1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/ParameterAttributes.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/MathExtras.h" 27 using namespace llvm; 28 29 /// These are manifest constants used by the bitcode writer. They do not need to 30 /// be kept in sync with the reader, but need to be consistent within this file. 31 enum { 32 CurVersion = 0, 33 34 // VALUE_SYMTAB_BLOCK abbrev id's. 35 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 36 VST_ENTRY_7_ABBREV, 37 VST_ENTRY_6_ABBREV, 38 VST_BBENTRY_6_ABBREV, 39 40 // CONSTANTS_BLOCK abbrev id's. 41 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 CONSTANTS_INTEGER_ABBREV, 43 CONSTANTS_CE_CAST_Abbrev, 44 CONSTANTS_NULL_Abbrev, 45 46 // FUNCTION_BLOCK abbrev id's. 47 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 FUNCTION_INST_BINOP_ABBREV, 49 FUNCTION_INST_CAST_ABBREV, 50 FUNCTION_INST_RET_VOID_ABBREV, 51 FUNCTION_INST_RET_VAL_ABBREV, 52 FUNCTION_INST_UNREACHABLE_ABBREV 53 }; 54 55 56 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 57 switch (Opcode) { 58 default: assert(0 && "Unknown cast instruction!"); 59 case Instruction::Trunc : return bitc::CAST_TRUNC; 60 case Instruction::ZExt : return bitc::CAST_ZEXT; 61 case Instruction::SExt : return bitc::CAST_SEXT; 62 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 63 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 64 case Instruction::UIToFP : return bitc::CAST_UITOFP; 65 case Instruction::SIToFP : return bitc::CAST_SITOFP; 66 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 67 case Instruction::FPExt : return bitc::CAST_FPEXT; 68 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 69 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 70 case Instruction::BitCast : return bitc::CAST_BITCAST; 71 } 72 } 73 74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 75 switch (Opcode) { 76 default: assert(0 && "Unknown binary instruction!"); 77 case Instruction::Add: return bitc::BINOP_ADD; 78 case Instruction::Sub: return bitc::BINOP_SUB; 79 case Instruction::Mul: return bitc::BINOP_MUL; 80 case Instruction::UDiv: return bitc::BINOP_UDIV; 81 case Instruction::FDiv: 82 case Instruction::SDiv: return bitc::BINOP_SDIV; 83 case Instruction::URem: return bitc::BINOP_UREM; 84 case Instruction::FRem: 85 case Instruction::SRem: return bitc::BINOP_SREM; 86 case Instruction::Shl: return bitc::BINOP_SHL; 87 case Instruction::LShr: return bitc::BINOP_LSHR; 88 case Instruction::AShr: return bitc::BINOP_ASHR; 89 case Instruction::And: return bitc::BINOP_AND; 90 case Instruction::Or: return bitc::BINOP_OR; 91 case Instruction::Xor: return bitc::BINOP_XOR; 92 } 93 } 94 95 96 97 static void WriteStringRecord(unsigned Code, const std::string &Str, 98 unsigned AbbrevToUse, BitstreamWriter &Stream) { 99 SmallVector<unsigned, 64> Vals; 100 101 // Code: [strchar x N] 102 for (unsigned i = 0, e = Str.size(); i != e; ++i) 103 Vals.push_back(Str[i]); 104 105 // Emit the finished record. 106 Stream.EmitRecord(Code, Vals, AbbrevToUse); 107 } 108 109 // Emit information about parameter attributes. 110 static void WriteParamAttrTable(const ValueEnumerator &VE, 111 BitstreamWriter &Stream) { 112 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 113 if (Attrs.empty()) return; 114 115 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 116 117 SmallVector<uint64_t, 64> Record; 118 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 119 const ParamAttrsList *A = Attrs[i]; 120 for (unsigned op = 0, e = A->size(); op != e; ++op) { 121 Record.push_back(A->getParamIndex(op)); 122 Record.push_back(A->getParamAttrsAtIndex(op)); 123 } 124 125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 126 Record.clear(); 127 } 128 129 Stream.ExitBlock(); 130 } 131 132 /// WriteTypeTable - Write out the type table for a module. 133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 134 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 135 136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 137 SmallVector<uint64_t, 64> TypeVals; 138 139 // Abbrev for TYPE_CODE_POINTER. 140 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 143 Log2_32_Ceil(VE.getTypes().size()+1))); 144 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 145 146 // Abbrev for TYPE_CODE_FUNCTION. 147 Abbv = new BitCodeAbbrev(); 148 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 150 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 153 Log2_32_Ceil(VE.getTypes().size()+1))); 154 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 155 156 // Abbrev for TYPE_CODE_STRUCT. 157 Abbv = new BitCodeAbbrev(); 158 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 162 Log2_32_Ceil(VE.getTypes().size()+1))); 163 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 164 165 // Abbrev for TYPE_CODE_ARRAY. 166 Abbv = new BitCodeAbbrev(); 167 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 170 Log2_32_Ceil(VE.getTypes().size()+1))); 171 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 172 173 // Emit an entry count so the reader can reserve space. 174 TypeVals.push_back(TypeList.size()); 175 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 176 TypeVals.clear(); 177 178 // Loop over all of the types, emitting each in turn. 179 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 180 const Type *T = TypeList[i].first; 181 int AbbrevToUse = 0; 182 unsigned Code = 0; 183 184 switch (T->getTypeID()) { 185 default: assert(0 && "Unknown type!"); 186 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 187 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 188 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 189 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 190 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 191 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 192 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 193 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 194 case Type::IntegerTyID: 195 // INTEGER: [width] 196 Code = bitc::TYPE_CODE_INTEGER; 197 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 198 break; 199 case Type::PointerTyID: 200 // POINTER: [pointee type] 201 Code = bitc::TYPE_CODE_POINTER; 202 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 203 AbbrevToUse = PtrAbbrev; 204 break; 205 206 case Type::FunctionTyID: { 207 const FunctionType *FT = cast<FunctionType>(T); 208 // FUNCTION: [isvararg, attrid, retty, paramty x N] 209 Code = bitc::TYPE_CODE_FUNCTION; 210 TypeVals.push_back(FT->isVarArg()); 211 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 212 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 213 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 214 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 215 AbbrevToUse = FunctionAbbrev; 216 break; 217 } 218 case Type::StructTyID: { 219 const StructType *ST = cast<StructType>(T); 220 // STRUCT: [ispacked, eltty x N] 221 Code = bitc::TYPE_CODE_STRUCT; 222 TypeVals.push_back(ST->isPacked()); 223 // Output all of the element types. 224 for (StructType::element_iterator I = ST->element_begin(), 225 E = ST->element_end(); I != E; ++I) 226 TypeVals.push_back(VE.getTypeID(*I)); 227 AbbrevToUse = StructAbbrev; 228 break; 229 } 230 case Type::ArrayTyID: { 231 const ArrayType *AT = cast<ArrayType>(T); 232 // ARRAY: [numelts, eltty] 233 Code = bitc::TYPE_CODE_ARRAY; 234 TypeVals.push_back(AT->getNumElements()); 235 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 236 AbbrevToUse = ArrayAbbrev; 237 break; 238 } 239 case Type::VectorTyID: { 240 const VectorType *VT = cast<VectorType>(T); 241 // VECTOR [numelts, eltty] 242 Code = bitc::TYPE_CODE_VECTOR; 243 TypeVals.push_back(VT->getNumElements()); 244 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 245 break; 246 } 247 } 248 249 // Emit the finished record. 250 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 251 TypeVals.clear(); 252 } 253 254 Stream.ExitBlock(); 255 } 256 257 static unsigned getEncodedLinkage(const GlobalValue *GV) { 258 switch (GV->getLinkage()) { 259 default: assert(0 && "Invalid linkage!"); 260 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 261 case GlobalValue::ExternalLinkage: return 0; 262 case GlobalValue::WeakLinkage: return 1; 263 case GlobalValue::AppendingLinkage: return 2; 264 case GlobalValue::InternalLinkage: return 3; 265 case GlobalValue::LinkOnceLinkage: return 4; 266 case GlobalValue::DLLImportLinkage: return 5; 267 case GlobalValue::DLLExportLinkage: return 6; 268 case GlobalValue::ExternalWeakLinkage: return 7; 269 } 270 } 271 272 static unsigned getEncodedVisibility(const GlobalValue *GV) { 273 switch (GV->getVisibility()) { 274 default: assert(0 && "Invalid visibility!"); 275 case GlobalValue::DefaultVisibility: return 0; 276 case GlobalValue::HiddenVisibility: return 1; 277 case GlobalValue::ProtectedVisibility: return 2; 278 } 279 } 280 281 // Emit top-level description of module, including target triple, inline asm, 282 // descriptors for global variables, and function prototype info. 283 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 284 BitstreamWriter &Stream) { 285 // Emit the list of dependent libraries for the Module. 286 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 287 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 288 289 // Emit various pieces of data attached to a module. 290 if (!M->getTargetTriple().empty()) 291 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 292 0/*TODO*/, Stream); 293 if (!M->getDataLayout().empty()) 294 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 295 0/*TODO*/, Stream); 296 if (!M->getModuleInlineAsm().empty()) 297 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 298 0/*TODO*/, Stream); 299 300 // Emit information about sections, computing how many there are. Also 301 // compute the maximum alignment value. 302 std::map<std::string, unsigned> SectionMap; 303 unsigned MaxAlignment = 0; 304 unsigned MaxGlobalType = 0; 305 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 306 GV != E; ++GV) { 307 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 308 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 309 310 if (!GV->hasSection()) continue; 311 // Give section names unique ID's. 312 unsigned &Entry = SectionMap[GV->getSection()]; 313 if (Entry != 0) continue; 314 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 315 0/*TODO*/, Stream); 316 Entry = SectionMap.size(); 317 } 318 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 319 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 320 if (!F->hasSection()) continue; 321 // Give section names unique ID's. 322 unsigned &Entry = SectionMap[F->getSection()]; 323 if (Entry != 0) continue; 324 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 325 0/*TODO*/, Stream); 326 Entry = SectionMap.size(); 327 } 328 329 // Emit abbrev for globals, now that we know # sections and max alignment. 330 unsigned SimpleGVarAbbrev = 0; 331 if (!M->global_empty()) { 332 // Add an abbrev for common globals with no visibility or thread localness. 333 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 334 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 336 Log2_32_Ceil(MaxGlobalType+1))); 337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 340 if (MaxAlignment == 0) // Alignment. 341 Abbv->Add(BitCodeAbbrevOp(0)); 342 else { 343 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 345 Log2_32_Ceil(MaxEncAlignment+1))); 346 } 347 if (SectionMap.empty()) // Section. 348 Abbv->Add(BitCodeAbbrevOp(0)); 349 else 350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 351 Log2_32_Ceil(SectionMap.size()+1))); 352 // Don't bother emitting vis + thread local. 353 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 354 } 355 356 // Emit the global variable information. 357 SmallVector<unsigned, 64> Vals; 358 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 359 GV != E; ++GV) { 360 unsigned AbbrevToUse = 0; 361 362 // GLOBALVAR: [type, isconst, initid, 363 // linkage, alignment, section, visibility, threadlocal] 364 Vals.push_back(VE.getTypeID(GV->getType())); 365 Vals.push_back(GV->isConstant()); 366 Vals.push_back(GV->isDeclaration() ? 0 : 367 (VE.getValueID(GV->getInitializer()) + 1)); 368 Vals.push_back(getEncodedLinkage(GV)); 369 Vals.push_back(Log2_32(GV->getAlignment())+1); 370 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 371 if (GV->isThreadLocal() || 372 GV->getVisibility() != GlobalValue::DefaultVisibility) { 373 Vals.push_back(getEncodedVisibility(GV)); 374 Vals.push_back(GV->isThreadLocal()); 375 } else { 376 AbbrevToUse = SimpleGVarAbbrev; 377 } 378 379 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 380 Vals.clear(); 381 } 382 383 // Emit the function proto information. 384 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 385 // FUNCTION: [type, callingconv, isproto, paramattr, 386 // linkage, alignment, section, visibility] 387 Vals.push_back(VE.getTypeID(F->getType())); 388 Vals.push_back(F->getCallingConv()); 389 Vals.push_back(F->isDeclaration()); 390 Vals.push_back(getEncodedLinkage(F)); 391 Vals.push_back(VE.getParamAttrID(F->getParamAttrs())); 392 Vals.push_back(Log2_32(F->getAlignment())+1); 393 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 394 Vals.push_back(getEncodedVisibility(F)); 395 396 unsigned AbbrevToUse = 0; 397 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 398 Vals.clear(); 399 } 400 401 402 // Emit the alias information. 403 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 404 AI != E; ++AI) { 405 Vals.push_back(VE.getTypeID(AI->getType())); 406 Vals.push_back(VE.getValueID(AI->getAliasee())); 407 Vals.push_back(getEncodedLinkage(AI)); 408 unsigned AbbrevToUse = 0; 409 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 410 Vals.clear(); 411 } 412 } 413 414 415 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 416 const ValueEnumerator &VE, 417 BitstreamWriter &Stream, bool isGlobal) { 418 if (FirstVal == LastVal) return; 419 420 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 421 422 unsigned AggregateAbbrev = 0; 423 unsigned String8Abbrev = 0; 424 unsigned CString7Abbrev = 0; 425 unsigned CString6Abbrev = 0; 426 // If this is a constant pool for the module, emit module-specific abbrevs. 427 if (isGlobal) { 428 // Abbrev for CST_CODE_AGGREGATE. 429 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 430 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 433 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 434 435 // Abbrev for CST_CODE_STRING. 436 Abbv = new BitCodeAbbrev(); 437 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 440 String8Abbrev = Stream.EmitAbbrev(Abbv); 441 // Abbrev for CST_CODE_CSTRING. 442 Abbv = new BitCodeAbbrev(); 443 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 446 CString7Abbrev = Stream.EmitAbbrev(Abbv); 447 // Abbrev for CST_CODE_CSTRING. 448 Abbv = new BitCodeAbbrev(); 449 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 452 CString6Abbrev = Stream.EmitAbbrev(Abbv); 453 } 454 455 SmallVector<uint64_t, 64> Record; 456 457 const ValueEnumerator::ValueList &Vals = VE.getValues(); 458 const Type *LastTy = 0; 459 for (unsigned i = FirstVal; i != LastVal; ++i) { 460 const Value *V = Vals[i].first; 461 // If we need to switch types, do so now. 462 if (V->getType() != LastTy) { 463 LastTy = V->getType(); 464 Record.push_back(VE.getTypeID(LastTy)); 465 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 466 CONSTANTS_SETTYPE_ABBREV); 467 Record.clear(); 468 } 469 470 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 471 Record.push_back(unsigned(IA->hasSideEffects())); 472 473 // Add the asm string. 474 const std::string &AsmStr = IA->getAsmString(); 475 Record.push_back(AsmStr.size()); 476 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 477 Record.push_back(AsmStr[i]); 478 479 // Add the constraint string. 480 const std::string &ConstraintStr = IA->getConstraintString(); 481 Record.push_back(ConstraintStr.size()); 482 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 483 Record.push_back(ConstraintStr[i]); 484 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 485 Record.clear(); 486 continue; 487 } 488 const Constant *C = cast<Constant>(V); 489 unsigned Code = -1U; 490 unsigned AbbrevToUse = 0; 491 if (C->isNullValue()) { 492 Code = bitc::CST_CODE_NULL; 493 } else if (isa<UndefValue>(C)) { 494 Code = bitc::CST_CODE_UNDEF; 495 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 496 if (IV->getBitWidth() <= 64) { 497 int64_t V = IV->getSExtValue(); 498 if (V >= 0) 499 Record.push_back(V << 1); 500 else 501 Record.push_back((-V << 1) | 1); 502 Code = bitc::CST_CODE_INTEGER; 503 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 504 } else { // Wide integers, > 64 bits in size. 505 // We have an arbitrary precision integer value to write whose 506 // bit width is > 64. However, in canonical unsigned integer 507 // format it is likely that the high bits are going to be zero. 508 // So, we only write the number of active words. 509 unsigned NWords = IV->getValue().getActiveWords(); 510 const uint64_t *RawWords = IV->getValue().getRawData(); 511 for (unsigned i = 0; i != NWords; ++i) { 512 int64_t V = RawWords[i]; 513 if (V >= 0) 514 Record.push_back(V << 1); 515 else 516 Record.push_back((-V << 1) | 1); 517 } 518 Code = bitc::CST_CODE_WIDE_INTEGER; 519 } 520 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 521 Code = bitc::CST_CODE_FLOAT; 522 const Type *Ty = CFP->getType(); 523 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 524 Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue()); 525 } else if (Ty == Type::X86_FP80Ty) { 526 // api needed to prevent premature destruction 527 APInt api = CFP->getValueAPF().convertToAPInt(); 528 const uint64_t *p = api.getRawData(); 529 Record.push_back(p[0]); 530 Record.push_back((uint16_t)p[1]); 531 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 532 APInt api = CFP->getValueAPF().convertToAPInt(); 533 const uint64_t *p = api.getRawData(); 534 Record.push_back(p[0]); 535 Record.push_back(p[1]); 536 } else { 537 assert (0 && "Unknown FP type!"); 538 } 539 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 540 // Emit constant strings specially. 541 unsigned NumOps = C->getNumOperands(); 542 // If this is a null-terminated string, use the denser CSTRING encoding. 543 if (C->getOperand(NumOps-1)->isNullValue()) { 544 Code = bitc::CST_CODE_CSTRING; 545 --NumOps; // Don't encode the null, which isn't allowed by char6. 546 } else { 547 Code = bitc::CST_CODE_STRING; 548 AbbrevToUse = String8Abbrev; 549 } 550 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 551 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 552 for (unsigned i = 0; i != NumOps; ++i) { 553 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 554 Record.push_back(V); 555 isCStr7 &= (V & 128) == 0; 556 if (isCStrChar6) 557 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 558 } 559 560 if (isCStrChar6) 561 AbbrevToUse = CString6Abbrev; 562 else if (isCStr7) 563 AbbrevToUse = CString7Abbrev; 564 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 565 isa<ConstantVector>(V)) { 566 Code = bitc::CST_CODE_AGGREGATE; 567 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 568 Record.push_back(VE.getValueID(C->getOperand(i))); 569 AbbrevToUse = AggregateAbbrev; 570 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 571 switch (CE->getOpcode()) { 572 default: 573 if (Instruction::isCast(CE->getOpcode())) { 574 Code = bitc::CST_CODE_CE_CAST; 575 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 576 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 577 Record.push_back(VE.getValueID(C->getOperand(0))); 578 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 579 } else { 580 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 581 Code = bitc::CST_CODE_CE_BINOP; 582 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 583 Record.push_back(VE.getValueID(C->getOperand(0))); 584 Record.push_back(VE.getValueID(C->getOperand(1))); 585 } 586 break; 587 case Instruction::GetElementPtr: 588 Code = bitc::CST_CODE_CE_GEP; 589 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 590 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 591 Record.push_back(VE.getValueID(C->getOperand(i))); 592 } 593 break; 594 case Instruction::Select: 595 Code = bitc::CST_CODE_CE_SELECT; 596 Record.push_back(VE.getValueID(C->getOperand(0))); 597 Record.push_back(VE.getValueID(C->getOperand(1))); 598 Record.push_back(VE.getValueID(C->getOperand(2))); 599 break; 600 case Instruction::ExtractElement: 601 Code = bitc::CST_CODE_CE_EXTRACTELT; 602 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 603 Record.push_back(VE.getValueID(C->getOperand(0))); 604 Record.push_back(VE.getValueID(C->getOperand(1))); 605 break; 606 case Instruction::InsertElement: 607 Code = bitc::CST_CODE_CE_INSERTELT; 608 Record.push_back(VE.getValueID(C->getOperand(0))); 609 Record.push_back(VE.getValueID(C->getOperand(1))); 610 Record.push_back(VE.getValueID(C->getOperand(2))); 611 break; 612 case Instruction::ShuffleVector: 613 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 614 Record.push_back(VE.getValueID(C->getOperand(0))); 615 Record.push_back(VE.getValueID(C->getOperand(1))); 616 Record.push_back(VE.getValueID(C->getOperand(2))); 617 break; 618 case Instruction::ICmp: 619 case Instruction::FCmp: 620 Code = bitc::CST_CODE_CE_CMP; 621 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 622 Record.push_back(VE.getValueID(C->getOperand(0))); 623 Record.push_back(VE.getValueID(C->getOperand(1))); 624 Record.push_back(CE->getPredicate()); 625 break; 626 } 627 } else { 628 assert(0 && "Unknown constant!"); 629 } 630 Stream.EmitRecord(Code, Record, AbbrevToUse); 631 Record.clear(); 632 } 633 634 Stream.ExitBlock(); 635 } 636 637 static void WriteModuleConstants(const ValueEnumerator &VE, 638 BitstreamWriter &Stream) { 639 const ValueEnumerator::ValueList &Vals = VE.getValues(); 640 641 // Find the first constant to emit, which is the first non-globalvalue value. 642 // We know globalvalues have been emitted by WriteModuleInfo. 643 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 644 if (!isa<GlobalValue>(Vals[i].first)) { 645 WriteConstants(i, Vals.size(), VE, Stream, true); 646 return; 647 } 648 } 649 } 650 651 /// PushValueAndType - The file has to encode both the value and type id for 652 /// many values, because we need to know what type to create for forward 653 /// references. However, most operands are not forward references, so this type 654 /// field is not needed. 655 /// 656 /// This function adds V's value ID to Vals. If the value ID is higher than the 657 /// instruction ID, then it is a forward reference, and it also includes the 658 /// type ID. 659 static bool PushValueAndType(Value *V, unsigned InstID, 660 SmallVector<unsigned, 64> &Vals, 661 ValueEnumerator &VE) { 662 unsigned ValID = VE.getValueID(V); 663 Vals.push_back(ValID); 664 if (ValID >= InstID) { 665 Vals.push_back(VE.getTypeID(V->getType())); 666 return true; 667 } 668 return false; 669 } 670 671 /// WriteInstruction - Emit an instruction to the specified stream. 672 static void WriteInstruction(const Instruction &I, unsigned InstID, 673 ValueEnumerator &VE, BitstreamWriter &Stream, 674 SmallVector<unsigned, 64> &Vals) { 675 unsigned Code = 0; 676 unsigned AbbrevToUse = 0; 677 switch (I.getOpcode()) { 678 default: 679 if (Instruction::isCast(I.getOpcode())) { 680 Code = bitc::FUNC_CODE_INST_CAST; 681 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 682 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 683 Vals.push_back(VE.getTypeID(I.getType())); 684 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 685 } else { 686 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 687 Code = bitc::FUNC_CODE_INST_BINOP; 688 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 689 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 690 Vals.push_back(VE.getValueID(I.getOperand(1))); 691 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 692 } 693 break; 694 695 case Instruction::GetElementPtr: 696 Code = bitc::FUNC_CODE_INST_GEP; 697 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 698 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 699 break; 700 case Instruction::Select: 701 Code = bitc::FUNC_CODE_INST_SELECT; 702 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 703 Vals.push_back(VE.getValueID(I.getOperand(2))); 704 Vals.push_back(VE.getValueID(I.getOperand(0))); 705 break; 706 case Instruction::ExtractElement: 707 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 708 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 709 Vals.push_back(VE.getValueID(I.getOperand(1))); 710 break; 711 case Instruction::InsertElement: 712 Code = bitc::FUNC_CODE_INST_INSERTELT; 713 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 714 Vals.push_back(VE.getValueID(I.getOperand(1))); 715 Vals.push_back(VE.getValueID(I.getOperand(2))); 716 break; 717 case Instruction::ShuffleVector: 718 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 719 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 720 Vals.push_back(VE.getValueID(I.getOperand(1))); 721 Vals.push_back(VE.getValueID(I.getOperand(2))); 722 break; 723 case Instruction::ICmp: 724 case Instruction::FCmp: 725 Code = bitc::FUNC_CODE_INST_CMP; 726 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 727 Vals.push_back(VE.getValueID(I.getOperand(1))); 728 Vals.push_back(cast<CmpInst>(I).getPredicate()); 729 break; 730 731 case Instruction::Ret: 732 Code = bitc::FUNC_CODE_INST_RET; 733 if (!I.getNumOperands()) 734 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 735 else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 736 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 737 break; 738 case Instruction::Br: 739 Code = bitc::FUNC_CODE_INST_BR; 740 Vals.push_back(VE.getValueID(I.getOperand(0))); 741 if (cast<BranchInst>(I).isConditional()) { 742 Vals.push_back(VE.getValueID(I.getOperand(1))); 743 Vals.push_back(VE.getValueID(I.getOperand(2))); 744 } 745 break; 746 case Instruction::Switch: 747 Code = bitc::FUNC_CODE_INST_SWITCH; 748 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 749 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 750 Vals.push_back(VE.getValueID(I.getOperand(i))); 751 break; 752 case Instruction::Invoke: { 753 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 754 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 755 Code = bitc::FUNC_CODE_INST_INVOKE; 756 757 const InvokeInst *II = cast<InvokeInst>(&I); 758 Vals.push_back(VE.getParamAttrID(II->getParamAttrs())); 759 Vals.push_back(II->getCallingConv()); 760 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 761 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 762 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 763 764 // Emit value #'s for the fixed parameters. 765 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 766 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 767 768 // Emit type/value pairs for varargs params. 769 if (FTy->isVarArg()) { 770 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 771 i != e; ++i) 772 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 773 } 774 break; 775 } 776 case Instruction::Unwind: 777 Code = bitc::FUNC_CODE_INST_UNWIND; 778 break; 779 case Instruction::Unreachable: 780 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 781 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 782 break; 783 784 case Instruction::PHI: 785 Code = bitc::FUNC_CODE_INST_PHI; 786 Vals.push_back(VE.getTypeID(I.getType())); 787 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 788 Vals.push_back(VE.getValueID(I.getOperand(i))); 789 break; 790 791 case Instruction::Malloc: 792 Code = bitc::FUNC_CODE_INST_MALLOC; 793 Vals.push_back(VE.getTypeID(I.getType())); 794 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 795 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 796 break; 797 798 case Instruction::Free: 799 Code = bitc::FUNC_CODE_INST_FREE; 800 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 801 break; 802 803 case Instruction::Alloca: 804 Code = bitc::FUNC_CODE_INST_ALLOCA; 805 Vals.push_back(VE.getTypeID(I.getType())); 806 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 807 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 808 break; 809 810 case Instruction::Load: 811 Code = bitc::FUNC_CODE_INST_LOAD; 812 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 813 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 814 815 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 816 Vals.push_back(cast<LoadInst>(I).isVolatile()); 817 break; 818 case Instruction::Store: 819 Code = bitc::FUNC_CODE_INST_STORE; 820 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // val. 821 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr. 822 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 823 Vals.push_back(cast<StoreInst>(I).isVolatile()); 824 break; 825 case Instruction::Call: { 826 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 827 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 828 829 Code = bitc::FUNC_CODE_INST_CALL; 830 831 const CallInst *CI = cast<CallInst>(&I); 832 Vals.push_back(VE.getParamAttrID(CI->getParamAttrs())); 833 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 834 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 835 836 // Emit value #'s for the fixed parameters. 837 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 838 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 839 840 // Emit type/value pairs for varargs params. 841 if (FTy->isVarArg()) { 842 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 843 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 844 i != e; ++i) 845 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 846 } 847 break; 848 } 849 case Instruction::VAArg: 850 Code = bitc::FUNC_CODE_INST_VAARG; 851 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 852 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 853 Vals.push_back(VE.getTypeID(I.getType())); // restype. 854 break; 855 } 856 857 Stream.EmitRecord(Code, Vals, AbbrevToUse); 858 Vals.clear(); 859 } 860 861 // Emit names for globals/functions etc. 862 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 863 const ValueEnumerator &VE, 864 BitstreamWriter &Stream) { 865 if (VST.empty()) return; 866 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 867 868 // FIXME: Set up the abbrev, we know how many values there are! 869 // FIXME: We know if the type names can use 7-bit ascii. 870 SmallVector<unsigned, 64> NameVals; 871 872 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 873 SI != SE; ++SI) { 874 875 const ValueName &Name = *SI; 876 877 // Figure out the encoding to use for the name. 878 bool is7Bit = true; 879 bool isChar6 = true; 880 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 881 C != E; ++C) { 882 if (isChar6) 883 isChar6 = BitCodeAbbrevOp::isChar6(*C); 884 if ((unsigned char)*C & 128) { 885 is7Bit = false; 886 break; // don't bother scanning the rest. 887 } 888 } 889 890 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 891 892 // VST_ENTRY: [valueid, namechar x N] 893 // VST_BBENTRY: [bbid, namechar x N] 894 unsigned Code; 895 if (isa<BasicBlock>(SI->getValue())) { 896 Code = bitc::VST_CODE_BBENTRY; 897 if (isChar6) 898 AbbrevToUse = VST_BBENTRY_6_ABBREV; 899 } else { 900 Code = bitc::VST_CODE_ENTRY; 901 if (isChar6) 902 AbbrevToUse = VST_ENTRY_6_ABBREV; 903 else if (is7Bit) 904 AbbrevToUse = VST_ENTRY_7_ABBREV; 905 } 906 907 NameVals.push_back(VE.getValueID(SI->getValue())); 908 for (const char *P = Name.getKeyData(), 909 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 910 NameVals.push_back((unsigned char)*P); 911 912 // Emit the finished record. 913 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 914 NameVals.clear(); 915 } 916 Stream.ExitBlock(); 917 } 918 919 /// WriteFunction - Emit a function body to the module stream. 920 static void WriteFunction(const Function &F, ValueEnumerator &VE, 921 BitstreamWriter &Stream) { 922 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 923 VE.incorporateFunction(F); 924 925 SmallVector<unsigned, 64> Vals; 926 927 // Emit the number of basic blocks, so the reader can create them ahead of 928 // time. 929 Vals.push_back(VE.getBasicBlocks().size()); 930 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 931 Vals.clear(); 932 933 // If there are function-local constants, emit them now. 934 unsigned CstStart, CstEnd; 935 VE.getFunctionConstantRange(CstStart, CstEnd); 936 WriteConstants(CstStart, CstEnd, VE, Stream, false); 937 938 // Keep a running idea of what the instruction ID is. 939 unsigned InstID = CstEnd; 940 941 // Finally, emit all the instructions, in order. 942 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 943 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 944 I != E; ++I) { 945 WriteInstruction(*I, InstID, VE, Stream, Vals); 946 if (I->getType() != Type::VoidTy) 947 ++InstID; 948 } 949 950 // Emit names for all the instructions etc. 951 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 952 953 VE.purgeFunction(); 954 Stream.ExitBlock(); 955 } 956 957 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 958 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 959 const ValueEnumerator &VE, 960 BitstreamWriter &Stream) { 961 if (TST.empty()) return; 962 963 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 964 965 // 7-bit fixed width VST_CODE_ENTRY strings. 966 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 967 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 969 Log2_32_Ceil(VE.getTypes().size()+1))); 970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 972 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 973 974 SmallVector<unsigned, 64> NameVals; 975 976 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 977 TI != TE; ++TI) { 978 // TST_ENTRY: [typeid, namechar x N] 979 NameVals.push_back(VE.getTypeID(TI->second)); 980 981 const std::string &Str = TI->first; 982 bool is7Bit = true; 983 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 984 NameVals.push_back((unsigned char)Str[i]); 985 if (Str[i] & 128) 986 is7Bit = false; 987 } 988 989 // Emit the finished record. 990 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 991 NameVals.clear(); 992 } 993 994 Stream.ExitBlock(); 995 } 996 997 // Emit blockinfo, which defines the standard abbreviations etc. 998 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 999 // We only want to emit block info records for blocks that have multiple 1000 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1001 // blocks can defined their abbrevs inline. 1002 Stream.EnterBlockInfoBlock(2); 1003 1004 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1005 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1010 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1011 Abbv) != VST_ENTRY_8_ABBREV) 1012 assert(0 && "Unexpected abbrev ordering!"); 1013 } 1014 1015 { // 7-bit fixed width VST_ENTRY strings. 1016 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1017 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1021 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1022 Abbv) != VST_ENTRY_7_ABBREV) 1023 assert(0 && "Unexpected abbrev ordering!"); 1024 } 1025 { // 6-bit char6 VST_ENTRY strings. 1026 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1027 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1031 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1032 Abbv) != VST_ENTRY_6_ABBREV) 1033 assert(0 && "Unexpected abbrev ordering!"); 1034 } 1035 { // 6-bit char6 VST_BBENTRY strings. 1036 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1037 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1041 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1042 Abbv) != VST_BBENTRY_6_ABBREV) 1043 assert(0 && "Unexpected abbrev ordering!"); 1044 } 1045 1046 1047 1048 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1049 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1050 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1052 Log2_32_Ceil(VE.getTypes().size()+1))); 1053 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1054 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1055 assert(0 && "Unexpected abbrev ordering!"); 1056 } 1057 1058 { // INTEGER abbrev for CONSTANTS_BLOCK. 1059 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1060 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1062 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1063 Abbv) != CONSTANTS_INTEGER_ABBREV) 1064 assert(0 && "Unexpected abbrev ordering!"); 1065 } 1066 1067 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1068 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1069 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1072 Log2_32_Ceil(VE.getTypes().size()+1))); 1073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1074 1075 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1076 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1077 assert(0 && "Unexpected abbrev ordering!"); 1078 } 1079 { // NULL abbrev for CONSTANTS_BLOCK. 1080 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1081 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1082 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1083 Abbv) != CONSTANTS_NULL_Abbrev) 1084 assert(0 && "Unexpected abbrev ordering!"); 1085 } 1086 1087 // FIXME: This should only use space for first class types! 1088 1089 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1090 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1091 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1095 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1096 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1097 assert(0 && "Unexpected abbrev ordering!"); 1098 } 1099 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1100 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1101 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1105 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1106 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1107 assert(0 && "Unexpected abbrev ordering!"); 1108 } 1109 { // INST_CAST abbrev for FUNCTION_BLOCK. 1110 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1111 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1114 Log2_32_Ceil(VE.getTypes().size()+1))); 1115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1116 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1117 Abbv) != FUNCTION_INST_CAST_ABBREV) 1118 assert(0 && "Unexpected abbrev ordering!"); 1119 } 1120 1121 { // INST_RET abbrev for FUNCTION_BLOCK. 1122 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1123 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1124 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1125 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1126 assert(0 && "Unexpected abbrev ordering!"); 1127 } 1128 { // INST_RET abbrev for FUNCTION_BLOCK. 1129 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1130 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1132 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1133 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1134 assert(0 && "Unexpected abbrev ordering!"); 1135 } 1136 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1137 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1138 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1139 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1140 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1141 assert(0 && "Unexpected abbrev ordering!"); 1142 } 1143 1144 Stream.ExitBlock(); 1145 } 1146 1147 1148 /// WriteModule - Emit the specified module to the bitstream. 1149 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1150 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1151 1152 // Emit the version number if it is non-zero. 1153 if (CurVersion) { 1154 SmallVector<unsigned, 1> Vals; 1155 Vals.push_back(CurVersion); 1156 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1157 } 1158 1159 // Analyze the module, enumerating globals, functions, etc. 1160 ValueEnumerator VE(M); 1161 1162 // Emit blockinfo, which defines the standard abbreviations etc. 1163 WriteBlockInfo(VE, Stream); 1164 1165 // Emit information about parameter attributes. 1166 WriteParamAttrTable(VE, Stream); 1167 1168 // Emit information describing all of the types in the module. 1169 WriteTypeTable(VE, Stream); 1170 1171 // Emit top-level description of module, including target triple, inline asm, 1172 // descriptors for global variables, and function prototype info. 1173 WriteModuleInfo(M, VE, Stream); 1174 1175 // Emit constants. 1176 WriteModuleConstants(VE, Stream); 1177 1178 // If we have any aggregate values in the value table, purge them - these can 1179 // only be used to initialize global variables. Doing so makes the value 1180 // namespace smaller for code in functions. 1181 int NumNonAggregates = VE.PurgeAggregateValues(); 1182 if (NumNonAggregates != -1) { 1183 SmallVector<unsigned, 1> Vals; 1184 Vals.push_back(NumNonAggregates); 1185 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1186 } 1187 1188 // Emit function bodies. 1189 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1190 if (!I->isDeclaration()) 1191 WriteFunction(*I, VE, Stream); 1192 1193 // Emit the type symbol table information. 1194 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1195 1196 // Emit names for globals/functions etc. 1197 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1198 1199 Stream.ExitBlock(); 1200 } 1201 1202 1203 /// WriteBitcodeToFile - Write the specified module to the specified output 1204 /// stream. 1205 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1206 std::vector<unsigned char> Buffer; 1207 BitstreamWriter Stream(Buffer); 1208 1209 Buffer.reserve(256*1024); 1210 1211 // Emit the file header. 1212 Stream.Emit((unsigned)'B', 8); 1213 Stream.Emit((unsigned)'C', 8); 1214 Stream.Emit(0x0, 4); 1215 Stream.Emit(0xC, 4); 1216 Stream.Emit(0xE, 4); 1217 Stream.Emit(0xD, 4); 1218 1219 // Emit the module. 1220 WriteModule(M, Stream); 1221 1222 // Write the generated bitstream to "Out". 1223 Out.write((char*)&Buffer.front(), Buffer.size()); 1224 1225 // Make sure it hits disk now. 1226 Out.flush(); 1227 } 1228