1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeModuleVersion(); 146 }; 147 148 void BitcodeWriterBase::writeModuleVersion() { 149 // VERSION: [version#] 150 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 151 } 152 153 /// Base class to manage the module bitcode writing, currently subclassed for 154 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 155 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 156 protected: 157 /// The Module to write to bitcode. 158 const Module &M; 159 160 /// Enumerates ids for all values in the module. 161 ValueEnumerator VE; 162 163 /// Optional per-module index to write for ThinLTO. 164 const ModuleSummaryIndex *Index; 165 166 /// Map that holds the correspondence between GUIDs in the summary index, 167 /// that came from indirect call profiles, and a value id generated by this 168 /// class to use in the VST and summary block records. 169 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 170 171 /// Tracks the last value id recorded in the GUIDToValueMap. 172 unsigned GlobalValueId; 173 174 /// Saves the offset of the VSTOffset record that must eventually be 175 /// backpatched with the offset of the actual VST. 176 uint64_t VSTOffsetPlaceholder = 0; 177 178 public: 179 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 180 /// writing to the provided \p Buffer. 181 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 182 BitstreamWriter &Stream, 183 bool ShouldPreserveUseListOrder, 184 const ModuleSummaryIndex *Index) 185 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 186 VE(M, ShouldPreserveUseListOrder), Index(Index) { 187 // Assign ValueIds to any callee values in the index that came from 188 // indirect call profiles and were recorded as a GUID not a Value* 189 // (which would have been assigned an ID by the ValueEnumerator). 190 // The starting ValueId is just after the number of values in the 191 // ValueEnumerator, so that they can be emitted in the VST. 192 GlobalValueId = VE.getValues().size(); 193 if (!Index) 194 return; 195 for (const auto &GUIDSummaryLists : *Index) 196 // Examine all summaries for this GUID. 197 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 198 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 199 // For each call in the function summary, see if the call 200 // is to a GUID (which means it is for an indirect call, 201 // otherwise we would have a Value for it). If so, synthesize 202 // a value id. 203 for (auto &CallEdge : FS->calls()) 204 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 205 assignValueId(CallEdge.first.getGUID()); 206 } 207 208 protected: 209 void writePerModuleGlobalValueSummary(); 210 211 private: 212 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 213 GlobalValueSummary *Summary, 214 unsigned ValueID, 215 unsigned FSCallsAbbrev, 216 unsigned FSCallsProfileAbbrev, 217 const Function &F); 218 void writeModuleLevelReferences(const GlobalVariable &V, 219 SmallVector<uint64_t, 64> &NameVals, 220 unsigned FSModRefsAbbrev, 221 unsigned FSModVTableRefsAbbrev); 222 223 void assignValueId(GlobalValue::GUID ValGUID) { 224 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 225 } 226 227 unsigned getValueId(GlobalValue::GUID ValGUID) { 228 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 229 // Expect that any GUID value had a value Id assigned by an 230 // earlier call to assignValueId. 231 assert(VMI != GUIDToValueIdMap.end() && 232 "GUID does not have assigned value Id"); 233 return VMI->second; 234 } 235 236 // Helper to get the valueId for the type of value recorded in VI. 237 unsigned getValueId(ValueInfo VI) { 238 if (!VI.haveGVs() || !VI.getValue()) 239 return getValueId(VI.getGUID()); 240 return VE.getValueID(VI.getValue()); 241 } 242 243 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 244 }; 245 246 /// Class to manage the bitcode writing for a module. 247 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 248 /// Pointer to the buffer allocated by caller for bitcode writing. 249 const SmallVectorImpl<char> &Buffer; 250 251 /// True if a module hash record should be written. 252 bool GenerateHash; 253 254 /// If non-null, when GenerateHash is true, the resulting hash is written 255 /// into ModHash. 256 ModuleHash *ModHash; 257 258 SHA1 Hasher; 259 260 /// The start bit of the identification block. 261 uint64_t BitcodeStartBit; 262 263 public: 264 /// Constructs a ModuleBitcodeWriter object for the given Module, 265 /// writing to the provided \p Buffer. 266 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 267 StringTableBuilder &StrtabBuilder, 268 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 269 const ModuleSummaryIndex *Index, bool GenerateHash, 270 ModuleHash *ModHash = nullptr) 271 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 272 ShouldPreserveUseListOrder, Index), 273 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 274 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 275 276 /// Emit the current module to the bitstream. 277 void write(); 278 279 private: 280 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 281 282 size_t addToStrtab(StringRef Str); 283 284 void writeAttributeGroupTable(); 285 void writeAttributeTable(); 286 void writeTypeTable(); 287 void writeComdats(); 288 void writeValueSymbolTableForwardDecl(); 289 void writeModuleInfo(); 290 void writeValueAsMetadata(const ValueAsMetadata *MD, 291 SmallVectorImpl<uint64_t> &Record); 292 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 unsigned createDILocationAbbrev(); 295 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned &Abbrev); 297 unsigned createGenericDINodeAbbrev(); 298 void writeGenericDINode(const GenericDINode *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 300 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIGenericSubrange(const DIGenericSubrange *N, 303 SmallVectorImpl<uint64_t> &Record, 304 unsigned Abbrev); 305 void writeDIEnumerator(const DIEnumerator *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIStringType(const DIStringType *N, 310 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 311 void writeDIDerivedType(const DIDerivedType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDICompositeType(const DICompositeType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubroutineType(const DISubroutineType *N, 316 SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICompileUnit(const DICompileUnit *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDISubprogram(const DISubprogram *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDILexicalBlock(const DILexicalBlock *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDICommonBlock(const DICommonBlock *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 342 SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIGlobalVariable(const DIGlobalVariable *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDILocalVariable(const DILocalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDILabel(const DILabel *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDIExpression(const DIExpression *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 357 SmallVectorImpl<uint64_t> &Record, 358 unsigned Abbrev); 359 void writeDIObjCProperty(const DIObjCProperty *N, 360 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 361 void writeDIImportedEntity(const DIImportedEntity *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 unsigned createNamedMetadataAbbrev(); 365 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 366 unsigned createMetadataStringsAbbrev(); 367 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 368 SmallVectorImpl<uint64_t> &Record); 369 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 370 SmallVectorImpl<uint64_t> &Record, 371 std::vector<unsigned> *MDAbbrevs = nullptr, 372 std::vector<uint64_t> *IndexPos = nullptr); 373 void writeModuleMetadata(); 374 void writeFunctionMetadata(const Function &F); 375 void writeFunctionMetadataAttachment(const Function &F); 376 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 377 const GlobalObject &GO); 378 void writeModuleMetadataKinds(); 379 void writeOperandBundleTags(); 380 void writeSyncScopeNames(); 381 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 382 void writeModuleConstants(); 383 bool pushValueAndType(const Value *V, unsigned InstID, 384 SmallVectorImpl<unsigned> &Vals); 385 void writeOperandBundles(const CallBase &CB, unsigned InstID); 386 void pushValue(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void pushValueSigned(const Value *V, unsigned InstID, 389 SmallVectorImpl<uint64_t> &Vals); 390 void writeInstruction(const Instruction &I, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 393 void writeGlobalValueSymbolTable( 394 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 395 void writeUseList(UseListOrder &&Order); 396 void writeUseListBlock(const Function *F); 397 void 398 writeFunction(const Function &F, 399 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 400 void writeBlockInfo(); 401 void writeModuleHash(size_t BlockStartPos); 402 403 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 404 return unsigned(SSID); 405 } 406 407 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 408 }; 409 410 /// Class to manage the bitcode writing for a combined index. 411 class IndexBitcodeWriter : public BitcodeWriterBase { 412 /// The combined index to write to bitcode. 413 const ModuleSummaryIndex &Index; 414 415 /// When writing a subset of the index for distributed backends, client 416 /// provides a map of modules to the corresponding GUIDs/summaries to write. 417 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 418 419 /// Map that holds the correspondence between the GUID used in the combined 420 /// index and a value id generated by this class to use in references. 421 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 422 423 /// Tracks the last value id recorded in the GUIDToValueMap. 424 unsigned GlobalValueId = 0; 425 426 public: 427 /// Constructs a IndexBitcodeWriter object for the given combined index, 428 /// writing to the provided \p Buffer. When writing a subset of the index 429 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 430 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 431 const ModuleSummaryIndex &Index, 432 const std::map<std::string, GVSummaryMapTy> 433 *ModuleToSummariesForIndex = nullptr) 434 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 435 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 436 // Assign unique value ids to all summaries to be written, for use 437 // in writing out the call graph edges. Save the mapping from GUID 438 // to the new global value id to use when writing those edges, which 439 // are currently saved in the index in terms of GUID. 440 forEachSummary([&](GVInfo I, bool) { 441 GUIDToValueIdMap[I.first] = ++GlobalValueId; 442 }); 443 } 444 445 /// The below iterator returns the GUID and associated summary. 446 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 447 448 /// Calls the callback for each value GUID and summary to be written to 449 /// bitcode. This hides the details of whether they are being pulled from the 450 /// entire index or just those in a provided ModuleToSummariesForIndex map. 451 template<typename Functor> 452 void forEachSummary(Functor Callback) { 453 if (ModuleToSummariesForIndex) { 454 for (auto &M : *ModuleToSummariesForIndex) 455 for (auto &Summary : M.second) { 456 Callback(Summary, false); 457 // Ensure aliasee is handled, e.g. for assigning a valueId, 458 // even if we are not importing the aliasee directly (the 459 // imported alias will contain a copy of aliasee). 460 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 461 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 462 } 463 } else { 464 for (auto &Summaries : Index) 465 for (auto &Summary : Summaries.second.SummaryList) 466 Callback({Summaries.first, Summary.get()}, false); 467 } 468 } 469 470 /// Calls the callback for each entry in the modulePaths StringMap that 471 /// should be written to the module path string table. This hides the details 472 /// of whether they are being pulled from the entire index or just those in a 473 /// provided ModuleToSummariesForIndex map. 474 template <typename Functor> void forEachModule(Functor Callback) { 475 if (ModuleToSummariesForIndex) { 476 for (const auto &M : *ModuleToSummariesForIndex) { 477 const auto &MPI = Index.modulePaths().find(M.first); 478 if (MPI == Index.modulePaths().end()) { 479 // This should only happen if the bitcode file was empty, in which 480 // case we shouldn't be importing (the ModuleToSummariesForIndex 481 // would only include the module we are writing and index for). 482 assert(ModuleToSummariesForIndex->size() == 1); 483 continue; 484 } 485 Callback(*MPI); 486 } 487 } else { 488 for (const auto &MPSE : Index.modulePaths()) 489 Callback(MPSE); 490 } 491 } 492 493 /// Main entry point for writing a combined index to bitcode. 494 void write(); 495 496 private: 497 void writeModStrings(); 498 void writeCombinedGlobalValueSummary(); 499 500 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 501 auto VMI = GUIDToValueIdMap.find(ValGUID); 502 if (VMI == GUIDToValueIdMap.end()) 503 return None; 504 return VMI->second; 505 } 506 507 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 508 }; 509 510 } // end anonymous namespace 511 512 static unsigned getEncodedCastOpcode(unsigned Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Unknown cast instruction!"); 515 case Instruction::Trunc : return bitc::CAST_TRUNC; 516 case Instruction::ZExt : return bitc::CAST_ZEXT; 517 case Instruction::SExt : return bitc::CAST_SEXT; 518 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 519 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 520 case Instruction::UIToFP : return bitc::CAST_UITOFP; 521 case Instruction::SIToFP : return bitc::CAST_SITOFP; 522 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 523 case Instruction::FPExt : return bitc::CAST_FPEXT; 524 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 525 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 526 case Instruction::BitCast : return bitc::CAST_BITCAST; 527 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 528 } 529 } 530 531 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 532 switch (Opcode) { 533 default: llvm_unreachable("Unknown binary instruction!"); 534 case Instruction::FNeg: return bitc::UNOP_FNEG; 535 } 536 } 537 538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: llvm_unreachable("Unknown binary instruction!"); 541 case Instruction::Add: 542 case Instruction::FAdd: return bitc::BINOP_ADD; 543 case Instruction::Sub: 544 case Instruction::FSub: return bitc::BINOP_SUB; 545 case Instruction::Mul: 546 case Instruction::FMul: return bitc::BINOP_MUL; 547 case Instruction::UDiv: return bitc::BINOP_UDIV; 548 case Instruction::FDiv: 549 case Instruction::SDiv: return bitc::BINOP_SDIV; 550 case Instruction::URem: return bitc::BINOP_UREM; 551 case Instruction::FRem: 552 case Instruction::SRem: return bitc::BINOP_SREM; 553 case Instruction::Shl: return bitc::BINOP_SHL; 554 case Instruction::LShr: return bitc::BINOP_LSHR; 555 case Instruction::AShr: return bitc::BINOP_ASHR; 556 case Instruction::And: return bitc::BINOP_AND; 557 case Instruction::Or: return bitc::BINOP_OR; 558 case Instruction::Xor: return bitc::BINOP_XOR; 559 } 560 } 561 562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 563 switch (Op) { 564 default: llvm_unreachable("Unknown RMW operation!"); 565 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 566 case AtomicRMWInst::Add: return bitc::RMW_ADD; 567 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 568 case AtomicRMWInst::And: return bitc::RMW_AND; 569 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 570 case AtomicRMWInst::Or: return bitc::RMW_OR; 571 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 572 case AtomicRMWInst::Max: return bitc::RMW_MAX; 573 case AtomicRMWInst::Min: return bitc::RMW_MIN; 574 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 575 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 576 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 577 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 578 } 579 } 580 581 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 582 switch (Ordering) { 583 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 584 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 586 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 587 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 588 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 589 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 590 } 591 llvm_unreachable("Invalid ordering"); 592 } 593 594 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 595 StringRef Str, unsigned AbbrevToUse) { 596 SmallVector<unsigned, 64> Vals; 597 598 // Code: [strchar x N] 599 for (char C : Str) { 600 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 601 AbbrevToUse = 0; 602 Vals.push_back(C); 603 } 604 605 // Emit the finished record. 606 Stream.EmitRecord(Code, Vals, AbbrevToUse); 607 } 608 609 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 610 switch (Kind) { 611 case Attribute::Alignment: 612 return bitc::ATTR_KIND_ALIGNMENT; 613 case Attribute::AllocSize: 614 return bitc::ATTR_KIND_ALLOC_SIZE; 615 case Attribute::AlwaysInline: 616 return bitc::ATTR_KIND_ALWAYS_INLINE; 617 case Attribute::ArgMemOnly: 618 return bitc::ATTR_KIND_ARGMEMONLY; 619 case Attribute::Builtin: 620 return bitc::ATTR_KIND_BUILTIN; 621 case Attribute::ByVal: 622 return bitc::ATTR_KIND_BY_VAL; 623 case Attribute::Convergent: 624 return bitc::ATTR_KIND_CONVERGENT; 625 case Attribute::InAlloca: 626 return bitc::ATTR_KIND_IN_ALLOCA; 627 case Attribute::Cold: 628 return bitc::ATTR_KIND_COLD; 629 case Attribute::DisableSanitizerInstrumentation: 630 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 631 case Attribute::Hot: 632 return bitc::ATTR_KIND_HOT; 633 case Attribute::ElementType: 634 return bitc::ATTR_KIND_ELEMENTTYPE; 635 case Attribute::InaccessibleMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 637 case Attribute::InaccessibleMemOrArgMemOnly: 638 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 639 case Attribute::InlineHint: 640 return bitc::ATTR_KIND_INLINE_HINT; 641 case Attribute::InReg: 642 return bitc::ATTR_KIND_IN_REG; 643 case Attribute::JumpTable: 644 return bitc::ATTR_KIND_JUMP_TABLE; 645 case Attribute::MinSize: 646 return bitc::ATTR_KIND_MIN_SIZE; 647 case Attribute::Naked: 648 return bitc::ATTR_KIND_NAKED; 649 case Attribute::Nest: 650 return bitc::ATTR_KIND_NEST; 651 case Attribute::NoAlias: 652 return bitc::ATTR_KIND_NO_ALIAS; 653 case Attribute::NoBuiltin: 654 return bitc::ATTR_KIND_NO_BUILTIN; 655 case Attribute::NoCallback: 656 return bitc::ATTR_KIND_NO_CALLBACK; 657 case Attribute::NoCapture: 658 return bitc::ATTR_KIND_NO_CAPTURE; 659 case Attribute::NoDuplicate: 660 return bitc::ATTR_KIND_NO_DUPLICATE; 661 case Attribute::NoFree: 662 return bitc::ATTR_KIND_NOFREE; 663 case Attribute::NoImplicitFloat: 664 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 665 case Attribute::NoInline: 666 return bitc::ATTR_KIND_NO_INLINE; 667 case Attribute::NoRecurse: 668 return bitc::ATTR_KIND_NO_RECURSE; 669 case Attribute::NoMerge: 670 return bitc::ATTR_KIND_NO_MERGE; 671 case Attribute::NonLazyBind: 672 return bitc::ATTR_KIND_NON_LAZY_BIND; 673 case Attribute::NonNull: 674 return bitc::ATTR_KIND_NON_NULL; 675 case Attribute::Dereferenceable: 676 return bitc::ATTR_KIND_DEREFERENCEABLE; 677 case Attribute::DereferenceableOrNull: 678 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 679 case Attribute::NoRedZone: 680 return bitc::ATTR_KIND_NO_RED_ZONE; 681 case Attribute::NoReturn: 682 return bitc::ATTR_KIND_NO_RETURN; 683 case Attribute::NoSync: 684 return bitc::ATTR_KIND_NOSYNC; 685 case Attribute::NoCfCheck: 686 return bitc::ATTR_KIND_NOCF_CHECK; 687 case Attribute::NoProfile: 688 return bitc::ATTR_KIND_NO_PROFILE; 689 case Attribute::NoUnwind: 690 return bitc::ATTR_KIND_NO_UNWIND; 691 case Attribute::NoSanitizeBounds: 692 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 693 case Attribute::NoSanitizeCoverage: 694 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 695 case Attribute::NullPointerIsValid: 696 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 697 case Attribute::OptForFuzzing: 698 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 699 case Attribute::OptimizeForSize: 700 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 701 case Attribute::OptimizeNone: 702 return bitc::ATTR_KIND_OPTIMIZE_NONE; 703 case Attribute::ReadNone: 704 return bitc::ATTR_KIND_READ_NONE; 705 case Attribute::ReadOnly: 706 return bitc::ATTR_KIND_READ_ONLY; 707 case Attribute::Returned: 708 return bitc::ATTR_KIND_RETURNED; 709 case Attribute::ReturnsTwice: 710 return bitc::ATTR_KIND_RETURNS_TWICE; 711 case Attribute::SExt: 712 return bitc::ATTR_KIND_S_EXT; 713 case Attribute::Speculatable: 714 return bitc::ATTR_KIND_SPECULATABLE; 715 case Attribute::StackAlignment: 716 return bitc::ATTR_KIND_STACK_ALIGNMENT; 717 case Attribute::StackProtect: 718 return bitc::ATTR_KIND_STACK_PROTECT; 719 case Attribute::StackProtectReq: 720 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 721 case Attribute::StackProtectStrong: 722 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 723 case Attribute::SafeStack: 724 return bitc::ATTR_KIND_SAFESTACK; 725 case Attribute::ShadowCallStack: 726 return bitc::ATTR_KIND_SHADOWCALLSTACK; 727 case Attribute::StrictFP: 728 return bitc::ATTR_KIND_STRICT_FP; 729 case Attribute::StructRet: 730 return bitc::ATTR_KIND_STRUCT_RET; 731 case Attribute::SanitizeAddress: 732 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 733 case Attribute::SanitizeHWAddress: 734 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 735 case Attribute::SanitizeThread: 736 return bitc::ATTR_KIND_SANITIZE_THREAD; 737 case Attribute::SanitizeMemory: 738 return bitc::ATTR_KIND_SANITIZE_MEMORY; 739 case Attribute::SpeculativeLoadHardening: 740 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 741 case Attribute::SwiftError: 742 return bitc::ATTR_KIND_SWIFT_ERROR; 743 case Attribute::SwiftSelf: 744 return bitc::ATTR_KIND_SWIFT_SELF; 745 case Attribute::SwiftAsync: 746 return bitc::ATTR_KIND_SWIFT_ASYNC; 747 case Attribute::UWTable: 748 return bitc::ATTR_KIND_UW_TABLE; 749 case Attribute::VScaleRange: 750 return bitc::ATTR_KIND_VSCALE_RANGE; 751 case Attribute::WillReturn: 752 return bitc::ATTR_KIND_WILLRETURN; 753 case Attribute::WriteOnly: 754 return bitc::ATTR_KIND_WRITEONLY; 755 case Attribute::ZExt: 756 return bitc::ATTR_KIND_Z_EXT; 757 case Attribute::ImmArg: 758 return bitc::ATTR_KIND_IMMARG; 759 case Attribute::SanitizeMemTag: 760 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 761 case Attribute::Preallocated: 762 return bitc::ATTR_KIND_PREALLOCATED; 763 case Attribute::NoUndef: 764 return bitc::ATTR_KIND_NOUNDEF; 765 case Attribute::ByRef: 766 return bitc::ATTR_KIND_BYREF; 767 case Attribute::MustProgress: 768 return bitc::ATTR_KIND_MUSTPROGRESS; 769 case Attribute::EndAttrKinds: 770 llvm_unreachable("Can not encode end-attribute kinds marker."); 771 case Attribute::None: 772 llvm_unreachable("Can not encode none-attribute."); 773 case Attribute::EmptyKey: 774 case Attribute::TombstoneKey: 775 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 776 } 777 778 llvm_unreachable("Trying to encode unknown attribute"); 779 } 780 781 void ModuleBitcodeWriter::writeAttributeGroupTable() { 782 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 783 VE.getAttributeGroups(); 784 if (AttrGrps.empty()) return; 785 786 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 787 788 SmallVector<uint64_t, 64> Record; 789 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 790 unsigned AttrListIndex = Pair.first; 791 AttributeSet AS = Pair.second; 792 Record.push_back(VE.getAttributeGroupID(Pair)); 793 Record.push_back(AttrListIndex); 794 795 for (Attribute Attr : AS) { 796 if (Attr.isEnumAttribute()) { 797 Record.push_back(0); 798 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 799 } else if (Attr.isIntAttribute()) { 800 Record.push_back(1); 801 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 802 Record.push_back(Attr.getValueAsInt()); 803 } else if (Attr.isStringAttribute()) { 804 StringRef Kind = Attr.getKindAsString(); 805 StringRef Val = Attr.getValueAsString(); 806 807 Record.push_back(Val.empty() ? 3 : 4); 808 Record.append(Kind.begin(), Kind.end()); 809 Record.push_back(0); 810 if (!Val.empty()) { 811 Record.append(Val.begin(), Val.end()); 812 Record.push_back(0); 813 } 814 } else { 815 assert(Attr.isTypeAttribute()); 816 Type *Ty = Attr.getValueAsType(); 817 Record.push_back(Ty ? 6 : 5); 818 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 819 if (Ty) 820 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 821 } 822 } 823 824 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 825 Record.clear(); 826 } 827 828 Stream.ExitBlock(); 829 } 830 831 void ModuleBitcodeWriter::writeAttributeTable() { 832 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 833 if (Attrs.empty()) return; 834 835 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 836 837 SmallVector<uint64_t, 64> Record; 838 for (const AttributeList &AL : Attrs) { 839 for (unsigned i : AL.indexes()) { 840 AttributeSet AS = AL.getAttributes(i); 841 if (AS.hasAttributes()) 842 Record.push_back(VE.getAttributeGroupID({i, AS})); 843 } 844 845 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 846 Record.clear(); 847 } 848 849 Stream.ExitBlock(); 850 } 851 852 /// WriteTypeTable - Write out the type table for a module. 853 void ModuleBitcodeWriter::writeTypeTable() { 854 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 855 856 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 857 SmallVector<uint64_t, 64> TypeVals; 858 859 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 860 861 // Abbrev for TYPE_CODE_POINTER. 862 auto Abbv = std::make_shared<BitCodeAbbrev>(); 863 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 865 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 866 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 867 868 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 869 Abbv = std::make_shared<BitCodeAbbrev>(); 870 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 871 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 872 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 873 874 // Abbrev for TYPE_CODE_FUNCTION. 875 Abbv = std::make_shared<BitCodeAbbrev>(); 876 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 880 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 881 882 // Abbrev for TYPE_CODE_STRUCT_ANON. 883 Abbv = std::make_shared<BitCodeAbbrev>(); 884 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 888 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 889 890 // Abbrev for TYPE_CODE_STRUCT_NAME. 891 Abbv = std::make_shared<BitCodeAbbrev>(); 892 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 895 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 896 897 // Abbrev for TYPE_CODE_STRUCT_NAMED. 898 Abbv = std::make_shared<BitCodeAbbrev>(); 899 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 903 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 904 905 // Abbrev for TYPE_CODE_ARRAY. 906 Abbv = std::make_shared<BitCodeAbbrev>(); 907 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 910 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 911 912 // Emit an entry count so the reader can reserve space. 913 TypeVals.push_back(TypeList.size()); 914 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 915 TypeVals.clear(); 916 917 // Loop over all of the types, emitting each in turn. 918 for (Type *T : TypeList) { 919 int AbbrevToUse = 0; 920 unsigned Code = 0; 921 922 switch (T->getTypeID()) { 923 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 924 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 925 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 926 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 927 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 928 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 929 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 930 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 931 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 932 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 933 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 934 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 935 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 936 case Type::IntegerTyID: 937 // INTEGER: [width] 938 Code = bitc::TYPE_CODE_INTEGER; 939 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 940 break; 941 case Type::PointerTyID: { 942 PointerType *PTy = cast<PointerType>(T); 943 unsigned AddressSpace = PTy->getAddressSpace(); 944 if (PTy->isOpaque()) { 945 // OPAQUE_POINTER: [address space] 946 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 947 TypeVals.push_back(AddressSpace); 948 if (AddressSpace == 0) 949 AbbrevToUse = OpaquePtrAbbrev; 950 } else { 951 // POINTER: [pointee type, address space] 952 Code = bitc::TYPE_CODE_POINTER; 953 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 954 TypeVals.push_back(AddressSpace); 955 if (AddressSpace == 0) 956 AbbrevToUse = PtrAbbrev; 957 } 958 break; 959 } 960 case Type::FunctionTyID: { 961 FunctionType *FT = cast<FunctionType>(T); 962 // FUNCTION: [isvararg, retty, paramty x N] 963 Code = bitc::TYPE_CODE_FUNCTION; 964 TypeVals.push_back(FT->isVarArg()); 965 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 966 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 967 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 968 AbbrevToUse = FunctionAbbrev; 969 break; 970 } 971 case Type::StructTyID: { 972 StructType *ST = cast<StructType>(T); 973 // STRUCT: [ispacked, eltty x N] 974 TypeVals.push_back(ST->isPacked()); 975 // Output all of the element types. 976 for (Type *ET : ST->elements()) 977 TypeVals.push_back(VE.getTypeID(ET)); 978 979 if (ST->isLiteral()) { 980 Code = bitc::TYPE_CODE_STRUCT_ANON; 981 AbbrevToUse = StructAnonAbbrev; 982 } else { 983 if (ST->isOpaque()) { 984 Code = bitc::TYPE_CODE_OPAQUE; 985 } else { 986 Code = bitc::TYPE_CODE_STRUCT_NAMED; 987 AbbrevToUse = StructNamedAbbrev; 988 } 989 990 // Emit the name if it is present. 991 if (!ST->getName().empty()) 992 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 993 StructNameAbbrev); 994 } 995 break; 996 } 997 case Type::ArrayTyID: { 998 ArrayType *AT = cast<ArrayType>(T); 999 // ARRAY: [numelts, eltty] 1000 Code = bitc::TYPE_CODE_ARRAY; 1001 TypeVals.push_back(AT->getNumElements()); 1002 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1003 AbbrevToUse = ArrayAbbrev; 1004 break; 1005 } 1006 case Type::FixedVectorTyID: 1007 case Type::ScalableVectorTyID: { 1008 VectorType *VT = cast<VectorType>(T); 1009 // VECTOR [numelts, eltty] or 1010 // [numelts, eltty, scalable] 1011 Code = bitc::TYPE_CODE_VECTOR; 1012 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1013 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1014 if (isa<ScalableVectorType>(VT)) 1015 TypeVals.push_back(true); 1016 break; 1017 } 1018 } 1019 1020 // Emit the finished record. 1021 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1022 TypeVals.clear(); 1023 } 1024 1025 Stream.ExitBlock(); 1026 } 1027 1028 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1029 switch (Linkage) { 1030 case GlobalValue::ExternalLinkage: 1031 return 0; 1032 case GlobalValue::WeakAnyLinkage: 1033 return 16; 1034 case GlobalValue::AppendingLinkage: 1035 return 2; 1036 case GlobalValue::InternalLinkage: 1037 return 3; 1038 case GlobalValue::LinkOnceAnyLinkage: 1039 return 18; 1040 case GlobalValue::ExternalWeakLinkage: 1041 return 7; 1042 case GlobalValue::CommonLinkage: 1043 return 8; 1044 case GlobalValue::PrivateLinkage: 1045 return 9; 1046 case GlobalValue::WeakODRLinkage: 1047 return 17; 1048 case GlobalValue::LinkOnceODRLinkage: 1049 return 19; 1050 case GlobalValue::AvailableExternallyLinkage: 1051 return 12; 1052 } 1053 llvm_unreachable("Invalid linkage"); 1054 } 1055 1056 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1057 return getEncodedLinkage(GV.getLinkage()); 1058 } 1059 1060 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1061 uint64_t RawFlags = 0; 1062 RawFlags |= Flags.ReadNone; 1063 RawFlags |= (Flags.ReadOnly << 1); 1064 RawFlags |= (Flags.NoRecurse << 2); 1065 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1066 RawFlags |= (Flags.NoInline << 4); 1067 RawFlags |= (Flags.AlwaysInline << 5); 1068 RawFlags |= (Flags.NoUnwind << 6); 1069 RawFlags |= (Flags.MayThrow << 7); 1070 RawFlags |= (Flags.HasUnknownCall << 8); 1071 RawFlags |= (Flags.MustBeUnreachable << 9); 1072 return RawFlags; 1073 } 1074 1075 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1076 // in BitcodeReader.cpp. 1077 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1078 uint64_t RawFlags = 0; 1079 1080 RawFlags |= Flags.NotEligibleToImport; // bool 1081 RawFlags |= (Flags.Live << 1); 1082 RawFlags |= (Flags.DSOLocal << 2); 1083 RawFlags |= (Flags.CanAutoHide << 3); 1084 1085 // Linkage don't need to be remapped at that time for the summary. Any future 1086 // change to the getEncodedLinkage() function will need to be taken into 1087 // account here as well. 1088 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1089 1090 RawFlags |= (Flags.Visibility << 8); // 2 bits 1091 1092 return RawFlags; 1093 } 1094 1095 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1096 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1097 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1098 return RawFlags; 1099 } 1100 1101 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1102 switch (GV.getVisibility()) { 1103 case GlobalValue::DefaultVisibility: return 0; 1104 case GlobalValue::HiddenVisibility: return 1; 1105 case GlobalValue::ProtectedVisibility: return 2; 1106 } 1107 llvm_unreachable("Invalid visibility"); 1108 } 1109 1110 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1111 switch (GV.getDLLStorageClass()) { 1112 case GlobalValue::DefaultStorageClass: return 0; 1113 case GlobalValue::DLLImportStorageClass: return 1; 1114 case GlobalValue::DLLExportStorageClass: return 2; 1115 } 1116 llvm_unreachable("Invalid DLL storage class"); 1117 } 1118 1119 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1120 switch (GV.getThreadLocalMode()) { 1121 case GlobalVariable::NotThreadLocal: return 0; 1122 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1123 case GlobalVariable::LocalDynamicTLSModel: return 2; 1124 case GlobalVariable::InitialExecTLSModel: return 3; 1125 case GlobalVariable::LocalExecTLSModel: return 4; 1126 } 1127 llvm_unreachable("Invalid TLS model"); 1128 } 1129 1130 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1131 switch (C.getSelectionKind()) { 1132 case Comdat::Any: 1133 return bitc::COMDAT_SELECTION_KIND_ANY; 1134 case Comdat::ExactMatch: 1135 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1136 case Comdat::Largest: 1137 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1138 case Comdat::NoDeduplicate: 1139 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1140 case Comdat::SameSize: 1141 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1142 } 1143 llvm_unreachable("Invalid selection kind"); 1144 } 1145 1146 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1147 switch (GV.getUnnamedAddr()) { 1148 case GlobalValue::UnnamedAddr::None: return 0; 1149 case GlobalValue::UnnamedAddr::Local: return 2; 1150 case GlobalValue::UnnamedAddr::Global: return 1; 1151 } 1152 llvm_unreachable("Invalid unnamed_addr"); 1153 } 1154 1155 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1156 if (GenerateHash) 1157 Hasher.update(Str); 1158 return StrtabBuilder.add(Str); 1159 } 1160 1161 void ModuleBitcodeWriter::writeComdats() { 1162 SmallVector<unsigned, 64> Vals; 1163 for (const Comdat *C : VE.getComdats()) { 1164 // COMDAT: [strtab offset, strtab size, selection_kind] 1165 Vals.push_back(addToStrtab(C->getName())); 1166 Vals.push_back(C->getName().size()); 1167 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1168 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1169 Vals.clear(); 1170 } 1171 } 1172 1173 /// Write a record that will eventually hold the word offset of the 1174 /// module-level VST. For now the offset is 0, which will be backpatched 1175 /// after the real VST is written. Saves the bit offset to backpatch. 1176 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1177 // Write a placeholder value in for the offset of the real VST, 1178 // which is written after the function blocks so that it can include 1179 // the offset of each function. The placeholder offset will be 1180 // updated when the real VST is written. 1181 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1182 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1183 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1184 // hold the real VST offset. Must use fixed instead of VBR as we don't 1185 // know how many VBR chunks to reserve ahead of time. 1186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1187 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1188 1189 // Emit the placeholder 1190 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1191 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1192 1193 // Compute and save the bit offset to the placeholder, which will be 1194 // patched when the real VST is written. We can simply subtract the 32-bit 1195 // fixed size from the current bit number to get the location to backpatch. 1196 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1197 } 1198 1199 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1200 1201 /// Determine the encoding to use for the given string name and length. 1202 static StringEncoding getStringEncoding(StringRef Str) { 1203 bool isChar6 = true; 1204 for (char C : Str) { 1205 if (isChar6) 1206 isChar6 = BitCodeAbbrevOp::isChar6(C); 1207 if ((unsigned char)C & 128) 1208 // don't bother scanning the rest. 1209 return SE_Fixed8; 1210 } 1211 if (isChar6) 1212 return SE_Char6; 1213 return SE_Fixed7; 1214 } 1215 1216 /// Emit top-level description of module, including target triple, inline asm, 1217 /// descriptors for global variables, and function prototype info. 1218 /// Returns the bit offset to backpatch with the location of the real VST. 1219 void ModuleBitcodeWriter::writeModuleInfo() { 1220 // Emit various pieces of data attached to a module. 1221 if (!M.getTargetTriple().empty()) 1222 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1223 0 /*TODO*/); 1224 const std::string &DL = M.getDataLayoutStr(); 1225 if (!DL.empty()) 1226 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1227 if (!M.getModuleInlineAsm().empty()) 1228 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1229 0 /*TODO*/); 1230 1231 // Emit information about sections and GC, computing how many there are. Also 1232 // compute the maximum alignment value. 1233 std::map<std::string, unsigned> SectionMap; 1234 std::map<std::string, unsigned> GCMap; 1235 MaybeAlign MaxAlignment; 1236 unsigned MaxGlobalType = 0; 1237 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1238 if (A) 1239 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1240 }; 1241 for (const GlobalVariable &GV : M.globals()) { 1242 UpdateMaxAlignment(GV.getAlign()); 1243 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1244 if (GV.hasSection()) { 1245 // Give section names unique ID's. 1246 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1247 if (!Entry) { 1248 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1249 0 /*TODO*/); 1250 Entry = SectionMap.size(); 1251 } 1252 } 1253 } 1254 for (const Function &F : M) { 1255 UpdateMaxAlignment(F.getAlign()); 1256 if (F.hasSection()) { 1257 // Give section names unique ID's. 1258 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1259 if (!Entry) { 1260 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1261 0 /*TODO*/); 1262 Entry = SectionMap.size(); 1263 } 1264 } 1265 if (F.hasGC()) { 1266 // Same for GC names. 1267 unsigned &Entry = GCMap[F.getGC()]; 1268 if (!Entry) { 1269 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1270 0 /*TODO*/); 1271 Entry = GCMap.size(); 1272 } 1273 } 1274 } 1275 1276 // Emit abbrev for globals, now that we know # sections and max alignment. 1277 unsigned SimpleGVarAbbrev = 0; 1278 if (!M.global_empty()) { 1279 // Add an abbrev for common globals with no visibility or thread localness. 1280 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1281 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1285 Log2_32_Ceil(MaxGlobalType+1))); 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1287 //| explicitType << 1 1288 //| constant 1289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1291 if (!MaxAlignment) // Alignment. 1292 Abbv->Add(BitCodeAbbrevOp(0)); 1293 else { 1294 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1296 Log2_32_Ceil(MaxEncAlignment+1))); 1297 } 1298 if (SectionMap.empty()) // Section. 1299 Abbv->Add(BitCodeAbbrevOp(0)); 1300 else 1301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1302 Log2_32_Ceil(SectionMap.size()+1))); 1303 // Don't bother emitting vis + thread local. 1304 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1305 } 1306 1307 SmallVector<unsigned, 64> Vals; 1308 // Emit the module's source file name. 1309 { 1310 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1311 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1312 if (Bits == SE_Char6) 1313 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1314 else if (Bits == SE_Fixed7) 1315 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1316 1317 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1318 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1319 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1321 Abbv->Add(AbbrevOpToUse); 1322 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1323 1324 for (const auto P : M.getSourceFileName()) 1325 Vals.push_back((unsigned char)P); 1326 1327 // Emit the finished record. 1328 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1329 Vals.clear(); 1330 } 1331 1332 // Emit the global variable information. 1333 for (const GlobalVariable &GV : M.globals()) { 1334 unsigned AbbrevToUse = 0; 1335 1336 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1337 // linkage, alignment, section, visibility, threadlocal, 1338 // unnamed_addr, externally_initialized, dllstorageclass, 1339 // comdat, attributes, DSO_Local] 1340 Vals.push_back(addToStrtab(GV.getName())); 1341 Vals.push_back(GV.getName().size()); 1342 Vals.push_back(VE.getTypeID(GV.getValueType())); 1343 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1344 Vals.push_back(GV.isDeclaration() ? 0 : 1345 (VE.getValueID(GV.getInitializer()) + 1)); 1346 Vals.push_back(getEncodedLinkage(GV)); 1347 Vals.push_back(getEncodedAlign(GV.getAlign())); 1348 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1349 : 0); 1350 if (GV.isThreadLocal() || 1351 GV.getVisibility() != GlobalValue::DefaultVisibility || 1352 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1353 GV.isExternallyInitialized() || 1354 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1355 GV.hasComdat() || 1356 GV.hasAttributes() || 1357 GV.isDSOLocal() || 1358 GV.hasPartition()) { 1359 Vals.push_back(getEncodedVisibility(GV)); 1360 Vals.push_back(getEncodedThreadLocalMode(GV)); 1361 Vals.push_back(getEncodedUnnamedAddr(GV)); 1362 Vals.push_back(GV.isExternallyInitialized()); 1363 Vals.push_back(getEncodedDLLStorageClass(GV)); 1364 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1365 1366 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1367 Vals.push_back(VE.getAttributeListID(AL)); 1368 1369 Vals.push_back(GV.isDSOLocal()); 1370 Vals.push_back(addToStrtab(GV.getPartition())); 1371 Vals.push_back(GV.getPartition().size()); 1372 } else { 1373 AbbrevToUse = SimpleGVarAbbrev; 1374 } 1375 1376 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1377 Vals.clear(); 1378 } 1379 1380 // Emit the function proto information. 1381 for (const Function &F : M) { 1382 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1383 // linkage, paramattrs, alignment, section, visibility, gc, 1384 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1385 // prefixdata, personalityfn, DSO_Local, addrspace] 1386 Vals.push_back(addToStrtab(F.getName())); 1387 Vals.push_back(F.getName().size()); 1388 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1389 Vals.push_back(F.getCallingConv()); 1390 Vals.push_back(F.isDeclaration()); 1391 Vals.push_back(getEncodedLinkage(F)); 1392 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1393 Vals.push_back(getEncodedAlign(F.getAlign())); 1394 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1395 : 0); 1396 Vals.push_back(getEncodedVisibility(F)); 1397 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1398 Vals.push_back(getEncodedUnnamedAddr(F)); 1399 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1400 : 0); 1401 Vals.push_back(getEncodedDLLStorageClass(F)); 1402 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1403 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1404 : 0); 1405 Vals.push_back( 1406 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1407 1408 Vals.push_back(F.isDSOLocal()); 1409 Vals.push_back(F.getAddressSpace()); 1410 Vals.push_back(addToStrtab(F.getPartition())); 1411 Vals.push_back(F.getPartition().size()); 1412 1413 unsigned AbbrevToUse = 0; 1414 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1415 Vals.clear(); 1416 } 1417 1418 // Emit the alias information. 1419 for (const GlobalAlias &A : M.aliases()) { 1420 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1421 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1422 // DSO_Local] 1423 Vals.push_back(addToStrtab(A.getName())); 1424 Vals.push_back(A.getName().size()); 1425 Vals.push_back(VE.getTypeID(A.getValueType())); 1426 Vals.push_back(A.getType()->getAddressSpace()); 1427 Vals.push_back(VE.getValueID(A.getAliasee())); 1428 Vals.push_back(getEncodedLinkage(A)); 1429 Vals.push_back(getEncodedVisibility(A)); 1430 Vals.push_back(getEncodedDLLStorageClass(A)); 1431 Vals.push_back(getEncodedThreadLocalMode(A)); 1432 Vals.push_back(getEncodedUnnamedAddr(A)); 1433 Vals.push_back(A.isDSOLocal()); 1434 Vals.push_back(addToStrtab(A.getPartition())); 1435 Vals.push_back(A.getPartition().size()); 1436 1437 unsigned AbbrevToUse = 0; 1438 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1439 Vals.clear(); 1440 } 1441 1442 // Emit the ifunc information. 1443 for (const GlobalIFunc &I : M.ifuncs()) { 1444 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1445 // val#, linkage, visibility, DSO_Local] 1446 Vals.push_back(addToStrtab(I.getName())); 1447 Vals.push_back(I.getName().size()); 1448 Vals.push_back(VE.getTypeID(I.getValueType())); 1449 Vals.push_back(I.getType()->getAddressSpace()); 1450 Vals.push_back(VE.getValueID(I.getResolver())); 1451 Vals.push_back(getEncodedLinkage(I)); 1452 Vals.push_back(getEncodedVisibility(I)); 1453 Vals.push_back(I.isDSOLocal()); 1454 Vals.push_back(addToStrtab(I.getPartition())); 1455 Vals.push_back(I.getPartition().size()); 1456 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1457 Vals.clear(); 1458 } 1459 1460 writeValueSymbolTableForwardDecl(); 1461 } 1462 1463 static uint64_t getOptimizationFlags(const Value *V) { 1464 uint64_t Flags = 0; 1465 1466 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1467 if (OBO->hasNoSignedWrap()) 1468 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1469 if (OBO->hasNoUnsignedWrap()) 1470 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1471 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1472 if (PEO->isExact()) 1473 Flags |= 1 << bitc::PEO_EXACT; 1474 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1475 if (FPMO->hasAllowReassoc()) 1476 Flags |= bitc::AllowReassoc; 1477 if (FPMO->hasNoNaNs()) 1478 Flags |= bitc::NoNaNs; 1479 if (FPMO->hasNoInfs()) 1480 Flags |= bitc::NoInfs; 1481 if (FPMO->hasNoSignedZeros()) 1482 Flags |= bitc::NoSignedZeros; 1483 if (FPMO->hasAllowReciprocal()) 1484 Flags |= bitc::AllowReciprocal; 1485 if (FPMO->hasAllowContract()) 1486 Flags |= bitc::AllowContract; 1487 if (FPMO->hasApproxFunc()) 1488 Flags |= bitc::ApproxFunc; 1489 } 1490 1491 return Flags; 1492 } 1493 1494 void ModuleBitcodeWriter::writeValueAsMetadata( 1495 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1496 // Mimic an MDNode with a value as one operand. 1497 Value *V = MD->getValue(); 1498 Record.push_back(VE.getTypeID(V->getType())); 1499 Record.push_back(VE.getValueID(V)); 1500 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1501 Record.clear(); 1502 } 1503 1504 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1505 SmallVectorImpl<uint64_t> &Record, 1506 unsigned Abbrev) { 1507 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1508 Metadata *MD = N->getOperand(i); 1509 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1510 "Unexpected function-local metadata"); 1511 Record.push_back(VE.getMetadataOrNullID(MD)); 1512 } 1513 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1514 : bitc::METADATA_NODE, 1515 Record, Abbrev); 1516 Record.clear(); 1517 } 1518 1519 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1520 // Assume the column is usually under 128, and always output the inlined-at 1521 // location (it's never more expensive than building an array size 1). 1522 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1523 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1530 return Stream.EmitAbbrev(std::move(Abbv)); 1531 } 1532 1533 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1534 SmallVectorImpl<uint64_t> &Record, 1535 unsigned &Abbrev) { 1536 if (!Abbrev) 1537 Abbrev = createDILocationAbbrev(); 1538 1539 Record.push_back(N->isDistinct()); 1540 Record.push_back(N->getLine()); 1541 Record.push_back(N->getColumn()); 1542 Record.push_back(VE.getMetadataID(N->getScope())); 1543 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1544 Record.push_back(N->isImplicitCode()); 1545 1546 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1547 Record.clear(); 1548 } 1549 1550 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1551 // Assume the column is usually under 128, and always output the inlined-at 1552 // location (it's never more expensive than building an array size 1). 1553 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1554 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1561 return Stream.EmitAbbrev(std::move(Abbv)); 1562 } 1563 1564 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1565 SmallVectorImpl<uint64_t> &Record, 1566 unsigned &Abbrev) { 1567 if (!Abbrev) 1568 Abbrev = createGenericDINodeAbbrev(); 1569 1570 Record.push_back(N->isDistinct()); 1571 Record.push_back(N->getTag()); 1572 Record.push_back(0); // Per-tag version field; unused for now. 1573 1574 for (auto &I : N->operands()) 1575 Record.push_back(VE.getMetadataOrNullID(I)); 1576 1577 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1578 Record.clear(); 1579 } 1580 1581 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1582 SmallVectorImpl<uint64_t> &Record, 1583 unsigned Abbrev) { 1584 const uint64_t Version = 2 << 1; 1585 Record.push_back((uint64_t)N->isDistinct() | Version); 1586 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1587 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1588 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1589 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1590 1591 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1592 Record.clear(); 1593 } 1594 1595 void ModuleBitcodeWriter::writeDIGenericSubrange( 1596 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1597 unsigned Abbrev) { 1598 Record.push_back((uint64_t)N->isDistinct()); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1600 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1601 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1602 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1603 1604 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1605 Record.clear(); 1606 } 1607 1608 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1609 if ((int64_t)V >= 0) 1610 Vals.push_back(V << 1); 1611 else 1612 Vals.push_back((-V << 1) | 1); 1613 } 1614 1615 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1616 // We have an arbitrary precision integer value to write whose 1617 // bit width is > 64. However, in canonical unsigned integer 1618 // format it is likely that the high bits are going to be zero. 1619 // So, we only write the number of active words. 1620 unsigned NumWords = A.getActiveWords(); 1621 const uint64_t *RawData = A.getRawData(); 1622 for (unsigned i = 0; i < NumWords; i++) 1623 emitSignedInt64(Vals, RawData[i]); 1624 } 1625 1626 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1627 SmallVectorImpl<uint64_t> &Record, 1628 unsigned Abbrev) { 1629 const uint64_t IsBigInt = 1 << 2; 1630 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1631 Record.push_back(N->getValue().getBitWidth()); 1632 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1633 emitWideAPInt(Record, N->getValue()); 1634 1635 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1636 Record.clear(); 1637 } 1638 1639 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1640 SmallVectorImpl<uint64_t> &Record, 1641 unsigned Abbrev) { 1642 Record.push_back(N->isDistinct()); 1643 Record.push_back(N->getTag()); 1644 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1645 Record.push_back(N->getSizeInBits()); 1646 Record.push_back(N->getAlignInBits()); 1647 Record.push_back(N->getEncoding()); 1648 Record.push_back(N->getFlags()); 1649 1650 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1651 Record.clear(); 1652 } 1653 1654 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1655 SmallVectorImpl<uint64_t> &Record, 1656 unsigned Abbrev) { 1657 Record.push_back(N->isDistinct()); 1658 Record.push_back(N->getTag()); 1659 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1660 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1662 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1663 Record.push_back(N->getSizeInBits()); 1664 Record.push_back(N->getAlignInBits()); 1665 Record.push_back(N->getEncoding()); 1666 1667 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1668 Record.clear(); 1669 } 1670 1671 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1672 SmallVectorImpl<uint64_t> &Record, 1673 unsigned Abbrev) { 1674 Record.push_back(N->isDistinct()); 1675 Record.push_back(N->getTag()); 1676 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1677 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1678 Record.push_back(N->getLine()); 1679 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1680 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1681 Record.push_back(N->getSizeInBits()); 1682 Record.push_back(N->getAlignInBits()); 1683 Record.push_back(N->getOffsetInBits()); 1684 Record.push_back(N->getFlags()); 1685 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1686 1687 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1688 // that there is no DWARF address space associated with DIDerivedType. 1689 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1690 Record.push_back(*DWARFAddressSpace + 1); 1691 else 1692 Record.push_back(0); 1693 1694 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1695 1696 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1697 Record.clear(); 1698 } 1699 1700 void ModuleBitcodeWriter::writeDICompositeType( 1701 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1702 unsigned Abbrev) { 1703 const unsigned IsNotUsedInOldTypeRef = 0x2; 1704 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1705 Record.push_back(N->getTag()); 1706 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1707 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1708 Record.push_back(N->getLine()); 1709 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1711 Record.push_back(N->getSizeInBits()); 1712 Record.push_back(N->getAlignInBits()); 1713 Record.push_back(N->getOffsetInBits()); 1714 Record.push_back(N->getFlags()); 1715 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1716 Record.push_back(N->getRuntimeLang()); 1717 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1726 1727 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1728 Record.clear(); 1729 } 1730 1731 void ModuleBitcodeWriter::writeDISubroutineType( 1732 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1733 unsigned Abbrev) { 1734 const unsigned HasNoOldTypeRefs = 0x2; 1735 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1736 Record.push_back(N->getFlags()); 1737 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1738 Record.push_back(N->getCC()); 1739 1740 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1741 Record.clear(); 1742 } 1743 1744 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1745 SmallVectorImpl<uint64_t> &Record, 1746 unsigned Abbrev) { 1747 Record.push_back(N->isDistinct()); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1749 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1750 if (N->getRawChecksum()) { 1751 Record.push_back(N->getRawChecksum()->Kind); 1752 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1753 } else { 1754 // Maintain backwards compatibility with the old internal representation of 1755 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1756 Record.push_back(0); 1757 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1758 } 1759 auto Source = N->getRawSource(); 1760 if (Source) 1761 Record.push_back(VE.getMetadataOrNullID(*Source)); 1762 1763 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1764 Record.clear(); 1765 } 1766 1767 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1768 SmallVectorImpl<uint64_t> &Record, 1769 unsigned Abbrev) { 1770 assert(N->isDistinct() && "Expected distinct compile units"); 1771 Record.push_back(/* IsDistinct */ true); 1772 Record.push_back(N->getSourceLanguage()); 1773 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1774 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1775 Record.push_back(N->isOptimized()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1777 Record.push_back(N->getRuntimeVersion()); 1778 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1779 Record.push_back(N->getEmissionKind()); 1780 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1781 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1782 Record.push_back(/* subprograms */ 0); 1783 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1785 Record.push_back(N->getDWOId()); 1786 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1787 Record.push_back(N->getSplitDebugInlining()); 1788 Record.push_back(N->getDebugInfoForProfiling()); 1789 Record.push_back((unsigned)N->getNameTableKind()); 1790 Record.push_back(N->getRangesBaseAddress()); 1791 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1792 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1793 1794 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1795 Record.clear(); 1796 } 1797 1798 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1799 SmallVectorImpl<uint64_t> &Record, 1800 unsigned Abbrev) { 1801 const uint64_t HasUnitFlag = 1 << 1; 1802 const uint64_t HasSPFlagsFlag = 1 << 2; 1803 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1804 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1805 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1806 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1807 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1808 Record.push_back(N->getLine()); 1809 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1810 Record.push_back(N->getScopeLine()); 1811 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1812 Record.push_back(N->getSPFlags()); 1813 Record.push_back(N->getVirtualIndex()); 1814 Record.push_back(N->getFlags()); 1815 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1817 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1818 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1819 Record.push_back(N->getThisAdjustment()); 1820 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1821 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1822 1823 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1824 Record.clear(); 1825 } 1826 1827 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1828 SmallVectorImpl<uint64_t> &Record, 1829 unsigned Abbrev) { 1830 Record.push_back(N->isDistinct()); 1831 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1832 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1833 Record.push_back(N->getLine()); 1834 Record.push_back(N->getColumn()); 1835 1836 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1837 Record.clear(); 1838 } 1839 1840 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1841 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1842 unsigned Abbrev) { 1843 Record.push_back(N->isDistinct()); 1844 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1845 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1846 Record.push_back(N->getDiscriminator()); 1847 1848 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1849 Record.clear(); 1850 } 1851 1852 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1853 SmallVectorImpl<uint64_t> &Record, 1854 unsigned Abbrev) { 1855 Record.push_back(N->isDistinct()); 1856 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1857 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1858 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1859 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1860 Record.push_back(N->getLineNo()); 1861 1862 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1863 Record.clear(); 1864 } 1865 1866 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1867 SmallVectorImpl<uint64_t> &Record, 1868 unsigned Abbrev) { 1869 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1870 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1871 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1872 1873 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1874 Record.clear(); 1875 } 1876 1877 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1878 SmallVectorImpl<uint64_t> &Record, 1879 unsigned Abbrev) { 1880 Record.push_back(N->isDistinct()); 1881 Record.push_back(N->getMacinfoType()); 1882 Record.push_back(N->getLine()); 1883 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1884 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1885 1886 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1887 Record.clear(); 1888 } 1889 1890 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1891 SmallVectorImpl<uint64_t> &Record, 1892 unsigned Abbrev) { 1893 Record.push_back(N->isDistinct()); 1894 Record.push_back(N->getMacinfoType()); 1895 Record.push_back(N->getLine()); 1896 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1897 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1898 1899 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1900 Record.clear(); 1901 } 1902 1903 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1904 SmallVectorImpl<uint64_t> &Record, 1905 unsigned Abbrev) { 1906 Record.reserve(N->getArgs().size()); 1907 for (ValueAsMetadata *MD : N->getArgs()) 1908 Record.push_back(VE.getMetadataID(MD)); 1909 1910 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1911 Record.clear(); 1912 } 1913 1914 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1915 SmallVectorImpl<uint64_t> &Record, 1916 unsigned Abbrev) { 1917 Record.push_back(N->isDistinct()); 1918 for (auto &I : N->operands()) 1919 Record.push_back(VE.getMetadataOrNullID(I)); 1920 Record.push_back(N->getLineNo()); 1921 Record.push_back(N->getIsDecl()); 1922 1923 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1924 Record.clear(); 1925 } 1926 1927 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1928 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1929 unsigned Abbrev) { 1930 Record.push_back(N->isDistinct()); 1931 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1932 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1933 Record.push_back(N->isDefault()); 1934 1935 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1936 Record.clear(); 1937 } 1938 1939 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1940 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1941 unsigned Abbrev) { 1942 Record.push_back(N->isDistinct()); 1943 Record.push_back(N->getTag()); 1944 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1945 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1946 Record.push_back(N->isDefault()); 1947 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1948 1949 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1950 Record.clear(); 1951 } 1952 1953 void ModuleBitcodeWriter::writeDIGlobalVariable( 1954 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1955 unsigned Abbrev) { 1956 const uint64_t Version = 2 << 1; 1957 Record.push_back((uint64_t)N->isDistinct() | Version); 1958 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1959 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1960 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1961 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1962 Record.push_back(N->getLine()); 1963 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1964 Record.push_back(N->isLocalToUnit()); 1965 Record.push_back(N->isDefinition()); 1966 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1967 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1968 Record.push_back(N->getAlignInBits()); 1969 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1970 1971 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1972 Record.clear(); 1973 } 1974 1975 void ModuleBitcodeWriter::writeDILocalVariable( 1976 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1977 unsigned Abbrev) { 1978 // In order to support all possible bitcode formats in BitcodeReader we need 1979 // to distinguish the following cases: 1980 // 1) Record has no artificial tag (Record[1]), 1981 // has no obsolete inlinedAt field (Record[9]). 1982 // In this case Record size will be 8, HasAlignment flag is false. 1983 // 2) Record has artificial tag (Record[1]), 1984 // has no obsolete inlignedAt field (Record[9]). 1985 // In this case Record size will be 9, HasAlignment flag is false. 1986 // 3) Record has both artificial tag (Record[1]) and 1987 // obsolete inlignedAt field (Record[9]). 1988 // In this case Record size will be 10, HasAlignment flag is false. 1989 // 4) Record has neither artificial tag, nor inlignedAt field, but 1990 // HasAlignment flag is true and Record[8] contains alignment value. 1991 const uint64_t HasAlignmentFlag = 1 << 1; 1992 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1993 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1994 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1995 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1996 Record.push_back(N->getLine()); 1997 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1998 Record.push_back(N->getArg()); 1999 Record.push_back(N->getFlags()); 2000 Record.push_back(N->getAlignInBits()); 2001 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2002 2003 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2004 Record.clear(); 2005 } 2006 2007 void ModuleBitcodeWriter::writeDILabel( 2008 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2009 unsigned Abbrev) { 2010 Record.push_back((uint64_t)N->isDistinct()); 2011 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2012 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2013 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2014 Record.push_back(N->getLine()); 2015 2016 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2017 Record.clear(); 2018 } 2019 2020 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2021 SmallVectorImpl<uint64_t> &Record, 2022 unsigned Abbrev) { 2023 Record.reserve(N->getElements().size() + 1); 2024 const uint64_t Version = 3 << 1; 2025 Record.push_back((uint64_t)N->isDistinct() | Version); 2026 Record.append(N->elements_begin(), N->elements_end()); 2027 2028 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2029 Record.clear(); 2030 } 2031 2032 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2033 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2034 unsigned Abbrev) { 2035 Record.push_back(N->isDistinct()); 2036 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2037 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2038 2039 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2040 Record.clear(); 2041 } 2042 2043 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2044 SmallVectorImpl<uint64_t> &Record, 2045 unsigned Abbrev) { 2046 Record.push_back(N->isDistinct()); 2047 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2048 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2049 Record.push_back(N->getLine()); 2050 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2051 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2052 Record.push_back(N->getAttributes()); 2053 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2054 2055 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2056 Record.clear(); 2057 } 2058 2059 void ModuleBitcodeWriter::writeDIImportedEntity( 2060 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2061 unsigned Abbrev) { 2062 Record.push_back(N->isDistinct()); 2063 Record.push_back(N->getTag()); 2064 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2065 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2066 Record.push_back(N->getLine()); 2067 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2068 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2069 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2070 2071 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2072 Record.clear(); 2073 } 2074 2075 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2076 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2077 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2080 return Stream.EmitAbbrev(std::move(Abbv)); 2081 } 2082 2083 void ModuleBitcodeWriter::writeNamedMetadata( 2084 SmallVectorImpl<uint64_t> &Record) { 2085 if (M.named_metadata_empty()) 2086 return; 2087 2088 unsigned Abbrev = createNamedMetadataAbbrev(); 2089 for (const NamedMDNode &NMD : M.named_metadata()) { 2090 // Write name. 2091 StringRef Str = NMD.getName(); 2092 Record.append(Str.bytes_begin(), Str.bytes_end()); 2093 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2094 Record.clear(); 2095 2096 // Write named metadata operands. 2097 for (const MDNode *N : NMD.operands()) 2098 Record.push_back(VE.getMetadataID(N)); 2099 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2100 Record.clear(); 2101 } 2102 } 2103 2104 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2105 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2106 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2110 return Stream.EmitAbbrev(std::move(Abbv)); 2111 } 2112 2113 /// Write out a record for MDString. 2114 /// 2115 /// All the metadata strings in a metadata block are emitted in a single 2116 /// record. The sizes and strings themselves are shoved into a blob. 2117 void ModuleBitcodeWriter::writeMetadataStrings( 2118 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2119 if (Strings.empty()) 2120 return; 2121 2122 // Start the record with the number of strings. 2123 Record.push_back(bitc::METADATA_STRINGS); 2124 Record.push_back(Strings.size()); 2125 2126 // Emit the sizes of the strings in the blob. 2127 SmallString<256> Blob; 2128 { 2129 BitstreamWriter W(Blob); 2130 for (const Metadata *MD : Strings) 2131 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2132 W.FlushToWord(); 2133 } 2134 2135 // Add the offset to the strings to the record. 2136 Record.push_back(Blob.size()); 2137 2138 // Add the strings to the blob. 2139 for (const Metadata *MD : Strings) 2140 Blob.append(cast<MDString>(MD)->getString()); 2141 2142 // Emit the final record. 2143 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2144 Record.clear(); 2145 } 2146 2147 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2148 enum MetadataAbbrev : unsigned { 2149 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2150 #include "llvm/IR/Metadata.def" 2151 LastPlusOne 2152 }; 2153 2154 void ModuleBitcodeWriter::writeMetadataRecords( 2155 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2156 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2157 if (MDs.empty()) 2158 return; 2159 2160 // Initialize MDNode abbreviations. 2161 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2162 #include "llvm/IR/Metadata.def" 2163 2164 for (const Metadata *MD : MDs) { 2165 if (IndexPos) 2166 IndexPos->push_back(Stream.GetCurrentBitNo()); 2167 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2168 assert(N->isResolved() && "Expected forward references to be resolved"); 2169 2170 switch (N->getMetadataID()) { 2171 default: 2172 llvm_unreachable("Invalid MDNode subclass"); 2173 #define HANDLE_MDNODE_LEAF(CLASS) \ 2174 case Metadata::CLASS##Kind: \ 2175 if (MDAbbrevs) \ 2176 write##CLASS(cast<CLASS>(N), Record, \ 2177 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2178 else \ 2179 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2180 continue; 2181 #include "llvm/IR/Metadata.def" 2182 } 2183 } 2184 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2185 } 2186 } 2187 2188 void ModuleBitcodeWriter::writeModuleMetadata() { 2189 if (!VE.hasMDs() && M.named_metadata_empty()) 2190 return; 2191 2192 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2193 SmallVector<uint64_t, 64> Record; 2194 2195 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2196 // block and load any metadata. 2197 std::vector<unsigned> MDAbbrevs; 2198 2199 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2200 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2201 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2202 createGenericDINodeAbbrev(); 2203 2204 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2205 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2208 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2209 2210 Abbv = std::make_shared<BitCodeAbbrev>(); 2211 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2214 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2215 2216 // Emit MDStrings together upfront. 2217 writeMetadataStrings(VE.getMDStrings(), Record); 2218 2219 // We only emit an index for the metadata record if we have more than a given 2220 // (naive) threshold of metadatas, otherwise it is not worth it. 2221 if (VE.getNonMDStrings().size() > IndexThreshold) { 2222 // Write a placeholder value in for the offset of the metadata index, 2223 // which is written after the records, so that it can include 2224 // the offset of each entry. The placeholder offset will be 2225 // updated after all records are emitted. 2226 uint64_t Vals[] = {0, 0}; 2227 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2228 } 2229 2230 // Compute and save the bit offset to the current position, which will be 2231 // patched when we emit the index later. We can simply subtract the 64-bit 2232 // fixed size from the current bit number to get the location to backpatch. 2233 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2234 2235 // This index will contain the bitpos for each individual record. 2236 std::vector<uint64_t> IndexPos; 2237 IndexPos.reserve(VE.getNonMDStrings().size()); 2238 2239 // Write all the records 2240 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2241 2242 if (VE.getNonMDStrings().size() > IndexThreshold) { 2243 // Now that we have emitted all the records we will emit the index. But 2244 // first 2245 // backpatch the forward reference so that the reader can skip the records 2246 // efficiently. 2247 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2248 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2249 2250 // Delta encode the index. 2251 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2252 for (auto &Elt : IndexPos) { 2253 auto EltDelta = Elt - PreviousValue; 2254 PreviousValue = Elt; 2255 Elt = EltDelta; 2256 } 2257 // Emit the index record. 2258 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2259 IndexPos.clear(); 2260 } 2261 2262 // Write the named metadata now. 2263 writeNamedMetadata(Record); 2264 2265 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2266 SmallVector<uint64_t, 4> Record; 2267 Record.push_back(VE.getValueID(&GO)); 2268 pushGlobalMetadataAttachment(Record, GO); 2269 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2270 }; 2271 for (const Function &F : M) 2272 if (F.isDeclaration() && F.hasMetadata()) 2273 AddDeclAttachedMetadata(F); 2274 // FIXME: Only store metadata for declarations here, and move data for global 2275 // variable definitions to a separate block (PR28134). 2276 for (const GlobalVariable &GV : M.globals()) 2277 if (GV.hasMetadata()) 2278 AddDeclAttachedMetadata(GV); 2279 2280 Stream.ExitBlock(); 2281 } 2282 2283 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2284 if (!VE.hasMDs()) 2285 return; 2286 2287 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2288 SmallVector<uint64_t, 64> Record; 2289 writeMetadataStrings(VE.getMDStrings(), Record); 2290 writeMetadataRecords(VE.getNonMDStrings(), Record); 2291 Stream.ExitBlock(); 2292 } 2293 2294 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2295 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2296 // [n x [id, mdnode]] 2297 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2298 GO.getAllMetadata(MDs); 2299 for (const auto &I : MDs) { 2300 Record.push_back(I.first); 2301 Record.push_back(VE.getMetadataID(I.second)); 2302 } 2303 } 2304 2305 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2306 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2307 2308 SmallVector<uint64_t, 64> Record; 2309 2310 if (F.hasMetadata()) { 2311 pushGlobalMetadataAttachment(Record, F); 2312 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2313 Record.clear(); 2314 } 2315 2316 // Write metadata attachments 2317 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2318 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2319 for (const BasicBlock &BB : F) 2320 for (const Instruction &I : BB) { 2321 MDs.clear(); 2322 I.getAllMetadataOtherThanDebugLoc(MDs); 2323 2324 // If no metadata, ignore instruction. 2325 if (MDs.empty()) continue; 2326 2327 Record.push_back(VE.getInstructionID(&I)); 2328 2329 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2330 Record.push_back(MDs[i].first); 2331 Record.push_back(VE.getMetadataID(MDs[i].second)); 2332 } 2333 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2334 Record.clear(); 2335 } 2336 2337 Stream.ExitBlock(); 2338 } 2339 2340 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2341 SmallVector<uint64_t, 64> Record; 2342 2343 // Write metadata kinds 2344 // METADATA_KIND - [n x [id, name]] 2345 SmallVector<StringRef, 8> Names; 2346 M.getMDKindNames(Names); 2347 2348 if (Names.empty()) return; 2349 2350 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2351 2352 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2353 Record.push_back(MDKindID); 2354 StringRef KName = Names[MDKindID]; 2355 Record.append(KName.begin(), KName.end()); 2356 2357 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2358 Record.clear(); 2359 } 2360 2361 Stream.ExitBlock(); 2362 } 2363 2364 void ModuleBitcodeWriter::writeOperandBundleTags() { 2365 // Write metadata kinds 2366 // 2367 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2368 // 2369 // OPERAND_BUNDLE_TAG - [strchr x N] 2370 2371 SmallVector<StringRef, 8> Tags; 2372 M.getOperandBundleTags(Tags); 2373 2374 if (Tags.empty()) 2375 return; 2376 2377 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2378 2379 SmallVector<uint64_t, 64> Record; 2380 2381 for (auto Tag : Tags) { 2382 Record.append(Tag.begin(), Tag.end()); 2383 2384 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2385 Record.clear(); 2386 } 2387 2388 Stream.ExitBlock(); 2389 } 2390 2391 void ModuleBitcodeWriter::writeSyncScopeNames() { 2392 SmallVector<StringRef, 8> SSNs; 2393 M.getContext().getSyncScopeNames(SSNs); 2394 if (SSNs.empty()) 2395 return; 2396 2397 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2398 2399 SmallVector<uint64_t, 64> Record; 2400 for (auto SSN : SSNs) { 2401 Record.append(SSN.begin(), SSN.end()); 2402 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2403 Record.clear(); 2404 } 2405 2406 Stream.ExitBlock(); 2407 } 2408 2409 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2410 bool isGlobal) { 2411 if (FirstVal == LastVal) return; 2412 2413 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2414 2415 unsigned AggregateAbbrev = 0; 2416 unsigned String8Abbrev = 0; 2417 unsigned CString7Abbrev = 0; 2418 unsigned CString6Abbrev = 0; 2419 // If this is a constant pool for the module, emit module-specific abbrevs. 2420 if (isGlobal) { 2421 // Abbrev for CST_CODE_AGGREGATE. 2422 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2423 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2426 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2427 2428 // Abbrev for CST_CODE_STRING. 2429 Abbv = std::make_shared<BitCodeAbbrev>(); 2430 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2433 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2434 // Abbrev for CST_CODE_CSTRING. 2435 Abbv = std::make_shared<BitCodeAbbrev>(); 2436 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2439 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2440 // Abbrev for CST_CODE_CSTRING. 2441 Abbv = std::make_shared<BitCodeAbbrev>(); 2442 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2445 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2446 } 2447 2448 SmallVector<uint64_t, 64> Record; 2449 2450 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2451 Type *LastTy = nullptr; 2452 for (unsigned i = FirstVal; i != LastVal; ++i) { 2453 const Value *V = Vals[i].first; 2454 // If we need to switch types, do so now. 2455 if (V->getType() != LastTy) { 2456 LastTy = V->getType(); 2457 Record.push_back(VE.getTypeID(LastTy)); 2458 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2459 CONSTANTS_SETTYPE_ABBREV); 2460 Record.clear(); 2461 } 2462 2463 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2464 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2465 Record.push_back( 2466 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2467 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2468 2469 // Add the asm string. 2470 const std::string &AsmStr = IA->getAsmString(); 2471 Record.push_back(AsmStr.size()); 2472 Record.append(AsmStr.begin(), AsmStr.end()); 2473 2474 // Add the constraint string. 2475 const std::string &ConstraintStr = IA->getConstraintString(); 2476 Record.push_back(ConstraintStr.size()); 2477 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2478 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2479 Record.clear(); 2480 continue; 2481 } 2482 const Constant *C = cast<Constant>(V); 2483 unsigned Code = -1U; 2484 unsigned AbbrevToUse = 0; 2485 if (C->isNullValue()) { 2486 Code = bitc::CST_CODE_NULL; 2487 } else if (isa<PoisonValue>(C)) { 2488 Code = bitc::CST_CODE_POISON; 2489 } else if (isa<UndefValue>(C)) { 2490 Code = bitc::CST_CODE_UNDEF; 2491 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2492 if (IV->getBitWidth() <= 64) { 2493 uint64_t V = IV->getSExtValue(); 2494 emitSignedInt64(Record, V); 2495 Code = bitc::CST_CODE_INTEGER; 2496 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2497 } else { // Wide integers, > 64 bits in size. 2498 emitWideAPInt(Record, IV->getValue()); 2499 Code = bitc::CST_CODE_WIDE_INTEGER; 2500 } 2501 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2502 Code = bitc::CST_CODE_FLOAT; 2503 Type *Ty = CFP->getType(); 2504 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2505 Ty->isDoubleTy()) { 2506 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2507 } else if (Ty->isX86_FP80Ty()) { 2508 // api needed to prevent premature destruction 2509 // bits are not in the same order as a normal i80 APInt, compensate. 2510 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2511 const uint64_t *p = api.getRawData(); 2512 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2513 Record.push_back(p[0] & 0xffffLL); 2514 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2515 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2516 const uint64_t *p = api.getRawData(); 2517 Record.push_back(p[0]); 2518 Record.push_back(p[1]); 2519 } else { 2520 assert(0 && "Unknown FP type!"); 2521 } 2522 } else if (isa<ConstantDataSequential>(C) && 2523 cast<ConstantDataSequential>(C)->isString()) { 2524 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2525 // Emit constant strings specially. 2526 unsigned NumElts = Str->getNumElements(); 2527 // If this is a null-terminated string, use the denser CSTRING encoding. 2528 if (Str->isCString()) { 2529 Code = bitc::CST_CODE_CSTRING; 2530 --NumElts; // Don't encode the null, which isn't allowed by char6. 2531 } else { 2532 Code = bitc::CST_CODE_STRING; 2533 AbbrevToUse = String8Abbrev; 2534 } 2535 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2536 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2537 for (unsigned i = 0; i != NumElts; ++i) { 2538 unsigned char V = Str->getElementAsInteger(i); 2539 Record.push_back(V); 2540 isCStr7 &= (V & 128) == 0; 2541 if (isCStrChar6) 2542 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2543 } 2544 2545 if (isCStrChar6) 2546 AbbrevToUse = CString6Abbrev; 2547 else if (isCStr7) 2548 AbbrevToUse = CString7Abbrev; 2549 } else if (const ConstantDataSequential *CDS = 2550 dyn_cast<ConstantDataSequential>(C)) { 2551 Code = bitc::CST_CODE_DATA; 2552 Type *EltTy = CDS->getElementType(); 2553 if (isa<IntegerType>(EltTy)) { 2554 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2555 Record.push_back(CDS->getElementAsInteger(i)); 2556 } else { 2557 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2558 Record.push_back( 2559 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2560 } 2561 } else if (isa<ConstantAggregate>(C)) { 2562 Code = bitc::CST_CODE_AGGREGATE; 2563 for (const Value *Op : C->operands()) 2564 Record.push_back(VE.getValueID(Op)); 2565 AbbrevToUse = AggregateAbbrev; 2566 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2567 switch (CE->getOpcode()) { 2568 default: 2569 if (Instruction::isCast(CE->getOpcode())) { 2570 Code = bitc::CST_CODE_CE_CAST; 2571 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2572 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2573 Record.push_back(VE.getValueID(C->getOperand(0))); 2574 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2575 } else { 2576 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2577 Code = bitc::CST_CODE_CE_BINOP; 2578 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2579 Record.push_back(VE.getValueID(C->getOperand(0))); 2580 Record.push_back(VE.getValueID(C->getOperand(1))); 2581 uint64_t Flags = getOptimizationFlags(CE); 2582 if (Flags != 0) 2583 Record.push_back(Flags); 2584 } 2585 break; 2586 case Instruction::FNeg: { 2587 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2588 Code = bitc::CST_CODE_CE_UNOP; 2589 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2590 Record.push_back(VE.getValueID(C->getOperand(0))); 2591 uint64_t Flags = getOptimizationFlags(CE); 2592 if (Flags != 0) 2593 Record.push_back(Flags); 2594 break; 2595 } 2596 case Instruction::GetElementPtr: { 2597 Code = bitc::CST_CODE_CE_GEP; 2598 const auto *GO = cast<GEPOperator>(C); 2599 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2600 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2601 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2602 Record.push_back((*Idx << 1) | GO->isInBounds()); 2603 } else if (GO->isInBounds()) 2604 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2605 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2606 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2607 Record.push_back(VE.getValueID(C->getOperand(i))); 2608 } 2609 break; 2610 } 2611 case Instruction::Select: 2612 Code = bitc::CST_CODE_CE_SELECT; 2613 Record.push_back(VE.getValueID(C->getOperand(0))); 2614 Record.push_back(VE.getValueID(C->getOperand(1))); 2615 Record.push_back(VE.getValueID(C->getOperand(2))); 2616 break; 2617 case Instruction::ExtractElement: 2618 Code = bitc::CST_CODE_CE_EXTRACTELT; 2619 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2620 Record.push_back(VE.getValueID(C->getOperand(0))); 2621 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2622 Record.push_back(VE.getValueID(C->getOperand(1))); 2623 break; 2624 case Instruction::InsertElement: 2625 Code = bitc::CST_CODE_CE_INSERTELT; 2626 Record.push_back(VE.getValueID(C->getOperand(0))); 2627 Record.push_back(VE.getValueID(C->getOperand(1))); 2628 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2629 Record.push_back(VE.getValueID(C->getOperand(2))); 2630 break; 2631 case Instruction::ShuffleVector: 2632 // If the return type and argument types are the same, this is a 2633 // standard shufflevector instruction. If the types are different, 2634 // then the shuffle is widening or truncating the input vectors, and 2635 // the argument type must also be encoded. 2636 if (C->getType() == C->getOperand(0)->getType()) { 2637 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2638 } else { 2639 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2640 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2641 } 2642 Record.push_back(VE.getValueID(C->getOperand(0))); 2643 Record.push_back(VE.getValueID(C->getOperand(1))); 2644 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2645 break; 2646 case Instruction::ICmp: 2647 case Instruction::FCmp: 2648 Code = bitc::CST_CODE_CE_CMP; 2649 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2650 Record.push_back(VE.getValueID(C->getOperand(0))); 2651 Record.push_back(VE.getValueID(C->getOperand(1))); 2652 Record.push_back(CE->getPredicate()); 2653 break; 2654 } 2655 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2656 Code = bitc::CST_CODE_BLOCKADDRESS; 2657 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2658 Record.push_back(VE.getValueID(BA->getFunction())); 2659 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2660 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2661 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2662 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2663 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2664 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2665 Code = bitc::CST_CODE_NO_CFI_VALUE; 2666 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2667 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2668 } else { 2669 #ifndef NDEBUG 2670 C->dump(); 2671 #endif 2672 llvm_unreachable("Unknown constant!"); 2673 } 2674 Stream.EmitRecord(Code, Record, AbbrevToUse); 2675 Record.clear(); 2676 } 2677 2678 Stream.ExitBlock(); 2679 } 2680 2681 void ModuleBitcodeWriter::writeModuleConstants() { 2682 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2683 2684 // Find the first constant to emit, which is the first non-globalvalue value. 2685 // We know globalvalues have been emitted by WriteModuleInfo. 2686 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2687 if (!isa<GlobalValue>(Vals[i].first)) { 2688 writeConstants(i, Vals.size(), true); 2689 return; 2690 } 2691 } 2692 } 2693 2694 /// pushValueAndType - The file has to encode both the value and type id for 2695 /// many values, because we need to know what type to create for forward 2696 /// references. However, most operands are not forward references, so this type 2697 /// field is not needed. 2698 /// 2699 /// This function adds V's value ID to Vals. If the value ID is higher than the 2700 /// instruction ID, then it is a forward reference, and it also includes the 2701 /// type ID. The value ID that is written is encoded relative to the InstID. 2702 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2703 SmallVectorImpl<unsigned> &Vals) { 2704 unsigned ValID = VE.getValueID(V); 2705 // Make encoding relative to the InstID. 2706 Vals.push_back(InstID - ValID); 2707 if (ValID >= InstID) { 2708 Vals.push_back(VE.getTypeID(V->getType())); 2709 return true; 2710 } 2711 return false; 2712 } 2713 2714 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2715 unsigned InstID) { 2716 SmallVector<unsigned, 64> Record; 2717 LLVMContext &C = CS.getContext(); 2718 2719 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2720 const auto &Bundle = CS.getOperandBundleAt(i); 2721 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2722 2723 for (auto &Input : Bundle.Inputs) 2724 pushValueAndType(Input, InstID, Record); 2725 2726 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2727 Record.clear(); 2728 } 2729 } 2730 2731 /// pushValue - Like pushValueAndType, but where the type of the value is 2732 /// omitted (perhaps it was already encoded in an earlier operand). 2733 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2734 SmallVectorImpl<unsigned> &Vals) { 2735 unsigned ValID = VE.getValueID(V); 2736 Vals.push_back(InstID - ValID); 2737 } 2738 2739 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2740 SmallVectorImpl<uint64_t> &Vals) { 2741 unsigned ValID = VE.getValueID(V); 2742 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2743 emitSignedInt64(Vals, diff); 2744 } 2745 2746 /// WriteInstruction - Emit an instruction to the specified stream. 2747 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2748 unsigned InstID, 2749 SmallVectorImpl<unsigned> &Vals) { 2750 unsigned Code = 0; 2751 unsigned AbbrevToUse = 0; 2752 VE.setInstructionID(&I); 2753 switch (I.getOpcode()) { 2754 default: 2755 if (Instruction::isCast(I.getOpcode())) { 2756 Code = bitc::FUNC_CODE_INST_CAST; 2757 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2758 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2759 Vals.push_back(VE.getTypeID(I.getType())); 2760 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2761 } else { 2762 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2763 Code = bitc::FUNC_CODE_INST_BINOP; 2764 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2765 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2766 pushValue(I.getOperand(1), InstID, Vals); 2767 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2768 uint64_t Flags = getOptimizationFlags(&I); 2769 if (Flags != 0) { 2770 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2771 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2772 Vals.push_back(Flags); 2773 } 2774 } 2775 break; 2776 case Instruction::FNeg: { 2777 Code = bitc::FUNC_CODE_INST_UNOP; 2778 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2779 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2780 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2781 uint64_t Flags = getOptimizationFlags(&I); 2782 if (Flags != 0) { 2783 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2784 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2785 Vals.push_back(Flags); 2786 } 2787 break; 2788 } 2789 case Instruction::GetElementPtr: { 2790 Code = bitc::FUNC_CODE_INST_GEP; 2791 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2792 auto &GEPInst = cast<GetElementPtrInst>(I); 2793 Vals.push_back(GEPInst.isInBounds()); 2794 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2795 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2796 pushValueAndType(I.getOperand(i), InstID, Vals); 2797 break; 2798 } 2799 case Instruction::ExtractValue: { 2800 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2801 pushValueAndType(I.getOperand(0), InstID, Vals); 2802 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2803 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2804 break; 2805 } 2806 case Instruction::InsertValue: { 2807 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2808 pushValueAndType(I.getOperand(0), InstID, Vals); 2809 pushValueAndType(I.getOperand(1), InstID, Vals); 2810 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2811 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2812 break; 2813 } 2814 case Instruction::Select: { 2815 Code = bitc::FUNC_CODE_INST_VSELECT; 2816 pushValueAndType(I.getOperand(1), InstID, Vals); 2817 pushValue(I.getOperand(2), InstID, Vals); 2818 pushValueAndType(I.getOperand(0), InstID, Vals); 2819 uint64_t Flags = getOptimizationFlags(&I); 2820 if (Flags != 0) 2821 Vals.push_back(Flags); 2822 break; 2823 } 2824 case Instruction::ExtractElement: 2825 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2826 pushValueAndType(I.getOperand(0), InstID, Vals); 2827 pushValueAndType(I.getOperand(1), InstID, Vals); 2828 break; 2829 case Instruction::InsertElement: 2830 Code = bitc::FUNC_CODE_INST_INSERTELT; 2831 pushValueAndType(I.getOperand(0), InstID, Vals); 2832 pushValue(I.getOperand(1), InstID, Vals); 2833 pushValueAndType(I.getOperand(2), InstID, Vals); 2834 break; 2835 case Instruction::ShuffleVector: 2836 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2837 pushValueAndType(I.getOperand(0), InstID, Vals); 2838 pushValue(I.getOperand(1), InstID, Vals); 2839 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2840 Vals); 2841 break; 2842 case Instruction::ICmp: 2843 case Instruction::FCmp: { 2844 // compare returning Int1Ty or vector of Int1Ty 2845 Code = bitc::FUNC_CODE_INST_CMP2; 2846 pushValueAndType(I.getOperand(0), InstID, Vals); 2847 pushValue(I.getOperand(1), InstID, Vals); 2848 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2849 uint64_t Flags = getOptimizationFlags(&I); 2850 if (Flags != 0) 2851 Vals.push_back(Flags); 2852 break; 2853 } 2854 2855 case Instruction::Ret: 2856 { 2857 Code = bitc::FUNC_CODE_INST_RET; 2858 unsigned NumOperands = I.getNumOperands(); 2859 if (NumOperands == 0) 2860 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2861 else if (NumOperands == 1) { 2862 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2863 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2864 } else { 2865 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2866 pushValueAndType(I.getOperand(i), InstID, Vals); 2867 } 2868 } 2869 break; 2870 case Instruction::Br: 2871 { 2872 Code = bitc::FUNC_CODE_INST_BR; 2873 const BranchInst &II = cast<BranchInst>(I); 2874 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2875 if (II.isConditional()) { 2876 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2877 pushValue(II.getCondition(), InstID, Vals); 2878 } 2879 } 2880 break; 2881 case Instruction::Switch: 2882 { 2883 Code = bitc::FUNC_CODE_INST_SWITCH; 2884 const SwitchInst &SI = cast<SwitchInst>(I); 2885 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2886 pushValue(SI.getCondition(), InstID, Vals); 2887 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2888 for (auto Case : SI.cases()) { 2889 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2890 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2891 } 2892 } 2893 break; 2894 case Instruction::IndirectBr: 2895 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2896 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2897 // Encode the address operand as relative, but not the basic blocks. 2898 pushValue(I.getOperand(0), InstID, Vals); 2899 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2900 Vals.push_back(VE.getValueID(I.getOperand(i))); 2901 break; 2902 2903 case Instruction::Invoke: { 2904 const InvokeInst *II = cast<InvokeInst>(&I); 2905 const Value *Callee = II->getCalledOperand(); 2906 FunctionType *FTy = II->getFunctionType(); 2907 2908 if (II->hasOperandBundles()) 2909 writeOperandBundles(*II, InstID); 2910 2911 Code = bitc::FUNC_CODE_INST_INVOKE; 2912 2913 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2914 Vals.push_back(II->getCallingConv() | 1 << 13); 2915 Vals.push_back(VE.getValueID(II->getNormalDest())); 2916 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2917 Vals.push_back(VE.getTypeID(FTy)); 2918 pushValueAndType(Callee, InstID, Vals); 2919 2920 // Emit value #'s for the fixed parameters. 2921 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2922 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2923 2924 // Emit type/value pairs for varargs params. 2925 if (FTy->isVarArg()) { 2926 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2927 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2928 } 2929 break; 2930 } 2931 case Instruction::Resume: 2932 Code = bitc::FUNC_CODE_INST_RESUME; 2933 pushValueAndType(I.getOperand(0), InstID, Vals); 2934 break; 2935 case Instruction::CleanupRet: { 2936 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2937 const auto &CRI = cast<CleanupReturnInst>(I); 2938 pushValue(CRI.getCleanupPad(), InstID, Vals); 2939 if (CRI.hasUnwindDest()) 2940 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2941 break; 2942 } 2943 case Instruction::CatchRet: { 2944 Code = bitc::FUNC_CODE_INST_CATCHRET; 2945 const auto &CRI = cast<CatchReturnInst>(I); 2946 pushValue(CRI.getCatchPad(), InstID, Vals); 2947 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2948 break; 2949 } 2950 case Instruction::CleanupPad: 2951 case Instruction::CatchPad: { 2952 const auto &FuncletPad = cast<FuncletPadInst>(I); 2953 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2954 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2955 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2956 2957 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2958 Vals.push_back(NumArgOperands); 2959 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2960 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2961 break; 2962 } 2963 case Instruction::CatchSwitch: { 2964 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2965 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2966 2967 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2968 2969 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2970 Vals.push_back(NumHandlers); 2971 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2972 Vals.push_back(VE.getValueID(CatchPadBB)); 2973 2974 if (CatchSwitch.hasUnwindDest()) 2975 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2976 break; 2977 } 2978 case Instruction::CallBr: { 2979 const CallBrInst *CBI = cast<CallBrInst>(&I); 2980 const Value *Callee = CBI->getCalledOperand(); 2981 FunctionType *FTy = CBI->getFunctionType(); 2982 2983 if (CBI->hasOperandBundles()) 2984 writeOperandBundles(*CBI, InstID); 2985 2986 Code = bitc::FUNC_CODE_INST_CALLBR; 2987 2988 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2989 2990 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2991 1 << bitc::CALL_EXPLICIT_TYPE); 2992 2993 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2994 Vals.push_back(CBI->getNumIndirectDests()); 2995 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2996 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2997 2998 Vals.push_back(VE.getTypeID(FTy)); 2999 pushValueAndType(Callee, InstID, Vals); 3000 3001 // Emit value #'s for the fixed parameters. 3002 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3003 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3004 3005 // Emit type/value pairs for varargs params. 3006 if (FTy->isVarArg()) { 3007 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3008 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3009 } 3010 break; 3011 } 3012 case Instruction::Unreachable: 3013 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3014 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3015 break; 3016 3017 case Instruction::PHI: { 3018 const PHINode &PN = cast<PHINode>(I); 3019 Code = bitc::FUNC_CODE_INST_PHI; 3020 // With the newer instruction encoding, forward references could give 3021 // negative valued IDs. This is most common for PHIs, so we use 3022 // signed VBRs. 3023 SmallVector<uint64_t, 128> Vals64; 3024 Vals64.push_back(VE.getTypeID(PN.getType())); 3025 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3026 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3027 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3028 } 3029 3030 uint64_t Flags = getOptimizationFlags(&I); 3031 if (Flags != 0) 3032 Vals64.push_back(Flags); 3033 3034 // Emit a Vals64 vector and exit. 3035 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3036 Vals64.clear(); 3037 return; 3038 } 3039 3040 case Instruction::LandingPad: { 3041 const LandingPadInst &LP = cast<LandingPadInst>(I); 3042 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3043 Vals.push_back(VE.getTypeID(LP.getType())); 3044 Vals.push_back(LP.isCleanup()); 3045 Vals.push_back(LP.getNumClauses()); 3046 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3047 if (LP.isCatch(I)) 3048 Vals.push_back(LandingPadInst::Catch); 3049 else 3050 Vals.push_back(LandingPadInst::Filter); 3051 pushValueAndType(LP.getClause(I), InstID, Vals); 3052 } 3053 break; 3054 } 3055 3056 case Instruction::Alloca: { 3057 Code = bitc::FUNC_CODE_INST_ALLOCA; 3058 const AllocaInst &AI = cast<AllocaInst>(I); 3059 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3060 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3061 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3062 using APV = AllocaPackedValues; 3063 unsigned Record = 0; 3064 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3065 Bitfield::set<APV::AlignLower>( 3066 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3067 Bitfield::set<APV::AlignUpper>(Record, 3068 EncodedAlign >> APV::AlignLower::Bits); 3069 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3070 Bitfield::set<APV::ExplicitType>(Record, true); 3071 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3072 Vals.push_back(Record); 3073 break; 3074 } 3075 3076 case Instruction::Load: 3077 if (cast<LoadInst>(I).isAtomic()) { 3078 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3079 pushValueAndType(I.getOperand(0), InstID, Vals); 3080 } else { 3081 Code = bitc::FUNC_CODE_INST_LOAD; 3082 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3083 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3084 } 3085 Vals.push_back(VE.getTypeID(I.getType())); 3086 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3087 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3088 if (cast<LoadInst>(I).isAtomic()) { 3089 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3090 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3091 } 3092 break; 3093 case Instruction::Store: 3094 if (cast<StoreInst>(I).isAtomic()) 3095 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3096 else 3097 Code = bitc::FUNC_CODE_INST_STORE; 3098 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3099 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3100 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3101 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3102 if (cast<StoreInst>(I).isAtomic()) { 3103 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3104 Vals.push_back( 3105 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3106 } 3107 break; 3108 case Instruction::AtomicCmpXchg: 3109 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3110 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3111 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3112 pushValue(I.getOperand(2), InstID, Vals); // newval. 3113 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3114 Vals.push_back( 3115 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3116 Vals.push_back( 3117 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3118 Vals.push_back( 3119 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3120 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3121 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3122 break; 3123 case Instruction::AtomicRMW: 3124 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3125 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3126 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3127 Vals.push_back( 3128 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3129 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3130 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3131 Vals.push_back( 3132 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3133 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3134 break; 3135 case Instruction::Fence: 3136 Code = bitc::FUNC_CODE_INST_FENCE; 3137 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3138 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3139 break; 3140 case Instruction::Call: { 3141 const CallInst &CI = cast<CallInst>(I); 3142 FunctionType *FTy = CI.getFunctionType(); 3143 3144 if (CI.hasOperandBundles()) 3145 writeOperandBundles(CI, InstID); 3146 3147 Code = bitc::FUNC_CODE_INST_CALL; 3148 3149 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3150 3151 unsigned Flags = getOptimizationFlags(&I); 3152 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3153 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3154 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3155 1 << bitc::CALL_EXPLICIT_TYPE | 3156 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3157 unsigned(Flags != 0) << bitc::CALL_FMF); 3158 if (Flags != 0) 3159 Vals.push_back(Flags); 3160 3161 Vals.push_back(VE.getTypeID(FTy)); 3162 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3163 3164 // Emit value #'s for the fixed parameters. 3165 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3166 // Check for labels (can happen with asm labels). 3167 if (FTy->getParamType(i)->isLabelTy()) 3168 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3169 else 3170 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3171 } 3172 3173 // Emit type/value pairs for varargs params. 3174 if (FTy->isVarArg()) { 3175 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3176 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3177 } 3178 break; 3179 } 3180 case Instruction::VAArg: 3181 Code = bitc::FUNC_CODE_INST_VAARG; 3182 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3183 pushValue(I.getOperand(0), InstID, Vals); // valist. 3184 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3185 break; 3186 case Instruction::Freeze: 3187 Code = bitc::FUNC_CODE_INST_FREEZE; 3188 pushValueAndType(I.getOperand(0), InstID, Vals); 3189 break; 3190 } 3191 3192 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3193 Vals.clear(); 3194 } 3195 3196 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3197 /// to allow clients to efficiently find the function body. 3198 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3199 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3200 // Get the offset of the VST we are writing, and backpatch it into 3201 // the VST forward declaration record. 3202 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3203 // The BitcodeStartBit was the stream offset of the identification block. 3204 VSTOffset -= bitcodeStartBit(); 3205 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3206 // Note that we add 1 here because the offset is relative to one word 3207 // before the start of the identification block, which was historically 3208 // always the start of the regular bitcode header. 3209 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3210 3211 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3212 3213 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3214 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3217 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3218 3219 for (const Function &F : M) { 3220 uint64_t Record[2]; 3221 3222 if (F.isDeclaration()) 3223 continue; 3224 3225 Record[0] = VE.getValueID(&F); 3226 3227 // Save the word offset of the function (from the start of the 3228 // actual bitcode written to the stream). 3229 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3230 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3231 // Note that we add 1 here because the offset is relative to one word 3232 // before the start of the identification block, which was historically 3233 // always the start of the regular bitcode header. 3234 Record[1] = BitcodeIndex / 32 + 1; 3235 3236 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3237 } 3238 3239 Stream.ExitBlock(); 3240 } 3241 3242 /// Emit names for arguments, instructions and basic blocks in a function. 3243 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3244 const ValueSymbolTable &VST) { 3245 if (VST.empty()) 3246 return; 3247 3248 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3249 3250 // FIXME: Set up the abbrev, we know how many values there are! 3251 // FIXME: We know if the type names can use 7-bit ascii. 3252 SmallVector<uint64_t, 64> NameVals; 3253 3254 for (const ValueName &Name : VST) { 3255 // Figure out the encoding to use for the name. 3256 StringEncoding Bits = getStringEncoding(Name.getKey()); 3257 3258 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3259 NameVals.push_back(VE.getValueID(Name.getValue())); 3260 3261 // VST_CODE_ENTRY: [valueid, namechar x N] 3262 // VST_CODE_BBENTRY: [bbid, namechar x N] 3263 unsigned Code; 3264 if (isa<BasicBlock>(Name.getValue())) { 3265 Code = bitc::VST_CODE_BBENTRY; 3266 if (Bits == SE_Char6) 3267 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3268 } else { 3269 Code = bitc::VST_CODE_ENTRY; 3270 if (Bits == SE_Char6) 3271 AbbrevToUse = VST_ENTRY_6_ABBREV; 3272 else if (Bits == SE_Fixed7) 3273 AbbrevToUse = VST_ENTRY_7_ABBREV; 3274 } 3275 3276 for (const auto P : Name.getKey()) 3277 NameVals.push_back((unsigned char)P); 3278 3279 // Emit the finished record. 3280 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3281 NameVals.clear(); 3282 } 3283 3284 Stream.ExitBlock(); 3285 } 3286 3287 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3288 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3289 unsigned Code; 3290 if (isa<BasicBlock>(Order.V)) 3291 Code = bitc::USELIST_CODE_BB; 3292 else 3293 Code = bitc::USELIST_CODE_DEFAULT; 3294 3295 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3296 Record.push_back(VE.getValueID(Order.V)); 3297 Stream.EmitRecord(Code, Record); 3298 } 3299 3300 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3301 assert(VE.shouldPreserveUseListOrder() && 3302 "Expected to be preserving use-list order"); 3303 3304 auto hasMore = [&]() { 3305 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3306 }; 3307 if (!hasMore()) 3308 // Nothing to do. 3309 return; 3310 3311 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3312 while (hasMore()) { 3313 writeUseList(std::move(VE.UseListOrders.back())); 3314 VE.UseListOrders.pop_back(); 3315 } 3316 Stream.ExitBlock(); 3317 } 3318 3319 /// Emit a function body to the module stream. 3320 void ModuleBitcodeWriter::writeFunction( 3321 const Function &F, 3322 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3323 // Save the bitcode index of the start of this function block for recording 3324 // in the VST. 3325 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3326 3327 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3328 VE.incorporateFunction(F); 3329 3330 SmallVector<unsigned, 64> Vals; 3331 3332 // Emit the number of basic blocks, so the reader can create them ahead of 3333 // time. 3334 Vals.push_back(VE.getBasicBlocks().size()); 3335 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3336 Vals.clear(); 3337 3338 // If there are function-local constants, emit them now. 3339 unsigned CstStart, CstEnd; 3340 VE.getFunctionConstantRange(CstStart, CstEnd); 3341 writeConstants(CstStart, CstEnd, false); 3342 3343 // If there is function-local metadata, emit it now. 3344 writeFunctionMetadata(F); 3345 3346 // Keep a running idea of what the instruction ID is. 3347 unsigned InstID = CstEnd; 3348 3349 bool NeedsMetadataAttachment = F.hasMetadata(); 3350 3351 DILocation *LastDL = nullptr; 3352 // Finally, emit all the instructions, in order. 3353 for (const BasicBlock &BB : F) 3354 for (const Instruction &I : BB) { 3355 writeInstruction(I, InstID, Vals); 3356 3357 if (!I.getType()->isVoidTy()) 3358 ++InstID; 3359 3360 // If the instruction has metadata, write a metadata attachment later. 3361 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3362 3363 // If the instruction has a debug location, emit it. 3364 DILocation *DL = I.getDebugLoc(); 3365 if (!DL) 3366 continue; 3367 3368 if (DL == LastDL) { 3369 // Just repeat the same debug loc as last time. 3370 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3371 continue; 3372 } 3373 3374 Vals.push_back(DL->getLine()); 3375 Vals.push_back(DL->getColumn()); 3376 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3377 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3378 Vals.push_back(DL->isImplicitCode()); 3379 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3380 Vals.clear(); 3381 3382 LastDL = DL; 3383 } 3384 3385 // Emit names for all the instructions etc. 3386 if (auto *Symtab = F.getValueSymbolTable()) 3387 writeFunctionLevelValueSymbolTable(*Symtab); 3388 3389 if (NeedsMetadataAttachment) 3390 writeFunctionMetadataAttachment(F); 3391 if (VE.shouldPreserveUseListOrder()) 3392 writeUseListBlock(&F); 3393 VE.purgeFunction(); 3394 Stream.ExitBlock(); 3395 } 3396 3397 // Emit blockinfo, which defines the standard abbreviations etc. 3398 void ModuleBitcodeWriter::writeBlockInfo() { 3399 // We only want to emit block info records for blocks that have multiple 3400 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3401 // Other blocks can define their abbrevs inline. 3402 Stream.EnterBlockInfoBlock(); 3403 3404 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3405 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3410 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3411 VST_ENTRY_8_ABBREV) 3412 llvm_unreachable("Unexpected abbrev ordering!"); 3413 } 3414 3415 { // 7-bit fixed width VST_CODE_ENTRY strings. 3416 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3417 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3421 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3422 VST_ENTRY_7_ABBREV) 3423 llvm_unreachable("Unexpected abbrev ordering!"); 3424 } 3425 { // 6-bit char6 VST_CODE_ENTRY strings. 3426 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3427 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3431 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3432 VST_ENTRY_6_ABBREV) 3433 llvm_unreachable("Unexpected abbrev ordering!"); 3434 } 3435 { // 6-bit char6 VST_CODE_BBENTRY strings. 3436 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3437 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3441 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3442 VST_BBENTRY_6_ABBREV) 3443 llvm_unreachable("Unexpected abbrev ordering!"); 3444 } 3445 3446 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3447 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3448 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3450 VE.computeBitsRequiredForTypeIndicies())); 3451 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3452 CONSTANTS_SETTYPE_ABBREV) 3453 llvm_unreachable("Unexpected abbrev ordering!"); 3454 } 3455 3456 { // INTEGER abbrev for CONSTANTS_BLOCK. 3457 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3458 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3460 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3461 CONSTANTS_INTEGER_ABBREV) 3462 llvm_unreachable("Unexpected abbrev ordering!"); 3463 } 3464 3465 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3466 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3467 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3470 VE.computeBitsRequiredForTypeIndicies())); 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3472 3473 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3474 CONSTANTS_CE_CAST_Abbrev) 3475 llvm_unreachable("Unexpected abbrev ordering!"); 3476 } 3477 { // NULL abbrev for CONSTANTS_BLOCK. 3478 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3479 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3480 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3481 CONSTANTS_NULL_Abbrev) 3482 llvm_unreachable("Unexpected abbrev ordering!"); 3483 } 3484 3485 // FIXME: This should only use space for first class types! 3486 3487 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3488 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3489 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3492 VE.computeBitsRequiredForTypeIndicies())); 3493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3495 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3496 FUNCTION_INST_LOAD_ABBREV) 3497 llvm_unreachable("Unexpected abbrev ordering!"); 3498 } 3499 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3500 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3501 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3504 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3505 FUNCTION_INST_UNOP_ABBREV) 3506 llvm_unreachable("Unexpected abbrev ordering!"); 3507 } 3508 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3509 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3510 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3514 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3515 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3516 llvm_unreachable("Unexpected abbrev ordering!"); 3517 } 3518 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3519 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3520 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3524 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3525 FUNCTION_INST_BINOP_ABBREV) 3526 llvm_unreachable("Unexpected abbrev ordering!"); 3527 } 3528 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3529 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3530 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3535 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3536 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3537 llvm_unreachable("Unexpected abbrev ordering!"); 3538 } 3539 { // INST_CAST abbrev for FUNCTION_BLOCK. 3540 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3541 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3544 VE.computeBitsRequiredForTypeIndicies())); 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3546 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3547 FUNCTION_INST_CAST_ABBREV) 3548 llvm_unreachable("Unexpected abbrev ordering!"); 3549 } 3550 3551 { // INST_RET abbrev for FUNCTION_BLOCK. 3552 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3553 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3554 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3555 FUNCTION_INST_RET_VOID_ABBREV) 3556 llvm_unreachable("Unexpected abbrev ordering!"); 3557 } 3558 { // INST_RET abbrev for FUNCTION_BLOCK. 3559 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3560 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3562 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3563 FUNCTION_INST_RET_VAL_ABBREV) 3564 llvm_unreachable("Unexpected abbrev ordering!"); 3565 } 3566 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3567 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3568 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3569 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3570 FUNCTION_INST_UNREACHABLE_ABBREV) 3571 llvm_unreachable("Unexpected abbrev ordering!"); 3572 } 3573 { 3574 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3575 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3578 Log2_32_Ceil(VE.getTypes().size() + 1))); 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3581 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3582 FUNCTION_INST_GEP_ABBREV) 3583 llvm_unreachable("Unexpected abbrev ordering!"); 3584 } 3585 3586 Stream.ExitBlock(); 3587 } 3588 3589 /// Write the module path strings, currently only used when generating 3590 /// a combined index file. 3591 void IndexBitcodeWriter::writeModStrings() { 3592 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3593 3594 // TODO: See which abbrev sizes we actually need to emit 3595 3596 // 8-bit fixed-width MST_ENTRY strings. 3597 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3598 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3602 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3603 3604 // 7-bit fixed width MST_ENTRY strings. 3605 Abbv = std::make_shared<BitCodeAbbrev>(); 3606 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3610 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3611 3612 // 6-bit char6 MST_ENTRY strings. 3613 Abbv = std::make_shared<BitCodeAbbrev>(); 3614 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3618 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3619 3620 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3621 Abbv = std::make_shared<BitCodeAbbrev>(); 3622 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3628 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3629 3630 SmallVector<unsigned, 64> Vals; 3631 forEachModule( 3632 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3633 StringRef Key = MPSE.getKey(); 3634 const auto &Value = MPSE.getValue(); 3635 StringEncoding Bits = getStringEncoding(Key); 3636 unsigned AbbrevToUse = Abbrev8Bit; 3637 if (Bits == SE_Char6) 3638 AbbrevToUse = Abbrev6Bit; 3639 else if (Bits == SE_Fixed7) 3640 AbbrevToUse = Abbrev7Bit; 3641 3642 Vals.push_back(Value.first); 3643 Vals.append(Key.begin(), Key.end()); 3644 3645 // Emit the finished record. 3646 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3647 3648 // Emit an optional hash for the module now 3649 const auto &Hash = Value.second; 3650 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3651 Vals.assign(Hash.begin(), Hash.end()); 3652 // Emit the hash record. 3653 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3654 } 3655 3656 Vals.clear(); 3657 }); 3658 Stream.ExitBlock(); 3659 } 3660 3661 /// Write the function type metadata related records that need to appear before 3662 /// a function summary entry (whether per-module or combined). 3663 template <typename Fn> 3664 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3665 FunctionSummary *FS, 3666 Fn GetValueID) { 3667 if (!FS->type_tests().empty()) 3668 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3669 3670 SmallVector<uint64_t, 64> Record; 3671 3672 auto WriteVFuncIdVec = [&](uint64_t Ty, 3673 ArrayRef<FunctionSummary::VFuncId> VFs) { 3674 if (VFs.empty()) 3675 return; 3676 Record.clear(); 3677 for (auto &VF : VFs) { 3678 Record.push_back(VF.GUID); 3679 Record.push_back(VF.Offset); 3680 } 3681 Stream.EmitRecord(Ty, Record); 3682 }; 3683 3684 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3685 FS->type_test_assume_vcalls()); 3686 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3687 FS->type_checked_load_vcalls()); 3688 3689 auto WriteConstVCallVec = [&](uint64_t Ty, 3690 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3691 for (auto &VC : VCs) { 3692 Record.clear(); 3693 Record.push_back(VC.VFunc.GUID); 3694 Record.push_back(VC.VFunc.Offset); 3695 llvm::append_range(Record, VC.Args); 3696 Stream.EmitRecord(Ty, Record); 3697 } 3698 }; 3699 3700 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3701 FS->type_test_assume_const_vcalls()); 3702 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3703 FS->type_checked_load_const_vcalls()); 3704 3705 auto WriteRange = [&](ConstantRange Range) { 3706 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3707 assert(Range.getLower().getNumWords() == 1); 3708 assert(Range.getUpper().getNumWords() == 1); 3709 emitSignedInt64(Record, *Range.getLower().getRawData()); 3710 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3711 }; 3712 3713 if (!FS->paramAccesses().empty()) { 3714 Record.clear(); 3715 for (auto &Arg : FS->paramAccesses()) { 3716 size_t UndoSize = Record.size(); 3717 Record.push_back(Arg.ParamNo); 3718 WriteRange(Arg.Use); 3719 Record.push_back(Arg.Calls.size()); 3720 for (auto &Call : Arg.Calls) { 3721 Record.push_back(Call.ParamNo); 3722 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3723 if (!ValueID) { 3724 // If ValueID is unknown we can't drop just this call, we must drop 3725 // entire parameter. 3726 Record.resize(UndoSize); 3727 break; 3728 } 3729 Record.push_back(*ValueID); 3730 WriteRange(Call.Offsets); 3731 } 3732 } 3733 if (!Record.empty()) 3734 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3735 } 3736 } 3737 3738 /// Collect type IDs from type tests used by function. 3739 static void 3740 getReferencedTypeIds(FunctionSummary *FS, 3741 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3742 if (!FS->type_tests().empty()) 3743 for (auto &TT : FS->type_tests()) 3744 ReferencedTypeIds.insert(TT); 3745 3746 auto GetReferencedTypesFromVFuncIdVec = 3747 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3748 for (auto &VF : VFs) 3749 ReferencedTypeIds.insert(VF.GUID); 3750 }; 3751 3752 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3753 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3754 3755 auto GetReferencedTypesFromConstVCallVec = 3756 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3757 for (auto &VC : VCs) 3758 ReferencedTypeIds.insert(VC.VFunc.GUID); 3759 }; 3760 3761 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3762 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3763 } 3764 3765 static void writeWholeProgramDevirtResolutionByArg( 3766 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3767 const WholeProgramDevirtResolution::ByArg &ByArg) { 3768 NameVals.push_back(args.size()); 3769 llvm::append_range(NameVals, args); 3770 3771 NameVals.push_back(ByArg.TheKind); 3772 NameVals.push_back(ByArg.Info); 3773 NameVals.push_back(ByArg.Byte); 3774 NameVals.push_back(ByArg.Bit); 3775 } 3776 3777 static void writeWholeProgramDevirtResolution( 3778 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3779 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3780 NameVals.push_back(Id); 3781 3782 NameVals.push_back(Wpd.TheKind); 3783 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3784 NameVals.push_back(Wpd.SingleImplName.size()); 3785 3786 NameVals.push_back(Wpd.ResByArg.size()); 3787 for (auto &A : Wpd.ResByArg) 3788 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3789 } 3790 3791 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3792 StringTableBuilder &StrtabBuilder, 3793 const std::string &Id, 3794 const TypeIdSummary &Summary) { 3795 NameVals.push_back(StrtabBuilder.add(Id)); 3796 NameVals.push_back(Id.size()); 3797 3798 NameVals.push_back(Summary.TTRes.TheKind); 3799 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3800 NameVals.push_back(Summary.TTRes.AlignLog2); 3801 NameVals.push_back(Summary.TTRes.SizeM1); 3802 NameVals.push_back(Summary.TTRes.BitMask); 3803 NameVals.push_back(Summary.TTRes.InlineBits); 3804 3805 for (auto &W : Summary.WPDRes) 3806 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3807 W.second); 3808 } 3809 3810 static void writeTypeIdCompatibleVtableSummaryRecord( 3811 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3812 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3813 ValueEnumerator &VE) { 3814 NameVals.push_back(StrtabBuilder.add(Id)); 3815 NameVals.push_back(Id.size()); 3816 3817 for (auto &P : Summary) { 3818 NameVals.push_back(P.AddressPointOffset); 3819 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3820 } 3821 } 3822 3823 // Helper to emit a single function summary record. 3824 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3825 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3826 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3827 const Function &F) { 3828 NameVals.push_back(ValueID); 3829 3830 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3831 3832 writeFunctionTypeMetadataRecords( 3833 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3834 return {VE.getValueID(VI.getValue())}; 3835 }); 3836 3837 auto SpecialRefCnts = FS->specialRefCounts(); 3838 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3839 NameVals.push_back(FS->instCount()); 3840 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3841 NameVals.push_back(FS->refs().size()); 3842 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3843 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3844 3845 for (auto &RI : FS->refs()) 3846 NameVals.push_back(VE.getValueID(RI.getValue())); 3847 3848 bool HasProfileData = 3849 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3850 for (auto &ECI : FS->calls()) { 3851 NameVals.push_back(getValueId(ECI.first)); 3852 if (HasProfileData) 3853 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3854 else if (WriteRelBFToSummary) 3855 NameVals.push_back(ECI.second.RelBlockFreq); 3856 } 3857 3858 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3859 unsigned Code = 3860 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3861 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3862 : bitc::FS_PERMODULE)); 3863 3864 // Emit the finished record. 3865 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3866 NameVals.clear(); 3867 } 3868 3869 // Collect the global value references in the given variable's initializer, 3870 // and emit them in a summary record. 3871 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3872 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3873 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3874 auto VI = Index->getValueInfo(V.getGUID()); 3875 if (!VI || VI.getSummaryList().empty()) { 3876 // Only declarations should not have a summary (a declaration might however 3877 // have a summary if the def was in module level asm). 3878 assert(V.isDeclaration()); 3879 return; 3880 } 3881 auto *Summary = VI.getSummaryList()[0].get(); 3882 NameVals.push_back(VE.getValueID(&V)); 3883 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3884 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3885 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3886 3887 auto VTableFuncs = VS->vTableFuncs(); 3888 if (!VTableFuncs.empty()) 3889 NameVals.push_back(VS->refs().size()); 3890 3891 unsigned SizeBeforeRefs = NameVals.size(); 3892 for (auto &RI : VS->refs()) 3893 NameVals.push_back(VE.getValueID(RI.getValue())); 3894 // Sort the refs for determinism output, the vector returned by FS->refs() has 3895 // been initialized from a DenseSet. 3896 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3897 3898 if (VTableFuncs.empty()) 3899 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3900 FSModRefsAbbrev); 3901 else { 3902 // VTableFuncs pairs should already be sorted by offset. 3903 for (auto &P : VTableFuncs) { 3904 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3905 NameVals.push_back(P.VTableOffset); 3906 } 3907 3908 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3909 FSModVTableRefsAbbrev); 3910 } 3911 NameVals.clear(); 3912 } 3913 3914 /// Emit the per-module summary section alongside the rest of 3915 /// the module's bitcode. 3916 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3917 // By default we compile with ThinLTO if the module has a summary, but the 3918 // client can request full LTO with a module flag. 3919 bool IsThinLTO = true; 3920 if (auto *MD = 3921 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3922 IsThinLTO = MD->getZExtValue(); 3923 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3924 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3925 4); 3926 3927 Stream.EmitRecord( 3928 bitc::FS_VERSION, 3929 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3930 3931 // Write the index flags. 3932 uint64_t Flags = 0; 3933 // Bits 1-3 are set only in the combined index, skip them. 3934 if (Index->enableSplitLTOUnit()) 3935 Flags |= 0x8; 3936 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3937 3938 if (Index->begin() == Index->end()) { 3939 Stream.ExitBlock(); 3940 return; 3941 } 3942 3943 for (const auto &GVI : valueIds()) { 3944 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3945 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3946 } 3947 3948 // Abbrev for FS_PERMODULE_PROFILE. 3949 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3950 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3958 // numrefs x valueid, n x (valueid, hotness) 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3961 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3962 3963 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3964 Abbv = std::make_shared<BitCodeAbbrev>(); 3965 if (WriteRelBFToSummary) 3966 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3967 else 3968 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3976 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3979 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3980 3981 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3982 Abbv = std::make_shared<BitCodeAbbrev>(); 3983 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3988 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3989 3990 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3991 Abbv = std::make_shared<BitCodeAbbrev>(); 3992 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3996 // numrefs x valueid, n x (valueid , offset) 3997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3999 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4000 4001 // Abbrev for FS_ALIAS. 4002 Abbv = std::make_shared<BitCodeAbbrev>(); 4003 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4007 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4008 4009 // Abbrev for FS_TYPE_ID_METADATA 4010 Abbv = std::make_shared<BitCodeAbbrev>(); 4011 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4014 // n x (valueid , offset) 4015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4017 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4018 4019 SmallVector<uint64_t, 64> NameVals; 4020 // Iterate over the list of functions instead of the Index to 4021 // ensure the ordering is stable. 4022 for (const Function &F : M) { 4023 // Summary emission does not support anonymous functions, they have to 4024 // renamed using the anonymous function renaming pass. 4025 if (!F.hasName()) 4026 report_fatal_error("Unexpected anonymous function when writing summary"); 4027 4028 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4029 if (!VI || VI.getSummaryList().empty()) { 4030 // Only declarations should not have a summary (a declaration might 4031 // however have a summary if the def was in module level asm). 4032 assert(F.isDeclaration()); 4033 continue; 4034 } 4035 auto *Summary = VI.getSummaryList()[0].get(); 4036 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4037 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4038 } 4039 4040 // Capture references from GlobalVariable initializers, which are outside 4041 // of a function scope. 4042 for (const GlobalVariable &G : M.globals()) 4043 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4044 FSModVTableRefsAbbrev); 4045 4046 for (const GlobalAlias &A : M.aliases()) { 4047 auto *Aliasee = A.getAliaseeObject(); 4048 if (!Aliasee->hasName()) 4049 // Nameless function don't have an entry in the summary, skip it. 4050 continue; 4051 auto AliasId = VE.getValueID(&A); 4052 auto AliaseeId = VE.getValueID(Aliasee); 4053 NameVals.push_back(AliasId); 4054 auto *Summary = Index->getGlobalValueSummary(A); 4055 AliasSummary *AS = cast<AliasSummary>(Summary); 4056 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4057 NameVals.push_back(AliaseeId); 4058 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4059 NameVals.clear(); 4060 } 4061 4062 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4063 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4064 S.second, VE); 4065 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4066 TypeIdCompatibleVtableAbbrev); 4067 NameVals.clear(); 4068 } 4069 4070 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4071 ArrayRef<uint64_t>{Index->getBlockCount()}); 4072 4073 Stream.ExitBlock(); 4074 } 4075 4076 /// Emit the combined summary section into the combined index file. 4077 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4078 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4079 Stream.EmitRecord( 4080 bitc::FS_VERSION, 4081 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4082 4083 // Write the index flags. 4084 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4085 4086 for (const auto &GVI : valueIds()) { 4087 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4088 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4089 } 4090 4091 // Abbrev for FS_COMBINED. 4092 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4093 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4103 // numrefs x valueid, n x (valueid) 4104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4106 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4107 4108 // Abbrev for FS_COMBINED_PROFILE. 4109 Abbv = std::make_shared<BitCodeAbbrev>(); 4110 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4120 // numrefs x valueid, n x (valueid, hotness) 4121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4123 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4124 4125 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4126 Abbv = std::make_shared<BitCodeAbbrev>(); 4127 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4133 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4134 4135 // Abbrev for FS_COMBINED_ALIAS. 4136 Abbv = std::make_shared<BitCodeAbbrev>(); 4137 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4142 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4143 4144 // The aliases are emitted as a post-pass, and will point to the value 4145 // id of the aliasee. Save them in a vector for post-processing. 4146 SmallVector<AliasSummary *, 64> Aliases; 4147 4148 // Save the value id for each summary for alias emission. 4149 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4150 4151 SmallVector<uint64_t, 64> NameVals; 4152 4153 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4154 // with the type ids referenced by this index file. 4155 std::set<GlobalValue::GUID> ReferencedTypeIds; 4156 4157 // For local linkage, we also emit the original name separately 4158 // immediately after the record. 4159 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4160 // We don't need to emit the original name if we are writing the index for 4161 // distributed backends (in which case ModuleToSummariesForIndex is 4162 // non-null). The original name is only needed during the thin link, since 4163 // for SamplePGO the indirect call targets for local functions have 4164 // have the original name annotated in profile. 4165 // Continue to emit it when writing out the entire combined index, which is 4166 // used in testing the thin link via llvm-lto. 4167 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4168 return; 4169 NameVals.push_back(S.getOriginalName()); 4170 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4171 NameVals.clear(); 4172 }; 4173 4174 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4175 forEachSummary([&](GVInfo I, bool IsAliasee) { 4176 GlobalValueSummary *S = I.second; 4177 assert(S); 4178 DefOrUseGUIDs.insert(I.first); 4179 for (const ValueInfo &VI : S->refs()) 4180 DefOrUseGUIDs.insert(VI.getGUID()); 4181 4182 auto ValueId = getValueId(I.first); 4183 assert(ValueId); 4184 SummaryToValueIdMap[S] = *ValueId; 4185 4186 // If this is invoked for an aliasee, we want to record the above 4187 // mapping, but then not emit a summary entry (if the aliasee is 4188 // to be imported, we will invoke this separately with IsAliasee=false). 4189 if (IsAliasee) 4190 return; 4191 4192 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4193 // Will process aliases as a post-pass because the reader wants all 4194 // global to be loaded first. 4195 Aliases.push_back(AS); 4196 return; 4197 } 4198 4199 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4200 NameVals.push_back(*ValueId); 4201 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4202 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4203 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4204 for (auto &RI : VS->refs()) { 4205 auto RefValueId = getValueId(RI.getGUID()); 4206 if (!RefValueId) 4207 continue; 4208 NameVals.push_back(*RefValueId); 4209 } 4210 4211 // Emit the finished record. 4212 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4213 FSModRefsAbbrev); 4214 NameVals.clear(); 4215 MaybeEmitOriginalName(*S); 4216 return; 4217 } 4218 4219 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4220 return getValueId(VI.getGUID()); 4221 }; 4222 4223 auto *FS = cast<FunctionSummary>(S); 4224 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4225 getReferencedTypeIds(FS, ReferencedTypeIds); 4226 4227 NameVals.push_back(*ValueId); 4228 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4229 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4230 NameVals.push_back(FS->instCount()); 4231 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4232 NameVals.push_back(FS->entryCount()); 4233 4234 // Fill in below 4235 NameVals.push_back(0); // numrefs 4236 NameVals.push_back(0); // rorefcnt 4237 NameVals.push_back(0); // worefcnt 4238 4239 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4240 for (auto &RI : FS->refs()) { 4241 auto RefValueId = getValueId(RI.getGUID()); 4242 if (!RefValueId) 4243 continue; 4244 NameVals.push_back(*RefValueId); 4245 if (RI.isReadOnly()) 4246 RORefCnt++; 4247 else if (RI.isWriteOnly()) 4248 WORefCnt++; 4249 Count++; 4250 } 4251 NameVals[6] = Count; 4252 NameVals[7] = RORefCnt; 4253 NameVals[8] = WORefCnt; 4254 4255 bool HasProfileData = false; 4256 for (auto &EI : FS->calls()) { 4257 HasProfileData |= 4258 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4259 if (HasProfileData) 4260 break; 4261 } 4262 4263 for (auto &EI : FS->calls()) { 4264 // If this GUID doesn't have a value id, it doesn't have a function 4265 // summary and we don't need to record any calls to it. 4266 Optional<unsigned> CallValueId = GetValueId(EI.first); 4267 if (!CallValueId) 4268 continue; 4269 NameVals.push_back(*CallValueId); 4270 if (HasProfileData) 4271 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4272 } 4273 4274 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4275 unsigned Code = 4276 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4277 4278 // Emit the finished record. 4279 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4280 NameVals.clear(); 4281 MaybeEmitOriginalName(*S); 4282 }); 4283 4284 for (auto *AS : Aliases) { 4285 auto AliasValueId = SummaryToValueIdMap[AS]; 4286 assert(AliasValueId); 4287 NameVals.push_back(AliasValueId); 4288 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4289 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4290 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4291 assert(AliaseeValueId); 4292 NameVals.push_back(AliaseeValueId); 4293 4294 // Emit the finished record. 4295 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4296 NameVals.clear(); 4297 MaybeEmitOriginalName(*AS); 4298 4299 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4300 getReferencedTypeIds(FS, ReferencedTypeIds); 4301 } 4302 4303 if (!Index.cfiFunctionDefs().empty()) { 4304 for (auto &S : Index.cfiFunctionDefs()) { 4305 if (DefOrUseGUIDs.count( 4306 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4307 NameVals.push_back(StrtabBuilder.add(S)); 4308 NameVals.push_back(S.size()); 4309 } 4310 } 4311 if (!NameVals.empty()) { 4312 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4313 NameVals.clear(); 4314 } 4315 } 4316 4317 if (!Index.cfiFunctionDecls().empty()) { 4318 for (auto &S : Index.cfiFunctionDecls()) { 4319 if (DefOrUseGUIDs.count( 4320 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4321 NameVals.push_back(StrtabBuilder.add(S)); 4322 NameVals.push_back(S.size()); 4323 } 4324 } 4325 if (!NameVals.empty()) { 4326 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4327 NameVals.clear(); 4328 } 4329 } 4330 4331 // Walk the GUIDs that were referenced, and write the 4332 // corresponding type id records. 4333 for (auto &T : ReferencedTypeIds) { 4334 auto TidIter = Index.typeIds().equal_range(T); 4335 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4336 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4337 It->second.second); 4338 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4339 NameVals.clear(); 4340 } 4341 } 4342 4343 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4344 ArrayRef<uint64_t>{Index.getBlockCount()}); 4345 4346 Stream.ExitBlock(); 4347 } 4348 4349 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4350 /// current llvm version, and a record for the epoch number. 4351 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4352 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4353 4354 // Write the "user readable" string identifying the bitcode producer 4355 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4356 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4359 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4360 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4361 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4362 4363 // Write the epoch version 4364 Abbv = std::make_shared<BitCodeAbbrev>(); 4365 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4367 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4368 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4369 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4370 Stream.ExitBlock(); 4371 } 4372 4373 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4374 // Emit the module's hash. 4375 // MODULE_CODE_HASH: [5*i32] 4376 if (GenerateHash) { 4377 uint32_t Vals[5]; 4378 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4379 Buffer.size() - BlockStartPos)); 4380 StringRef Hash = Hasher.result(); 4381 for (int Pos = 0; Pos < 20; Pos += 4) { 4382 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4383 } 4384 4385 // Emit the finished record. 4386 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4387 4388 if (ModHash) 4389 // Save the written hash value. 4390 llvm::copy(Vals, std::begin(*ModHash)); 4391 } 4392 } 4393 4394 void ModuleBitcodeWriter::write() { 4395 writeIdentificationBlock(Stream); 4396 4397 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4398 size_t BlockStartPos = Buffer.size(); 4399 4400 writeModuleVersion(); 4401 4402 // Emit blockinfo, which defines the standard abbreviations etc. 4403 writeBlockInfo(); 4404 4405 // Emit information describing all of the types in the module. 4406 writeTypeTable(); 4407 4408 // Emit information about attribute groups. 4409 writeAttributeGroupTable(); 4410 4411 // Emit information about parameter attributes. 4412 writeAttributeTable(); 4413 4414 writeComdats(); 4415 4416 // Emit top-level description of module, including target triple, inline asm, 4417 // descriptors for global variables, and function prototype info. 4418 writeModuleInfo(); 4419 4420 // Emit constants. 4421 writeModuleConstants(); 4422 4423 // Emit metadata kind names. 4424 writeModuleMetadataKinds(); 4425 4426 // Emit metadata. 4427 writeModuleMetadata(); 4428 4429 // Emit module-level use-lists. 4430 if (VE.shouldPreserveUseListOrder()) 4431 writeUseListBlock(nullptr); 4432 4433 writeOperandBundleTags(); 4434 writeSyncScopeNames(); 4435 4436 // Emit function bodies. 4437 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4438 for (const Function &F : M) 4439 if (!F.isDeclaration()) 4440 writeFunction(F, FunctionToBitcodeIndex); 4441 4442 // Need to write after the above call to WriteFunction which populates 4443 // the summary information in the index. 4444 if (Index) 4445 writePerModuleGlobalValueSummary(); 4446 4447 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4448 4449 writeModuleHash(BlockStartPos); 4450 4451 Stream.ExitBlock(); 4452 } 4453 4454 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4455 uint32_t &Position) { 4456 support::endian::write32le(&Buffer[Position], Value); 4457 Position += 4; 4458 } 4459 4460 /// If generating a bc file on darwin, we have to emit a 4461 /// header and trailer to make it compatible with the system archiver. To do 4462 /// this we emit the following header, and then emit a trailer that pads the 4463 /// file out to be a multiple of 16 bytes. 4464 /// 4465 /// struct bc_header { 4466 /// uint32_t Magic; // 0x0B17C0DE 4467 /// uint32_t Version; // Version, currently always 0. 4468 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4469 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4470 /// uint32_t CPUType; // CPU specifier. 4471 /// ... potentially more later ... 4472 /// }; 4473 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4474 const Triple &TT) { 4475 unsigned CPUType = ~0U; 4476 4477 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4478 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4479 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4480 // specific constants here because they are implicitly part of the Darwin ABI. 4481 enum { 4482 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4483 DARWIN_CPU_TYPE_X86 = 7, 4484 DARWIN_CPU_TYPE_ARM = 12, 4485 DARWIN_CPU_TYPE_POWERPC = 18 4486 }; 4487 4488 Triple::ArchType Arch = TT.getArch(); 4489 if (Arch == Triple::x86_64) 4490 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4491 else if (Arch == Triple::x86) 4492 CPUType = DARWIN_CPU_TYPE_X86; 4493 else if (Arch == Triple::ppc) 4494 CPUType = DARWIN_CPU_TYPE_POWERPC; 4495 else if (Arch == Triple::ppc64) 4496 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4497 else if (Arch == Triple::arm || Arch == Triple::thumb) 4498 CPUType = DARWIN_CPU_TYPE_ARM; 4499 4500 // Traditional Bitcode starts after header. 4501 assert(Buffer.size() >= BWH_HeaderSize && 4502 "Expected header size to be reserved"); 4503 unsigned BCOffset = BWH_HeaderSize; 4504 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4505 4506 // Write the magic and version. 4507 unsigned Position = 0; 4508 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4509 writeInt32ToBuffer(0, Buffer, Position); // Version. 4510 writeInt32ToBuffer(BCOffset, Buffer, Position); 4511 writeInt32ToBuffer(BCSize, Buffer, Position); 4512 writeInt32ToBuffer(CPUType, Buffer, Position); 4513 4514 // If the file is not a multiple of 16 bytes, insert dummy padding. 4515 while (Buffer.size() & 15) 4516 Buffer.push_back(0); 4517 } 4518 4519 /// Helper to write the header common to all bitcode files. 4520 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4521 // Emit the file header. 4522 Stream.Emit((unsigned)'B', 8); 4523 Stream.Emit((unsigned)'C', 8); 4524 Stream.Emit(0x0, 4); 4525 Stream.Emit(0xC, 4); 4526 Stream.Emit(0xE, 4); 4527 Stream.Emit(0xD, 4); 4528 } 4529 4530 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4531 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4532 writeBitcodeHeader(*Stream); 4533 } 4534 4535 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4536 4537 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4538 Stream->EnterSubblock(Block, 3); 4539 4540 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4541 Abbv->Add(BitCodeAbbrevOp(Record)); 4542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4543 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4544 4545 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4546 4547 Stream->ExitBlock(); 4548 } 4549 4550 void BitcodeWriter::writeSymtab() { 4551 assert(!WroteStrtab && !WroteSymtab); 4552 4553 // If any module has module-level inline asm, we will require a registered asm 4554 // parser for the target so that we can create an accurate symbol table for 4555 // the module. 4556 for (Module *M : Mods) { 4557 if (M->getModuleInlineAsm().empty()) 4558 continue; 4559 4560 std::string Err; 4561 const Triple TT(M->getTargetTriple()); 4562 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4563 if (!T || !T->hasMCAsmParser()) 4564 return; 4565 } 4566 4567 WroteSymtab = true; 4568 SmallVector<char, 0> Symtab; 4569 // The irsymtab::build function may be unable to create a symbol table if the 4570 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4571 // table is not required for correctness, but we still want to be able to 4572 // write malformed modules to bitcode files, so swallow the error. 4573 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4574 consumeError(std::move(E)); 4575 return; 4576 } 4577 4578 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4579 {Symtab.data(), Symtab.size()}); 4580 } 4581 4582 void BitcodeWriter::writeStrtab() { 4583 assert(!WroteStrtab); 4584 4585 std::vector<char> Strtab; 4586 StrtabBuilder.finalizeInOrder(); 4587 Strtab.resize(StrtabBuilder.getSize()); 4588 StrtabBuilder.write((uint8_t *)Strtab.data()); 4589 4590 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4591 {Strtab.data(), Strtab.size()}); 4592 4593 WroteStrtab = true; 4594 } 4595 4596 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4597 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4598 WroteStrtab = true; 4599 } 4600 4601 void BitcodeWriter::writeModule(const Module &M, 4602 bool ShouldPreserveUseListOrder, 4603 const ModuleSummaryIndex *Index, 4604 bool GenerateHash, ModuleHash *ModHash) { 4605 assert(!WroteStrtab); 4606 4607 // The Mods vector is used by irsymtab::build, which requires non-const 4608 // Modules in case it needs to materialize metadata. But the bitcode writer 4609 // requires that the module is materialized, so we can cast to non-const here, 4610 // after checking that it is in fact materialized. 4611 assert(M.isMaterialized()); 4612 Mods.push_back(const_cast<Module *>(&M)); 4613 4614 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4615 ShouldPreserveUseListOrder, Index, 4616 GenerateHash, ModHash); 4617 ModuleWriter.write(); 4618 } 4619 4620 void BitcodeWriter::writeIndex( 4621 const ModuleSummaryIndex *Index, 4622 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4623 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4624 ModuleToSummariesForIndex); 4625 IndexWriter.write(); 4626 } 4627 4628 /// Write the specified module to the specified output stream. 4629 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4630 bool ShouldPreserveUseListOrder, 4631 const ModuleSummaryIndex *Index, 4632 bool GenerateHash, ModuleHash *ModHash) { 4633 SmallVector<char, 0> Buffer; 4634 Buffer.reserve(256*1024); 4635 4636 // If this is darwin or another generic macho target, reserve space for the 4637 // header. 4638 Triple TT(M.getTargetTriple()); 4639 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4640 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4641 4642 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4643 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4644 ModHash); 4645 Writer.writeSymtab(); 4646 Writer.writeStrtab(); 4647 4648 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4649 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4650 4651 // Write the generated bitstream to "Out". 4652 if (!Buffer.empty()) 4653 Out.write((char *)&Buffer.front(), Buffer.size()); 4654 } 4655 4656 void IndexBitcodeWriter::write() { 4657 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4658 4659 writeModuleVersion(); 4660 4661 // Write the module paths in the combined index. 4662 writeModStrings(); 4663 4664 // Write the summary combined index records. 4665 writeCombinedGlobalValueSummary(); 4666 4667 Stream.ExitBlock(); 4668 } 4669 4670 // Write the specified module summary index to the given raw output stream, 4671 // where it will be written in a new bitcode block. This is used when 4672 // writing the combined index file for ThinLTO. When writing a subset of the 4673 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4674 void llvm::writeIndexToFile( 4675 const ModuleSummaryIndex &Index, raw_ostream &Out, 4676 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4677 SmallVector<char, 0> Buffer; 4678 Buffer.reserve(256 * 1024); 4679 4680 BitcodeWriter Writer(Buffer); 4681 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4682 Writer.writeStrtab(); 4683 4684 Out.write((char *)&Buffer.front(), Buffer.size()); 4685 } 4686 4687 namespace { 4688 4689 /// Class to manage the bitcode writing for a thin link bitcode file. 4690 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4691 /// ModHash is for use in ThinLTO incremental build, generated while writing 4692 /// the module bitcode file. 4693 const ModuleHash *ModHash; 4694 4695 public: 4696 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4697 BitstreamWriter &Stream, 4698 const ModuleSummaryIndex &Index, 4699 const ModuleHash &ModHash) 4700 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4701 /*ShouldPreserveUseListOrder=*/false, &Index), 4702 ModHash(&ModHash) {} 4703 4704 void write(); 4705 4706 private: 4707 void writeSimplifiedModuleInfo(); 4708 }; 4709 4710 } // end anonymous namespace 4711 4712 // This function writes a simpilified module info for thin link bitcode file. 4713 // It only contains the source file name along with the name(the offset and 4714 // size in strtab) and linkage for global values. For the global value info 4715 // entry, in order to keep linkage at offset 5, there are three zeros used 4716 // as padding. 4717 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4718 SmallVector<unsigned, 64> Vals; 4719 // Emit the module's source file name. 4720 { 4721 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4722 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4723 if (Bits == SE_Char6) 4724 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4725 else if (Bits == SE_Fixed7) 4726 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4727 4728 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4729 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4730 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4732 Abbv->Add(AbbrevOpToUse); 4733 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4734 4735 for (const auto P : M.getSourceFileName()) 4736 Vals.push_back((unsigned char)P); 4737 4738 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4739 Vals.clear(); 4740 } 4741 4742 // Emit the global variable information. 4743 for (const GlobalVariable &GV : M.globals()) { 4744 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4745 Vals.push_back(StrtabBuilder.add(GV.getName())); 4746 Vals.push_back(GV.getName().size()); 4747 Vals.push_back(0); 4748 Vals.push_back(0); 4749 Vals.push_back(0); 4750 Vals.push_back(getEncodedLinkage(GV)); 4751 4752 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4753 Vals.clear(); 4754 } 4755 4756 // Emit the function proto information. 4757 for (const Function &F : M) { 4758 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4759 Vals.push_back(StrtabBuilder.add(F.getName())); 4760 Vals.push_back(F.getName().size()); 4761 Vals.push_back(0); 4762 Vals.push_back(0); 4763 Vals.push_back(0); 4764 Vals.push_back(getEncodedLinkage(F)); 4765 4766 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4767 Vals.clear(); 4768 } 4769 4770 // Emit the alias information. 4771 for (const GlobalAlias &A : M.aliases()) { 4772 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4773 Vals.push_back(StrtabBuilder.add(A.getName())); 4774 Vals.push_back(A.getName().size()); 4775 Vals.push_back(0); 4776 Vals.push_back(0); 4777 Vals.push_back(0); 4778 Vals.push_back(getEncodedLinkage(A)); 4779 4780 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4781 Vals.clear(); 4782 } 4783 4784 // Emit the ifunc information. 4785 for (const GlobalIFunc &I : M.ifuncs()) { 4786 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4787 Vals.push_back(StrtabBuilder.add(I.getName())); 4788 Vals.push_back(I.getName().size()); 4789 Vals.push_back(0); 4790 Vals.push_back(0); 4791 Vals.push_back(0); 4792 Vals.push_back(getEncodedLinkage(I)); 4793 4794 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4795 Vals.clear(); 4796 } 4797 } 4798 4799 void ThinLinkBitcodeWriter::write() { 4800 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4801 4802 writeModuleVersion(); 4803 4804 writeSimplifiedModuleInfo(); 4805 4806 writePerModuleGlobalValueSummary(); 4807 4808 // Write module hash. 4809 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4810 4811 Stream.ExitBlock(); 4812 } 4813 4814 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4815 const ModuleSummaryIndex &Index, 4816 const ModuleHash &ModHash) { 4817 assert(!WroteStrtab); 4818 4819 // The Mods vector is used by irsymtab::build, which requires non-const 4820 // Modules in case it needs to materialize metadata. But the bitcode writer 4821 // requires that the module is materialized, so we can cast to non-const here, 4822 // after checking that it is in fact materialized. 4823 assert(M.isMaterialized()); 4824 Mods.push_back(const_cast<Module *>(&M)); 4825 4826 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4827 ModHash); 4828 ThinLinkWriter.write(); 4829 } 4830 4831 // Write the specified thin link bitcode file to the given raw output stream, 4832 // where it will be written in a new bitcode block. This is used when 4833 // writing the per-module index file for ThinLTO. 4834 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4835 const ModuleSummaryIndex &Index, 4836 const ModuleHash &ModHash) { 4837 SmallVector<char, 0> Buffer; 4838 Buffer.reserve(256 * 1024); 4839 4840 BitcodeWriter Writer(Buffer); 4841 Writer.writeThinLinkBitcode(M, Index, ModHash); 4842 Writer.writeSymtab(); 4843 Writer.writeStrtab(); 4844 4845 Out.write((char *)&Buffer.front(), Buffer.size()); 4846 } 4847 4848 static const char *getSectionNameForBitcode(const Triple &T) { 4849 switch (T.getObjectFormat()) { 4850 case Triple::MachO: 4851 return "__LLVM,__bitcode"; 4852 case Triple::COFF: 4853 case Triple::ELF: 4854 case Triple::Wasm: 4855 case Triple::UnknownObjectFormat: 4856 return ".llvmbc"; 4857 case Triple::GOFF: 4858 llvm_unreachable("GOFF is not yet implemented"); 4859 break; 4860 case Triple::XCOFF: 4861 llvm_unreachable("XCOFF is not yet implemented"); 4862 break; 4863 } 4864 llvm_unreachable("Unimplemented ObjectFormatType"); 4865 } 4866 4867 static const char *getSectionNameForCommandline(const Triple &T) { 4868 switch (T.getObjectFormat()) { 4869 case Triple::MachO: 4870 return "__LLVM,__cmdline"; 4871 case Triple::COFF: 4872 case Triple::ELF: 4873 case Triple::Wasm: 4874 case Triple::UnknownObjectFormat: 4875 return ".llvmcmd"; 4876 case Triple::GOFF: 4877 llvm_unreachable("GOFF is not yet implemented"); 4878 break; 4879 case Triple::XCOFF: 4880 llvm_unreachable("XCOFF is not yet implemented"); 4881 break; 4882 } 4883 llvm_unreachable("Unimplemented ObjectFormatType"); 4884 } 4885 4886 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4887 bool EmbedBitcode, bool EmbedCmdline, 4888 const std::vector<uint8_t> &CmdArgs) { 4889 // Save llvm.compiler.used and remove it. 4890 SmallVector<Constant *, 2> UsedArray; 4891 SmallVector<GlobalValue *, 4> UsedGlobals; 4892 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4893 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4894 for (auto *GV : UsedGlobals) { 4895 if (GV->getName() != "llvm.embedded.module" && 4896 GV->getName() != "llvm.cmdline") 4897 UsedArray.push_back( 4898 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4899 } 4900 if (Used) 4901 Used->eraseFromParent(); 4902 4903 // Embed the bitcode for the llvm module. 4904 std::string Data; 4905 ArrayRef<uint8_t> ModuleData; 4906 Triple T(M.getTargetTriple()); 4907 4908 if (EmbedBitcode) { 4909 if (Buf.getBufferSize() == 0 || 4910 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4911 (const unsigned char *)Buf.getBufferEnd())) { 4912 // If the input is LLVM Assembly, bitcode is produced by serializing 4913 // the module. Use-lists order need to be preserved in this case. 4914 llvm::raw_string_ostream OS(Data); 4915 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4916 ModuleData = 4917 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4918 } else 4919 // If the input is LLVM bitcode, write the input byte stream directly. 4920 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4921 Buf.getBufferSize()); 4922 } 4923 llvm::Constant *ModuleConstant = 4924 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4925 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4926 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4927 ModuleConstant); 4928 GV->setSection(getSectionNameForBitcode(T)); 4929 // Set alignment to 1 to prevent padding between two contributions from input 4930 // sections after linking. 4931 GV->setAlignment(Align(1)); 4932 UsedArray.push_back( 4933 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4934 if (llvm::GlobalVariable *Old = 4935 M.getGlobalVariable("llvm.embedded.module", true)) { 4936 assert(Old->hasOneUse() && 4937 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4938 GV->takeName(Old); 4939 Old->eraseFromParent(); 4940 } else { 4941 GV->setName("llvm.embedded.module"); 4942 } 4943 4944 // Skip if only bitcode needs to be embedded. 4945 if (EmbedCmdline) { 4946 // Embed command-line options. 4947 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4948 CmdArgs.size()); 4949 llvm::Constant *CmdConstant = 4950 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4951 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4952 llvm::GlobalValue::PrivateLinkage, 4953 CmdConstant); 4954 GV->setSection(getSectionNameForCommandline(T)); 4955 GV->setAlignment(Align(1)); 4956 UsedArray.push_back( 4957 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4958 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4959 assert(Old->hasOneUse() && 4960 "llvm.cmdline can only be used once in llvm.compiler.used"); 4961 GV->takeName(Old); 4962 Old->eraseFromParent(); 4963 } else { 4964 GV->setName("llvm.cmdline"); 4965 } 4966 } 4967 4968 if (UsedArray.empty()) 4969 return; 4970 4971 // Recreate llvm.compiler.used. 4972 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4973 auto *NewUsed = new GlobalVariable( 4974 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4975 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4976 NewUsed->setSection("llvm.metadata"); 4977 } 4978