1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRangeList.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/ProfileData/MemProf.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/SHA1.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/TargetParser/Triple.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <memory> 81 #include <optional> 82 #include <string> 83 #include <utility> 84 #include <vector> 85 86 using namespace llvm; 87 using namespace llvm::memprof; 88 89 static cl::opt<unsigned> 90 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 91 cl::desc("Number of metadatas above which we emit an index " 92 "to enable lazy-loading")); 93 static cl::opt<uint32_t> FlushThreshold( 94 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 95 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 96 97 static cl::opt<bool> WriteRelBFToSummary( 98 "write-relbf-to-summary", cl::Hidden, cl::init(false), 99 cl::desc("Write relative block frequency to function summary ")); 100 101 namespace llvm { 102 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 103 } 104 105 extern bool WriteNewDbgInfoFormatToBitcode; 106 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 107 108 namespace { 109 110 /// These are manifest constants used by the bitcode writer. They do not need to 111 /// be kept in sync with the reader, but need to be consistent within this file. 112 enum { 113 // VALUE_SYMTAB_BLOCK abbrev id's. 114 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 VST_ENTRY_7_ABBREV, 116 VST_ENTRY_6_ABBREV, 117 VST_BBENTRY_6_ABBREV, 118 119 // CONSTANTS_BLOCK abbrev id's. 120 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 CONSTANTS_INTEGER_ABBREV, 122 CONSTANTS_CE_CAST_Abbrev, 123 CONSTANTS_NULL_Abbrev, 124 125 // FUNCTION_BLOCK abbrev id's. 126 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 127 FUNCTION_INST_UNOP_ABBREV, 128 FUNCTION_INST_UNOP_FLAGS_ABBREV, 129 FUNCTION_INST_BINOP_ABBREV, 130 FUNCTION_INST_BINOP_FLAGS_ABBREV, 131 FUNCTION_INST_CAST_ABBREV, 132 FUNCTION_INST_CAST_FLAGS_ABBREV, 133 FUNCTION_INST_RET_VOID_ABBREV, 134 FUNCTION_INST_RET_VAL_ABBREV, 135 FUNCTION_INST_UNREACHABLE_ABBREV, 136 FUNCTION_INST_GEP_ABBREV, 137 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 138 }; 139 140 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 141 /// file type. 142 class BitcodeWriterBase { 143 protected: 144 /// The stream created and owned by the client. 145 BitstreamWriter &Stream; 146 147 StringTableBuilder &StrtabBuilder; 148 149 public: 150 /// Constructs a BitcodeWriterBase object that writes to the provided 151 /// \p Stream. 152 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 153 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 154 155 protected: 156 void writeModuleVersion(); 157 }; 158 159 void BitcodeWriterBase::writeModuleVersion() { 160 // VERSION: [version#] 161 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 162 } 163 164 /// Base class to manage the module bitcode writing, currently subclassed for 165 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 166 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 167 protected: 168 /// The Module to write to bitcode. 169 const Module &M; 170 171 /// Enumerates ids for all values in the module. 172 ValueEnumerator VE; 173 174 /// Optional per-module index to write for ThinLTO. 175 const ModuleSummaryIndex *Index; 176 177 /// Map that holds the correspondence between GUIDs in the summary index, 178 /// that came from indirect call profiles, and a value id generated by this 179 /// class to use in the VST and summary block records. 180 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 181 182 /// Tracks the last value id recorded in the GUIDToValueMap. 183 unsigned GlobalValueId; 184 185 /// Saves the offset of the VSTOffset record that must eventually be 186 /// backpatched with the offset of the actual VST. 187 uint64_t VSTOffsetPlaceholder = 0; 188 189 public: 190 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 191 /// writing to the provided \p Buffer. 192 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 193 BitstreamWriter &Stream, 194 bool ShouldPreserveUseListOrder, 195 const ModuleSummaryIndex *Index) 196 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 197 VE(M, ShouldPreserveUseListOrder), Index(Index) { 198 // Assign ValueIds to any callee values in the index that came from 199 // indirect call profiles and were recorded as a GUID not a Value* 200 // (which would have been assigned an ID by the ValueEnumerator). 201 // The starting ValueId is just after the number of values in the 202 // ValueEnumerator, so that they can be emitted in the VST. 203 GlobalValueId = VE.getValues().size(); 204 if (!Index) 205 return; 206 for (const auto &GUIDSummaryLists : *Index) 207 // Examine all summaries for this GUID. 208 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 209 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) { 210 // For each call in the function summary, see if the call 211 // is to a GUID (which means it is for an indirect call, 212 // otherwise we would have a Value for it). If so, synthesize 213 // a value id. 214 for (auto &CallEdge : FS->calls()) 215 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 216 assignValueId(CallEdge.first.getGUID()); 217 218 // For each referenced variables in the function summary, see if the 219 // variable is represented by a GUID (as opposed to a symbol to 220 // declarations or definitions in the module). If so, synthesize a 221 // value id. 222 for (auto &RefEdge : FS->refs()) 223 if (!RefEdge.haveGVs() || !RefEdge.getValue()) 224 assignValueId(RefEdge.getGUID()); 225 } 226 } 227 228 protected: 229 void writePerModuleGlobalValueSummary(); 230 231 private: 232 void writePerModuleFunctionSummaryRecord( 233 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 234 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 235 unsigned CallsiteAbbrev, unsigned AllocAbbrev, unsigned ContextIdAbbvId, 236 const Function &F, DenseMap<CallStackId, LinearCallStackId> &CallStackPos, 237 CallStackId &CallStackCount); 238 void writeModuleLevelReferences(const GlobalVariable &V, 239 SmallVector<uint64_t, 64> &NameVals, 240 unsigned FSModRefsAbbrev, 241 unsigned FSModVTableRefsAbbrev); 242 243 void assignValueId(GlobalValue::GUID ValGUID) { 244 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 245 } 246 247 unsigned getValueId(GlobalValue::GUID ValGUID) { 248 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 249 // Expect that any GUID value had a value Id assigned by an 250 // earlier call to assignValueId. 251 assert(VMI != GUIDToValueIdMap.end() && 252 "GUID does not have assigned value Id"); 253 return VMI->second; 254 } 255 256 // Helper to get the valueId for the type of value recorded in VI. 257 unsigned getValueId(ValueInfo VI) { 258 if (!VI.haveGVs() || !VI.getValue()) 259 return getValueId(VI.getGUID()); 260 return VE.getValueID(VI.getValue()); 261 } 262 263 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 264 }; 265 266 /// Class to manage the bitcode writing for a module. 267 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 268 /// True if a module hash record should be written. 269 bool GenerateHash; 270 271 /// If non-null, when GenerateHash is true, the resulting hash is written 272 /// into ModHash. 273 ModuleHash *ModHash; 274 275 SHA1 Hasher; 276 277 /// The start bit of the identification block. 278 uint64_t BitcodeStartBit; 279 280 public: 281 /// Constructs a ModuleBitcodeWriter object for the given Module, 282 /// writing to the provided \p Buffer. 283 ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 284 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 285 const ModuleSummaryIndex *Index, bool GenerateHash, 286 ModuleHash *ModHash = nullptr) 287 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 288 ShouldPreserveUseListOrder, Index), 289 GenerateHash(GenerateHash), ModHash(ModHash), 290 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 291 292 /// Emit the current module to the bitstream. 293 void write(); 294 295 private: 296 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 297 298 size_t addToStrtab(StringRef Str); 299 300 void writeAttributeGroupTable(); 301 void writeAttributeTable(); 302 void writeTypeTable(); 303 void writeComdats(); 304 void writeValueSymbolTableForwardDecl(); 305 void writeModuleInfo(); 306 void writeValueAsMetadata(const ValueAsMetadata *MD, 307 SmallVectorImpl<uint64_t> &Record); 308 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 unsigned createDILocationAbbrev(); 311 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 312 unsigned &Abbrev); 313 unsigned createGenericDINodeAbbrev(); 314 void writeGenericDINode(const GenericDINode *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 316 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIGenericSubrange(const DIGenericSubrange *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIEnumerator(const DIEnumerator *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIStringType(const DIStringType *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDIDerivedType(const DIDerivedType *N, 328 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 329 void writeDICompositeType(const DICompositeType *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDISubroutineType(const DISubroutineType *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDICompileUnit(const DICompileUnit *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDISubprogram(const DISubprogram *N, 339 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 340 void writeDILexicalBlock(const DILexicalBlock *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDICommonBlock(const DICommonBlock *N, 346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 347 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 354 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 355 unsigned Abbrev); 356 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 357 unsigned Abbrev); 358 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 359 SmallVectorImpl<uint64_t> &Record, 360 unsigned Abbrev); 361 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 void writeDIGlobalVariable(const DIGlobalVariable *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 void writeDILocalVariable(const DILocalVariable *N, 368 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 369 void writeDILabel(const DILabel *N, 370 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 371 void writeDIExpression(const DIExpression *N, 372 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 373 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 374 SmallVectorImpl<uint64_t> &Record, 375 unsigned Abbrev); 376 void writeDIObjCProperty(const DIObjCProperty *N, 377 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 378 void writeDIImportedEntity(const DIImportedEntity *N, 379 SmallVectorImpl<uint64_t> &Record, 380 unsigned Abbrev); 381 unsigned createNamedMetadataAbbrev(); 382 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 383 unsigned createMetadataStringsAbbrev(); 384 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 385 SmallVectorImpl<uint64_t> &Record); 386 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 387 SmallVectorImpl<uint64_t> &Record, 388 std::vector<unsigned> *MDAbbrevs = nullptr, 389 std::vector<uint64_t> *IndexPos = nullptr); 390 void writeModuleMetadata(); 391 void writeFunctionMetadata(const Function &F); 392 void writeFunctionMetadataAttachment(const Function &F); 393 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 394 const GlobalObject &GO); 395 void writeModuleMetadataKinds(); 396 void writeOperandBundleTags(); 397 void writeSyncScopeNames(); 398 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 399 void writeModuleConstants(); 400 bool pushValueAndType(const Value *V, unsigned InstID, 401 SmallVectorImpl<unsigned> &Vals); 402 bool pushValueOrMetadata(const Value *V, unsigned InstID, 403 SmallVectorImpl<unsigned> &Vals); 404 void writeOperandBundles(const CallBase &CB, unsigned InstID); 405 void pushValue(const Value *V, unsigned InstID, 406 SmallVectorImpl<unsigned> &Vals); 407 void pushValueSigned(const Value *V, unsigned InstID, 408 SmallVectorImpl<uint64_t> &Vals); 409 void writeInstruction(const Instruction &I, unsigned InstID, 410 SmallVectorImpl<unsigned> &Vals); 411 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 412 void writeGlobalValueSymbolTable( 413 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 414 void writeUseList(UseListOrder &&Order); 415 void writeUseListBlock(const Function *F); 416 void 417 writeFunction(const Function &F, 418 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 419 void writeBlockInfo(); 420 void writeModuleHash(StringRef View); 421 422 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 423 return unsigned(SSID); 424 } 425 426 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 427 }; 428 429 /// Class to manage the bitcode writing for a combined index. 430 class IndexBitcodeWriter : public BitcodeWriterBase { 431 /// The combined index to write to bitcode. 432 const ModuleSummaryIndex &Index; 433 434 /// When writing combined summaries, provides the set of global value 435 /// summaries for which the value (function, function alias, etc) should be 436 /// imported as a declaration. 437 const GVSummaryPtrSet *DecSummaries = nullptr; 438 439 /// When writing a subset of the index for distributed backends, client 440 /// provides a map of modules to the corresponding GUIDs/summaries to write. 441 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex; 442 443 /// Map that holds the correspondence between the GUID used in the combined 444 /// index and a value id generated by this class to use in references. 445 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 446 447 // The stack ids used by this index, which will be a subset of those in 448 // the full index in the case of distributed indexes. 449 std::vector<uint64_t> StackIds; 450 451 // Keep a map of the stack id indices used by records being written for this 452 // index to the index of the corresponding stack id in the above StackIds 453 // vector. Ensures we write each referenced stack id once. 454 DenseMap<unsigned, unsigned> StackIdIndicesToIndex; 455 456 /// Tracks the last value id recorded in the GUIDToValueMap. 457 unsigned GlobalValueId = 0; 458 459 /// Tracks the assignment of module paths in the module path string table to 460 /// an id assigned for use in summary references to the module path. 461 DenseMap<StringRef, uint64_t> ModuleIdMap; 462 463 public: 464 /// Constructs a IndexBitcodeWriter object for the given combined index, 465 /// writing to the provided \p Buffer. When writing a subset of the index 466 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 467 /// If provided, \p DecSummaries specifies the set of summaries for which 468 /// the corresponding functions or aliased functions should be imported as a 469 /// declaration (but not definition) for each module. 470 IndexBitcodeWriter( 471 BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 472 const ModuleSummaryIndex &Index, 473 const GVSummaryPtrSet *DecSummaries = nullptr, 474 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr) 475 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 476 DecSummaries(DecSummaries), 477 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 478 479 // See if the StackIdIndex was already added to the StackId map and 480 // vector. If not, record it. 481 auto RecordStackIdReference = [&](unsigned StackIdIndex) { 482 // If the StackIdIndex is not yet in the map, the below insert ensures 483 // that it will point to the new StackIds vector entry we push to just 484 // below. 485 auto Inserted = 486 StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()}); 487 if (Inserted.second) 488 StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex)); 489 }; 490 491 // Assign unique value ids to all summaries to be written, for use 492 // in writing out the call graph edges. Save the mapping from GUID 493 // to the new global value id to use when writing those edges, which 494 // are currently saved in the index in terms of GUID. 495 forEachSummary([&](GVInfo I, bool IsAliasee) { 496 GUIDToValueIdMap[I.first] = ++GlobalValueId; 497 if (IsAliasee) 498 return; 499 auto *FS = dyn_cast<FunctionSummary>(I.second); 500 if (!FS) 501 return; 502 // Record all stack id indices actually used in the summary entries being 503 // written, so that we can compact them in the case of distributed ThinLTO 504 // indexes. 505 for (auto &CI : FS->callsites()) { 506 // If the stack id list is empty, this callsite info was synthesized for 507 // a missing tail call frame. Ensure that the callee's GUID gets a value 508 // id. Normally we only generate these for defined summaries, which in 509 // the case of distributed ThinLTO is only the functions already defined 510 // in the module or that we want to import. We don't bother to include 511 // all the callee symbols as they aren't normally needed in the backend. 512 // However, for the synthesized callsite infos we do need the callee 513 // GUID in the backend so that we can correlate the identified callee 514 // with this callsite info (which for non-tail calls is done by the 515 // ordering of the callsite infos and verified via stack ids). 516 if (CI.StackIdIndices.empty()) { 517 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 518 continue; 519 } 520 for (auto Idx : CI.StackIdIndices) 521 RecordStackIdReference(Idx); 522 } 523 for (auto &AI : FS->allocs()) 524 for (auto &MIB : AI.MIBs) 525 for (auto Idx : MIB.StackIdIndices) 526 RecordStackIdReference(Idx); 527 }); 528 } 529 530 /// The below iterator returns the GUID and associated summary. 531 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 532 533 /// Calls the callback for each value GUID and summary to be written to 534 /// bitcode. This hides the details of whether they are being pulled from the 535 /// entire index or just those in a provided ModuleToSummariesForIndex map. 536 template<typename Functor> 537 void forEachSummary(Functor Callback) { 538 if (ModuleToSummariesForIndex) { 539 for (auto &M : *ModuleToSummariesForIndex) 540 for (auto &Summary : M.second) { 541 Callback(Summary, false); 542 // Ensure aliasee is handled, e.g. for assigning a valueId, 543 // even if we are not importing the aliasee directly (the 544 // imported alias will contain a copy of aliasee). 545 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 546 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 547 } 548 } else { 549 for (auto &Summaries : Index) 550 for (auto &Summary : Summaries.second.SummaryList) 551 Callback({Summaries.first, Summary.get()}, false); 552 } 553 } 554 555 /// Calls the callback for each entry in the modulePaths StringMap that 556 /// should be written to the module path string table. This hides the details 557 /// of whether they are being pulled from the entire index or just those in a 558 /// provided ModuleToSummariesForIndex map. 559 template <typename Functor> void forEachModule(Functor Callback) { 560 if (ModuleToSummariesForIndex) { 561 for (const auto &M : *ModuleToSummariesForIndex) { 562 const auto &MPI = Index.modulePaths().find(M.first); 563 if (MPI == Index.modulePaths().end()) { 564 // This should only happen if the bitcode file was empty, in which 565 // case we shouldn't be importing (the ModuleToSummariesForIndex 566 // would only include the module we are writing and index for). 567 assert(ModuleToSummariesForIndex->size() == 1); 568 continue; 569 } 570 Callback(*MPI); 571 } 572 } else { 573 // Since StringMap iteration order isn't guaranteed, order by path string 574 // first. 575 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 576 // map lookup. 577 std::vector<StringRef> ModulePaths; 578 for (auto &[ModPath, _] : Index.modulePaths()) 579 ModulePaths.push_back(ModPath); 580 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 581 for (auto &ModPath : ModulePaths) 582 Callback(*Index.modulePaths().find(ModPath)); 583 } 584 } 585 586 /// Main entry point for writing a combined index to bitcode. 587 void write(); 588 589 private: 590 void writeModStrings(); 591 void writeCombinedGlobalValueSummary(); 592 593 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 594 auto VMI = GUIDToValueIdMap.find(ValGUID); 595 if (VMI == GUIDToValueIdMap.end()) 596 return std::nullopt; 597 return VMI->second; 598 } 599 600 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 601 }; 602 603 } // end anonymous namespace 604 605 static unsigned getEncodedCastOpcode(unsigned Opcode) { 606 switch (Opcode) { 607 default: llvm_unreachable("Unknown cast instruction!"); 608 case Instruction::Trunc : return bitc::CAST_TRUNC; 609 case Instruction::ZExt : return bitc::CAST_ZEXT; 610 case Instruction::SExt : return bitc::CAST_SEXT; 611 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 612 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 613 case Instruction::UIToFP : return bitc::CAST_UITOFP; 614 case Instruction::SIToFP : return bitc::CAST_SITOFP; 615 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 616 case Instruction::FPExt : return bitc::CAST_FPEXT; 617 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 618 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 619 case Instruction::BitCast : return bitc::CAST_BITCAST; 620 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 621 } 622 } 623 624 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 625 switch (Opcode) { 626 default: llvm_unreachable("Unknown binary instruction!"); 627 case Instruction::FNeg: return bitc::UNOP_FNEG; 628 } 629 } 630 631 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 632 switch (Opcode) { 633 default: llvm_unreachable("Unknown binary instruction!"); 634 case Instruction::Add: 635 case Instruction::FAdd: return bitc::BINOP_ADD; 636 case Instruction::Sub: 637 case Instruction::FSub: return bitc::BINOP_SUB; 638 case Instruction::Mul: 639 case Instruction::FMul: return bitc::BINOP_MUL; 640 case Instruction::UDiv: return bitc::BINOP_UDIV; 641 case Instruction::FDiv: 642 case Instruction::SDiv: return bitc::BINOP_SDIV; 643 case Instruction::URem: return bitc::BINOP_UREM; 644 case Instruction::FRem: 645 case Instruction::SRem: return bitc::BINOP_SREM; 646 case Instruction::Shl: return bitc::BINOP_SHL; 647 case Instruction::LShr: return bitc::BINOP_LSHR; 648 case Instruction::AShr: return bitc::BINOP_ASHR; 649 case Instruction::And: return bitc::BINOP_AND; 650 case Instruction::Or: return bitc::BINOP_OR; 651 case Instruction::Xor: return bitc::BINOP_XOR; 652 } 653 } 654 655 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 656 switch (Op) { 657 default: llvm_unreachable("Unknown RMW operation!"); 658 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 659 case AtomicRMWInst::Add: return bitc::RMW_ADD; 660 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 661 case AtomicRMWInst::And: return bitc::RMW_AND; 662 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 663 case AtomicRMWInst::Or: return bitc::RMW_OR; 664 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 665 case AtomicRMWInst::Max: return bitc::RMW_MAX; 666 case AtomicRMWInst::Min: return bitc::RMW_MIN; 667 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 668 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 669 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 670 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 671 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 672 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 673 case AtomicRMWInst::UIncWrap: 674 return bitc::RMW_UINC_WRAP; 675 case AtomicRMWInst::UDecWrap: 676 return bitc::RMW_UDEC_WRAP; 677 case AtomicRMWInst::USubCond: 678 return bitc::RMW_USUB_COND; 679 case AtomicRMWInst::USubSat: 680 return bitc::RMW_USUB_SAT; 681 } 682 } 683 684 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 685 switch (Ordering) { 686 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 687 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 688 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 689 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 690 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 691 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 692 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 693 } 694 llvm_unreachable("Invalid ordering"); 695 } 696 697 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 698 StringRef Str, unsigned AbbrevToUse) { 699 SmallVector<unsigned, 64> Vals; 700 701 // Code: [strchar x N] 702 for (char C : Str) { 703 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 704 AbbrevToUse = 0; 705 Vals.push_back(C); 706 } 707 708 // Emit the finished record. 709 Stream.EmitRecord(Code, Vals, AbbrevToUse); 710 } 711 712 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 713 switch (Kind) { 714 case Attribute::Alignment: 715 return bitc::ATTR_KIND_ALIGNMENT; 716 case Attribute::AllocAlign: 717 return bitc::ATTR_KIND_ALLOC_ALIGN; 718 case Attribute::AllocSize: 719 return bitc::ATTR_KIND_ALLOC_SIZE; 720 case Attribute::AlwaysInline: 721 return bitc::ATTR_KIND_ALWAYS_INLINE; 722 case Attribute::Builtin: 723 return bitc::ATTR_KIND_BUILTIN; 724 case Attribute::ByVal: 725 return bitc::ATTR_KIND_BY_VAL; 726 case Attribute::Convergent: 727 return bitc::ATTR_KIND_CONVERGENT; 728 case Attribute::InAlloca: 729 return bitc::ATTR_KIND_IN_ALLOCA; 730 case Attribute::Cold: 731 return bitc::ATTR_KIND_COLD; 732 case Attribute::DisableSanitizerInstrumentation: 733 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 734 case Attribute::FnRetThunkExtern: 735 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 736 case Attribute::Hot: 737 return bitc::ATTR_KIND_HOT; 738 case Attribute::ElementType: 739 return bitc::ATTR_KIND_ELEMENTTYPE; 740 case Attribute::HybridPatchable: 741 return bitc::ATTR_KIND_HYBRID_PATCHABLE; 742 case Attribute::InlineHint: 743 return bitc::ATTR_KIND_INLINE_HINT; 744 case Attribute::InReg: 745 return bitc::ATTR_KIND_IN_REG; 746 case Attribute::JumpTable: 747 return bitc::ATTR_KIND_JUMP_TABLE; 748 case Attribute::MinSize: 749 return bitc::ATTR_KIND_MIN_SIZE; 750 case Attribute::AllocatedPointer: 751 return bitc::ATTR_KIND_ALLOCATED_POINTER; 752 case Attribute::AllocKind: 753 return bitc::ATTR_KIND_ALLOC_KIND; 754 case Attribute::Memory: 755 return bitc::ATTR_KIND_MEMORY; 756 case Attribute::NoFPClass: 757 return bitc::ATTR_KIND_NOFPCLASS; 758 case Attribute::Naked: 759 return bitc::ATTR_KIND_NAKED; 760 case Attribute::Nest: 761 return bitc::ATTR_KIND_NEST; 762 case Attribute::NoAlias: 763 return bitc::ATTR_KIND_NO_ALIAS; 764 case Attribute::NoBuiltin: 765 return bitc::ATTR_KIND_NO_BUILTIN; 766 case Attribute::NoCallback: 767 return bitc::ATTR_KIND_NO_CALLBACK; 768 case Attribute::NoCapture: 769 return bitc::ATTR_KIND_NO_CAPTURE; 770 case Attribute::NoDivergenceSource: 771 return bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE; 772 case Attribute::NoDuplicate: 773 return bitc::ATTR_KIND_NO_DUPLICATE; 774 case Attribute::NoFree: 775 return bitc::ATTR_KIND_NOFREE; 776 case Attribute::NoImplicitFloat: 777 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 778 case Attribute::NoInline: 779 return bitc::ATTR_KIND_NO_INLINE; 780 case Attribute::NoRecurse: 781 return bitc::ATTR_KIND_NO_RECURSE; 782 case Attribute::NoMerge: 783 return bitc::ATTR_KIND_NO_MERGE; 784 case Attribute::NonLazyBind: 785 return bitc::ATTR_KIND_NON_LAZY_BIND; 786 case Attribute::NonNull: 787 return bitc::ATTR_KIND_NON_NULL; 788 case Attribute::Dereferenceable: 789 return bitc::ATTR_KIND_DEREFERENCEABLE; 790 case Attribute::DereferenceableOrNull: 791 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 792 case Attribute::NoRedZone: 793 return bitc::ATTR_KIND_NO_RED_ZONE; 794 case Attribute::NoReturn: 795 return bitc::ATTR_KIND_NO_RETURN; 796 case Attribute::NoSync: 797 return bitc::ATTR_KIND_NOSYNC; 798 case Attribute::NoCfCheck: 799 return bitc::ATTR_KIND_NOCF_CHECK; 800 case Attribute::NoProfile: 801 return bitc::ATTR_KIND_NO_PROFILE; 802 case Attribute::SkipProfile: 803 return bitc::ATTR_KIND_SKIP_PROFILE; 804 case Attribute::NoUnwind: 805 return bitc::ATTR_KIND_NO_UNWIND; 806 case Attribute::NoSanitizeBounds: 807 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 808 case Attribute::NoSanitizeCoverage: 809 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 810 case Attribute::NullPointerIsValid: 811 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 812 case Attribute::OptimizeForDebugging: 813 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 814 case Attribute::OptForFuzzing: 815 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 816 case Attribute::OptimizeForSize: 817 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 818 case Attribute::OptimizeNone: 819 return bitc::ATTR_KIND_OPTIMIZE_NONE; 820 case Attribute::ReadNone: 821 return bitc::ATTR_KIND_READ_NONE; 822 case Attribute::ReadOnly: 823 return bitc::ATTR_KIND_READ_ONLY; 824 case Attribute::Returned: 825 return bitc::ATTR_KIND_RETURNED; 826 case Attribute::ReturnsTwice: 827 return bitc::ATTR_KIND_RETURNS_TWICE; 828 case Attribute::SExt: 829 return bitc::ATTR_KIND_S_EXT; 830 case Attribute::Speculatable: 831 return bitc::ATTR_KIND_SPECULATABLE; 832 case Attribute::StackAlignment: 833 return bitc::ATTR_KIND_STACK_ALIGNMENT; 834 case Attribute::StackProtect: 835 return bitc::ATTR_KIND_STACK_PROTECT; 836 case Attribute::StackProtectReq: 837 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 838 case Attribute::StackProtectStrong: 839 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 840 case Attribute::SafeStack: 841 return bitc::ATTR_KIND_SAFESTACK; 842 case Attribute::ShadowCallStack: 843 return bitc::ATTR_KIND_SHADOWCALLSTACK; 844 case Attribute::StrictFP: 845 return bitc::ATTR_KIND_STRICT_FP; 846 case Attribute::StructRet: 847 return bitc::ATTR_KIND_STRUCT_RET; 848 case Attribute::SanitizeAddress: 849 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 850 case Attribute::SanitizeHWAddress: 851 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 852 case Attribute::SanitizeThread: 853 return bitc::ATTR_KIND_SANITIZE_THREAD; 854 case Attribute::SanitizeType: 855 return bitc::ATTR_KIND_SANITIZE_TYPE; 856 case Attribute::SanitizeMemory: 857 return bitc::ATTR_KIND_SANITIZE_MEMORY; 858 case Attribute::SanitizeNumericalStability: 859 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY; 860 case Attribute::SanitizeRealtime: 861 return bitc::ATTR_KIND_SANITIZE_REALTIME; 862 case Attribute::SanitizeRealtimeBlocking: 863 return bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING; 864 case Attribute::SpeculativeLoadHardening: 865 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 866 case Attribute::SwiftError: 867 return bitc::ATTR_KIND_SWIFT_ERROR; 868 case Attribute::SwiftSelf: 869 return bitc::ATTR_KIND_SWIFT_SELF; 870 case Attribute::SwiftAsync: 871 return bitc::ATTR_KIND_SWIFT_ASYNC; 872 case Attribute::UWTable: 873 return bitc::ATTR_KIND_UW_TABLE; 874 case Attribute::VScaleRange: 875 return bitc::ATTR_KIND_VSCALE_RANGE; 876 case Attribute::WillReturn: 877 return bitc::ATTR_KIND_WILLRETURN; 878 case Attribute::WriteOnly: 879 return bitc::ATTR_KIND_WRITEONLY; 880 case Attribute::ZExt: 881 return bitc::ATTR_KIND_Z_EXT; 882 case Attribute::ImmArg: 883 return bitc::ATTR_KIND_IMMARG; 884 case Attribute::SanitizeMemTag: 885 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 886 case Attribute::Preallocated: 887 return bitc::ATTR_KIND_PREALLOCATED; 888 case Attribute::NoUndef: 889 return bitc::ATTR_KIND_NOUNDEF; 890 case Attribute::ByRef: 891 return bitc::ATTR_KIND_BYREF; 892 case Attribute::MustProgress: 893 return bitc::ATTR_KIND_MUSTPROGRESS; 894 case Attribute::PresplitCoroutine: 895 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 896 case Attribute::Writable: 897 return bitc::ATTR_KIND_WRITABLE; 898 case Attribute::CoroDestroyOnlyWhenComplete: 899 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 900 case Attribute::CoroElideSafe: 901 return bitc::ATTR_KIND_CORO_ELIDE_SAFE; 902 case Attribute::DeadOnUnwind: 903 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 904 case Attribute::Range: 905 return bitc::ATTR_KIND_RANGE; 906 case Attribute::Initializes: 907 return bitc::ATTR_KIND_INITIALIZES; 908 case Attribute::NoExt: 909 return bitc::ATTR_KIND_NO_EXT; 910 case Attribute::Captures: 911 return bitc::ATTR_KIND_CAPTURES; 912 case Attribute::EndAttrKinds: 913 llvm_unreachable("Can not encode end-attribute kinds marker."); 914 case Attribute::None: 915 llvm_unreachable("Can not encode none-attribute."); 916 case Attribute::EmptyKey: 917 case Attribute::TombstoneKey: 918 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 919 } 920 921 llvm_unreachable("Trying to encode unknown attribute"); 922 } 923 924 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 925 if ((int64_t)V >= 0) 926 Vals.push_back(V << 1); 927 else 928 Vals.push_back((-V << 1) | 1); 929 } 930 931 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 932 // We have an arbitrary precision integer value to write whose 933 // bit width is > 64. However, in canonical unsigned integer 934 // format it is likely that the high bits are going to be zero. 935 // So, we only write the number of active words. 936 unsigned NumWords = A.getActiveWords(); 937 const uint64_t *RawData = A.getRawData(); 938 for (unsigned i = 0; i < NumWords; i++) 939 emitSignedInt64(Vals, RawData[i]); 940 } 941 942 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 943 const ConstantRange &CR, bool EmitBitWidth) { 944 unsigned BitWidth = CR.getBitWidth(); 945 if (EmitBitWidth) 946 Record.push_back(BitWidth); 947 if (BitWidth > 64) { 948 Record.push_back(CR.getLower().getActiveWords() | 949 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 950 emitWideAPInt(Record, CR.getLower()); 951 emitWideAPInt(Record, CR.getUpper()); 952 } else { 953 emitSignedInt64(Record, CR.getLower().getSExtValue()); 954 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 955 } 956 } 957 958 void ModuleBitcodeWriter::writeAttributeGroupTable() { 959 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 960 VE.getAttributeGroups(); 961 if (AttrGrps.empty()) return; 962 963 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 964 965 SmallVector<uint64_t, 64> Record; 966 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 967 unsigned AttrListIndex = Pair.first; 968 AttributeSet AS = Pair.second; 969 Record.push_back(VE.getAttributeGroupID(Pair)); 970 Record.push_back(AttrListIndex); 971 972 for (Attribute Attr : AS) { 973 if (Attr.isEnumAttribute()) { 974 Record.push_back(0); 975 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 976 } else if (Attr.isIntAttribute()) { 977 Record.push_back(1); 978 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 979 Record.push_back(Attr.getValueAsInt()); 980 } else if (Attr.isStringAttribute()) { 981 StringRef Kind = Attr.getKindAsString(); 982 StringRef Val = Attr.getValueAsString(); 983 984 Record.push_back(Val.empty() ? 3 : 4); 985 Record.append(Kind.begin(), Kind.end()); 986 Record.push_back(0); 987 if (!Val.empty()) { 988 Record.append(Val.begin(), Val.end()); 989 Record.push_back(0); 990 } 991 } else if (Attr.isTypeAttribute()) { 992 Type *Ty = Attr.getValueAsType(); 993 Record.push_back(Ty ? 6 : 5); 994 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 995 if (Ty) 996 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 997 } else if (Attr.isConstantRangeAttribute()) { 998 Record.push_back(7); 999 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 1000 emitConstantRange(Record, Attr.getValueAsConstantRange(), 1001 /*EmitBitWidth=*/true); 1002 } else { 1003 assert(Attr.isConstantRangeListAttribute()); 1004 Record.push_back(8); 1005 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 1006 ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList(); 1007 Record.push_back(Val.size()); 1008 Record.push_back(Val[0].getBitWidth()); 1009 for (auto &CR : Val) 1010 emitConstantRange(Record, CR, /*EmitBitWidth=*/false); 1011 } 1012 } 1013 1014 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 1015 Record.clear(); 1016 } 1017 1018 Stream.ExitBlock(); 1019 } 1020 1021 void ModuleBitcodeWriter::writeAttributeTable() { 1022 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 1023 if (Attrs.empty()) return; 1024 1025 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 1026 1027 SmallVector<uint64_t, 64> Record; 1028 for (const AttributeList &AL : Attrs) { 1029 for (unsigned i : AL.indexes()) { 1030 AttributeSet AS = AL.getAttributes(i); 1031 if (AS.hasAttributes()) 1032 Record.push_back(VE.getAttributeGroupID({i, AS})); 1033 } 1034 1035 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 1036 Record.clear(); 1037 } 1038 1039 Stream.ExitBlock(); 1040 } 1041 1042 /// WriteTypeTable - Write out the type table for a module. 1043 void ModuleBitcodeWriter::writeTypeTable() { 1044 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 1045 1046 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 1047 SmallVector<uint64_t, 64> TypeVals; 1048 1049 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 1050 1051 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 1052 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1053 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 1054 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 1055 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1056 1057 // Abbrev for TYPE_CODE_FUNCTION. 1058 Abbv = std::make_shared<BitCodeAbbrev>(); 1059 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1063 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1064 1065 // Abbrev for TYPE_CODE_STRUCT_ANON. 1066 Abbv = std::make_shared<BitCodeAbbrev>(); 1067 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1071 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1072 1073 // Abbrev for TYPE_CODE_STRUCT_NAME. 1074 Abbv = std::make_shared<BitCodeAbbrev>(); 1075 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1078 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1079 1080 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1081 Abbv = std::make_shared<BitCodeAbbrev>(); 1082 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1086 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1087 1088 // Abbrev for TYPE_CODE_ARRAY. 1089 Abbv = std::make_shared<BitCodeAbbrev>(); 1090 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1093 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1094 1095 // Emit an entry count so the reader can reserve space. 1096 TypeVals.push_back(TypeList.size()); 1097 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1098 TypeVals.clear(); 1099 1100 // Loop over all of the types, emitting each in turn. 1101 for (Type *T : TypeList) { 1102 int AbbrevToUse = 0; 1103 unsigned Code = 0; 1104 1105 switch (T->getTypeID()) { 1106 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1107 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1108 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1109 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1110 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1111 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1112 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1113 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1114 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1115 case Type::MetadataTyID: 1116 Code = bitc::TYPE_CODE_METADATA; 1117 break; 1118 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1119 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1120 case Type::IntegerTyID: 1121 // INTEGER: [width] 1122 Code = bitc::TYPE_CODE_INTEGER; 1123 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1124 break; 1125 case Type::PointerTyID: { 1126 PointerType *PTy = cast<PointerType>(T); 1127 unsigned AddressSpace = PTy->getAddressSpace(); 1128 // OPAQUE_POINTER: [address space] 1129 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1130 TypeVals.push_back(AddressSpace); 1131 if (AddressSpace == 0) 1132 AbbrevToUse = OpaquePtrAbbrev; 1133 break; 1134 } 1135 case Type::FunctionTyID: { 1136 FunctionType *FT = cast<FunctionType>(T); 1137 // FUNCTION: [isvararg, retty, paramty x N] 1138 Code = bitc::TYPE_CODE_FUNCTION; 1139 TypeVals.push_back(FT->isVarArg()); 1140 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1141 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1142 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1143 AbbrevToUse = FunctionAbbrev; 1144 break; 1145 } 1146 case Type::StructTyID: { 1147 StructType *ST = cast<StructType>(T); 1148 // STRUCT: [ispacked, eltty x N] 1149 TypeVals.push_back(ST->isPacked()); 1150 // Output all of the element types. 1151 for (Type *ET : ST->elements()) 1152 TypeVals.push_back(VE.getTypeID(ET)); 1153 1154 if (ST->isLiteral()) { 1155 Code = bitc::TYPE_CODE_STRUCT_ANON; 1156 AbbrevToUse = StructAnonAbbrev; 1157 } else { 1158 if (ST->isOpaque()) { 1159 Code = bitc::TYPE_CODE_OPAQUE; 1160 } else { 1161 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1162 AbbrevToUse = StructNamedAbbrev; 1163 } 1164 1165 // Emit the name if it is present. 1166 if (!ST->getName().empty()) 1167 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1168 StructNameAbbrev); 1169 } 1170 break; 1171 } 1172 case Type::ArrayTyID: { 1173 ArrayType *AT = cast<ArrayType>(T); 1174 // ARRAY: [numelts, eltty] 1175 Code = bitc::TYPE_CODE_ARRAY; 1176 TypeVals.push_back(AT->getNumElements()); 1177 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1178 AbbrevToUse = ArrayAbbrev; 1179 break; 1180 } 1181 case Type::FixedVectorTyID: 1182 case Type::ScalableVectorTyID: { 1183 VectorType *VT = cast<VectorType>(T); 1184 // VECTOR [numelts, eltty] or 1185 // [numelts, eltty, scalable] 1186 Code = bitc::TYPE_CODE_VECTOR; 1187 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1188 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1189 if (isa<ScalableVectorType>(VT)) 1190 TypeVals.push_back(true); 1191 break; 1192 } 1193 case Type::TargetExtTyID: { 1194 TargetExtType *TET = cast<TargetExtType>(T); 1195 Code = bitc::TYPE_CODE_TARGET_TYPE; 1196 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1197 StructNameAbbrev); 1198 TypeVals.push_back(TET->getNumTypeParameters()); 1199 for (Type *InnerTy : TET->type_params()) 1200 TypeVals.push_back(VE.getTypeID(InnerTy)); 1201 for (unsigned IntParam : TET->int_params()) 1202 TypeVals.push_back(IntParam); 1203 break; 1204 } 1205 case Type::TypedPointerTyID: 1206 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1207 } 1208 1209 // Emit the finished record. 1210 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1211 TypeVals.clear(); 1212 } 1213 1214 Stream.ExitBlock(); 1215 } 1216 1217 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1218 switch (Linkage) { 1219 case GlobalValue::ExternalLinkage: 1220 return 0; 1221 case GlobalValue::WeakAnyLinkage: 1222 return 16; 1223 case GlobalValue::AppendingLinkage: 1224 return 2; 1225 case GlobalValue::InternalLinkage: 1226 return 3; 1227 case GlobalValue::LinkOnceAnyLinkage: 1228 return 18; 1229 case GlobalValue::ExternalWeakLinkage: 1230 return 7; 1231 case GlobalValue::CommonLinkage: 1232 return 8; 1233 case GlobalValue::PrivateLinkage: 1234 return 9; 1235 case GlobalValue::WeakODRLinkage: 1236 return 17; 1237 case GlobalValue::LinkOnceODRLinkage: 1238 return 19; 1239 case GlobalValue::AvailableExternallyLinkage: 1240 return 12; 1241 } 1242 llvm_unreachable("Invalid linkage"); 1243 } 1244 1245 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1246 return getEncodedLinkage(GV.getLinkage()); 1247 } 1248 1249 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1250 uint64_t RawFlags = 0; 1251 RawFlags |= Flags.ReadNone; 1252 RawFlags |= (Flags.ReadOnly << 1); 1253 RawFlags |= (Flags.NoRecurse << 2); 1254 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1255 RawFlags |= (Flags.NoInline << 4); 1256 RawFlags |= (Flags.AlwaysInline << 5); 1257 RawFlags |= (Flags.NoUnwind << 6); 1258 RawFlags |= (Flags.MayThrow << 7); 1259 RawFlags |= (Flags.HasUnknownCall << 8); 1260 RawFlags |= (Flags.MustBeUnreachable << 9); 1261 return RawFlags; 1262 } 1263 1264 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1265 // in BitcodeReader.cpp. 1266 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags, 1267 bool ImportAsDecl = false) { 1268 uint64_t RawFlags = 0; 1269 1270 RawFlags |= Flags.NotEligibleToImport; // bool 1271 RawFlags |= (Flags.Live << 1); 1272 RawFlags |= (Flags.DSOLocal << 2); 1273 RawFlags |= (Flags.CanAutoHide << 3); 1274 1275 // Linkage don't need to be remapped at that time for the summary. Any future 1276 // change to the getEncodedLinkage() function will need to be taken into 1277 // account here as well. 1278 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1279 1280 RawFlags |= (Flags.Visibility << 8); // 2 bits 1281 1282 unsigned ImportType = Flags.ImportType | ImportAsDecl; 1283 RawFlags |= (ImportType << 10); // 1 bit 1284 1285 return RawFlags; 1286 } 1287 1288 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1289 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1290 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1291 return RawFlags; 1292 } 1293 1294 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1295 uint64_t RawFlags = 0; 1296 1297 RawFlags |= CI.Hotness; // 3 bits 1298 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1299 1300 return RawFlags; 1301 } 1302 1303 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1304 uint64_t RawFlags = 0; 1305 1306 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1307 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1308 1309 return RawFlags; 1310 } 1311 1312 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1313 switch (GV.getVisibility()) { 1314 case GlobalValue::DefaultVisibility: return 0; 1315 case GlobalValue::HiddenVisibility: return 1; 1316 case GlobalValue::ProtectedVisibility: return 2; 1317 } 1318 llvm_unreachable("Invalid visibility"); 1319 } 1320 1321 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1322 switch (GV.getDLLStorageClass()) { 1323 case GlobalValue::DefaultStorageClass: return 0; 1324 case GlobalValue::DLLImportStorageClass: return 1; 1325 case GlobalValue::DLLExportStorageClass: return 2; 1326 } 1327 llvm_unreachable("Invalid DLL storage class"); 1328 } 1329 1330 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1331 switch (GV.getThreadLocalMode()) { 1332 case GlobalVariable::NotThreadLocal: return 0; 1333 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1334 case GlobalVariable::LocalDynamicTLSModel: return 2; 1335 case GlobalVariable::InitialExecTLSModel: return 3; 1336 case GlobalVariable::LocalExecTLSModel: return 4; 1337 } 1338 llvm_unreachable("Invalid TLS model"); 1339 } 1340 1341 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1342 switch (C.getSelectionKind()) { 1343 case Comdat::Any: 1344 return bitc::COMDAT_SELECTION_KIND_ANY; 1345 case Comdat::ExactMatch: 1346 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1347 case Comdat::Largest: 1348 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1349 case Comdat::NoDeduplicate: 1350 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1351 case Comdat::SameSize: 1352 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1353 } 1354 llvm_unreachable("Invalid selection kind"); 1355 } 1356 1357 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1358 switch (GV.getUnnamedAddr()) { 1359 case GlobalValue::UnnamedAddr::None: return 0; 1360 case GlobalValue::UnnamedAddr::Local: return 2; 1361 case GlobalValue::UnnamedAddr::Global: return 1; 1362 } 1363 llvm_unreachable("Invalid unnamed_addr"); 1364 } 1365 1366 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1367 if (GenerateHash) 1368 Hasher.update(Str); 1369 return StrtabBuilder.add(Str); 1370 } 1371 1372 void ModuleBitcodeWriter::writeComdats() { 1373 SmallVector<unsigned, 64> Vals; 1374 for (const Comdat *C : VE.getComdats()) { 1375 // COMDAT: [strtab offset, strtab size, selection_kind] 1376 Vals.push_back(addToStrtab(C->getName())); 1377 Vals.push_back(C->getName().size()); 1378 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1379 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1380 Vals.clear(); 1381 } 1382 } 1383 1384 /// Write a record that will eventually hold the word offset of the 1385 /// module-level VST. For now the offset is 0, which will be backpatched 1386 /// after the real VST is written. Saves the bit offset to backpatch. 1387 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1388 // Write a placeholder value in for the offset of the real VST, 1389 // which is written after the function blocks so that it can include 1390 // the offset of each function. The placeholder offset will be 1391 // updated when the real VST is written. 1392 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1393 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1394 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1395 // hold the real VST offset. Must use fixed instead of VBR as we don't 1396 // know how many VBR chunks to reserve ahead of time. 1397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1398 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1399 1400 // Emit the placeholder 1401 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1402 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1403 1404 // Compute and save the bit offset to the placeholder, which will be 1405 // patched when the real VST is written. We can simply subtract the 32-bit 1406 // fixed size from the current bit number to get the location to backpatch. 1407 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1408 } 1409 1410 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1411 1412 /// Determine the encoding to use for the given string name and length. 1413 static StringEncoding getStringEncoding(StringRef Str) { 1414 bool isChar6 = true; 1415 for (char C : Str) { 1416 if (isChar6) 1417 isChar6 = BitCodeAbbrevOp::isChar6(C); 1418 if ((unsigned char)C & 128) 1419 // don't bother scanning the rest. 1420 return SE_Fixed8; 1421 } 1422 if (isChar6) 1423 return SE_Char6; 1424 return SE_Fixed7; 1425 } 1426 1427 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1428 "Sanitizer Metadata is too large for naive serialization."); 1429 static unsigned 1430 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1431 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1432 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1433 } 1434 1435 /// Emit top-level description of module, including target triple, inline asm, 1436 /// descriptors for global variables, and function prototype info. 1437 /// Returns the bit offset to backpatch with the location of the real VST. 1438 void ModuleBitcodeWriter::writeModuleInfo() { 1439 // Emit various pieces of data attached to a module. 1440 if (!M.getTargetTriple().empty()) 1441 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1442 0 /*TODO*/); 1443 const std::string &DL = M.getDataLayoutStr(); 1444 if (!DL.empty()) 1445 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1446 if (!M.getModuleInlineAsm().empty()) 1447 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1448 0 /*TODO*/); 1449 1450 // Emit information about sections and GC, computing how many there are. Also 1451 // compute the maximum alignment value. 1452 std::map<std::string, unsigned> SectionMap; 1453 std::map<std::string, unsigned> GCMap; 1454 MaybeAlign MaxAlignment; 1455 unsigned MaxGlobalType = 0; 1456 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1457 if (A) 1458 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1459 }; 1460 for (const GlobalVariable &GV : M.globals()) { 1461 UpdateMaxAlignment(GV.getAlign()); 1462 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1463 if (GV.hasSection()) { 1464 // Give section names unique ID's. 1465 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1466 if (!Entry) { 1467 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1468 0 /*TODO*/); 1469 Entry = SectionMap.size(); 1470 } 1471 } 1472 } 1473 for (const Function &F : M) { 1474 UpdateMaxAlignment(F.getAlign()); 1475 if (F.hasSection()) { 1476 // Give section names unique ID's. 1477 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1478 if (!Entry) { 1479 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1480 0 /*TODO*/); 1481 Entry = SectionMap.size(); 1482 } 1483 } 1484 if (F.hasGC()) { 1485 // Same for GC names. 1486 unsigned &Entry = GCMap[F.getGC()]; 1487 if (!Entry) { 1488 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1489 0 /*TODO*/); 1490 Entry = GCMap.size(); 1491 } 1492 } 1493 } 1494 1495 // Emit abbrev for globals, now that we know # sections and max alignment. 1496 unsigned SimpleGVarAbbrev = 0; 1497 if (!M.global_empty()) { 1498 // Add an abbrev for common globals with no visibility or thread localness. 1499 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1500 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1504 Log2_32_Ceil(MaxGlobalType+1))); 1505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1506 //| explicitType << 1 1507 //| constant 1508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1510 if (!MaxAlignment) // Alignment. 1511 Abbv->Add(BitCodeAbbrevOp(0)); 1512 else { 1513 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1515 Log2_32_Ceil(MaxEncAlignment+1))); 1516 } 1517 if (SectionMap.empty()) // Section. 1518 Abbv->Add(BitCodeAbbrevOp(0)); 1519 else 1520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1521 Log2_32_Ceil(SectionMap.size()+1))); 1522 // Don't bother emitting vis + thread local. 1523 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1524 } 1525 1526 SmallVector<unsigned, 64> Vals; 1527 // Emit the module's source file name. 1528 { 1529 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1530 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1531 if (Bits == SE_Char6) 1532 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1533 else if (Bits == SE_Fixed7) 1534 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1535 1536 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1537 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1538 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1540 Abbv->Add(AbbrevOpToUse); 1541 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1542 1543 for (const auto P : M.getSourceFileName()) 1544 Vals.push_back((unsigned char)P); 1545 1546 // Emit the finished record. 1547 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1548 Vals.clear(); 1549 } 1550 1551 // Emit the global variable information. 1552 for (const GlobalVariable &GV : M.globals()) { 1553 unsigned AbbrevToUse = 0; 1554 1555 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1556 // linkage, alignment, section, visibility, threadlocal, 1557 // unnamed_addr, externally_initialized, dllstorageclass, 1558 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1559 Vals.push_back(addToStrtab(GV.getName())); 1560 Vals.push_back(GV.getName().size()); 1561 Vals.push_back(VE.getTypeID(GV.getValueType())); 1562 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1563 Vals.push_back(GV.isDeclaration() ? 0 : 1564 (VE.getValueID(GV.getInitializer()) + 1)); 1565 Vals.push_back(getEncodedLinkage(GV)); 1566 Vals.push_back(getEncodedAlign(GV.getAlign())); 1567 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1568 : 0); 1569 if (GV.isThreadLocal() || 1570 GV.getVisibility() != GlobalValue::DefaultVisibility || 1571 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1572 GV.isExternallyInitialized() || 1573 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1574 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1575 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1576 Vals.push_back(getEncodedVisibility(GV)); 1577 Vals.push_back(getEncodedThreadLocalMode(GV)); 1578 Vals.push_back(getEncodedUnnamedAddr(GV)); 1579 Vals.push_back(GV.isExternallyInitialized()); 1580 Vals.push_back(getEncodedDLLStorageClass(GV)); 1581 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1582 1583 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1584 Vals.push_back(VE.getAttributeListID(AL)); 1585 1586 Vals.push_back(GV.isDSOLocal()); 1587 Vals.push_back(addToStrtab(GV.getPartition())); 1588 Vals.push_back(GV.getPartition().size()); 1589 1590 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1591 GV.getSanitizerMetadata()) 1592 : 0)); 1593 Vals.push_back(GV.getCodeModelRaw()); 1594 } else { 1595 AbbrevToUse = SimpleGVarAbbrev; 1596 } 1597 1598 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1599 Vals.clear(); 1600 } 1601 1602 // Emit the function proto information. 1603 for (const Function &F : M) { 1604 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1605 // linkage, paramattrs, alignment, section, visibility, gc, 1606 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1607 // prefixdata, personalityfn, DSO_Local, addrspace] 1608 Vals.push_back(addToStrtab(F.getName())); 1609 Vals.push_back(F.getName().size()); 1610 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1611 Vals.push_back(F.getCallingConv()); 1612 Vals.push_back(F.isDeclaration()); 1613 Vals.push_back(getEncodedLinkage(F)); 1614 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1615 Vals.push_back(getEncodedAlign(F.getAlign())); 1616 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1617 : 0); 1618 Vals.push_back(getEncodedVisibility(F)); 1619 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1620 Vals.push_back(getEncodedUnnamedAddr(F)); 1621 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1622 : 0); 1623 Vals.push_back(getEncodedDLLStorageClass(F)); 1624 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1625 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1626 : 0); 1627 Vals.push_back( 1628 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1629 1630 Vals.push_back(F.isDSOLocal()); 1631 Vals.push_back(F.getAddressSpace()); 1632 Vals.push_back(addToStrtab(F.getPartition())); 1633 Vals.push_back(F.getPartition().size()); 1634 1635 unsigned AbbrevToUse = 0; 1636 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1637 Vals.clear(); 1638 } 1639 1640 // Emit the alias information. 1641 for (const GlobalAlias &A : M.aliases()) { 1642 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1643 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1644 // DSO_Local] 1645 Vals.push_back(addToStrtab(A.getName())); 1646 Vals.push_back(A.getName().size()); 1647 Vals.push_back(VE.getTypeID(A.getValueType())); 1648 Vals.push_back(A.getType()->getAddressSpace()); 1649 Vals.push_back(VE.getValueID(A.getAliasee())); 1650 Vals.push_back(getEncodedLinkage(A)); 1651 Vals.push_back(getEncodedVisibility(A)); 1652 Vals.push_back(getEncodedDLLStorageClass(A)); 1653 Vals.push_back(getEncodedThreadLocalMode(A)); 1654 Vals.push_back(getEncodedUnnamedAddr(A)); 1655 Vals.push_back(A.isDSOLocal()); 1656 Vals.push_back(addToStrtab(A.getPartition())); 1657 Vals.push_back(A.getPartition().size()); 1658 1659 unsigned AbbrevToUse = 0; 1660 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1661 Vals.clear(); 1662 } 1663 1664 // Emit the ifunc information. 1665 for (const GlobalIFunc &I : M.ifuncs()) { 1666 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1667 // val#, linkage, visibility, DSO_Local] 1668 Vals.push_back(addToStrtab(I.getName())); 1669 Vals.push_back(I.getName().size()); 1670 Vals.push_back(VE.getTypeID(I.getValueType())); 1671 Vals.push_back(I.getType()->getAddressSpace()); 1672 Vals.push_back(VE.getValueID(I.getResolver())); 1673 Vals.push_back(getEncodedLinkage(I)); 1674 Vals.push_back(getEncodedVisibility(I)); 1675 Vals.push_back(I.isDSOLocal()); 1676 Vals.push_back(addToStrtab(I.getPartition())); 1677 Vals.push_back(I.getPartition().size()); 1678 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1679 Vals.clear(); 1680 } 1681 1682 writeValueSymbolTableForwardDecl(); 1683 } 1684 1685 static uint64_t getOptimizationFlags(const Value *V) { 1686 uint64_t Flags = 0; 1687 1688 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1689 if (OBO->hasNoSignedWrap()) 1690 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1691 if (OBO->hasNoUnsignedWrap()) 1692 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1693 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1694 if (PEO->isExact()) 1695 Flags |= 1 << bitc::PEO_EXACT; 1696 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1697 if (PDI->isDisjoint()) 1698 Flags |= 1 << bitc::PDI_DISJOINT; 1699 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1700 if (FPMO->hasAllowReassoc()) 1701 Flags |= bitc::AllowReassoc; 1702 if (FPMO->hasNoNaNs()) 1703 Flags |= bitc::NoNaNs; 1704 if (FPMO->hasNoInfs()) 1705 Flags |= bitc::NoInfs; 1706 if (FPMO->hasNoSignedZeros()) 1707 Flags |= bitc::NoSignedZeros; 1708 if (FPMO->hasAllowReciprocal()) 1709 Flags |= bitc::AllowReciprocal; 1710 if (FPMO->hasAllowContract()) 1711 Flags |= bitc::AllowContract; 1712 if (FPMO->hasApproxFunc()) 1713 Flags |= bitc::ApproxFunc; 1714 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1715 if (NNI->hasNonNeg()) 1716 Flags |= 1 << bitc::PNNI_NON_NEG; 1717 } else if (const auto *TI = dyn_cast<TruncInst>(V)) { 1718 if (TI->hasNoSignedWrap()) 1719 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; 1720 if (TI->hasNoUnsignedWrap()) 1721 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; 1722 } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) { 1723 if (GEP->isInBounds()) 1724 Flags |= 1 << bitc::GEP_INBOUNDS; 1725 if (GEP->hasNoUnsignedSignedWrap()) 1726 Flags |= 1 << bitc::GEP_NUSW; 1727 if (GEP->hasNoUnsignedWrap()) 1728 Flags |= 1 << bitc::GEP_NUW; 1729 } else if (const auto *ICmp = dyn_cast<ICmpInst>(V)) { 1730 if (ICmp->hasSameSign()) 1731 Flags |= 1 << bitc::ICMP_SAME_SIGN; 1732 } 1733 1734 return Flags; 1735 } 1736 1737 void ModuleBitcodeWriter::writeValueAsMetadata( 1738 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1739 // Mimic an MDNode with a value as one operand. 1740 Value *V = MD->getValue(); 1741 Record.push_back(VE.getTypeID(V->getType())); 1742 Record.push_back(VE.getValueID(V)); 1743 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1744 Record.clear(); 1745 } 1746 1747 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1748 SmallVectorImpl<uint64_t> &Record, 1749 unsigned Abbrev) { 1750 for (const MDOperand &MDO : N->operands()) { 1751 Metadata *MD = MDO; 1752 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1753 "Unexpected function-local metadata"); 1754 Record.push_back(VE.getMetadataOrNullID(MD)); 1755 } 1756 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1757 : bitc::METADATA_NODE, 1758 Record, Abbrev); 1759 Record.clear(); 1760 } 1761 1762 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1763 // Assume the column is usually under 128, and always output the inlined-at 1764 // location (it's never more expensive than building an array size 1). 1765 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1766 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1773 return Stream.EmitAbbrev(std::move(Abbv)); 1774 } 1775 1776 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1777 SmallVectorImpl<uint64_t> &Record, 1778 unsigned &Abbrev) { 1779 if (!Abbrev) 1780 Abbrev = createDILocationAbbrev(); 1781 1782 Record.push_back(N->isDistinct()); 1783 Record.push_back(N->getLine()); 1784 Record.push_back(N->getColumn()); 1785 Record.push_back(VE.getMetadataID(N->getScope())); 1786 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1787 Record.push_back(N->isImplicitCode()); 1788 1789 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1790 Record.clear(); 1791 } 1792 1793 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1794 // Assume the column is usually under 128, and always output the inlined-at 1795 // location (it's never more expensive than building an array size 1). 1796 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1797 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1804 return Stream.EmitAbbrev(std::move(Abbv)); 1805 } 1806 1807 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1808 SmallVectorImpl<uint64_t> &Record, 1809 unsigned &Abbrev) { 1810 if (!Abbrev) 1811 Abbrev = createGenericDINodeAbbrev(); 1812 1813 Record.push_back(N->isDistinct()); 1814 Record.push_back(N->getTag()); 1815 Record.push_back(0); // Per-tag version field; unused for now. 1816 1817 for (auto &I : N->operands()) 1818 Record.push_back(VE.getMetadataOrNullID(I)); 1819 1820 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1821 Record.clear(); 1822 } 1823 1824 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1825 SmallVectorImpl<uint64_t> &Record, 1826 unsigned Abbrev) { 1827 const uint64_t Version = 2 << 1; 1828 Record.push_back((uint64_t)N->isDistinct() | Version); 1829 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1830 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1831 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1832 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1833 1834 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1835 Record.clear(); 1836 } 1837 1838 void ModuleBitcodeWriter::writeDIGenericSubrange( 1839 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1840 unsigned Abbrev) { 1841 Record.push_back((uint64_t)N->isDistinct()); 1842 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1843 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1844 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1845 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1846 1847 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1848 Record.clear(); 1849 } 1850 1851 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1852 SmallVectorImpl<uint64_t> &Record, 1853 unsigned Abbrev) { 1854 const uint64_t IsBigInt = 1 << 2; 1855 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1856 Record.push_back(N->getValue().getBitWidth()); 1857 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1858 emitWideAPInt(Record, N->getValue()); 1859 1860 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1861 Record.clear(); 1862 } 1863 1864 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1865 SmallVectorImpl<uint64_t> &Record, 1866 unsigned Abbrev) { 1867 Record.push_back(N->isDistinct()); 1868 Record.push_back(N->getTag()); 1869 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1870 Record.push_back(N->getSizeInBits()); 1871 Record.push_back(N->getAlignInBits()); 1872 Record.push_back(N->getEncoding()); 1873 Record.push_back(N->getFlags()); 1874 Record.push_back(N->getNumExtraInhabitants()); 1875 1876 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1877 Record.clear(); 1878 } 1879 1880 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1881 SmallVectorImpl<uint64_t> &Record, 1882 unsigned Abbrev) { 1883 Record.push_back(N->isDistinct()); 1884 Record.push_back(N->getTag()); 1885 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1886 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1887 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1889 Record.push_back(N->getSizeInBits()); 1890 Record.push_back(N->getAlignInBits()); 1891 Record.push_back(N->getEncoding()); 1892 1893 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1894 Record.clear(); 1895 } 1896 1897 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1898 SmallVectorImpl<uint64_t> &Record, 1899 unsigned Abbrev) { 1900 Record.push_back(N->isDistinct()); 1901 Record.push_back(N->getTag()); 1902 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1903 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1904 Record.push_back(N->getLine()); 1905 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1906 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1907 Record.push_back(N->getSizeInBits()); 1908 Record.push_back(N->getAlignInBits()); 1909 Record.push_back(N->getOffsetInBits()); 1910 Record.push_back(N->getFlags()); 1911 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1912 1913 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1914 // that there is no DWARF address space associated with DIDerivedType. 1915 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1916 Record.push_back(*DWARFAddressSpace + 1); 1917 else 1918 Record.push_back(0); 1919 1920 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1921 1922 if (auto PtrAuthData = N->getPtrAuthData()) 1923 Record.push_back(PtrAuthData->RawData); 1924 else 1925 Record.push_back(0); 1926 1927 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1928 Record.clear(); 1929 } 1930 1931 void ModuleBitcodeWriter::writeDICompositeType( 1932 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1933 unsigned Abbrev) { 1934 const unsigned IsNotUsedInOldTypeRef = 0x2; 1935 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1936 Record.push_back(N->getTag()); 1937 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1938 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1939 Record.push_back(N->getLine()); 1940 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1941 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1942 Record.push_back(N->getSizeInBits()); 1943 Record.push_back(N->getAlignInBits()); 1944 Record.push_back(N->getOffsetInBits()); 1945 Record.push_back(N->getFlags()); 1946 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1947 Record.push_back(N->getRuntimeLang()); 1948 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1949 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1950 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1951 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1952 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1953 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1954 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1955 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1956 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1957 Record.push_back(N->getNumExtraInhabitants()); 1958 Record.push_back(VE.getMetadataOrNullID(N->getRawSpecification())); 1959 1960 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1961 Record.clear(); 1962 } 1963 1964 void ModuleBitcodeWriter::writeDISubroutineType( 1965 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1966 unsigned Abbrev) { 1967 const unsigned HasNoOldTypeRefs = 0x2; 1968 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1969 Record.push_back(N->getFlags()); 1970 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1971 Record.push_back(N->getCC()); 1972 1973 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1974 Record.clear(); 1975 } 1976 1977 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1978 SmallVectorImpl<uint64_t> &Record, 1979 unsigned Abbrev) { 1980 Record.push_back(N->isDistinct()); 1981 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1982 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1983 if (N->getRawChecksum()) { 1984 Record.push_back(N->getRawChecksum()->Kind); 1985 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1986 } else { 1987 // Maintain backwards compatibility with the old internal representation of 1988 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1989 Record.push_back(0); 1990 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1991 } 1992 auto Source = N->getRawSource(); 1993 if (Source) 1994 Record.push_back(VE.getMetadataOrNullID(Source)); 1995 1996 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1997 Record.clear(); 1998 } 1999 2000 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 2001 SmallVectorImpl<uint64_t> &Record, 2002 unsigned Abbrev) { 2003 assert(N->isDistinct() && "Expected distinct compile units"); 2004 Record.push_back(/* IsDistinct */ true); 2005 Record.push_back(N->getSourceLanguage()); 2006 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2007 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 2008 Record.push_back(N->isOptimized()); 2009 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 2010 Record.push_back(N->getRuntimeVersion()); 2011 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 2012 Record.push_back(N->getEmissionKind()); 2013 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 2014 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 2015 Record.push_back(/* subprograms */ 0); 2016 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 2017 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 2018 Record.push_back(N->getDWOId()); 2019 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 2020 Record.push_back(N->getSplitDebugInlining()); 2021 Record.push_back(N->getDebugInfoForProfiling()); 2022 Record.push_back((unsigned)N->getNameTableKind()); 2023 Record.push_back(N->getRangesBaseAddress()); 2024 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 2025 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 2026 2027 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 2028 Record.clear(); 2029 } 2030 2031 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 2032 SmallVectorImpl<uint64_t> &Record, 2033 unsigned Abbrev) { 2034 const uint64_t HasUnitFlag = 1 << 1; 2035 const uint64_t HasSPFlagsFlag = 1 << 2; 2036 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 2037 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2038 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2039 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2040 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2041 Record.push_back(N->getLine()); 2042 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2043 Record.push_back(N->getScopeLine()); 2044 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 2045 Record.push_back(N->getSPFlags()); 2046 Record.push_back(N->getVirtualIndex()); 2047 Record.push_back(N->getFlags()); 2048 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 2049 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 2050 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 2051 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 2052 Record.push_back(N->getThisAdjustment()); 2053 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 2054 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2055 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 2056 2057 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 2058 Record.clear(); 2059 } 2060 2061 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 2062 SmallVectorImpl<uint64_t> &Record, 2063 unsigned Abbrev) { 2064 Record.push_back(N->isDistinct()); 2065 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2066 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2067 Record.push_back(N->getLine()); 2068 Record.push_back(N->getColumn()); 2069 2070 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 2071 Record.clear(); 2072 } 2073 2074 void ModuleBitcodeWriter::writeDILexicalBlockFile( 2075 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 2076 unsigned Abbrev) { 2077 Record.push_back(N->isDistinct()); 2078 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2079 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2080 Record.push_back(N->getDiscriminator()); 2081 2082 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 2083 Record.clear(); 2084 } 2085 2086 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 2087 SmallVectorImpl<uint64_t> &Record, 2088 unsigned Abbrev) { 2089 Record.push_back(N->isDistinct()); 2090 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2091 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2092 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2093 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2094 Record.push_back(N->getLineNo()); 2095 2096 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2097 Record.clear(); 2098 } 2099 2100 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2101 SmallVectorImpl<uint64_t> &Record, 2102 unsigned Abbrev) { 2103 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2104 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2105 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2106 2107 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2108 Record.clear(); 2109 } 2110 2111 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2112 SmallVectorImpl<uint64_t> &Record, 2113 unsigned Abbrev) { 2114 Record.push_back(N->isDistinct()); 2115 Record.push_back(N->getMacinfoType()); 2116 Record.push_back(N->getLine()); 2117 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2118 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2119 2120 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2121 Record.clear(); 2122 } 2123 2124 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2125 SmallVectorImpl<uint64_t> &Record, 2126 unsigned Abbrev) { 2127 Record.push_back(N->isDistinct()); 2128 Record.push_back(N->getMacinfoType()); 2129 Record.push_back(N->getLine()); 2130 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2131 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2132 2133 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2134 Record.clear(); 2135 } 2136 2137 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2138 SmallVectorImpl<uint64_t> &Record) { 2139 Record.reserve(N->getArgs().size()); 2140 for (ValueAsMetadata *MD : N->getArgs()) 2141 Record.push_back(VE.getMetadataID(MD)); 2142 2143 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2144 Record.clear(); 2145 } 2146 2147 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2148 SmallVectorImpl<uint64_t> &Record, 2149 unsigned Abbrev) { 2150 Record.push_back(N->isDistinct()); 2151 for (auto &I : N->operands()) 2152 Record.push_back(VE.getMetadataOrNullID(I)); 2153 Record.push_back(N->getLineNo()); 2154 Record.push_back(N->getIsDecl()); 2155 2156 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2157 Record.clear(); 2158 } 2159 2160 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2161 SmallVectorImpl<uint64_t> &Record, 2162 unsigned Abbrev) { 2163 // There are no arguments for this metadata type. 2164 Record.push_back(N->isDistinct()); 2165 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2166 Record.clear(); 2167 } 2168 2169 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2170 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2171 unsigned Abbrev) { 2172 Record.push_back(N->isDistinct()); 2173 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2174 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2175 Record.push_back(N->isDefault()); 2176 2177 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2178 Record.clear(); 2179 } 2180 2181 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2182 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2183 unsigned Abbrev) { 2184 Record.push_back(N->isDistinct()); 2185 Record.push_back(N->getTag()); 2186 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2187 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2188 Record.push_back(N->isDefault()); 2189 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2190 2191 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2192 Record.clear(); 2193 } 2194 2195 void ModuleBitcodeWriter::writeDIGlobalVariable( 2196 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2197 unsigned Abbrev) { 2198 const uint64_t Version = 2 << 1; 2199 Record.push_back((uint64_t)N->isDistinct() | Version); 2200 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2201 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2202 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2203 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2204 Record.push_back(N->getLine()); 2205 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2206 Record.push_back(N->isLocalToUnit()); 2207 Record.push_back(N->isDefinition()); 2208 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2209 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2210 Record.push_back(N->getAlignInBits()); 2211 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2212 2213 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2214 Record.clear(); 2215 } 2216 2217 void ModuleBitcodeWriter::writeDILocalVariable( 2218 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2219 unsigned Abbrev) { 2220 // In order to support all possible bitcode formats in BitcodeReader we need 2221 // to distinguish the following cases: 2222 // 1) Record has no artificial tag (Record[1]), 2223 // has no obsolete inlinedAt field (Record[9]). 2224 // In this case Record size will be 8, HasAlignment flag is false. 2225 // 2) Record has artificial tag (Record[1]), 2226 // has no obsolete inlignedAt field (Record[9]). 2227 // In this case Record size will be 9, HasAlignment flag is false. 2228 // 3) Record has both artificial tag (Record[1]) and 2229 // obsolete inlignedAt field (Record[9]). 2230 // In this case Record size will be 10, HasAlignment flag is false. 2231 // 4) Record has neither artificial tag, nor inlignedAt field, but 2232 // HasAlignment flag is true and Record[8] contains alignment value. 2233 const uint64_t HasAlignmentFlag = 1 << 1; 2234 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2235 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2236 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2237 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2238 Record.push_back(N->getLine()); 2239 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2240 Record.push_back(N->getArg()); 2241 Record.push_back(N->getFlags()); 2242 Record.push_back(N->getAlignInBits()); 2243 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2244 2245 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2246 Record.clear(); 2247 } 2248 2249 void ModuleBitcodeWriter::writeDILabel( 2250 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2251 unsigned Abbrev) { 2252 Record.push_back((uint64_t)N->isDistinct()); 2253 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2254 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2255 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2256 Record.push_back(N->getLine()); 2257 2258 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2259 Record.clear(); 2260 } 2261 2262 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2263 SmallVectorImpl<uint64_t> &Record, 2264 unsigned Abbrev) { 2265 Record.reserve(N->getElements().size() + 1); 2266 const uint64_t Version = 3 << 1; 2267 Record.push_back((uint64_t)N->isDistinct() | Version); 2268 Record.append(N->elements_begin(), N->elements_end()); 2269 2270 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2271 Record.clear(); 2272 } 2273 2274 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2275 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2276 unsigned Abbrev) { 2277 Record.push_back(N->isDistinct()); 2278 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2279 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2280 2281 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2282 Record.clear(); 2283 } 2284 2285 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2286 SmallVectorImpl<uint64_t> &Record, 2287 unsigned Abbrev) { 2288 Record.push_back(N->isDistinct()); 2289 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2290 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2291 Record.push_back(N->getLine()); 2292 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2293 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2294 Record.push_back(N->getAttributes()); 2295 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2296 2297 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2298 Record.clear(); 2299 } 2300 2301 void ModuleBitcodeWriter::writeDIImportedEntity( 2302 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2303 unsigned Abbrev) { 2304 Record.push_back(N->isDistinct()); 2305 Record.push_back(N->getTag()); 2306 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2307 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2308 Record.push_back(N->getLine()); 2309 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2310 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2311 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2312 2313 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2314 Record.clear(); 2315 } 2316 2317 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2318 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2319 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2322 return Stream.EmitAbbrev(std::move(Abbv)); 2323 } 2324 2325 void ModuleBitcodeWriter::writeNamedMetadata( 2326 SmallVectorImpl<uint64_t> &Record) { 2327 if (M.named_metadata_empty()) 2328 return; 2329 2330 unsigned Abbrev = createNamedMetadataAbbrev(); 2331 for (const NamedMDNode &NMD : M.named_metadata()) { 2332 // Write name. 2333 StringRef Str = NMD.getName(); 2334 Record.append(Str.bytes_begin(), Str.bytes_end()); 2335 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2336 Record.clear(); 2337 2338 // Write named metadata operands. 2339 for (const MDNode *N : NMD.operands()) 2340 Record.push_back(VE.getMetadataID(N)); 2341 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2342 Record.clear(); 2343 } 2344 } 2345 2346 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2347 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2348 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2352 return Stream.EmitAbbrev(std::move(Abbv)); 2353 } 2354 2355 /// Write out a record for MDString. 2356 /// 2357 /// All the metadata strings in a metadata block are emitted in a single 2358 /// record. The sizes and strings themselves are shoved into a blob. 2359 void ModuleBitcodeWriter::writeMetadataStrings( 2360 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2361 if (Strings.empty()) 2362 return; 2363 2364 // Start the record with the number of strings. 2365 Record.push_back(bitc::METADATA_STRINGS); 2366 Record.push_back(Strings.size()); 2367 2368 // Emit the sizes of the strings in the blob. 2369 SmallString<256> Blob; 2370 { 2371 BitstreamWriter W(Blob); 2372 for (const Metadata *MD : Strings) 2373 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2374 W.FlushToWord(); 2375 } 2376 2377 // Add the offset to the strings to the record. 2378 Record.push_back(Blob.size()); 2379 2380 // Add the strings to the blob. 2381 for (const Metadata *MD : Strings) 2382 Blob.append(cast<MDString>(MD)->getString()); 2383 2384 // Emit the final record. 2385 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2386 Record.clear(); 2387 } 2388 2389 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2390 enum MetadataAbbrev : unsigned { 2391 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2392 #include "llvm/IR/Metadata.def" 2393 LastPlusOne 2394 }; 2395 2396 void ModuleBitcodeWriter::writeMetadataRecords( 2397 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2398 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2399 if (MDs.empty()) 2400 return; 2401 2402 // Initialize MDNode abbreviations. 2403 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2404 #include "llvm/IR/Metadata.def" 2405 2406 for (const Metadata *MD : MDs) { 2407 if (IndexPos) 2408 IndexPos->push_back(Stream.GetCurrentBitNo()); 2409 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2410 assert(N->isResolved() && "Expected forward references to be resolved"); 2411 2412 switch (N->getMetadataID()) { 2413 default: 2414 llvm_unreachable("Invalid MDNode subclass"); 2415 #define HANDLE_MDNODE_LEAF(CLASS) \ 2416 case Metadata::CLASS##Kind: \ 2417 if (MDAbbrevs) \ 2418 write##CLASS(cast<CLASS>(N), Record, \ 2419 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2420 else \ 2421 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2422 continue; 2423 #include "llvm/IR/Metadata.def" 2424 } 2425 } 2426 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2427 writeDIArgList(AL, Record); 2428 continue; 2429 } 2430 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2431 } 2432 } 2433 2434 void ModuleBitcodeWriter::writeModuleMetadata() { 2435 if (!VE.hasMDs() && M.named_metadata_empty()) 2436 return; 2437 2438 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2439 SmallVector<uint64_t, 64> Record; 2440 2441 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2442 // block and load any metadata. 2443 std::vector<unsigned> MDAbbrevs; 2444 2445 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2446 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2447 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2448 createGenericDINodeAbbrev(); 2449 2450 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2451 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2454 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2455 2456 Abbv = std::make_shared<BitCodeAbbrev>(); 2457 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2460 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2461 2462 // Emit MDStrings together upfront. 2463 writeMetadataStrings(VE.getMDStrings(), Record); 2464 2465 // We only emit an index for the metadata record if we have more than a given 2466 // (naive) threshold of metadatas, otherwise it is not worth it. 2467 if (VE.getNonMDStrings().size() > IndexThreshold) { 2468 // Write a placeholder value in for the offset of the metadata index, 2469 // which is written after the records, so that it can include 2470 // the offset of each entry. The placeholder offset will be 2471 // updated after all records are emitted. 2472 uint64_t Vals[] = {0, 0}; 2473 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2474 } 2475 2476 // Compute and save the bit offset to the current position, which will be 2477 // patched when we emit the index later. We can simply subtract the 64-bit 2478 // fixed size from the current bit number to get the location to backpatch. 2479 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2480 2481 // This index will contain the bitpos for each individual record. 2482 std::vector<uint64_t> IndexPos; 2483 IndexPos.reserve(VE.getNonMDStrings().size()); 2484 2485 // Write all the records 2486 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2487 2488 if (VE.getNonMDStrings().size() > IndexThreshold) { 2489 // Now that we have emitted all the records we will emit the index. But 2490 // first 2491 // backpatch the forward reference so that the reader can skip the records 2492 // efficiently. 2493 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2494 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2495 2496 // Delta encode the index. 2497 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2498 for (auto &Elt : IndexPos) { 2499 auto EltDelta = Elt - PreviousValue; 2500 PreviousValue = Elt; 2501 Elt = EltDelta; 2502 } 2503 // Emit the index record. 2504 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2505 IndexPos.clear(); 2506 } 2507 2508 // Write the named metadata now. 2509 writeNamedMetadata(Record); 2510 2511 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2512 SmallVector<uint64_t, 4> Record; 2513 Record.push_back(VE.getValueID(&GO)); 2514 pushGlobalMetadataAttachment(Record, GO); 2515 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2516 }; 2517 for (const Function &F : M) 2518 if (F.isDeclaration() && F.hasMetadata()) 2519 AddDeclAttachedMetadata(F); 2520 // FIXME: Only store metadata for declarations here, and move data for global 2521 // variable definitions to a separate block (PR28134). 2522 for (const GlobalVariable &GV : M.globals()) 2523 if (GV.hasMetadata()) 2524 AddDeclAttachedMetadata(GV); 2525 2526 Stream.ExitBlock(); 2527 } 2528 2529 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2530 if (!VE.hasMDs()) 2531 return; 2532 2533 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2534 SmallVector<uint64_t, 64> Record; 2535 writeMetadataStrings(VE.getMDStrings(), Record); 2536 writeMetadataRecords(VE.getNonMDStrings(), Record); 2537 Stream.ExitBlock(); 2538 } 2539 2540 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2541 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2542 // [n x [id, mdnode]] 2543 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2544 GO.getAllMetadata(MDs); 2545 for (const auto &I : MDs) { 2546 Record.push_back(I.first); 2547 Record.push_back(VE.getMetadataID(I.second)); 2548 } 2549 } 2550 2551 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2552 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2553 2554 SmallVector<uint64_t, 64> Record; 2555 2556 if (F.hasMetadata()) { 2557 pushGlobalMetadataAttachment(Record, F); 2558 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2559 Record.clear(); 2560 } 2561 2562 // Write metadata attachments 2563 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2564 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2565 for (const BasicBlock &BB : F) 2566 for (const Instruction &I : BB) { 2567 MDs.clear(); 2568 I.getAllMetadataOtherThanDebugLoc(MDs); 2569 2570 // If no metadata, ignore instruction. 2571 if (MDs.empty()) continue; 2572 2573 Record.push_back(VE.getInstructionID(&I)); 2574 2575 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2576 Record.push_back(MDs[i].first); 2577 Record.push_back(VE.getMetadataID(MDs[i].second)); 2578 } 2579 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2580 Record.clear(); 2581 } 2582 2583 Stream.ExitBlock(); 2584 } 2585 2586 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2587 SmallVector<uint64_t, 64> Record; 2588 2589 // Write metadata kinds 2590 // METADATA_KIND - [n x [id, name]] 2591 SmallVector<StringRef, 8> Names; 2592 M.getMDKindNames(Names); 2593 2594 if (Names.empty()) return; 2595 2596 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2597 2598 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2599 Record.push_back(MDKindID); 2600 StringRef KName = Names[MDKindID]; 2601 Record.append(KName.begin(), KName.end()); 2602 2603 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2604 Record.clear(); 2605 } 2606 2607 Stream.ExitBlock(); 2608 } 2609 2610 void ModuleBitcodeWriter::writeOperandBundleTags() { 2611 // Write metadata kinds 2612 // 2613 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2614 // 2615 // OPERAND_BUNDLE_TAG - [strchr x N] 2616 2617 SmallVector<StringRef, 8> Tags; 2618 M.getOperandBundleTags(Tags); 2619 2620 if (Tags.empty()) 2621 return; 2622 2623 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2624 2625 SmallVector<uint64_t, 64> Record; 2626 2627 for (auto Tag : Tags) { 2628 Record.append(Tag.begin(), Tag.end()); 2629 2630 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2631 Record.clear(); 2632 } 2633 2634 Stream.ExitBlock(); 2635 } 2636 2637 void ModuleBitcodeWriter::writeSyncScopeNames() { 2638 SmallVector<StringRef, 8> SSNs; 2639 M.getContext().getSyncScopeNames(SSNs); 2640 if (SSNs.empty()) 2641 return; 2642 2643 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2644 2645 SmallVector<uint64_t, 64> Record; 2646 for (auto SSN : SSNs) { 2647 Record.append(SSN.begin(), SSN.end()); 2648 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2649 Record.clear(); 2650 } 2651 2652 Stream.ExitBlock(); 2653 } 2654 2655 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2656 bool isGlobal) { 2657 if (FirstVal == LastVal) return; 2658 2659 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2660 2661 unsigned AggregateAbbrev = 0; 2662 unsigned String8Abbrev = 0; 2663 unsigned CString7Abbrev = 0; 2664 unsigned CString6Abbrev = 0; 2665 // If this is a constant pool for the module, emit module-specific abbrevs. 2666 if (isGlobal) { 2667 // Abbrev for CST_CODE_AGGREGATE. 2668 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2669 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2672 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2673 2674 // Abbrev for CST_CODE_STRING. 2675 Abbv = std::make_shared<BitCodeAbbrev>(); 2676 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2679 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2680 // Abbrev for CST_CODE_CSTRING. 2681 Abbv = std::make_shared<BitCodeAbbrev>(); 2682 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2685 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2686 // Abbrev for CST_CODE_CSTRING. 2687 Abbv = std::make_shared<BitCodeAbbrev>(); 2688 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2691 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2692 } 2693 2694 SmallVector<uint64_t, 64> Record; 2695 2696 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2697 Type *LastTy = nullptr; 2698 for (unsigned i = FirstVal; i != LastVal; ++i) { 2699 const Value *V = Vals[i].first; 2700 // If we need to switch types, do so now. 2701 if (V->getType() != LastTy) { 2702 LastTy = V->getType(); 2703 Record.push_back(VE.getTypeID(LastTy)); 2704 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2705 CONSTANTS_SETTYPE_ABBREV); 2706 Record.clear(); 2707 } 2708 2709 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2710 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2711 Record.push_back( 2712 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2713 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2714 2715 // Add the asm string. 2716 const std::string &AsmStr = IA->getAsmString(); 2717 Record.push_back(AsmStr.size()); 2718 Record.append(AsmStr.begin(), AsmStr.end()); 2719 2720 // Add the constraint string. 2721 const std::string &ConstraintStr = IA->getConstraintString(); 2722 Record.push_back(ConstraintStr.size()); 2723 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2724 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2725 Record.clear(); 2726 continue; 2727 } 2728 const Constant *C = cast<Constant>(V); 2729 unsigned Code = -1U; 2730 unsigned AbbrevToUse = 0; 2731 if (C->isNullValue()) { 2732 Code = bitc::CST_CODE_NULL; 2733 } else if (isa<PoisonValue>(C)) { 2734 Code = bitc::CST_CODE_POISON; 2735 } else if (isa<UndefValue>(C)) { 2736 Code = bitc::CST_CODE_UNDEF; 2737 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2738 if (IV->getBitWidth() <= 64) { 2739 uint64_t V = IV->getSExtValue(); 2740 emitSignedInt64(Record, V); 2741 Code = bitc::CST_CODE_INTEGER; 2742 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2743 } else { // Wide integers, > 64 bits in size. 2744 emitWideAPInt(Record, IV->getValue()); 2745 Code = bitc::CST_CODE_WIDE_INTEGER; 2746 } 2747 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2748 Code = bitc::CST_CODE_FLOAT; 2749 Type *Ty = CFP->getType()->getScalarType(); 2750 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2751 Ty->isDoubleTy()) { 2752 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2753 } else if (Ty->isX86_FP80Ty()) { 2754 // api needed to prevent premature destruction 2755 // bits are not in the same order as a normal i80 APInt, compensate. 2756 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2757 const uint64_t *p = api.getRawData(); 2758 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2759 Record.push_back(p[0] & 0xffffLL); 2760 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2761 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2762 const uint64_t *p = api.getRawData(); 2763 Record.push_back(p[0]); 2764 Record.push_back(p[1]); 2765 } else { 2766 assert(0 && "Unknown FP type!"); 2767 } 2768 } else if (isa<ConstantDataSequential>(C) && 2769 cast<ConstantDataSequential>(C)->isString()) { 2770 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2771 // Emit constant strings specially. 2772 unsigned NumElts = Str->getNumElements(); 2773 // If this is a null-terminated string, use the denser CSTRING encoding. 2774 if (Str->isCString()) { 2775 Code = bitc::CST_CODE_CSTRING; 2776 --NumElts; // Don't encode the null, which isn't allowed by char6. 2777 } else { 2778 Code = bitc::CST_CODE_STRING; 2779 AbbrevToUse = String8Abbrev; 2780 } 2781 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2782 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2783 for (unsigned i = 0; i != NumElts; ++i) { 2784 unsigned char V = Str->getElementAsInteger(i); 2785 Record.push_back(V); 2786 isCStr7 &= (V & 128) == 0; 2787 if (isCStrChar6) 2788 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2789 } 2790 2791 if (isCStrChar6) 2792 AbbrevToUse = CString6Abbrev; 2793 else if (isCStr7) 2794 AbbrevToUse = CString7Abbrev; 2795 } else if (const ConstantDataSequential *CDS = 2796 dyn_cast<ConstantDataSequential>(C)) { 2797 Code = bitc::CST_CODE_DATA; 2798 Type *EltTy = CDS->getElementType(); 2799 if (isa<IntegerType>(EltTy)) { 2800 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2801 Record.push_back(CDS->getElementAsInteger(i)); 2802 } else { 2803 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2804 Record.push_back( 2805 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2806 } 2807 } else if (isa<ConstantAggregate>(C)) { 2808 Code = bitc::CST_CODE_AGGREGATE; 2809 for (const Value *Op : C->operands()) 2810 Record.push_back(VE.getValueID(Op)); 2811 AbbrevToUse = AggregateAbbrev; 2812 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2813 switch (CE->getOpcode()) { 2814 default: 2815 if (Instruction::isCast(CE->getOpcode())) { 2816 Code = bitc::CST_CODE_CE_CAST; 2817 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2818 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2819 Record.push_back(VE.getValueID(C->getOperand(0))); 2820 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2821 } else { 2822 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2823 Code = bitc::CST_CODE_CE_BINOP; 2824 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2825 Record.push_back(VE.getValueID(C->getOperand(0))); 2826 Record.push_back(VE.getValueID(C->getOperand(1))); 2827 uint64_t Flags = getOptimizationFlags(CE); 2828 if (Flags != 0) 2829 Record.push_back(Flags); 2830 } 2831 break; 2832 case Instruction::FNeg: { 2833 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2834 Code = bitc::CST_CODE_CE_UNOP; 2835 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2836 Record.push_back(VE.getValueID(C->getOperand(0))); 2837 uint64_t Flags = getOptimizationFlags(CE); 2838 if (Flags != 0) 2839 Record.push_back(Flags); 2840 break; 2841 } 2842 case Instruction::GetElementPtr: { 2843 Code = bitc::CST_CODE_CE_GEP; 2844 const auto *GO = cast<GEPOperator>(C); 2845 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2846 Record.push_back(getOptimizationFlags(GO)); 2847 if (std::optional<ConstantRange> Range = GO->getInRange()) { 2848 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; 2849 emitConstantRange(Record, *Range, /*EmitBitWidth=*/true); 2850 } 2851 for (const Value *Op : CE->operands()) { 2852 Record.push_back(VE.getTypeID(Op->getType())); 2853 Record.push_back(VE.getValueID(Op)); 2854 } 2855 break; 2856 } 2857 case Instruction::ExtractElement: 2858 Code = bitc::CST_CODE_CE_EXTRACTELT; 2859 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2860 Record.push_back(VE.getValueID(C->getOperand(0))); 2861 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2862 Record.push_back(VE.getValueID(C->getOperand(1))); 2863 break; 2864 case Instruction::InsertElement: 2865 Code = bitc::CST_CODE_CE_INSERTELT; 2866 Record.push_back(VE.getValueID(C->getOperand(0))); 2867 Record.push_back(VE.getValueID(C->getOperand(1))); 2868 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2869 Record.push_back(VE.getValueID(C->getOperand(2))); 2870 break; 2871 case Instruction::ShuffleVector: 2872 // If the return type and argument types are the same, this is a 2873 // standard shufflevector instruction. If the types are different, 2874 // then the shuffle is widening or truncating the input vectors, and 2875 // the argument type must also be encoded. 2876 if (C->getType() == C->getOperand(0)->getType()) { 2877 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2878 } else { 2879 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2880 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2881 } 2882 Record.push_back(VE.getValueID(C->getOperand(0))); 2883 Record.push_back(VE.getValueID(C->getOperand(1))); 2884 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2885 break; 2886 } 2887 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2888 Code = bitc::CST_CODE_BLOCKADDRESS; 2889 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2890 Record.push_back(VE.getValueID(BA->getFunction())); 2891 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2892 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2893 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2894 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2895 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2896 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2897 Code = bitc::CST_CODE_NO_CFI_VALUE; 2898 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2899 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2900 } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) { 2901 Code = bitc::CST_CODE_PTRAUTH; 2902 Record.push_back(VE.getValueID(CPA->getPointer())); 2903 Record.push_back(VE.getValueID(CPA->getKey())); 2904 Record.push_back(VE.getValueID(CPA->getDiscriminator())); 2905 Record.push_back(VE.getValueID(CPA->getAddrDiscriminator())); 2906 } else { 2907 #ifndef NDEBUG 2908 C->dump(); 2909 #endif 2910 llvm_unreachable("Unknown constant!"); 2911 } 2912 Stream.EmitRecord(Code, Record, AbbrevToUse); 2913 Record.clear(); 2914 } 2915 2916 Stream.ExitBlock(); 2917 } 2918 2919 void ModuleBitcodeWriter::writeModuleConstants() { 2920 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2921 2922 // Find the first constant to emit, which is the first non-globalvalue value. 2923 // We know globalvalues have been emitted by WriteModuleInfo. 2924 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2925 if (!isa<GlobalValue>(Vals[i].first)) { 2926 writeConstants(i, Vals.size(), true); 2927 return; 2928 } 2929 } 2930 } 2931 2932 /// pushValueAndType - The file has to encode both the value and type id for 2933 /// many values, because we need to know what type to create for forward 2934 /// references. However, most operands are not forward references, so this type 2935 /// field is not needed. 2936 /// 2937 /// This function adds V's value ID to Vals. If the value ID is higher than the 2938 /// instruction ID, then it is a forward reference, and it also includes the 2939 /// type ID. The value ID that is written is encoded relative to the InstID. 2940 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2941 SmallVectorImpl<unsigned> &Vals) { 2942 unsigned ValID = VE.getValueID(V); 2943 // Make encoding relative to the InstID. 2944 Vals.push_back(InstID - ValID); 2945 if (ValID >= InstID) { 2946 Vals.push_back(VE.getTypeID(V->getType())); 2947 return true; 2948 } 2949 return false; 2950 } 2951 2952 bool ModuleBitcodeWriter::pushValueOrMetadata(const Value *V, unsigned InstID, 2953 SmallVectorImpl<unsigned> &Vals) { 2954 bool IsMetadata = V->getType()->isMetadataTy(); 2955 if (IsMetadata) { 2956 Vals.push_back(bitc::OB_METADATA); 2957 Metadata *MD = cast<MetadataAsValue>(V)->getMetadata(); 2958 unsigned ValID = VE.getMetadataID(MD); 2959 Vals.push_back(InstID - ValID); 2960 return false; 2961 } 2962 return pushValueAndType(V, InstID, Vals); 2963 } 2964 2965 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2966 unsigned InstID) { 2967 SmallVector<unsigned, 64> Record; 2968 LLVMContext &C = CS.getContext(); 2969 2970 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2971 const auto &Bundle = CS.getOperandBundleAt(i); 2972 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2973 2974 for (auto &Input : Bundle.Inputs) 2975 pushValueOrMetadata(Input, InstID, Record); 2976 2977 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2978 Record.clear(); 2979 } 2980 } 2981 2982 /// pushValue - Like pushValueAndType, but where the type of the value is 2983 /// omitted (perhaps it was already encoded in an earlier operand). 2984 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2985 SmallVectorImpl<unsigned> &Vals) { 2986 unsigned ValID = VE.getValueID(V); 2987 Vals.push_back(InstID - ValID); 2988 } 2989 2990 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2991 SmallVectorImpl<uint64_t> &Vals) { 2992 unsigned ValID = VE.getValueID(V); 2993 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2994 emitSignedInt64(Vals, diff); 2995 } 2996 2997 /// WriteInstruction - Emit an instruction to the specified stream. 2998 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2999 unsigned InstID, 3000 SmallVectorImpl<unsigned> &Vals) { 3001 unsigned Code = 0; 3002 unsigned AbbrevToUse = 0; 3003 VE.setInstructionID(&I); 3004 switch (I.getOpcode()) { 3005 default: 3006 if (Instruction::isCast(I.getOpcode())) { 3007 Code = bitc::FUNC_CODE_INST_CAST; 3008 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3009 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 3010 Vals.push_back(VE.getTypeID(I.getType())); 3011 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 3012 uint64_t Flags = getOptimizationFlags(&I); 3013 if (Flags != 0) { 3014 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 3015 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 3016 Vals.push_back(Flags); 3017 } 3018 } else { 3019 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 3020 Code = bitc::FUNC_CODE_INST_BINOP; 3021 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3022 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 3023 pushValue(I.getOperand(1), InstID, Vals); 3024 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 3025 uint64_t Flags = getOptimizationFlags(&I); 3026 if (Flags != 0) { 3027 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 3028 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 3029 Vals.push_back(Flags); 3030 } 3031 } 3032 break; 3033 case Instruction::FNeg: { 3034 Code = bitc::FUNC_CODE_INST_UNOP; 3035 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3036 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 3037 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 3038 uint64_t Flags = getOptimizationFlags(&I); 3039 if (Flags != 0) { 3040 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 3041 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 3042 Vals.push_back(Flags); 3043 } 3044 break; 3045 } 3046 case Instruction::GetElementPtr: { 3047 Code = bitc::FUNC_CODE_INST_GEP; 3048 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 3049 auto &GEPInst = cast<GetElementPtrInst>(I); 3050 Vals.push_back(getOptimizationFlags(&I)); 3051 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 3052 for (const Value *Op : I.operands()) 3053 pushValueAndType(Op, InstID, Vals); 3054 break; 3055 } 3056 case Instruction::ExtractValue: { 3057 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 3058 pushValueAndType(I.getOperand(0), InstID, Vals); 3059 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 3060 Vals.append(EVI->idx_begin(), EVI->idx_end()); 3061 break; 3062 } 3063 case Instruction::InsertValue: { 3064 Code = bitc::FUNC_CODE_INST_INSERTVAL; 3065 pushValueAndType(I.getOperand(0), InstID, Vals); 3066 pushValueAndType(I.getOperand(1), InstID, Vals); 3067 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 3068 Vals.append(IVI->idx_begin(), IVI->idx_end()); 3069 break; 3070 } 3071 case Instruction::Select: { 3072 Code = bitc::FUNC_CODE_INST_VSELECT; 3073 pushValueAndType(I.getOperand(1), InstID, Vals); 3074 pushValue(I.getOperand(2), InstID, Vals); 3075 pushValueAndType(I.getOperand(0), InstID, Vals); 3076 uint64_t Flags = getOptimizationFlags(&I); 3077 if (Flags != 0) 3078 Vals.push_back(Flags); 3079 break; 3080 } 3081 case Instruction::ExtractElement: 3082 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 3083 pushValueAndType(I.getOperand(0), InstID, Vals); 3084 pushValueAndType(I.getOperand(1), InstID, Vals); 3085 break; 3086 case Instruction::InsertElement: 3087 Code = bitc::FUNC_CODE_INST_INSERTELT; 3088 pushValueAndType(I.getOperand(0), InstID, Vals); 3089 pushValue(I.getOperand(1), InstID, Vals); 3090 pushValueAndType(I.getOperand(2), InstID, Vals); 3091 break; 3092 case Instruction::ShuffleVector: 3093 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 3094 pushValueAndType(I.getOperand(0), InstID, Vals); 3095 pushValue(I.getOperand(1), InstID, Vals); 3096 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 3097 Vals); 3098 break; 3099 case Instruction::ICmp: 3100 case Instruction::FCmp: { 3101 // compare returning Int1Ty or vector of Int1Ty 3102 Code = bitc::FUNC_CODE_INST_CMP2; 3103 pushValueAndType(I.getOperand(0), InstID, Vals); 3104 pushValue(I.getOperand(1), InstID, Vals); 3105 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3106 uint64_t Flags = getOptimizationFlags(&I); 3107 if (Flags != 0) 3108 Vals.push_back(Flags); 3109 break; 3110 } 3111 3112 case Instruction::Ret: 3113 { 3114 Code = bitc::FUNC_CODE_INST_RET; 3115 unsigned NumOperands = I.getNumOperands(); 3116 if (NumOperands == 0) 3117 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3118 else if (NumOperands == 1) { 3119 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3120 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3121 } else { 3122 for (const Value *Op : I.operands()) 3123 pushValueAndType(Op, InstID, Vals); 3124 } 3125 } 3126 break; 3127 case Instruction::Br: 3128 { 3129 Code = bitc::FUNC_CODE_INST_BR; 3130 const BranchInst &II = cast<BranchInst>(I); 3131 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3132 if (II.isConditional()) { 3133 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3134 pushValue(II.getCondition(), InstID, Vals); 3135 } 3136 } 3137 break; 3138 case Instruction::Switch: 3139 { 3140 Code = bitc::FUNC_CODE_INST_SWITCH; 3141 const SwitchInst &SI = cast<SwitchInst>(I); 3142 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3143 pushValue(SI.getCondition(), InstID, Vals); 3144 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3145 for (auto Case : SI.cases()) { 3146 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3147 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3148 } 3149 } 3150 break; 3151 case Instruction::IndirectBr: 3152 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3153 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3154 // Encode the address operand as relative, but not the basic blocks. 3155 pushValue(I.getOperand(0), InstID, Vals); 3156 for (const Value *Op : drop_begin(I.operands())) 3157 Vals.push_back(VE.getValueID(Op)); 3158 break; 3159 3160 case Instruction::Invoke: { 3161 const InvokeInst *II = cast<InvokeInst>(&I); 3162 const Value *Callee = II->getCalledOperand(); 3163 FunctionType *FTy = II->getFunctionType(); 3164 3165 if (II->hasOperandBundles()) 3166 writeOperandBundles(*II, InstID); 3167 3168 Code = bitc::FUNC_CODE_INST_INVOKE; 3169 3170 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3171 Vals.push_back(II->getCallingConv() | 1 << 13); 3172 Vals.push_back(VE.getValueID(II->getNormalDest())); 3173 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3174 Vals.push_back(VE.getTypeID(FTy)); 3175 pushValueAndType(Callee, InstID, Vals); 3176 3177 // Emit value #'s for the fixed parameters. 3178 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3179 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3180 3181 // Emit type/value pairs for varargs params. 3182 if (FTy->isVarArg()) { 3183 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3184 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3185 } 3186 break; 3187 } 3188 case Instruction::Resume: 3189 Code = bitc::FUNC_CODE_INST_RESUME; 3190 pushValueAndType(I.getOperand(0), InstID, Vals); 3191 break; 3192 case Instruction::CleanupRet: { 3193 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3194 const auto &CRI = cast<CleanupReturnInst>(I); 3195 pushValue(CRI.getCleanupPad(), InstID, Vals); 3196 if (CRI.hasUnwindDest()) 3197 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3198 break; 3199 } 3200 case Instruction::CatchRet: { 3201 Code = bitc::FUNC_CODE_INST_CATCHRET; 3202 const auto &CRI = cast<CatchReturnInst>(I); 3203 pushValue(CRI.getCatchPad(), InstID, Vals); 3204 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3205 break; 3206 } 3207 case Instruction::CleanupPad: 3208 case Instruction::CatchPad: { 3209 const auto &FuncletPad = cast<FuncletPadInst>(I); 3210 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3211 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3212 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3213 3214 unsigned NumArgOperands = FuncletPad.arg_size(); 3215 Vals.push_back(NumArgOperands); 3216 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3217 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3218 break; 3219 } 3220 case Instruction::CatchSwitch: { 3221 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3222 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3223 3224 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3225 3226 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3227 Vals.push_back(NumHandlers); 3228 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3229 Vals.push_back(VE.getValueID(CatchPadBB)); 3230 3231 if (CatchSwitch.hasUnwindDest()) 3232 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3233 break; 3234 } 3235 case Instruction::CallBr: { 3236 const CallBrInst *CBI = cast<CallBrInst>(&I); 3237 const Value *Callee = CBI->getCalledOperand(); 3238 FunctionType *FTy = CBI->getFunctionType(); 3239 3240 if (CBI->hasOperandBundles()) 3241 writeOperandBundles(*CBI, InstID); 3242 3243 Code = bitc::FUNC_CODE_INST_CALLBR; 3244 3245 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3246 3247 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3248 1 << bitc::CALL_EXPLICIT_TYPE); 3249 3250 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3251 Vals.push_back(CBI->getNumIndirectDests()); 3252 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3253 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3254 3255 Vals.push_back(VE.getTypeID(FTy)); 3256 pushValueAndType(Callee, InstID, Vals); 3257 3258 // Emit value #'s for the fixed parameters. 3259 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3260 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3261 3262 // Emit type/value pairs for varargs params. 3263 if (FTy->isVarArg()) { 3264 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3265 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3266 } 3267 break; 3268 } 3269 case Instruction::Unreachable: 3270 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3271 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3272 break; 3273 3274 case Instruction::PHI: { 3275 const PHINode &PN = cast<PHINode>(I); 3276 Code = bitc::FUNC_CODE_INST_PHI; 3277 // With the newer instruction encoding, forward references could give 3278 // negative valued IDs. This is most common for PHIs, so we use 3279 // signed VBRs. 3280 SmallVector<uint64_t, 128> Vals64; 3281 Vals64.push_back(VE.getTypeID(PN.getType())); 3282 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3283 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3284 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3285 } 3286 3287 uint64_t Flags = getOptimizationFlags(&I); 3288 if (Flags != 0) 3289 Vals64.push_back(Flags); 3290 3291 // Emit a Vals64 vector and exit. 3292 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3293 Vals64.clear(); 3294 return; 3295 } 3296 3297 case Instruction::LandingPad: { 3298 const LandingPadInst &LP = cast<LandingPadInst>(I); 3299 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3300 Vals.push_back(VE.getTypeID(LP.getType())); 3301 Vals.push_back(LP.isCleanup()); 3302 Vals.push_back(LP.getNumClauses()); 3303 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3304 if (LP.isCatch(I)) 3305 Vals.push_back(LandingPadInst::Catch); 3306 else 3307 Vals.push_back(LandingPadInst::Filter); 3308 pushValueAndType(LP.getClause(I), InstID, Vals); 3309 } 3310 break; 3311 } 3312 3313 case Instruction::Alloca: { 3314 Code = bitc::FUNC_CODE_INST_ALLOCA; 3315 const AllocaInst &AI = cast<AllocaInst>(I); 3316 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3317 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3318 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3319 using APV = AllocaPackedValues; 3320 unsigned Record = 0; 3321 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3322 Bitfield::set<APV::AlignLower>( 3323 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3324 Bitfield::set<APV::AlignUpper>(Record, 3325 EncodedAlign >> APV::AlignLower::Bits); 3326 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3327 Bitfield::set<APV::ExplicitType>(Record, true); 3328 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3329 Vals.push_back(Record); 3330 3331 unsigned AS = AI.getAddressSpace(); 3332 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3333 Vals.push_back(AS); 3334 break; 3335 } 3336 3337 case Instruction::Load: 3338 if (cast<LoadInst>(I).isAtomic()) { 3339 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3340 pushValueAndType(I.getOperand(0), InstID, Vals); 3341 } else { 3342 Code = bitc::FUNC_CODE_INST_LOAD; 3343 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3344 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3345 } 3346 Vals.push_back(VE.getTypeID(I.getType())); 3347 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3348 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3349 if (cast<LoadInst>(I).isAtomic()) { 3350 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3351 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3352 } 3353 break; 3354 case Instruction::Store: 3355 if (cast<StoreInst>(I).isAtomic()) 3356 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3357 else 3358 Code = bitc::FUNC_CODE_INST_STORE; 3359 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3360 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3361 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3362 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3363 if (cast<StoreInst>(I).isAtomic()) { 3364 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3365 Vals.push_back( 3366 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3367 } 3368 break; 3369 case Instruction::AtomicCmpXchg: 3370 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3371 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3372 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3373 pushValue(I.getOperand(2), InstID, Vals); // newval. 3374 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3375 Vals.push_back( 3376 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3377 Vals.push_back( 3378 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3379 Vals.push_back( 3380 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3381 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3382 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3383 break; 3384 case Instruction::AtomicRMW: 3385 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3386 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3387 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3388 Vals.push_back( 3389 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3390 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3391 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3392 Vals.push_back( 3393 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3394 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3395 break; 3396 case Instruction::Fence: 3397 Code = bitc::FUNC_CODE_INST_FENCE; 3398 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3399 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3400 break; 3401 case Instruction::Call: { 3402 const CallInst &CI = cast<CallInst>(I); 3403 FunctionType *FTy = CI.getFunctionType(); 3404 3405 if (CI.hasOperandBundles()) 3406 writeOperandBundles(CI, InstID); 3407 3408 Code = bitc::FUNC_CODE_INST_CALL; 3409 3410 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3411 3412 unsigned Flags = getOptimizationFlags(&I); 3413 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3414 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3415 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3416 1 << bitc::CALL_EXPLICIT_TYPE | 3417 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3418 unsigned(Flags != 0) << bitc::CALL_FMF); 3419 if (Flags != 0) 3420 Vals.push_back(Flags); 3421 3422 Vals.push_back(VE.getTypeID(FTy)); 3423 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3424 3425 // Emit value #'s for the fixed parameters. 3426 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3427 // Check for labels (can happen with asm labels). 3428 if (FTy->getParamType(i)->isLabelTy()) 3429 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3430 else 3431 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3432 } 3433 3434 // Emit type/value pairs for varargs params. 3435 if (FTy->isVarArg()) { 3436 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3437 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3438 } 3439 break; 3440 } 3441 case Instruction::VAArg: 3442 Code = bitc::FUNC_CODE_INST_VAARG; 3443 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3444 pushValue(I.getOperand(0), InstID, Vals); // valist. 3445 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3446 break; 3447 case Instruction::Freeze: 3448 Code = bitc::FUNC_CODE_INST_FREEZE; 3449 pushValueAndType(I.getOperand(0), InstID, Vals); 3450 break; 3451 } 3452 3453 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3454 Vals.clear(); 3455 } 3456 3457 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3458 /// to allow clients to efficiently find the function body. 3459 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3460 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3461 // Get the offset of the VST we are writing, and backpatch it into 3462 // the VST forward declaration record. 3463 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3464 // The BitcodeStartBit was the stream offset of the identification block. 3465 VSTOffset -= bitcodeStartBit(); 3466 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3467 // Note that we add 1 here because the offset is relative to one word 3468 // before the start of the identification block, which was historically 3469 // always the start of the regular bitcode header. 3470 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3471 3472 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3473 3474 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3475 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3478 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3479 3480 for (const Function &F : M) { 3481 uint64_t Record[2]; 3482 3483 if (F.isDeclaration()) 3484 continue; 3485 3486 Record[0] = VE.getValueID(&F); 3487 3488 // Save the word offset of the function (from the start of the 3489 // actual bitcode written to the stream). 3490 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3491 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3492 // Note that we add 1 here because the offset is relative to one word 3493 // before the start of the identification block, which was historically 3494 // always the start of the regular bitcode header. 3495 Record[1] = BitcodeIndex / 32 + 1; 3496 3497 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3498 } 3499 3500 Stream.ExitBlock(); 3501 } 3502 3503 /// Emit names for arguments, instructions and basic blocks in a function. 3504 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3505 const ValueSymbolTable &VST) { 3506 if (VST.empty()) 3507 return; 3508 3509 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3510 3511 // FIXME: Set up the abbrev, we know how many values there are! 3512 // FIXME: We know if the type names can use 7-bit ascii. 3513 SmallVector<uint64_t, 64> NameVals; 3514 3515 for (const ValueName &Name : VST) { 3516 // Figure out the encoding to use for the name. 3517 StringEncoding Bits = getStringEncoding(Name.getKey()); 3518 3519 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3520 NameVals.push_back(VE.getValueID(Name.getValue())); 3521 3522 // VST_CODE_ENTRY: [valueid, namechar x N] 3523 // VST_CODE_BBENTRY: [bbid, namechar x N] 3524 unsigned Code; 3525 if (isa<BasicBlock>(Name.getValue())) { 3526 Code = bitc::VST_CODE_BBENTRY; 3527 if (Bits == SE_Char6) 3528 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3529 } else { 3530 Code = bitc::VST_CODE_ENTRY; 3531 if (Bits == SE_Char6) 3532 AbbrevToUse = VST_ENTRY_6_ABBREV; 3533 else if (Bits == SE_Fixed7) 3534 AbbrevToUse = VST_ENTRY_7_ABBREV; 3535 } 3536 3537 for (const auto P : Name.getKey()) 3538 NameVals.push_back((unsigned char)P); 3539 3540 // Emit the finished record. 3541 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3542 NameVals.clear(); 3543 } 3544 3545 Stream.ExitBlock(); 3546 } 3547 3548 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3549 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3550 unsigned Code; 3551 if (isa<BasicBlock>(Order.V)) 3552 Code = bitc::USELIST_CODE_BB; 3553 else 3554 Code = bitc::USELIST_CODE_DEFAULT; 3555 3556 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3557 Record.push_back(VE.getValueID(Order.V)); 3558 Stream.EmitRecord(Code, Record); 3559 } 3560 3561 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3562 assert(VE.shouldPreserveUseListOrder() && 3563 "Expected to be preserving use-list order"); 3564 3565 auto hasMore = [&]() { 3566 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3567 }; 3568 if (!hasMore()) 3569 // Nothing to do. 3570 return; 3571 3572 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3573 while (hasMore()) { 3574 writeUseList(std::move(VE.UseListOrders.back())); 3575 VE.UseListOrders.pop_back(); 3576 } 3577 Stream.ExitBlock(); 3578 } 3579 3580 /// Emit a function body to the module stream. 3581 void ModuleBitcodeWriter::writeFunction( 3582 const Function &F, 3583 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3584 // Save the bitcode index of the start of this function block for recording 3585 // in the VST. 3586 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3587 3588 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3589 VE.incorporateFunction(F); 3590 3591 SmallVector<unsigned, 64> Vals; 3592 3593 // Emit the number of basic blocks, so the reader can create them ahead of 3594 // time. 3595 Vals.push_back(VE.getBasicBlocks().size()); 3596 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3597 Vals.clear(); 3598 3599 // If there are function-local constants, emit them now. 3600 unsigned CstStart, CstEnd; 3601 VE.getFunctionConstantRange(CstStart, CstEnd); 3602 writeConstants(CstStart, CstEnd, false); 3603 3604 // If there is function-local metadata, emit it now. 3605 writeFunctionMetadata(F); 3606 3607 // Keep a running idea of what the instruction ID is. 3608 unsigned InstID = CstEnd; 3609 3610 bool NeedsMetadataAttachment = F.hasMetadata(); 3611 3612 DILocation *LastDL = nullptr; 3613 SmallSetVector<Function *, 4> BlockAddressUsers; 3614 3615 // Finally, emit all the instructions, in order. 3616 for (const BasicBlock &BB : F) { 3617 for (const Instruction &I : BB) { 3618 writeInstruction(I, InstID, Vals); 3619 3620 if (!I.getType()->isVoidTy()) 3621 ++InstID; 3622 3623 // If the instruction has metadata, write a metadata attachment later. 3624 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3625 3626 // If the instruction has a debug location, emit it. 3627 if (DILocation *DL = I.getDebugLoc()) { 3628 if (DL == LastDL) { 3629 // Just repeat the same debug loc as last time. 3630 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3631 } else { 3632 Vals.push_back(DL->getLine()); 3633 Vals.push_back(DL->getColumn()); 3634 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3635 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3636 Vals.push_back(DL->isImplicitCode()); 3637 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3638 Vals.clear(); 3639 LastDL = DL; 3640 } 3641 } 3642 3643 // If the instruction has DbgRecords attached to it, emit them. Note that 3644 // they come after the instruction so that it's easy to attach them again 3645 // when reading the bitcode, even though conceptually the debug locations 3646 // start "before" the instruction. 3647 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3648 /// Try to push the value only (unwrapped), otherwise push the 3649 /// metadata wrapped value. Returns true if the value was pushed 3650 /// without the ValueAsMetadata wrapper. 3651 auto PushValueOrMetadata = [&Vals, InstID, 3652 this](Metadata *RawLocation) { 3653 assert(RawLocation && 3654 "RawLocation unexpectedly null in DbgVariableRecord"); 3655 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3656 SmallVector<unsigned, 2> ValAndType; 3657 // If the value is a fwd-ref the type is also pushed. We don't 3658 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3659 // returns false if the value is pushed without type). 3660 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3661 Vals.push_back(ValAndType[0]); 3662 return true; 3663 } 3664 } 3665 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3666 // fwd-ref. Push the metadata ID. 3667 Vals.push_back(VE.getMetadataID(RawLocation)); 3668 return false; 3669 }; 3670 3671 // Write out non-instruction debug information attached to this 3672 // instruction. Write it after the instruction so that it's easy to 3673 // re-attach to the instruction reading the records in. 3674 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { 3675 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3676 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); 3677 Vals.push_back(VE.getMetadataID(DLR->getLabel())); 3678 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3679 Vals.clear(); 3680 continue; 3681 } 3682 3683 // First 3 fields are common to all kinds: 3684 // DILocation, DILocalVariable, DIExpression 3685 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3686 // ..., LocationMetadata 3687 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3688 // ..., Value 3689 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3690 // ..., LocationMetadata 3691 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3692 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3693 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3694 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3695 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3696 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3697 if (DVR.isDbgValue()) { 3698 if (PushValueOrMetadata(DVR.getRawLocation())) 3699 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3700 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3701 else 3702 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3703 } else if (DVR.isDbgDeclare()) { 3704 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3705 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3706 } else { 3707 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3708 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3709 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3710 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3711 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3712 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3713 } 3714 Vals.clear(); 3715 } 3716 } 3717 } 3718 3719 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3720 SmallVector<Value *> Worklist{BA}; 3721 SmallPtrSet<Value *, 8> Visited{BA}; 3722 while (!Worklist.empty()) { 3723 Value *V = Worklist.pop_back_val(); 3724 for (User *U : V->users()) { 3725 if (auto *I = dyn_cast<Instruction>(U)) { 3726 Function *P = I->getFunction(); 3727 if (P != &F) 3728 BlockAddressUsers.insert(P); 3729 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3730 Visited.insert(U).second) 3731 Worklist.push_back(U); 3732 } 3733 } 3734 } 3735 } 3736 3737 if (!BlockAddressUsers.empty()) { 3738 Vals.resize(BlockAddressUsers.size()); 3739 for (auto I : llvm::enumerate(BlockAddressUsers)) 3740 Vals[I.index()] = VE.getValueID(I.value()); 3741 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3742 Vals.clear(); 3743 } 3744 3745 // Emit names for all the instructions etc. 3746 if (auto *Symtab = F.getValueSymbolTable()) 3747 writeFunctionLevelValueSymbolTable(*Symtab); 3748 3749 if (NeedsMetadataAttachment) 3750 writeFunctionMetadataAttachment(F); 3751 if (VE.shouldPreserveUseListOrder()) 3752 writeUseListBlock(&F); 3753 VE.purgeFunction(); 3754 Stream.ExitBlock(); 3755 } 3756 3757 // Emit blockinfo, which defines the standard abbreviations etc. 3758 void ModuleBitcodeWriter::writeBlockInfo() { 3759 // We only want to emit block info records for blocks that have multiple 3760 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3761 // Other blocks can define their abbrevs inline. 3762 Stream.EnterBlockInfoBlock(); 3763 3764 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3765 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3770 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3771 VST_ENTRY_8_ABBREV) 3772 llvm_unreachable("Unexpected abbrev ordering!"); 3773 } 3774 3775 { // 7-bit fixed width VST_CODE_ENTRY strings. 3776 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3777 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3781 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3782 VST_ENTRY_7_ABBREV) 3783 llvm_unreachable("Unexpected abbrev ordering!"); 3784 } 3785 { // 6-bit char6 VST_CODE_ENTRY strings. 3786 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3787 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3791 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3792 VST_ENTRY_6_ABBREV) 3793 llvm_unreachable("Unexpected abbrev ordering!"); 3794 } 3795 { // 6-bit char6 VST_CODE_BBENTRY strings. 3796 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3797 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3801 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3802 VST_BBENTRY_6_ABBREV) 3803 llvm_unreachable("Unexpected abbrev ordering!"); 3804 } 3805 3806 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3807 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3808 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3810 VE.computeBitsRequiredForTypeIndices())); 3811 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3812 CONSTANTS_SETTYPE_ABBREV) 3813 llvm_unreachable("Unexpected abbrev ordering!"); 3814 } 3815 3816 { // INTEGER abbrev for CONSTANTS_BLOCK. 3817 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3818 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3820 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3821 CONSTANTS_INTEGER_ABBREV) 3822 llvm_unreachable("Unexpected abbrev ordering!"); 3823 } 3824 3825 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3826 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3827 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3830 VE.computeBitsRequiredForTypeIndices())); 3831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3832 3833 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3834 CONSTANTS_CE_CAST_Abbrev) 3835 llvm_unreachable("Unexpected abbrev ordering!"); 3836 } 3837 { // NULL abbrev for CONSTANTS_BLOCK. 3838 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3839 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3840 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3841 CONSTANTS_NULL_Abbrev) 3842 llvm_unreachable("Unexpected abbrev ordering!"); 3843 } 3844 3845 // FIXME: This should only use space for first class types! 3846 3847 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3848 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3849 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3852 VE.computeBitsRequiredForTypeIndices())); 3853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3855 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3856 FUNCTION_INST_LOAD_ABBREV) 3857 llvm_unreachable("Unexpected abbrev ordering!"); 3858 } 3859 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3860 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3861 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3864 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3865 FUNCTION_INST_UNOP_ABBREV) 3866 llvm_unreachable("Unexpected abbrev ordering!"); 3867 } 3868 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3869 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3870 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3874 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3875 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3876 llvm_unreachable("Unexpected abbrev ordering!"); 3877 } 3878 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3879 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3880 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3884 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3885 FUNCTION_INST_BINOP_ABBREV) 3886 llvm_unreachable("Unexpected abbrev ordering!"); 3887 } 3888 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3889 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3890 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3895 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3896 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3897 llvm_unreachable("Unexpected abbrev ordering!"); 3898 } 3899 { // INST_CAST abbrev for FUNCTION_BLOCK. 3900 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3901 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3904 VE.computeBitsRequiredForTypeIndices())); 3905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3906 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3907 FUNCTION_INST_CAST_ABBREV) 3908 llvm_unreachable("Unexpected abbrev ordering!"); 3909 } 3910 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3911 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3912 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3915 VE.computeBitsRequiredForTypeIndices())); 3916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3918 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3919 FUNCTION_INST_CAST_FLAGS_ABBREV) 3920 llvm_unreachable("Unexpected abbrev ordering!"); 3921 } 3922 3923 { // INST_RET abbrev for FUNCTION_BLOCK. 3924 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3925 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3926 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3927 FUNCTION_INST_RET_VOID_ABBREV) 3928 llvm_unreachable("Unexpected abbrev ordering!"); 3929 } 3930 { // INST_RET abbrev for FUNCTION_BLOCK. 3931 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3932 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3934 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3935 FUNCTION_INST_RET_VAL_ABBREV) 3936 llvm_unreachable("Unexpected abbrev ordering!"); 3937 } 3938 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3939 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3940 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3941 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3942 FUNCTION_INST_UNREACHABLE_ABBREV) 3943 llvm_unreachable("Unexpected abbrev ordering!"); 3944 } 3945 { 3946 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3947 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3950 Log2_32_Ceil(VE.getTypes().size() + 1))); 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3953 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3954 FUNCTION_INST_GEP_ABBREV) 3955 llvm_unreachable("Unexpected abbrev ordering!"); 3956 } 3957 { 3958 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3959 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3964 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3965 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3966 llvm_unreachable("Unexpected abbrev ordering! 1"); 3967 } 3968 Stream.ExitBlock(); 3969 } 3970 3971 /// Write the module path strings, currently only used when generating 3972 /// a combined index file. 3973 void IndexBitcodeWriter::writeModStrings() { 3974 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3975 3976 // TODO: See which abbrev sizes we actually need to emit 3977 3978 // 8-bit fixed-width MST_ENTRY strings. 3979 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3980 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3984 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3985 3986 // 7-bit fixed width MST_ENTRY strings. 3987 Abbv = std::make_shared<BitCodeAbbrev>(); 3988 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3992 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3993 3994 // 6-bit char6 MST_ENTRY strings. 3995 Abbv = std::make_shared<BitCodeAbbrev>(); 3996 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4000 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 4001 4002 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 4003 Abbv = std::make_shared<BitCodeAbbrev>(); 4004 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 4005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4010 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 4011 4012 SmallVector<unsigned, 64> Vals; 4013 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 4014 StringRef Key = MPSE.getKey(); 4015 const auto &Hash = MPSE.getValue(); 4016 StringEncoding Bits = getStringEncoding(Key); 4017 unsigned AbbrevToUse = Abbrev8Bit; 4018 if (Bits == SE_Char6) 4019 AbbrevToUse = Abbrev6Bit; 4020 else if (Bits == SE_Fixed7) 4021 AbbrevToUse = Abbrev7Bit; 4022 4023 auto ModuleId = ModuleIdMap.size(); 4024 ModuleIdMap[Key] = ModuleId; 4025 Vals.push_back(ModuleId); 4026 Vals.append(Key.begin(), Key.end()); 4027 4028 // Emit the finished record. 4029 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 4030 4031 // Emit an optional hash for the module now 4032 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 4033 Vals.assign(Hash.begin(), Hash.end()); 4034 // Emit the hash record. 4035 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 4036 } 4037 4038 Vals.clear(); 4039 }); 4040 Stream.ExitBlock(); 4041 } 4042 4043 /// Write the function type metadata related records that need to appear before 4044 /// a function summary entry (whether per-module or combined). 4045 template <typename Fn> 4046 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 4047 FunctionSummary *FS, 4048 Fn GetValueID) { 4049 if (!FS->type_tests().empty()) 4050 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 4051 4052 SmallVector<uint64_t, 64> Record; 4053 4054 auto WriteVFuncIdVec = [&](uint64_t Ty, 4055 ArrayRef<FunctionSummary::VFuncId> VFs) { 4056 if (VFs.empty()) 4057 return; 4058 Record.clear(); 4059 for (auto &VF : VFs) { 4060 Record.push_back(VF.GUID); 4061 Record.push_back(VF.Offset); 4062 } 4063 Stream.EmitRecord(Ty, Record); 4064 }; 4065 4066 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 4067 FS->type_test_assume_vcalls()); 4068 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 4069 FS->type_checked_load_vcalls()); 4070 4071 auto WriteConstVCallVec = [&](uint64_t Ty, 4072 ArrayRef<FunctionSummary::ConstVCall> VCs) { 4073 for (auto &VC : VCs) { 4074 Record.clear(); 4075 Record.push_back(VC.VFunc.GUID); 4076 Record.push_back(VC.VFunc.Offset); 4077 llvm::append_range(Record, VC.Args); 4078 Stream.EmitRecord(Ty, Record); 4079 } 4080 }; 4081 4082 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 4083 FS->type_test_assume_const_vcalls()); 4084 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 4085 FS->type_checked_load_const_vcalls()); 4086 4087 auto WriteRange = [&](ConstantRange Range) { 4088 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 4089 assert(Range.getLower().getNumWords() == 1); 4090 assert(Range.getUpper().getNumWords() == 1); 4091 emitSignedInt64(Record, *Range.getLower().getRawData()); 4092 emitSignedInt64(Record, *Range.getUpper().getRawData()); 4093 }; 4094 4095 if (!FS->paramAccesses().empty()) { 4096 Record.clear(); 4097 for (auto &Arg : FS->paramAccesses()) { 4098 size_t UndoSize = Record.size(); 4099 Record.push_back(Arg.ParamNo); 4100 WriteRange(Arg.Use); 4101 Record.push_back(Arg.Calls.size()); 4102 for (auto &Call : Arg.Calls) { 4103 Record.push_back(Call.ParamNo); 4104 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4105 if (!ValueID) { 4106 // If ValueID is unknown we can't drop just this call, we must drop 4107 // entire parameter. 4108 Record.resize(UndoSize); 4109 break; 4110 } 4111 Record.push_back(*ValueID); 4112 WriteRange(Call.Offsets); 4113 } 4114 } 4115 if (!Record.empty()) 4116 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4117 } 4118 } 4119 4120 /// Collect type IDs from type tests used by function. 4121 static void 4122 getReferencedTypeIds(FunctionSummary *FS, 4123 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4124 if (!FS->type_tests().empty()) 4125 for (auto &TT : FS->type_tests()) 4126 ReferencedTypeIds.insert(TT); 4127 4128 auto GetReferencedTypesFromVFuncIdVec = 4129 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4130 for (auto &VF : VFs) 4131 ReferencedTypeIds.insert(VF.GUID); 4132 }; 4133 4134 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4135 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4136 4137 auto GetReferencedTypesFromConstVCallVec = 4138 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4139 for (auto &VC : VCs) 4140 ReferencedTypeIds.insert(VC.VFunc.GUID); 4141 }; 4142 4143 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4144 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4145 } 4146 4147 static void writeWholeProgramDevirtResolutionByArg( 4148 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4149 const WholeProgramDevirtResolution::ByArg &ByArg) { 4150 NameVals.push_back(args.size()); 4151 llvm::append_range(NameVals, args); 4152 4153 NameVals.push_back(ByArg.TheKind); 4154 NameVals.push_back(ByArg.Info); 4155 NameVals.push_back(ByArg.Byte); 4156 NameVals.push_back(ByArg.Bit); 4157 } 4158 4159 static void writeWholeProgramDevirtResolution( 4160 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4161 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4162 NameVals.push_back(Id); 4163 4164 NameVals.push_back(Wpd.TheKind); 4165 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4166 NameVals.push_back(Wpd.SingleImplName.size()); 4167 4168 NameVals.push_back(Wpd.ResByArg.size()); 4169 for (auto &A : Wpd.ResByArg) 4170 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4171 } 4172 4173 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4174 StringTableBuilder &StrtabBuilder, 4175 StringRef Id, 4176 const TypeIdSummary &Summary) { 4177 NameVals.push_back(StrtabBuilder.add(Id)); 4178 NameVals.push_back(Id.size()); 4179 4180 NameVals.push_back(Summary.TTRes.TheKind); 4181 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4182 NameVals.push_back(Summary.TTRes.AlignLog2); 4183 NameVals.push_back(Summary.TTRes.SizeM1); 4184 NameVals.push_back(Summary.TTRes.BitMask); 4185 NameVals.push_back(Summary.TTRes.InlineBits); 4186 4187 for (auto &W : Summary.WPDRes) 4188 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4189 W.second); 4190 } 4191 4192 static void writeTypeIdCompatibleVtableSummaryRecord( 4193 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4194 StringRef Id, const TypeIdCompatibleVtableInfo &Summary, 4195 ValueEnumerator &VE) { 4196 NameVals.push_back(StrtabBuilder.add(Id)); 4197 NameVals.push_back(Id.size()); 4198 4199 for (auto &P : Summary) { 4200 NameVals.push_back(P.AddressPointOffset); 4201 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4202 } 4203 } 4204 4205 // Adds the allocation contexts to the CallStacks map. We simply use the 4206 // size at the time the context was added as the CallStackId. This works because 4207 // when we look up the call stacks later on we process the function summaries 4208 // and their allocation records in the same exact order. 4209 static void collectMemProfCallStacks( 4210 FunctionSummary *FS, std::function<LinearFrameId(unsigned)> GetStackIndex, 4211 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> &CallStacks) { 4212 // The interfaces in ProfileData/MemProf.h use a type alias for a stack frame 4213 // id offset into the index of the full stack frames. The ModuleSummaryIndex 4214 // currently uses unsigned. Make sure these stay in sync. 4215 static_assert(std::is_same_v<LinearFrameId, unsigned>); 4216 for (auto &AI : FS->allocs()) { 4217 for (auto &MIB : AI.MIBs) { 4218 SmallVector<unsigned> StackIdIndices; 4219 StackIdIndices.reserve(MIB.StackIdIndices.size()); 4220 for (auto Id : MIB.StackIdIndices) 4221 StackIdIndices.push_back(GetStackIndex(Id)); 4222 // The CallStackId is the size at the time this context was inserted. 4223 CallStacks.insert({CallStacks.size(), StackIdIndices}); 4224 } 4225 } 4226 } 4227 4228 // Build the radix tree from the accumulated CallStacks, write out the resulting 4229 // linearized radix tree array, and return the map of call stack positions into 4230 // this array for use when writing the allocation records. The returned map is 4231 // indexed by a CallStackId which in this case is implicitly determined by the 4232 // order of function summaries and their allocation infos being written. 4233 static DenseMap<CallStackId, LinearCallStackId> writeMemoryProfileRadixTree( 4234 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> &&CallStacks, 4235 BitstreamWriter &Stream, unsigned RadixAbbrev) { 4236 assert(!CallStacks.empty()); 4237 DenseMap<unsigned, FrameStat> FrameHistogram = 4238 computeFrameHistogram<LinearFrameId>(CallStacks); 4239 CallStackRadixTreeBuilder<LinearFrameId> Builder; 4240 // We don't need a MemProfFrameIndexes map as we have already converted the 4241 // full stack id hash to a linear offset into the StackIds array. 4242 Builder.build(std::move(CallStacks), /*MemProfFrameIndexes=*/nullptr, 4243 FrameHistogram); 4244 Stream.EmitRecord(bitc::FS_CONTEXT_RADIX_TREE_ARRAY, Builder.getRadixArray(), 4245 RadixAbbrev); 4246 return Builder.takeCallStackPos(); 4247 } 4248 4249 static void writeFunctionHeapProfileRecords( 4250 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4251 unsigned AllocAbbrev, unsigned ContextIdAbbvId, bool PerModule, 4252 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4253 std::function<unsigned(unsigned)> GetStackIndex, 4254 bool WriteContextSizeInfoIndex, 4255 DenseMap<CallStackId, LinearCallStackId> &CallStackPos, 4256 CallStackId &CallStackCount) { 4257 SmallVector<uint64_t> Record; 4258 4259 for (auto &CI : FS->callsites()) { 4260 Record.clear(); 4261 // Per module callsite clones should always have a single entry of 4262 // value 0. 4263 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4264 Record.push_back(GetValueID(CI.Callee)); 4265 if (!PerModule) { 4266 Record.push_back(CI.StackIdIndices.size()); 4267 Record.push_back(CI.Clones.size()); 4268 } 4269 for (auto Id : CI.StackIdIndices) 4270 Record.push_back(GetStackIndex(Id)); 4271 if (!PerModule) { 4272 for (auto V : CI.Clones) 4273 Record.push_back(V); 4274 } 4275 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4276 : bitc::FS_COMBINED_CALLSITE_INFO, 4277 Record, CallsiteAbbrev); 4278 } 4279 4280 for (auto &AI : FS->allocs()) { 4281 Record.clear(); 4282 // Per module alloc versions should always have a single entry of 4283 // value 0. 4284 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4285 Record.push_back(AI.MIBs.size()); 4286 if (!PerModule) 4287 Record.push_back(AI.Versions.size()); 4288 for (auto &MIB : AI.MIBs) { 4289 Record.push_back((uint8_t)MIB.AllocType); 4290 // Record the index into the radix tree array for this context. 4291 assert(CallStackCount <= CallStackPos.size()); 4292 Record.push_back(CallStackPos[CallStackCount++]); 4293 } 4294 if (!PerModule) { 4295 for (auto V : AI.Versions) 4296 Record.push_back(V); 4297 } 4298 assert(AI.ContextSizeInfos.empty() || 4299 AI.ContextSizeInfos.size() == AI.MIBs.size()); 4300 // Optionally emit the context size information if it exists. 4301 if (WriteContextSizeInfoIndex && !AI.ContextSizeInfos.empty()) { 4302 // The abbreviation id for the context ids record should have been created 4303 // if we are emitting the per-module index, which is where we write this 4304 // info. 4305 assert(ContextIdAbbvId); 4306 SmallVector<uint32_t> ContextIds; 4307 // At least one context id per ContextSizeInfos entry (MIB), broken into 2 4308 // halves. 4309 ContextIds.reserve(AI.ContextSizeInfos.size() * 2); 4310 for (auto &Infos : AI.ContextSizeInfos) { 4311 Record.push_back(Infos.size()); 4312 for (auto [FullStackId, TotalSize] : Infos) { 4313 // The context ids are emitted separately as a fixed width array, 4314 // which is more efficient than a VBR given that these hashes are 4315 // typically close to 64-bits. The max fixed width entry is 32 bits so 4316 // it is split into 2. 4317 ContextIds.push_back(static_cast<uint32_t>(FullStackId >> 32)); 4318 ContextIds.push_back(static_cast<uint32_t>(FullStackId)); 4319 Record.push_back(TotalSize); 4320 } 4321 } 4322 // The context ids are expected by the reader to immediately precede the 4323 // associated alloc info record. 4324 Stream.EmitRecord(bitc::FS_ALLOC_CONTEXT_IDS, ContextIds, 4325 ContextIdAbbvId); 4326 } 4327 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4328 : bitc::FS_COMBINED_ALLOC_INFO, 4329 Record, AllocAbbrev); 4330 } 4331 } 4332 4333 // Helper to emit a single function summary record. 4334 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4335 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4336 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4337 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4338 unsigned AllocAbbrev, unsigned ContextIdAbbvId, const Function &F, 4339 DenseMap<CallStackId, LinearCallStackId> &CallStackPos, 4340 CallStackId &CallStackCount) { 4341 NameVals.push_back(ValueID); 4342 4343 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4344 4345 writeFunctionTypeMetadataRecords( 4346 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4347 return {VE.getValueID(VI.getValue())}; 4348 }); 4349 4350 writeFunctionHeapProfileRecords( 4351 Stream, FS, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId, 4352 /*PerModule*/ true, 4353 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4354 /*GetStackIndex*/ [&](unsigned I) { return I; }, 4355 /*WriteContextSizeInfoIndex*/ true, CallStackPos, CallStackCount); 4356 4357 auto SpecialRefCnts = FS->specialRefCounts(); 4358 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4359 NameVals.push_back(FS->instCount()); 4360 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4361 NameVals.push_back(FS->refs().size()); 4362 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4363 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4364 4365 for (auto &RI : FS->refs()) 4366 NameVals.push_back(getValueId(RI)); 4367 4368 const bool UseRelBFRecord = 4369 WriteRelBFToSummary && !F.hasProfileData() && 4370 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4371 for (auto &ECI : FS->calls()) { 4372 NameVals.push_back(getValueId(ECI.first)); 4373 if (UseRelBFRecord) 4374 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4375 else 4376 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4377 } 4378 4379 unsigned FSAbbrev = 4380 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4381 unsigned Code = 4382 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4383 4384 // Emit the finished record. 4385 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4386 NameVals.clear(); 4387 } 4388 4389 // Collect the global value references in the given variable's initializer, 4390 // and emit them in a summary record. 4391 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4392 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4393 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4394 auto VI = Index->getValueInfo(V.getGUID()); 4395 if (!VI || VI.getSummaryList().empty()) { 4396 // Only declarations should not have a summary (a declaration might however 4397 // have a summary if the def was in module level asm). 4398 assert(V.isDeclaration()); 4399 return; 4400 } 4401 auto *Summary = VI.getSummaryList()[0].get(); 4402 NameVals.push_back(VE.getValueID(&V)); 4403 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4404 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4405 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4406 4407 auto VTableFuncs = VS->vTableFuncs(); 4408 if (!VTableFuncs.empty()) 4409 NameVals.push_back(VS->refs().size()); 4410 4411 unsigned SizeBeforeRefs = NameVals.size(); 4412 for (auto &RI : VS->refs()) 4413 NameVals.push_back(VE.getValueID(RI.getValue())); 4414 // Sort the refs for determinism output, the vector returned by FS->refs() has 4415 // been initialized from a DenseSet. 4416 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4417 4418 if (VTableFuncs.empty()) 4419 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4420 FSModRefsAbbrev); 4421 else { 4422 // VTableFuncs pairs should already be sorted by offset. 4423 for (auto &P : VTableFuncs) { 4424 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4425 NameVals.push_back(P.VTableOffset); 4426 } 4427 4428 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4429 FSModVTableRefsAbbrev); 4430 } 4431 NameVals.clear(); 4432 } 4433 4434 /// Emit the per-module summary section alongside the rest of 4435 /// the module's bitcode. 4436 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4437 // By default we compile with ThinLTO if the module has a summary, but the 4438 // client can request full LTO with a module flag. 4439 bool IsThinLTO = true; 4440 if (auto *MD = 4441 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4442 IsThinLTO = MD->getZExtValue(); 4443 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4444 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4445 4); 4446 4447 Stream.EmitRecord( 4448 bitc::FS_VERSION, 4449 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4450 4451 // Write the index flags. 4452 uint64_t Flags = 0; 4453 // Bits 1-3 are set only in the combined index, skip them. 4454 if (Index->enableSplitLTOUnit()) 4455 Flags |= 0x8; 4456 if (Index->hasUnifiedLTO()) 4457 Flags |= 0x200; 4458 4459 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4460 4461 if (Index->begin() == Index->end()) { 4462 Stream.ExitBlock(); 4463 return; 4464 } 4465 4466 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4467 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4469 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4472 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4473 4474 for (const auto &GVI : valueIds()) { 4475 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4476 ArrayRef<uint32_t>{GVI.second, 4477 static_cast<uint32_t>(GVI.first >> 32), 4478 static_cast<uint32_t>(GVI.first)}, 4479 ValueGuidAbbrev); 4480 } 4481 4482 if (!Index->stackIds().empty()) { 4483 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4484 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4485 // numids x stackid 4486 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4487 // The stack ids are hashes that are close to 64 bits in size, so emitting 4488 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4489 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4490 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4491 SmallVector<uint32_t> Vals; 4492 Vals.reserve(Index->stackIds().size() * 2); 4493 for (auto Id : Index->stackIds()) { 4494 Vals.push_back(static_cast<uint32_t>(Id >> 32)); 4495 Vals.push_back(static_cast<uint32_t>(Id)); 4496 } 4497 Stream.EmitRecord(bitc::FS_STACK_IDS, Vals, StackIdAbbvId); 4498 } 4499 4500 // n x context id 4501 auto ContextIdAbbv = std::make_shared<BitCodeAbbrev>(); 4502 ContextIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_ALLOC_CONTEXT_IDS)); 4503 ContextIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4504 // The context ids are hashes that are close to 64 bits in size, so emitting 4505 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4506 ContextIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4507 unsigned ContextIdAbbvId = Stream.EmitAbbrev(std::move(ContextIdAbbv)); 4508 4509 // Abbrev for FS_PERMODULE_PROFILE. 4510 Abbv = std::make_shared<BitCodeAbbrev>(); 4511 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4519 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4522 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4523 4524 // Abbrev for FS_PERMODULE_RELBF. 4525 Abbv = std::make_shared<BitCodeAbbrev>(); 4526 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4534 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4537 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4538 4539 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4540 Abbv = std::make_shared<BitCodeAbbrev>(); 4541 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4546 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4547 4548 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4549 Abbv = std::make_shared<BitCodeAbbrev>(); 4550 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4554 // numrefs x valueid, n x (valueid , offset) 4555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4557 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4558 4559 // Abbrev for FS_ALIAS. 4560 Abbv = std::make_shared<BitCodeAbbrev>(); 4561 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4565 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4566 4567 // Abbrev for FS_TYPE_ID_METADATA 4568 Abbv = std::make_shared<BitCodeAbbrev>(); 4569 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4572 // n x (valueid , offset) 4573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4575 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4576 4577 Abbv = std::make_shared<BitCodeAbbrev>(); 4578 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4580 // n x stackidindex 4581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4583 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4584 4585 Abbv = std::make_shared<BitCodeAbbrev>(); 4586 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4588 // n x (alloc type, context radix tree index) 4589 // optional: nummib x (numcontext x total size) 4590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4592 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4593 4594 Abbv = std::make_shared<BitCodeAbbrev>(); 4595 Abbv->Add(BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY)); 4596 // n x entry 4597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4599 unsigned RadixAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4600 4601 // First walk through all the functions and collect the allocation contexts in 4602 // their associated summaries, for use in constructing a radix tree of 4603 // contexts. Note that we need to do this in the same order as the functions 4604 // are processed further below since the call stack positions in the resulting 4605 // radix tree array are identified based on this order. 4606 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> CallStacks; 4607 for (const Function &F : M) { 4608 // Summary emission does not support anonymous functions, they have to be 4609 // renamed using the anonymous function renaming pass. 4610 if (!F.hasName()) 4611 report_fatal_error("Unexpected anonymous function when writing summary"); 4612 4613 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4614 if (!VI || VI.getSummaryList().empty()) { 4615 // Only declarations should not have a summary (a declaration might 4616 // however have a summary if the def was in module level asm). 4617 assert(F.isDeclaration()); 4618 continue; 4619 } 4620 auto *Summary = VI.getSummaryList()[0].get(); 4621 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4622 collectMemProfCallStacks( 4623 FS, /*GetStackIndex*/ [](unsigned I) { return I; }, CallStacks); 4624 } 4625 // Finalize the radix tree, write it out, and get the map of positions in the 4626 // linearized tree array. 4627 DenseMap<CallStackId, LinearCallStackId> CallStackPos; 4628 if (!CallStacks.empty()) { 4629 CallStackPos = 4630 writeMemoryProfileRadixTree(std::move(CallStacks), Stream, RadixAbbrev); 4631 } 4632 4633 // Keep track of the current index into the CallStackPos map. 4634 CallStackId CallStackCount = 0; 4635 4636 SmallVector<uint64_t, 64> NameVals; 4637 // Iterate over the list of functions instead of the Index to 4638 // ensure the ordering is stable. 4639 for (const Function &F : M) { 4640 // Summary emission does not support anonymous functions, they have to 4641 // renamed using the anonymous function renaming pass. 4642 if (!F.hasName()) 4643 report_fatal_error("Unexpected anonymous function when writing summary"); 4644 4645 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4646 if (!VI || VI.getSummaryList().empty()) { 4647 // Only declarations should not have a summary (a declaration might 4648 // however have a summary if the def was in module level asm). 4649 assert(F.isDeclaration()); 4650 continue; 4651 } 4652 auto *Summary = VI.getSummaryList()[0].get(); 4653 writePerModuleFunctionSummaryRecord( 4654 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4655 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId, F, 4656 CallStackPos, CallStackCount); 4657 } 4658 4659 // Capture references from GlobalVariable initializers, which are outside 4660 // of a function scope. 4661 for (const GlobalVariable &G : M.globals()) 4662 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4663 FSModVTableRefsAbbrev); 4664 4665 for (const GlobalAlias &A : M.aliases()) { 4666 auto *Aliasee = A.getAliaseeObject(); 4667 // Skip ifunc and nameless functions which don't have an entry in the 4668 // summary. 4669 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4670 continue; 4671 auto AliasId = VE.getValueID(&A); 4672 auto AliaseeId = VE.getValueID(Aliasee); 4673 NameVals.push_back(AliasId); 4674 auto *Summary = Index->getGlobalValueSummary(A); 4675 AliasSummary *AS = cast<AliasSummary>(Summary); 4676 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4677 NameVals.push_back(AliaseeId); 4678 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4679 NameVals.clear(); 4680 } 4681 4682 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4683 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4684 S.second, VE); 4685 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4686 TypeIdCompatibleVtableAbbrev); 4687 NameVals.clear(); 4688 } 4689 4690 if (Index->getBlockCount()) 4691 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4692 ArrayRef<uint64_t>{Index->getBlockCount()}); 4693 4694 Stream.ExitBlock(); 4695 } 4696 4697 /// Emit the combined summary section into the combined index file. 4698 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4699 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4700 Stream.EmitRecord( 4701 bitc::FS_VERSION, 4702 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4703 4704 // Write the index flags. 4705 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4706 4707 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4708 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4710 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4713 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4714 4715 for (const auto &GVI : valueIds()) { 4716 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4717 ArrayRef<uint32_t>{GVI.second, 4718 static_cast<uint32_t>(GVI.first >> 32), 4719 static_cast<uint32_t>(GVI.first)}, 4720 ValueGuidAbbrev); 4721 } 4722 4723 // Write the stack ids used by this index, which will be a subset of those in 4724 // the full index in the case of distributed indexes. 4725 if (!StackIds.empty()) { 4726 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4727 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4728 // numids x stackid 4729 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4730 // The stack ids are hashes that are close to 64 bits in size, so emitting 4731 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4732 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4733 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4734 SmallVector<uint32_t> Vals; 4735 Vals.reserve(StackIds.size() * 2); 4736 for (auto Id : StackIds) { 4737 Vals.push_back(static_cast<uint32_t>(Id >> 32)); 4738 Vals.push_back(static_cast<uint32_t>(Id)); 4739 } 4740 Stream.EmitRecord(bitc::FS_STACK_IDS, Vals, StackIdAbbvId); 4741 } 4742 4743 // Abbrev for FS_COMBINED_PROFILE. 4744 Abbv = std::make_shared<BitCodeAbbrev>(); 4745 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4755 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4758 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4759 4760 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4761 Abbv = std::make_shared<BitCodeAbbrev>(); 4762 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4768 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4769 4770 // Abbrev for FS_COMBINED_ALIAS. 4771 Abbv = std::make_shared<BitCodeAbbrev>(); 4772 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4777 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4778 4779 Abbv = std::make_shared<BitCodeAbbrev>(); 4780 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4784 // numstackindices x stackidindex, numver x version 4785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4787 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4788 4789 Abbv = std::make_shared<BitCodeAbbrev>(); 4790 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4793 // nummib x (alloc type, context radix tree index), 4794 // numver x version 4795 // optional: nummib x total size 4796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4798 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4799 4800 Abbv = std::make_shared<BitCodeAbbrev>(); 4801 Abbv->Add(BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY)); 4802 // n x entry 4803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4805 unsigned RadixAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4806 4807 auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool { 4808 if (DecSummaries == nullptr) 4809 return false; 4810 return DecSummaries->count(GVS); 4811 }; 4812 4813 // The aliases are emitted as a post-pass, and will point to the value 4814 // id of the aliasee. Save them in a vector for post-processing. 4815 SmallVector<AliasSummary *, 64> Aliases; 4816 4817 // Save the value id for each summary for alias emission. 4818 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4819 4820 SmallVector<uint64_t, 64> NameVals; 4821 4822 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4823 // with the type ids referenced by this index file. 4824 std::set<GlobalValue::GUID> ReferencedTypeIds; 4825 4826 // For local linkage, we also emit the original name separately 4827 // immediately after the record. 4828 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4829 // We don't need to emit the original name if we are writing the index for 4830 // distributed backends (in which case ModuleToSummariesForIndex is 4831 // non-null). The original name is only needed during the thin link, since 4832 // for SamplePGO the indirect call targets for local functions have 4833 // have the original name annotated in profile. 4834 // Continue to emit it when writing out the entire combined index, which is 4835 // used in testing the thin link via llvm-lto. 4836 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4837 return; 4838 NameVals.push_back(S.getOriginalName()); 4839 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4840 NameVals.clear(); 4841 }; 4842 4843 // First walk through all the functions and collect the allocation contexts in 4844 // their associated summaries, for use in constructing a radix tree of 4845 // contexts. Note that we need to do this in the same order as the functions 4846 // are processed further below since the call stack positions in the resulting 4847 // radix tree array are identified based on this order. 4848 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> CallStacks; 4849 forEachSummary([&](GVInfo I, bool IsAliasee) { 4850 GlobalValueSummary *S = I.second; 4851 assert(S); 4852 auto *FS = dyn_cast<FunctionSummary>(S); 4853 if (!FS) 4854 return; 4855 collectMemProfCallStacks( 4856 FS, 4857 /*GetStackIndex*/ 4858 [&](unsigned I) { 4859 // Get the corresponding index into the list of StackIds actually 4860 // being written for this combined index (which may be a subset in 4861 // the case of distributed indexes). 4862 assert(StackIdIndicesToIndex.contains(I)); 4863 return StackIdIndicesToIndex[I]; 4864 }, 4865 CallStacks); 4866 }); 4867 // Finalize the radix tree, write it out, and get the map of positions in the 4868 // linearized tree array. 4869 DenseMap<CallStackId, LinearCallStackId> CallStackPos; 4870 if (!CallStacks.empty()) { 4871 CallStackPos = 4872 writeMemoryProfileRadixTree(std::move(CallStacks), Stream, RadixAbbrev); 4873 } 4874 4875 // Keep track of the current index into the CallStackPos map. 4876 CallStackId CallStackCount = 0; 4877 4878 DenseSet<GlobalValue::GUID> DefOrUseGUIDs; 4879 forEachSummary([&](GVInfo I, bool IsAliasee) { 4880 GlobalValueSummary *S = I.second; 4881 assert(S); 4882 DefOrUseGUIDs.insert(I.first); 4883 for (const ValueInfo &VI : S->refs()) 4884 DefOrUseGUIDs.insert(VI.getGUID()); 4885 4886 auto ValueId = getValueId(I.first); 4887 assert(ValueId); 4888 SummaryToValueIdMap[S] = *ValueId; 4889 4890 // If this is invoked for an aliasee, we want to record the above 4891 // mapping, but then not emit a summary entry (if the aliasee is 4892 // to be imported, we will invoke this separately with IsAliasee=false). 4893 if (IsAliasee) 4894 return; 4895 4896 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4897 // Will process aliases as a post-pass because the reader wants all 4898 // global to be loaded first. 4899 Aliases.push_back(AS); 4900 return; 4901 } 4902 4903 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4904 NameVals.push_back(*ValueId); 4905 assert(ModuleIdMap.count(VS->modulePath())); 4906 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4907 NameVals.push_back( 4908 getEncodedGVSummaryFlags(VS->flags(), shouldImportValueAsDecl(VS))); 4909 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4910 for (auto &RI : VS->refs()) { 4911 auto RefValueId = getValueId(RI.getGUID()); 4912 if (!RefValueId) 4913 continue; 4914 NameVals.push_back(*RefValueId); 4915 } 4916 4917 // Emit the finished record. 4918 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4919 FSModRefsAbbrev); 4920 NameVals.clear(); 4921 MaybeEmitOriginalName(*S); 4922 return; 4923 } 4924 4925 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4926 if (!VI) 4927 return std::nullopt; 4928 return getValueId(VI.getGUID()); 4929 }; 4930 4931 auto *FS = cast<FunctionSummary>(S); 4932 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4933 getReferencedTypeIds(FS, ReferencedTypeIds); 4934 4935 writeFunctionHeapProfileRecords( 4936 Stream, FS, CallsiteAbbrev, AllocAbbrev, /*ContextIdAbbvId*/ 0, 4937 /*PerModule*/ false, 4938 /*GetValueId*/ 4939 [&](const ValueInfo &VI) -> unsigned { 4940 std::optional<unsigned> ValueID = GetValueId(VI); 4941 // This can happen in shared index files for distributed ThinLTO if 4942 // the callee function summary is not included. Record 0 which we 4943 // will have to deal with conservatively when doing any kind of 4944 // validation in the ThinLTO backends. 4945 if (!ValueID) 4946 return 0; 4947 return *ValueID; 4948 }, 4949 /*GetStackIndex*/ 4950 [&](unsigned I) { 4951 // Get the corresponding index into the list of StackIds actually 4952 // being written for this combined index (which may be a subset in 4953 // the case of distributed indexes). 4954 assert(StackIdIndicesToIndex.contains(I)); 4955 return StackIdIndicesToIndex[I]; 4956 }, 4957 /*WriteContextSizeInfoIndex*/ false, CallStackPos, CallStackCount); 4958 4959 NameVals.push_back(*ValueId); 4960 assert(ModuleIdMap.count(FS->modulePath())); 4961 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4962 NameVals.push_back( 4963 getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS))); 4964 NameVals.push_back(FS->instCount()); 4965 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4966 // TODO: Stop writing entry count and bump bitcode version. 4967 NameVals.push_back(0 /* EntryCount */); 4968 4969 // Fill in below 4970 NameVals.push_back(0); // numrefs 4971 NameVals.push_back(0); // rorefcnt 4972 NameVals.push_back(0); // worefcnt 4973 4974 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4975 for (auto &RI : FS->refs()) { 4976 auto RefValueId = getValueId(RI.getGUID()); 4977 if (!RefValueId) 4978 continue; 4979 NameVals.push_back(*RefValueId); 4980 if (RI.isReadOnly()) 4981 RORefCnt++; 4982 else if (RI.isWriteOnly()) 4983 WORefCnt++; 4984 Count++; 4985 } 4986 NameVals[6] = Count; 4987 NameVals[7] = RORefCnt; 4988 NameVals[8] = WORefCnt; 4989 4990 for (auto &EI : FS->calls()) { 4991 // If this GUID doesn't have a value id, it doesn't have a function 4992 // summary and we don't need to record any calls to it. 4993 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4994 if (!CallValueId) 4995 continue; 4996 NameVals.push_back(*CallValueId); 4997 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4998 } 4999 5000 // Emit the finished record. 5001 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 5002 FSCallsProfileAbbrev); 5003 NameVals.clear(); 5004 MaybeEmitOriginalName(*S); 5005 }); 5006 5007 for (auto *AS : Aliases) { 5008 auto AliasValueId = SummaryToValueIdMap[AS]; 5009 assert(AliasValueId); 5010 NameVals.push_back(AliasValueId); 5011 assert(ModuleIdMap.count(AS->modulePath())); 5012 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 5013 NameVals.push_back( 5014 getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS))); 5015 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 5016 assert(AliaseeValueId); 5017 NameVals.push_back(AliaseeValueId); 5018 5019 // Emit the finished record. 5020 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 5021 NameVals.clear(); 5022 MaybeEmitOriginalName(*AS); 5023 5024 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 5025 getReferencedTypeIds(FS, ReferencedTypeIds); 5026 } 5027 5028 if (!Index.cfiFunctionDefs().empty()) { 5029 for (auto &S : Index.cfiFunctionDefs()) { 5030 if (DefOrUseGUIDs.contains( 5031 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 5032 NameVals.push_back(StrtabBuilder.add(S)); 5033 NameVals.push_back(S.size()); 5034 } 5035 } 5036 if (!NameVals.empty()) { 5037 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 5038 NameVals.clear(); 5039 } 5040 } 5041 5042 if (!Index.cfiFunctionDecls().empty()) { 5043 for (auto &S : Index.cfiFunctionDecls()) { 5044 if (DefOrUseGUIDs.contains( 5045 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 5046 NameVals.push_back(StrtabBuilder.add(S)); 5047 NameVals.push_back(S.size()); 5048 } 5049 } 5050 if (!NameVals.empty()) { 5051 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 5052 NameVals.clear(); 5053 } 5054 } 5055 5056 // Walk the GUIDs that were referenced, and write the 5057 // corresponding type id records. 5058 for (auto &T : ReferencedTypeIds) { 5059 auto TidIter = Index.typeIds().equal_range(T); 5060 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) { 5061 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, TypeIdPair.first, 5062 TypeIdPair.second); 5063 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 5064 NameVals.clear(); 5065 } 5066 } 5067 5068 if (Index.getBlockCount()) 5069 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 5070 ArrayRef<uint64_t>{Index.getBlockCount()}); 5071 5072 Stream.ExitBlock(); 5073 } 5074 5075 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 5076 /// current llvm version, and a record for the epoch number. 5077 static void writeIdentificationBlock(BitstreamWriter &Stream) { 5078 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 5079 5080 // Write the "user readable" string identifying the bitcode producer 5081 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5082 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 5083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 5085 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5086 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 5087 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 5088 5089 // Write the epoch version 5090 Abbv = std::make_shared<BitCodeAbbrev>(); 5091 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 5092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 5093 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5094 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 5095 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 5096 Stream.ExitBlock(); 5097 } 5098 5099 void ModuleBitcodeWriter::writeModuleHash(StringRef View) { 5100 // Emit the module's hash. 5101 // MODULE_CODE_HASH: [5*i32] 5102 if (GenerateHash) { 5103 uint32_t Vals[5]; 5104 Hasher.update(ArrayRef<uint8_t>( 5105 reinterpret_cast<const uint8_t *>(View.data()), View.size())); 5106 std::array<uint8_t, 20> Hash = Hasher.result(); 5107 for (int Pos = 0; Pos < 20; Pos += 4) { 5108 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 5109 } 5110 5111 // Emit the finished record. 5112 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 5113 5114 if (ModHash) 5115 // Save the written hash value. 5116 llvm::copy(Vals, std::begin(*ModHash)); 5117 } 5118 } 5119 5120 void ModuleBitcodeWriter::write() { 5121 writeIdentificationBlock(Stream); 5122 5123 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5124 // We will want to write the module hash at this point. Block any flushing so 5125 // we can have access to the whole underlying data later. 5126 Stream.markAndBlockFlushing(); 5127 5128 writeModuleVersion(); 5129 5130 // Emit blockinfo, which defines the standard abbreviations etc. 5131 writeBlockInfo(); 5132 5133 // Emit information describing all of the types in the module. 5134 writeTypeTable(); 5135 5136 // Emit information about attribute groups. 5137 writeAttributeGroupTable(); 5138 5139 // Emit information about parameter attributes. 5140 writeAttributeTable(); 5141 5142 writeComdats(); 5143 5144 // Emit top-level description of module, including target triple, inline asm, 5145 // descriptors for global variables, and function prototype info. 5146 writeModuleInfo(); 5147 5148 // Emit constants. 5149 writeModuleConstants(); 5150 5151 // Emit metadata kind names. 5152 writeModuleMetadataKinds(); 5153 5154 // Emit metadata. 5155 writeModuleMetadata(); 5156 5157 // Emit module-level use-lists. 5158 if (VE.shouldPreserveUseListOrder()) 5159 writeUseListBlock(nullptr); 5160 5161 writeOperandBundleTags(); 5162 writeSyncScopeNames(); 5163 5164 // Emit function bodies. 5165 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 5166 for (const Function &F : M) 5167 if (!F.isDeclaration()) 5168 writeFunction(F, FunctionToBitcodeIndex); 5169 5170 // Need to write after the above call to WriteFunction which populates 5171 // the summary information in the index. 5172 if (Index) 5173 writePerModuleGlobalValueSummary(); 5174 5175 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 5176 5177 writeModuleHash(Stream.getMarkedBufferAndResumeFlushing()); 5178 5179 Stream.ExitBlock(); 5180 } 5181 5182 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 5183 uint32_t &Position) { 5184 support::endian::write32le(&Buffer[Position], Value); 5185 Position += 4; 5186 } 5187 5188 /// If generating a bc file on darwin, we have to emit a 5189 /// header and trailer to make it compatible with the system archiver. To do 5190 /// this we emit the following header, and then emit a trailer that pads the 5191 /// file out to be a multiple of 16 bytes. 5192 /// 5193 /// struct bc_header { 5194 /// uint32_t Magic; // 0x0B17C0DE 5195 /// uint32_t Version; // Version, currently always 0. 5196 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 5197 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 5198 /// uint32_t CPUType; // CPU specifier. 5199 /// ... potentially more later ... 5200 /// }; 5201 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 5202 const Triple &TT) { 5203 unsigned CPUType = ~0U; 5204 5205 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 5206 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 5207 // number from /usr/include/mach/machine.h. It is ok to reproduce the 5208 // specific constants here because they are implicitly part of the Darwin ABI. 5209 enum { 5210 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 5211 DARWIN_CPU_TYPE_X86 = 7, 5212 DARWIN_CPU_TYPE_ARM = 12, 5213 DARWIN_CPU_TYPE_POWERPC = 18 5214 }; 5215 5216 Triple::ArchType Arch = TT.getArch(); 5217 if (Arch == Triple::x86_64) 5218 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 5219 else if (Arch == Triple::x86) 5220 CPUType = DARWIN_CPU_TYPE_X86; 5221 else if (Arch == Triple::ppc) 5222 CPUType = DARWIN_CPU_TYPE_POWERPC; 5223 else if (Arch == Triple::ppc64) 5224 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 5225 else if (Arch == Triple::arm || Arch == Triple::thumb) 5226 CPUType = DARWIN_CPU_TYPE_ARM; 5227 5228 // Traditional Bitcode starts after header. 5229 assert(Buffer.size() >= BWH_HeaderSize && 5230 "Expected header size to be reserved"); 5231 unsigned BCOffset = BWH_HeaderSize; 5232 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 5233 5234 // Write the magic and version. 5235 unsigned Position = 0; 5236 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 5237 writeInt32ToBuffer(0, Buffer, Position); // Version. 5238 writeInt32ToBuffer(BCOffset, Buffer, Position); 5239 writeInt32ToBuffer(BCSize, Buffer, Position); 5240 writeInt32ToBuffer(CPUType, Buffer, Position); 5241 5242 // If the file is not a multiple of 16 bytes, insert dummy padding. 5243 while (Buffer.size() & 15) 5244 Buffer.push_back(0); 5245 } 5246 5247 /// Helper to write the header common to all bitcode files. 5248 static void writeBitcodeHeader(BitstreamWriter &Stream) { 5249 // Emit the file header. 5250 Stream.Emit((unsigned)'B', 8); 5251 Stream.Emit((unsigned)'C', 8); 5252 Stream.Emit(0x0, 4); 5253 Stream.Emit(0xC, 4); 5254 Stream.Emit(0xE, 4); 5255 Stream.Emit(0xD, 4); 5256 } 5257 5258 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 5259 : Stream(new BitstreamWriter(Buffer)) { 5260 writeBitcodeHeader(*Stream); 5261 } 5262 5263 BitcodeWriter::BitcodeWriter(raw_ostream &FS) 5264 : Stream(new BitstreamWriter(FS, FlushThreshold)) { 5265 writeBitcodeHeader(*Stream); 5266 } 5267 5268 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 5269 5270 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 5271 Stream->EnterSubblock(Block, 3); 5272 5273 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5274 Abbv->Add(BitCodeAbbrevOp(Record)); 5275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 5276 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 5277 5278 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 5279 5280 Stream->ExitBlock(); 5281 } 5282 5283 void BitcodeWriter::writeSymtab() { 5284 assert(!WroteStrtab && !WroteSymtab); 5285 5286 // If any module has module-level inline asm, we will require a registered asm 5287 // parser for the target so that we can create an accurate symbol table for 5288 // the module. 5289 for (Module *M : Mods) { 5290 if (M->getModuleInlineAsm().empty()) 5291 continue; 5292 5293 std::string Err; 5294 const Triple TT(M->getTargetTriple()); 5295 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 5296 if (!T || !T->hasMCAsmParser()) 5297 return; 5298 } 5299 5300 WroteSymtab = true; 5301 SmallVector<char, 0> Symtab; 5302 // The irsymtab::build function may be unable to create a symbol table if the 5303 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 5304 // table is not required for correctness, but we still want to be able to 5305 // write malformed modules to bitcode files, so swallow the error. 5306 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 5307 consumeError(std::move(E)); 5308 return; 5309 } 5310 5311 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 5312 {Symtab.data(), Symtab.size()}); 5313 } 5314 5315 void BitcodeWriter::writeStrtab() { 5316 assert(!WroteStrtab); 5317 5318 std::vector<char> Strtab; 5319 StrtabBuilder.finalizeInOrder(); 5320 Strtab.resize(StrtabBuilder.getSize()); 5321 StrtabBuilder.write((uint8_t *)Strtab.data()); 5322 5323 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 5324 {Strtab.data(), Strtab.size()}); 5325 5326 WroteStrtab = true; 5327 } 5328 5329 void BitcodeWriter::copyStrtab(StringRef Strtab) { 5330 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 5331 WroteStrtab = true; 5332 } 5333 5334 void BitcodeWriter::writeModule(const Module &M, 5335 bool ShouldPreserveUseListOrder, 5336 const ModuleSummaryIndex *Index, 5337 bool GenerateHash, ModuleHash *ModHash) { 5338 assert(!WroteStrtab); 5339 5340 // The Mods vector is used by irsymtab::build, which requires non-const 5341 // Modules in case it needs to materialize metadata. But the bitcode writer 5342 // requires that the module is materialized, so we can cast to non-const here, 5343 // after checking that it is in fact materialized. 5344 assert(M.isMaterialized()); 5345 Mods.push_back(const_cast<Module *>(&M)); 5346 5347 ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream, 5348 ShouldPreserveUseListOrder, Index, 5349 GenerateHash, ModHash); 5350 ModuleWriter.write(); 5351 } 5352 5353 void BitcodeWriter::writeIndex( 5354 const ModuleSummaryIndex *Index, 5355 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5356 const GVSummaryPtrSet *DecSummaries) { 5357 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries, 5358 ModuleToSummariesForIndex); 5359 IndexWriter.write(); 5360 } 5361 5362 /// Write the specified module to the specified output stream. 5363 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5364 bool ShouldPreserveUseListOrder, 5365 const ModuleSummaryIndex *Index, 5366 bool GenerateHash, ModuleHash *ModHash) { 5367 auto Write = [&](BitcodeWriter &Writer) { 5368 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5369 ModHash); 5370 Writer.writeSymtab(); 5371 Writer.writeStrtab(); 5372 }; 5373 Triple TT(M.getTargetTriple()); 5374 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) { 5375 // If this is darwin or another generic macho target, reserve space for the 5376 // header. Note that the header is computed *after* the output is known, so 5377 // we currently explicitly use a buffer, write to it, and then subsequently 5378 // flush to Out. 5379 SmallVector<char, 0> Buffer; 5380 Buffer.reserve(256 * 1024); 5381 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5382 BitcodeWriter Writer(Buffer); 5383 Write(Writer); 5384 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5385 Out.write(Buffer.data(), Buffer.size()); 5386 } else { 5387 BitcodeWriter Writer(Out); 5388 Write(Writer); 5389 } 5390 } 5391 5392 void IndexBitcodeWriter::write() { 5393 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5394 5395 writeModuleVersion(); 5396 5397 // Write the module paths in the combined index. 5398 writeModStrings(); 5399 5400 // Write the summary combined index records. 5401 writeCombinedGlobalValueSummary(); 5402 5403 Stream.ExitBlock(); 5404 } 5405 5406 // Write the specified module summary index to the given raw output stream, 5407 // where it will be written in a new bitcode block. This is used when 5408 // writing the combined index file for ThinLTO. When writing a subset of the 5409 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5410 void llvm::writeIndexToFile( 5411 const ModuleSummaryIndex &Index, raw_ostream &Out, 5412 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5413 const GVSummaryPtrSet *DecSummaries) { 5414 SmallVector<char, 0> Buffer; 5415 Buffer.reserve(256 * 1024); 5416 5417 BitcodeWriter Writer(Buffer); 5418 Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries); 5419 Writer.writeStrtab(); 5420 5421 Out.write((char *)&Buffer.front(), Buffer.size()); 5422 } 5423 5424 namespace { 5425 5426 /// Class to manage the bitcode writing for a thin link bitcode file. 5427 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5428 /// ModHash is for use in ThinLTO incremental build, generated while writing 5429 /// the module bitcode file. 5430 const ModuleHash *ModHash; 5431 5432 public: 5433 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5434 BitstreamWriter &Stream, 5435 const ModuleSummaryIndex &Index, 5436 const ModuleHash &ModHash) 5437 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5438 /*ShouldPreserveUseListOrder=*/false, &Index), 5439 ModHash(&ModHash) {} 5440 5441 void write(); 5442 5443 private: 5444 void writeSimplifiedModuleInfo(); 5445 }; 5446 5447 } // end anonymous namespace 5448 5449 // This function writes a simpilified module info for thin link bitcode file. 5450 // It only contains the source file name along with the name(the offset and 5451 // size in strtab) and linkage for global values. For the global value info 5452 // entry, in order to keep linkage at offset 5, there are three zeros used 5453 // as padding. 5454 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5455 SmallVector<unsigned, 64> Vals; 5456 // Emit the module's source file name. 5457 { 5458 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5459 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5460 if (Bits == SE_Char6) 5461 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5462 else if (Bits == SE_Fixed7) 5463 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5464 5465 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5466 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5467 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5469 Abbv->Add(AbbrevOpToUse); 5470 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5471 5472 for (const auto P : M.getSourceFileName()) 5473 Vals.push_back((unsigned char)P); 5474 5475 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5476 Vals.clear(); 5477 } 5478 5479 // Emit the global variable information. 5480 for (const GlobalVariable &GV : M.globals()) { 5481 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5482 Vals.push_back(StrtabBuilder.add(GV.getName())); 5483 Vals.push_back(GV.getName().size()); 5484 Vals.push_back(0); 5485 Vals.push_back(0); 5486 Vals.push_back(0); 5487 Vals.push_back(getEncodedLinkage(GV)); 5488 5489 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5490 Vals.clear(); 5491 } 5492 5493 // Emit the function proto information. 5494 for (const Function &F : M) { 5495 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5496 Vals.push_back(StrtabBuilder.add(F.getName())); 5497 Vals.push_back(F.getName().size()); 5498 Vals.push_back(0); 5499 Vals.push_back(0); 5500 Vals.push_back(0); 5501 Vals.push_back(getEncodedLinkage(F)); 5502 5503 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5504 Vals.clear(); 5505 } 5506 5507 // Emit the alias information. 5508 for (const GlobalAlias &A : M.aliases()) { 5509 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5510 Vals.push_back(StrtabBuilder.add(A.getName())); 5511 Vals.push_back(A.getName().size()); 5512 Vals.push_back(0); 5513 Vals.push_back(0); 5514 Vals.push_back(0); 5515 Vals.push_back(getEncodedLinkage(A)); 5516 5517 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5518 Vals.clear(); 5519 } 5520 5521 // Emit the ifunc information. 5522 for (const GlobalIFunc &I : M.ifuncs()) { 5523 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5524 Vals.push_back(StrtabBuilder.add(I.getName())); 5525 Vals.push_back(I.getName().size()); 5526 Vals.push_back(0); 5527 Vals.push_back(0); 5528 Vals.push_back(0); 5529 Vals.push_back(getEncodedLinkage(I)); 5530 5531 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5532 Vals.clear(); 5533 } 5534 } 5535 5536 void ThinLinkBitcodeWriter::write() { 5537 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5538 5539 writeModuleVersion(); 5540 5541 writeSimplifiedModuleInfo(); 5542 5543 writePerModuleGlobalValueSummary(); 5544 5545 // Write module hash. 5546 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5547 5548 Stream.ExitBlock(); 5549 } 5550 5551 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5552 const ModuleSummaryIndex &Index, 5553 const ModuleHash &ModHash) { 5554 assert(!WroteStrtab); 5555 5556 // The Mods vector is used by irsymtab::build, which requires non-const 5557 // Modules in case it needs to materialize metadata. But the bitcode writer 5558 // requires that the module is materialized, so we can cast to non-const here, 5559 // after checking that it is in fact materialized. 5560 assert(M.isMaterialized()); 5561 Mods.push_back(const_cast<Module *>(&M)); 5562 5563 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5564 ModHash); 5565 ThinLinkWriter.write(); 5566 } 5567 5568 // Write the specified thin link bitcode file to the given raw output stream, 5569 // where it will be written in a new bitcode block. This is used when 5570 // writing the per-module index file for ThinLTO. 5571 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5572 const ModuleSummaryIndex &Index, 5573 const ModuleHash &ModHash) { 5574 SmallVector<char, 0> Buffer; 5575 Buffer.reserve(256 * 1024); 5576 5577 BitcodeWriter Writer(Buffer); 5578 Writer.writeThinLinkBitcode(M, Index, ModHash); 5579 Writer.writeSymtab(); 5580 Writer.writeStrtab(); 5581 5582 Out.write((char *)&Buffer.front(), Buffer.size()); 5583 } 5584 5585 static const char *getSectionNameForBitcode(const Triple &T) { 5586 switch (T.getObjectFormat()) { 5587 case Triple::MachO: 5588 return "__LLVM,__bitcode"; 5589 case Triple::COFF: 5590 case Triple::ELF: 5591 case Triple::Wasm: 5592 case Triple::UnknownObjectFormat: 5593 return ".llvmbc"; 5594 case Triple::GOFF: 5595 llvm_unreachable("GOFF is not yet implemented"); 5596 break; 5597 case Triple::SPIRV: 5598 if (T.getVendor() == Triple::AMD) 5599 return ".llvmbc"; 5600 llvm_unreachable("SPIRV is not yet implemented"); 5601 break; 5602 case Triple::XCOFF: 5603 llvm_unreachable("XCOFF is not yet implemented"); 5604 break; 5605 case Triple::DXContainer: 5606 llvm_unreachable("DXContainer is not yet implemented"); 5607 break; 5608 } 5609 llvm_unreachable("Unimplemented ObjectFormatType"); 5610 } 5611 5612 static const char *getSectionNameForCommandline(const Triple &T) { 5613 switch (T.getObjectFormat()) { 5614 case Triple::MachO: 5615 return "__LLVM,__cmdline"; 5616 case Triple::COFF: 5617 case Triple::ELF: 5618 case Triple::Wasm: 5619 case Triple::UnknownObjectFormat: 5620 return ".llvmcmd"; 5621 case Triple::GOFF: 5622 llvm_unreachable("GOFF is not yet implemented"); 5623 break; 5624 case Triple::SPIRV: 5625 if (T.getVendor() == Triple::AMD) 5626 return ".llvmcmd"; 5627 llvm_unreachable("SPIRV is not yet implemented"); 5628 break; 5629 case Triple::XCOFF: 5630 llvm_unreachable("XCOFF is not yet implemented"); 5631 break; 5632 case Triple::DXContainer: 5633 llvm_unreachable("DXC is not yet implemented"); 5634 break; 5635 } 5636 llvm_unreachable("Unimplemented ObjectFormatType"); 5637 } 5638 5639 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5640 bool EmbedBitcode, bool EmbedCmdline, 5641 const std::vector<uint8_t> &CmdArgs) { 5642 // Save llvm.compiler.used and remove it. 5643 SmallVector<Constant *, 2> UsedArray; 5644 SmallVector<GlobalValue *, 4> UsedGlobals; 5645 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5646 Type *UsedElementType = Used ? Used->getValueType()->getArrayElementType() 5647 : PointerType::getUnqual(M.getContext()); 5648 for (auto *GV : UsedGlobals) { 5649 if (GV->getName() != "llvm.embedded.module" && 5650 GV->getName() != "llvm.cmdline") 5651 UsedArray.push_back( 5652 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5653 } 5654 if (Used) 5655 Used->eraseFromParent(); 5656 5657 // Embed the bitcode for the llvm module. 5658 std::string Data; 5659 ArrayRef<uint8_t> ModuleData; 5660 Triple T(M.getTargetTriple()); 5661 5662 if (EmbedBitcode) { 5663 if (Buf.getBufferSize() == 0 || 5664 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5665 (const unsigned char *)Buf.getBufferEnd())) { 5666 // If the input is LLVM Assembly, bitcode is produced by serializing 5667 // the module. Use-lists order need to be preserved in this case. 5668 llvm::raw_string_ostream OS(Data); 5669 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5670 ModuleData = 5671 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5672 } else 5673 // If the input is LLVM bitcode, write the input byte stream directly. 5674 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5675 Buf.getBufferSize()); 5676 } 5677 llvm::Constant *ModuleConstant = 5678 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5679 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5680 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5681 ModuleConstant); 5682 GV->setSection(getSectionNameForBitcode(T)); 5683 // Set alignment to 1 to prevent padding between two contributions from input 5684 // sections after linking. 5685 GV->setAlignment(Align(1)); 5686 UsedArray.push_back( 5687 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5688 if (llvm::GlobalVariable *Old = 5689 M.getGlobalVariable("llvm.embedded.module", true)) { 5690 assert(Old->hasZeroLiveUses() && 5691 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5692 GV->takeName(Old); 5693 Old->eraseFromParent(); 5694 } else { 5695 GV->setName("llvm.embedded.module"); 5696 } 5697 5698 // Skip if only bitcode needs to be embedded. 5699 if (EmbedCmdline) { 5700 // Embed command-line options. 5701 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5702 CmdArgs.size()); 5703 llvm::Constant *CmdConstant = 5704 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5705 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5706 llvm::GlobalValue::PrivateLinkage, 5707 CmdConstant); 5708 GV->setSection(getSectionNameForCommandline(T)); 5709 GV->setAlignment(Align(1)); 5710 UsedArray.push_back( 5711 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5712 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5713 assert(Old->hasZeroLiveUses() && 5714 "llvm.cmdline can only be used once in llvm.compiler.used"); 5715 GV->takeName(Old); 5716 Old->eraseFromParent(); 5717 } else { 5718 GV->setName("llvm.cmdline"); 5719 } 5720 } 5721 5722 if (UsedArray.empty()) 5723 return; 5724 5725 // Recreate llvm.compiler.used. 5726 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5727 auto *NewUsed = new GlobalVariable( 5728 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5729 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5730 NewUsed->setSection("llvm.metadata"); 5731 } 5732