832   if (!Index.cfiFunctionDecls().empty()) {
3833     for (auto &S : Index.cfiFunctionDecls()) {
3834       NameVals.push_back(StrtabBuilder.add(S));
3835       NameVals.push_back(S.size());
3836     }
3837     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
3838     NameVals.clear();
3839   }
3840 
3841   if (!Index.typeIds().empty()) {
3842     for (auto &S : Index.typeIds()) {
3843       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, S.first, S.second);
3844       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
3845       NameVals.clear();
3846     }
3847   }
3848 
3849   Stream.ExitBlock();
3850 }
3851 
3852 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
3853 /// current llvm version, and a record for the epoch number.
3854 static void writeIdentificationBlock(BitstreamWriter &Stream) {
3855   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3856 
3857   // Write the "user readable" string identifying the bitcode producer
3858   auto Abbv = std::make_shared<BitCodeAbbrev>();
3859   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3860   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3861   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3862   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3863   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
3864                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3865 
3866   // Write the epoch version
3867   Abbv = std::make_shared<BitCodeAbbrev>();
3868   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3869   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3870   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3871   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3872   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3873   Stream.ExitBlock();
3874 }
3875 
3876 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3877   // Emit the module's hash.
3878   // MODULE_CODE_HASH: [5*i32]
3879   if (GenerateHash) {
3880     uint32_t Vals[5];
3881     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3882                                     Buffer.size() - BlockStartPos));
3883     StringRef Hash = Hasher.result();
3884     for (int Pos = 0; Pos < 20; Pos += 4) {
3885       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
3886     }
3887 
3888     // Emit the finished record.
3889     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3890 
3891     if (ModHash)
3892       // Save the written hash value.
3893       std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash));
3894   }
3895 }
3896 
3897 void ModuleBitcodeWriter::write() {
3898   writeIdentificationBlock(Stream);
3899 
3900   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3901   size_t BlockStartPos = Buffer.size();
3902 
3903   writeModuleVersion();
3904 
3905   // Emit blockinfo, which defines the standard abbreviations etc.
3906   writeBlockInfo();
3907 
3908   // Emit information about attribute groups.
3909   writeAttributeGroupTable();
3910 
3911   // Emit information about parameter attributes.
3912   writeAttributeTable();
3913 
3914   // Emit information describing all of the types in the module.
3915   writeTypeTable();
3916 
3917   writeComdats();
3918 
3919   // Emit top-level description of module, including target triple, inline asm,
3920   // descriptors for global variables, and function prototype info.
3921   writeModuleInfo();
3922 
3923   // Emit constants.
3924   writeModuleConstants();
3925 
3926   // Emit metadata kind names.
3927   writeModuleMetadataKinds();
3928 
3929   // Emit metadata.
3930   writeModuleMetadata();
3931 
3932   // Emit module-level use-lists.
3933   if (VE.shouldPreserveUseListOrder())
3934     writeUseListBlock(nullptr);
3935 
3936   writeOperandBundleTags();
3937   writeSyncScopeNames();
3938 
3939   // Emit function bodies.
3940   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
3941   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
3942     if (!F->isDeclaration())
3943       writeFunction(*F, FunctionToBitcodeIndex);
3944 
3945   // Need to write after the above call to WriteFunction which populates
3946   // the summary information in the index.
3947   if (Index)
3948     writePerModuleGlobalValueSummary();
3949 
3950   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
3951 
3952   writeModuleHash(BlockStartPos);
3953 
3954   Stream.ExitBlock();
3955 }
3956 
3957 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3958                                uint32_t &Position) {
3959   support::endian::write32le(&Buffer[Position], Value);
3960   Position += 4;
3961 }
3962 
3963 /// If generating a bc file on darwin, we have to emit a
3964 /// header and trailer to make it compatible with the system archiver.  To do
3965 /// this we emit the following header, and then emit a trailer that pads the
3966 /// file out to be a multiple of 16 bytes.
3967 ///
3968 /// struct bc_header {
3969 ///   uint32_t Magic;         // 0x0B17C0DE
3970 ///   uint32_t Version;       // Version, currently always 0.
3971 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3972 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
3973 ///   uint32_t CPUType;       // CPU specifier.
3974 ///   ... potentially more later ...
3975 /// };
3976 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3977                                          const Triple &TT) {
3978   unsigned CPUType = ~0U;
3979 
3980   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3981   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3982   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
3983   // specific constants here because they are implicitly part of the Darwin ABI.
3984   enum {
3985     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
3986     DARWIN_CPU_TYPE_X86        = 7,
3987     DARWIN_CPU_TYPE_ARM        = 12,
3988     DARWIN_CPU_TYPE_POWERPC    = 18
3989   };
3990 
3991   Triple::ArchType Arch = TT.getArch();
3992   if (Arch == Triple::x86_64)
3993     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
3994   else if (Arch == Triple::x86)
3995     CPUType = DARWIN_CPU_TYPE_X86;
3996   else if (Arch == Triple::ppc)
3997     CPUType = DARWIN_CPU_TYPE_POWERPC;
3998   else if (Arch == Triple::ppc64)
3999     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4000   else if (Arch == Triple::arm || Arch == Triple::thumb)
4001     CPUType = DARWIN_CPU_TYPE_ARM;
4002 
4003   // Traditional Bitcode starts after header.
4004   assert(Buffer.size() >= BWH_HeaderSize &&
4005          "Expected header size to be reserved");
4006   unsigned BCOffset = BWH_HeaderSize;
4007   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4008 
4009   // Write the magic and version.
4010   unsigned Position = 0;
4011   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4012   writeInt32ToBuffer(0, Buffer, Position); // Version.
4013   writeInt32ToBuffer(BCOffset, Buffer, Position);
4014   writeInt32ToBuffer(BCSize, Buffer, Position);
4015   writeInt32ToBuffer(CPUType, Buffer, Position);
4016 
4017   // If the file is not a multiple of 16 bytes, insert dummy padding.
4018   while (Buffer.size() & 15)
4019     Buffer.push_back(0);
4020 }
4021 
4022 /// Helper to write the header common to all bitcode files.
4023 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4024   // Emit the file header.
4025   Stream.Emit((unsigned)'B', 8);
4026   Stream.Emit((unsigned)'C', 8);
4027   Stream.Emit(0x0, 4);
4028   Stream.Emit(0xC, 4);
4029   Stream.Emit(0xE, 4);
4030   Stream.Emit(0xD, 4);
4031 }
4032 
4033 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4034     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4035   writeBitcodeHeader(*Stream);
4036 }
4037 
4038 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4039 
4040 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4041   Stream->EnterSubblock(Block, 3);
4042 
4043   auto Abbv = std::make_shared<BitCodeAbbrev>();
4044   Abbv->Add(BitCodeAbbrevOp(Record));
4045   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4046   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4047 
4048   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4049 
4050   Stream->ExitBlock();
4051 }
4052 
4053 void BitcodeWriter::writeSymtab() {
4054   assert(!WroteStrtab && !WroteSymtab);
4055 
4056   // If any module has module-level inline asm, we will require a registered asm
4057   // parser for the target so that we can create an accurate symbol table for
4058   // the module.
4059   for (Module *M : Mods) {
4060     if (M->getModuleInlineAsm().empty())
4061       continue;
4062 
4063     std::string Err;
4064     const Triple TT(M->getTargetTriple());
4065     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4066     if (!T || !T->hasMCAsmParser())
4067       return;
4068   }
4069 
4070   WroteSymtab = true;
4071   SmallVector<char, 0> Symtab;
4072   // The irsymtab::build function may be unable to create a symbol table if the
4073   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4074   // table is not required for correctness, but we still want to be able to
4075   // write malformed modules to bitcode files, so swallow the error.
4076   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4077     consumeError(std::move(E));
4078     return;
4079   }
4080 
4081   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4082             {Symtab.data(), Symtab.size()});
4083 }
4084 
4085 void BitcodeWriter::writeStrtab() {
4086   assert(!WroteStrtab);
4087 
4088   std::vector<char> Strtab;
4089   StrtabBuilder.finalizeInOrder();
4090   Strtab.resize(StrtabBuilder.getSize());
4091   StrtabBuilder.write((uint8_t *)Strtab.data());
4092 
4093   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4094             {Strtab.data(), Strtab.size()});
4095 
4096   WroteStrtab = true;
4097 }
4098 
4099 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4100   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4101   WroteStrtab = true;
4102 }
4103 
4104 void BitcodeWriter::writeModule(const Module &M,
4105                                 bool ShouldPreserveUseListOrder,
4106                                 const ModuleSummaryIndex *Index,
4107                                 bool GenerateHash, ModuleHash *ModHash) {
4108   assert(!WroteStrtab);
4109 
4110   // The Mods vector is used by irsymtab::build, which requires non-const
4111   // Modules in case it needs to materialize metadata. But the bitcode writer
4112   // requires that the module is materialized, so we can cast to non-const here,
4113   // after checking that it is in fact materialized.
4114   assert(M.isMaterialized());
4115   Mods.push_back(const_cast<Module *>(&M));
4116 
4117   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4118                                    ShouldPreserveUseListOrder, Index,
4119                                    GenerateHash, ModHash);
4120   ModuleWriter.write();
4121 }
4122 
4123 void BitcodeWriter::writeIndex(
4124     const ModuleSummaryIndex *Index,
4125     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4126   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4127                                  ModuleToSummariesForIndex);
4128   IndexWriter.write();
4129 }
4130 
4131 /// Write the specified module to the specified output stream.
4132 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4133                               bool ShouldPreserveUseListOrder,
4134                               const ModuleSummaryIndex *Index,
4135                               bool GenerateHash, ModuleHash *ModHash) {
4136   SmallVector<char, 0> Buffer;
4137   Buffer.reserve(256*1024);
4138 
4139   // If this is darwin or another generic macho target, reserve space for the
4140   // header.
4141   Triple TT(M.getTargetTriple());
4142   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4143     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4144 
4145   BitcodeWriter Writer(Buffer);
4146   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4147                      ModHash);
4148   Writer.writeSymtab();
4149   Writer.writeStrtab();
4150 
4151   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4152     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4153 
4154   // Write the generated bitstream to "Out".
4155   Out.write((char*)&Buffer.front(), Buffer.size());
4156 }
4157 
4158 void IndexBitcodeWriter::write() {
4159   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4160 
4161   writeModuleVersion();
4162 
4163   // Write the module paths in the combined index.
4164   writeModStrings();
4165 
4166   // Write the summary combined index records.
4167   writeCombinedGlobalValueSummary();
4168 
4169   Stream.ExitBlock();
4170 }
4171 
4172 // Write the specified module summary index to the given raw output stream,
4173 // where it will be written in a new bitcode block. This is used when
4174 // writing the combined index file for ThinLTO. When writing a subset of the
4175 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4176 void llvm::WriteIndexToFile(
4177     const ModuleSummaryIndex &Index, raw_ostream &Out,
4178     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4179   SmallVector<char, 0> Buffer;
4180   Buffer.reserve(256 * 1024);
4181 
4182   BitcodeWriter Writer(Buffer);
4183   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4184   Writer.writeStrtab();
4185 
4186   Out.write((char *)&Buffer.front(), Buffer.size());
4187 }
4188 
4189 namespace {
4190 
4191 /// Class to manage the bitcode writing for a thin link bitcode file.
4192 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4193   /// ModHash is for use in ThinLTO incremental build, generated while writing
4194   /// the module bitcode file.
4195   const ModuleHash *ModHash;
4196 
4197 public:
4198   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4199                         BitstreamWriter &Stream,
4200                         const ModuleSummaryIndex &Index,
4201                         const ModuleHash &ModHash)
4202       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4203                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4204         ModHash(&ModHash) {}
4205 
4206   void write();
4207 
4208 private:
4209   void writeSimplifiedModuleInfo();
4210 };
4211 
4212 } // end anonymous namespace
4213 
4214 // This function writes a simpilified module info for thin link bitcode file.
4215 // It only contains the source file name along with the name(the offset and
4216 // size in strtab) and linkage for global values. For the global value info
4217 // entry, in order to keep linkage at offset 5, there are three zeros used
4218 // as padding.
4219 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4220   SmallVector<unsigned, 64> Vals;
4221   // Emit the module's source file name.
4222   {
4223     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4224     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4225     if (Bits == SE_Char6)
4226       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4227     else if (Bits == SE_Fixed7)
4228       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4229 
4230     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4231     auto Abbv = std::make_shared<BitCodeAbbrev>();
4232     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4233     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4234     Abbv->Add(AbbrevOpToUse);
4235     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4236 
4237     for (const auto P : M.getSourceFileName())
4238       Vals.push_back((unsigned char)P);
4239 
4240     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4241     Vals.clear();
4242   }
4243 
4244   // Emit the global variable information.
4245   for (const GlobalVariable &GV : M.globals()) {
4246     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4247     Vals.push_back(StrtabBuilder.add(GV.getName()));
4248     Vals.push_back(GV.getName().size());
4249     Vals.push_back(0);
4250     Vals.push_back(0);
4251     Vals.push_back(0);
4252     Vals.push_back(getEncodedLinkage(GV));
4253 
4254     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4255     Vals.clear();
4256   }
4257 
4258   // Emit the function proto information.
4259   for (const Function &F : M) {
4260     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4261     Vals.push_back(StrtabBuilder.add(F.getName()));
4262     Vals.push_back(F.getName().size());
4263     Vals.push_back(0);
4264     Vals.push_back(0);
4265     Vals.push_back(0);
4266     Vals.push_back(getEncodedLinkage(F));
4267 
4268     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4269     Vals.clear();
4270   }
4271 
4272   // Emit the alias information.
4273   for (const GlobalAlias &A : M.aliases()) {
4274     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4275     Vals.push_back(StrtabBuilder.add(A.getName()));
4276     Vals.push_back(A.getName().size());
4277     Vals.push_back(0);
4278     Vals.push_back(0);
4279     Vals.push_back(0);
4280     Vals.push_back(getEncodedLinkage(A));
4281 
4282     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4283     Vals.clear();
4284   }
4285 
4286   // Emit the ifunc information.
4287   for (const GlobalIFunc &I : M.ifuncs()) {
4288     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4289     Vals.push_back(StrtabBuilder.add(I.getName()));
4290     Vals.push_back(I.getName().size());
4291     Vals.push_back(0);
4292     Vals.push_back(0);
4293     Vals.push_back(0);
4294     Vals.push_back(getEncodedLinkage(I));
4295 
4296     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4297     Vals.clear();
4298   }
4299 }
4300 
4301 void ThinLinkBitcodeWriter::write() {
4302   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4303 
4304   writeModuleVersion();
4305 
4306   writeSimplifiedModuleInfo();
4307 
4308   writePerModuleGlobalValueSummary();
4309 
4310   // Write module hash.
4311   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4312 
4313   Stream.ExitBlock();
4314 }
4315 
4316 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4317                                          const ModuleSummaryIndex &Index,
4318                                          const ModuleHash &ModHash) {
4319   assert(!WroteStrtab);
4320 
4321   // The Mods vector is used by irsymtab::build, which requires non-const
4322   // Modules in case it needs to materialize metadata. But the bitcode writer
4323   // requires that the module is materialized, so we can cast to non-const here,
4324   // after checking that it is in fact materialized.
4325   assert(M.isMaterialized());
4326   Mods.push_back(const_cast<Module *>(&M));
4327 
4328   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4329                                        ModHash);
4330   ThinLinkWriter.write();
4331 }
4332 
4333 // Write the specified thin link bitcode file to the given raw output stream,
4334 // where it will be written in a new bitcode block. This is used when
4335 // writing the per-module index file for ThinLTO.
4336 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4337                                       const ModuleSummaryIndex &Index,
4338                                       const ModuleHash &ModHash) {
4339   SmallVector<char, 0> Buffer;
4340   Buffer.reserve(256 * 1024);
4341 
4342   BitcodeWriter Writer(Buffer);
4343   Writer.writeThinLinkBitcode(M, Index, ModHash);
4344   Writer.writeSymtab();
4345   Writer.writeStrtab();
4346 
4347   Out.write((char *)&Buffer.front(), Buffer.size());
4348 }
4349