1 //===--- Bitcode/Writer/Writer.cpp - Bitcode Writer -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/TypeSymbolTable.h" 22 #include "llvm/ValueSymbolTable.h" 23 #include "llvm/Support/MathExtras.h" 24 using namespace llvm; 25 26 static const unsigned CurVersion = 0; 27 28 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 29 switch (Opcode) { 30 default: assert(0 && "Unknown cast instruction!"); 31 case Instruction::Trunc : return bitc::CAST_TRUNC; 32 case Instruction::ZExt : return bitc::CAST_ZEXT; 33 case Instruction::SExt : return bitc::CAST_SEXT; 34 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 35 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 36 case Instruction::UIToFP : return bitc::CAST_UITOFP; 37 case Instruction::SIToFP : return bitc::CAST_SITOFP; 38 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 39 case Instruction::FPExt : return bitc::CAST_FPEXT; 40 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 41 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 42 case Instruction::BitCast : return bitc::CAST_BITCAST; 43 } 44 } 45 46 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 47 switch (Opcode) { 48 default: assert(0 && "Unknown binary instruction!"); 49 case Instruction::Add: return bitc::BINOP_ADD; 50 case Instruction::Sub: return bitc::BINOP_SUB; 51 case Instruction::Mul: return bitc::BINOP_MUL; 52 case Instruction::UDiv: return bitc::BINOP_UDIV; 53 case Instruction::FDiv: 54 case Instruction::SDiv: return bitc::BINOP_SDIV; 55 case Instruction::URem: return bitc::BINOP_UREM; 56 case Instruction::FRem: 57 case Instruction::SRem: return bitc::BINOP_SREM; 58 case Instruction::Shl: return bitc::BINOP_SHL; 59 case Instruction::LShr: return bitc::BINOP_LSHR; 60 case Instruction::AShr: return bitc::BINOP_ASHR; 61 case Instruction::And: return bitc::BINOP_AND; 62 case Instruction::Or: return bitc::BINOP_OR; 63 case Instruction::Xor: return bitc::BINOP_XOR; 64 } 65 } 66 67 68 69 static void WriteStringRecord(unsigned Code, const std::string &Str, 70 unsigned AbbrevToUse, BitstreamWriter &Stream) { 71 SmallVector<unsigned, 64> Vals; 72 73 // Code: [strlen, strchar x N] 74 Vals.push_back(Str.size()); 75 for (unsigned i = 0, e = Str.size(); i != e; ++i) 76 Vals.push_back(Str[i]); 77 78 // Emit the finished record. 79 Stream.EmitRecord(Code, Vals, AbbrevToUse); 80 } 81 82 83 /// WriteTypeTable - Write out the type table for a module. 84 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 85 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 86 87 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 88 SmallVector<uint64_t, 64> TypeVals; 89 90 // FIXME: Set up abbrevs now that we know the width of the type fields, etc. 91 92 // Emit an entry count so the reader can reserve space. 93 TypeVals.push_back(TypeList.size()); 94 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 95 TypeVals.clear(); 96 97 // Loop over all of the types, emitting each in turn. 98 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 99 const Type *T = TypeList[i].first; 100 int AbbrevToUse = 0; 101 unsigned Code = 0; 102 103 switch (T->getTypeID()) { 104 case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID. 105 default: assert(0 && "Unknown type!"); 106 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 107 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 108 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 109 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 110 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 111 case Type::IntegerTyID: 112 // INTEGER: [width] 113 Code = bitc::TYPE_CODE_INTEGER; 114 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 115 break; 116 case Type::PointerTyID: 117 // POINTER: [pointee type] 118 Code = bitc::TYPE_CODE_POINTER; 119 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 120 break; 121 122 case Type::FunctionTyID: { 123 const FunctionType *FT = cast<FunctionType>(T); 124 // FUNCTION: [isvararg, #pararms, paramty x N] 125 Code = bitc::TYPE_CODE_FUNCTION; 126 TypeVals.push_back(FT->isVarArg()); 127 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 128 // FIXME: PARAM ATTR ID! 129 TypeVals.push_back(FT->getNumParams()); 130 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 131 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 132 break; 133 } 134 case Type::StructTyID: { 135 const StructType *ST = cast<StructType>(T); 136 // STRUCT: [ispacked, #elts, eltty x N] 137 Code = bitc::TYPE_CODE_STRUCT; 138 TypeVals.push_back(ST->isPacked()); 139 TypeVals.push_back(ST->getNumElements()); 140 // Output all of the element types... 141 for (StructType::element_iterator I = ST->element_begin(), 142 E = ST->element_end(); I != E; ++I) 143 TypeVals.push_back(VE.getTypeID(*I)); 144 break; 145 } 146 case Type::ArrayTyID: { 147 const ArrayType *AT = cast<ArrayType>(T); 148 // ARRAY: [numelts, eltty] 149 Code = bitc::TYPE_CODE_ARRAY; 150 TypeVals.push_back(AT->getNumElements()); 151 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 152 break; 153 } 154 case Type::VectorTyID: { 155 const VectorType *VT = cast<VectorType>(T); 156 // VECTOR [numelts, eltty] 157 Code = bitc::TYPE_CODE_VECTOR; 158 TypeVals.push_back(VT->getNumElements()); 159 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 160 break; 161 } 162 } 163 164 // Emit the finished record. 165 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 166 TypeVals.clear(); 167 } 168 169 Stream.ExitBlock(); 170 } 171 172 static unsigned getEncodedLinkage(const GlobalValue *GV) { 173 switch (GV->getLinkage()) { 174 default: assert(0 && "Invalid linkage!"); 175 case GlobalValue::ExternalLinkage: return 0; 176 case GlobalValue::WeakLinkage: return 1; 177 case GlobalValue::AppendingLinkage: return 2; 178 case GlobalValue::InternalLinkage: return 3; 179 case GlobalValue::LinkOnceLinkage: return 4; 180 case GlobalValue::DLLImportLinkage: return 5; 181 case GlobalValue::DLLExportLinkage: return 6; 182 case GlobalValue::ExternalWeakLinkage: return 7; 183 } 184 } 185 186 static unsigned getEncodedVisibility(const GlobalValue *GV) { 187 switch (GV->getVisibility()) { 188 default: assert(0 && "Invalid visibility!"); 189 case GlobalValue::DefaultVisibility: return 0; 190 case GlobalValue::HiddenVisibility: return 1; 191 } 192 } 193 194 // Emit top-level description of module, including target triple, inline asm, 195 // descriptors for global variables, and function prototype info. 196 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 197 BitstreamWriter &Stream) { 198 // Emit the list of dependent libraries for the Module. 199 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 200 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 201 202 // Emit various pieces of data attached to a module. 203 if (!M->getTargetTriple().empty()) 204 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 205 0/*TODO*/, Stream); 206 if (!M->getDataLayout().empty()) 207 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 208 0/*TODO*/, Stream); 209 if (!M->getModuleInlineAsm().empty()) 210 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 211 0/*TODO*/, Stream); 212 213 // Emit information about sections, computing how many there are. Also 214 // compute the maximum alignment value. 215 std::map<std::string, unsigned> SectionMap; 216 unsigned MaxAlignment = 0; 217 unsigned MaxGlobalType = 0; 218 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 219 GV != E; ++GV) { 220 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 221 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 222 223 if (!GV->hasSection()) continue; 224 // Give section names unique ID's. 225 unsigned &Entry = SectionMap[GV->getSection()]; 226 if (Entry != 0) continue; 227 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 228 0/*TODO*/, Stream); 229 Entry = SectionMap.size(); 230 } 231 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 232 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 233 if (!F->hasSection()) continue; 234 // Give section names unique ID's. 235 unsigned &Entry = SectionMap[F->getSection()]; 236 if (Entry != 0) continue; 237 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 238 0/*TODO*/, Stream); 239 Entry = SectionMap.size(); 240 } 241 242 // Emit abbrev for globals, now that we know # sections and max alignment. 243 unsigned SimpleGVarAbbrev = 0; 244 if (!M->global_empty()) { 245 // Add an abbrev for common globals with no visibility or thread localness. 246 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 247 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth, 249 Log2_32_Ceil(MaxGlobalType+1))); 250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth, 1)); // Constant. 251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth, 3)); // Linkage. 253 if (MaxAlignment == 0) // Alignment. 254 Abbv->Add(BitCodeAbbrevOp(0)); 255 else { 256 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth, 258 Log2_32_Ceil(MaxEncAlignment+1))); 259 } 260 if (SectionMap.empty()) // Section. 261 Abbv->Add(BitCodeAbbrevOp(0)); 262 else 263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::FixedWidth, 264 Log2_32_Ceil(SectionMap.size()+1))); 265 // Don't bother emitting vis + thread local. 266 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 267 } 268 269 // Emit the global variable information. 270 SmallVector<unsigned, 64> Vals; 271 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 272 GV != E; ++GV) { 273 unsigned AbbrevToUse = 0; 274 275 // GLOBALVAR: [type, isconst, initid, 276 // linkage, alignment, section, visibility, threadlocal] 277 Vals.push_back(VE.getTypeID(GV->getType())); 278 Vals.push_back(GV->isConstant()); 279 Vals.push_back(GV->isDeclaration() ? 0 : 280 (VE.getValueID(GV->getInitializer()) + 1)); 281 Vals.push_back(getEncodedLinkage(GV)); 282 Vals.push_back(Log2_32(GV->getAlignment())+1); 283 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 284 if (GV->isThreadLocal() || 285 GV->getVisibility() != GlobalValue::DefaultVisibility) { 286 Vals.push_back(getEncodedVisibility(GV)); 287 Vals.push_back(GV->isThreadLocal()); 288 } else { 289 AbbrevToUse = SimpleGVarAbbrev; 290 } 291 292 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 293 Vals.clear(); 294 } 295 296 // Emit the function proto information. 297 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 298 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section, 299 // visibility] 300 Vals.push_back(VE.getTypeID(F->getType())); 301 Vals.push_back(F->getCallingConv()); 302 Vals.push_back(F->isDeclaration()); 303 Vals.push_back(getEncodedLinkage(F)); 304 Vals.push_back(Log2_32(F->getAlignment())+1); 305 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 306 Vals.push_back(getEncodedVisibility(F)); 307 308 unsigned AbbrevToUse = 0; 309 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 310 Vals.clear(); 311 } 312 } 313 314 315 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 316 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 317 const ValueEnumerator &VE, 318 BitstreamWriter &Stream) { 319 if (TST.empty()) return; 320 321 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 322 323 // FIXME: Set up the abbrev, we know how many types there are! 324 // FIXME: We know if the type names can use 7-bit ascii. 325 326 SmallVector<unsigned, 64> NameVals; 327 328 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 329 TI != TE; ++TI) { 330 unsigned AbbrevToUse = 0; 331 332 // TST_ENTRY: [typeid, namelen, namechar x N] 333 NameVals.push_back(VE.getTypeID(TI->second)); 334 335 const std::string &Str = TI->first; 336 NameVals.push_back(Str.size()); 337 for (unsigned i = 0, e = Str.size(); i != e; ++i) 338 NameVals.push_back(Str[i]); 339 340 // Emit the finished record. 341 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, AbbrevToUse); 342 NameVals.clear(); 343 } 344 345 Stream.ExitBlock(); 346 } 347 348 // Emit names for globals/functions etc. 349 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 350 const ValueEnumerator &VE, 351 BitstreamWriter &Stream) { 352 if (VST.empty()) return; 353 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 3); 354 355 // FIXME: Set up the abbrev, we know how many values there are! 356 // FIXME: We know if the type names can use 7-bit ascii. 357 SmallVector<unsigned, 64> NameVals; 358 359 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 360 SI != SE; ++SI) { 361 unsigned AbbrevToUse = 0; 362 363 // VST_ENTRY: [valueid, namelen, namechar x N] 364 NameVals.push_back(VE.getValueID(SI->getValue())); 365 366 NameVals.push_back(SI->getKeyLength()); 367 for (const char *P = SI->getKeyData(), 368 *E = SI->getKeyData()+SI->getKeyLength(); P != E; ++P) 369 NameVals.push_back((unsigned char)*P); 370 371 // Emit the finished record. 372 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, AbbrevToUse); 373 NameVals.clear(); 374 } 375 Stream.ExitBlock(); 376 } 377 378 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 379 const ValueEnumerator &VE, 380 BitstreamWriter &Stream) { 381 if (FirstVal == LastVal) return; 382 383 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 2); 384 385 // FIXME: Install and use abbrevs to reduce size. 386 387 SmallVector<uint64_t, 64> Record; 388 389 const ValueEnumerator::ValueList &Vals = VE.getValues(); 390 const Type *LastTy = 0; 391 for (unsigned i = FirstVal; i != LastVal; ++i) { 392 const Value *V = Vals[i].first; 393 // If we need to switch types, do so now. 394 if (V->getType() != LastTy) { 395 LastTy = V->getType(); 396 Record.push_back(VE.getTypeID(LastTy)); 397 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record); 398 Record.clear(); 399 } 400 401 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 402 assert(0 && IA && "FIXME: Inline asm writing unimp!"); 403 continue; 404 } 405 const Constant *C = cast<Constant>(V); 406 unsigned Code = -1U; 407 unsigned AbbrevToUse = 0; 408 if (C->isNullValue()) { 409 Code = bitc::CST_CODE_NULL; 410 } else if (isa<UndefValue>(C)) { 411 Code = bitc::CST_CODE_UNDEF; 412 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 413 if (IV->getBitWidth() <= 64) { 414 int64_t V = IV->getSExtValue(); 415 if (V >= 0) 416 Record.push_back(V << 1); 417 else 418 Record.push_back((-V << 1) | 1); 419 Code = bitc::CST_CODE_INTEGER; 420 } else { // Wide integers, > 64 bits in size. 421 // We have an arbitrary precision integer value to write whose 422 // bit width is > 64. However, in canonical unsigned integer 423 // format it is likely that the high bits are going to be zero. 424 // So, we only write the number of active words. 425 unsigned NWords = IV->getValue().getActiveWords(); 426 const uint64_t *RawWords = IV->getValue().getRawData(); 427 Record.push_back(NWords); 428 for (unsigned i = 0; i != NWords; ++i) { 429 int64_t V = RawWords[i]; 430 if (V >= 0) 431 Record.push_back(V << 1); 432 else 433 Record.push_back((-V << 1) | 1); 434 } 435 Code = bitc::CST_CODE_WIDE_INTEGER; 436 } 437 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 438 Code = bitc::CST_CODE_FLOAT; 439 if (CFP->getType() == Type::FloatTy) { 440 Record.push_back(FloatToBits((float)CFP->getValue())); 441 } else { 442 assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!"); 443 Record.push_back(DoubleToBits((double)CFP->getValue())); 444 } 445 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 446 isa<ConstantVector>(V)) { 447 Code = bitc::CST_CODE_AGGREGATE; 448 Record.push_back(C->getNumOperands()); 449 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 450 Record.push_back(VE.getValueID(C->getOperand(i))); 451 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 452 switch (CE->getOpcode()) { 453 default: 454 if (Instruction::isCast(CE->getOpcode())) { 455 Code = bitc::CST_CODE_CE_CAST; 456 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 457 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 458 Record.push_back(VE.getValueID(C->getOperand(0))); 459 } else { 460 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 461 Code = bitc::CST_CODE_CE_BINOP; 462 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 463 Record.push_back(VE.getValueID(C->getOperand(0))); 464 Record.push_back(VE.getValueID(C->getOperand(1))); 465 } 466 break; 467 case Instruction::GetElementPtr: 468 Code = bitc::CST_CODE_CE_GEP; 469 Record.push_back(CE->getNumOperands()); 470 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 471 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 472 Record.push_back(VE.getValueID(C->getOperand(i))); 473 } 474 break; 475 case Instruction::Select: 476 Code = bitc::CST_CODE_CE_SELECT; 477 Record.push_back(VE.getValueID(C->getOperand(0))); 478 Record.push_back(VE.getValueID(C->getOperand(1))); 479 Record.push_back(VE.getValueID(C->getOperand(2))); 480 break; 481 case Instruction::ExtractElement: 482 Code = bitc::CST_CODE_CE_EXTRACTELT; 483 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 484 Record.push_back(VE.getValueID(C->getOperand(0))); 485 Record.push_back(VE.getValueID(C->getOperand(1))); 486 break; 487 case Instruction::InsertElement: 488 Code = bitc::CST_CODE_CE_INSERTELT; 489 Record.push_back(VE.getValueID(C->getOperand(0))); 490 Record.push_back(VE.getValueID(C->getOperand(1))); 491 Record.push_back(VE.getValueID(C->getOperand(2))); 492 break; 493 case Instruction::ShuffleVector: 494 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 495 Record.push_back(VE.getValueID(C->getOperand(0))); 496 Record.push_back(VE.getValueID(C->getOperand(1))); 497 Record.push_back(VE.getValueID(C->getOperand(2))); 498 break; 499 case Instruction::ICmp: 500 case Instruction::FCmp: 501 Code = bitc::CST_CODE_CE_CMP; 502 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 503 Record.push_back(VE.getValueID(C->getOperand(0))); 504 Record.push_back(VE.getValueID(C->getOperand(1))); 505 Record.push_back(CE->getPredicate()); 506 break; 507 } 508 } else { 509 assert(0 && "Unknown constant!"); 510 } 511 Stream.EmitRecord(Code, Record, AbbrevToUse); 512 Record.clear(); 513 } 514 515 Stream.ExitBlock(); 516 } 517 518 static void WriteModuleConstants(const ValueEnumerator &VE, 519 BitstreamWriter &Stream) { 520 const ValueEnumerator::ValueList &Vals = VE.getValues(); 521 522 // Find the first constant to emit, which is the first non-globalvalue value. 523 // We know globalvalues have been emitted by WriteModuleInfo. 524 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 525 if (!isa<GlobalValue>(Vals[i].first)) { 526 WriteConstants(i, Vals.size(), VE, Stream); 527 return; 528 } 529 } 530 } 531 532 /// WriteModule - Emit the specified module to the bitstream. 533 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 534 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 535 536 // Emit the version number if it is non-zero. 537 if (CurVersion) { 538 SmallVector<unsigned, 1> VersionVals; 539 VersionVals.push_back(CurVersion); 540 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, VersionVals); 541 } 542 543 // Analyze the module, enumerating globals, functions, etc. 544 ValueEnumerator VE(M); 545 546 // Emit information describing all of the types in the module. 547 WriteTypeTable(VE, Stream); 548 549 // Emit top-level description of module, including target triple, inline asm, 550 // descriptors for global variables, and function prototype info. 551 WriteModuleInfo(M, VE, Stream); 552 553 // Emit constants. 554 WriteModuleConstants(VE, Stream); 555 556 // Emit the type symbol table information. 557 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 558 559 // Emit names for globals/functions etc. 560 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 561 562 Stream.ExitBlock(); 563 } 564 565 /// WriteBitcodeToFile - Write the specified module to the specified output 566 /// stream. 567 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 568 std::vector<unsigned char> Buffer; 569 BitstreamWriter Stream(Buffer); 570 571 Buffer.reserve(256*1024); 572 573 // Emit the file header. 574 Stream.Emit((unsigned)'B', 8); 575 Stream.Emit((unsigned)'C', 8); 576 Stream.Emit(0x0, 4); 577 Stream.Emit(0xC, 4); 578 Stream.Emit(0xE, 4); 579 Stream.Emit(0xD, 4); 580 581 // Emit the module. 582 WriteModule(M, Stream); 583 584 // Write the generated bitstream to "Out". 585 Out.write((char*)&Buffer.front(), Buffer.size()); 586 } 587