1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeModuleVersion(); 146 }; 147 148 void BitcodeWriterBase::writeModuleVersion() { 149 // VERSION: [version#] 150 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 151 } 152 153 /// Base class to manage the module bitcode writing, currently subclassed for 154 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 155 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 156 protected: 157 /// The Module to write to bitcode. 158 const Module &M; 159 160 /// Enumerates ids for all values in the module. 161 ValueEnumerator VE; 162 163 /// Optional per-module index to write for ThinLTO. 164 const ModuleSummaryIndex *Index; 165 166 /// Map that holds the correspondence between GUIDs in the summary index, 167 /// that came from indirect call profiles, and a value id generated by this 168 /// class to use in the VST and summary block records. 169 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 170 171 /// Tracks the last value id recorded in the GUIDToValueMap. 172 unsigned GlobalValueId; 173 174 /// Saves the offset of the VSTOffset record that must eventually be 175 /// backpatched with the offset of the actual VST. 176 uint64_t VSTOffsetPlaceholder = 0; 177 178 public: 179 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 180 /// writing to the provided \p Buffer. 181 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 182 BitstreamWriter &Stream, 183 bool ShouldPreserveUseListOrder, 184 const ModuleSummaryIndex *Index) 185 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 186 VE(M, ShouldPreserveUseListOrder), Index(Index) { 187 // Assign ValueIds to any callee values in the index that came from 188 // indirect call profiles and were recorded as a GUID not a Value* 189 // (which would have been assigned an ID by the ValueEnumerator). 190 // The starting ValueId is just after the number of values in the 191 // ValueEnumerator, so that they can be emitted in the VST. 192 GlobalValueId = VE.getValues().size(); 193 if (!Index) 194 return; 195 for (const auto &GUIDSummaryLists : *Index) 196 // Examine all summaries for this GUID. 197 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 198 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 199 // For each call in the function summary, see if the call 200 // is to a GUID (which means it is for an indirect call, 201 // otherwise we would have a Value for it). If so, synthesize 202 // a value id. 203 for (auto &CallEdge : FS->calls()) 204 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 205 assignValueId(CallEdge.first.getGUID()); 206 } 207 208 protected: 209 void writePerModuleGlobalValueSummary(); 210 211 private: 212 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 213 GlobalValueSummary *Summary, 214 unsigned ValueID, 215 unsigned FSCallsAbbrev, 216 unsigned FSCallsProfileAbbrev, 217 const Function &F); 218 void writeModuleLevelReferences(const GlobalVariable &V, 219 SmallVector<uint64_t, 64> &NameVals, 220 unsigned FSModRefsAbbrev, 221 unsigned FSModVTableRefsAbbrev); 222 223 void assignValueId(GlobalValue::GUID ValGUID) { 224 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 225 } 226 227 unsigned getValueId(GlobalValue::GUID ValGUID) { 228 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 229 // Expect that any GUID value had a value Id assigned by an 230 // earlier call to assignValueId. 231 assert(VMI != GUIDToValueIdMap.end() && 232 "GUID does not have assigned value Id"); 233 return VMI->second; 234 } 235 236 // Helper to get the valueId for the type of value recorded in VI. 237 unsigned getValueId(ValueInfo VI) { 238 if (!VI.haveGVs() || !VI.getValue()) 239 return getValueId(VI.getGUID()); 240 return VE.getValueID(VI.getValue()); 241 } 242 243 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 244 }; 245 246 /// Class to manage the bitcode writing for a module. 247 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 248 /// Pointer to the buffer allocated by caller for bitcode writing. 249 const SmallVectorImpl<char> &Buffer; 250 251 /// True if a module hash record should be written. 252 bool GenerateHash; 253 254 /// If non-null, when GenerateHash is true, the resulting hash is written 255 /// into ModHash. 256 ModuleHash *ModHash; 257 258 SHA1 Hasher; 259 260 /// The start bit of the identification block. 261 uint64_t BitcodeStartBit; 262 263 public: 264 /// Constructs a ModuleBitcodeWriter object for the given Module, 265 /// writing to the provided \p Buffer. 266 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 267 StringTableBuilder &StrtabBuilder, 268 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 269 const ModuleSummaryIndex *Index, bool GenerateHash, 270 ModuleHash *ModHash = nullptr) 271 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 272 ShouldPreserveUseListOrder, Index), 273 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 274 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 275 276 /// Emit the current module to the bitstream. 277 void write(); 278 279 private: 280 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 281 282 size_t addToStrtab(StringRef Str); 283 284 void writeAttributeGroupTable(); 285 void writeAttributeTable(); 286 void writeTypeTable(); 287 void writeComdats(); 288 void writeValueSymbolTableForwardDecl(); 289 void writeModuleInfo(); 290 void writeValueAsMetadata(const ValueAsMetadata *MD, 291 SmallVectorImpl<uint64_t> &Record); 292 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 unsigned createDILocationAbbrev(); 295 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned &Abbrev); 297 unsigned createGenericDINodeAbbrev(); 298 void writeGenericDINode(const GenericDINode *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 300 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIGenericSubrange(const DIGenericSubrange *N, 303 SmallVectorImpl<uint64_t> &Record, 304 unsigned Abbrev); 305 void writeDIEnumerator(const DIEnumerator *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIStringType(const DIStringType *N, 310 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 311 void writeDIDerivedType(const DIDerivedType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDICompositeType(const DICompositeType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubroutineType(const DISubroutineType *N, 316 SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICompileUnit(const DICompileUnit *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDISubprogram(const DISubprogram *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDILexicalBlock(const DILexicalBlock *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDICommonBlock(const DICommonBlock *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 342 SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIGlobalVariable(const DIGlobalVariable *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDILocalVariable(const DILocalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDILabel(const DILabel *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDIExpression(const DIExpression *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 357 SmallVectorImpl<uint64_t> &Record, 358 unsigned Abbrev); 359 void writeDIObjCProperty(const DIObjCProperty *N, 360 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 361 void writeDIImportedEntity(const DIImportedEntity *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 unsigned createNamedMetadataAbbrev(); 365 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 366 unsigned createMetadataStringsAbbrev(); 367 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 368 SmallVectorImpl<uint64_t> &Record); 369 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 370 SmallVectorImpl<uint64_t> &Record, 371 std::vector<unsigned> *MDAbbrevs = nullptr, 372 std::vector<uint64_t> *IndexPos = nullptr); 373 void writeModuleMetadata(); 374 void writeFunctionMetadata(const Function &F); 375 void writeFunctionMetadataAttachment(const Function &F); 376 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 377 const GlobalObject &GO); 378 void writeModuleMetadataKinds(); 379 void writeOperandBundleTags(); 380 void writeSyncScopeNames(); 381 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 382 void writeModuleConstants(); 383 bool pushValueAndType(const Value *V, unsigned InstID, 384 SmallVectorImpl<unsigned> &Vals); 385 void writeOperandBundles(const CallBase &CB, unsigned InstID); 386 void pushValue(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void pushValueSigned(const Value *V, unsigned InstID, 389 SmallVectorImpl<uint64_t> &Vals); 390 void writeInstruction(const Instruction &I, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 393 void writeGlobalValueSymbolTable( 394 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 395 void writeUseList(UseListOrder &&Order); 396 void writeUseListBlock(const Function *F); 397 void 398 writeFunction(const Function &F, 399 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 400 void writeBlockInfo(); 401 void writeModuleHash(size_t BlockStartPos); 402 403 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 404 return unsigned(SSID); 405 } 406 407 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 408 }; 409 410 /// Class to manage the bitcode writing for a combined index. 411 class IndexBitcodeWriter : public BitcodeWriterBase { 412 /// The combined index to write to bitcode. 413 const ModuleSummaryIndex &Index; 414 415 /// When writing a subset of the index for distributed backends, client 416 /// provides a map of modules to the corresponding GUIDs/summaries to write. 417 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 418 419 /// Map that holds the correspondence between the GUID used in the combined 420 /// index and a value id generated by this class to use in references. 421 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 422 423 /// Tracks the last value id recorded in the GUIDToValueMap. 424 unsigned GlobalValueId = 0; 425 426 public: 427 /// Constructs a IndexBitcodeWriter object for the given combined index, 428 /// writing to the provided \p Buffer. When writing a subset of the index 429 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 430 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 431 const ModuleSummaryIndex &Index, 432 const std::map<std::string, GVSummaryMapTy> 433 *ModuleToSummariesForIndex = nullptr) 434 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 435 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 436 // Assign unique value ids to all summaries to be written, for use 437 // in writing out the call graph edges. Save the mapping from GUID 438 // to the new global value id to use when writing those edges, which 439 // are currently saved in the index in terms of GUID. 440 forEachSummary([&](GVInfo I, bool) { 441 GUIDToValueIdMap[I.first] = ++GlobalValueId; 442 }); 443 } 444 445 /// The below iterator returns the GUID and associated summary. 446 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 447 448 /// Calls the callback for each value GUID and summary to be written to 449 /// bitcode. This hides the details of whether they are being pulled from the 450 /// entire index or just those in a provided ModuleToSummariesForIndex map. 451 template<typename Functor> 452 void forEachSummary(Functor Callback) { 453 if (ModuleToSummariesForIndex) { 454 for (auto &M : *ModuleToSummariesForIndex) 455 for (auto &Summary : M.second) { 456 Callback(Summary, false); 457 // Ensure aliasee is handled, e.g. for assigning a valueId, 458 // even if we are not importing the aliasee directly (the 459 // imported alias will contain a copy of aliasee). 460 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 461 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 462 } 463 } else { 464 for (auto &Summaries : Index) 465 for (auto &Summary : Summaries.second.SummaryList) 466 Callback({Summaries.first, Summary.get()}, false); 467 } 468 } 469 470 /// Calls the callback for each entry in the modulePaths StringMap that 471 /// should be written to the module path string table. This hides the details 472 /// of whether they are being pulled from the entire index or just those in a 473 /// provided ModuleToSummariesForIndex map. 474 template <typename Functor> void forEachModule(Functor Callback) { 475 if (ModuleToSummariesForIndex) { 476 for (const auto &M : *ModuleToSummariesForIndex) { 477 const auto &MPI = Index.modulePaths().find(M.first); 478 if (MPI == Index.modulePaths().end()) { 479 // This should only happen if the bitcode file was empty, in which 480 // case we shouldn't be importing (the ModuleToSummariesForIndex 481 // would only include the module we are writing and index for). 482 assert(ModuleToSummariesForIndex->size() == 1); 483 continue; 484 } 485 Callback(*MPI); 486 } 487 } else { 488 for (const auto &MPSE : Index.modulePaths()) 489 Callback(MPSE); 490 } 491 } 492 493 /// Main entry point for writing a combined index to bitcode. 494 void write(); 495 496 private: 497 void writeModStrings(); 498 void writeCombinedGlobalValueSummary(); 499 500 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 501 auto VMI = GUIDToValueIdMap.find(ValGUID); 502 if (VMI == GUIDToValueIdMap.end()) 503 return None; 504 return VMI->second; 505 } 506 507 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 508 }; 509 510 } // end anonymous namespace 511 512 static unsigned getEncodedCastOpcode(unsigned Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Unknown cast instruction!"); 515 case Instruction::Trunc : return bitc::CAST_TRUNC; 516 case Instruction::ZExt : return bitc::CAST_ZEXT; 517 case Instruction::SExt : return bitc::CAST_SEXT; 518 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 519 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 520 case Instruction::UIToFP : return bitc::CAST_UITOFP; 521 case Instruction::SIToFP : return bitc::CAST_SITOFP; 522 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 523 case Instruction::FPExt : return bitc::CAST_FPEXT; 524 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 525 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 526 case Instruction::BitCast : return bitc::CAST_BITCAST; 527 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 528 } 529 } 530 531 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 532 switch (Opcode) { 533 default: llvm_unreachable("Unknown binary instruction!"); 534 case Instruction::FNeg: return bitc::UNOP_FNEG; 535 } 536 } 537 538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: llvm_unreachable("Unknown binary instruction!"); 541 case Instruction::Add: 542 case Instruction::FAdd: return bitc::BINOP_ADD; 543 case Instruction::Sub: 544 case Instruction::FSub: return bitc::BINOP_SUB; 545 case Instruction::Mul: 546 case Instruction::FMul: return bitc::BINOP_MUL; 547 case Instruction::UDiv: return bitc::BINOP_UDIV; 548 case Instruction::FDiv: 549 case Instruction::SDiv: return bitc::BINOP_SDIV; 550 case Instruction::URem: return bitc::BINOP_UREM; 551 case Instruction::FRem: 552 case Instruction::SRem: return bitc::BINOP_SREM; 553 case Instruction::Shl: return bitc::BINOP_SHL; 554 case Instruction::LShr: return bitc::BINOP_LSHR; 555 case Instruction::AShr: return bitc::BINOP_ASHR; 556 case Instruction::And: return bitc::BINOP_AND; 557 case Instruction::Or: return bitc::BINOP_OR; 558 case Instruction::Xor: return bitc::BINOP_XOR; 559 } 560 } 561 562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 563 switch (Op) { 564 default: llvm_unreachable("Unknown RMW operation!"); 565 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 566 case AtomicRMWInst::Add: return bitc::RMW_ADD; 567 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 568 case AtomicRMWInst::And: return bitc::RMW_AND; 569 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 570 case AtomicRMWInst::Or: return bitc::RMW_OR; 571 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 572 case AtomicRMWInst::Max: return bitc::RMW_MAX; 573 case AtomicRMWInst::Min: return bitc::RMW_MIN; 574 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 575 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 576 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 577 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 578 } 579 } 580 581 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 582 switch (Ordering) { 583 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 584 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 586 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 587 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 588 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 589 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 590 } 591 llvm_unreachable("Invalid ordering"); 592 } 593 594 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 595 StringRef Str, unsigned AbbrevToUse) { 596 SmallVector<unsigned, 64> Vals; 597 598 // Code: [strchar x N] 599 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 600 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 601 AbbrevToUse = 0; 602 Vals.push_back(Str[i]); 603 } 604 605 // Emit the finished record. 606 Stream.EmitRecord(Code, Vals, AbbrevToUse); 607 } 608 609 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 610 switch (Kind) { 611 case Attribute::Alignment: 612 return bitc::ATTR_KIND_ALIGNMENT; 613 case Attribute::AllocSize: 614 return bitc::ATTR_KIND_ALLOC_SIZE; 615 case Attribute::AlwaysInline: 616 return bitc::ATTR_KIND_ALWAYS_INLINE; 617 case Attribute::ArgMemOnly: 618 return bitc::ATTR_KIND_ARGMEMONLY; 619 case Attribute::Builtin: 620 return bitc::ATTR_KIND_BUILTIN; 621 case Attribute::ByVal: 622 return bitc::ATTR_KIND_BY_VAL; 623 case Attribute::Convergent: 624 return bitc::ATTR_KIND_CONVERGENT; 625 case Attribute::InAlloca: 626 return bitc::ATTR_KIND_IN_ALLOCA; 627 case Attribute::Cold: 628 return bitc::ATTR_KIND_COLD; 629 case Attribute::DisableSanitizerInstrumentation: 630 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 631 case Attribute::Hot: 632 return bitc::ATTR_KIND_HOT; 633 case Attribute::ElementType: 634 return bitc::ATTR_KIND_ELEMENTTYPE; 635 case Attribute::InaccessibleMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 637 case Attribute::InaccessibleMemOrArgMemOnly: 638 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 639 case Attribute::InlineHint: 640 return bitc::ATTR_KIND_INLINE_HINT; 641 case Attribute::InReg: 642 return bitc::ATTR_KIND_IN_REG; 643 case Attribute::JumpTable: 644 return bitc::ATTR_KIND_JUMP_TABLE; 645 case Attribute::MinSize: 646 return bitc::ATTR_KIND_MIN_SIZE; 647 case Attribute::Naked: 648 return bitc::ATTR_KIND_NAKED; 649 case Attribute::Nest: 650 return bitc::ATTR_KIND_NEST; 651 case Attribute::NoAlias: 652 return bitc::ATTR_KIND_NO_ALIAS; 653 case Attribute::NoBuiltin: 654 return bitc::ATTR_KIND_NO_BUILTIN; 655 case Attribute::NoCallback: 656 return bitc::ATTR_KIND_NO_CALLBACK; 657 case Attribute::NoCapture: 658 return bitc::ATTR_KIND_NO_CAPTURE; 659 case Attribute::NoDuplicate: 660 return bitc::ATTR_KIND_NO_DUPLICATE; 661 case Attribute::NoFree: 662 return bitc::ATTR_KIND_NOFREE; 663 case Attribute::NoImplicitFloat: 664 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 665 case Attribute::NoInline: 666 return bitc::ATTR_KIND_NO_INLINE; 667 case Attribute::NoRecurse: 668 return bitc::ATTR_KIND_NO_RECURSE; 669 case Attribute::NoMerge: 670 return bitc::ATTR_KIND_NO_MERGE; 671 case Attribute::NonLazyBind: 672 return bitc::ATTR_KIND_NON_LAZY_BIND; 673 case Attribute::NonNull: 674 return bitc::ATTR_KIND_NON_NULL; 675 case Attribute::Dereferenceable: 676 return bitc::ATTR_KIND_DEREFERENCEABLE; 677 case Attribute::DereferenceableOrNull: 678 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 679 case Attribute::NoRedZone: 680 return bitc::ATTR_KIND_NO_RED_ZONE; 681 case Attribute::NoReturn: 682 return bitc::ATTR_KIND_NO_RETURN; 683 case Attribute::NoSync: 684 return bitc::ATTR_KIND_NOSYNC; 685 case Attribute::NoCfCheck: 686 return bitc::ATTR_KIND_NOCF_CHECK; 687 case Attribute::NoProfile: 688 return bitc::ATTR_KIND_NO_PROFILE; 689 case Attribute::NoUnwind: 690 return bitc::ATTR_KIND_NO_UNWIND; 691 case Attribute::NoSanitizeCoverage: 692 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 693 case Attribute::NullPointerIsValid: 694 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 695 case Attribute::OptForFuzzing: 696 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 697 case Attribute::OptimizeForSize: 698 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 699 case Attribute::OptimizeNone: 700 return bitc::ATTR_KIND_OPTIMIZE_NONE; 701 case Attribute::ReadNone: 702 return bitc::ATTR_KIND_READ_NONE; 703 case Attribute::ReadOnly: 704 return bitc::ATTR_KIND_READ_ONLY; 705 case Attribute::Returned: 706 return bitc::ATTR_KIND_RETURNED; 707 case Attribute::ReturnsTwice: 708 return bitc::ATTR_KIND_RETURNS_TWICE; 709 case Attribute::SExt: 710 return bitc::ATTR_KIND_S_EXT; 711 case Attribute::Speculatable: 712 return bitc::ATTR_KIND_SPECULATABLE; 713 case Attribute::StackAlignment: 714 return bitc::ATTR_KIND_STACK_ALIGNMENT; 715 case Attribute::StackProtect: 716 return bitc::ATTR_KIND_STACK_PROTECT; 717 case Attribute::StackProtectReq: 718 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 719 case Attribute::StackProtectStrong: 720 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 721 case Attribute::SafeStack: 722 return bitc::ATTR_KIND_SAFESTACK; 723 case Attribute::ShadowCallStack: 724 return bitc::ATTR_KIND_SHADOWCALLSTACK; 725 case Attribute::StrictFP: 726 return bitc::ATTR_KIND_STRICT_FP; 727 case Attribute::StructRet: 728 return bitc::ATTR_KIND_STRUCT_RET; 729 case Attribute::SanitizeAddress: 730 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 731 case Attribute::SanitizeHWAddress: 732 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 733 case Attribute::SanitizeThread: 734 return bitc::ATTR_KIND_SANITIZE_THREAD; 735 case Attribute::SanitizeMemory: 736 return bitc::ATTR_KIND_SANITIZE_MEMORY; 737 case Attribute::SpeculativeLoadHardening: 738 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 739 case Attribute::SwiftError: 740 return bitc::ATTR_KIND_SWIFT_ERROR; 741 case Attribute::SwiftSelf: 742 return bitc::ATTR_KIND_SWIFT_SELF; 743 case Attribute::SwiftAsync: 744 return bitc::ATTR_KIND_SWIFT_ASYNC; 745 case Attribute::UWTable: 746 return bitc::ATTR_KIND_UW_TABLE; 747 case Attribute::VScaleRange: 748 return bitc::ATTR_KIND_VSCALE_RANGE; 749 case Attribute::WillReturn: 750 return bitc::ATTR_KIND_WILLRETURN; 751 case Attribute::WriteOnly: 752 return bitc::ATTR_KIND_WRITEONLY; 753 case Attribute::ZExt: 754 return bitc::ATTR_KIND_Z_EXT; 755 case Attribute::ImmArg: 756 return bitc::ATTR_KIND_IMMARG; 757 case Attribute::SanitizeMemTag: 758 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 759 case Attribute::Preallocated: 760 return bitc::ATTR_KIND_PREALLOCATED; 761 case Attribute::NoUndef: 762 return bitc::ATTR_KIND_NOUNDEF; 763 case Attribute::ByRef: 764 return bitc::ATTR_KIND_BYREF; 765 case Attribute::MustProgress: 766 return bitc::ATTR_KIND_MUSTPROGRESS; 767 case Attribute::EndAttrKinds: 768 llvm_unreachable("Can not encode end-attribute kinds marker."); 769 case Attribute::None: 770 llvm_unreachable("Can not encode none-attribute."); 771 case Attribute::EmptyKey: 772 case Attribute::TombstoneKey: 773 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 774 } 775 776 llvm_unreachable("Trying to encode unknown attribute"); 777 } 778 779 void ModuleBitcodeWriter::writeAttributeGroupTable() { 780 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 781 VE.getAttributeGroups(); 782 if (AttrGrps.empty()) return; 783 784 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 785 786 SmallVector<uint64_t, 64> Record; 787 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 788 unsigned AttrListIndex = Pair.first; 789 AttributeSet AS = Pair.second; 790 Record.push_back(VE.getAttributeGroupID(Pair)); 791 Record.push_back(AttrListIndex); 792 793 for (Attribute Attr : AS) { 794 if (Attr.isEnumAttribute()) { 795 Record.push_back(0); 796 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 797 } else if (Attr.isIntAttribute()) { 798 Record.push_back(1); 799 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 800 Record.push_back(Attr.getValueAsInt()); 801 } else if (Attr.isStringAttribute()) { 802 StringRef Kind = Attr.getKindAsString(); 803 StringRef Val = Attr.getValueAsString(); 804 805 Record.push_back(Val.empty() ? 3 : 4); 806 Record.append(Kind.begin(), Kind.end()); 807 Record.push_back(0); 808 if (!Val.empty()) { 809 Record.append(Val.begin(), Val.end()); 810 Record.push_back(0); 811 } 812 } else { 813 assert(Attr.isTypeAttribute()); 814 Type *Ty = Attr.getValueAsType(); 815 Record.push_back(Ty ? 6 : 5); 816 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 817 if (Ty) 818 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 819 } 820 } 821 822 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 823 Record.clear(); 824 } 825 826 Stream.ExitBlock(); 827 } 828 829 void ModuleBitcodeWriter::writeAttributeTable() { 830 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 831 if (Attrs.empty()) return; 832 833 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 834 835 SmallVector<uint64_t, 64> Record; 836 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 837 AttributeList AL = Attrs[i]; 838 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 839 AttributeSet AS = AL.getAttributes(i); 840 if (AS.hasAttributes()) 841 Record.push_back(VE.getAttributeGroupID({i, AS})); 842 } 843 844 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 845 Record.clear(); 846 } 847 848 Stream.ExitBlock(); 849 } 850 851 /// WriteTypeTable - Write out the type table for a module. 852 void ModuleBitcodeWriter::writeTypeTable() { 853 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 854 855 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 856 SmallVector<uint64_t, 64> TypeVals; 857 858 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 859 860 // Abbrev for TYPE_CODE_POINTER. 861 auto Abbv = std::make_shared<BitCodeAbbrev>(); 862 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 864 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 865 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 866 867 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 868 Abbv = std::make_shared<BitCodeAbbrev>(); 869 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 870 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 871 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 872 873 // Abbrev for TYPE_CODE_FUNCTION. 874 Abbv = std::make_shared<BitCodeAbbrev>(); 875 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 879 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 880 881 // Abbrev for TYPE_CODE_STRUCT_ANON. 882 Abbv = std::make_shared<BitCodeAbbrev>(); 883 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 887 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 888 889 // Abbrev for TYPE_CODE_STRUCT_NAME. 890 Abbv = std::make_shared<BitCodeAbbrev>(); 891 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 894 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 895 896 // Abbrev for TYPE_CODE_STRUCT_NAMED. 897 Abbv = std::make_shared<BitCodeAbbrev>(); 898 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 902 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 903 904 // Abbrev for TYPE_CODE_ARRAY. 905 Abbv = std::make_shared<BitCodeAbbrev>(); 906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 909 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 910 911 // Emit an entry count so the reader can reserve space. 912 TypeVals.push_back(TypeList.size()); 913 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 914 TypeVals.clear(); 915 916 // Loop over all of the types, emitting each in turn. 917 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 918 Type *T = TypeList[i]; 919 int AbbrevToUse = 0; 920 unsigned Code = 0; 921 922 switch (T->getTypeID()) { 923 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 924 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 925 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 926 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 927 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 928 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 929 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 930 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 931 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 932 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 933 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 934 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 935 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 936 case Type::IntegerTyID: 937 // INTEGER: [width] 938 Code = bitc::TYPE_CODE_INTEGER; 939 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 940 break; 941 case Type::PointerTyID: { 942 PointerType *PTy = cast<PointerType>(T); 943 unsigned AddressSpace = PTy->getAddressSpace(); 944 if (PTy->isOpaque()) { 945 // OPAQUE_POINTER: [address space] 946 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 947 TypeVals.push_back(AddressSpace); 948 if (AddressSpace == 0) 949 AbbrevToUse = OpaquePtrAbbrev; 950 } else { 951 // POINTER: [pointee type, address space] 952 Code = bitc::TYPE_CODE_POINTER; 953 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 954 TypeVals.push_back(AddressSpace); 955 if (AddressSpace == 0) 956 AbbrevToUse = PtrAbbrev; 957 } 958 break; 959 } 960 case Type::FunctionTyID: { 961 FunctionType *FT = cast<FunctionType>(T); 962 // FUNCTION: [isvararg, retty, paramty x N] 963 Code = bitc::TYPE_CODE_FUNCTION; 964 TypeVals.push_back(FT->isVarArg()); 965 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 966 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 967 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 968 AbbrevToUse = FunctionAbbrev; 969 break; 970 } 971 case Type::StructTyID: { 972 StructType *ST = cast<StructType>(T); 973 // STRUCT: [ispacked, eltty x N] 974 TypeVals.push_back(ST->isPacked()); 975 // Output all of the element types. 976 for (StructType::element_iterator I = ST->element_begin(), 977 E = ST->element_end(); I != E; ++I) 978 TypeVals.push_back(VE.getTypeID(*I)); 979 980 if (ST->isLiteral()) { 981 Code = bitc::TYPE_CODE_STRUCT_ANON; 982 AbbrevToUse = StructAnonAbbrev; 983 } else { 984 if (ST->isOpaque()) { 985 Code = bitc::TYPE_CODE_OPAQUE; 986 } else { 987 Code = bitc::TYPE_CODE_STRUCT_NAMED; 988 AbbrevToUse = StructNamedAbbrev; 989 } 990 991 // Emit the name if it is present. 992 if (!ST->getName().empty()) 993 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 994 StructNameAbbrev); 995 } 996 break; 997 } 998 case Type::ArrayTyID: { 999 ArrayType *AT = cast<ArrayType>(T); 1000 // ARRAY: [numelts, eltty] 1001 Code = bitc::TYPE_CODE_ARRAY; 1002 TypeVals.push_back(AT->getNumElements()); 1003 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1004 AbbrevToUse = ArrayAbbrev; 1005 break; 1006 } 1007 case Type::FixedVectorTyID: 1008 case Type::ScalableVectorTyID: { 1009 VectorType *VT = cast<VectorType>(T); 1010 // VECTOR [numelts, eltty] or 1011 // [numelts, eltty, scalable] 1012 Code = bitc::TYPE_CODE_VECTOR; 1013 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1014 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1015 if (isa<ScalableVectorType>(VT)) 1016 TypeVals.push_back(true); 1017 break; 1018 } 1019 } 1020 1021 // Emit the finished record. 1022 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1023 TypeVals.clear(); 1024 } 1025 1026 Stream.ExitBlock(); 1027 } 1028 1029 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1030 switch (Linkage) { 1031 case GlobalValue::ExternalLinkage: 1032 return 0; 1033 case GlobalValue::WeakAnyLinkage: 1034 return 16; 1035 case GlobalValue::AppendingLinkage: 1036 return 2; 1037 case GlobalValue::InternalLinkage: 1038 return 3; 1039 case GlobalValue::LinkOnceAnyLinkage: 1040 return 18; 1041 case GlobalValue::ExternalWeakLinkage: 1042 return 7; 1043 case GlobalValue::CommonLinkage: 1044 return 8; 1045 case GlobalValue::PrivateLinkage: 1046 return 9; 1047 case GlobalValue::WeakODRLinkage: 1048 return 17; 1049 case GlobalValue::LinkOnceODRLinkage: 1050 return 19; 1051 case GlobalValue::AvailableExternallyLinkage: 1052 return 12; 1053 } 1054 llvm_unreachable("Invalid linkage"); 1055 } 1056 1057 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1058 return getEncodedLinkage(GV.getLinkage()); 1059 } 1060 1061 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1062 uint64_t RawFlags = 0; 1063 RawFlags |= Flags.ReadNone; 1064 RawFlags |= (Flags.ReadOnly << 1); 1065 RawFlags |= (Flags.NoRecurse << 2); 1066 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1067 RawFlags |= (Flags.NoInline << 4); 1068 RawFlags |= (Flags.AlwaysInline << 5); 1069 return RawFlags; 1070 } 1071 1072 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1073 // in BitcodeReader.cpp. 1074 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1075 uint64_t RawFlags = 0; 1076 1077 RawFlags |= Flags.NotEligibleToImport; // bool 1078 RawFlags |= (Flags.Live << 1); 1079 RawFlags |= (Flags.DSOLocal << 2); 1080 RawFlags |= (Flags.CanAutoHide << 3); 1081 1082 // Linkage don't need to be remapped at that time for the summary. Any future 1083 // change to the getEncodedLinkage() function will need to be taken into 1084 // account here as well. 1085 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1086 1087 RawFlags |= (Flags.Visibility << 8); // 2 bits 1088 1089 return RawFlags; 1090 } 1091 1092 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1093 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1094 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1095 return RawFlags; 1096 } 1097 1098 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1099 switch (GV.getVisibility()) { 1100 case GlobalValue::DefaultVisibility: return 0; 1101 case GlobalValue::HiddenVisibility: return 1; 1102 case GlobalValue::ProtectedVisibility: return 2; 1103 } 1104 llvm_unreachable("Invalid visibility"); 1105 } 1106 1107 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1108 switch (GV.getDLLStorageClass()) { 1109 case GlobalValue::DefaultStorageClass: return 0; 1110 case GlobalValue::DLLImportStorageClass: return 1; 1111 case GlobalValue::DLLExportStorageClass: return 2; 1112 } 1113 llvm_unreachable("Invalid DLL storage class"); 1114 } 1115 1116 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1117 switch (GV.getThreadLocalMode()) { 1118 case GlobalVariable::NotThreadLocal: return 0; 1119 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1120 case GlobalVariable::LocalDynamicTLSModel: return 2; 1121 case GlobalVariable::InitialExecTLSModel: return 3; 1122 case GlobalVariable::LocalExecTLSModel: return 4; 1123 } 1124 llvm_unreachable("Invalid TLS model"); 1125 } 1126 1127 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1128 switch (C.getSelectionKind()) { 1129 case Comdat::Any: 1130 return bitc::COMDAT_SELECTION_KIND_ANY; 1131 case Comdat::ExactMatch: 1132 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1133 case Comdat::Largest: 1134 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1135 case Comdat::NoDeduplicate: 1136 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1137 case Comdat::SameSize: 1138 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1139 } 1140 llvm_unreachable("Invalid selection kind"); 1141 } 1142 1143 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1144 switch (GV.getUnnamedAddr()) { 1145 case GlobalValue::UnnamedAddr::None: return 0; 1146 case GlobalValue::UnnamedAddr::Local: return 2; 1147 case GlobalValue::UnnamedAddr::Global: return 1; 1148 } 1149 llvm_unreachable("Invalid unnamed_addr"); 1150 } 1151 1152 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1153 if (GenerateHash) 1154 Hasher.update(Str); 1155 return StrtabBuilder.add(Str); 1156 } 1157 1158 void ModuleBitcodeWriter::writeComdats() { 1159 SmallVector<unsigned, 64> Vals; 1160 for (const Comdat *C : VE.getComdats()) { 1161 // COMDAT: [strtab offset, strtab size, selection_kind] 1162 Vals.push_back(addToStrtab(C->getName())); 1163 Vals.push_back(C->getName().size()); 1164 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1165 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1166 Vals.clear(); 1167 } 1168 } 1169 1170 /// Write a record that will eventually hold the word offset of the 1171 /// module-level VST. For now the offset is 0, which will be backpatched 1172 /// after the real VST is written. Saves the bit offset to backpatch. 1173 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1174 // Write a placeholder value in for the offset of the real VST, 1175 // which is written after the function blocks so that it can include 1176 // the offset of each function. The placeholder offset will be 1177 // updated when the real VST is written. 1178 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1179 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1180 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1181 // hold the real VST offset. Must use fixed instead of VBR as we don't 1182 // know how many VBR chunks to reserve ahead of time. 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1184 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1185 1186 // Emit the placeholder 1187 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1188 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1189 1190 // Compute and save the bit offset to the placeholder, which will be 1191 // patched when the real VST is written. We can simply subtract the 32-bit 1192 // fixed size from the current bit number to get the location to backpatch. 1193 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1194 } 1195 1196 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1197 1198 /// Determine the encoding to use for the given string name and length. 1199 static StringEncoding getStringEncoding(StringRef Str) { 1200 bool isChar6 = true; 1201 for (char C : Str) { 1202 if (isChar6) 1203 isChar6 = BitCodeAbbrevOp::isChar6(C); 1204 if ((unsigned char)C & 128) 1205 // don't bother scanning the rest. 1206 return SE_Fixed8; 1207 } 1208 if (isChar6) 1209 return SE_Char6; 1210 return SE_Fixed7; 1211 } 1212 1213 /// Emit top-level description of module, including target triple, inline asm, 1214 /// descriptors for global variables, and function prototype info. 1215 /// Returns the bit offset to backpatch with the location of the real VST. 1216 void ModuleBitcodeWriter::writeModuleInfo() { 1217 // Emit various pieces of data attached to a module. 1218 if (!M.getTargetTriple().empty()) 1219 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1220 0 /*TODO*/); 1221 const std::string &DL = M.getDataLayoutStr(); 1222 if (!DL.empty()) 1223 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1224 if (!M.getModuleInlineAsm().empty()) 1225 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1226 0 /*TODO*/); 1227 1228 // Emit information about sections and GC, computing how many there are. Also 1229 // compute the maximum alignment value. 1230 std::map<std::string, unsigned> SectionMap; 1231 std::map<std::string, unsigned> GCMap; 1232 MaybeAlign MaxAlignment; 1233 unsigned MaxGlobalType = 0; 1234 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1235 if (A) 1236 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1237 }; 1238 for (const GlobalVariable &GV : M.globals()) { 1239 UpdateMaxAlignment(GV.getAlign()); 1240 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1241 if (GV.hasSection()) { 1242 // Give section names unique ID's. 1243 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1244 if (!Entry) { 1245 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1246 0 /*TODO*/); 1247 Entry = SectionMap.size(); 1248 } 1249 } 1250 } 1251 for (const Function &F : M) { 1252 UpdateMaxAlignment(F.getAlign()); 1253 if (F.hasSection()) { 1254 // Give section names unique ID's. 1255 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1256 if (!Entry) { 1257 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1258 0 /*TODO*/); 1259 Entry = SectionMap.size(); 1260 } 1261 } 1262 if (F.hasGC()) { 1263 // Same for GC names. 1264 unsigned &Entry = GCMap[F.getGC()]; 1265 if (!Entry) { 1266 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1267 0 /*TODO*/); 1268 Entry = GCMap.size(); 1269 } 1270 } 1271 } 1272 1273 // Emit abbrev for globals, now that we know # sections and max alignment. 1274 unsigned SimpleGVarAbbrev = 0; 1275 if (!M.global_empty()) { 1276 // Add an abbrev for common globals with no visibility or thread localness. 1277 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1278 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1282 Log2_32_Ceil(MaxGlobalType+1))); 1283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1284 //| explicitType << 1 1285 //| constant 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1288 if (!MaxAlignment) // Alignment. 1289 Abbv->Add(BitCodeAbbrevOp(0)); 1290 else { 1291 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1293 Log2_32_Ceil(MaxEncAlignment+1))); 1294 } 1295 if (SectionMap.empty()) // Section. 1296 Abbv->Add(BitCodeAbbrevOp(0)); 1297 else 1298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1299 Log2_32_Ceil(SectionMap.size()+1))); 1300 // Don't bother emitting vis + thread local. 1301 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1302 } 1303 1304 SmallVector<unsigned, 64> Vals; 1305 // Emit the module's source file name. 1306 { 1307 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1308 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1309 if (Bits == SE_Char6) 1310 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1311 else if (Bits == SE_Fixed7) 1312 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1313 1314 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1315 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1316 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1318 Abbv->Add(AbbrevOpToUse); 1319 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1320 1321 for (const auto P : M.getSourceFileName()) 1322 Vals.push_back((unsigned char)P); 1323 1324 // Emit the finished record. 1325 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1326 Vals.clear(); 1327 } 1328 1329 // Emit the global variable information. 1330 for (const GlobalVariable &GV : M.globals()) { 1331 unsigned AbbrevToUse = 0; 1332 1333 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1334 // linkage, alignment, section, visibility, threadlocal, 1335 // unnamed_addr, externally_initialized, dllstorageclass, 1336 // comdat, attributes, DSO_Local] 1337 Vals.push_back(addToStrtab(GV.getName())); 1338 Vals.push_back(GV.getName().size()); 1339 Vals.push_back(VE.getTypeID(GV.getValueType())); 1340 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1341 Vals.push_back(GV.isDeclaration() ? 0 : 1342 (VE.getValueID(GV.getInitializer()) + 1)); 1343 Vals.push_back(getEncodedLinkage(GV)); 1344 Vals.push_back(getEncodedAlign(GV.getAlign())); 1345 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1346 : 0); 1347 if (GV.isThreadLocal() || 1348 GV.getVisibility() != GlobalValue::DefaultVisibility || 1349 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1350 GV.isExternallyInitialized() || 1351 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1352 GV.hasComdat() || 1353 GV.hasAttributes() || 1354 GV.isDSOLocal() || 1355 GV.hasPartition()) { 1356 Vals.push_back(getEncodedVisibility(GV)); 1357 Vals.push_back(getEncodedThreadLocalMode(GV)); 1358 Vals.push_back(getEncodedUnnamedAddr(GV)); 1359 Vals.push_back(GV.isExternallyInitialized()); 1360 Vals.push_back(getEncodedDLLStorageClass(GV)); 1361 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1362 1363 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1364 Vals.push_back(VE.getAttributeListID(AL)); 1365 1366 Vals.push_back(GV.isDSOLocal()); 1367 Vals.push_back(addToStrtab(GV.getPartition())); 1368 Vals.push_back(GV.getPartition().size()); 1369 } else { 1370 AbbrevToUse = SimpleGVarAbbrev; 1371 } 1372 1373 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1374 Vals.clear(); 1375 } 1376 1377 // Emit the function proto information. 1378 for (const Function &F : M) { 1379 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1380 // linkage, paramattrs, alignment, section, visibility, gc, 1381 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1382 // prefixdata, personalityfn, DSO_Local, addrspace] 1383 Vals.push_back(addToStrtab(F.getName())); 1384 Vals.push_back(F.getName().size()); 1385 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1386 Vals.push_back(F.getCallingConv()); 1387 Vals.push_back(F.isDeclaration()); 1388 Vals.push_back(getEncodedLinkage(F)); 1389 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1390 Vals.push_back(getEncodedAlign(F.getAlign())); 1391 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1392 : 0); 1393 Vals.push_back(getEncodedVisibility(F)); 1394 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1395 Vals.push_back(getEncodedUnnamedAddr(F)); 1396 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1397 : 0); 1398 Vals.push_back(getEncodedDLLStorageClass(F)); 1399 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1400 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1401 : 0); 1402 Vals.push_back( 1403 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1404 1405 Vals.push_back(F.isDSOLocal()); 1406 Vals.push_back(F.getAddressSpace()); 1407 Vals.push_back(addToStrtab(F.getPartition())); 1408 Vals.push_back(F.getPartition().size()); 1409 1410 unsigned AbbrevToUse = 0; 1411 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1412 Vals.clear(); 1413 } 1414 1415 // Emit the alias information. 1416 for (const GlobalAlias &A : M.aliases()) { 1417 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1418 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1419 // DSO_Local] 1420 Vals.push_back(addToStrtab(A.getName())); 1421 Vals.push_back(A.getName().size()); 1422 Vals.push_back(VE.getTypeID(A.getValueType())); 1423 Vals.push_back(A.getType()->getAddressSpace()); 1424 Vals.push_back(VE.getValueID(A.getAliasee())); 1425 Vals.push_back(getEncodedLinkage(A)); 1426 Vals.push_back(getEncodedVisibility(A)); 1427 Vals.push_back(getEncodedDLLStorageClass(A)); 1428 Vals.push_back(getEncodedThreadLocalMode(A)); 1429 Vals.push_back(getEncodedUnnamedAddr(A)); 1430 Vals.push_back(A.isDSOLocal()); 1431 Vals.push_back(addToStrtab(A.getPartition())); 1432 Vals.push_back(A.getPartition().size()); 1433 1434 unsigned AbbrevToUse = 0; 1435 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1436 Vals.clear(); 1437 } 1438 1439 // Emit the ifunc information. 1440 for (const GlobalIFunc &I : M.ifuncs()) { 1441 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1442 // val#, linkage, visibility, DSO_Local] 1443 Vals.push_back(addToStrtab(I.getName())); 1444 Vals.push_back(I.getName().size()); 1445 Vals.push_back(VE.getTypeID(I.getValueType())); 1446 Vals.push_back(I.getType()->getAddressSpace()); 1447 Vals.push_back(VE.getValueID(I.getResolver())); 1448 Vals.push_back(getEncodedLinkage(I)); 1449 Vals.push_back(getEncodedVisibility(I)); 1450 Vals.push_back(I.isDSOLocal()); 1451 Vals.push_back(addToStrtab(I.getPartition())); 1452 Vals.push_back(I.getPartition().size()); 1453 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1454 Vals.clear(); 1455 } 1456 1457 writeValueSymbolTableForwardDecl(); 1458 } 1459 1460 static uint64_t getOptimizationFlags(const Value *V) { 1461 uint64_t Flags = 0; 1462 1463 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1464 if (OBO->hasNoSignedWrap()) 1465 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1466 if (OBO->hasNoUnsignedWrap()) 1467 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1468 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1469 if (PEO->isExact()) 1470 Flags |= 1 << bitc::PEO_EXACT; 1471 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1472 if (FPMO->hasAllowReassoc()) 1473 Flags |= bitc::AllowReassoc; 1474 if (FPMO->hasNoNaNs()) 1475 Flags |= bitc::NoNaNs; 1476 if (FPMO->hasNoInfs()) 1477 Flags |= bitc::NoInfs; 1478 if (FPMO->hasNoSignedZeros()) 1479 Flags |= bitc::NoSignedZeros; 1480 if (FPMO->hasAllowReciprocal()) 1481 Flags |= bitc::AllowReciprocal; 1482 if (FPMO->hasAllowContract()) 1483 Flags |= bitc::AllowContract; 1484 if (FPMO->hasApproxFunc()) 1485 Flags |= bitc::ApproxFunc; 1486 } 1487 1488 return Flags; 1489 } 1490 1491 void ModuleBitcodeWriter::writeValueAsMetadata( 1492 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1493 // Mimic an MDNode with a value as one operand. 1494 Value *V = MD->getValue(); 1495 Record.push_back(VE.getTypeID(V->getType())); 1496 Record.push_back(VE.getValueID(V)); 1497 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1498 Record.clear(); 1499 } 1500 1501 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1502 SmallVectorImpl<uint64_t> &Record, 1503 unsigned Abbrev) { 1504 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1505 Metadata *MD = N->getOperand(i); 1506 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1507 "Unexpected function-local metadata"); 1508 Record.push_back(VE.getMetadataOrNullID(MD)); 1509 } 1510 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1511 : bitc::METADATA_NODE, 1512 Record, Abbrev); 1513 Record.clear(); 1514 } 1515 1516 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1517 // Assume the column is usually under 128, and always output the inlined-at 1518 // location (it's never more expensive than building an array size 1). 1519 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1520 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1527 return Stream.EmitAbbrev(std::move(Abbv)); 1528 } 1529 1530 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1531 SmallVectorImpl<uint64_t> &Record, 1532 unsigned &Abbrev) { 1533 if (!Abbrev) 1534 Abbrev = createDILocationAbbrev(); 1535 1536 Record.push_back(N->isDistinct()); 1537 Record.push_back(N->getLine()); 1538 Record.push_back(N->getColumn()); 1539 Record.push_back(VE.getMetadataID(N->getScope())); 1540 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1541 Record.push_back(N->isImplicitCode()); 1542 1543 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1544 Record.clear(); 1545 } 1546 1547 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1548 // Assume the column is usually under 128, and always output the inlined-at 1549 // location (it's never more expensive than building an array size 1). 1550 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1551 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1558 return Stream.EmitAbbrev(std::move(Abbv)); 1559 } 1560 1561 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1562 SmallVectorImpl<uint64_t> &Record, 1563 unsigned &Abbrev) { 1564 if (!Abbrev) 1565 Abbrev = createGenericDINodeAbbrev(); 1566 1567 Record.push_back(N->isDistinct()); 1568 Record.push_back(N->getTag()); 1569 Record.push_back(0); // Per-tag version field; unused for now. 1570 1571 for (auto &I : N->operands()) 1572 Record.push_back(VE.getMetadataOrNullID(I)); 1573 1574 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1575 Record.clear(); 1576 } 1577 1578 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1579 SmallVectorImpl<uint64_t> &Record, 1580 unsigned Abbrev) { 1581 const uint64_t Version = 2 << 1; 1582 Record.push_back((uint64_t)N->isDistinct() | Version); 1583 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1587 1588 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1589 Record.clear(); 1590 } 1591 1592 void ModuleBitcodeWriter::writeDIGenericSubrange( 1593 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1594 unsigned Abbrev) { 1595 Record.push_back((uint64_t)N->isDistinct()); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1600 1601 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1602 Record.clear(); 1603 } 1604 1605 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1606 if ((int64_t)V >= 0) 1607 Vals.push_back(V << 1); 1608 else 1609 Vals.push_back((-V << 1) | 1); 1610 } 1611 1612 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1613 // We have an arbitrary precision integer value to write whose 1614 // bit width is > 64. However, in canonical unsigned integer 1615 // format it is likely that the high bits are going to be zero. 1616 // So, we only write the number of active words. 1617 unsigned NumWords = A.getActiveWords(); 1618 const uint64_t *RawData = A.getRawData(); 1619 for (unsigned i = 0; i < NumWords; i++) 1620 emitSignedInt64(Vals, RawData[i]); 1621 } 1622 1623 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1624 SmallVectorImpl<uint64_t> &Record, 1625 unsigned Abbrev) { 1626 const uint64_t IsBigInt = 1 << 2; 1627 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1628 Record.push_back(N->getValue().getBitWidth()); 1629 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1630 emitWideAPInt(Record, N->getValue()); 1631 1632 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1633 Record.clear(); 1634 } 1635 1636 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1637 SmallVectorImpl<uint64_t> &Record, 1638 unsigned Abbrev) { 1639 Record.push_back(N->isDistinct()); 1640 Record.push_back(N->getTag()); 1641 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1642 Record.push_back(N->getSizeInBits()); 1643 Record.push_back(N->getAlignInBits()); 1644 Record.push_back(N->getEncoding()); 1645 Record.push_back(N->getFlags()); 1646 1647 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1648 Record.clear(); 1649 } 1650 1651 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1652 SmallVectorImpl<uint64_t> &Record, 1653 unsigned Abbrev) { 1654 Record.push_back(N->isDistinct()); 1655 Record.push_back(N->getTag()); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1659 Record.push_back(N->getSizeInBits()); 1660 Record.push_back(N->getAlignInBits()); 1661 Record.push_back(N->getEncoding()); 1662 1663 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1668 SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 Record.push_back(N->isDistinct()); 1671 Record.push_back(N->getTag()); 1672 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1673 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1674 Record.push_back(N->getLine()); 1675 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1677 Record.push_back(N->getSizeInBits()); 1678 Record.push_back(N->getAlignInBits()); 1679 Record.push_back(N->getOffsetInBits()); 1680 Record.push_back(N->getFlags()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1682 1683 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1684 // that there is no DWARF address space associated with DIDerivedType. 1685 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1686 Record.push_back(*DWARFAddressSpace + 1); 1687 else 1688 Record.push_back(0); 1689 1690 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1691 1692 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1693 Record.clear(); 1694 } 1695 1696 void ModuleBitcodeWriter::writeDICompositeType( 1697 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1698 unsigned Abbrev) { 1699 const unsigned IsNotUsedInOldTypeRef = 0x2; 1700 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1701 Record.push_back(N->getTag()); 1702 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1703 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1704 Record.push_back(N->getLine()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1707 Record.push_back(N->getSizeInBits()); 1708 Record.push_back(N->getAlignInBits()); 1709 Record.push_back(N->getOffsetInBits()); 1710 Record.push_back(N->getFlags()); 1711 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1712 Record.push_back(N->getRuntimeLang()); 1713 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1714 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1715 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1722 1723 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1724 Record.clear(); 1725 } 1726 1727 void ModuleBitcodeWriter::writeDISubroutineType( 1728 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1729 unsigned Abbrev) { 1730 const unsigned HasNoOldTypeRefs = 0x2; 1731 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1732 Record.push_back(N->getFlags()); 1733 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1734 Record.push_back(N->getCC()); 1735 1736 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1737 Record.clear(); 1738 } 1739 1740 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1741 SmallVectorImpl<uint64_t> &Record, 1742 unsigned Abbrev) { 1743 Record.push_back(N->isDistinct()); 1744 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1745 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1746 if (N->getRawChecksum()) { 1747 Record.push_back(N->getRawChecksum()->Kind); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1749 } else { 1750 // Maintain backwards compatibility with the old internal representation of 1751 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1752 Record.push_back(0); 1753 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1754 } 1755 auto Source = N->getRawSource(); 1756 if (Source) 1757 Record.push_back(VE.getMetadataOrNullID(*Source)); 1758 1759 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1760 Record.clear(); 1761 } 1762 1763 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1764 SmallVectorImpl<uint64_t> &Record, 1765 unsigned Abbrev) { 1766 assert(N->isDistinct() && "Expected distinct compile units"); 1767 Record.push_back(/* IsDistinct */ true); 1768 Record.push_back(N->getSourceLanguage()); 1769 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1771 Record.push_back(N->isOptimized()); 1772 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1773 Record.push_back(N->getRuntimeVersion()); 1774 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1775 Record.push_back(N->getEmissionKind()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1778 Record.push_back(/* subprograms */ 0); 1779 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1781 Record.push_back(N->getDWOId()); 1782 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1783 Record.push_back(N->getSplitDebugInlining()); 1784 Record.push_back(N->getDebugInfoForProfiling()); 1785 Record.push_back((unsigned)N->getNameTableKind()); 1786 Record.push_back(N->getRangesBaseAddress()); 1787 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1788 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1789 1790 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1791 Record.clear(); 1792 } 1793 1794 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1795 SmallVectorImpl<uint64_t> &Record, 1796 unsigned Abbrev) { 1797 const uint64_t HasUnitFlag = 1 << 1; 1798 const uint64_t HasSPFlagsFlag = 1 << 2; 1799 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1800 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1804 Record.push_back(N->getLine()); 1805 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1806 Record.push_back(N->getScopeLine()); 1807 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1808 Record.push_back(N->getSPFlags()); 1809 Record.push_back(N->getVirtualIndex()); 1810 Record.push_back(N->getFlags()); 1811 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1813 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1815 Record.push_back(N->getThisAdjustment()); 1816 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1817 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1818 1819 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1820 Record.clear(); 1821 } 1822 1823 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1824 SmallVectorImpl<uint64_t> &Record, 1825 unsigned Abbrev) { 1826 Record.push_back(N->isDistinct()); 1827 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1828 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1829 Record.push_back(N->getLine()); 1830 Record.push_back(N->getColumn()); 1831 1832 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1833 Record.clear(); 1834 } 1835 1836 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1837 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1838 unsigned Abbrev) { 1839 Record.push_back(N->isDistinct()); 1840 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1841 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1842 Record.push_back(N->getDiscriminator()); 1843 1844 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1845 Record.clear(); 1846 } 1847 1848 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1849 SmallVectorImpl<uint64_t> &Record, 1850 unsigned Abbrev) { 1851 Record.push_back(N->isDistinct()); 1852 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1854 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1856 Record.push_back(N->getLineNo()); 1857 1858 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1859 Record.clear(); 1860 } 1861 1862 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1863 SmallVectorImpl<uint64_t> &Record, 1864 unsigned Abbrev) { 1865 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1866 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1867 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1868 1869 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1870 Record.clear(); 1871 } 1872 1873 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1874 SmallVectorImpl<uint64_t> &Record, 1875 unsigned Abbrev) { 1876 Record.push_back(N->isDistinct()); 1877 Record.push_back(N->getMacinfoType()); 1878 Record.push_back(N->getLine()); 1879 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1880 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1881 1882 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1883 Record.clear(); 1884 } 1885 1886 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1887 SmallVectorImpl<uint64_t> &Record, 1888 unsigned Abbrev) { 1889 Record.push_back(N->isDistinct()); 1890 Record.push_back(N->getMacinfoType()); 1891 Record.push_back(N->getLine()); 1892 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1893 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1894 1895 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1896 Record.clear(); 1897 } 1898 1899 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1900 SmallVectorImpl<uint64_t> &Record, 1901 unsigned Abbrev) { 1902 Record.reserve(N->getArgs().size()); 1903 for (ValueAsMetadata *MD : N->getArgs()) 1904 Record.push_back(VE.getMetadataID(MD)); 1905 1906 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1907 Record.clear(); 1908 } 1909 1910 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1911 SmallVectorImpl<uint64_t> &Record, 1912 unsigned Abbrev) { 1913 Record.push_back(N->isDistinct()); 1914 for (auto &I : N->operands()) 1915 Record.push_back(VE.getMetadataOrNullID(I)); 1916 Record.push_back(N->getLineNo()); 1917 Record.push_back(N->getIsDecl()); 1918 1919 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1920 Record.clear(); 1921 } 1922 1923 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1924 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1925 unsigned Abbrev) { 1926 Record.push_back(N->isDistinct()); 1927 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1928 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1929 Record.push_back(N->isDefault()); 1930 1931 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1932 Record.clear(); 1933 } 1934 1935 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1936 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1937 unsigned Abbrev) { 1938 Record.push_back(N->isDistinct()); 1939 Record.push_back(N->getTag()); 1940 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1941 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1942 Record.push_back(N->isDefault()); 1943 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1944 1945 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1946 Record.clear(); 1947 } 1948 1949 void ModuleBitcodeWriter::writeDIGlobalVariable( 1950 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1951 unsigned Abbrev) { 1952 const uint64_t Version = 2 << 1; 1953 Record.push_back((uint64_t)N->isDistinct() | Version); 1954 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1955 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1956 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1957 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1958 Record.push_back(N->getLine()); 1959 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1960 Record.push_back(N->isLocalToUnit()); 1961 Record.push_back(N->isDefinition()); 1962 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1963 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1964 Record.push_back(N->getAlignInBits()); 1965 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1966 1967 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1968 Record.clear(); 1969 } 1970 1971 void ModuleBitcodeWriter::writeDILocalVariable( 1972 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1973 unsigned Abbrev) { 1974 // In order to support all possible bitcode formats in BitcodeReader we need 1975 // to distinguish the following cases: 1976 // 1) Record has no artificial tag (Record[1]), 1977 // has no obsolete inlinedAt field (Record[9]). 1978 // In this case Record size will be 8, HasAlignment flag is false. 1979 // 2) Record has artificial tag (Record[1]), 1980 // has no obsolete inlignedAt field (Record[9]). 1981 // In this case Record size will be 9, HasAlignment flag is false. 1982 // 3) Record has both artificial tag (Record[1]) and 1983 // obsolete inlignedAt field (Record[9]). 1984 // In this case Record size will be 10, HasAlignment flag is false. 1985 // 4) Record has neither artificial tag, nor inlignedAt field, but 1986 // HasAlignment flag is true and Record[8] contains alignment value. 1987 const uint64_t HasAlignmentFlag = 1 << 1; 1988 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1989 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1990 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1991 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1992 Record.push_back(N->getLine()); 1993 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1994 Record.push_back(N->getArg()); 1995 Record.push_back(N->getFlags()); 1996 Record.push_back(N->getAlignInBits()); 1997 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1998 1999 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2000 Record.clear(); 2001 } 2002 2003 void ModuleBitcodeWriter::writeDILabel( 2004 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2005 unsigned Abbrev) { 2006 Record.push_back((uint64_t)N->isDistinct()); 2007 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2008 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2009 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2010 Record.push_back(N->getLine()); 2011 2012 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2013 Record.clear(); 2014 } 2015 2016 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2017 SmallVectorImpl<uint64_t> &Record, 2018 unsigned Abbrev) { 2019 Record.reserve(N->getElements().size() + 1); 2020 const uint64_t Version = 3 << 1; 2021 Record.push_back((uint64_t)N->isDistinct() | Version); 2022 Record.append(N->elements_begin(), N->elements_end()); 2023 2024 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2025 Record.clear(); 2026 } 2027 2028 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2029 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2030 unsigned Abbrev) { 2031 Record.push_back(N->isDistinct()); 2032 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2033 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2034 2035 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2036 Record.clear(); 2037 } 2038 2039 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2040 SmallVectorImpl<uint64_t> &Record, 2041 unsigned Abbrev) { 2042 Record.push_back(N->isDistinct()); 2043 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2044 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2045 Record.push_back(N->getLine()); 2046 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2047 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2048 Record.push_back(N->getAttributes()); 2049 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2050 2051 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2052 Record.clear(); 2053 } 2054 2055 void ModuleBitcodeWriter::writeDIImportedEntity( 2056 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2057 unsigned Abbrev) { 2058 Record.push_back(N->isDistinct()); 2059 Record.push_back(N->getTag()); 2060 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2061 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2062 Record.push_back(N->getLine()); 2063 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2064 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2065 2066 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2067 Record.clear(); 2068 } 2069 2070 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2071 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2072 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2075 return Stream.EmitAbbrev(std::move(Abbv)); 2076 } 2077 2078 void ModuleBitcodeWriter::writeNamedMetadata( 2079 SmallVectorImpl<uint64_t> &Record) { 2080 if (M.named_metadata_empty()) 2081 return; 2082 2083 unsigned Abbrev = createNamedMetadataAbbrev(); 2084 for (const NamedMDNode &NMD : M.named_metadata()) { 2085 // Write name. 2086 StringRef Str = NMD.getName(); 2087 Record.append(Str.bytes_begin(), Str.bytes_end()); 2088 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2089 Record.clear(); 2090 2091 // Write named metadata operands. 2092 for (const MDNode *N : NMD.operands()) 2093 Record.push_back(VE.getMetadataID(N)); 2094 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2095 Record.clear(); 2096 } 2097 } 2098 2099 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2100 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2101 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2105 return Stream.EmitAbbrev(std::move(Abbv)); 2106 } 2107 2108 /// Write out a record for MDString. 2109 /// 2110 /// All the metadata strings in a metadata block are emitted in a single 2111 /// record. The sizes and strings themselves are shoved into a blob. 2112 void ModuleBitcodeWriter::writeMetadataStrings( 2113 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2114 if (Strings.empty()) 2115 return; 2116 2117 // Start the record with the number of strings. 2118 Record.push_back(bitc::METADATA_STRINGS); 2119 Record.push_back(Strings.size()); 2120 2121 // Emit the sizes of the strings in the blob. 2122 SmallString<256> Blob; 2123 { 2124 BitstreamWriter W(Blob); 2125 for (const Metadata *MD : Strings) 2126 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2127 W.FlushToWord(); 2128 } 2129 2130 // Add the offset to the strings to the record. 2131 Record.push_back(Blob.size()); 2132 2133 // Add the strings to the blob. 2134 for (const Metadata *MD : Strings) 2135 Blob.append(cast<MDString>(MD)->getString()); 2136 2137 // Emit the final record. 2138 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2139 Record.clear(); 2140 } 2141 2142 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2143 enum MetadataAbbrev : unsigned { 2144 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2145 #include "llvm/IR/Metadata.def" 2146 LastPlusOne 2147 }; 2148 2149 void ModuleBitcodeWriter::writeMetadataRecords( 2150 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2151 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2152 if (MDs.empty()) 2153 return; 2154 2155 // Initialize MDNode abbreviations. 2156 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2157 #include "llvm/IR/Metadata.def" 2158 2159 for (const Metadata *MD : MDs) { 2160 if (IndexPos) 2161 IndexPos->push_back(Stream.GetCurrentBitNo()); 2162 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2163 assert(N->isResolved() && "Expected forward references to be resolved"); 2164 2165 switch (N->getMetadataID()) { 2166 default: 2167 llvm_unreachable("Invalid MDNode subclass"); 2168 #define HANDLE_MDNODE_LEAF(CLASS) \ 2169 case Metadata::CLASS##Kind: \ 2170 if (MDAbbrevs) \ 2171 write##CLASS(cast<CLASS>(N), Record, \ 2172 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2173 else \ 2174 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2175 continue; 2176 #include "llvm/IR/Metadata.def" 2177 } 2178 } 2179 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2180 } 2181 } 2182 2183 void ModuleBitcodeWriter::writeModuleMetadata() { 2184 if (!VE.hasMDs() && M.named_metadata_empty()) 2185 return; 2186 2187 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2188 SmallVector<uint64_t, 64> Record; 2189 2190 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2191 // block and load any metadata. 2192 std::vector<unsigned> MDAbbrevs; 2193 2194 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2195 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2196 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2197 createGenericDINodeAbbrev(); 2198 2199 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2200 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2203 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2204 2205 Abbv = std::make_shared<BitCodeAbbrev>(); 2206 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2209 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2210 2211 // Emit MDStrings together upfront. 2212 writeMetadataStrings(VE.getMDStrings(), Record); 2213 2214 // We only emit an index for the metadata record if we have more than a given 2215 // (naive) threshold of metadatas, otherwise it is not worth it. 2216 if (VE.getNonMDStrings().size() > IndexThreshold) { 2217 // Write a placeholder value in for the offset of the metadata index, 2218 // which is written after the records, so that it can include 2219 // the offset of each entry. The placeholder offset will be 2220 // updated after all records are emitted. 2221 uint64_t Vals[] = {0, 0}; 2222 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2223 } 2224 2225 // Compute and save the bit offset to the current position, which will be 2226 // patched when we emit the index later. We can simply subtract the 64-bit 2227 // fixed size from the current bit number to get the location to backpatch. 2228 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2229 2230 // This index will contain the bitpos for each individual record. 2231 std::vector<uint64_t> IndexPos; 2232 IndexPos.reserve(VE.getNonMDStrings().size()); 2233 2234 // Write all the records 2235 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2236 2237 if (VE.getNonMDStrings().size() > IndexThreshold) { 2238 // Now that we have emitted all the records we will emit the index. But 2239 // first 2240 // backpatch the forward reference so that the reader can skip the records 2241 // efficiently. 2242 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2243 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2244 2245 // Delta encode the index. 2246 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2247 for (auto &Elt : IndexPos) { 2248 auto EltDelta = Elt - PreviousValue; 2249 PreviousValue = Elt; 2250 Elt = EltDelta; 2251 } 2252 // Emit the index record. 2253 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2254 IndexPos.clear(); 2255 } 2256 2257 // Write the named metadata now. 2258 writeNamedMetadata(Record); 2259 2260 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2261 SmallVector<uint64_t, 4> Record; 2262 Record.push_back(VE.getValueID(&GO)); 2263 pushGlobalMetadataAttachment(Record, GO); 2264 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2265 }; 2266 for (const Function &F : M) 2267 if (F.isDeclaration() && F.hasMetadata()) 2268 AddDeclAttachedMetadata(F); 2269 // FIXME: Only store metadata for declarations here, and move data for global 2270 // variable definitions to a separate block (PR28134). 2271 for (const GlobalVariable &GV : M.globals()) 2272 if (GV.hasMetadata()) 2273 AddDeclAttachedMetadata(GV); 2274 2275 Stream.ExitBlock(); 2276 } 2277 2278 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2279 if (!VE.hasMDs()) 2280 return; 2281 2282 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2283 SmallVector<uint64_t, 64> Record; 2284 writeMetadataStrings(VE.getMDStrings(), Record); 2285 writeMetadataRecords(VE.getNonMDStrings(), Record); 2286 Stream.ExitBlock(); 2287 } 2288 2289 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2290 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2291 // [n x [id, mdnode]] 2292 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2293 GO.getAllMetadata(MDs); 2294 for (const auto &I : MDs) { 2295 Record.push_back(I.first); 2296 Record.push_back(VE.getMetadataID(I.second)); 2297 } 2298 } 2299 2300 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2301 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2302 2303 SmallVector<uint64_t, 64> Record; 2304 2305 if (F.hasMetadata()) { 2306 pushGlobalMetadataAttachment(Record, F); 2307 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2308 Record.clear(); 2309 } 2310 2311 // Write metadata attachments 2312 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2313 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2314 for (const BasicBlock &BB : F) 2315 for (const Instruction &I : BB) { 2316 MDs.clear(); 2317 I.getAllMetadataOtherThanDebugLoc(MDs); 2318 2319 // If no metadata, ignore instruction. 2320 if (MDs.empty()) continue; 2321 2322 Record.push_back(VE.getInstructionID(&I)); 2323 2324 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2325 Record.push_back(MDs[i].first); 2326 Record.push_back(VE.getMetadataID(MDs[i].second)); 2327 } 2328 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2329 Record.clear(); 2330 } 2331 2332 Stream.ExitBlock(); 2333 } 2334 2335 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2336 SmallVector<uint64_t, 64> Record; 2337 2338 // Write metadata kinds 2339 // METADATA_KIND - [n x [id, name]] 2340 SmallVector<StringRef, 8> Names; 2341 M.getMDKindNames(Names); 2342 2343 if (Names.empty()) return; 2344 2345 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2346 2347 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2348 Record.push_back(MDKindID); 2349 StringRef KName = Names[MDKindID]; 2350 Record.append(KName.begin(), KName.end()); 2351 2352 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2353 Record.clear(); 2354 } 2355 2356 Stream.ExitBlock(); 2357 } 2358 2359 void ModuleBitcodeWriter::writeOperandBundleTags() { 2360 // Write metadata kinds 2361 // 2362 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2363 // 2364 // OPERAND_BUNDLE_TAG - [strchr x N] 2365 2366 SmallVector<StringRef, 8> Tags; 2367 M.getOperandBundleTags(Tags); 2368 2369 if (Tags.empty()) 2370 return; 2371 2372 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2373 2374 SmallVector<uint64_t, 64> Record; 2375 2376 for (auto Tag : Tags) { 2377 Record.append(Tag.begin(), Tag.end()); 2378 2379 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2380 Record.clear(); 2381 } 2382 2383 Stream.ExitBlock(); 2384 } 2385 2386 void ModuleBitcodeWriter::writeSyncScopeNames() { 2387 SmallVector<StringRef, 8> SSNs; 2388 M.getContext().getSyncScopeNames(SSNs); 2389 if (SSNs.empty()) 2390 return; 2391 2392 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2393 2394 SmallVector<uint64_t, 64> Record; 2395 for (auto SSN : SSNs) { 2396 Record.append(SSN.begin(), SSN.end()); 2397 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2398 Record.clear(); 2399 } 2400 2401 Stream.ExitBlock(); 2402 } 2403 2404 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2405 bool isGlobal) { 2406 if (FirstVal == LastVal) return; 2407 2408 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2409 2410 unsigned AggregateAbbrev = 0; 2411 unsigned String8Abbrev = 0; 2412 unsigned CString7Abbrev = 0; 2413 unsigned CString6Abbrev = 0; 2414 // If this is a constant pool for the module, emit module-specific abbrevs. 2415 if (isGlobal) { 2416 // Abbrev for CST_CODE_AGGREGATE. 2417 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2418 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2421 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2422 2423 // Abbrev for CST_CODE_STRING. 2424 Abbv = std::make_shared<BitCodeAbbrev>(); 2425 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2428 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2429 // Abbrev for CST_CODE_CSTRING. 2430 Abbv = std::make_shared<BitCodeAbbrev>(); 2431 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2434 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2435 // Abbrev for CST_CODE_CSTRING. 2436 Abbv = std::make_shared<BitCodeAbbrev>(); 2437 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2440 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2441 } 2442 2443 SmallVector<uint64_t, 64> Record; 2444 2445 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2446 Type *LastTy = nullptr; 2447 for (unsigned i = FirstVal; i != LastVal; ++i) { 2448 const Value *V = Vals[i].first; 2449 // If we need to switch types, do so now. 2450 if (V->getType() != LastTy) { 2451 LastTy = V->getType(); 2452 Record.push_back(VE.getTypeID(LastTy)); 2453 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2454 CONSTANTS_SETTYPE_ABBREV); 2455 Record.clear(); 2456 } 2457 2458 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2459 Record.push_back( 2460 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2461 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2462 2463 // Add the asm string. 2464 const std::string &AsmStr = IA->getAsmString(); 2465 Record.push_back(AsmStr.size()); 2466 Record.append(AsmStr.begin(), AsmStr.end()); 2467 2468 // Add the constraint string. 2469 const std::string &ConstraintStr = IA->getConstraintString(); 2470 Record.push_back(ConstraintStr.size()); 2471 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2472 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2473 Record.clear(); 2474 continue; 2475 } 2476 const Constant *C = cast<Constant>(V); 2477 unsigned Code = -1U; 2478 unsigned AbbrevToUse = 0; 2479 if (C->isNullValue()) { 2480 Code = bitc::CST_CODE_NULL; 2481 } else if (isa<PoisonValue>(C)) { 2482 Code = bitc::CST_CODE_POISON; 2483 } else if (isa<UndefValue>(C)) { 2484 Code = bitc::CST_CODE_UNDEF; 2485 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2486 if (IV->getBitWidth() <= 64) { 2487 uint64_t V = IV->getSExtValue(); 2488 emitSignedInt64(Record, V); 2489 Code = bitc::CST_CODE_INTEGER; 2490 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2491 } else { // Wide integers, > 64 bits in size. 2492 emitWideAPInt(Record, IV->getValue()); 2493 Code = bitc::CST_CODE_WIDE_INTEGER; 2494 } 2495 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2496 Code = bitc::CST_CODE_FLOAT; 2497 Type *Ty = CFP->getType(); 2498 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2499 Ty->isDoubleTy()) { 2500 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2501 } else if (Ty->isX86_FP80Ty()) { 2502 // api needed to prevent premature destruction 2503 // bits are not in the same order as a normal i80 APInt, compensate. 2504 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2505 const uint64_t *p = api.getRawData(); 2506 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2507 Record.push_back(p[0] & 0xffffLL); 2508 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2509 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2510 const uint64_t *p = api.getRawData(); 2511 Record.push_back(p[0]); 2512 Record.push_back(p[1]); 2513 } else { 2514 assert(0 && "Unknown FP type!"); 2515 } 2516 } else if (isa<ConstantDataSequential>(C) && 2517 cast<ConstantDataSequential>(C)->isString()) { 2518 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2519 // Emit constant strings specially. 2520 unsigned NumElts = Str->getNumElements(); 2521 // If this is a null-terminated string, use the denser CSTRING encoding. 2522 if (Str->isCString()) { 2523 Code = bitc::CST_CODE_CSTRING; 2524 --NumElts; // Don't encode the null, which isn't allowed by char6. 2525 } else { 2526 Code = bitc::CST_CODE_STRING; 2527 AbbrevToUse = String8Abbrev; 2528 } 2529 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2530 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2531 for (unsigned i = 0; i != NumElts; ++i) { 2532 unsigned char V = Str->getElementAsInteger(i); 2533 Record.push_back(V); 2534 isCStr7 &= (V & 128) == 0; 2535 if (isCStrChar6) 2536 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2537 } 2538 2539 if (isCStrChar6) 2540 AbbrevToUse = CString6Abbrev; 2541 else if (isCStr7) 2542 AbbrevToUse = CString7Abbrev; 2543 } else if (const ConstantDataSequential *CDS = 2544 dyn_cast<ConstantDataSequential>(C)) { 2545 Code = bitc::CST_CODE_DATA; 2546 Type *EltTy = CDS->getElementType(); 2547 if (isa<IntegerType>(EltTy)) { 2548 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2549 Record.push_back(CDS->getElementAsInteger(i)); 2550 } else { 2551 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2552 Record.push_back( 2553 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2554 } 2555 } else if (isa<ConstantAggregate>(C)) { 2556 Code = bitc::CST_CODE_AGGREGATE; 2557 for (const Value *Op : C->operands()) 2558 Record.push_back(VE.getValueID(Op)); 2559 AbbrevToUse = AggregateAbbrev; 2560 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2561 switch (CE->getOpcode()) { 2562 default: 2563 if (Instruction::isCast(CE->getOpcode())) { 2564 Code = bitc::CST_CODE_CE_CAST; 2565 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2566 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2567 Record.push_back(VE.getValueID(C->getOperand(0))); 2568 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2569 } else { 2570 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2571 Code = bitc::CST_CODE_CE_BINOP; 2572 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2573 Record.push_back(VE.getValueID(C->getOperand(0))); 2574 Record.push_back(VE.getValueID(C->getOperand(1))); 2575 uint64_t Flags = getOptimizationFlags(CE); 2576 if (Flags != 0) 2577 Record.push_back(Flags); 2578 } 2579 break; 2580 case Instruction::FNeg: { 2581 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2582 Code = bitc::CST_CODE_CE_UNOP; 2583 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2584 Record.push_back(VE.getValueID(C->getOperand(0))); 2585 uint64_t Flags = getOptimizationFlags(CE); 2586 if (Flags != 0) 2587 Record.push_back(Flags); 2588 break; 2589 } 2590 case Instruction::GetElementPtr: { 2591 Code = bitc::CST_CODE_CE_GEP; 2592 const auto *GO = cast<GEPOperator>(C); 2593 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2594 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2595 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2596 Record.push_back((*Idx << 1) | GO->isInBounds()); 2597 } else if (GO->isInBounds()) 2598 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2599 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2600 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2601 Record.push_back(VE.getValueID(C->getOperand(i))); 2602 } 2603 break; 2604 } 2605 case Instruction::Select: 2606 Code = bitc::CST_CODE_CE_SELECT; 2607 Record.push_back(VE.getValueID(C->getOperand(0))); 2608 Record.push_back(VE.getValueID(C->getOperand(1))); 2609 Record.push_back(VE.getValueID(C->getOperand(2))); 2610 break; 2611 case Instruction::ExtractElement: 2612 Code = bitc::CST_CODE_CE_EXTRACTELT; 2613 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2614 Record.push_back(VE.getValueID(C->getOperand(0))); 2615 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2616 Record.push_back(VE.getValueID(C->getOperand(1))); 2617 break; 2618 case Instruction::InsertElement: 2619 Code = bitc::CST_CODE_CE_INSERTELT; 2620 Record.push_back(VE.getValueID(C->getOperand(0))); 2621 Record.push_back(VE.getValueID(C->getOperand(1))); 2622 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2623 Record.push_back(VE.getValueID(C->getOperand(2))); 2624 break; 2625 case Instruction::ShuffleVector: 2626 // If the return type and argument types are the same, this is a 2627 // standard shufflevector instruction. If the types are different, 2628 // then the shuffle is widening or truncating the input vectors, and 2629 // the argument type must also be encoded. 2630 if (C->getType() == C->getOperand(0)->getType()) { 2631 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2632 } else { 2633 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2634 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2635 } 2636 Record.push_back(VE.getValueID(C->getOperand(0))); 2637 Record.push_back(VE.getValueID(C->getOperand(1))); 2638 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2639 break; 2640 case Instruction::ICmp: 2641 case Instruction::FCmp: 2642 Code = bitc::CST_CODE_CE_CMP; 2643 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2644 Record.push_back(VE.getValueID(C->getOperand(0))); 2645 Record.push_back(VE.getValueID(C->getOperand(1))); 2646 Record.push_back(CE->getPredicate()); 2647 break; 2648 } 2649 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2650 Code = bitc::CST_CODE_BLOCKADDRESS; 2651 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2652 Record.push_back(VE.getValueID(BA->getFunction())); 2653 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2654 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2655 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2656 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2657 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2658 } else { 2659 #ifndef NDEBUG 2660 C->dump(); 2661 #endif 2662 llvm_unreachable("Unknown constant!"); 2663 } 2664 Stream.EmitRecord(Code, Record, AbbrevToUse); 2665 Record.clear(); 2666 } 2667 2668 Stream.ExitBlock(); 2669 } 2670 2671 void ModuleBitcodeWriter::writeModuleConstants() { 2672 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2673 2674 // Find the first constant to emit, which is the first non-globalvalue value. 2675 // We know globalvalues have been emitted by WriteModuleInfo. 2676 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2677 if (!isa<GlobalValue>(Vals[i].first)) { 2678 writeConstants(i, Vals.size(), true); 2679 return; 2680 } 2681 } 2682 } 2683 2684 /// pushValueAndType - The file has to encode both the value and type id for 2685 /// many values, because we need to know what type to create for forward 2686 /// references. However, most operands are not forward references, so this type 2687 /// field is not needed. 2688 /// 2689 /// This function adds V's value ID to Vals. If the value ID is higher than the 2690 /// instruction ID, then it is a forward reference, and it also includes the 2691 /// type ID. The value ID that is written is encoded relative to the InstID. 2692 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2693 SmallVectorImpl<unsigned> &Vals) { 2694 unsigned ValID = VE.getValueID(V); 2695 // Make encoding relative to the InstID. 2696 Vals.push_back(InstID - ValID); 2697 if (ValID >= InstID) { 2698 Vals.push_back(VE.getTypeID(V->getType())); 2699 return true; 2700 } 2701 return false; 2702 } 2703 2704 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2705 unsigned InstID) { 2706 SmallVector<unsigned, 64> Record; 2707 LLVMContext &C = CS.getContext(); 2708 2709 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2710 const auto &Bundle = CS.getOperandBundleAt(i); 2711 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2712 2713 for (auto &Input : Bundle.Inputs) 2714 pushValueAndType(Input, InstID, Record); 2715 2716 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2717 Record.clear(); 2718 } 2719 } 2720 2721 /// pushValue - Like pushValueAndType, but where the type of the value is 2722 /// omitted (perhaps it was already encoded in an earlier operand). 2723 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2724 SmallVectorImpl<unsigned> &Vals) { 2725 unsigned ValID = VE.getValueID(V); 2726 Vals.push_back(InstID - ValID); 2727 } 2728 2729 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2730 SmallVectorImpl<uint64_t> &Vals) { 2731 unsigned ValID = VE.getValueID(V); 2732 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2733 emitSignedInt64(Vals, diff); 2734 } 2735 2736 /// WriteInstruction - Emit an instruction to the specified stream. 2737 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2738 unsigned InstID, 2739 SmallVectorImpl<unsigned> &Vals) { 2740 unsigned Code = 0; 2741 unsigned AbbrevToUse = 0; 2742 VE.setInstructionID(&I); 2743 switch (I.getOpcode()) { 2744 default: 2745 if (Instruction::isCast(I.getOpcode())) { 2746 Code = bitc::FUNC_CODE_INST_CAST; 2747 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2748 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2749 Vals.push_back(VE.getTypeID(I.getType())); 2750 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2751 } else { 2752 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2753 Code = bitc::FUNC_CODE_INST_BINOP; 2754 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2755 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2756 pushValue(I.getOperand(1), InstID, Vals); 2757 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2758 uint64_t Flags = getOptimizationFlags(&I); 2759 if (Flags != 0) { 2760 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2761 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2762 Vals.push_back(Flags); 2763 } 2764 } 2765 break; 2766 case Instruction::FNeg: { 2767 Code = bitc::FUNC_CODE_INST_UNOP; 2768 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2769 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2770 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2771 uint64_t Flags = getOptimizationFlags(&I); 2772 if (Flags != 0) { 2773 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2774 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2775 Vals.push_back(Flags); 2776 } 2777 break; 2778 } 2779 case Instruction::GetElementPtr: { 2780 Code = bitc::FUNC_CODE_INST_GEP; 2781 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2782 auto &GEPInst = cast<GetElementPtrInst>(I); 2783 Vals.push_back(GEPInst.isInBounds()); 2784 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2785 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2786 pushValueAndType(I.getOperand(i), InstID, Vals); 2787 break; 2788 } 2789 case Instruction::ExtractValue: { 2790 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2791 pushValueAndType(I.getOperand(0), InstID, Vals); 2792 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2793 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2794 break; 2795 } 2796 case Instruction::InsertValue: { 2797 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2798 pushValueAndType(I.getOperand(0), InstID, Vals); 2799 pushValueAndType(I.getOperand(1), InstID, Vals); 2800 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2801 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2802 break; 2803 } 2804 case Instruction::Select: { 2805 Code = bitc::FUNC_CODE_INST_VSELECT; 2806 pushValueAndType(I.getOperand(1), InstID, Vals); 2807 pushValue(I.getOperand(2), InstID, Vals); 2808 pushValueAndType(I.getOperand(0), InstID, Vals); 2809 uint64_t Flags = getOptimizationFlags(&I); 2810 if (Flags != 0) 2811 Vals.push_back(Flags); 2812 break; 2813 } 2814 case Instruction::ExtractElement: 2815 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2816 pushValueAndType(I.getOperand(0), InstID, Vals); 2817 pushValueAndType(I.getOperand(1), InstID, Vals); 2818 break; 2819 case Instruction::InsertElement: 2820 Code = bitc::FUNC_CODE_INST_INSERTELT; 2821 pushValueAndType(I.getOperand(0), InstID, Vals); 2822 pushValue(I.getOperand(1), InstID, Vals); 2823 pushValueAndType(I.getOperand(2), InstID, Vals); 2824 break; 2825 case Instruction::ShuffleVector: 2826 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2827 pushValueAndType(I.getOperand(0), InstID, Vals); 2828 pushValue(I.getOperand(1), InstID, Vals); 2829 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2830 Vals); 2831 break; 2832 case Instruction::ICmp: 2833 case Instruction::FCmp: { 2834 // compare returning Int1Ty or vector of Int1Ty 2835 Code = bitc::FUNC_CODE_INST_CMP2; 2836 pushValueAndType(I.getOperand(0), InstID, Vals); 2837 pushValue(I.getOperand(1), InstID, Vals); 2838 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2839 uint64_t Flags = getOptimizationFlags(&I); 2840 if (Flags != 0) 2841 Vals.push_back(Flags); 2842 break; 2843 } 2844 2845 case Instruction::Ret: 2846 { 2847 Code = bitc::FUNC_CODE_INST_RET; 2848 unsigned NumOperands = I.getNumOperands(); 2849 if (NumOperands == 0) 2850 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2851 else if (NumOperands == 1) { 2852 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2853 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2854 } else { 2855 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2856 pushValueAndType(I.getOperand(i), InstID, Vals); 2857 } 2858 } 2859 break; 2860 case Instruction::Br: 2861 { 2862 Code = bitc::FUNC_CODE_INST_BR; 2863 const BranchInst &II = cast<BranchInst>(I); 2864 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2865 if (II.isConditional()) { 2866 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2867 pushValue(II.getCondition(), InstID, Vals); 2868 } 2869 } 2870 break; 2871 case Instruction::Switch: 2872 { 2873 Code = bitc::FUNC_CODE_INST_SWITCH; 2874 const SwitchInst &SI = cast<SwitchInst>(I); 2875 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2876 pushValue(SI.getCondition(), InstID, Vals); 2877 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2878 for (auto Case : SI.cases()) { 2879 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2880 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2881 } 2882 } 2883 break; 2884 case Instruction::IndirectBr: 2885 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2886 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2887 // Encode the address operand as relative, but not the basic blocks. 2888 pushValue(I.getOperand(0), InstID, Vals); 2889 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2890 Vals.push_back(VE.getValueID(I.getOperand(i))); 2891 break; 2892 2893 case Instruction::Invoke: { 2894 const InvokeInst *II = cast<InvokeInst>(&I); 2895 const Value *Callee = II->getCalledOperand(); 2896 FunctionType *FTy = II->getFunctionType(); 2897 2898 if (II->hasOperandBundles()) 2899 writeOperandBundles(*II, InstID); 2900 2901 Code = bitc::FUNC_CODE_INST_INVOKE; 2902 2903 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2904 Vals.push_back(II->getCallingConv() | 1 << 13); 2905 Vals.push_back(VE.getValueID(II->getNormalDest())); 2906 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2907 Vals.push_back(VE.getTypeID(FTy)); 2908 pushValueAndType(Callee, InstID, Vals); 2909 2910 // Emit value #'s for the fixed parameters. 2911 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2912 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2913 2914 // Emit type/value pairs for varargs params. 2915 if (FTy->isVarArg()) { 2916 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2917 i != e; ++i) 2918 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2919 } 2920 break; 2921 } 2922 case Instruction::Resume: 2923 Code = bitc::FUNC_CODE_INST_RESUME; 2924 pushValueAndType(I.getOperand(0), InstID, Vals); 2925 break; 2926 case Instruction::CleanupRet: { 2927 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2928 const auto &CRI = cast<CleanupReturnInst>(I); 2929 pushValue(CRI.getCleanupPad(), InstID, Vals); 2930 if (CRI.hasUnwindDest()) 2931 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2932 break; 2933 } 2934 case Instruction::CatchRet: { 2935 Code = bitc::FUNC_CODE_INST_CATCHRET; 2936 const auto &CRI = cast<CatchReturnInst>(I); 2937 pushValue(CRI.getCatchPad(), InstID, Vals); 2938 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2939 break; 2940 } 2941 case Instruction::CleanupPad: 2942 case Instruction::CatchPad: { 2943 const auto &FuncletPad = cast<FuncletPadInst>(I); 2944 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2945 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2946 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2947 2948 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2949 Vals.push_back(NumArgOperands); 2950 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2951 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2952 break; 2953 } 2954 case Instruction::CatchSwitch: { 2955 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2956 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2957 2958 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2959 2960 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2961 Vals.push_back(NumHandlers); 2962 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2963 Vals.push_back(VE.getValueID(CatchPadBB)); 2964 2965 if (CatchSwitch.hasUnwindDest()) 2966 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2967 break; 2968 } 2969 case Instruction::CallBr: { 2970 const CallBrInst *CBI = cast<CallBrInst>(&I); 2971 const Value *Callee = CBI->getCalledOperand(); 2972 FunctionType *FTy = CBI->getFunctionType(); 2973 2974 if (CBI->hasOperandBundles()) 2975 writeOperandBundles(*CBI, InstID); 2976 2977 Code = bitc::FUNC_CODE_INST_CALLBR; 2978 2979 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2980 2981 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2982 1 << bitc::CALL_EXPLICIT_TYPE); 2983 2984 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2985 Vals.push_back(CBI->getNumIndirectDests()); 2986 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2987 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2988 2989 Vals.push_back(VE.getTypeID(FTy)); 2990 pushValueAndType(Callee, InstID, Vals); 2991 2992 // Emit value #'s for the fixed parameters. 2993 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2994 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2995 2996 // Emit type/value pairs for varargs params. 2997 if (FTy->isVarArg()) { 2998 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2999 i != e; ++i) 3000 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3001 } 3002 break; 3003 } 3004 case Instruction::Unreachable: 3005 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3006 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3007 break; 3008 3009 case Instruction::PHI: { 3010 const PHINode &PN = cast<PHINode>(I); 3011 Code = bitc::FUNC_CODE_INST_PHI; 3012 // With the newer instruction encoding, forward references could give 3013 // negative valued IDs. This is most common for PHIs, so we use 3014 // signed VBRs. 3015 SmallVector<uint64_t, 128> Vals64; 3016 Vals64.push_back(VE.getTypeID(PN.getType())); 3017 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3018 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3019 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3020 } 3021 3022 uint64_t Flags = getOptimizationFlags(&I); 3023 if (Flags != 0) 3024 Vals64.push_back(Flags); 3025 3026 // Emit a Vals64 vector and exit. 3027 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3028 Vals64.clear(); 3029 return; 3030 } 3031 3032 case Instruction::LandingPad: { 3033 const LandingPadInst &LP = cast<LandingPadInst>(I); 3034 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3035 Vals.push_back(VE.getTypeID(LP.getType())); 3036 Vals.push_back(LP.isCleanup()); 3037 Vals.push_back(LP.getNumClauses()); 3038 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3039 if (LP.isCatch(I)) 3040 Vals.push_back(LandingPadInst::Catch); 3041 else 3042 Vals.push_back(LandingPadInst::Filter); 3043 pushValueAndType(LP.getClause(I), InstID, Vals); 3044 } 3045 break; 3046 } 3047 3048 case Instruction::Alloca: { 3049 Code = bitc::FUNC_CODE_INST_ALLOCA; 3050 const AllocaInst &AI = cast<AllocaInst>(I); 3051 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3052 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3053 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3054 using APV = AllocaPackedValues; 3055 unsigned Record = 0; 3056 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 3057 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3058 Bitfield::set<APV::ExplicitType>(Record, true); 3059 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3060 Vals.push_back(Record); 3061 break; 3062 } 3063 3064 case Instruction::Load: 3065 if (cast<LoadInst>(I).isAtomic()) { 3066 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3067 pushValueAndType(I.getOperand(0), InstID, Vals); 3068 } else { 3069 Code = bitc::FUNC_CODE_INST_LOAD; 3070 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3071 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3072 } 3073 Vals.push_back(VE.getTypeID(I.getType())); 3074 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3075 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3076 if (cast<LoadInst>(I).isAtomic()) { 3077 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3078 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3079 } 3080 break; 3081 case Instruction::Store: 3082 if (cast<StoreInst>(I).isAtomic()) 3083 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3084 else 3085 Code = bitc::FUNC_CODE_INST_STORE; 3086 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3087 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3088 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3089 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3090 if (cast<StoreInst>(I).isAtomic()) { 3091 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3092 Vals.push_back( 3093 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3094 } 3095 break; 3096 case Instruction::AtomicCmpXchg: 3097 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3098 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3099 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3100 pushValue(I.getOperand(2), InstID, Vals); // newval. 3101 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3102 Vals.push_back( 3103 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3104 Vals.push_back( 3105 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3106 Vals.push_back( 3107 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3108 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3109 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3110 break; 3111 case Instruction::AtomicRMW: 3112 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3113 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3114 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3115 Vals.push_back( 3116 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3117 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3118 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3119 Vals.push_back( 3120 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3121 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3122 break; 3123 case Instruction::Fence: 3124 Code = bitc::FUNC_CODE_INST_FENCE; 3125 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3126 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3127 break; 3128 case Instruction::Call: { 3129 const CallInst &CI = cast<CallInst>(I); 3130 FunctionType *FTy = CI.getFunctionType(); 3131 3132 if (CI.hasOperandBundles()) 3133 writeOperandBundles(CI, InstID); 3134 3135 Code = bitc::FUNC_CODE_INST_CALL; 3136 3137 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3138 3139 unsigned Flags = getOptimizationFlags(&I); 3140 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3141 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3142 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3143 1 << bitc::CALL_EXPLICIT_TYPE | 3144 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3145 unsigned(Flags != 0) << bitc::CALL_FMF); 3146 if (Flags != 0) 3147 Vals.push_back(Flags); 3148 3149 Vals.push_back(VE.getTypeID(FTy)); 3150 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3151 3152 // Emit value #'s for the fixed parameters. 3153 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3154 // Check for labels (can happen with asm labels). 3155 if (FTy->getParamType(i)->isLabelTy()) 3156 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3157 else 3158 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3159 } 3160 3161 // Emit type/value pairs for varargs params. 3162 if (FTy->isVarArg()) { 3163 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3164 i != e; ++i) 3165 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3166 } 3167 break; 3168 } 3169 case Instruction::VAArg: 3170 Code = bitc::FUNC_CODE_INST_VAARG; 3171 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3172 pushValue(I.getOperand(0), InstID, Vals); // valist. 3173 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3174 break; 3175 case Instruction::Freeze: 3176 Code = bitc::FUNC_CODE_INST_FREEZE; 3177 pushValueAndType(I.getOperand(0), InstID, Vals); 3178 break; 3179 } 3180 3181 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3182 Vals.clear(); 3183 } 3184 3185 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3186 /// to allow clients to efficiently find the function body. 3187 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3188 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3189 // Get the offset of the VST we are writing, and backpatch it into 3190 // the VST forward declaration record. 3191 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3192 // The BitcodeStartBit was the stream offset of the identification block. 3193 VSTOffset -= bitcodeStartBit(); 3194 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3195 // Note that we add 1 here because the offset is relative to one word 3196 // before the start of the identification block, which was historically 3197 // always the start of the regular bitcode header. 3198 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3199 3200 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3201 3202 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3203 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3206 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3207 3208 for (const Function &F : M) { 3209 uint64_t Record[2]; 3210 3211 if (F.isDeclaration()) 3212 continue; 3213 3214 Record[0] = VE.getValueID(&F); 3215 3216 // Save the word offset of the function (from the start of the 3217 // actual bitcode written to the stream). 3218 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3219 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3220 // Note that we add 1 here because the offset is relative to one word 3221 // before the start of the identification block, which was historically 3222 // always the start of the regular bitcode header. 3223 Record[1] = BitcodeIndex / 32 + 1; 3224 3225 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3226 } 3227 3228 Stream.ExitBlock(); 3229 } 3230 3231 /// Emit names for arguments, instructions and basic blocks in a function. 3232 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3233 const ValueSymbolTable &VST) { 3234 if (VST.empty()) 3235 return; 3236 3237 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3238 3239 // FIXME: Set up the abbrev, we know how many values there are! 3240 // FIXME: We know if the type names can use 7-bit ascii. 3241 SmallVector<uint64_t, 64> NameVals; 3242 3243 for (const ValueName &Name : VST) { 3244 // Figure out the encoding to use for the name. 3245 StringEncoding Bits = getStringEncoding(Name.getKey()); 3246 3247 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3248 NameVals.push_back(VE.getValueID(Name.getValue())); 3249 3250 // VST_CODE_ENTRY: [valueid, namechar x N] 3251 // VST_CODE_BBENTRY: [bbid, namechar x N] 3252 unsigned Code; 3253 if (isa<BasicBlock>(Name.getValue())) { 3254 Code = bitc::VST_CODE_BBENTRY; 3255 if (Bits == SE_Char6) 3256 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3257 } else { 3258 Code = bitc::VST_CODE_ENTRY; 3259 if (Bits == SE_Char6) 3260 AbbrevToUse = VST_ENTRY_6_ABBREV; 3261 else if (Bits == SE_Fixed7) 3262 AbbrevToUse = VST_ENTRY_7_ABBREV; 3263 } 3264 3265 for (const auto P : Name.getKey()) 3266 NameVals.push_back((unsigned char)P); 3267 3268 // Emit the finished record. 3269 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3270 NameVals.clear(); 3271 } 3272 3273 Stream.ExitBlock(); 3274 } 3275 3276 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3277 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3278 unsigned Code; 3279 if (isa<BasicBlock>(Order.V)) 3280 Code = bitc::USELIST_CODE_BB; 3281 else 3282 Code = bitc::USELIST_CODE_DEFAULT; 3283 3284 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3285 Record.push_back(VE.getValueID(Order.V)); 3286 Stream.EmitRecord(Code, Record); 3287 } 3288 3289 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3290 assert(VE.shouldPreserveUseListOrder() && 3291 "Expected to be preserving use-list order"); 3292 3293 auto hasMore = [&]() { 3294 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3295 }; 3296 if (!hasMore()) 3297 // Nothing to do. 3298 return; 3299 3300 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3301 while (hasMore()) { 3302 writeUseList(std::move(VE.UseListOrders.back())); 3303 VE.UseListOrders.pop_back(); 3304 } 3305 Stream.ExitBlock(); 3306 } 3307 3308 /// Emit a function body to the module stream. 3309 void ModuleBitcodeWriter::writeFunction( 3310 const Function &F, 3311 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3312 // Save the bitcode index of the start of this function block for recording 3313 // in the VST. 3314 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3315 3316 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3317 VE.incorporateFunction(F); 3318 3319 SmallVector<unsigned, 64> Vals; 3320 3321 // Emit the number of basic blocks, so the reader can create them ahead of 3322 // time. 3323 Vals.push_back(VE.getBasicBlocks().size()); 3324 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3325 Vals.clear(); 3326 3327 // If there are function-local constants, emit them now. 3328 unsigned CstStart, CstEnd; 3329 VE.getFunctionConstantRange(CstStart, CstEnd); 3330 writeConstants(CstStart, CstEnd, false); 3331 3332 // If there is function-local metadata, emit it now. 3333 writeFunctionMetadata(F); 3334 3335 // Keep a running idea of what the instruction ID is. 3336 unsigned InstID = CstEnd; 3337 3338 bool NeedsMetadataAttachment = F.hasMetadata(); 3339 3340 DILocation *LastDL = nullptr; 3341 // Finally, emit all the instructions, in order. 3342 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3343 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3344 I != E; ++I) { 3345 writeInstruction(*I, InstID, Vals); 3346 3347 if (!I->getType()->isVoidTy()) 3348 ++InstID; 3349 3350 // If the instruction has metadata, write a metadata attachment later. 3351 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3352 3353 // If the instruction has a debug location, emit it. 3354 DILocation *DL = I->getDebugLoc(); 3355 if (!DL) 3356 continue; 3357 3358 if (DL == LastDL) { 3359 // Just repeat the same debug loc as last time. 3360 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3361 continue; 3362 } 3363 3364 Vals.push_back(DL->getLine()); 3365 Vals.push_back(DL->getColumn()); 3366 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3367 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3368 Vals.push_back(DL->isImplicitCode()); 3369 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3370 Vals.clear(); 3371 3372 LastDL = DL; 3373 } 3374 3375 // Emit names for all the instructions etc. 3376 if (auto *Symtab = F.getValueSymbolTable()) 3377 writeFunctionLevelValueSymbolTable(*Symtab); 3378 3379 if (NeedsMetadataAttachment) 3380 writeFunctionMetadataAttachment(F); 3381 if (VE.shouldPreserveUseListOrder()) 3382 writeUseListBlock(&F); 3383 VE.purgeFunction(); 3384 Stream.ExitBlock(); 3385 } 3386 3387 // Emit blockinfo, which defines the standard abbreviations etc. 3388 void ModuleBitcodeWriter::writeBlockInfo() { 3389 // We only want to emit block info records for blocks that have multiple 3390 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3391 // Other blocks can define their abbrevs inline. 3392 Stream.EnterBlockInfoBlock(); 3393 3394 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3395 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3400 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3401 VST_ENTRY_8_ABBREV) 3402 llvm_unreachable("Unexpected abbrev ordering!"); 3403 } 3404 3405 { // 7-bit fixed width VST_CODE_ENTRY strings. 3406 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3407 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3411 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3412 VST_ENTRY_7_ABBREV) 3413 llvm_unreachable("Unexpected abbrev ordering!"); 3414 } 3415 { // 6-bit char6 VST_CODE_ENTRY strings. 3416 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3417 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3421 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3422 VST_ENTRY_6_ABBREV) 3423 llvm_unreachable("Unexpected abbrev ordering!"); 3424 } 3425 { // 6-bit char6 VST_CODE_BBENTRY strings. 3426 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3427 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3431 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3432 VST_BBENTRY_6_ABBREV) 3433 llvm_unreachable("Unexpected abbrev ordering!"); 3434 } 3435 3436 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3437 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3438 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3440 VE.computeBitsRequiredForTypeIndicies())); 3441 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3442 CONSTANTS_SETTYPE_ABBREV) 3443 llvm_unreachable("Unexpected abbrev ordering!"); 3444 } 3445 3446 { // INTEGER abbrev for CONSTANTS_BLOCK. 3447 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3448 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3450 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3451 CONSTANTS_INTEGER_ABBREV) 3452 llvm_unreachable("Unexpected abbrev ordering!"); 3453 } 3454 3455 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3456 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3457 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3460 VE.computeBitsRequiredForTypeIndicies())); 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3462 3463 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3464 CONSTANTS_CE_CAST_Abbrev) 3465 llvm_unreachable("Unexpected abbrev ordering!"); 3466 } 3467 { // NULL abbrev for CONSTANTS_BLOCK. 3468 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3469 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3470 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3471 CONSTANTS_NULL_Abbrev) 3472 llvm_unreachable("Unexpected abbrev ordering!"); 3473 } 3474 3475 // FIXME: This should only use space for first class types! 3476 3477 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3478 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3479 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3482 VE.computeBitsRequiredForTypeIndicies())); 3483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3485 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3486 FUNCTION_INST_LOAD_ABBREV) 3487 llvm_unreachable("Unexpected abbrev ordering!"); 3488 } 3489 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3490 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3491 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3494 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3495 FUNCTION_INST_UNOP_ABBREV) 3496 llvm_unreachable("Unexpected abbrev ordering!"); 3497 } 3498 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3499 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3500 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3504 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3505 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3506 llvm_unreachable("Unexpected abbrev ordering!"); 3507 } 3508 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3509 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3510 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3514 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3515 FUNCTION_INST_BINOP_ABBREV) 3516 llvm_unreachable("Unexpected abbrev ordering!"); 3517 } 3518 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3519 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3520 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3525 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3526 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3527 llvm_unreachable("Unexpected abbrev ordering!"); 3528 } 3529 { // INST_CAST abbrev for FUNCTION_BLOCK. 3530 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3531 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3534 VE.computeBitsRequiredForTypeIndicies())); 3535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3536 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3537 FUNCTION_INST_CAST_ABBREV) 3538 llvm_unreachable("Unexpected abbrev ordering!"); 3539 } 3540 3541 { // INST_RET abbrev for FUNCTION_BLOCK. 3542 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3543 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3544 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3545 FUNCTION_INST_RET_VOID_ABBREV) 3546 llvm_unreachable("Unexpected abbrev ordering!"); 3547 } 3548 { // INST_RET abbrev for FUNCTION_BLOCK. 3549 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3550 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3552 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3553 FUNCTION_INST_RET_VAL_ABBREV) 3554 llvm_unreachable("Unexpected abbrev ordering!"); 3555 } 3556 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3557 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3558 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3559 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3560 FUNCTION_INST_UNREACHABLE_ABBREV) 3561 llvm_unreachable("Unexpected abbrev ordering!"); 3562 } 3563 { 3564 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3565 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3568 Log2_32_Ceil(VE.getTypes().size() + 1))); 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3571 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3572 FUNCTION_INST_GEP_ABBREV) 3573 llvm_unreachable("Unexpected abbrev ordering!"); 3574 } 3575 3576 Stream.ExitBlock(); 3577 } 3578 3579 /// Write the module path strings, currently only used when generating 3580 /// a combined index file. 3581 void IndexBitcodeWriter::writeModStrings() { 3582 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3583 3584 // TODO: See which abbrev sizes we actually need to emit 3585 3586 // 8-bit fixed-width MST_ENTRY strings. 3587 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3588 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3592 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3593 3594 // 7-bit fixed width MST_ENTRY strings. 3595 Abbv = std::make_shared<BitCodeAbbrev>(); 3596 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3600 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3601 3602 // 6-bit char6 MST_ENTRY strings. 3603 Abbv = std::make_shared<BitCodeAbbrev>(); 3604 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3608 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3609 3610 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3611 Abbv = std::make_shared<BitCodeAbbrev>(); 3612 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3618 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3619 3620 SmallVector<unsigned, 64> Vals; 3621 forEachModule( 3622 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3623 StringRef Key = MPSE.getKey(); 3624 const auto &Value = MPSE.getValue(); 3625 StringEncoding Bits = getStringEncoding(Key); 3626 unsigned AbbrevToUse = Abbrev8Bit; 3627 if (Bits == SE_Char6) 3628 AbbrevToUse = Abbrev6Bit; 3629 else if (Bits == SE_Fixed7) 3630 AbbrevToUse = Abbrev7Bit; 3631 3632 Vals.push_back(Value.first); 3633 Vals.append(Key.begin(), Key.end()); 3634 3635 // Emit the finished record. 3636 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3637 3638 // Emit an optional hash for the module now 3639 const auto &Hash = Value.second; 3640 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3641 Vals.assign(Hash.begin(), Hash.end()); 3642 // Emit the hash record. 3643 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3644 } 3645 3646 Vals.clear(); 3647 }); 3648 Stream.ExitBlock(); 3649 } 3650 3651 /// Write the function type metadata related records that need to appear before 3652 /// a function summary entry (whether per-module or combined). 3653 template <typename Fn> 3654 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3655 FunctionSummary *FS, 3656 Fn GetValueID) { 3657 if (!FS->type_tests().empty()) 3658 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3659 3660 SmallVector<uint64_t, 64> Record; 3661 3662 auto WriteVFuncIdVec = [&](uint64_t Ty, 3663 ArrayRef<FunctionSummary::VFuncId> VFs) { 3664 if (VFs.empty()) 3665 return; 3666 Record.clear(); 3667 for (auto &VF : VFs) { 3668 Record.push_back(VF.GUID); 3669 Record.push_back(VF.Offset); 3670 } 3671 Stream.EmitRecord(Ty, Record); 3672 }; 3673 3674 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3675 FS->type_test_assume_vcalls()); 3676 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3677 FS->type_checked_load_vcalls()); 3678 3679 auto WriteConstVCallVec = [&](uint64_t Ty, 3680 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3681 for (auto &VC : VCs) { 3682 Record.clear(); 3683 Record.push_back(VC.VFunc.GUID); 3684 Record.push_back(VC.VFunc.Offset); 3685 llvm::append_range(Record, VC.Args); 3686 Stream.EmitRecord(Ty, Record); 3687 } 3688 }; 3689 3690 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3691 FS->type_test_assume_const_vcalls()); 3692 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3693 FS->type_checked_load_const_vcalls()); 3694 3695 auto WriteRange = [&](ConstantRange Range) { 3696 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3697 assert(Range.getLower().getNumWords() == 1); 3698 assert(Range.getUpper().getNumWords() == 1); 3699 emitSignedInt64(Record, *Range.getLower().getRawData()); 3700 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3701 }; 3702 3703 if (!FS->paramAccesses().empty()) { 3704 Record.clear(); 3705 for (auto &Arg : FS->paramAccesses()) { 3706 size_t UndoSize = Record.size(); 3707 Record.push_back(Arg.ParamNo); 3708 WriteRange(Arg.Use); 3709 Record.push_back(Arg.Calls.size()); 3710 for (auto &Call : Arg.Calls) { 3711 Record.push_back(Call.ParamNo); 3712 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3713 if (!ValueID) { 3714 // If ValueID is unknown we can't drop just this call, we must drop 3715 // entire parameter. 3716 Record.resize(UndoSize); 3717 break; 3718 } 3719 Record.push_back(*ValueID); 3720 WriteRange(Call.Offsets); 3721 } 3722 } 3723 if (!Record.empty()) 3724 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3725 } 3726 } 3727 3728 /// Collect type IDs from type tests used by function. 3729 static void 3730 getReferencedTypeIds(FunctionSummary *FS, 3731 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3732 if (!FS->type_tests().empty()) 3733 for (auto &TT : FS->type_tests()) 3734 ReferencedTypeIds.insert(TT); 3735 3736 auto GetReferencedTypesFromVFuncIdVec = 3737 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3738 for (auto &VF : VFs) 3739 ReferencedTypeIds.insert(VF.GUID); 3740 }; 3741 3742 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3743 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3744 3745 auto GetReferencedTypesFromConstVCallVec = 3746 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3747 for (auto &VC : VCs) 3748 ReferencedTypeIds.insert(VC.VFunc.GUID); 3749 }; 3750 3751 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3752 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3753 } 3754 3755 static void writeWholeProgramDevirtResolutionByArg( 3756 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3757 const WholeProgramDevirtResolution::ByArg &ByArg) { 3758 NameVals.push_back(args.size()); 3759 llvm::append_range(NameVals, args); 3760 3761 NameVals.push_back(ByArg.TheKind); 3762 NameVals.push_back(ByArg.Info); 3763 NameVals.push_back(ByArg.Byte); 3764 NameVals.push_back(ByArg.Bit); 3765 } 3766 3767 static void writeWholeProgramDevirtResolution( 3768 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3769 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3770 NameVals.push_back(Id); 3771 3772 NameVals.push_back(Wpd.TheKind); 3773 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3774 NameVals.push_back(Wpd.SingleImplName.size()); 3775 3776 NameVals.push_back(Wpd.ResByArg.size()); 3777 for (auto &A : Wpd.ResByArg) 3778 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3779 } 3780 3781 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3782 StringTableBuilder &StrtabBuilder, 3783 const std::string &Id, 3784 const TypeIdSummary &Summary) { 3785 NameVals.push_back(StrtabBuilder.add(Id)); 3786 NameVals.push_back(Id.size()); 3787 3788 NameVals.push_back(Summary.TTRes.TheKind); 3789 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3790 NameVals.push_back(Summary.TTRes.AlignLog2); 3791 NameVals.push_back(Summary.TTRes.SizeM1); 3792 NameVals.push_back(Summary.TTRes.BitMask); 3793 NameVals.push_back(Summary.TTRes.InlineBits); 3794 3795 for (auto &W : Summary.WPDRes) 3796 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3797 W.second); 3798 } 3799 3800 static void writeTypeIdCompatibleVtableSummaryRecord( 3801 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3802 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3803 ValueEnumerator &VE) { 3804 NameVals.push_back(StrtabBuilder.add(Id)); 3805 NameVals.push_back(Id.size()); 3806 3807 for (auto &P : Summary) { 3808 NameVals.push_back(P.AddressPointOffset); 3809 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3810 } 3811 } 3812 3813 // Helper to emit a single function summary record. 3814 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3815 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3816 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3817 const Function &F) { 3818 NameVals.push_back(ValueID); 3819 3820 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3821 3822 writeFunctionTypeMetadataRecords( 3823 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3824 return {VE.getValueID(VI.getValue())}; 3825 }); 3826 3827 auto SpecialRefCnts = FS->specialRefCounts(); 3828 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3829 NameVals.push_back(FS->instCount()); 3830 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3831 NameVals.push_back(FS->refs().size()); 3832 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3833 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3834 3835 for (auto &RI : FS->refs()) 3836 NameVals.push_back(VE.getValueID(RI.getValue())); 3837 3838 bool HasProfileData = 3839 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3840 for (auto &ECI : FS->calls()) { 3841 NameVals.push_back(getValueId(ECI.first)); 3842 if (HasProfileData) 3843 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3844 else if (WriteRelBFToSummary) 3845 NameVals.push_back(ECI.second.RelBlockFreq); 3846 } 3847 3848 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3849 unsigned Code = 3850 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3851 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3852 : bitc::FS_PERMODULE)); 3853 3854 // Emit the finished record. 3855 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3856 NameVals.clear(); 3857 } 3858 3859 // Collect the global value references in the given variable's initializer, 3860 // and emit them in a summary record. 3861 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3862 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3863 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3864 auto VI = Index->getValueInfo(V.getGUID()); 3865 if (!VI || VI.getSummaryList().empty()) { 3866 // Only declarations should not have a summary (a declaration might however 3867 // have a summary if the def was in module level asm). 3868 assert(V.isDeclaration()); 3869 return; 3870 } 3871 auto *Summary = VI.getSummaryList()[0].get(); 3872 NameVals.push_back(VE.getValueID(&V)); 3873 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3874 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3875 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3876 3877 auto VTableFuncs = VS->vTableFuncs(); 3878 if (!VTableFuncs.empty()) 3879 NameVals.push_back(VS->refs().size()); 3880 3881 unsigned SizeBeforeRefs = NameVals.size(); 3882 for (auto &RI : VS->refs()) 3883 NameVals.push_back(VE.getValueID(RI.getValue())); 3884 // Sort the refs for determinism output, the vector returned by FS->refs() has 3885 // been initialized from a DenseSet. 3886 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3887 3888 if (VTableFuncs.empty()) 3889 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3890 FSModRefsAbbrev); 3891 else { 3892 // VTableFuncs pairs should already be sorted by offset. 3893 for (auto &P : VTableFuncs) { 3894 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3895 NameVals.push_back(P.VTableOffset); 3896 } 3897 3898 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3899 FSModVTableRefsAbbrev); 3900 } 3901 NameVals.clear(); 3902 } 3903 3904 /// Emit the per-module summary section alongside the rest of 3905 /// the module's bitcode. 3906 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3907 // By default we compile with ThinLTO if the module has a summary, but the 3908 // client can request full LTO with a module flag. 3909 bool IsThinLTO = true; 3910 if (auto *MD = 3911 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3912 IsThinLTO = MD->getZExtValue(); 3913 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3914 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3915 4); 3916 3917 Stream.EmitRecord( 3918 bitc::FS_VERSION, 3919 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3920 3921 // Write the index flags. 3922 uint64_t Flags = 0; 3923 // Bits 1-3 are set only in the combined index, skip them. 3924 if (Index->enableSplitLTOUnit()) 3925 Flags |= 0x8; 3926 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3927 3928 if (Index->begin() == Index->end()) { 3929 Stream.ExitBlock(); 3930 return; 3931 } 3932 3933 for (const auto &GVI : valueIds()) { 3934 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3935 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3936 } 3937 3938 // Abbrev for FS_PERMODULE_PROFILE. 3939 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3940 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3948 // numrefs x valueid, n x (valueid, hotness) 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3951 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3952 3953 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3954 Abbv = std::make_shared<BitCodeAbbrev>(); 3955 if (WriteRelBFToSummary) 3956 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3957 else 3958 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3966 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3969 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3970 3971 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3972 Abbv = std::make_shared<BitCodeAbbrev>(); 3973 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3978 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3979 3980 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3981 Abbv = std::make_shared<BitCodeAbbrev>(); 3982 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3986 // numrefs x valueid, n x (valueid , offset) 3987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3989 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3990 3991 // Abbrev for FS_ALIAS. 3992 Abbv = std::make_shared<BitCodeAbbrev>(); 3993 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3997 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3998 3999 // Abbrev for FS_TYPE_ID_METADATA 4000 Abbv = std::make_shared<BitCodeAbbrev>(); 4001 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4004 // n x (valueid , offset) 4005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4007 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4008 4009 SmallVector<uint64_t, 64> NameVals; 4010 // Iterate over the list of functions instead of the Index to 4011 // ensure the ordering is stable. 4012 for (const Function &F : M) { 4013 // Summary emission does not support anonymous functions, they have to 4014 // renamed using the anonymous function renaming pass. 4015 if (!F.hasName()) 4016 report_fatal_error("Unexpected anonymous function when writing summary"); 4017 4018 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4019 if (!VI || VI.getSummaryList().empty()) { 4020 // Only declarations should not have a summary (a declaration might 4021 // however have a summary if the def was in module level asm). 4022 assert(F.isDeclaration()); 4023 continue; 4024 } 4025 auto *Summary = VI.getSummaryList()[0].get(); 4026 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4027 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4028 } 4029 4030 // Capture references from GlobalVariable initializers, which are outside 4031 // of a function scope. 4032 for (const GlobalVariable &G : M.globals()) 4033 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4034 FSModVTableRefsAbbrev); 4035 4036 for (const GlobalAlias &A : M.aliases()) { 4037 auto *Aliasee = A.getBaseObject(); 4038 if (!Aliasee->hasName()) 4039 // Nameless function don't have an entry in the summary, skip it. 4040 continue; 4041 auto AliasId = VE.getValueID(&A); 4042 auto AliaseeId = VE.getValueID(Aliasee); 4043 NameVals.push_back(AliasId); 4044 auto *Summary = Index->getGlobalValueSummary(A); 4045 AliasSummary *AS = cast<AliasSummary>(Summary); 4046 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4047 NameVals.push_back(AliaseeId); 4048 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4049 NameVals.clear(); 4050 } 4051 4052 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4053 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4054 S.second, VE); 4055 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4056 TypeIdCompatibleVtableAbbrev); 4057 NameVals.clear(); 4058 } 4059 4060 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4061 ArrayRef<uint64_t>{Index->getBlockCount()}); 4062 4063 Stream.ExitBlock(); 4064 } 4065 4066 /// Emit the combined summary section into the combined index file. 4067 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4068 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4069 Stream.EmitRecord( 4070 bitc::FS_VERSION, 4071 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4072 4073 // Write the index flags. 4074 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4075 4076 for (const auto &GVI : valueIds()) { 4077 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4078 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4079 } 4080 4081 // Abbrev for FS_COMBINED. 4082 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4083 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4093 // numrefs x valueid, n x (valueid) 4094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4096 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4097 4098 // Abbrev for FS_COMBINED_PROFILE. 4099 Abbv = std::make_shared<BitCodeAbbrev>(); 4100 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4110 // numrefs x valueid, n x (valueid, hotness) 4111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4113 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4114 4115 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4116 Abbv = std::make_shared<BitCodeAbbrev>(); 4117 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4123 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4124 4125 // Abbrev for FS_COMBINED_ALIAS. 4126 Abbv = std::make_shared<BitCodeAbbrev>(); 4127 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4132 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4133 4134 // The aliases are emitted as a post-pass, and will point to the value 4135 // id of the aliasee. Save them in a vector for post-processing. 4136 SmallVector<AliasSummary *, 64> Aliases; 4137 4138 // Save the value id for each summary for alias emission. 4139 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4140 4141 SmallVector<uint64_t, 64> NameVals; 4142 4143 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4144 // with the type ids referenced by this index file. 4145 std::set<GlobalValue::GUID> ReferencedTypeIds; 4146 4147 // For local linkage, we also emit the original name separately 4148 // immediately after the record. 4149 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4150 if (!GlobalValue::isLocalLinkage(S.linkage())) 4151 return; 4152 NameVals.push_back(S.getOriginalName()); 4153 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4154 NameVals.clear(); 4155 }; 4156 4157 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4158 forEachSummary([&](GVInfo I, bool IsAliasee) { 4159 GlobalValueSummary *S = I.second; 4160 assert(S); 4161 DefOrUseGUIDs.insert(I.first); 4162 for (const ValueInfo &VI : S->refs()) 4163 DefOrUseGUIDs.insert(VI.getGUID()); 4164 4165 auto ValueId = getValueId(I.first); 4166 assert(ValueId); 4167 SummaryToValueIdMap[S] = *ValueId; 4168 4169 // If this is invoked for an aliasee, we want to record the above 4170 // mapping, but then not emit a summary entry (if the aliasee is 4171 // to be imported, we will invoke this separately with IsAliasee=false). 4172 if (IsAliasee) 4173 return; 4174 4175 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4176 // Will process aliases as a post-pass because the reader wants all 4177 // global to be loaded first. 4178 Aliases.push_back(AS); 4179 return; 4180 } 4181 4182 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4183 NameVals.push_back(*ValueId); 4184 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4185 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4186 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4187 for (auto &RI : VS->refs()) { 4188 auto RefValueId = getValueId(RI.getGUID()); 4189 if (!RefValueId) 4190 continue; 4191 NameVals.push_back(*RefValueId); 4192 } 4193 4194 // Emit the finished record. 4195 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4196 FSModRefsAbbrev); 4197 NameVals.clear(); 4198 MaybeEmitOriginalName(*S); 4199 return; 4200 } 4201 4202 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4203 GlobalValue::GUID GUID = VI.getGUID(); 4204 Optional<unsigned> CallValueId = getValueId(GUID); 4205 if (CallValueId) 4206 return CallValueId; 4207 // For SamplePGO, the indirect call targets for local functions will 4208 // have its original name annotated in profile. We try to find the 4209 // corresponding PGOFuncName as the GUID. 4210 GUID = Index.getGUIDFromOriginalID(GUID); 4211 if (!GUID) 4212 return None; 4213 CallValueId = getValueId(GUID); 4214 if (!CallValueId) 4215 return None; 4216 // The mapping from OriginalId to GUID may return a GUID 4217 // that corresponds to a static variable. Filter it out here. 4218 // This can happen when 4219 // 1) There is a call to a library function which does not have 4220 // a CallValidId; 4221 // 2) There is a static variable with the OriginalGUID identical 4222 // to the GUID of the library function in 1); 4223 // When this happens, the logic for SamplePGO kicks in and 4224 // the static variable in 2) will be found, which needs to be 4225 // filtered out. 4226 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4227 if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4228 return None; 4229 return CallValueId; 4230 }; 4231 4232 auto *FS = cast<FunctionSummary>(S); 4233 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4234 getReferencedTypeIds(FS, ReferencedTypeIds); 4235 4236 NameVals.push_back(*ValueId); 4237 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4238 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4239 NameVals.push_back(FS->instCount()); 4240 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4241 NameVals.push_back(FS->entryCount()); 4242 4243 // Fill in below 4244 NameVals.push_back(0); // numrefs 4245 NameVals.push_back(0); // rorefcnt 4246 NameVals.push_back(0); // worefcnt 4247 4248 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4249 for (auto &RI : FS->refs()) { 4250 auto RefValueId = getValueId(RI.getGUID()); 4251 if (!RefValueId) 4252 continue; 4253 NameVals.push_back(*RefValueId); 4254 if (RI.isReadOnly()) 4255 RORefCnt++; 4256 else if (RI.isWriteOnly()) 4257 WORefCnt++; 4258 Count++; 4259 } 4260 NameVals[6] = Count; 4261 NameVals[7] = RORefCnt; 4262 NameVals[8] = WORefCnt; 4263 4264 bool HasProfileData = false; 4265 for (auto &EI : FS->calls()) { 4266 HasProfileData |= 4267 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4268 if (HasProfileData) 4269 break; 4270 } 4271 4272 for (auto &EI : FS->calls()) { 4273 // If this GUID doesn't have a value id, it doesn't have a function 4274 // summary and we don't need to record any calls to it. 4275 Optional<unsigned> CallValueId = GetValueId(EI.first); 4276 if (!CallValueId) 4277 continue; 4278 NameVals.push_back(*CallValueId); 4279 if (HasProfileData) 4280 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4281 } 4282 4283 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4284 unsigned Code = 4285 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4286 4287 // Emit the finished record. 4288 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4289 NameVals.clear(); 4290 MaybeEmitOriginalName(*S); 4291 }); 4292 4293 for (auto *AS : Aliases) { 4294 auto AliasValueId = SummaryToValueIdMap[AS]; 4295 assert(AliasValueId); 4296 NameVals.push_back(AliasValueId); 4297 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4298 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4299 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4300 assert(AliaseeValueId); 4301 NameVals.push_back(AliaseeValueId); 4302 4303 // Emit the finished record. 4304 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4305 NameVals.clear(); 4306 MaybeEmitOriginalName(*AS); 4307 4308 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4309 getReferencedTypeIds(FS, ReferencedTypeIds); 4310 } 4311 4312 if (!Index.cfiFunctionDefs().empty()) { 4313 for (auto &S : Index.cfiFunctionDefs()) { 4314 if (DefOrUseGUIDs.count( 4315 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4316 NameVals.push_back(StrtabBuilder.add(S)); 4317 NameVals.push_back(S.size()); 4318 } 4319 } 4320 if (!NameVals.empty()) { 4321 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4322 NameVals.clear(); 4323 } 4324 } 4325 4326 if (!Index.cfiFunctionDecls().empty()) { 4327 for (auto &S : Index.cfiFunctionDecls()) { 4328 if (DefOrUseGUIDs.count( 4329 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4330 NameVals.push_back(StrtabBuilder.add(S)); 4331 NameVals.push_back(S.size()); 4332 } 4333 } 4334 if (!NameVals.empty()) { 4335 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4336 NameVals.clear(); 4337 } 4338 } 4339 4340 // Walk the GUIDs that were referenced, and write the 4341 // corresponding type id records. 4342 for (auto &T : ReferencedTypeIds) { 4343 auto TidIter = Index.typeIds().equal_range(T); 4344 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4345 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4346 It->second.second); 4347 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4348 NameVals.clear(); 4349 } 4350 } 4351 4352 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4353 ArrayRef<uint64_t>{Index.getBlockCount()}); 4354 4355 Stream.ExitBlock(); 4356 } 4357 4358 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4359 /// current llvm version, and a record for the epoch number. 4360 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4361 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4362 4363 // Write the "user readable" string identifying the bitcode producer 4364 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4365 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4368 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4369 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4370 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4371 4372 // Write the epoch version 4373 Abbv = std::make_shared<BitCodeAbbrev>(); 4374 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4376 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4377 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4378 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4379 Stream.ExitBlock(); 4380 } 4381 4382 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4383 // Emit the module's hash. 4384 // MODULE_CODE_HASH: [5*i32] 4385 if (GenerateHash) { 4386 uint32_t Vals[5]; 4387 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4388 Buffer.size() - BlockStartPos)); 4389 StringRef Hash = Hasher.result(); 4390 for (int Pos = 0; Pos < 20; Pos += 4) { 4391 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4392 } 4393 4394 // Emit the finished record. 4395 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4396 4397 if (ModHash) 4398 // Save the written hash value. 4399 llvm::copy(Vals, std::begin(*ModHash)); 4400 } 4401 } 4402 4403 void ModuleBitcodeWriter::write() { 4404 writeIdentificationBlock(Stream); 4405 4406 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4407 size_t BlockStartPos = Buffer.size(); 4408 4409 writeModuleVersion(); 4410 4411 // Emit blockinfo, which defines the standard abbreviations etc. 4412 writeBlockInfo(); 4413 4414 // Emit information describing all of the types in the module. 4415 writeTypeTable(); 4416 4417 // Emit information about attribute groups. 4418 writeAttributeGroupTable(); 4419 4420 // Emit information about parameter attributes. 4421 writeAttributeTable(); 4422 4423 writeComdats(); 4424 4425 // Emit top-level description of module, including target triple, inline asm, 4426 // descriptors for global variables, and function prototype info. 4427 writeModuleInfo(); 4428 4429 // Emit constants. 4430 writeModuleConstants(); 4431 4432 // Emit metadata kind names. 4433 writeModuleMetadataKinds(); 4434 4435 // Emit metadata. 4436 writeModuleMetadata(); 4437 4438 // Emit module-level use-lists. 4439 if (VE.shouldPreserveUseListOrder()) 4440 writeUseListBlock(nullptr); 4441 4442 writeOperandBundleTags(); 4443 writeSyncScopeNames(); 4444 4445 // Emit function bodies. 4446 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4447 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4448 if (!F->isDeclaration()) 4449 writeFunction(*F, FunctionToBitcodeIndex); 4450 4451 // Need to write after the above call to WriteFunction which populates 4452 // the summary information in the index. 4453 if (Index) 4454 writePerModuleGlobalValueSummary(); 4455 4456 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4457 4458 writeModuleHash(BlockStartPos); 4459 4460 Stream.ExitBlock(); 4461 } 4462 4463 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4464 uint32_t &Position) { 4465 support::endian::write32le(&Buffer[Position], Value); 4466 Position += 4; 4467 } 4468 4469 /// If generating a bc file on darwin, we have to emit a 4470 /// header and trailer to make it compatible with the system archiver. To do 4471 /// this we emit the following header, and then emit a trailer that pads the 4472 /// file out to be a multiple of 16 bytes. 4473 /// 4474 /// struct bc_header { 4475 /// uint32_t Magic; // 0x0B17C0DE 4476 /// uint32_t Version; // Version, currently always 0. 4477 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4478 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4479 /// uint32_t CPUType; // CPU specifier. 4480 /// ... potentially more later ... 4481 /// }; 4482 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4483 const Triple &TT) { 4484 unsigned CPUType = ~0U; 4485 4486 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4487 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4488 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4489 // specific constants here because they are implicitly part of the Darwin ABI. 4490 enum { 4491 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4492 DARWIN_CPU_TYPE_X86 = 7, 4493 DARWIN_CPU_TYPE_ARM = 12, 4494 DARWIN_CPU_TYPE_POWERPC = 18 4495 }; 4496 4497 Triple::ArchType Arch = TT.getArch(); 4498 if (Arch == Triple::x86_64) 4499 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4500 else if (Arch == Triple::x86) 4501 CPUType = DARWIN_CPU_TYPE_X86; 4502 else if (Arch == Triple::ppc) 4503 CPUType = DARWIN_CPU_TYPE_POWERPC; 4504 else if (Arch == Triple::ppc64) 4505 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4506 else if (Arch == Triple::arm || Arch == Triple::thumb) 4507 CPUType = DARWIN_CPU_TYPE_ARM; 4508 4509 // Traditional Bitcode starts after header. 4510 assert(Buffer.size() >= BWH_HeaderSize && 4511 "Expected header size to be reserved"); 4512 unsigned BCOffset = BWH_HeaderSize; 4513 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4514 4515 // Write the magic and version. 4516 unsigned Position = 0; 4517 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4518 writeInt32ToBuffer(0, Buffer, Position); // Version. 4519 writeInt32ToBuffer(BCOffset, Buffer, Position); 4520 writeInt32ToBuffer(BCSize, Buffer, Position); 4521 writeInt32ToBuffer(CPUType, Buffer, Position); 4522 4523 // If the file is not a multiple of 16 bytes, insert dummy padding. 4524 while (Buffer.size() & 15) 4525 Buffer.push_back(0); 4526 } 4527 4528 /// Helper to write the header common to all bitcode files. 4529 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4530 // Emit the file header. 4531 Stream.Emit((unsigned)'B', 8); 4532 Stream.Emit((unsigned)'C', 8); 4533 Stream.Emit(0x0, 4); 4534 Stream.Emit(0xC, 4); 4535 Stream.Emit(0xE, 4); 4536 Stream.Emit(0xD, 4); 4537 } 4538 4539 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4540 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4541 writeBitcodeHeader(*Stream); 4542 } 4543 4544 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4545 4546 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4547 Stream->EnterSubblock(Block, 3); 4548 4549 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4550 Abbv->Add(BitCodeAbbrevOp(Record)); 4551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4552 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4553 4554 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4555 4556 Stream->ExitBlock(); 4557 } 4558 4559 void BitcodeWriter::writeSymtab() { 4560 assert(!WroteStrtab && !WroteSymtab); 4561 4562 // If any module has module-level inline asm, we will require a registered asm 4563 // parser for the target so that we can create an accurate symbol table for 4564 // the module. 4565 for (Module *M : Mods) { 4566 if (M->getModuleInlineAsm().empty()) 4567 continue; 4568 4569 std::string Err; 4570 const Triple TT(M->getTargetTriple()); 4571 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4572 if (!T || !T->hasMCAsmParser()) 4573 return; 4574 } 4575 4576 WroteSymtab = true; 4577 SmallVector<char, 0> Symtab; 4578 // The irsymtab::build function may be unable to create a symbol table if the 4579 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4580 // table is not required for correctness, but we still want to be able to 4581 // write malformed modules to bitcode files, so swallow the error. 4582 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4583 consumeError(std::move(E)); 4584 return; 4585 } 4586 4587 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4588 {Symtab.data(), Symtab.size()}); 4589 } 4590 4591 void BitcodeWriter::writeStrtab() { 4592 assert(!WroteStrtab); 4593 4594 std::vector<char> Strtab; 4595 StrtabBuilder.finalizeInOrder(); 4596 Strtab.resize(StrtabBuilder.getSize()); 4597 StrtabBuilder.write((uint8_t *)Strtab.data()); 4598 4599 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4600 {Strtab.data(), Strtab.size()}); 4601 4602 WroteStrtab = true; 4603 } 4604 4605 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4606 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4607 WroteStrtab = true; 4608 } 4609 4610 void BitcodeWriter::writeModule(const Module &M, 4611 bool ShouldPreserveUseListOrder, 4612 const ModuleSummaryIndex *Index, 4613 bool GenerateHash, ModuleHash *ModHash) { 4614 assert(!WroteStrtab); 4615 4616 // The Mods vector is used by irsymtab::build, which requires non-const 4617 // Modules in case it needs to materialize metadata. But the bitcode writer 4618 // requires that the module is materialized, so we can cast to non-const here, 4619 // after checking that it is in fact materialized. 4620 assert(M.isMaterialized()); 4621 Mods.push_back(const_cast<Module *>(&M)); 4622 4623 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4624 ShouldPreserveUseListOrder, Index, 4625 GenerateHash, ModHash); 4626 ModuleWriter.write(); 4627 } 4628 4629 void BitcodeWriter::writeIndex( 4630 const ModuleSummaryIndex *Index, 4631 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4632 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4633 ModuleToSummariesForIndex); 4634 IndexWriter.write(); 4635 } 4636 4637 /// Write the specified module to the specified output stream. 4638 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4639 bool ShouldPreserveUseListOrder, 4640 const ModuleSummaryIndex *Index, 4641 bool GenerateHash, ModuleHash *ModHash) { 4642 SmallVector<char, 0> Buffer; 4643 Buffer.reserve(256*1024); 4644 4645 // If this is darwin or another generic macho target, reserve space for the 4646 // header. 4647 Triple TT(M.getTargetTriple()); 4648 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4649 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4650 4651 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4652 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4653 ModHash); 4654 Writer.writeSymtab(); 4655 Writer.writeStrtab(); 4656 4657 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4658 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4659 4660 // Write the generated bitstream to "Out". 4661 if (!Buffer.empty()) 4662 Out.write((char *)&Buffer.front(), Buffer.size()); 4663 } 4664 4665 void IndexBitcodeWriter::write() { 4666 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4667 4668 writeModuleVersion(); 4669 4670 // Write the module paths in the combined index. 4671 writeModStrings(); 4672 4673 // Write the summary combined index records. 4674 writeCombinedGlobalValueSummary(); 4675 4676 Stream.ExitBlock(); 4677 } 4678 4679 // Write the specified module summary index to the given raw output stream, 4680 // where it will be written in a new bitcode block. This is used when 4681 // writing the combined index file for ThinLTO. When writing a subset of the 4682 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4683 void llvm::WriteIndexToFile( 4684 const ModuleSummaryIndex &Index, raw_ostream &Out, 4685 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4686 SmallVector<char, 0> Buffer; 4687 Buffer.reserve(256 * 1024); 4688 4689 BitcodeWriter Writer(Buffer); 4690 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4691 Writer.writeStrtab(); 4692 4693 Out.write((char *)&Buffer.front(), Buffer.size()); 4694 } 4695 4696 namespace { 4697 4698 /// Class to manage the bitcode writing for a thin link bitcode file. 4699 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4700 /// ModHash is for use in ThinLTO incremental build, generated while writing 4701 /// the module bitcode file. 4702 const ModuleHash *ModHash; 4703 4704 public: 4705 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4706 BitstreamWriter &Stream, 4707 const ModuleSummaryIndex &Index, 4708 const ModuleHash &ModHash) 4709 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4710 /*ShouldPreserveUseListOrder=*/false, &Index), 4711 ModHash(&ModHash) {} 4712 4713 void write(); 4714 4715 private: 4716 void writeSimplifiedModuleInfo(); 4717 }; 4718 4719 } // end anonymous namespace 4720 4721 // This function writes a simpilified module info for thin link bitcode file. 4722 // It only contains the source file name along with the name(the offset and 4723 // size in strtab) and linkage for global values. For the global value info 4724 // entry, in order to keep linkage at offset 5, there are three zeros used 4725 // as padding. 4726 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4727 SmallVector<unsigned, 64> Vals; 4728 // Emit the module's source file name. 4729 { 4730 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4731 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4732 if (Bits == SE_Char6) 4733 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4734 else if (Bits == SE_Fixed7) 4735 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4736 4737 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4738 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4739 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4741 Abbv->Add(AbbrevOpToUse); 4742 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4743 4744 for (const auto P : M.getSourceFileName()) 4745 Vals.push_back((unsigned char)P); 4746 4747 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4748 Vals.clear(); 4749 } 4750 4751 // Emit the global variable information. 4752 for (const GlobalVariable &GV : M.globals()) { 4753 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4754 Vals.push_back(StrtabBuilder.add(GV.getName())); 4755 Vals.push_back(GV.getName().size()); 4756 Vals.push_back(0); 4757 Vals.push_back(0); 4758 Vals.push_back(0); 4759 Vals.push_back(getEncodedLinkage(GV)); 4760 4761 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4762 Vals.clear(); 4763 } 4764 4765 // Emit the function proto information. 4766 for (const Function &F : M) { 4767 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4768 Vals.push_back(StrtabBuilder.add(F.getName())); 4769 Vals.push_back(F.getName().size()); 4770 Vals.push_back(0); 4771 Vals.push_back(0); 4772 Vals.push_back(0); 4773 Vals.push_back(getEncodedLinkage(F)); 4774 4775 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4776 Vals.clear(); 4777 } 4778 4779 // Emit the alias information. 4780 for (const GlobalAlias &A : M.aliases()) { 4781 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4782 Vals.push_back(StrtabBuilder.add(A.getName())); 4783 Vals.push_back(A.getName().size()); 4784 Vals.push_back(0); 4785 Vals.push_back(0); 4786 Vals.push_back(0); 4787 Vals.push_back(getEncodedLinkage(A)); 4788 4789 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4790 Vals.clear(); 4791 } 4792 4793 // Emit the ifunc information. 4794 for (const GlobalIFunc &I : M.ifuncs()) { 4795 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4796 Vals.push_back(StrtabBuilder.add(I.getName())); 4797 Vals.push_back(I.getName().size()); 4798 Vals.push_back(0); 4799 Vals.push_back(0); 4800 Vals.push_back(0); 4801 Vals.push_back(getEncodedLinkage(I)); 4802 4803 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4804 Vals.clear(); 4805 } 4806 } 4807 4808 void ThinLinkBitcodeWriter::write() { 4809 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4810 4811 writeModuleVersion(); 4812 4813 writeSimplifiedModuleInfo(); 4814 4815 writePerModuleGlobalValueSummary(); 4816 4817 // Write module hash. 4818 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4819 4820 Stream.ExitBlock(); 4821 } 4822 4823 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4824 const ModuleSummaryIndex &Index, 4825 const ModuleHash &ModHash) { 4826 assert(!WroteStrtab); 4827 4828 // The Mods vector is used by irsymtab::build, which requires non-const 4829 // Modules in case it needs to materialize metadata. But the bitcode writer 4830 // requires that the module is materialized, so we can cast to non-const here, 4831 // after checking that it is in fact materialized. 4832 assert(M.isMaterialized()); 4833 Mods.push_back(const_cast<Module *>(&M)); 4834 4835 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4836 ModHash); 4837 ThinLinkWriter.write(); 4838 } 4839 4840 // Write the specified thin link bitcode file to the given raw output stream, 4841 // where it will be written in a new bitcode block. This is used when 4842 // writing the per-module index file for ThinLTO. 4843 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4844 const ModuleSummaryIndex &Index, 4845 const ModuleHash &ModHash) { 4846 SmallVector<char, 0> Buffer; 4847 Buffer.reserve(256 * 1024); 4848 4849 BitcodeWriter Writer(Buffer); 4850 Writer.writeThinLinkBitcode(M, Index, ModHash); 4851 Writer.writeSymtab(); 4852 Writer.writeStrtab(); 4853 4854 Out.write((char *)&Buffer.front(), Buffer.size()); 4855 } 4856 4857 static const char *getSectionNameForBitcode(const Triple &T) { 4858 switch (T.getObjectFormat()) { 4859 case Triple::MachO: 4860 return "__LLVM,__bitcode"; 4861 case Triple::COFF: 4862 case Triple::ELF: 4863 case Triple::Wasm: 4864 case Triple::UnknownObjectFormat: 4865 return ".llvmbc"; 4866 case Triple::GOFF: 4867 llvm_unreachable("GOFF is not yet implemented"); 4868 break; 4869 case Triple::XCOFF: 4870 llvm_unreachable("XCOFF is not yet implemented"); 4871 break; 4872 } 4873 llvm_unreachable("Unimplemented ObjectFormatType"); 4874 } 4875 4876 static const char *getSectionNameForCommandline(const Triple &T) { 4877 switch (T.getObjectFormat()) { 4878 case Triple::MachO: 4879 return "__LLVM,__cmdline"; 4880 case Triple::COFF: 4881 case Triple::ELF: 4882 case Triple::Wasm: 4883 case Triple::UnknownObjectFormat: 4884 return ".llvmcmd"; 4885 case Triple::GOFF: 4886 llvm_unreachable("GOFF is not yet implemented"); 4887 break; 4888 case Triple::XCOFF: 4889 llvm_unreachable("XCOFF is not yet implemented"); 4890 break; 4891 } 4892 llvm_unreachable("Unimplemented ObjectFormatType"); 4893 } 4894 4895 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4896 bool EmbedBitcode, bool EmbedCmdline, 4897 const std::vector<uint8_t> &CmdArgs) { 4898 // Save llvm.compiler.used and remove it. 4899 SmallVector<Constant *, 2> UsedArray; 4900 SmallVector<GlobalValue *, 4> UsedGlobals; 4901 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4902 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4903 for (auto *GV : UsedGlobals) { 4904 if (GV->getName() != "llvm.embedded.module" && 4905 GV->getName() != "llvm.cmdline") 4906 UsedArray.push_back( 4907 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4908 } 4909 if (Used) 4910 Used->eraseFromParent(); 4911 4912 // Embed the bitcode for the llvm module. 4913 std::string Data; 4914 ArrayRef<uint8_t> ModuleData; 4915 Triple T(M.getTargetTriple()); 4916 4917 if (EmbedBitcode) { 4918 if (Buf.getBufferSize() == 0 || 4919 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4920 (const unsigned char *)Buf.getBufferEnd())) { 4921 // If the input is LLVM Assembly, bitcode is produced by serializing 4922 // the module. Use-lists order need to be preserved in this case. 4923 llvm::raw_string_ostream OS(Data); 4924 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4925 ModuleData = 4926 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4927 } else 4928 // If the input is LLVM bitcode, write the input byte stream directly. 4929 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4930 Buf.getBufferSize()); 4931 } 4932 llvm::Constant *ModuleConstant = 4933 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4934 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4935 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4936 ModuleConstant); 4937 GV->setSection(getSectionNameForBitcode(T)); 4938 // Set alignment to 1 to prevent padding between two contributions from input 4939 // sections after linking. 4940 GV->setAlignment(Align(1)); 4941 UsedArray.push_back( 4942 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4943 if (llvm::GlobalVariable *Old = 4944 M.getGlobalVariable("llvm.embedded.module", true)) { 4945 assert(Old->hasOneUse() && 4946 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4947 GV->takeName(Old); 4948 Old->eraseFromParent(); 4949 } else { 4950 GV->setName("llvm.embedded.module"); 4951 } 4952 4953 // Skip if only bitcode needs to be embedded. 4954 if (EmbedCmdline) { 4955 // Embed command-line options. 4956 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4957 CmdArgs.size()); 4958 llvm::Constant *CmdConstant = 4959 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4960 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4961 llvm::GlobalValue::PrivateLinkage, 4962 CmdConstant); 4963 GV->setSection(getSectionNameForCommandline(T)); 4964 GV->setAlignment(Align(1)); 4965 UsedArray.push_back( 4966 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4967 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4968 assert(Old->hasOneUse() && 4969 "llvm.cmdline can only be used once in llvm.compiler.used"); 4970 GV->takeName(Old); 4971 Old->eraseFromParent(); 4972 } else { 4973 GV->setName("llvm.cmdline"); 4974 } 4975 } 4976 4977 if (UsedArray.empty()) 4978 return; 4979 4980 // Recreate llvm.compiler.used. 4981 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4982 auto *NewUsed = new GlobalVariable( 4983 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4984 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4985 NewUsed->setSection("llvm.metadata"); 4986 } 4987