1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Object/IRSymtab.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/Program.h" 36 #include "llvm/Support/SHA1.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <cctype> 40 #include <map> 41 using namespace llvm; 42 43 namespace { 44 45 cl::opt<unsigned> 46 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 47 cl::desc("Number of metadatas above which we emit an index " 48 "to enable lazy-loading")); 49 /// These are manifest constants used by the bitcode writer. They do not need to 50 /// be kept in sync with the reader, but need to be consistent within this file. 51 enum { 52 // VALUE_SYMTAB_BLOCK abbrev id's. 53 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 VST_ENTRY_7_ABBREV, 55 VST_ENTRY_6_ABBREV, 56 VST_BBENTRY_6_ABBREV, 57 58 // CONSTANTS_BLOCK abbrev id's. 59 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 60 CONSTANTS_INTEGER_ABBREV, 61 CONSTANTS_CE_CAST_Abbrev, 62 CONSTANTS_NULL_Abbrev, 63 64 // FUNCTION_BLOCK abbrev id's. 65 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 66 FUNCTION_INST_BINOP_ABBREV, 67 FUNCTION_INST_BINOP_FLAGS_ABBREV, 68 FUNCTION_INST_CAST_ABBREV, 69 FUNCTION_INST_RET_VOID_ABBREV, 70 FUNCTION_INST_RET_VAL_ABBREV, 71 FUNCTION_INST_UNREACHABLE_ABBREV, 72 FUNCTION_INST_GEP_ABBREV, 73 }; 74 75 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 76 /// file type. 77 class BitcodeWriterBase { 78 protected: 79 /// The stream created and owned by the client. 80 BitstreamWriter &Stream; 81 82 StringTableBuilder &StrtabBuilder; 83 84 public: 85 /// Constructs a BitcodeWriterBase object that writes to the provided 86 /// \p Stream. 87 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 88 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 89 90 protected: 91 void writeBitcodeHeader(); 92 void writeModuleVersion(); 93 }; 94 95 void BitcodeWriterBase::writeModuleVersion() { 96 // VERSION: [version#] 97 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 98 } 99 100 /// Base class to manage the module bitcode writing, currently subclassed for 101 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 102 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 103 protected: 104 /// The Module to write to bitcode. 105 const Module &M; 106 107 /// Enumerates ids for all values in the module. 108 ValueEnumerator VE; 109 110 /// Optional per-module index to write for ThinLTO. 111 const ModuleSummaryIndex *Index; 112 113 /// Map that holds the correspondence between GUIDs in the summary index, 114 /// that came from indirect call profiles, and a value id generated by this 115 /// class to use in the VST and summary block records. 116 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 117 118 /// Tracks the last value id recorded in the GUIDToValueMap. 119 unsigned GlobalValueId; 120 121 /// Saves the offset of the VSTOffset record that must eventually be 122 /// backpatched with the offset of the actual VST. 123 uint64_t VSTOffsetPlaceholder = 0; 124 125 public: 126 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 127 /// writing to the provided \p Buffer. 128 ModuleBitcodeWriterBase(const Module *M, StringTableBuilder &StrtabBuilder, 129 BitstreamWriter &Stream, 130 bool ShouldPreserveUseListOrder, 131 const ModuleSummaryIndex *Index) 132 : BitcodeWriterBase(Stream, StrtabBuilder), M(*M), 133 VE(*M, ShouldPreserveUseListOrder), Index(Index) { 134 // Assign ValueIds to any callee values in the index that came from 135 // indirect call profiles and were recorded as a GUID not a Value* 136 // (which would have been assigned an ID by the ValueEnumerator). 137 // The starting ValueId is just after the number of values in the 138 // ValueEnumerator, so that they can be emitted in the VST. 139 GlobalValueId = VE.getValues().size(); 140 if (!Index) 141 return; 142 for (const auto &GUIDSummaryLists : *Index) 143 // Examine all summaries for this GUID. 144 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 145 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 146 // For each call in the function summary, see if the call 147 // is to a GUID (which means it is for an indirect call, 148 // otherwise we would have a Value for it). If so, synthesize 149 // a value id. 150 for (auto &CallEdge : FS->calls()) 151 if (!CallEdge.first.getValue()) 152 assignValueId(CallEdge.first.getGUID()); 153 } 154 155 protected: 156 void writePerModuleGlobalValueSummary(); 157 158 private: 159 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 160 GlobalValueSummary *Summary, 161 unsigned ValueID, 162 unsigned FSCallsAbbrev, 163 unsigned FSCallsProfileAbbrev, 164 const Function &F); 165 void writeModuleLevelReferences(const GlobalVariable &V, 166 SmallVector<uint64_t, 64> &NameVals, 167 unsigned FSModRefsAbbrev); 168 169 void assignValueId(GlobalValue::GUID ValGUID) { 170 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 171 } 172 unsigned getValueId(GlobalValue::GUID ValGUID) { 173 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 174 // Expect that any GUID value had a value Id assigned by an 175 // earlier call to assignValueId. 176 assert(VMI != GUIDToValueIdMap.end() && 177 "GUID does not have assigned value Id"); 178 return VMI->second; 179 } 180 // Helper to get the valueId for the type of value recorded in VI. 181 unsigned getValueId(ValueInfo VI) { 182 if (!VI.getValue()) 183 return getValueId(VI.getGUID()); 184 return VE.getValueID(VI.getValue()); 185 } 186 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 187 }; 188 189 /// Class to manage the bitcode writing for a module. 190 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 191 /// Pointer to the buffer allocated by caller for bitcode writing. 192 const SmallVectorImpl<char> &Buffer; 193 194 /// True if a module hash record should be written. 195 bool GenerateHash; 196 197 /// If non-null, when GenerateHash is true, the resulting hash is written 198 /// into ModHash. 199 ModuleHash *ModHash; 200 201 SHA1 Hasher; 202 203 /// The start bit of the identification block. 204 uint64_t BitcodeStartBit; 205 206 public: 207 /// Constructs a ModuleBitcodeWriter object for the given Module, 208 /// writing to the provided \p Buffer. 209 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 210 StringTableBuilder &StrtabBuilder, 211 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 212 const ModuleSummaryIndex *Index, bool GenerateHash, 213 ModuleHash *ModHash = nullptr) 214 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 215 ShouldPreserveUseListOrder, Index), 216 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 217 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 218 219 /// Emit the current module to the bitstream. 220 void write(); 221 222 private: 223 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 224 225 size_t addToStrtab(StringRef Str); 226 227 void writeAttributeGroupTable(); 228 void writeAttributeTable(); 229 void writeTypeTable(); 230 void writeComdats(); 231 void writeValueSymbolTableForwardDecl(); 232 void writeModuleInfo(); 233 void writeValueAsMetadata(const ValueAsMetadata *MD, 234 SmallVectorImpl<uint64_t> &Record); 235 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 236 unsigned Abbrev); 237 unsigned createDILocationAbbrev(); 238 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 239 unsigned &Abbrev); 240 unsigned createGenericDINodeAbbrev(); 241 void writeGenericDINode(const GenericDINode *N, 242 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 243 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 244 unsigned Abbrev); 245 void writeDIEnumerator(const DIEnumerator *N, 246 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 247 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 248 unsigned Abbrev); 249 void writeDIDerivedType(const DIDerivedType *N, 250 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 251 void writeDICompositeType(const DICompositeType *N, 252 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 253 void writeDISubroutineType(const DISubroutineType *N, 254 SmallVectorImpl<uint64_t> &Record, 255 unsigned Abbrev); 256 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 257 unsigned Abbrev); 258 void writeDICompileUnit(const DICompileUnit *N, 259 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 260 void writeDISubprogram(const DISubprogram *N, 261 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 262 void writeDILexicalBlock(const DILexicalBlock *N, 263 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 264 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 265 SmallVectorImpl<uint64_t> &Record, 266 unsigned Abbrev); 267 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 268 unsigned Abbrev); 269 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 270 unsigned Abbrev); 271 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 272 unsigned Abbrev); 273 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 274 unsigned Abbrev); 275 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 276 SmallVectorImpl<uint64_t> &Record, 277 unsigned Abbrev); 278 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 279 SmallVectorImpl<uint64_t> &Record, 280 unsigned Abbrev); 281 void writeDIGlobalVariable(const DIGlobalVariable *N, 282 SmallVectorImpl<uint64_t> &Record, 283 unsigned Abbrev); 284 void writeDILocalVariable(const DILocalVariable *N, 285 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 286 void writeDIExpression(const DIExpression *N, 287 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 288 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 289 SmallVectorImpl<uint64_t> &Record, 290 unsigned Abbrev); 291 void writeDIObjCProperty(const DIObjCProperty *N, 292 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 293 void writeDIImportedEntity(const DIImportedEntity *N, 294 SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createNamedMetadataAbbrev(); 297 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 298 unsigned createMetadataStringsAbbrev(); 299 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 300 SmallVectorImpl<uint64_t> &Record); 301 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 302 SmallVectorImpl<uint64_t> &Record, 303 std::vector<unsigned> *MDAbbrevs = nullptr, 304 std::vector<uint64_t> *IndexPos = nullptr); 305 void writeModuleMetadata(); 306 void writeFunctionMetadata(const Function &F); 307 void writeFunctionMetadataAttachment(const Function &F); 308 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 309 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 310 const GlobalObject &GO); 311 void writeModuleMetadataKinds(); 312 void writeOperandBundleTags(); 313 void writeSyncScopeNames(); 314 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 315 void writeModuleConstants(); 316 bool pushValueAndType(const Value *V, unsigned InstID, 317 SmallVectorImpl<unsigned> &Vals); 318 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 319 void pushValue(const Value *V, unsigned InstID, 320 SmallVectorImpl<unsigned> &Vals); 321 void pushValueSigned(const Value *V, unsigned InstID, 322 SmallVectorImpl<uint64_t> &Vals); 323 void writeInstruction(const Instruction &I, unsigned InstID, 324 SmallVectorImpl<unsigned> &Vals); 325 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 326 void writeGlobalValueSymbolTable( 327 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 328 void writeUseList(UseListOrder &&Order); 329 void writeUseListBlock(const Function *F); 330 void 331 writeFunction(const Function &F, 332 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 333 void writeBlockInfo(); 334 void writeModuleHash(size_t BlockStartPos); 335 336 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 337 return unsigned(SSID); 338 } 339 }; 340 341 /// Class to manage the bitcode writing for a combined index. 342 class IndexBitcodeWriter : public BitcodeWriterBase { 343 /// The combined index to write to bitcode. 344 const ModuleSummaryIndex &Index; 345 346 /// When writing a subset of the index for distributed backends, client 347 /// provides a map of modules to the corresponding GUIDs/summaries to write. 348 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 349 350 /// Map that holds the correspondence between the GUID used in the combined 351 /// index and a value id generated by this class to use in references. 352 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 353 354 /// Tracks the last value id recorded in the GUIDToValueMap. 355 unsigned GlobalValueId = 0; 356 357 public: 358 /// Constructs a IndexBitcodeWriter object for the given combined index, 359 /// writing to the provided \p Buffer. When writing a subset of the index 360 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 361 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 362 const ModuleSummaryIndex &Index, 363 const std::map<std::string, GVSummaryMapTy> 364 *ModuleToSummariesForIndex = nullptr) 365 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 366 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 367 // Assign unique value ids to all summaries to be written, for use 368 // in writing out the call graph edges. Save the mapping from GUID 369 // to the new global value id to use when writing those edges, which 370 // are currently saved in the index in terms of GUID. 371 forEachSummary([&](GVInfo I) { 372 GUIDToValueIdMap[I.first] = ++GlobalValueId; 373 }); 374 } 375 376 /// The below iterator returns the GUID and associated summary. 377 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 378 379 /// Calls the callback for each value GUID and summary to be written to 380 /// bitcode. This hides the details of whether they are being pulled from the 381 /// entire index or just those in a provided ModuleToSummariesForIndex map. 382 template<typename Functor> 383 void forEachSummary(Functor Callback) { 384 if (ModuleToSummariesForIndex) { 385 for (auto &M : *ModuleToSummariesForIndex) 386 for (auto &Summary : M.second) 387 Callback(Summary); 388 } else { 389 for (auto &Summaries : Index) 390 for (auto &Summary : Summaries.second.SummaryList) 391 Callback({Summaries.first, Summary.get()}); 392 } 393 } 394 395 /// Calls the callback for each entry in the modulePaths StringMap that 396 /// should be written to the module path string table. This hides the details 397 /// of whether they are being pulled from the entire index or just those in a 398 /// provided ModuleToSummariesForIndex map. 399 template <typename Functor> void forEachModule(Functor Callback) { 400 if (ModuleToSummariesForIndex) { 401 for (const auto &M : *ModuleToSummariesForIndex) { 402 const auto &MPI = Index.modulePaths().find(M.first); 403 if (MPI == Index.modulePaths().end()) { 404 // This should only happen if the bitcode file was empty, in which 405 // case we shouldn't be importing (the ModuleToSummariesForIndex 406 // would only include the module we are writing and index for). 407 assert(ModuleToSummariesForIndex->size() == 1); 408 continue; 409 } 410 Callback(*MPI); 411 } 412 } else { 413 for (const auto &MPSE : Index.modulePaths()) 414 Callback(MPSE); 415 } 416 } 417 418 /// Main entry point for writing a combined index to bitcode. 419 void write(); 420 421 private: 422 void writeModStrings(); 423 void writeCombinedGlobalValueSummary(); 424 425 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 426 auto VMI = GUIDToValueIdMap.find(ValGUID); 427 if (VMI == GUIDToValueIdMap.end()) 428 return None; 429 return VMI->second; 430 } 431 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 432 }; 433 } // end anonymous namespace 434 435 static unsigned getEncodedCastOpcode(unsigned Opcode) { 436 switch (Opcode) { 437 default: llvm_unreachable("Unknown cast instruction!"); 438 case Instruction::Trunc : return bitc::CAST_TRUNC; 439 case Instruction::ZExt : return bitc::CAST_ZEXT; 440 case Instruction::SExt : return bitc::CAST_SEXT; 441 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 442 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 443 case Instruction::UIToFP : return bitc::CAST_UITOFP; 444 case Instruction::SIToFP : return bitc::CAST_SITOFP; 445 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 446 case Instruction::FPExt : return bitc::CAST_FPEXT; 447 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 448 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 449 case Instruction::BitCast : return bitc::CAST_BITCAST; 450 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 451 } 452 } 453 454 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 455 switch (Opcode) { 456 default: llvm_unreachable("Unknown binary instruction!"); 457 case Instruction::Add: 458 case Instruction::FAdd: return bitc::BINOP_ADD; 459 case Instruction::Sub: 460 case Instruction::FSub: return bitc::BINOP_SUB; 461 case Instruction::Mul: 462 case Instruction::FMul: return bitc::BINOP_MUL; 463 case Instruction::UDiv: return bitc::BINOP_UDIV; 464 case Instruction::FDiv: 465 case Instruction::SDiv: return bitc::BINOP_SDIV; 466 case Instruction::URem: return bitc::BINOP_UREM; 467 case Instruction::FRem: 468 case Instruction::SRem: return bitc::BINOP_SREM; 469 case Instruction::Shl: return bitc::BINOP_SHL; 470 case Instruction::LShr: return bitc::BINOP_LSHR; 471 case Instruction::AShr: return bitc::BINOP_ASHR; 472 case Instruction::And: return bitc::BINOP_AND; 473 case Instruction::Or: return bitc::BINOP_OR; 474 case Instruction::Xor: return bitc::BINOP_XOR; 475 } 476 } 477 478 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 479 switch (Op) { 480 default: llvm_unreachable("Unknown RMW operation!"); 481 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 482 case AtomicRMWInst::Add: return bitc::RMW_ADD; 483 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 484 case AtomicRMWInst::And: return bitc::RMW_AND; 485 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 486 case AtomicRMWInst::Or: return bitc::RMW_OR; 487 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 488 case AtomicRMWInst::Max: return bitc::RMW_MAX; 489 case AtomicRMWInst::Min: return bitc::RMW_MIN; 490 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 491 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 492 } 493 } 494 495 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 496 switch (Ordering) { 497 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 498 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 499 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 500 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 501 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 502 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 503 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 504 } 505 llvm_unreachable("Invalid ordering"); 506 } 507 508 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 509 StringRef Str, unsigned AbbrevToUse) { 510 SmallVector<unsigned, 64> Vals; 511 512 // Code: [strchar x N] 513 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 514 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 515 AbbrevToUse = 0; 516 Vals.push_back(Str[i]); 517 } 518 519 // Emit the finished record. 520 Stream.EmitRecord(Code, Vals, AbbrevToUse); 521 } 522 523 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 524 switch (Kind) { 525 case Attribute::Alignment: 526 return bitc::ATTR_KIND_ALIGNMENT; 527 case Attribute::AllocSize: 528 return bitc::ATTR_KIND_ALLOC_SIZE; 529 case Attribute::AlwaysInline: 530 return bitc::ATTR_KIND_ALWAYS_INLINE; 531 case Attribute::ArgMemOnly: 532 return bitc::ATTR_KIND_ARGMEMONLY; 533 case Attribute::Builtin: 534 return bitc::ATTR_KIND_BUILTIN; 535 case Attribute::ByVal: 536 return bitc::ATTR_KIND_BY_VAL; 537 case Attribute::Convergent: 538 return bitc::ATTR_KIND_CONVERGENT; 539 case Attribute::InAlloca: 540 return bitc::ATTR_KIND_IN_ALLOCA; 541 case Attribute::Cold: 542 return bitc::ATTR_KIND_COLD; 543 case Attribute::InaccessibleMemOnly: 544 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 545 case Attribute::InaccessibleMemOrArgMemOnly: 546 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 547 case Attribute::InlineHint: 548 return bitc::ATTR_KIND_INLINE_HINT; 549 case Attribute::InReg: 550 return bitc::ATTR_KIND_IN_REG; 551 case Attribute::JumpTable: 552 return bitc::ATTR_KIND_JUMP_TABLE; 553 case Attribute::MinSize: 554 return bitc::ATTR_KIND_MIN_SIZE; 555 case Attribute::Naked: 556 return bitc::ATTR_KIND_NAKED; 557 case Attribute::Nest: 558 return bitc::ATTR_KIND_NEST; 559 case Attribute::NoAlias: 560 return bitc::ATTR_KIND_NO_ALIAS; 561 case Attribute::NoBuiltin: 562 return bitc::ATTR_KIND_NO_BUILTIN; 563 case Attribute::NoCapture: 564 return bitc::ATTR_KIND_NO_CAPTURE; 565 case Attribute::NoDuplicate: 566 return bitc::ATTR_KIND_NO_DUPLICATE; 567 case Attribute::NoImplicitFloat: 568 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 569 case Attribute::NoInline: 570 return bitc::ATTR_KIND_NO_INLINE; 571 case Attribute::NoRecurse: 572 return bitc::ATTR_KIND_NO_RECURSE; 573 case Attribute::NonLazyBind: 574 return bitc::ATTR_KIND_NON_LAZY_BIND; 575 case Attribute::NonNull: 576 return bitc::ATTR_KIND_NON_NULL; 577 case Attribute::Dereferenceable: 578 return bitc::ATTR_KIND_DEREFERENCEABLE; 579 case Attribute::DereferenceableOrNull: 580 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 581 case Attribute::NoRedZone: 582 return bitc::ATTR_KIND_NO_RED_ZONE; 583 case Attribute::NoReturn: 584 return bitc::ATTR_KIND_NO_RETURN; 585 case Attribute::NoUnwind: 586 return bitc::ATTR_KIND_NO_UNWIND; 587 case Attribute::OptimizeForSize: 588 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 589 case Attribute::OptimizeNone: 590 return bitc::ATTR_KIND_OPTIMIZE_NONE; 591 case Attribute::ReadNone: 592 return bitc::ATTR_KIND_READ_NONE; 593 case Attribute::ReadOnly: 594 return bitc::ATTR_KIND_READ_ONLY; 595 case Attribute::Returned: 596 return bitc::ATTR_KIND_RETURNED; 597 case Attribute::ReturnsTwice: 598 return bitc::ATTR_KIND_RETURNS_TWICE; 599 case Attribute::SExt: 600 return bitc::ATTR_KIND_S_EXT; 601 case Attribute::Speculatable: 602 return bitc::ATTR_KIND_SPECULATABLE; 603 case Attribute::StackAlignment: 604 return bitc::ATTR_KIND_STACK_ALIGNMENT; 605 case Attribute::StackProtect: 606 return bitc::ATTR_KIND_STACK_PROTECT; 607 case Attribute::StackProtectReq: 608 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 609 case Attribute::StackProtectStrong: 610 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 611 case Attribute::SafeStack: 612 return bitc::ATTR_KIND_SAFESTACK; 613 case Attribute::StructRet: 614 return bitc::ATTR_KIND_STRUCT_RET; 615 case Attribute::SanitizeAddress: 616 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 617 case Attribute::SanitizeThread: 618 return bitc::ATTR_KIND_SANITIZE_THREAD; 619 case Attribute::SanitizeMemory: 620 return bitc::ATTR_KIND_SANITIZE_MEMORY; 621 case Attribute::SwiftError: 622 return bitc::ATTR_KIND_SWIFT_ERROR; 623 case Attribute::SwiftSelf: 624 return bitc::ATTR_KIND_SWIFT_SELF; 625 case Attribute::UWTable: 626 return bitc::ATTR_KIND_UW_TABLE; 627 case Attribute::WriteOnly: 628 return bitc::ATTR_KIND_WRITEONLY; 629 case Attribute::ZExt: 630 return bitc::ATTR_KIND_Z_EXT; 631 case Attribute::EndAttrKinds: 632 llvm_unreachable("Can not encode end-attribute kinds marker."); 633 case Attribute::None: 634 llvm_unreachable("Can not encode none-attribute."); 635 } 636 637 llvm_unreachable("Trying to encode unknown attribute"); 638 } 639 640 void ModuleBitcodeWriter::writeAttributeGroupTable() { 641 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 642 VE.getAttributeGroups(); 643 if (AttrGrps.empty()) return; 644 645 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 646 647 SmallVector<uint64_t, 64> Record; 648 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 649 unsigned AttrListIndex = Pair.first; 650 AttributeSet AS = Pair.second; 651 Record.push_back(VE.getAttributeGroupID(Pair)); 652 Record.push_back(AttrListIndex); 653 654 for (Attribute Attr : AS) { 655 if (Attr.isEnumAttribute()) { 656 Record.push_back(0); 657 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 658 } else if (Attr.isIntAttribute()) { 659 Record.push_back(1); 660 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 661 Record.push_back(Attr.getValueAsInt()); 662 } else { 663 StringRef Kind = Attr.getKindAsString(); 664 StringRef Val = Attr.getValueAsString(); 665 666 Record.push_back(Val.empty() ? 3 : 4); 667 Record.append(Kind.begin(), Kind.end()); 668 Record.push_back(0); 669 if (!Val.empty()) { 670 Record.append(Val.begin(), Val.end()); 671 Record.push_back(0); 672 } 673 } 674 } 675 676 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 677 Record.clear(); 678 } 679 680 Stream.ExitBlock(); 681 } 682 683 void ModuleBitcodeWriter::writeAttributeTable() { 684 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 685 if (Attrs.empty()) return; 686 687 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 688 689 SmallVector<uint64_t, 64> Record; 690 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 691 AttributeList AL = Attrs[i]; 692 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 693 AttributeSet AS = AL.getAttributes(i); 694 if (AS.hasAttributes()) 695 Record.push_back(VE.getAttributeGroupID({i, AS})); 696 } 697 698 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 699 Record.clear(); 700 } 701 702 Stream.ExitBlock(); 703 } 704 705 /// WriteTypeTable - Write out the type table for a module. 706 void ModuleBitcodeWriter::writeTypeTable() { 707 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 708 709 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 710 SmallVector<uint64_t, 64> TypeVals; 711 712 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 713 714 // Abbrev for TYPE_CODE_POINTER. 715 auto Abbv = std::make_shared<BitCodeAbbrev>(); 716 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 718 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 719 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 720 721 // Abbrev for TYPE_CODE_FUNCTION. 722 Abbv = std::make_shared<BitCodeAbbrev>(); 723 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 727 728 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 729 730 // Abbrev for TYPE_CODE_STRUCT_ANON. 731 Abbv = std::make_shared<BitCodeAbbrev>(); 732 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 736 737 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 738 739 // Abbrev for TYPE_CODE_STRUCT_NAME. 740 Abbv = std::make_shared<BitCodeAbbrev>(); 741 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 744 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 745 746 // Abbrev for TYPE_CODE_STRUCT_NAMED. 747 Abbv = std::make_shared<BitCodeAbbrev>(); 748 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 752 753 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 754 755 // Abbrev for TYPE_CODE_ARRAY. 756 Abbv = std::make_shared<BitCodeAbbrev>(); 757 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 760 761 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 762 763 // Emit an entry count so the reader can reserve space. 764 TypeVals.push_back(TypeList.size()); 765 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 766 TypeVals.clear(); 767 768 // Loop over all of the types, emitting each in turn. 769 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 770 Type *T = TypeList[i]; 771 int AbbrevToUse = 0; 772 unsigned Code = 0; 773 774 switch (T->getTypeID()) { 775 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 776 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 777 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 778 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 779 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 780 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 781 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 782 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 783 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 784 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 785 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 786 case Type::IntegerTyID: 787 // INTEGER: [width] 788 Code = bitc::TYPE_CODE_INTEGER; 789 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 790 break; 791 case Type::PointerTyID: { 792 PointerType *PTy = cast<PointerType>(T); 793 // POINTER: [pointee type, address space] 794 Code = bitc::TYPE_CODE_POINTER; 795 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 796 unsigned AddressSpace = PTy->getAddressSpace(); 797 TypeVals.push_back(AddressSpace); 798 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 799 break; 800 } 801 case Type::FunctionTyID: { 802 FunctionType *FT = cast<FunctionType>(T); 803 // FUNCTION: [isvararg, retty, paramty x N] 804 Code = bitc::TYPE_CODE_FUNCTION; 805 TypeVals.push_back(FT->isVarArg()); 806 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 807 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 808 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 809 AbbrevToUse = FunctionAbbrev; 810 break; 811 } 812 case Type::StructTyID: { 813 StructType *ST = cast<StructType>(T); 814 // STRUCT: [ispacked, eltty x N] 815 TypeVals.push_back(ST->isPacked()); 816 // Output all of the element types. 817 for (StructType::element_iterator I = ST->element_begin(), 818 E = ST->element_end(); I != E; ++I) 819 TypeVals.push_back(VE.getTypeID(*I)); 820 821 if (ST->isLiteral()) { 822 Code = bitc::TYPE_CODE_STRUCT_ANON; 823 AbbrevToUse = StructAnonAbbrev; 824 } else { 825 if (ST->isOpaque()) { 826 Code = bitc::TYPE_CODE_OPAQUE; 827 } else { 828 Code = bitc::TYPE_CODE_STRUCT_NAMED; 829 AbbrevToUse = StructNamedAbbrev; 830 } 831 832 // Emit the name if it is present. 833 if (!ST->getName().empty()) 834 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 835 StructNameAbbrev); 836 } 837 break; 838 } 839 case Type::ArrayTyID: { 840 ArrayType *AT = cast<ArrayType>(T); 841 // ARRAY: [numelts, eltty] 842 Code = bitc::TYPE_CODE_ARRAY; 843 TypeVals.push_back(AT->getNumElements()); 844 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 845 AbbrevToUse = ArrayAbbrev; 846 break; 847 } 848 case Type::VectorTyID: { 849 VectorType *VT = cast<VectorType>(T); 850 // VECTOR [numelts, eltty] 851 Code = bitc::TYPE_CODE_VECTOR; 852 TypeVals.push_back(VT->getNumElements()); 853 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 854 break; 855 } 856 } 857 858 // Emit the finished record. 859 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 860 TypeVals.clear(); 861 } 862 863 Stream.ExitBlock(); 864 } 865 866 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 867 switch (Linkage) { 868 case GlobalValue::ExternalLinkage: 869 return 0; 870 case GlobalValue::WeakAnyLinkage: 871 return 16; 872 case GlobalValue::AppendingLinkage: 873 return 2; 874 case GlobalValue::InternalLinkage: 875 return 3; 876 case GlobalValue::LinkOnceAnyLinkage: 877 return 18; 878 case GlobalValue::ExternalWeakLinkage: 879 return 7; 880 case GlobalValue::CommonLinkage: 881 return 8; 882 case GlobalValue::PrivateLinkage: 883 return 9; 884 case GlobalValue::WeakODRLinkage: 885 return 17; 886 case GlobalValue::LinkOnceODRLinkage: 887 return 19; 888 case GlobalValue::AvailableExternallyLinkage: 889 return 12; 890 } 891 llvm_unreachable("Invalid linkage"); 892 } 893 894 static unsigned getEncodedLinkage(const GlobalValue &GV) { 895 return getEncodedLinkage(GV.getLinkage()); 896 } 897 898 // Decode the flags for GlobalValue in the summary 899 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 900 uint64_t RawFlags = 0; 901 902 RawFlags |= Flags.NotEligibleToImport; // bool 903 RawFlags |= (Flags.Live << 1); 904 // Linkage don't need to be remapped at that time for the summary. Any future 905 // change to the getEncodedLinkage() function will need to be taken into 906 // account here as well. 907 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 908 909 return RawFlags; 910 } 911 912 static unsigned getEncodedVisibility(const GlobalValue &GV) { 913 switch (GV.getVisibility()) { 914 case GlobalValue::DefaultVisibility: return 0; 915 case GlobalValue::HiddenVisibility: return 1; 916 case GlobalValue::ProtectedVisibility: return 2; 917 } 918 llvm_unreachable("Invalid visibility"); 919 } 920 921 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 922 switch (GV.getDLLStorageClass()) { 923 case GlobalValue::DefaultStorageClass: return 0; 924 case GlobalValue::DLLImportStorageClass: return 1; 925 case GlobalValue::DLLExportStorageClass: return 2; 926 } 927 llvm_unreachable("Invalid DLL storage class"); 928 } 929 930 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 931 switch (GV.getThreadLocalMode()) { 932 case GlobalVariable::NotThreadLocal: return 0; 933 case GlobalVariable::GeneralDynamicTLSModel: return 1; 934 case GlobalVariable::LocalDynamicTLSModel: return 2; 935 case GlobalVariable::InitialExecTLSModel: return 3; 936 case GlobalVariable::LocalExecTLSModel: return 4; 937 } 938 llvm_unreachable("Invalid TLS model"); 939 } 940 941 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 942 switch (C.getSelectionKind()) { 943 case Comdat::Any: 944 return bitc::COMDAT_SELECTION_KIND_ANY; 945 case Comdat::ExactMatch: 946 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 947 case Comdat::Largest: 948 return bitc::COMDAT_SELECTION_KIND_LARGEST; 949 case Comdat::NoDuplicates: 950 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 951 case Comdat::SameSize: 952 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 953 } 954 llvm_unreachable("Invalid selection kind"); 955 } 956 957 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 958 switch (GV.getUnnamedAddr()) { 959 case GlobalValue::UnnamedAddr::None: return 0; 960 case GlobalValue::UnnamedAddr::Local: return 2; 961 case GlobalValue::UnnamedAddr::Global: return 1; 962 } 963 llvm_unreachable("Invalid unnamed_addr"); 964 } 965 966 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 967 if (GenerateHash) 968 Hasher.update(Str); 969 return StrtabBuilder.add(Str); 970 } 971 972 void ModuleBitcodeWriter::writeComdats() { 973 SmallVector<unsigned, 64> Vals; 974 for (const Comdat *C : VE.getComdats()) { 975 // COMDAT: [strtab offset, strtab size, selection_kind] 976 Vals.push_back(addToStrtab(C->getName())); 977 Vals.push_back(C->getName().size()); 978 Vals.push_back(getEncodedComdatSelectionKind(*C)); 979 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 980 Vals.clear(); 981 } 982 } 983 984 /// Write a record that will eventually hold the word offset of the 985 /// module-level VST. For now the offset is 0, which will be backpatched 986 /// after the real VST is written. Saves the bit offset to backpatch. 987 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 988 // Write a placeholder value in for the offset of the real VST, 989 // which is written after the function blocks so that it can include 990 // the offset of each function. The placeholder offset will be 991 // updated when the real VST is written. 992 auto Abbv = std::make_shared<BitCodeAbbrev>(); 993 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 994 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 995 // hold the real VST offset. Must use fixed instead of VBR as we don't 996 // know how many VBR chunks to reserve ahead of time. 997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 998 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 999 1000 // Emit the placeholder 1001 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1002 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1003 1004 // Compute and save the bit offset to the placeholder, which will be 1005 // patched when the real VST is written. We can simply subtract the 32-bit 1006 // fixed size from the current bit number to get the location to backpatch. 1007 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1008 } 1009 1010 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1011 1012 /// Determine the encoding to use for the given string name and length. 1013 static StringEncoding getStringEncoding(StringRef Str) { 1014 bool isChar6 = true; 1015 for (char C : Str) { 1016 if (isChar6) 1017 isChar6 = BitCodeAbbrevOp::isChar6(C); 1018 if ((unsigned char)C & 128) 1019 // don't bother scanning the rest. 1020 return SE_Fixed8; 1021 } 1022 if (isChar6) 1023 return SE_Char6; 1024 return SE_Fixed7; 1025 } 1026 1027 /// Emit top-level description of module, including target triple, inline asm, 1028 /// descriptors for global variables, and function prototype info. 1029 /// Returns the bit offset to backpatch with the location of the real VST. 1030 void ModuleBitcodeWriter::writeModuleInfo() { 1031 // Emit various pieces of data attached to a module. 1032 if (!M.getTargetTriple().empty()) 1033 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1034 0 /*TODO*/); 1035 const std::string &DL = M.getDataLayoutStr(); 1036 if (!DL.empty()) 1037 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1038 if (!M.getModuleInlineAsm().empty()) 1039 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1040 0 /*TODO*/); 1041 1042 // Emit information about sections and GC, computing how many there are. Also 1043 // compute the maximum alignment value. 1044 std::map<std::string, unsigned> SectionMap; 1045 std::map<std::string, unsigned> GCMap; 1046 unsigned MaxAlignment = 0; 1047 unsigned MaxGlobalType = 0; 1048 for (const GlobalValue &GV : M.globals()) { 1049 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1050 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1051 if (GV.hasSection()) { 1052 // Give section names unique ID's. 1053 unsigned &Entry = SectionMap[GV.getSection()]; 1054 if (!Entry) { 1055 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1056 0 /*TODO*/); 1057 Entry = SectionMap.size(); 1058 } 1059 } 1060 } 1061 for (const Function &F : M) { 1062 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1063 if (F.hasSection()) { 1064 // Give section names unique ID's. 1065 unsigned &Entry = SectionMap[F.getSection()]; 1066 if (!Entry) { 1067 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1068 0 /*TODO*/); 1069 Entry = SectionMap.size(); 1070 } 1071 } 1072 if (F.hasGC()) { 1073 // Same for GC names. 1074 unsigned &Entry = GCMap[F.getGC()]; 1075 if (!Entry) { 1076 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1077 0 /*TODO*/); 1078 Entry = GCMap.size(); 1079 } 1080 } 1081 } 1082 1083 // Emit abbrev for globals, now that we know # sections and max alignment. 1084 unsigned SimpleGVarAbbrev = 0; 1085 if (!M.global_empty()) { 1086 // Add an abbrev for common globals with no visibility or thread localness. 1087 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1088 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1092 Log2_32_Ceil(MaxGlobalType+1))); 1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1094 //| explicitType << 1 1095 //| constant 1096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1098 if (MaxAlignment == 0) // Alignment. 1099 Abbv->Add(BitCodeAbbrevOp(0)); 1100 else { 1101 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1103 Log2_32_Ceil(MaxEncAlignment+1))); 1104 } 1105 if (SectionMap.empty()) // Section. 1106 Abbv->Add(BitCodeAbbrevOp(0)); 1107 else 1108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1109 Log2_32_Ceil(SectionMap.size()+1))); 1110 // Don't bother emitting vis + thread local. 1111 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1112 } 1113 1114 SmallVector<unsigned, 64> Vals; 1115 // Emit the module's source file name. 1116 { 1117 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1118 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1119 if (Bits == SE_Char6) 1120 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1121 else if (Bits == SE_Fixed7) 1122 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1123 1124 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1125 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1126 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1128 Abbv->Add(AbbrevOpToUse); 1129 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1130 1131 for (const auto P : M.getSourceFileName()) 1132 Vals.push_back((unsigned char)P); 1133 1134 // Emit the finished record. 1135 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1136 Vals.clear(); 1137 } 1138 1139 // Emit the global variable information. 1140 for (const GlobalVariable &GV : M.globals()) { 1141 unsigned AbbrevToUse = 0; 1142 1143 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1144 // linkage, alignment, section, visibility, threadlocal, 1145 // unnamed_addr, externally_initialized, dllstorageclass, 1146 // comdat, attributes] 1147 Vals.push_back(addToStrtab(GV.getName())); 1148 Vals.push_back(GV.getName().size()); 1149 Vals.push_back(VE.getTypeID(GV.getValueType())); 1150 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1151 Vals.push_back(GV.isDeclaration() ? 0 : 1152 (VE.getValueID(GV.getInitializer()) + 1)); 1153 Vals.push_back(getEncodedLinkage(GV)); 1154 Vals.push_back(Log2_32(GV.getAlignment())+1); 1155 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1156 if (GV.isThreadLocal() || 1157 GV.getVisibility() != GlobalValue::DefaultVisibility || 1158 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1159 GV.isExternallyInitialized() || 1160 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1161 GV.hasComdat() || 1162 GV.hasAttributes()) { 1163 Vals.push_back(getEncodedVisibility(GV)); 1164 Vals.push_back(getEncodedThreadLocalMode(GV)); 1165 Vals.push_back(getEncodedUnnamedAddr(GV)); 1166 Vals.push_back(GV.isExternallyInitialized()); 1167 Vals.push_back(getEncodedDLLStorageClass(GV)); 1168 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1169 1170 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1171 Vals.push_back(VE.getAttributeListID(AL)); 1172 } else { 1173 AbbrevToUse = SimpleGVarAbbrev; 1174 } 1175 1176 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1177 Vals.clear(); 1178 } 1179 1180 // Emit the function proto information. 1181 for (const Function &F : M) { 1182 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1183 // linkage, paramattrs, alignment, section, visibility, gc, 1184 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1185 // prefixdata, personalityfn] 1186 Vals.push_back(addToStrtab(F.getName())); 1187 Vals.push_back(F.getName().size()); 1188 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1189 Vals.push_back(F.getCallingConv()); 1190 Vals.push_back(F.isDeclaration()); 1191 Vals.push_back(getEncodedLinkage(F)); 1192 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1193 Vals.push_back(Log2_32(F.getAlignment())+1); 1194 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1195 Vals.push_back(getEncodedVisibility(F)); 1196 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1197 Vals.push_back(getEncodedUnnamedAddr(F)); 1198 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1199 : 0); 1200 Vals.push_back(getEncodedDLLStorageClass(F)); 1201 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1202 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1203 : 0); 1204 Vals.push_back( 1205 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1206 1207 unsigned AbbrevToUse = 0; 1208 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1209 Vals.clear(); 1210 } 1211 1212 // Emit the alias information. 1213 for (const GlobalAlias &A : M.aliases()) { 1214 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1215 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1216 Vals.push_back(addToStrtab(A.getName())); 1217 Vals.push_back(A.getName().size()); 1218 Vals.push_back(VE.getTypeID(A.getValueType())); 1219 Vals.push_back(A.getType()->getAddressSpace()); 1220 Vals.push_back(VE.getValueID(A.getAliasee())); 1221 Vals.push_back(getEncodedLinkage(A)); 1222 Vals.push_back(getEncodedVisibility(A)); 1223 Vals.push_back(getEncodedDLLStorageClass(A)); 1224 Vals.push_back(getEncodedThreadLocalMode(A)); 1225 Vals.push_back(getEncodedUnnamedAddr(A)); 1226 unsigned AbbrevToUse = 0; 1227 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1228 Vals.clear(); 1229 } 1230 1231 // Emit the ifunc information. 1232 for (const GlobalIFunc &I : M.ifuncs()) { 1233 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1234 // val#, linkage, visibility] 1235 Vals.push_back(addToStrtab(I.getName())); 1236 Vals.push_back(I.getName().size()); 1237 Vals.push_back(VE.getTypeID(I.getValueType())); 1238 Vals.push_back(I.getType()->getAddressSpace()); 1239 Vals.push_back(VE.getValueID(I.getResolver())); 1240 Vals.push_back(getEncodedLinkage(I)); 1241 Vals.push_back(getEncodedVisibility(I)); 1242 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1243 Vals.clear(); 1244 } 1245 1246 writeValueSymbolTableForwardDecl(); 1247 } 1248 1249 static uint64_t getOptimizationFlags(const Value *V) { 1250 uint64_t Flags = 0; 1251 1252 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1253 if (OBO->hasNoSignedWrap()) 1254 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1255 if (OBO->hasNoUnsignedWrap()) 1256 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1257 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1258 if (PEO->isExact()) 1259 Flags |= 1 << bitc::PEO_EXACT; 1260 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1261 if (FPMO->hasUnsafeAlgebra()) 1262 Flags |= FastMathFlags::UnsafeAlgebra; 1263 if (FPMO->hasNoNaNs()) 1264 Flags |= FastMathFlags::NoNaNs; 1265 if (FPMO->hasNoInfs()) 1266 Flags |= FastMathFlags::NoInfs; 1267 if (FPMO->hasNoSignedZeros()) 1268 Flags |= FastMathFlags::NoSignedZeros; 1269 if (FPMO->hasAllowReciprocal()) 1270 Flags |= FastMathFlags::AllowReciprocal; 1271 if (FPMO->hasAllowContract()) 1272 Flags |= FastMathFlags::AllowContract; 1273 } 1274 1275 return Flags; 1276 } 1277 1278 void ModuleBitcodeWriter::writeValueAsMetadata( 1279 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1280 // Mimic an MDNode with a value as one operand. 1281 Value *V = MD->getValue(); 1282 Record.push_back(VE.getTypeID(V->getType())); 1283 Record.push_back(VE.getValueID(V)); 1284 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1285 Record.clear(); 1286 } 1287 1288 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1289 SmallVectorImpl<uint64_t> &Record, 1290 unsigned Abbrev) { 1291 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1292 Metadata *MD = N->getOperand(i); 1293 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1294 "Unexpected function-local metadata"); 1295 Record.push_back(VE.getMetadataOrNullID(MD)); 1296 } 1297 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1298 : bitc::METADATA_NODE, 1299 Record, Abbrev); 1300 Record.clear(); 1301 } 1302 1303 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1304 // Assume the column is usually under 128, and always output the inlined-at 1305 // location (it's never more expensive than building an array size 1). 1306 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1307 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1313 return Stream.EmitAbbrev(std::move(Abbv)); 1314 } 1315 1316 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1317 SmallVectorImpl<uint64_t> &Record, 1318 unsigned &Abbrev) { 1319 if (!Abbrev) 1320 Abbrev = createDILocationAbbrev(); 1321 1322 Record.push_back(N->isDistinct()); 1323 Record.push_back(N->getLine()); 1324 Record.push_back(N->getColumn()); 1325 Record.push_back(VE.getMetadataID(N->getScope())); 1326 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1327 1328 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1329 Record.clear(); 1330 } 1331 1332 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1333 // Assume the column is usually under 128, and always output the inlined-at 1334 // location (it's never more expensive than building an array size 1). 1335 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1336 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1343 return Stream.EmitAbbrev(std::move(Abbv)); 1344 } 1345 1346 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1347 SmallVectorImpl<uint64_t> &Record, 1348 unsigned &Abbrev) { 1349 if (!Abbrev) 1350 Abbrev = createGenericDINodeAbbrev(); 1351 1352 Record.push_back(N->isDistinct()); 1353 Record.push_back(N->getTag()); 1354 Record.push_back(0); // Per-tag version field; unused for now. 1355 1356 for (auto &I : N->operands()) 1357 Record.push_back(VE.getMetadataOrNullID(I)); 1358 1359 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1360 Record.clear(); 1361 } 1362 1363 static uint64_t rotateSign(int64_t I) { 1364 uint64_t U = I; 1365 return I < 0 ? ~(U << 1) : U << 1; 1366 } 1367 1368 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1369 SmallVectorImpl<uint64_t> &Record, 1370 unsigned Abbrev) { 1371 Record.push_back(N->isDistinct()); 1372 Record.push_back(N->getCount()); 1373 Record.push_back(rotateSign(N->getLowerBound())); 1374 1375 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1376 Record.clear(); 1377 } 1378 1379 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1380 SmallVectorImpl<uint64_t> &Record, 1381 unsigned Abbrev) { 1382 Record.push_back(N->isDistinct()); 1383 Record.push_back(rotateSign(N->getValue())); 1384 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1385 1386 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1387 Record.clear(); 1388 } 1389 1390 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1391 SmallVectorImpl<uint64_t> &Record, 1392 unsigned Abbrev) { 1393 Record.push_back(N->isDistinct()); 1394 Record.push_back(N->getTag()); 1395 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1396 Record.push_back(N->getSizeInBits()); 1397 Record.push_back(N->getAlignInBits()); 1398 Record.push_back(N->getEncoding()); 1399 1400 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1401 Record.clear(); 1402 } 1403 1404 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1405 SmallVectorImpl<uint64_t> &Record, 1406 unsigned Abbrev) { 1407 Record.push_back(N->isDistinct()); 1408 Record.push_back(N->getTag()); 1409 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1410 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1411 Record.push_back(N->getLine()); 1412 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1413 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1414 Record.push_back(N->getSizeInBits()); 1415 Record.push_back(N->getAlignInBits()); 1416 Record.push_back(N->getOffsetInBits()); 1417 Record.push_back(N->getFlags()); 1418 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1419 1420 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1421 // that there is no DWARF address space associated with DIDerivedType. 1422 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1423 Record.push_back(*DWARFAddressSpace + 1); 1424 else 1425 Record.push_back(0); 1426 1427 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1428 Record.clear(); 1429 } 1430 1431 void ModuleBitcodeWriter::writeDICompositeType( 1432 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1433 unsigned Abbrev) { 1434 const unsigned IsNotUsedInOldTypeRef = 0x2; 1435 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1436 Record.push_back(N->getTag()); 1437 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1438 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1439 Record.push_back(N->getLine()); 1440 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1441 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1442 Record.push_back(N->getSizeInBits()); 1443 Record.push_back(N->getAlignInBits()); 1444 Record.push_back(N->getOffsetInBits()); 1445 Record.push_back(N->getFlags()); 1446 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1447 Record.push_back(N->getRuntimeLang()); 1448 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1449 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1450 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1451 1452 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1453 Record.clear(); 1454 } 1455 1456 void ModuleBitcodeWriter::writeDISubroutineType( 1457 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1458 unsigned Abbrev) { 1459 const unsigned HasNoOldTypeRefs = 0x2; 1460 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1461 Record.push_back(N->getFlags()); 1462 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1463 Record.push_back(N->getCC()); 1464 1465 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1466 Record.clear(); 1467 } 1468 1469 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1470 SmallVectorImpl<uint64_t> &Record, 1471 unsigned Abbrev) { 1472 Record.push_back(N->isDistinct()); 1473 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1474 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1475 Record.push_back(N->getChecksumKind()); 1476 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1477 1478 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1479 Record.clear(); 1480 } 1481 1482 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1483 SmallVectorImpl<uint64_t> &Record, 1484 unsigned Abbrev) { 1485 assert(N->isDistinct() && "Expected distinct compile units"); 1486 Record.push_back(/* IsDistinct */ true); 1487 Record.push_back(N->getSourceLanguage()); 1488 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1489 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1490 Record.push_back(N->isOptimized()); 1491 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1492 Record.push_back(N->getRuntimeVersion()); 1493 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1494 Record.push_back(N->getEmissionKind()); 1495 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1496 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1497 Record.push_back(/* subprograms */ 0); 1498 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1499 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1500 Record.push_back(N->getDWOId()); 1501 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1502 Record.push_back(N->getSplitDebugInlining()); 1503 Record.push_back(N->getDebugInfoForProfiling()); 1504 1505 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1506 Record.clear(); 1507 } 1508 1509 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1510 SmallVectorImpl<uint64_t> &Record, 1511 unsigned Abbrev) { 1512 uint64_t HasUnitFlag = 1 << 1; 1513 Record.push_back(N->isDistinct() | HasUnitFlag); 1514 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1515 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1516 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1517 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1518 Record.push_back(N->getLine()); 1519 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1520 Record.push_back(N->isLocalToUnit()); 1521 Record.push_back(N->isDefinition()); 1522 Record.push_back(N->getScopeLine()); 1523 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1524 Record.push_back(N->getVirtuality()); 1525 Record.push_back(N->getVirtualIndex()); 1526 Record.push_back(N->getFlags()); 1527 Record.push_back(N->isOptimized()); 1528 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1529 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1530 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1531 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1532 Record.push_back(N->getThisAdjustment()); 1533 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1534 1535 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1536 Record.clear(); 1537 } 1538 1539 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1540 SmallVectorImpl<uint64_t> &Record, 1541 unsigned Abbrev) { 1542 Record.push_back(N->isDistinct()); 1543 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1544 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1545 Record.push_back(N->getLine()); 1546 Record.push_back(N->getColumn()); 1547 1548 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1549 Record.clear(); 1550 } 1551 1552 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1553 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1554 unsigned Abbrev) { 1555 Record.push_back(N->isDistinct()); 1556 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1557 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1558 Record.push_back(N->getDiscriminator()); 1559 1560 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1561 Record.clear(); 1562 } 1563 1564 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1565 SmallVectorImpl<uint64_t> &Record, 1566 unsigned Abbrev) { 1567 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1568 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1569 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1570 1571 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1572 Record.clear(); 1573 } 1574 1575 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1576 SmallVectorImpl<uint64_t> &Record, 1577 unsigned Abbrev) { 1578 Record.push_back(N->isDistinct()); 1579 Record.push_back(N->getMacinfoType()); 1580 Record.push_back(N->getLine()); 1581 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1582 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1583 1584 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1585 Record.clear(); 1586 } 1587 1588 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1589 SmallVectorImpl<uint64_t> &Record, 1590 unsigned Abbrev) { 1591 Record.push_back(N->isDistinct()); 1592 Record.push_back(N->getMacinfoType()); 1593 Record.push_back(N->getLine()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1596 1597 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1598 Record.clear(); 1599 } 1600 1601 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1602 SmallVectorImpl<uint64_t> &Record, 1603 unsigned Abbrev) { 1604 Record.push_back(N->isDistinct()); 1605 for (auto &I : N->operands()) 1606 Record.push_back(VE.getMetadataOrNullID(I)); 1607 1608 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1609 Record.clear(); 1610 } 1611 1612 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1613 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1614 unsigned Abbrev) { 1615 Record.push_back(N->isDistinct()); 1616 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1617 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1618 1619 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1620 Record.clear(); 1621 } 1622 1623 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1624 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1625 unsigned Abbrev) { 1626 Record.push_back(N->isDistinct()); 1627 Record.push_back(N->getTag()); 1628 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1629 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1630 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1631 1632 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1633 Record.clear(); 1634 } 1635 1636 void ModuleBitcodeWriter::writeDIGlobalVariable( 1637 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1638 unsigned Abbrev) { 1639 const uint64_t Version = 1 << 1; 1640 Record.push_back((uint64_t)N->isDistinct() | Version); 1641 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1642 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1643 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1644 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1645 Record.push_back(N->getLine()); 1646 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1647 Record.push_back(N->isLocalToUnit()); 1648 Record.push_back(N->isDefinition()); 1649 Record.push_back(/* expr */ 0); 1650 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1651 Record.push_back(N->getAlignInBits()); 1652 1653 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1654 Record.clear(); 1655 } 1656 1657 void ModuleBitcodeWriter::writeDILocalVariable( 1658 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1659 unsigned Abbrev) { 1660 // In order to support all possible bitcode formats in BitcodeReader we need 1661 // to distinguish the following cases: 1662 // 1) Record has no artificial tag (Record[1]), 1663 // has no obsolete inlinedAt field (Record[9]). 1664 // In this case Record size will be 8, HasAlignment flag is false. 1665 // 2) Record has artificial tag (Record[1]), 1666 // has no obsolete inlignedAt field (Record[9]). 1667 // In this case Record size will be 9, HasAlignment flag is false. 1668 // 3) Record has both artificial tag (Record[1]) and 1669 // obsolete inlignedAt field (Record[9]). 1670 // In this case Record size will be 10, HasAlignment flag is false. 1671 // 4) Record has neither artificial tag, nor inlignedAt field, but 1672 // HasAlignment flag is true and Record[8] contains alignment value. 1673 const uint64_t HasAlignmentFlag = 1 << 1; 1674 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1675 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1677 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1678 Record.push_back(N->getLine()); 1679 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1680 Record.push_back(N->getArg()); 1681 Record.push_back(N->getFlags()); 1682 Record.push_back(N->getAlignInBits()); 1683 1684 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1685 Record.clear(); 1686 } 1687 1688 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1689 SmallVectorImpl<uint64_t> &Record, 1690 unsigned Abbrev) { 1691 Record.reserve(N->getElements().size() + 1); 1692 const uint64_t Version = 3 << 1; 1693 Record.push_back((uint64_t)N->isDistinct() | Version); 1694 Record.append(N->elements_begin(), N->elements_end()); 1695 1696 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1697 Record.clear(); 1698 } 1699 1700 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1701 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1702 unsigned Abbrev) { 1703 Record.push_back(N->isDistinct()); 1704 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1705 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1706 1707 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1708 Record.clear(); 1709 } 1710 1711 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1712 SmallVectorImpl<uint64_t> &Record, 1713 unsigned Abbrev) { 1714 Record.push_back(N->isDistinct()); 1715 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1717 Record.push_back(N->getLine()); 1718 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1720 Record.push_back(N->getAttributes()); 1721 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1722 1723 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1724 Record.clear(); 1725 } 1726 1727 void ModuleBitcodeWriter::writeDIImportedEntity( 1728 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1729 unsigned Abbrev) { 1730 Record.push_back(N->isDistinct()); 1731 Record.push_back(N->getTag()); 1732 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1733 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1734 Record.push_back(N->getLine()); 1735 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1736 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1737 1738 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1739 Record.clear(); 1740 } 1741 1742 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1743 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1744 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1747 return Stream.EmitAbbrev(std::move(Abbv)); 1748 } 1749 1750 void ModuleBitcodeWriter::writeNamedMetadata( 1751 SmallVectorImpl<uint64_t> &Record) { 1752 if (M.named_metadata_empty()) 1753 return; 1754 1755 unsigned Abbrev = createNamedMetadataAbbrev(); 1756 for (const NamedMDNode &NMD : M.named_metadata()) { 1757 // Write name. 1758 StringRef Str = NMD.getName(); 1759 Record.append(Str.bytes_begin(), Str.bytes_end()); 1760 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1761 Record.clear(); 1762 1763 // Write named metadata operands. 1764 for (const MDNode *N : NMD.operands()) 1765 Record.push_back(VE.getMetadataID(N)); 1766 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1767 Record.clear(); 1768 } 1769 } 1770 1771 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1772 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1773 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1777 return Stream.EmitAbbrev(std::move(Abbv)); 1778 } 1779 1780 /// Write out a record for MDString. 1781 /// 1782 /// All the metadata strings in a metadata block are emitted in a single 1783 /// record. The sizes and strings themselves are shoved into a blob. 1784 void ModuleBitcodeWriter::writeMetadataStrings( 1785 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1786 if (Strings.empty()) 1787 return; 1788 1789 // Start the record with the number of strings. 1790 Record.push_back(bitc::METADATA_STRINGS); 1791 Record.push_back(Strings.size()); 1792 1793 // Emit the sizes of the strings in the blob. 1794 SmallString<256> Blob; 1795 { 1796 BitstreamWriter W(Blob); 1797 for (const Metadata *MD : Strings) 1798 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1799 W.FlushToWord(); 1800 } 1801 1802 // Add the offset to the strings to the record. 1803 Record.push_back(Blob.size()); 1804 1805 // Add the strings to the blob. 1806 for (const Metadata *MD : Strings) 1807 Blob.append(cast<MDString>(MD)->getString()); 1808 1809 // Emit the final record. 1810 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1811 Record.clear(); 1812 } 1813 1814 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1815 enum MetadataAbbrev : unsigned { 1816 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1817 #include "llvm/IR/Metadata.def" 1818 LastPlusOne 1819 }; 1820 1821 void ModuleBitcodeWriter::writeMetadataRecords( 1822 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1823 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1824 if (MDs.empty()) 1825 return; 1826 1827 // Initialize MDNode abbreviations. 1828 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1829 #include "llvm/IR/Metadata.def" 1830 1831 for (const Metadata *MD : MDs) { 1832 if (IndexPos) 1833 IndexPos->push_back(Stream.GetCurrentBitNo()); 1834 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1835 assert(N->isResolved() && "Expected forward references to be resolved"); 1836 1837 switch (N->getMetadataID()) { 1838 default: 1839 llvm_unreachable("Invalid MDNode subclass"); 1840 #define HANDLE_MDNODE_LEAF(CLASS) \ 1841 case Metadata::CLASS##Kind: \ 1842 if (MDAbbrevs) \ 1843 write##CLASS(cast<CLASS>(N), Record, \ 1844 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1845 else \ 1846 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1847 continue; 1848 #include "llvm/IR/Metadata.def" 1849 } 1850 } 1851 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1852 } 1853 } 1854 1855 void ModuleBitcodeWriter::writeModuleMetadata() { 1856 if (!VE.hasMDs() && M.named_metadata_empty()) 1857 return; 1858 1859 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1860 SmallVector<uint64_t, 64> Record; 1861 1862 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1863 // block and load any metadata. 1864 std::vector<unsigned> MDAbbrevs; 1865 1866 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1867 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1868 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1869 createGenericDINodeAbbrev(); 1870 1871 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1872 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1875 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1876 1877 Abbv = std::make_shared<BitCodeAbbrev>(); 1878 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1881 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1882 1883 // Emit MDStrings together upfront. 1884 writeMetadataStrings(VE.getMDStrings(), Record); 1885 1886 // We only emit an index for the metadata record if we have more than a given 1887 // (naive) threshold of metadatas, otherwise it is not worth it. 1888 if (VE.getNonMDStrings().size() > IndexThreshold) { 1889 // Write a placeholder value in for the offset of the metadata index, 1890 // which is written after the records, so that it can include 1891 // the offset of each entry. The placeholder offset will be 1892 // updated after all records are emitted. 1893 uint64_t Vals[] = {0, 0}; 1894 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1895 } 1896 1897 // Compute and save the bit offset to the current position, which will be 1898 // patched when we emit the index later. We can simply subtract the 64-bit 1899 // fixed size from the current bit number to get the location to backpatch. 1900 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1901 1902 // This index will contain the bitpos for each individual record. 1903 std::vector<uint64_t> IndexPos; 1904 IndexPos.reserve(VE.getNonMDStrings().size()); 1905 1906 // Write all the records 1907 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1908 1909 if (VE.getNonMDStrings().size() > IndexThreshold) { 1910 // Now that we have emitted all the records we will emit the index. But 1911 // first 1912 // backpatch the forward reference so that the reader can skip the records 1913 // efficiently. 1914 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1915 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1916 1917 // Delta encode the index. 1918 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1919 for (auto &Elt : IndexPos) { 1920 auto EltDelta = Elt - PreviousValue; 1921 PreviousValue = Elt; 1922 Elt = EltDelta; 1923 } 1924 // Emit the index record. 1925 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1926 IndexPos.clear(); 1927 } 1928 1929 // Write the named metadata now. 1930 writeNamedMetadata(Record); 1931 1932 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1933 SmallVector<uint64_t, 4> Record; 1934 Record.push_back(VE.getValueID(&GO)); 1935 pushGlobalMetadataAttachment(Record, GO); 1936 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1937 }; 1938 for (const Function &F : M) 1939 if (F.isDeclaration() && F.hasMetadata()) 1940 AddDeclAttachedMetadata(F); 1941 // FIXME: Only store metadata for declarations here, and move data for global 1942 // variable definitions to a separate block (PR28134). 1943 for (const GlobalVariable &GV : M.globals()) 1944 if (GV.hasMetadata()) 1945 AddDeclAttachedMetadata(GV); 1946 1947 Stream.ExitBlock(); 1948 } 1949 1950 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1951 if (!VE.hasMDs()) 1952 return; 1953 1954 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1955 SmallVector<uint64_t, 64> Record; 1956 writeMetadataStrings(VE.getMDStrings(), Record); 1957 writeMetadataRecords(VE.getNonMDStrings(), Record); 1958 Stream.ExitBlock(); 1959 } 1960 1961 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1962 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1963 // [n x [id, mdnode]] 1964 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1965 GO.getAllMetadata(MDs); 1966 for (const auto &I : MDs) { 1967 Record.push_back(I.first); 1968 Record.push_back(VE.getMetadataID(I.second)); 1969 } 1970 } 1971 1972 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1973 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1974 1975 SmallVector<uint64_t, 64> Record; 1976 1977 if (F.hasMetadata()) { 1978 pushGlobalMetadataAttachment(Record, F); 1979 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1980 Record.clear(); 1981 } 1982 1983 // Write metadata attachments 1984 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1985 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1986 for (const BasicBlock &BB : F) 1987 for (const Instruction &I : BB) { 1988 MDs.clear(); 1989 I.getAllMetadataOtherThanDebugLoc(MDs); 1990 1991 // If no metadata, ignore instruction. 1992 if (MDs.empty()) continue; 1993 1994 Record.push_back(VE.getInstructionID(&I)); 1995 1996 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1997 Record.push_back(MDs[i].first); 1998 Record.push_back(VE.getMetadataID(MDs[i].second)); 1999 } 2000 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2001 Record.clear(); 2002 } 2003 2004 Stream.ExitBlock(); 2005 } 2006 2007 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2008 SmallVector<uint64_t, 64> Record; 2009 2010 // Write metadata kinds 2011 // METADATA_KIND - [n x [id, name]] 2012 SmallVector<StringRef, 8> Names; 2013 M.getMDKindNames(Names); 2014 2015 if (Names.empty()) return; 2016 2017 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2018 2019 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2020 Record.push_back(MDKindID); 2021 StringRef KName = Names[MDKindID]; 2022 Record.append(KName.begin(), KName.end()); 2023 2024 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2025 Record.clear(); 2026 } 2027 2028 Stream.ExitBlock(); 2029 } 2030 2031 void ModuleBitcodeWriter::writeOperandBundleTags() { 2032 // Write metadata kinds 2033 // 2034 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2035 // 2036 // OPERAND_BUNDLE_TAG - [strchr x N] 2037 2038 SmallVector<StringRef, 8> Tags; 2039 M.getOperandBundleTags(Tags); 2040 2041 if (Tags.empty()) 2042 return; 2043 2044 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2045 2046 SmallVector<uint64_t, 64> Record; 2047 2048 for (auto Tag : Tags) { 2049 Record.append(Tag.begin(), Tag.end()); 2050 2051 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2052 Record.clear(); 2053 } 2054 2055 Stream.ExitBlock(); 2056 } 2057 2058 void ModuleBitcodeWriter::writeSyncScopeNames() { 2059 SmallVector<StringRef, 8> SSNs; 2060 M.getContext().getSyncScopeNames(SSNs); 2061 if (SSNs.empty()) 2062 return; 2063 2064 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2065 2066 SmallVector<uint64_t, 64> Record; 2067 for (auto SSN : SSNs) { 2068 Record.append(SSN.begin(), SSN.end()); 2069 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2070 Record.clear(); 2071 } 2072 2073 Stream.ExitBlock(); 2074 } 2075 2076 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2077 if ((int64_t)V >= 0) 2078 Vals.push_back(V << 1); 2079 else 2080 Vals.push_back((-V << 1) | 1); 2081 } 2082 2083 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2084 bool isGlobal) { 2085 if (FirstVal == LastVal) return; 2086 2087 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2088 2089 unsigned AggregateAbbrev = 0; 2090 unsigned String8Abbrev = 0; 2091 unsigned CString7Abbrev = 0; 2092 unsigned CString6Abbrev = 0; 2093 // If this is a constant pool for the module, emit module-specific abbrevs. 2094 if (isGlobal) { 2095 // Abbrev for CST_CODE_AGGREGATE. 2096 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2097 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2100 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2101 2102 // Abbrev for CST_CODE_STRING. 2103 Abbv = std::make_shared<BitCodeAbbrev>(); 2104 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2107 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2108 // Abbrev for CST_CODE_CSTRING. 2109 Abbv = std::make_shared<BitCodeAbbrev>(); 2110 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2113 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2114 // Abbrev for CST_CODE_CSTRING. 2115 Abbv = std::make_shared<BitCodeAbbrev>(); 2116 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2119 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2120 } 2121 2122 SmallVector<uint64_t, 64> Record; 2123 2124 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2125 Type *LastTy = nullptr; 2126 for (unsigned i = FirstVal; i != LastVal; ++i) { 2127 const Value *V = Vals[i].first; 2128 // If we need to switch types, do so now. 2129 if (V->getType() != LastTy) { 2130 LastTy = V->getType(); 2131 Record.push_back(VE.getTypeID(LastTy)); 2132 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2133 CONSTANTS_SETTYPE_ABBREV); 2134 Record.clear(); 2135 } 2136 2137 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2138 Record.push_back(unsigned(IA->hasSideEffects()) | 2139 unsigned(IA->isAlignStack()) << 1 | 2140 unsigned(IA->getDialect()&1) << 2); 2141 2142 // Add the asm string. 2143 const std::string &AsmStr = IA->getAsmString(); 2144 Record.push_back(AsmStr.size()); 2145 Record.append(AsmStr.begin(), AsmStr.end()); 2146 2147 // Add the constraint string. 2148 const std::string &ConstraintStr = IA->getConstraintString(); 2149 Record.push_back(ConstraintStr.size()); 2150 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2151 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2152 Record.clear(); 2153 continue; 2154 } 2155 const Constant *C = cast<Constant>(V); 2156 unsigned Code = -1U; 2157 unsigned AbbrevToUse = 0; 2158 if (C->isNullValue()) { 2159 Code = bitc::CST_CODE_NULL; 2160 } else if (isa<UndefValue>(C)) { 2161 Code = bitc::CST_CODE_UNDEF; 2162 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2163 if (IV->getBitWidth() <= 64) { 2164 uint64_t V = IV->getSExtValue(); 2165 emitSignedInt64(Record, V); 2166 Code = bitc::CST_CODE_INTEGER; 2167 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2168 } else { // Wide integers, > 64 bits in size. 2169 // We have an arbitrary precision integer value to write whose 2170 // bit width is > 64. However, in canonical unsigned integer 2171 // format it is likely that the high bits are going to be zero. 2172 // So, we only write the number of active words. 2173 unsigned NWords = IV->getValue().getActiveWords(); 2174 const uint64_t *RawWords = IV->getValue().getRawData(); 2175 for (unsigned i = 0; i != NWords; ++i) { 2176 emitSignedInt64(Record, RawWords[i]); 2177 } 2178 Code = bitc::CST_CODE_WIDE_INTEGER; 2179 } 2180 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2181 Code = bitc::CST_CODE_FLOAT; 2182 Type *Ty = CFP->getType(); 2183 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2184 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2185 } else if (Ty->isX86_FP80Ty()) { 2186 // api needed to prevent premature destruction 2187 // bits are not in the same order as a normal i80 APInt, compensate. 2188 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2189 const uint64_t *p = api.getRawData(); 2190 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2191 Record.push_back(p[0] & 0xffffLL); 2192 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2193 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2194 const uint64_t *p = api.getRawData(); 2195 Record.push_back(p[0]); 2196 Record.push_back(p[1]); 2197 } else { 2198 assert (0 && "Unknown FP type!"); 2199 } 2200 } else if (isa<ConstantDataSequential>(C) && 2201 cast<ConstantDataSequential>(C)->isString()) { 2202 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2203 // Emit constant strings specially. 2204 unsigned NumElts = Str->getNumElements(); 2205 // If this is a null-terminated string, use the denser CSTRING encoding. 2206 if (Str->isCString()) { 2207 Code = bitc::CST_CODE_CSTRING; 2208 --NumElts; // Don't encode the null, which isn't allowed by char6. 2209 } else { 2210 Code = bitc::CST_CODE_STRING; 2211 AbbrevToUse = String8Abbrev; 2212 } 2213 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2214 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2215 for (unsigned i = 0; i != NumElts; ++i) { 2216 unsigned char V = Str->getElementAsInteger(i); 2217 Record.push_back(V); 2218 isCStr7 &= (V & 128) == 0; 2219 if (isCStrChar6) 2220 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2221 } 2222 2223 if (isCStrChar6) 2224 AbbrevToUse = CString6Abbrev; 2225 else if (isCStr7) 2226 AbbrevToUse = CString7Abbrev; 2227 } else if (const ConstantDataSequential *CDS = 2228 dyn_cast<ConstantDataSequential>(C)) { 2229 Code = bitc::CST_CODE_DATA; 2230 Type *EltTy = CDS->getType()->getElementType(); 2231 if (isa<IntegerType>(EltTy)) { 2232 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2233 Record.push_back(CDS->getElementAsInteger(i)); 2234 } else { 2235 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2236 Record.push_back( 2237 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2238 } 2239 } else if (isa<ConstantAggregate>(C)) { 2240 Code = bitc::CST_CODE_AGGREGATE; 2241 for (const Value *Op : C->operands()) 2242 Record.push_back(VE.getValueID(Op)); 2243 AbbrevToUse = AggregateAbbrev; 2244 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2245 switch (CE->getOpcode()) { 2246 default: 2247 if (Instruction::isCast(CE->getOpcode())) { 2248 Code = bitc::CST_CODE_CE_CAST; 2249 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2250 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2251 Record.push_back(VE.getValueID(C->getOperand(0))); 2252 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2253 } else { 2254 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2255 Code = bitc::CST_CODE_CE_BINOP; 2256 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2257 Record.push_back(VE.getValueID(C->getOperand(0))); 2258 Record.push_back(VE.getValueID(C->getOperand(1))); 2259 uint64_t Flags = getOptimizationFlags(CE); 2260 if (Flags != 0) 2261 Record.push_back(Flags); 2262 } 2263 break; 2264 case Instruction::GetElementPtr: { 2265 Code = bitc::CST_CODE_CE_GEP; 2266 const auto *GO = cast<GEPOperator>(C); 2267 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2268 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2269 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2270 Record.push_back((*Idx << 1) | GO->isInBounds()); 2271 } else if (GO->isInBounds()) 2272 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2273 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2274 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2275 Record.push_back(VE.getValueID(C->getOperand(i))); 2276 } 2277 break; 2278 } 2279 case Instruction::Select: 2280 Code = bitc::CST_CODE_CE_SELECT; 2281 Record.push_back(VE.getValueID(C->getOperand(0))); 2282 Record.push_back(VE.getValueID(C->getOperand(1))); 2283 Record.push_back(VE.getValueID(C->getOperand(2))); 2284 break; 2285 case Instruction::ExtractElement: 2286 Code = bitc::CST_CODE_CE_EXTRACTELT; 2287 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2288 Record.push_back(VE.getValueID(C->getOperand(0))); 2289 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2290 Record.push_back(VE.getValueID(C->getOperand(1))); 2291 break; 2292 case Instruction::InsertElement: 2293 Code = bitc::CST_CODE_CE_INSERTELT; 2294 Record.push_back(VE.getValueID(C->getOperand(0))); 2295 Record.push_back(VE.getValueID(C->getOperand(1))); 2296 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2297 Record.push_back(VE.getValueID(C->getOperand(2))); 2298 break; 2299 case Instruction::ShuffleVector: 2300 // If the return type and argument types are the same, this is a 2301 // standard shufflevector instruction. If the types are different, 2302 // then the shuffle is widening or truncating the input vectors, and 2303 // the argument type must also be encoded. 2304 if (C->getType() == C->getOperand(0)->getType()) { 2305 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2306 } else { 2307 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2308 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2309 } 2310 Record.push_back(VE.getValueID(C->getOperand(0))); 2311 Record.push_back(VE.getValueID(C->getOperand(1))); 2312 Record.push_back(VE.getValueID(C->getOperand(2))); 2313 break; 2314 case Instruction::ICmp: 2315 case Instruction::FCmp: 2316 Code = bitc::CST_CODE_CE_CMP; 2317 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2318 Record.push_back(VE.getValueID(C->getOperand(0))); 2319 Record.push_back(VE.getValueID(C->getOperand(1))); 2320 Record.push_back(CE->getPredicate()); 2321 break; 2322 } 2323 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2324 Code = bitc::CST_CODE_BLOCKADDRESS; 2325 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2326 Record.push_back(VE.getValueID(BA->getFunction())); 2327 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2328 } else { 2329 #ifndef NDEBUG 2330 C->dump(); 2331 #endif 2332 llvm_unreachable("Unknown constant!"); 2333 } 2334 Stream.EmitRecord(Code, Record, AbbrevToUse); 2335 Record.clear(); 2336 } 2337 2338 Stream.ExitBlock(); 2339 } 2340 2341 void ModuleBitcodeWriter::writeModuleConstants() { 2342 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2343 2344 // Find the first constant to emit, which is the first non-globalvalue value. 2345 // We know globalvalues have been emitted by WriteModuleInfo. 2346 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2347 if (!isa<GlobalValue>(Vals[i].first)) { 2348 writeConstants(i, Vals.size(), true); 2349 return; 2350 } 2351 } 2352 } 2353 2354 /// pushValueAndType - The file has to encode both the value and type id for 2355 /// many values, because we need to know what type to create for forward 2356 /// references. However, most operands are not forward references, so this type 2357 /// field is not needed. 2358 /// 2359 /// This function adds V's value ID to Vals. If the value ID is higher than the 2360 /// instruction ID, then it is a forward reference, and it also includes the 2361 /// type ID. The value ID that is written is encoded relative to the InstID. 2362 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2363 SmallVectorImpl<unsigned> &Vals) { 2364 unsigned ValID = VE.getValueID(V); 2365 // Make encoding relative to the InstID. 2366 Vals.push_back(InstID - ValID); 2367 if (ValID >= InstID) { 2368 Vals.push_back(VE.getTypeID(V->getType())); 2369 return true; 2370 } 2371 return false; 2372 } 2373 2374 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2375 unsigned InstID) { 2376 SmallVector<unsigned, 64> Record; 2377 LLVMContext &C = CS.getInstruction()->getContext(); 2378 2379 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2380 const auto &Bundle = CS.getOperandBundleAt(i); 2381 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2382 2383 for (auto &Input : Bundle.Inputs) 2384 pushValueAndType(Input, InstID, Record); 2385 2386 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2387 Record.clear(); 2388 } 2389 } 2390 2391 /// pushValue - Like pushValueAndType, but where the type of the value is 2392 /// omitted (perhaps it was already encoded in an earlier operand). 2393 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2394 SmallVectorImpl<unsigned> &Vals) { 2395 unsigned ValID = VE.getValueID(V); 2396 Vals.push_back(InstID - ValID); 2397 } 2398 2399 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2400 SmallVectorImpl<uint64_t> &Vals) { 2401 unsigned ValID = VE.getValueID(V); 2402 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2403 emitSignedInt64(Vals, diff); 2404 } 2405 2406 /// WriteInstruction - Emit an instruction to the specified stream. 2407 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2408 unsigned InstID, 2409 SmallVectorImpl<unsigned> &Vals) { 2410 unsigned Code = 0; 2411 unsigned AbbrevToUse = 0; 2412 VE.setInstructionID(&I); 2413 switch (I.getOpcode()) { 2414 default: 2415 if (Instruction::isCast(I.getOpcode())) { 2416 Code = bitc::FUNC_CODE_INST_CAST; 2417 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2418 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2419 Vals.push_back(VE.getTypeID(I.getType())); 2420 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2421 } else { 2422 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2423 Code = bitc::FUNC_CODE_INST_BINOP; 2424 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2425 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2426 pushValue(I.getOperand(1), InstID, Vals); 2427 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2428 uint64_t Flags = getOptimizationFlags(&I); 2429 if (Flags != 0) { 2430 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2431 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2432 Vals.push_back(Flags); 2433 } 2434 } 2435 break; 2436 2437 case Instruction::GetElementPtr: { 2438 Code = bitc::FUNC_CODE_INST_GEP; 2439 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2440 auto &GEPInst = cast<GetElementPtrInst>(I); 2441 Vals.push_back(GEPInst.isInBounds()); 2442 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2443 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2444 pushValueAndType(I.getOperand(i), InstID, Vals); 2445 break; 2446 } 2447 case Instruction::ExtractValue: { 2448 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2449 pushValueAndType(I.getOperand(0), InstID, Vals); 2450 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2451 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2452 break; 2453 } 2454 case Instruction::InsertValue: { 2455 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2456 pushValueAndType(I.getOperand(0), InstID, Vals); 2457 pushValueAndType(I.getOperand(1), InstID, Vals); 2458 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2459 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2460 break; 2461 } 2462 case Instruction::Select: 2463 Code = bitc::FUNC_CODE_INST_VSELECT; 2464 pushValueAndType(I.getOperand(1), InstID, Vals); 2465 pushValue(I.getOperand(2), InstID, Vals); 2466 pushValueAndType(I.getOperand(0), InstID, Vals); 2467 break; 2468 case Instruction::ExtractElement: 2469 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2470 pushValueAndType(I.getOperand(0), InstID, Vals); 2471 pushValueAndType(I.getOperand(1), InstID, Vals); 2472 break; 2473 case Instruction::InsertElement: 2474 Code = bitc::FUNC_CODE_INST_INSERTELT; 2475 pushValueAndType(I.getOperand(0), InstID, Vals); 2476 pushValue(I.getOperand(1), InstID, Vals); 2477 pushValueAndType(I.getOperand(2), InstID, Vals); 2478 break; 2479 case Instruction::ShuffleVector: 2480 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2481 pushValueAndType(I.getOperand(0), InstID, Vals); 2482 pushValue(I.getOperand(1), InstID, Vals); 2483 pushValue(I.getOperand(2), InstID, Vals); 2484 break; 2485 case Instruction::ICmp: 2486 case Instruction::FCmp: { 2487 // compare returning Int1Ty or vector of Int1Ty 2488 Code = bitc::FUNC_CODE_INST_CMP2; 2489 pushValueAndType(I.getOperand(0), InstID, Vals); 2490 pushValue(I.getOperand(1), InstID, Vals); 2491 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2492 uint64_t Flags = getOptimizationFlags(&I); 2493 if (Flags != 0) 2494 Vals.push_back(Flags); 2495 break; 2496 } 2497 2498 case Instruction::Ret: 2499 { 2500 Code = bitc::FUNC_CODE_INST_RET; 2501 unsigned NumOperands = I.getNumOperands(); 2502 if (NumOperands == 0) 2503 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2504 else if (NumOperands == 1) { 2505 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2506 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2507 } else { 2508 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2509 pushValueAndType(I.getOperand(i), InstID, Vals); 2510 } 2511 } 2512 break; 2513 case Instruction::Br: 2514 { 2515 Code = bitc::FUNC_CODE_INST_BR; 2516 const BranchInst &II = cast<BranchInst>(I); 2517 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2518 if (II.isConditional()) { 2519 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2520 pushValue(II.getCondition(), InstID, Vals); 2521 } 2522 } 2523 break; 2524 case Instruction::Switch: 2525 { 2526 Code = bitc::FUNC_CODE_INST_SWITCH; 2527 const SwitchInst &SI = cast<SwitchInst>(I); 2528 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2529 pushValue(SI.getCondition(), InstID, Vals); 2530 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2531 for (auto Case : SI.cases()) { 2532 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2533 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2534 } 2535 } 2536 break; 2537 case Instruction::IndirectBr: 2538 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2539 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2540 // Encode the address operand as relative, but not the basic blocks. 2541 pushValue(I.getOperand(0), InstID, Vals); 2542 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2543 Vals.push_back(VE.getValueID(I.getOperand(i))); 2544 break; 2545 2546 case Instruction::Invoke: { 2547 const InvokeInst *II = cast<InvokeInst>(&I); 2548 const Value *Callee = II->getCalledValue(); 2549 FunctionType *FTy = II->getFunctionType(); 2550 2551 if (II->hasOperandBundles()) 2552 writeOperandBundles(II, InstID); 2553 2554 Code = bitc::FUNC_CODE_INST_INVOKE; 2555 2556 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2557 Vals.push_back(II->getCallingConv() | 1 << 13); 2558 Vals.push_back(VE.getValueID(II->getNormalDest())); 2559 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2560 Vals.push_back(VE.getTypeID(FTy)); 2561 pushValueAndType(Callee, InstID, Vals); 2562 2563 // Emit value #'s for the fixed parameters. 2564 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2565 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2566 2567 // Emit type/value pairs for varargs params. 2568 if (FTy->isVarArg()) { 2569 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2570 i != e; ++i) 2571 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2572 } 2573 break; 2574 } 2575 case Instruction::Resume: 2576 Code = bitc::FUNC_CODE_INST_RESUME; 2577 pushValueAndType(I.getOperand(0), InstID, Vals); 2578 break; 2579 case Instruction::CleanupRet: { 2580 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2581 const auto &CRI = cast<CleanupReturnInst>(I); 2582 pushValue(CRI.getCleanupPad(), InstID, Vals); 2583 if (CRI.hasUnwindDest()) 2584 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2585 break; 2586 } 2587 case Instruction::CatchRet: { 2588 Code = bitc::FUNC_CODE_INST_CATCHRET; 2589 const auto &CRI = cast<CatchReturnInst>(I); 2590 pushValue(CRI.getCatchPad(), InstID, Vals); 2591 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2592 break; 2593 } 2594 case Instruction::CleanupPad: 2595 case Instruction::CatchPad: { 2596 const auto &FuncletPad = cast<FuncletPadInst>(I); 2597 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2598 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2599 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2600 2601 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2602 Vals.push_back(NumArgOperands); 2603 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2604 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2605 break; 2606 } 2607 case Instruction::CatchSwitch: { 2608 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2609 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2610 2611 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2612 2613 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2614 Vals.push_back(NumHandlers); 2615 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2616 Vals.push_back(VE.getValueID(CatchPadBB)); 2617 2618 if (CatchSwitch.hasUnwindDest()) 2619 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2620 break; 2621 } 2622 case Instruction::Unreachable: 2623 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2624 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2625 break; 2626 2627 case Instruction::PHI: { 2628 const PHINode &PN = cast<PHINode>(I); 2629 Code = bitc::FUNC_CODE_INST_PHI; 2630 // With the newer instruction encoding, forward references could give 2631 // negative valued IDs. This is most common for PHIs, so we use 2632 // signed VBRs. 2633 SmallVector<uint64_t, 128> Vals64; 2634 Vals64.push_back(VE.getTypeID(PN.getType())); 2635 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2636 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2637 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2638 } 2639 // Emit a Vals64 vector and exit. 2640 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2641 Vals64.clear(); 2642 return; 2643 } 2644 2645 case Instruction::LandingPad: { 2646 const LandingPadInst &LP = cast<LandingPadInst>(I); 2647 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2648 Vals.push_back(VE.getTypeID(LP.getType())); 2649 Vals.push_back(LP.isCleanup()); 2650 Vals.push_back(LP.getNumClauses()); 2651 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2652 if (LP.isCatch(I)) 2653 Vals.push_back(LandingPadInst::Catch); 2654 else 2655 Vals.push_back(LandingPadInst::Filter); 2656 pushValueAndType(LP.getClause(I), InstID, Vals); 2657 } 2658 break; 2659 } 2660 2661 case Instruction::Alloca: { 2662 Code = bitc::FUNC_CODE_INST_ALLOCA; 2663 const AllocaInst &AI = cast<AllocaInst>(I); 2664 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2665 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2666 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2667 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2668 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2669 "not enough bits for maximum alignment"); 2670 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2671 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2672 AlignRecord |= 1 << 6; 2673 AlignRecord |= AI.isSwiftError() << 7; 2674 Vals.push_back(AlignRecord); 2675 break; 2676 } 2677 2678 case Instruction::Load: 2679 if (cast<LoadInst>(I).isAtomic()) { 2680 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2681 pushValueAndType(I.getOperand(0), InstID, Vals); 2682 } else { 2683 Code = bitc::FUNC_CODE_INST_LOAD; 2684 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2685 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2686 } 2687 Vals.push_back(VE.getTypeID(I.getType())); 2688 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2689 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2690 if (cast<LoadInst>(I).isAtomic()) { 2691 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2692 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2693 } 2694 break; 2695 case Instruction::Store: 2696 if (cast<StoreInst>(I).isAtomic()) 2697 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2698 else 2699 Code = bitc::FUNC_CODE_INST_STORE; 2700 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2701 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2702 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2703 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2704 if (cast<StoreInst>(I).isAtomic()) { 2705 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2706 Vals.push_back( 2707 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2708 } 2709 break; 2710 case Instruction::AtomicCmpXchg: 2711 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2712 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2713 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2714 pushValue(I.getOperand(2), InstID, Vals); // newval. 2715 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2716 Vals.push_back( 2717 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2718 Vals.push_back( 2719 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2720 Vals.push_back( 2721 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2722 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2723 break; 2724 case Instruction::AtomicRMW: 2725 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2726 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2727 pushValue(I.getOperand(1), InstID, Vals); // val. 2728 Vals.push_back( 2729 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2730 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2731 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2732 Vals.push_back( 2733 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2734 break; 2735 case Instruction::Fence: 2736 Code = bitc::FUNC_CODE_INST_FENCE; 2737 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2738 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2739 break; 2740 case Instruction::Call: { 2741 const CallInst &CI = cast<CallInst>(I); 2742 FunctionType *FTy = CI.getFunctionType(); 2743 2744 if (CI.hasOperandBundles()) 2745 writeOperandBundles(&CI, InstID); 2746 2747 Code = bitc::FUNC_CODE_INST_CALL; 2748 2749 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2750 2751 unsigned Flags = getOptimizationFlags(&I); 2752 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2753 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2754 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2755 1 << bitc::CALL_EXPLICIT_TYPE | 2756 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2757 unsigned(Flags != 0) << bitc::CALL_FMF); 2758 if (Flags != 0) 2759 Vals.push_back(Flags); 2760 2761 Vals.push_back(VE.getTypeID(FTy)); 2762 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2763 2764 // Emit value #'s for the fixed parameters. 2765 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2766 // Check for labels (can happen with asm labels). 2767 if (FTy->getParamType(i)->isLabelTy()) 2768 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2769 else 2770 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2771 } 2772 2773 // Emit type/value pairs for varargs params. 2774 if (FTy->isVarArg()) { 2775 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2776 i != e; ++i) 2777 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2778 } 2779 break; 2780 } 2781 case Instruction::VAArg: 2782 Code = bitc::FUNC_CODE_INST_VAARG; 2783 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2784 pushValue(I.getOperand(0), InstID, Vals); // valist. 2785 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2786 break; 2787 } 2788 2789 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2790 Vals.clear(); 2791 } 2792 2793 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2794 /// to allow clients to efficiently find the function body. 2795 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2796 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2797 // Get the offset of the VST we are writing, and backpatch it into 2798 // the VST forward declaration record. 2799 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2800 // The BitcodeStartBit was the stream offset of the identification block. 2801 VSTOffset -= bitcodeStartBit(); 2802 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2803 // Note that we add 1 here because the offset is relative to one word 2804 // before the start of the identification block, which was historically 2805 // always the start of the regular bitcode header. 2806 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2807 2808 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2809 2810 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2811 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2814 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2815 2816 for (const Function &F : M) { 2817 uint64_t Record[2]; 2818 2819 if (F.isDeclaration()) 2820 continue; 2821 2822 Record[0] = VE.getValueID(&F); 2823 2824 // Save the word offset of the function (from the start of the 2825 // actual bitcode written to the stream). 2826 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2827 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2828 // Note that we add 1 here because the offset is relative to one word 2829 // before the start of the identification block, which was historically 2830 // always the start of the regular bitcode header. 2831 Record[1] = BitcodeIndex / 32 + 1; 2832 2833 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2834 } 2835 2836 Stream.ExitBlock(); 2837 } 2838 2839 /// Emit names for arguments, instructions and basic blocks in a function. 2840 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2841 const ValueSymbolTable &VST) { 2842 if (VST.empty()) 2843 return; 2844 2845 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2846 2847 // FIXME: Set up the abbrev, we know how many values there are! 2848 // FIXME: We know if the type names can use 7-bit ascii. 2849 SmallVector<uint64_t, 64> NameVals; 2850 2851 for (const ValueName &Name : VST) { 2852 // Figure out the encoding to use for the name. 2853 StringEncoding Bits = getStringEncoding(Name.getKey()); 2854 2855 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2856 NameVals.push_back(VE.getValueID(Name.getValue())); 2857 2858 // VST_CODE_ENTRY: [valueid, namechar x N] 2859 // VST_CODE_BBENTRY: [bbid, namechar x N] 2860 unsigned Code; 2861 if (isa<BasicBlock>(Name.getValue())) { 2862 Code = bitc::VST_CODE_BBENTRY; 2863 if (Bits == SE_Char6) 2864 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2865 } else { 2866 Code = bitc::VST_CODE_ENTRY; 2867 if (Bits == SE_Char6) 2868 AbbrevToUse = VST_ENTRY_6_ABBREV; 2869 else if (Bits == SE_Fixed7) 2870 AbbrevToUse = VST_ENTRY_7_ABBREV; 2871 } 2872 2873 for (const auto P : Name.getKey()) 2874 NameVals.push_back((unsigned char)P); 2875 2876 // Emit the finished record. 2877 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2878 NameVals.clear(); 2879 } 2880 2881 Stream.ExitBlock(); 2882 } 2883 2884 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2885 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2886 unsigned Code; 2887 if (isa<BasicBlock>(Order.V)) 2888 Code = bitc::USELIST_CODE_BB; 2889 else 2890 Code = bitc::USELIST_CODE_DEFAULT; 2891 2892 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2893 Record.push_back(VE.getValueID(Order.V)); 2894 Stream.EmitRecord(Code, Record); 2895 } 2896 2897 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2898 assert(VE.shouldPreserveUseListOrder() && 2899 "Expected to be preserving use-list order"); 2900 2901 auto hasMore = [&]() { 2902 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2903 }; 2904 if (!hasMore()) 2905 // Nothing to do. 2906 return; 2907 2908 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2909 while (hasMore()) { 2910 writeUseList(std::move(VE.UseListOrders.back())); 2911 VE.UseListOrders.pop_back(); 2912 } 2913 Stream.ExitBlock(); 2914 } 2915 2916 /// Emit a function body to the module stream. 2917 void ModuleBitcodeWriter::writeFunction( 2918 const Function &F, 2919 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2920 // Save the bitcode index of the start of this function block for recording 2921 // in the VST. 2922 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2923 2924 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2925 VE.incorporateFunction(F); 2926 2927 SmallVector<unsigned, 64> Vals; 2928 2929 // Emit the number of basic blocks, so the reader can create them ahead of 2930 // time. 2931 Vals.push_back(VE.getBasicBlocks().size()); 2932 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2933 Vals.clear(); 2934 2935 // If there are function-local constants, emit them now. 2936 unsigned CstStart, CstEnd; 2937 VE.getFunctionConstantRange(CstStart, CstEnd); 2938 writeConstants(CstStart, CstEnd, false); 2939 2940 // If there is function-local metadata, emit it now. 2941 writeFunctionMetadata(F); 2942 2943 // Keep a running idea of what the instruction ID is. 2944 unsigned InstID = CstEnd; 2945 2946 bool NeedsMetadataAttachment = F.hasMetadata(); 2947 2948 DILocation *LastDL = nullptr; 2949 // Finally, emit all the instructions, in order. 2950 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2951 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2952 I != E; ++I) { 2953 writeInstruction(*I, InstID, Vals); 2954 2955 if (!I->getType()->isVoidTy()) 2956 ++InstID; 2957 2958 // If the instruction has metadata, write a metadata attachment later. 2959 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2960 2961 // If the instruction has a debug location, emit it. 2962 DILocation *DL = I->getDebugLoc(); 2963 if (!DL) 2964 continue; 2965 2966 if (DL == LastDL) { 2967 // Just repeat the same debug loc as last time. 2968 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2969 continue; 2970 } 2971 2972 Vals.push_back(DL->getLine()); 2973 Vals.push_back(DL->getColumn()); 2974 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2975 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2976 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2977 Vals.clear(); 2978 2979 LastDL = DL; 2980 } 2981 2982 // Emit names for all the instructions etc. 2983 if (auto *Symtab = F.getValueSymbolTable()) 2984 writeFunctionLevelValueSymbolTable(*Symtab); 2985 2986 if (NeedsMetadataAttachment) 2987 writeFunctionMetadataAttachment(F); 2988 if (VE.shouldPreserveUseListOrder()) 2989 writeUseListBlock(&F); 2990 VE.purgeFunction(); 2991 Stream.ExitBlock(); 2992 } 2993 2994 // Emit blockinfo, which defines the standard abbreviations etc. 2995 void ModuleBitcodeWriter::writeBlockInfo() { 2996 // We only want to emit block info records for blocks that have multiple 2997 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2998 // Other blocks can define their abbrevs inline. 2999 Stream.EnterBlockInfoBlock(); 3000 3001 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3002 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3007 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3008 VST_ENTRY_8_ABBREV) 3009 llvm_unreachable("Unexpected abbrev ordering!"); 3010 } 3011 3012 { // 7-bit fixed width VST_CODE_ENTRY strings. 3013 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3014 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3018 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3019 VST_ENTRY_7_ABBREV) 3020 llvm_unreachable("Unexpected abbrev ordering!"); 3021 } 3022 { // 6-bit char6 VST_CODE_ENTRY strings. 3023 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3024 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3028 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3029 VST_ENTRY_6_ABBREV) 3030 llvm_unreachable("Unexpected abbrev ordering!"); 3031 } 3032 { // 6-bit char6 VST_CODE_BBENTRY strings. 3033 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3034 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3038 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3039 VST_BBENTRY_6_ABBREV) 3040 llvm_unreachable("Unexpected abbrev ordering!"); 3041 } 3042 3043 3044 3045 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3046 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3047 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3049 VE.computeBitsRequiredForTypeIndicies())); 3050 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3051 CONSTANTS_SETTYPE_ABBREV) 3052 llvm_unreachable("Unexpected abbrev ordering!"); 3053 } 3054 3055 { // INTEGER abbrev for CONSTANTS_BLOCK. 3056 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3057 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3059 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3060 CONSTANTS_INTEGER_ABBREV) 3061 llvm_unreachable("Unexpected abbrev ordering!"); 3062 } 3063 3064 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3065 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3066 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3069 VE.computeBitsRequiredForTypeIndicies())); 3070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3071 3072 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3073 CONSTANTS_CE_CAST_Abbrev) 3074 llvm_unreachable("Unexpected abbrev ordering!"); 3075 } 3076 { // NULL abbrev for CONSTANTS_BLOCK. 3077 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3078 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3079 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3080 CONSTANTS_NULL_Abbrev) 3081 llvm_unreachable("Unexpected abbrev ordering!"); 3082 } 3083 3084 // FIXME: This should only use space for first class types! 3085 3086 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3087 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3088 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3091 VE.computeBitsRequiredForTypeIndicies())); 3092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3094 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3095 FUNCTION_INST_LOAD_ABBREV) 3096 llvm_unreachable("Unexpected abbrev ordering!"); 3097 } 3098 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3099 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3100 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3104 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3105 FUNCTION_INST_BINOP_ABBREV) 3106 llvm_unreachable("Unexpected abbrev ordering!"); 3107 } 3108 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3109 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3110 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3115 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3116 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3117 llvm_unreachable("Unexpected abbrev ordering!"); 3118 } 3119 { // INST_CAST abbrev for FUNCTION_BLOCK. 3120 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3121 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3124 VE.computeBitsRequiredForTypeIndicies())); 3125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3126 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3127 FUNCTION_INST_CAST_ABBREV) 3128 llvm_unreachable("Unexpected abbrev ordering!"); 3129 } 3130 3131 { // INST_RET abbrev for FUNCTION_BLOCK. 3132 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3133 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3134 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3135 FUNCTION_INST_RET_VOID_ABBREV) 3136 llvm_unreachable("Unexpected abbrev ordering!"); 3137 } 3138 { // INST_RET abbrev for FUNCTION_BLOCK. 3139 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3140 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3142 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3143 FUNCTION_INST_RET_VAL_ABBREV) 3144 llvm_unreachable("Unexpected abbrev ordering!"); 3145 } 3146 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3147 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3148 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3149 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3150 FUNCTION_INST_UNREACHABLE_ABBREV) 3151 llvm_unreachable("Unexpected abbrev ordering!"); 3152 } 3153 { 3154 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3155 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3158 Log2_32_Ceil(VE.getTypes().size() + 1))); 3159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3161 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3162 FUNCTION_INST_GEP_ABBREV) 3163 llvm_unreachable("Unexpected abbrev ordering!"); 3164 } 3165 3166 Stream.ExitBlock(); 3167 } 3168 3169 /// Write the module path strings, currently only used when generating 3170 /// a combined index file. 3171 void IndexBitcodeWriter::writeModStrings() { 3172 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3173 3174 // TODO: See which abbrev sizes we actually need to emit 3175 3176 // 8-bit fixed-width MST_ENTRY strings. 3177 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3178 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3182 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3183 3184 // 7-bit fixed width MST_ENTRY strings. 3185 Abbv = std::make_shared<BitCodeAbbrev>(); 3186 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3190 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3191 3192 // 6-bit char6 MST_ENTRY strings. 3193 Abbv = std::make_shared<BitCodeAbbrev>(); 3194 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3198 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3199 3200 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3201 Abbv = std::make_shared<BitCodeAbbrev>(); 3202 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3208 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3209 3210 SmallVector<unsigned, 64> Vals; 3211 forEachModule( 3212 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3213 StringRef Key = MPSE.getKey(); 3214 const auto &Value = MPSE.getValue(); 3215 StringEncoding Bits = getStringEncoding(Key); 3216 unsigned AbbrevToUse = Abbrev8Bit; 3217 if (Bits == SE_Char6) 3218 AbbrevToUse = Abbrev6Bit; 3219 else if (Bits == SE_Fixed7) 3220 AbbrevToUse = Abbrev7Bit; 3221 3222 Vals.push_back(Value.first); 3223 Vals.append(Key.begin(), Key.end()); 3224 3225 // Emit the finished record. 3226 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3227 3228 // Emit an optional hash for the module now 3229 const auto &Hash = Value.second; 3230 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3231 Vals.assign(Hash.begin(), Hash.end()); 3232 // Emit the hash record. 3233 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3234 } 3235 3236 Vals.clear(); 3237 }); 3238 Stream.ExitBlock(); 3239 } 3240 3241 /// Write the function type metadata related records that need to appear before 3242 /// a function summary entry (whether per-module or combined). 3243 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3244 FunctionSummary *FS) { 3245 if (!FS->type_tests().empty()) 3246 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3247 3248 SmallVector<uint64_t, 64> Record; 3249 3250 auto WriteVFuncIdVec = [&](uint64_t Ty, 3251 ArrayRef<FunctionSummary::VFuncId> VFs) { 3252 if (VFs.empty()) 3253 return; 3254 Record.clear(); 3255 for (auto &VF : VFs) { 3256 Record.push_back(VF.GUID); 3257 Record.push_back(VF.Offset); 3258 } 3259 Stream.EmitRecord(Ty, Record); 3260 }; 3261 3262 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3263 FS->type_test_assume_vcalls()); 3264 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3265 FS->type_checked_load_vcalls()); 3266 3267 auto WriteConstVCallVec = [&](uint64_t Ty, 3268 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3269 for (auto &VC : VCs) { 3270 Record.clear(); 3271 Record.push_back(VC.VFunc.GUID); 3272 Record.push_back(VC.VFunc.Offset); 3273 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3274 Stream.EmitRecord(Ty, Record); 3275 } 3276 }; 3277 3278 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3279 FS->type_test_assume_const_vcalls()); 3280 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3281 FS->type_checked_load_const_vcalls()); 3282 } 3283 3284 // Helper to emit a single function summary record. 3285 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3286 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3287 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3288 const Function &F) { 3289 NameVals.push_back(ValueID); 3290 3291 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3292 writeFunctionTypeMetadataRecords(Stream, FS); 3293 3294 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3295 NameVals.push_back(FS->instCount()); 3296 NameVals.push_back(FS->refs().size()); 3297 3298 for (auto &RI : FS->refs()) 3299 NameVals.push_back(VE.getValueID(RI.getValue())); 3300 3301 bool HasProfileData = F.getEntryCount().hasValue(); 3302 for (auto &ECI : FS->calls()) { 3303 NameVals.push_back(getValueId(ECI.first)); 3304 if (HasProfileData) 3305 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3306 } 3307 3308 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3309 unsigned Code = 3310 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3311 3312 // Emit the finished record. 3313 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3314 NameVals.clear(); 3315 } 3316 3317 // Collect the global value references in the given variable's initializer, 3318 // and emit them in a summary record. 3319 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3320 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3321 unsigned FSModRefsAbbrev) { 3322 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3323 if (!VI || VI.getSummaryList().empty()) { 3324 // Only declarations should not have a summary (a declaration might however 3325 // have a summary if the def was in module level asm). 3326 assert(V.isDeclaration()); 3327 return; 3328 } 3329 auto *Summary = VI.getSummaryList()[0].get(); 3330 NameVals.push_back(VE.getValueID(&V)); 3331 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3332 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3333 3334 unsigned SizeBeforeRefs = NameVals.size(); 3335 for (auto &RI : VS->refs()) 3336 NameVals.push_back(VE.getValueID(RI.getValue())); 3337 // Sort the refs for determinism output, the vector returned by FS->refs() has 3338 // been initialized from a DenseSet. 3339 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3340 3341 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3342 FSModRefsAbbrev); 3343 NameVals.clear(); 3344 } 3345 3346 // Current version for the summary. 3347 // This is bumped whenever we introduce changes in the way some record are 3348 // interpreted, like flags for instance. 3349 static const uint64_t INDEX_VERSION = 3; 3350 3351 /// Emit the per-module summary section alongside the rest of 3352 /// the module's bitcode. 3353 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3354 // By default we compile with ThinLTO if the module has a summary, but the 3355 // client can request full LTO with a module flag. 3356 bool IsThinLTO = true; 3357 if (auto *MD = 3358 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3359 IsThinLTO = MD->getZExtValue(); 3360 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3361 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3362 4); 3363 3364 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3365 3366 if (Index->begin() == Index->end()) { 3367 Stream.ExitBlock(); 3368 return; 3369 } 3370 3371 for (const auto &GVI : valueIds()) { 3372 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3373 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3374 } 3375 3376 // Abbrev for FS_PERMODULE. 3377 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3378 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3383 // numrefs x valueid, n x (valueid) 3384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3386 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3387 3388 // Abbrev for FS_PERMODULE_PROFILE. 3389 Abbv = std::make_shared<BitCodeAbbrev>(); 3390 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3395 // numrefs x valueid, n x (valueid, hotness) 3396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3398 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3399 3400 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3401 Abbv = std::make_shared<BitCodeAbbrev>(); 3402 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3407 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3408 3409 // Abbrev for FS_ALIAS. 3410 Abbv = std::make_shared<BitCodeAbbrev>(); 3411 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3415 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3416 3417 SmallVector<uint64_t, 64> NameVals; 3418 // Iterate over the list of functions instead of the Index to 3419 // ensure the ordering is stable. 3420 for (const Function &F : M) { 3421 // Summary emission does not support anonymous functions, they have to 3422 // renamed using the anonymous function renaming pass. 3423 if (!F.hasName()) 3424 report_fatal_error("Unexpected anonymous function when writing summary"); 3425 3426 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3427 if (!VI || VI.getSummaryList().empty()) { 3428 // Only declarations should not have a summary (a declaration might 3429 // however have a summary if the def was in module level asm). 3430 assert(F.isDeclaration()); 3431 continue; 3432 } 3433 auto *Summary = VI.getSummaryList()[0].get(); 3434 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3435 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3436 } 3437 3438 // Capture references from GlobalVariable initializers, which are outside 3439 // of a function scope. 3440 for (const GlobalVariable &G : M.globals()) 3441 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3442 3443 for (const GlobalAlias &A : M.aliases()) { 3444 auto *Aliasee = A.getBaseObject(); 3445 if (!Aliasee->hasName()) 3446 // Nameless function don't have an entry in the summary, skip it. 3447 continue; 3448 auto AliasId = VE.getValueID(&A); 3449 auto AliaseeId = VE.getValueID(Aliasee); 3450 NameVals.push_back(AliasId); 3451 auto *Summary = Index->getGlobalValueSummary(A); 3452 AliasSummary *AS = cast<AliasSummary>(Summary); 3453 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3454 NameVals.push_back(AliaseeId); 3455 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3456 NameVals.clear(); 3457 } 3458 3459 Stream.ExitBlock(); 3460 } 3461 3462 /// Emit the combined summary section into the combined index file. 3463 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3464 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3465 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3466 3467 for (const auto &GVI : valueIds()) { 3468 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3469 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3470 } 3471 3472 // Abbrev for FS_COMBINED. 3473 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3474 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3480 // numrefs x valueid, n x (valueid) 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3483 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3484 3485 // Abbrev for FS_COMBINED_PROFILE. 3486 Abbv = std::make_shared<BitCodeAbbrev>(); 3487 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3493 // numrefs x valueid, n x (valueid, hotness) 3494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3496 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3497 3498 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3499 Abbv = std::make_shared<BitCodeAbbrev>(); 3500 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3506 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3507 3508 // Abbrev for FS_COMBINED_ALIAS. 3509 Abbv = std::make_shared<BitCodeAbbrev>(); 3510 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3515 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3516 3517 // The aliases are emitted as a post-pass, and will point to the value 3518 // id of the aliasee. Save them in a vector for post-processing. 3519 SmallVector<AliasSummary *, 64> Aliases; 3520 3521 // Save the value id for each summary for alias emission. 3522 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3523 3524 SmallVector<uint64_t, 64> NameVals; 3525 3526 // For local linkage, we also emit the original name separately 3527 // immediately after the record. 3528 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3529 if (!GlobalValue::isLocalLinkage(S.linkage())) 3530 return; 3531 NameVals.push_back(S.getOriginalName()); 3532 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3533 NameVals.clear(); 3534 }; 3535 3536 forEachSummary([&](GVInfo I) { 3537 GlobalValueSummary *S = I.second; 3538 assert(S); 3539 3540 auto ValueId = getValueId(I.first); 3541 assert(ValueId); 3542 SummaryToValueIdMap[S] = *ValueId; 3543 3544 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3545 // Will process aliases as a post-pass because the reader wants all 3546 // global to be loaded first. 3547 Aliases.push_back(AS); 3548 return; 3549 } 3550 3551 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3552 NameVals.push_back(*ValueId); 3553 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3554 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3555 for (auto &RI : VS->refs()) { 3556 auto RefValueId = getValueId(RI.getGUID()); 3557 if (!RefValueId) 3558 continue; 3559 NameVals.push_back(*RefValueId); 3560 } 3561 3562 // Emit the finished record. 3563 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3564 FSModRefsAbbrev); 3565 NameVals.clear(); 3566 MaybeEmitOriginalName(*S); 3567 return; 3568 } 3569 3570 auto *FS = cast<FunctionSummary>(S); 3571 writeFunctionTypeMetadataRecords(Stream, FS); 3572 3573 NameVals.push_back(*ValueId); 3574 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3575 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3576 NameVals.push_back(FS->instCount()); 3577 // Fill in below 3578 NameVals.push_back(0); 3579 3580 unsigned Count = 0; 3581 for (auto &RI : FS->refs()) { 3582 auto RefValueId = getValueId(RI.getGUID()); 3583 if (!RefValueId) 3584 continue; 3585 NameVals.push_back(*RefValueId); 3586 Count++; 3587 } 3588 NameVals[4] = Count; 3589 3590 bool HasProfileData = false; 3591 for (auto &EI : FS->calls()) { 3592 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3593 if (HasProfileData) 3594 break; 3595 } 3596 3597 for (auto &EI : FS->calls()) { 3598 // If this GUID doesn't have a value id, it doesn't have a function 3599 // summary and we don't need to record any calls to it. 3600 GlobalValue::GUID GUID = EI.first.getGUID(); 3601 auto CallValueId = getValueId(GUID); 3602 if (!CallValueId) { 3603 // For SamplePGO, the indirect call targets for local functions will 3604 // have its original name annotated in profile. We try to find the 3605 // corresponding PGOFuncName as the GUID. 3606 GUID = Index.getGUIDFromOriginalID(GUID); 3607 if (GUID == 0) 3608 continue; 3609 CallValueId = getValueId(GUID); 3610 if (!CallValueId) 3611 continue; 3612 } 3613 NameVals.push_back(*CallValueId); 3614 if (HasProfileData) 3615 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3616 } 3617 3618 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3619 unsigned Code = 3620 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3621 3622 // Emit the finished record. 3623 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3624 NameVals.clear(); 3625 MaybeEmitOriginalName(*S); 3626 }); 3627 3628 for (auto *AS : Aliases) { 3629 auto AliasValueId = SummaryToValueIdMap[AS]; 3630 assert(AliasValueId); 3631 NameVals.push_back(AliasValueId); 3632 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3633 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3634 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3635 assert(AliaseeValueId); 3636 NameVals.push_back(AliaseeValueId); 3637 3638 // Emit the finished record. 3639 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3640 NameVals.clear(); 3641 MaybeEmitOriginalName(*AS); 3642 } 3643 3644 if (!Index.cfiFunctionDefs().empty()) { 3645 for (auto &S : Index.cfiFunctionDefs()) { 3646 NameVals.push_back(StrtabBuilder.add(S)); 3647 NameVals.push_back(S.size()); 3648 } 3649 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3650 NameVals.clear(); 3651 } 3652 3653 if (!Index.cfiFunctionDecls().empty()) { 3654 for (auto &S : Index.cfiFunctionDecls()) { 3655 NameVals.push_back(StrtabBuilder.add(S)); 3656 NameVals.push_back(S.size()); 3657 } 3658 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3659 NameVals.clear(); 3660 } 3661 3662 Stream.ExitBlock(); 3663 } 3664 3665 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3666 /// current llvm version, and a record for the epoch number. 3667 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3668 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3669 3670 // Write the "user readable" string identifying the bitcode producer 3671 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3672 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3675 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3676 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3677 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3678 3679 // Write the epoch version 3680 Abbv = std::make_shared<BitCodeAbbrev>(); 3681 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3683 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3684 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3685 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3686 Stream.ExitBlock(); 3687 } 3688 3689 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3690 // Emit the module's hash. 3691 // MODULE_CODE_HASH: [5*i32] 3692 if (GenerateHash) { 3693 uint32_t Vals[5]; 3694 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3695 Buffer.size() - BlockStartPos)); 3696 StringRef Hash = Hasher.result(); 3697 for (int Pos = 0; Pos < 20; Pos += 4) { 3698 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3699 } 3700 3701 // Emit the finished record. 3702 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3703 3704 if (ModHash) 3705 // Save the written hash value. 3706 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3707 } 3708 } 3709 3710 void ModuleBitcodeWriter::write() { 3711 writeIdentificationBlock(Stream); 3712 3713 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3714 size_t BlockStartPos = Buffer.size(); 3715 3716 writeModuleVersion(); 3717 3718 // Emit blockinfo, which defines the standard abbreviations etc. 3719 writeBlockInfo(); 3720 3721 // Emit information about attribute groups. 3722 writeAttributeGroupTable(); 3723 3724 // Emit information about parameter attributes. 3725 writeAttributeTable(); 3726 3727 // Emit information describing all of the types in the module. 3728 writeTypeTable(); 3729 3730 writeComdats(); 3731 3732 // Emit top-level description of module, including target triple, inline asm, 3733 // descriptors for global variables, and function prototype info. 3734 writeModuleInfo(); 3735 3736 // Emit constants. 3737 writeModuleConstants(); 3738 3739 // Emit metadata kind names. 3740 writeModuleMetadataKinds(); 3741 3742 // Emit metadata. 3743 writeModuleMetadata(); 3744 3745 // Emit module-level use-lists. 3746 if (VE.shouldPreserveUseListOrder()) 3747 writeUseListBlock(nullptr); 3748 3749 writeOperandBundleTags(); 3750 writeSyncScopeNames(); 3751 3752 // Emit function bodies. 3753 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3754 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3755 if (!F->isDeclaration()) 3756 writeFunction(*F, FunctionToBitcodeIndex); 3757 3758 // Need to write after the above call to WriteFunction which populates 3759 // the summary information in the index. 3760 if (Index) 3761 writePerModuleGlobalValueSummary(); 3762 3763 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3764 3765 writeModuleHash(BlockStartPos); 3766 3767 Stream.ExitBlock(); 3768 } 3769 3770 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3771 uint32_t &Position) { 3772 support::endian::write32le(&Buffer[Position], Value); 3773 Position += 4; 3774 } 3775 3776 /// If generating a bc file on darwin, we have to emit a 3777 /// header and trailer to make it compatible with the system archiver. To do 3778 /// this we emit the following header, and then emit a trailer that pads the 3779 /// file out to be a multiple of 16 bytes. 3780 /// 3781 /// struct bc_header { 3782 /// uint32_t Magic; // 0x0B17C0DE 3783 /// uint32_t Version; // Version, currently always 0. 3784 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3785 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3786 /// uint32_t CPUType; // CPU specifier. 3787 /// ... potentially more later ... 3788 /// }; 3789 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3790 const Triple &TT) { 3791 unsigned CPUType = ~0U; 3792 3793 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3794 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3795 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3796 // specific constants here because they are implicitly part of the Darwin ABI. 3797 enum { 3798 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3799 DARWIN_CPU_TYPE_X86 = 7, 3800 DARWIN_CPU_TYPE_ARM = 12, 3801 DARWIN_CPU_TYPE_POWERPC = 18 3802 }; 3803 3804 Triple::ArchType Arch = TT.getArch(); 3805 if (Arch == Triple::x86_64) 3806 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3807 else if (Arch == Triple::x86) 3808 CPUType = DARWIN_CPU_TYPE_X86; 3809 else if (Arch == Triple::ppc) 3810 CPUType = DARWIN_CPU_TYPE_POWERPC; 3811 else if (Arch == Triple::ppc64) 3812 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3813 else if (Arch == Triple::arm || Arch == Triple::thumb) 3814 CPUType = DARWIN_CPU_TYPE_ARM; 3815 3816 // Traditional Bitcode starts after header. 3817 assert(Buffer.size() >= BWH_HeaderSize && 3818 "Expected header size to be reserved"); 3819 unsigned BCOffset = BWH_HeaderSize; 3820 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3821 3822 // Write the magic and version. 3823 unsigned Position = 0; 3824 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3825 writeInt32ToBuffer(0, Buffer, Position); // Version. 3826 writeInt32ToBuffer(BCOffset, Buffer, Position); 3827 writeInt32ToBuffer(BCSize, Buffer, Position); 3828 writeInt32ToBuffer(CPUType, Buffer, Position); 3829 3830 // If the file is not a multiple of 16 bytes, insert dummy padding. 3831 while (Buffer.size() & 15) 3832 Buffer.push_back(0); 3833 } 3834 3835 /// Helper to write the header common to all bitcode files. 3836 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3837 // Emit the file header. 3838 Stream.Emit((unsigned)'B', 8); 3839 Stream.Emit((unsigned)'C', 8); 3840 Stream.Emit(0x0, 4); 3841 Stream.Emit(0xC, 4); 3842 Stream.Emit(0xE, 4); 3843 Stream.Emit(0xD, 4); 3844 } 3845 3846 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3847 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3848 writeBitcodeHeader(*Stream); 3849 } 3850 3851 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3852 3853 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3854 Stream->EnterSubblock(Block, 3); 3855 3856 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3857 Abbv->Add(BitCodeAbbrevOp(Record)); 3858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3859 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3860 3861 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3862 3863 Stream->ExitBlock(); 3864 } 3865 3866 void BitcodeWriter::writeSymtab() { 3867 assert(!WroteStrtab && !WroteSymtab); 3868 3869 // If any module has module-level inline asm, we will require a registered asm 3870 // parser for the target so that we can create an accurate symbol table for 3871 // the module. 3872 for (Module *M : Mods) { 3873 if (M->getModuleInlineAsm().empty()) 3874 continue; 3875 3876 std::string Err; 3877 const Triple TT(M->getTargetTriple()); 3878 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 3879 if (!T || !T->hasMCAsmParser()) 3880 return; 3881 } 3882 3883 WroteSymtab = true; 3884 SmallVector<char, 0> Symtab; 3885 // The irsymtab::build function may be unable to create a symbol table if the 3886 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 3887 // table is not required for correctness, but we still want to be able to 3888 // write malformed modules to bitcode files, so swallow the error. 3889 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 3890 consumeError(std::move(E)); 3891 return; 3892 } 3893 3894 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 3895 {Symtab.data(), Symtab.size()}); 3896 } 3897 3898 void BitcodeWriter::writeStrtab() { 3899 assert(!WroteStrtab); 3900 3901 std::vector<char> Strtab; 3902 StrtabBuilder.finalizeInOrder(); 3903 Strtab.resize(StrtabBuilder.getSize()); 3904 StrtabBuilder.write((uint8_t *)Strtab.data()); 3905 3906 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3907 {Strtab.data(), Strtab.size()}); 3908 3909 WroteStrtab = true; 3910 } 3911 3912 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3913 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3914 WroteStrtab = true; 3915 } 3916 3917 void BitcodeWriter::writeModule(const Module *M, 3918 bool ShouldPreserveUseListOrder, 3919 const ModuleSummaryIndex *Index, 3920 bool GenerateHash, ModuleHash *ModHash) { 3921 assert(!WroteStrtab); 3922 3923 // The Mods vector is used by irsymtab::build, which requires non-const 3924 // Modules in case it needs to materialize metadata. But the bitcode writer 3925 // requires that the module is materialized, so we can cast to non-const here, 3926 // after checking that it is in fact materialized. 3927 assert(M->isMaterialized()); 3928 Mods.push_back(const_cast<Module *>(M)); 3929 3930 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3931 ShouldPreserveUseListOrder, Index, 3932 GenerateHash, ModHash); 3933 ModuleWriter.write(); 3934 } 3935 3936 void BitcodeWriter::writeIndex( 3937 const ModuleSummaryIndex *Index, 3938 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3939 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 3940 ModuleToSummariesForIndex); 3941 IndexWriter.write(); 3942 } 3943 3944 /// WriteBitcodeToFile - Write the specified module to the specified output 3945 /// stream. 3946 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3947 bool ShouldPreserveUseListOrder, 3948 const ModuleSummaryIndex *Index, 3949 bool GenerateHash, ModuleHash *ModHash) { 3950 SmallVector<char, 0> Buffer; 3951 Buffer.reserve(256*1024); 3952 3953 // If this is darwin or another generic macho target, reserve space for the 3954 // header. 3955 Triple TT(M->getTargetTriple()); 3956 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3957 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3958 3959 BitcodeWriter Writer(Buffer); 3960 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3961 ModHash); 3962 Writer.writeSymtab(); 3963 Writer.writeStrtab(); 3964 3965 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3966 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3967 3968 // Write the generated bitstream to "Out". 3969 Out.write((char*)&Buffer.front(), Buffer.size()); 3970 } 3971 3972 void IndexBitcodeWriter::write() { 3973 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3974 3975 writeModuleVersion(); 3976 3977 // Write the module paths in the combined index. 3978 writeModStrings(); 3979 3980 // Write the summary combined index records. 3981 writeCombinedGlobalValueSummary(); 3982 3983 Stream.ExitBlock(); 3984 } 3985 3986 // Write the specified module summary index to the given raw output stream, 3987 // where it will be written in a new bitcode block. This is used when 3988 // writing the combined index file for ThinLTO. When writing a subset of the 3989 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3990 void llvm::WriteIndexToFile( 3991 const ModuleSummaryIndex &Index, raw_ostream &Out, 3992 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3993 SmallVector<char, 0> Buffer; 3994 Buffer.reserve(256 * 1024); 3995 3996 BitcodeWriter Writer(Buffer); 3997 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 3998 Writer.writeStrtab(); 3999 4000 Out.write((char *)&Buffer.front(), Buffer.size()); 4001 } 4002 4003 /// Class to manage the bitcode writing for a thin link bitcode file. 4004 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4005 /// ModHash is for use in ThinLTO incremental build, generated while writing 4006 /// the module bitcode file. 4007 const ModuleHash *ModHash; 4008 4009 public: 4010 ThinLinkBitcodeWriter(const Module *M, StringTableBuilder &StrtabBuilder, 4011 BitstreamWriter &Stream, 4012 const ModuleSummaryIndex &Index, 4013 const ModuleHash &ModHash) 4014 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4015 /*ShouldPreserveUseListOrder=*/false, &Index), 4016 ModHash(&ModHash) {} 4017 4018 void write(); 4019 4020 private: 4021 void writeSimplifiedModuleInfo(); 4022 }; 4023 4024 // This function writes a simpilified module info for thin link bitcode file. 4025 // It only contains the source file name along with the name(the offset and 4026 // size in strtab) and linkage for global values. For the global value info 4027 // entry, in order to keep linkage at offset 5, there are three zeros used 4028 // as padding. 4029 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4030 SmallVector<unsigned, 64> Vals; 4031 // Emit the module's source file name. 4032 { 4033 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4034 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4035 if (Bits == SE_Char6) 4036 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4037 else if (Bits == SE_Fixed7) 4038 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4039 4040 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4041 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4042 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4044 Abbv->Add(AbbrevOpToUse); 4045 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4046 4047 for (const auto P : M.getSourceFileName()) 4048 Vals.push_back((unsigned char)P); 4049 4050 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4051 Vals.clear(); 4052 } 4053 4054 // Emit the global variable information. 4055 for (const GlobalVariable &GV : M.globals()) { 4056 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4057 Vals.push_back(StrtabBuilder.add(GV.getName())); 4058 Vals.push_back(GV.getName().size()); 4059 Vals.push_back(0); 4060 Vals.push_back(0); 4061 Vals.push_back(0); 4062 Vals.push_back(getEncodedLinkage(GV)); 4063 4064 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4065 Vals.clear(); 4066 } 4067 4068 // Emit the function proto information. 4069 for (const Function &F : M) { 4070 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4071 Vals.push_back(StrtabBuilder.add(F.getName())); 4072 Vals.push_back(F.getName().size()); 4073 Vals.push_back(0); 4074 Vals.push_back(0); 4075 Vals.push_back(0); 4076 Vals.push_back(getEncodedLinkage(F)); 4077 4078 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4079 Vals.clear(); 4080 } 4081 4082 // Emit the alias information. 4083 for (const GlobalAlias &A : M.aliases()) { 4084 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4085 Vals.push_back(StrtabBuilder.add(A.getName())); 4086 Vals.push_back(A.getName().size()); 4087 Vals.push_back(0); 4088 Vals.push_back(0); 4089 Vals.push_back(0); 4090 Vals.push_back(getEncodedLinkage(A)); 4091 4092 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4093 Vals.clear(); 4094 } 4095 4096 // Emit the ifunc information. 4097 for (const GlobalIFunc &I : M.ifuncs()) { 4098 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4099 Vals.push_back(StrtabBuilder.add(I.getName())); 4100 Vals.push_back(I.getName().size()); 4101 Vals.push_back(0); 4102 Vals.push_back(0); 4103 Vals.push_back(0); 4104 Vals.push_back(getEncodedLinkage(I)); 4105 4106 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4107 Vals.clear(); 4108 } 4109 } 4110 4111 void ThinLinkBitcodeWriter::write() { 4112 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4113 4114 writeModuleVersion(); 4115 4116 writeSimplifiedModuleInfo(); 4117 4118 writePerModuleGlobalValueSummary(); 4119 4120 // Write module hash. 4121 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4122 4123 Stream.ExitBlock(); 4124 } 4125 4126 void BitcodeWriter::writeThinLinkBitcode(const Module *M, 4127 const ModuleSummaryIndex &Index, 4128 const ModuleHash &ModHash) { 4129 assert(!WroteStrtab); 4130 4131 // The Mods vector is used by irsymtab::build, which requires non-const 4132 // Modules in case it needs to materialize metadata. But the bitcode writer 4133 // requires that the module is materialized, so we can cast to non-const here, 4134 // after checking that it is in fact materialized. 4135 assert(M->isMaterialized()); 4136 Mods.push_back(const_cast<Module *>(M)); 4137 4138 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4139 ModHash); 4140 ThinLinkWriter.write(); 4141 } 4142 4143 // Write the specified thin link bitcode file to the given raw output stream, 4144 // where it will be written in a new bitcode block. This is used when 4145 // writing the per-module index file for ThinLTO. 4146 void llvm::WriteThinLinkBitcodeToFile(const Module *M, raw_ostream &Out, 4147 const ModuleSummaryIndex &Index, 4148 const ModuleHash &ModHash) { 4149 SmallVector<char, 0> Buffer; 4150 Buffer.reserve(256 * 1024); 4151 4152 BitcodeWriter Writer(Buffer); 4153 Writer.writeThinLinkBitcode(M, Index, ModHash); 4154 Writer.writeSymtab(); 4155 Writer.writeStrtab(); 4156 4157 Out.write((char *)&Buffer.front(), Buffer.size()); 4158 } 4159