1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV 60 }; 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 78 } 79 } 80 81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 82 switch (Opcode) { 83 default: llvm_unreachable("Unknown binary instruction!"); 84 case Instruction::Add: 85 case Instruction::FAdd: return bitc::BINOP_ADD; 86 case Instruction::Sub: 87 case Instruction::FSub: return bitc::BINOP_SUB; 88 case Instruction::Mul: 89 case Instruction::FMul: return bitc::BINOP_MUL; 90 case Instruction::UDiv: return bitc::BINOP_UDIV; 91 case Instruction::FDiv: 92 case Instruction::SDiv: return bitc::BINOP_SDIV; 93 case Instruction::URem: return bitc::BINOP_UREM; 94 case Instruction::FRem: 95 case Instruction::SRem: return bitc::BINOP_SREM; 96 case Instruction::Shl: return bitc::BINOP_SHL; 97 case Instruction::LShr: return bitc::BINOP_LSHR; 98 case Instruction::AShr: return bitc::BINOP_ASHR; 99 case Instruction::And: return bitc::BINOP_AND; 100 case Instruction::Or: return bitc::BINOP_OR; 101 case Instruction::Xor: return bitc::BINOP_XOR; 102 } 103 } 104 105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 106 switch (Op) { 107 default: llvm_unreachable("Unknown RMW operation!"); 108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 109 case AtomicRMWInst::Add: return bitc::RMW_ADD; 110 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 111 case AtomicRMWInst::And: return bitc::RMW_AND; 112 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 113 case AtomicRMWInst::Or: return bitc::RMW_OR; 114 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 115 case AtomicRMWInst::Max: return bitc::RMW_MAX; 116 case AtomicRMWInst::Min: return bitc::RMW_MIN; 117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 119 } 120 } 121 122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 123 switch (Ordering) { 124 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 125 case Unordered: return bitc::ORDERING_UNORDERED; 126 case Monotonic: return bitc::ORDERING_MONOTONIC; 127 case Acquire: return bitc::ORDERING_ACQUIRE; 128 case Release: return bitc::ORDERING_RELEASE; 129 case AcquireRelease: return bitc::ORDERING_ACQREL; 130 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 131 } 132 llvm_unreachable("Invalid ordering"); 133 } 134 135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 136 switch (SynchScope) { 137 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 138 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 139 } 140 llvm_unreachable("Invalid synch scope"); 141 } 142 143 static void WriteStringRecord(unsigned Code, StringRef Str, 144 unsigned AbbrevToUse, BitstreamWriter &Stream) { 145 SmallVector<unsigned, 64> Vals; 146 147 // Code: [strchar x N] 148 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 150 AbbrevToUse = 0; 151 Vals.push_back(Str[i]); 152 } 153 154 // Emit the finished record. 155 Stream.EmitRecord(Code, Vals, AbbrevToUse); 156 } 157 158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 159 switch (Kind) { 160 case Attribute::Alignment: 161 return bitc::ATTR_KIND_ALIGNMENT; 162 case Attribute::AlwaysInline: 163 return bitc::ATTR_KIND_ALWAYS_INLINE; 164 case Attribute::Builtin: 165 return bitc::ATTR_KIND_BUILTIN; 166 case Attribute::ByVal: 167 return bitc::ATTR_KIND_BY_VAL; 168 case Attribute::InAlloca: 169 return bitc::ATTR_KIND_IN_ALLOCA; 170 case Attribute::Cold: 171 return bitc::ATTR_KIND_COLD; 172 case Attribute::InlineHint: 173 return bitc::ATTR_KIND_INLINE_HINT; 174 case Attribute::InReg: 175 return bitc::ATTR_KIND_IN_REG; 176 case Attribute::JumpTable: 177 return bitc::ATTR_KIND_JUMP_TABLE; 178 case Attribute::MinSize: 179 return bitc::ATTR_KIND_MIN_SIZE; 180 case Attribute::Naked: 181 return bitc::ATTR_KIND_NAKED; 182 case Attribute::Nest: 183 return bitc::ATTR_KIND_NEST; 184 case Attribute::NoAlias: 185 return bitc::ATTR_KIND_NO_ALIAS; 186 case Attribute::NoBuiltin: 187 return bitc::ATTR_KIND_NO_BUILTIN; 188 case Attribute::NoCapture: 189 return bitc::ATTR_KIND_NO_CAPTURE; 190 case Attribute::NoDuplicate: 191 return bitc::ATTR_KIND_NO_DUPLICATE; 192 case Attribute::NoImplicitFloat: 193 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 194 case Attribute::NoInline: 195 return bitc::ATTR_KIND_NO_INLINE; 196 case Attribute::NonLazyBind: 197 return bitc::ATTR_KIND_NON_LAZY_BIND; 198 case Attribute::NonNull: 199 return bitc::ATTR_KIND_NON_NULL; 200 case Attribute::Dereferenceable: 201 return bitc::ATTR_KIND_DEREFERENCEABLE; 202 case Attribute::NoRedZone: 203 return bitc::ATTR_KIND_NO_RED_ZONE; 204 case Attribute::NoReturn: 205 return bitc::ATTR_KIND_NO_RETURN; 206 case Attribute::NoUnwind: 207 return bitc::ATTR_KIND_NO_UNWIND; 208 case Attribute::OptimizeForSize: 209 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 210 case Attribute::OptimizeNone: 211 return bitc::ATTR_KIND_OPTIMIZE_NONE; 212 case Attribute::ReadNone: 213 return bitc::ATTR_KIND_READ_NONE; 214 case Attribute::ReadOnly: 215 return bitc::ATTR_KIND_READ_ONLY; 216 case Attribute::Returned: 217 return bitc::ATTR_KIND_RETURNED; 218 case Attribute::ReturnsTwice: 219 return bitc::ATTR_KIND_RETURNS_TWICE; 220 case Attribute::SExt: 221 return bitc::ATTR_KIND_S_EXT; 222 case Attribute::StackAlignment: 223 return bitc::ATTR_KIND_STACK_ALIGNMENT; 224 case Attribute::StackProtect: 225 return bitc::ATTR_KIND_STACK_PROTECT; 226 case Attribute::StackProtectReq: 227 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 228 case Attribute::StackProtectStrong: 229 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 230 case Attribute::StructRet: 231 return bitc::ATTR_KIND_STRUCT_RET; 232 case Attribute::SanitizeAddress: 233 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 234 case Attribute::SanitizeThread: 235 return bitc::ATTR_KIND_SANITIZE_THREAD; 236 case Attribute::SanitizeMemory: 237 return bitc::ATTR_KIND_SANITIZE_MEMORY; 238 case Attribute::UWTable: 239 return bitc::ATTR_KIND_UW_TABLE; 240 case Attribute::ZExt: 241 return bitc::ATTR_KIND_Z_EXT; 242 case Attribute::EndAttrKinds: 243 llvm_unreachable("Can not encode end-attribute kinds marker."); 244 case Attribute::None: 245 llvm_unreachable("Can not encode none-attribute."); 246 } 247 248 llvm_unreachable("Trying to encode unknown attribute"); 249 } 250 251 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 252 BitstreamWriter &Stream) { 253 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 254 if (AttrGrps.empty()) return; 255 256 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 257 258 SmallVector<uint64_t, 64> Record; 259 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 260 AttributeSet AS = AttrGrps[i]; 261 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 262 AttributeSet A = AS.getSlotAttributes(i); 263 264 Record.push_back(VE.getAttributeGroupID(A)); 265 Record.push_back(AS.getSlotIndex(i)); 266 267 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 268 I != E; ++I) { 269 Attribute Attr = *I; 270 if (Attr.isEnumAttribute()) { 271 Record.push_back(0); 272 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 273 } else if (Attr.isIntAttribute()) { 274 Record.push_back(1); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 Record.push_back(Attr.getValueAsInt()); 277 } else { 278 StringRef Kind = Attr.getKindAsString(); 279 StringRef Val = Attr.getValueAsString(); 280 281 Record.push_back(Val.empty() ? 3 : 4); 282 Record.append(Kind.begin(), Kind.end()); 283 Record.push_back(0); 284 if (!Val.empty()) { 285 Record.append(Val.begin(), Val.end()); 286 Record.push_back(0); 287 } 288 } 289 } 290 291 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 292 Record.clear(); 293 } 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static void WriteAttributeTable(const ValueEnumerator &VE, 300 BitstreamWriter &Stream) { 301 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 302 if (Attrs.empty()) return; 303 304 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 305 306 SmallVector<uint64_t, 64> Record; 307 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 308 const AttributeSet &A = Attrs[i]; 309 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 310 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 311 312 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 313 Record.clear(); 314 } 315 316 Stream.ExitBlock(); 317 } 318 319 /// WriteTypeTable - Write out the type table for a module. 320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 321 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 322 323 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 324 SmallVector<uint64_t, 64> TypeVals; 325 326 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 327 328 // Abbrev for TYPE_CODE_POINTER. 329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 330 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 332 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 333 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 334 335 // Abbrev for TYPE_CODE_FUNCTION. 336 Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 342 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_STRUCT_ANON. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_NAME. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 358 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAMED. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_ARRAY. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Emit an entry count so the reader can reserve space. 378 TypeVals.push_back(TypeList.size()); 379 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 380 TypeVals.clear(); 381 382 // Loop over all of the types, emitting each in turn. 383 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 384 Type *T = TypeList[i]; 385 int AbbrevToUse = 0; 386 unsigned Code = 0; 387 388 switch (T->getTypeID()) { 389 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 390 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 391 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 392 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 393 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 394 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 395 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 396 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 397 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 398 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 399 case Type::IntegerTyID: 400 // INTEGER: [width] 401 Code = bitc::TYPE_CODE_INTEGER; 402 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 403 break; 404 case Type::PointerTyID: { 405 PointerType *PTy = cast<PointerType>(T); 406 // POINTER: [pointee type, address space] 407 Code = bitc::TYPE_CODE_POINTER; 408 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 409 unsigned AddressSpace = PTy->getAddressSpace(); 410 TypeVals.push_back(AddressSpace); 411 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 412 break; 413 } 414 case Type::FunctionTyID: { 415 FunctionType *FT = cast<FunctionType>(T); 416 // FUNCTION: [isvararg, retty, paramty x N] 417 Code = bitc::TYPE_CODE_FUNCTION; 418 TypeVals.push_back(FT->isVarArg()); 419 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 421 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 422 AbbrevToUse = FunctionAbbrev; 423 break; 424 } 425 case Type::StructTyID: { 426 StructType *ST = cast<StructType>(T); 427 // STRUCT: [ispacked, eltty x N] 428 TypeVals.push_back(ST->isPacked()); 429 // Output all of the element types. 430 for (StructType::element_iterator I = ST->element_begin(), 431 E = ST->element_end(); I != E; ++I) 432 TypeVals.push_back(VE.getTypeID(*I)); 433 434 if (ST->isLiteral()) { 435 Code = bitc::TYPE_CODE_STRUCT_ANON; 436 AbbrevToUse = StructAnonAbbrev; 437 } else { 438 if (ST->isOpaque()) { 439 Code = bitc::TYPE_CODE_OPAQUE; 440 } else { 441 Code = bitc::TYPE_CODE_STRUCT_NAMED; 442 AbbrevToUse = StructNamedAbbrev; 443 } 444 445 // Emit the name if it is present. 446 if (!ST->getName().empty()) 447 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 448 StructNameAbbrev, Stream); 449 } 450 break; 451 } 452 case Type::ArrayTyID: { 453 ArrayType *AT = cast<ArrayType>(T); 454 // ARRAY: [numelts, eltty] 455 Code = bitc::TYPE_CODE_ARRAY; 456 TypeVals.push_back(AT->getNumElements()); 457 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 458 AbbrevToUse = ArrayAbbrev; 459 break; 460 } 461 case Type::VectorTyID: { 462 VectorType *VT = cast<VectorType>(T); 463 // VECTOR [numelts, eltty] 464 Code = bitc::TYPE_CODE_VECTOR; 465 TypeVals.push_back(VT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 467 break; 468 } 469 } 470 471 // Emit the finished record. 472 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 473 TypeVals.clear(); 474 } 475 476 Stream.ExitBlock(); 477 } 478 479 static unsigned getEncodedLinkage(const GlobalValue &GV) { 480 switch (GV.getLinkage()) { 481 case GlobalValue::ExternalLinkage: 482 return 0; 483 case GlobalValue::WeakAnyLinkage: 484 return 16; 485 case GlobalValue::AppendingLinkage: 486 return 2; 487 case GlobalValue::InternalLinkage: 488 return 3; 489 case GlobalValue::LinkOnceAnyLinkage: 490 return 18; 491 case GlobalValue::ExternalWeakLinkage: 492 return 7; 493 case GlobalValue::CommonLinkage: 494 return 8; 495 case GlobalValue::PrivateLinkage: 496 return 9; 497 case GlobalValue::WeakODRLinkage: 498 return 17; 499 case GlobalValue::LinkOnceODRLinkage: 500 return 19; 501 case GlobalValue::AvailableExternallyLinkage: 502 return 12; 503 } 504 llvm_unreachable("Invalid linkage"); 505 } 506 507 static unsigned getEncodedVisibility(const GlobalValue &GV) { 508 switch (GV.getVisibility()) { 509 case GlobalValue::DefaultVisibility: return 0; 510 case GlobalValue::HiddenVisibility: return 1; 511 case GlobalValue::ProtectedVisibility: return 2; 512 } 513 llvm_unreachable("Invalid visibility"); 514 } 515 516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 517 switch (GV.getDLLStorageClass()) { 518 case GlobalValue::DefaultStorageClass: return 0; 519 case GlobalValue::DLLImportStorageClass: return 1; 520 case GlobalValue::DLLExportStorageClass: return 2; 521 } 522 llvm_unreachable("Invalid DLL storage class"); 523 } 524 525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 526 switch (GV.getThreadLocalMode()) { 527 case GlobalVariable::NotThreadLocal: return 0; 528 case GlobalVariable::GeneralDynamicTLSModel: return 1; 529 case GlobalVariable::LocalDynamicTLSModel: return 2; 530 case GlobalVariable::InitialExecTLSModel: return 3; 531 case GlobalVariable::LocalExecTLSModel: return 4; 532 } 533 llvm_unreachable("Invalid TLS model"); 534 } 535 536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 537 switch (C.getSelectionKind()) { 538 case Comdat::Any: 539 return bitc::COMDAT_SELECTION_KIND_ANY; 540 case Comdat::ExactMatch: 541 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 542 case Comdat::Largest: 543 return bitc::COMDAT_SELECTION_KIND_LARGEST; 544 case Comdat::NoDuplicates: 545 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 546 case Comdat::SameSize: 547 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 548 } 549 llvm_unreachable("Invalid selection kind"); 550 } 551 552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 553 SmallVector<uint16_t, 64> Vals; 554 for (const Comdat *C : VE.getComdats()) { 555 // COMDAT: [selection_kind, name] 556 Vals.push_back(getEncodedComdatSelectionKind(*C)); 557 size_t Size = C->getName().size(); 558 assert(isUInt<16>(Size)); 559 Vals.push_back(Size); 560 for (char Chr : C->getName()) 561 Vals.push_back((unsigned char)Chr); 562 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 563 Vals.clear(); 564 } 565 } 566 567 // Emit top-level description of module, including target triple, inline asm, 568 // descriptors for global variables, and function prototype info. 569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 570 BitstreamWriter &Stream) { 571 // Emit various pieces of data attached to a module. 572 if (!M->getTargetTriple().empty()) 573 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 574 0/*TODO*/, Stream); 575 const std::string &DL = M->getDataLayoutStr(); 576 if (!DL.empty()) 577 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 578 if (!M->getModuleInlineAsm().empty()) 579 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 580 0/*TODO*/, Stream); 581 582 // Emit information about sections and GC, computing how many there are. Also 583 // compute the maximum alignment value. 584 std::map<std::string, unsigned> SectionMap; 585 std::map<std::string, unsigned> GCMap; 586 unsigned MaxAlignment = 0; 587 unsigned MaxGlobalType = 0; 588 for (const GlobalValue &GV : M->globals()) { 589 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 590 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 591 if (GV.hasSection()) { 592 // Give section names unique ID's. 593 unsigned &Entry = SectionMap[GV.getSection()]; 594 if (!Entry) { 595 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 596 0/*TODO*/, Stream); 597 Entry = SectionMap.size(); 598 } 599 } 600 } 601 for (const Function &F : *M) { 602 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 603 if (F.hasSection()) { 604 // Give section names unique ID's. 605 unsigned &Entry = SectionMap[F.getSection()]; 606 if (!Entry) { 607 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 608 0/*TODO*/, Stream); 609 Entry = SectionMap.size(); 610 } 611 } 612 if (F.hasGC()) { 613 // Same for GC names. 614 unsigned &Entry = GCMap[F.getGC()]; 615 if (!Entry) { 616 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 617 0/*TODO*/, Stream); 618 Entry = GCMap.size(); 619 } 620 } 621 } 622 623 // Emit abbrev for globals, now that we know # sections and max alignment. 624 unsigned SimpleGVarAbbrev = 0; 625 if (!M->global_empty()) { 626 // Add an abbrev for common globals with no visibility or thread localness. 627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 628 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 630 Log2_32_Ceil(MaxGlobalType+1))); 631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 634 if (MaxAlignment == 0) // Alignment. 635 Abbv->Add(BitCodeAbbrevOp(0)); 636 else { 637 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 639 Log2_32_Ceil(MaxEncAlignment+1))); 640 } 641 if (SectionMap.empty()) // Section. 642 Abbv->Add(BitCodeAbbrevOp(0)); 643 else 644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 645 Log2_32_Ceil(SectionMap.size()+1))); 646 // Don't bother emitting vis + thread local. 647 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 648 } 649 650 // Emit the global variable information. 651 SmallVector<unsigned, 64> Vals; 652 for (const GlobalVariable &GV : M->globals()) { 653 unsigned AbbrevToUse = 0; 654 655 // GLOBALVAR: [type, isconst, initid, 656 // linkage, alignment, section, visibility, threadlocal, 657 // unnamed_addr, externally_initialized, dllstorageclass, 658 // comdat] 659 Vals.push_back(VE.getTypeID(GV.getType())); 660 Vals.push_back(GV.isConstant()); 661 Vals.push_back(GV.isDeclaration() ? 0 : 662 (VE.getValueID(GV.getInitializer()) + 1)); 663 Vals.push_back(getEncodedLinkage(GV)); 664 Vals.push_back(Log2_32(GV.getAlignment())+1); 665 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 666 if (GV.isThreadLocal() || 667 GV.getVisibility() != GlobalValue::DefaultVisibility || 668 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 669 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 670 GV.hasComdat()) { 671 Vals.push_back(getEncodedVisibility(GV)); 672 Vals.push_back(getEncodedThreadLocalMode(GV)); 673 Vals.push_back(GV.hasUnnamedAddr()); 674 Vals.push_back(GV.isExternallyInitialized()); 675 Vals.push_back(getEncodedDLLStorageClass(GV)); 676 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 677 } else { 678 AbbrevToUse = SimpleGVarAbbrev; 679 } 680 681 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 682 Vals.clear(); 683 } 684 685 // Emit the function proto information. 686 for (const Function &F : *M) { 687 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 688 // section, visibility, gc, unnamed_addr, prologuedata, 689 // dllstorageclass, comdat, prefixdata] 690 Vals.push_back(VE.getTypeID(F.getType())); 691 Vals.push_back(F.getCallingConv()); 692 Vals.push_back(F.isDeclaration()); 693 Vals.push_back(getEncodedLinkage(F)); 694 Vals.push_back(VE.getAttributeID(F.getAttributes())); 695 Vals.push_back(Log2_32(F.getAlignment())+1); 696 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 697 Vals.push_back(getEncodedVisibility(F)); 698 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 699 Vals.push_back(F.hasUnnamedAddr()); 700 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 701 : 0); 702 Vals.push_back(getEncodedDLLStorageClass(F)); 703 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 704 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 705 : 0); 706 707 unsigned AbbrevToUse = 0; 708 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 709 Vals.clear(); 710 } 711 712 // Emit the alias information. 713 for (const GlobalAlias &A : M->aliases()) { 714 // ALIAS: [alias type, aliasee val#, linkage, visibility] 715 Vals.push_back(VE.getTypeID(A.getType())); 716 Vals.push_back(VE.getValueID(A.getAliasee())); 717 Vals.push_back(getEncodedLinkage(A)); 718 Vals.push_back(getEncodedVisibility(A)); 719 Vals.push_back(getEncodedDLLStorageClass(A)); 720 Vals.push_back(getEncodedThreadLocalMode(A)); 721 Vals.push_back(A.hasUnnamedAddr()); 722 unsigned AbbrevToUse = 0; 723 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 724 Vals.clear(); 725 } 726 } 727 728 static uint64_t GetOptimizationFlags(const Value *V) { 729 uint64_t Flags = 0; 730 731 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 732 if (OBO->hasNoSignedWrap()) 733 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 734 if (OBO->hasNoUnsignedWrap()) 735 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 736 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 737 if (PEO->isExact()) 738 Flags |= 1 << bitc::PEO_EXACT; 739 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 740 if (FPMO->hasUnsafeAlgebra()) 741 Flags |= FastMathFlags::UnsafeAlgebra; 742 if (FPMO->hasNoNaNs()) 743 Flags |= FastMathFlags::NoNaNs; 744 if (FPMO->hasNoInfs()) 745 Flags |= FastMathFlags::NoInfs; 746 if (FPMO->hasNoSignedZeros()) 747 Flags |= FastMathFlags::NoSignedZeros; 748 if (FPMO->hasAllowReciprocal()) 749 Flags |= FastMathFlags::AllowReciprocal; 750 } 751 752 return Flags; 753 } 754 755 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 756 const ValueEnumerator &VE, 757 BitstreamWriter &Stream, 758 SmallVectorImpl<uint64_t> &Record) { 759 // Mimic an MDNode with a value as one operand. 760 Value *V = MD->getValue(); 761 Record.push_back(VE.getTypeID(V->getType())); 762 Record.push_back(VE.getValueID(V)); 763 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 764 Record.clear(); 765 } 766 767 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 768 BitstreamWriter &Stream, 769 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 770 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 771 Metadata *MD = N->getOperand(i); 772 assert(!(MD && isa<LocalAsMetadata>(MD)) && 773 "Unexpected function-local metadata"); 774 Record.push_back(VE.getMetadataOrNullID(MD)); 775 } 776 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 777 : bitc::METADATA_NODE, 778 Record, Abbrev); 779 Record.clear(); 780 } 781 782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 783 BitstreamWriter &Stream, 784 SmallVectorImpl<uint64_t> &Record, 785 unsigned Abbrev) { 786 Record.push_back(N->isDistinct()); 787 Record.push_back(N->getLine()); 788 Record.push_back(N->getColumn()); 789 Record.push_back(VE.getMetadataID(N->getScope())); 790 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 791 792 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 793 Record.clear(); 794 } 795 796 static void WriteGenericDebugNode(const GenericDebugNode *N, 797 const ValueEnumerator &VE, 798 BitstreamWriter &Stream, 799 SmallVectorImpl<uint64_t> &Record, 800 unsigned Abbrev) { 801 Record.push_back(N->isDistinct()); 802 Record.push_back(N->getTag()); 803 Record.push_back(0); // Per-tag version field; unused for now. 804 805 for (auto &I : N->operands()) 806 Record.push_back(VE.getMetadataOrNullID(I)); 807 808 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 809 Record.clear(); 810 } 811 812 static uint64_t rotateSign(int64_t I) { 813 uint64_t U = I; 814 return I < 0 ? ~(U << 1) : U << 1; 815 } 816 817 static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &, 818 BitstreamWriter &Stream, 819 SmallVectorImpl<uint64_t> &Record, 820 unsigned Abbrev) { 821 Record.push_back(N->isDistinct()); 822 Record.push_back(N->getCount()); 823 Record.push_back(rotateSign(N->getLo())); 824 825 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 826 Record.clear(); 827 } 828 829 static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE, 830 BitstreamWriter &Stream, 831 SmallVectorImpl<uint64_t> &Record, 832 unsigned Abbrev) { 833 Record.push_back(N->isDistinct()); 834 Record.push_back(rotateSign(N->getValue())); 835 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 836 837 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 838 Record.clear(); 839 } 840 841 static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE, 842 BitstreamWriter &Stream, 843 SmallVectorImpl<uint64_t> &Record, 844 unsigned Abbrev) { 845 Record.push_back(N->isDistinct()); 846 Record.push_back(N->getTag()); 847 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 848 Record.push_back(N->getSizeInBits()); 849 Record.push_back(N->getAlignInBits()); 850 Record.push_back(N->getEncoding()); 851 852 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 853 Record.clear(); 854 } 855 856 static void WriteMDDerivedType(const MDDerivedType *N, 857 const ValueEnumerator &VE, 858 BitstreamWriter &Stream, 859 SmallVectorImpl<uint64_t> &Record, 860 unsigned Abbrev) { 861 Record.push_back(N->isDistinct()); 862 Record.push_back(N->getTag()); 863 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 864 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 865 Record.push_back(N->getLine()); 866 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 867 Record.push_back(VE.getMetadataID(N->getBaseType())); 868 Record.push_back(N->getSizeInBits()); 869 Record.push_back(N->getAlignInBits()); 870 Record.push_back(N->getOffsetInBits()); 871 Record.push_back(N->getFlags()); 872 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 873 874 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 875 Record.clear(); 876 } 877 878 static void WriteMDCompositeType(const MDCompositeType *N, 879 const ValueEnumerator &VE, 880 BitstreamWriter &Stream, 881 SmallVectorImpl<uint64_t> &Record, 882 unsigned Abbrev) { 883 Record.push_back(N->isDistinct()); 884 Record.push_back(N->getTag()); 885 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 886 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 887 Record.push_back(N->getLine()); 888 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 889 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 890 Record.push_back(N->getSizeInBits()); 891 Record.push_back(N->getAlignInBits()); 892 Record.push_back(N->getOffsetInBits()); 893 Record.push_back(N->getFlags()); 894 Record.push_back(VE.getMetadataOrNullID(N->getElements())); 895 Record.push_back(N->getRuntimeLang()); 896 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 897 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 898 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 899 900 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 901 Record.clear(); 902 } 903 904 static void WriteMDSubroutineType(const MDSubroutineType *, 905 const ValueEnumerator &, BitstreamWriter &, 906 SmallVectorImpl<uint64_t> &, unsigned) { 907 llvm_unreachable("write not implemented"); 908 } 909 910 static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE, 911 BitstreamWriter &Stream, 912 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 913 Record.push_back(N->isDistinct()); 914 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 915 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 916 917 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 918 Record.clear(); 919 } 920 921 static void WriteMDCompileUnit(const MDCompileUnit *, const ValueEnumerator &, 922 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 923 unsigned) { 924 llvm_unreachable("write not implemented"); 925 } 926 static void WriteMDSubprogram(const MDSubprogram *, const ValueEnumerator &, 927 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 928 unsigned) { 929 llvm_unreachable("write not implemented"); 930 } 931 static void WriteMDLexicalBlock(const MDLexicalBlock *, const ValueEnumerator &, 932 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 933 unsigned) { 934 llvm_unreachable("write not implemented"); 935 } 936 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *, 937 const ValueEnumerator &, BitstreamWriter &, 938 SmallVectorImpl<uint64_t> &, unsigned) { 939 llvm_unreachable("write not implemented"); 940 } 941 static void WriteMDNamespace(const MDNamespace *, const ValueEnumerator &, 942 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 943 unsigned) { 944 llvm_unreachable("write not implemented"); 945 } 946 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *, 947 const ValueEnumerator &, 948 BitstreamWriter &, 949 SmallVectorImpl<uint64_t> &, 950 unsigned) { 951 llvm_unreachable("write not implemented"); 952 } 953 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *, 954 const ValueEnumerator &, 955 BitstreamWriter &, 956 SmallVectorImpl<uint64_t> &, 957 unsigned) { 958 llvm_unreachable("write not implemented"); 959 } 960 static void WriteMDGlobalVariable(const MDGlobalVariable *, 961 const ValueEnumerator &, BitstreamWriter &, 962 SmallVectorImpl<uint64_t> &, unsigned) { 963 llvm_unreachable("write not implemented"); 964 } 965 static void WriteMDLocalVariable(const MDLocalVariable *, 966 const ValueEnumerator &, BitstreamWriter &, 967 SmallVectorImpl<uint64_t> &, unsigned) { 968 llvm_unreachable("write not implemented"); 969 } 970 static void WriteMDExpression(const MDExpression *, const ValueEnumerator &, 971 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 972 unsigned) { 973 llvm_unreachable("write not implemented"); 974 } 975 static void WriteMDObjCProperty(const MDObjCProperty *, const ValueEnumerator &, 976 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 977 unsigned) { 978 llvm_unreachable("write not implemented"); 979 } 980 static void WriteMDImportedEntity(const MDImportedEntity *, 981 const ValueEnumerator &, BitstreamWriter &, 982 SmallVectorImpl<uint64_t> &, unsigned) { 983 llvm_unreachable("write not implemented"); 984 } 985 986 static void WriteModuleMetadata(const Module *M, 987 const ValueEnumerator &VE, 988 BitstreamWriter &Stream) { 989 const auto &MDs = VE.getMDs(); 990 if (MDs.empty() && M->named_metadata_empty()) 991 return; 992 993 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 994 995 unsigned MDSAbbrev = 0; 996 if (VE.hasMDString()) { 997 // Abbrev for METADATA_STRING. 998 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 999 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1002 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1003 } 1004 1005 // Initialize MDNode abbreviations. 1006 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1007 #include "llvm/IR/Metadata.def" 1008 1009 if (VE.hasMDLocation()) { 1010 // Abbrev for METADATA_LOCATION. 1011 // 1012 // Assume the column is usually under 128, and always output the inlined-at 1013 // location (it's never more expensive than building an array size 1). 1014 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1015 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1021 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 1022 } 1023 1024 if (VE.hasGenericDebugNode()) { 1025 // Abbrev for METADATA_GENERIC_DEBUG. 1026 // 1027 // Assume the column is usually under 128, and always output the inlined-at 1028 // location (it's never more expensive than building an array size 1). 1029 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1030 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1037 GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv); 1038 } 1039 1040 unsigned NameAbbrev = 0; 1041 if (!M->named_metadata_empty()) { 1042 // Abbrev for METADATA_NAME. 1043 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1044 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1047 NameAbbrev = Stream.EmitAbbrev(Abbv); 1048 } 1049 1050 SmallVector<uint64_t, 64> Record; 1051 for (const Metadata *MD : MDs) { 1052 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1053 switch (N->getMetadataID()) { 1054 default: 1055 llvm_unreachable("Invalid MDNode subclass"); 1056 #define HANDLE_MDNODE_LEAF(CLASS) \ 1057 case Metadata::CLASS##Kind: \ 1058 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1059 continue; 1060 #include "llvm/IR/Metadata.def" 1061 } 1062 } 1063 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1064 WriteValueAsMetadata(MDC, VE, Stream, Record); 1065 continue; 1066 } 1067 const MDString *MDS = cast<MDString>(MD); 1068 // Code: [strchar x N] 1069 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1070 1071 // Emit the finished record. 1072 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1073 Record.clear(); 1074 } 1075 1076 // Write named metadata. 1077 for (const NamedMDNode &NMD : M->named_metadata()) { 1078 // Write name. 1079 StringRef Str = NMD.getName(); 1080 Record.append(Str.bytes_begin(), Str.bytes_end()); 1081 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1082 Record.clear(); 1083 1084 // Write named metadata operands. 1085 for (const MDNode *N : NMD.operands()) 1086 Record.push_back(VE.getMetadataID(N)); 1087 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1088 Record.clear(); 1089 } 1090 1091 Stream.ExitBlock(); 1092 } 1093 1094 static void WriteFunctionLocalMetadata(const Function &F, 1095 const ValueEnumerator &VE, 1096 BitstreamWriter &Stream) { 1097 bool StartedMetadataBlock = false; 1098 SmallVector<uint64_t, 64> Record; 1099 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1100 VE.getFunctionLocalMDs(); 1101 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1102 assert(MDs[i] && "Expected valid function-local metadata"); 1103 if (!StartedMetadataBlock) { 1104 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1105 StartedMetadataBlock = true; 1106 } 1107 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1108 } 1109 1110 if (StartedMetadataBlock) 1111 Stream.ExitBlock(); 1112 } 1113 1114 static void WriteMetadataAttachment(const Function &F, 1115 const ValueEnumerator &VE, 1116 BitstreamWriter &Stream) { 1117 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1118 1119 SmallVector<uint64_t, 64> Record; 1120 1121 // Write metadata attachments 1122 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1123 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1124 1125 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1126 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1127 I != E; ++I) { 1128 MDs.clear(); 1129 I->getAllMetadataOtherThanDebugLoc(MDs); 1130 1131 // If no metadata, ignore instruction. 1132 if (MDs.empty()) continue; 1133 1134 Record.push_back(VE.getInstructionID(I)); 1135 1136 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1137 Record.push_back(MDs[i].first); 1138 Record.push_back(VE.getMetadataID(MDs[i].second)); 1139 } 1140 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1141 Record.clear(); 1142 } 1143 1144 Stream.ExitBlock(); 1145 } 1146 1147 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1148 SmallVector<uint64_t, 64> Record; 1149 1150 // Write metadata kinds 1151 // METADATA_KIND - [n x [id, name]] 1152 SmallVector<StringRef, 8> Names; 1153 M->getMDKindNames(Names); 1154 1155 if (Names.empty()) return; 1156 1157 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1158 1159 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1160 Record.push_back(MDKindID); 1161 StringRef KName = Names[MDKindID]; 1162 Record.append(KName.begin(), KName.end()); 1163 1164 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1165 Record.clear(); 1166 } 1167 1168 Stream.ExitBlock(); 1169 } 1170 1171 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1172 if ((int64_t)V >= 0) 1173 Vals.push_back(V << 1); 1174 else 1175 Vals.push_back((-V << 1) | 1); 1176 } 1177 1178 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1179 const ValueEnumerator &VE, 1180 BitstreamWriter &Stream, bool isGlobal) { 1181 if (FirstVal == LastVal) return; 1182 1183 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1184 1185 unsigned AggregateAbbrev = 0; 1186 unsigned String8Abbrev = 0; 1187 unsigned CString7Abbrev = 0; 1188 unsigned CString6Abbrev = 0; 1189 // If this is a constant pool for the module, emit module-specific abbrevs. 1190 if (isGlobal) { 1191 // Abbrev for CST_CODE_AGGREGATE. 1192 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1193 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1196 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1197 1198 // Abbrev for CST_CODE_STRING. 1199 Abbv = new BitCodeAbbrev(); 1200 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1203 String8Abbrev = Stream.EmitAbbrev(Abbv); 1204 // Abbrev for CST_CODE_CSTRING. 1205 Abbv = new BitCodeAbbrev(); 1206 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1209 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1210 // Abbrev for CST_CODE_CSTRING. 1211 Abbv = new BitCodeAbbrev(); 1212 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1215 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1216 } 1217 1218 SmallVector<uint64_t, 64> Record; 1219 1220 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1221 Type *LastTy = nullptr; 1222 for (unsigned i = FirstVal; i != LastVal; ++i) { 1223 const Value *V = Vals[i].first; 1224 // If we need to switch types, do so now. 1225 if (V->getType() != LastTy) { 1226 LastTy = V->getType(); 1227 Record.push_back(VE.getTypeID(LastTy)); 1228 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1229 CONSTANTS_SETTYPE_ABBREV); 1230 Record.clear(); 1231 } 1232 1233 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1234 Record.push_back(unsigned(IA->hasSideEffects()) | 1235 unsigned(IA->isAlignStack()) << 1 | 1236 unsigned(IA->getDialect()&1) << 2); 1237 1238 // Add the asm string. 1239 const std::string &AsmStr = IA->getAsmString(); 1240 Record.push_back(AsmStr.size()); 1241 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 1242 Record.push_back(AsmStr[i]); 1243 1244 // Add the constraint string. 1245 const std::string &ConstraintStr = IA->getConstraintString(); 1246 Record.push_back(ConstraintStr.size()); 1247 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1248 Record.push_back(ConstraintStr[i]); 1249 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1250 Record.clear(); 1251 continue; 1252 } 1253 const Constant *C = cast<Constant>(V); 1254 unsigned Code = -1U; 1255 unsigned AbbrevToUse = 0; 1256 if (C->isNullValue()) { 1257 Code = bitc::CST_CODE_NULL; 1258 } else if (isa<UndefValue>(C)) { 1259 Code = bitc::CST_CODE_UNDEF; 1260 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1261 if (IV->getBitWidth() <= 64) { 1262 uint64_t V = IV->getSExtValue(); 1263 emitSignedInt64(Record, V); 1264 Code = bitc::CST_CODE_INTEGER; 1265 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1266 } else { // Wide integers, > 64 bits in size. 1267 // We have an arbitrary precision integer value to write whose 1268 // bit width is > 64. However, in canonical unsigned integer 1269 // format it is likely that the high bits are going to be zero. 1270 // So, we only write the number of active words. 1271 unsigned NWords = IV->getValue().getActiveWords(); 1272 const uint64_t *RawWords = IV->getValue().getRawData(); 1273 for (unsigned i = 0; i != NWords; ++i) { 1274 emitSignedInt64(Record, RawWords[i]); 1275 } 1276 Code = bitc::CST_CODE_WIDE_INTEGER; 1277 } 1278 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1279 Code = bitc::CST_CODE_FLOAT; 1280 Type *Ty = CFP->getType(); 1281 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1282 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1283 } else if (Ty->isX86_FP80Ty()) { 1284 // api needed to prevent premature destruction 1285 // bits are not in the same order as a normal i80 APInt, compensate. 1286 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1287 const uint64_t *p = api.getRawData(); 1288 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1289 Record.push_back(p[0] & 0xffffLL); 1290 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1291 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1292 const uint64_t *p = api.getRawData(); 1293 Record.push_back(p[0]); 1294 Record.push_back(p[1]); 1295 } else { 1296 assert (0 && "Unknown FP type!"); 1297 } 1298 } else if (isa<ConstantDataSequential>(C) && 1299 cast<ConstantDataSequential>(C)->isString()) { 1300 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1301 // Emit constant strings specially. 1302 unsigned NumElts = Str->getNumElements(); 1303 // If this is a null-terminated string, use the denser CSTRING encoding. 1304 if (Str->isCString()) { 1305 Code = bitc::CST_CODE_CSTRING; 1306 --NumElts; // Don't encode the null, which isn't allowed by char6. 1307 } else { 1308 Code = bitc::CST_CODE_STRING; 1309 AbbrevToUse = String8Abbrev; 1310 } 1311 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1312 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1313 for (unsigned i = 0; i != NumElts; ++i) { 1314 unsigned char V = Str->getElementAsInteger(i); 1315 Record.push_back(V); 1316 isCStr7 &= (V & 128) == 0; 1317 if (isCStrChar6) 1318 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1319 } 1320 1321 if (isCStrChar6) 1322 AbbrevToUse = CString6Abbrev; 1323 else if (isCStr7) 1324 AbbrevToUse = CString7Abbrev; 1325 } else if (const ConstantDataSequential *CDS = 1326 dyn_cast<ConstantDataSequential>(C)) { 1327 Code = bitc::CST_CODE_DATA; 1328 Type *EltTy = CDS->getType()->getElementType(); 1329 if (isa<IntegerType>(EltTy)) { 1330 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1331 Record.push_back(CDS->getElementAsInteger(i)); 1332 } else if (EltTy->isFloatTy()) { 1333 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1334 union { float F; uint32_t I; }; 1335 F = CDS->getElementAsFloat(i); 1336 Record.push_back(I); 1337 } 1338 } else { 1339 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1340 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1341 union { double F; uint64_t I; }; 1342 F = CDS->getElementAsDouble(i); 1343 Record.push_back(I); 1344 } 1345 } 1346 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1347 isa<ConstantVector>(C)) { 1348 Code = bitc::CST_CODE_AGGREGATE; 1349 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1350 Record.push_back(VE.getValueID(C->getOperand(i))); 1351 AbbrevToUse = AggregateAbbrev; 1352 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1353 switch (CE->getOpcode()) { 1354 default: 1355 if (Instruction::isCast(CE->getOpcode())) { 1356 Code = bitc::CST_CODE_CE_CAST; 1357 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1358 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1359 Record.push_back(VE.getValueID(C->getOperand(0))); 1360 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1361 } else { 1362 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1363 Code = bitc::CST_CODE_CE_BINOP; 1364 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1365 Record.push_back(VE.getValueID(C->getOperand(0))); 1366 Record.push_back(VE.getValueID(C->getOperand(1))); 1367 uint64_t Flags = GetOptimizationFlags(CE); 1368 if (Flags != 0) 1369 Record.push_back(Flags); 1370 } 1371 break; 1372 case Instruction::GetElementPtr: 1373 Code = bitc::CST_CODE_CE_GEP; 1374 if (cast<GEPOperator>(C)->isInBounds()) 1375 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1376 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1377 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1378 Record.push_back(VE.getValueID(C->getOperand(i))); 1379 } 1380 break; 1381 case Instruction::Select: 1382 Code = bitc::CST_CODE_CE_SELECT; 1383 Record.push_back(VE.getValueID(C->getOperand(0))); 1384 Record.push_back(VE.getValueID(C->getOperand(1))); 1385 Record.push_back(VE.getValueID(C->getOperand(2))); 1386 break; 1387 case Instruction::ExtractElement: 1388 Code = bitc::CST_CODE_CE_EXTRACTELT; 1389 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1390 Record.push_back(VE.getValueID(C->getOperand(0))); 1391 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1392 Record.push_back(VE.getValueID(C->getOperand(1))); 1393 break; 1394 case Instruction::InsertElement: 1395 Code = bitc::CST_CODE_CE_INSERTELT; 1396 Record.push_back(VE.getValueID(C->getOperand(0))); 1397 Record.push_back(VE.getValueID(C->getOperand(1))); 1398 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1399 Record.push_back(VE.getValueID(C->getOperand(2))); 1400 break; 1401 case Instruction::ShuffleVector: 1402 // If the return type and argument types are the same, this is a 1403 // standard shufflevector instruction. If the types are different, 1404 // then the shuffle is widening or truncating the input vectors, and 1405 // the argument type must also be encoded. 1406 if (C->getType() == C->getOperand(0)->getType()) { 1407 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1408 } else { 1409 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1410 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1411 } 1412 Record.push_back(VE.getValueID(C->getOperand(0))); 1413 Record.push_back(VE.getValueID(C->getOperand(1))); 1414 Record.push_back(VE.getValueID(C->getOperand(2))); 1415 break; 1416 case Instruction::ICmp: 1417 case Instruction::FCmp: 1418 Code = bitc::CST_CODE_CE_CMP; 1419 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1420 Record.push_back(VE.getValueID(C->getOperand(0))); 1421 Record.push_back(VE.getValueID(C->getOperand(1))); 1422 Record.push_back(CE->getPredicate()); 1423 break; 1424 } 1425 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1426 Code = bitc::CST_CODE_BLOCKADDRESS; 1427 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1428 Record.push_back(VE.getValueID(BA->getFunction())); 1429 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1430 } else { 1431 #ifndef NDEBUG 1432 C->dump(); 1433 #endif 1434 llvm_unreachable("Unknown constant!"); 1435 } 1436 Stream.EmitRecord(Code, Record, AbbrevToUse); 1437 Record.clear(); 1438 } 1439 1440 Stream.ExitBlock(); 1441 } 1442 1443 static void WriteModuleConstants(const ValueEnumerator &VE, 1444 BitstreamWriter &Stream) { 1445 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1446 1447 // Find the first constant to emit, which is the first non-globalvalue value. 1448 // We know globalvalues have been emitted by WriteModuleInfo. 1449 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1450 if (!isa<GlobalValue>(Vals[i].first)) { 1451 WriteConstants(i, Vals.size(), VE, Stream, true); 1452 return; 1453 } 1454 } 1455 } 1456 1457 /// PushValueAndType - The file has to encode both the value and type id for 1458 /// many values, because we need to know what type to create for forward 1459 /// references. However, most operands are not forward references, so this type 1460 /// field is not needed. 1461 /// 1462 /// This function adds V's value ID to Vals. If the value ID is higher than the 1463 /// instruction ID, then it is a forward reference, and it also includes the 1464 /// type ID. The value ID that is written is encoded relative to the InstID. 1465 static bool PushValueAndType(const Value *V, unsigned InstID, 1466 SmallVectorImpl<unsigned> &Vals, 1467 ValueEnumerator &VE) { 1468 unsigned ValID = VE.getValueID(V); 1469 // Make encoding relative to the InstID. 1470 Vals.push_back(InstID - ValID); 1471 if (ValID >= InstID) { 1472 Vals.push_back(VE.getTypeID(V->getType())); 1473 return true; 1474 } 1475 return false; 1476 } 1477 1478 /// pushValue - Like PushValueAndType, but where the type of the value is 1479 /// omitted (perhaps it was already encoded in an earlier operand). 1480 static void pushValue(const Value *V, unsigned InstID, 1481 SmallVectorImpl<unsigned> &Vals, 1482 ValueEnumerator &VE) { 1483 unsigned ValID = VE.getValueID(V); 1484 Vals.push_back(InstID - ValID); 1485 } 1486 1487 static void pushValueSigned(const Value *V, unsigned InstID, 1488 SmallVectorImpl<uint64_t> &Vals, 1489 ValueEnumerator &VE) { 1490 unsigned ValID = VE.getValueID(V); 1491 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1492 emitSignedInt64(Vals, diff); 1493 } 1494 1495 /// WriteInstruction - Emit an instruction to the specified stream. 1496 static void WriteInstruction(const Instruction &I, unsigned InstID, 1497 ValueEnumerator &VE, BitstreamWriter &Stream, 1498 SmallVectorImpl<unsigned> &Vals) { 1499 unsigned Code = 0; 1500 unsigned AbbrevToUse = 0; 1501 VE.setInstructionID(&I); 1502 switch (I.getOpcode()) { 1503 default: 1504 if (Instruction::isCast(I.getOpcode())) { 1505 Code = bitc::FUNC_CODE_INST_CAST; 1506 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1507 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1508 Vals.push_back(VE.getTypeID(I.getType())); 1509 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1510 } else { 1511 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1512 Code = bitc::FUNC_CODE_INST_BINOP; 1513 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1514 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1515 pushValue(I.getOperand(1), InstID, Vals, VE); 1516 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1517 uint64_t Flags = GetOptimizationFlags(&I); 1518 if (Flags != 0) { 1519 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1520 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1521 Vals.push_back(Flags); 1522 } 1523 } 1524 break; 1525 1526 case Instruction::GetElementPtr: 1527 Code = bitc::FUNC_CODE_INST_GEP; 1528 if (cast<GEPOperator>(&I)->isInBounds()) 1529 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1530 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1531 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1532 break; 1533 case Instruction::ExtractValue: { 1534 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1535 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1536 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1537 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1538 Vals.push_back(*i); 1539 break; 1540 } 1541 case Instruction::InsertValue: { 1542 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1543 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1544 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1545 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1546 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1547 Vals.push_back(*i); 1548 break; 1549 } 1550 case Instruction::Select: 1551 Code = bitc::FUNC_CODE_INST_VSELECT; 1552 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1553 pushValue(I.getOperand(2), InstID, Vals, VE); 1554 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1555 break; 1556 case Instruction::ExtractElement: 1557 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1558 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1559 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1560 break; 1561 case Instruction::InsertElement: 1562 Code = bitc::FUNC_CODE_INST_INSERTELT; 1563 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1564 pushValue(I.getOperand(1), InstID, Vals, VE); 1565 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1566 break; 1567 case Instruction::ShuffleVector: 1568 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1569 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1570 pushValue(I.getOperand(1), InstID, Vals, VE); 1571 pushValue(I.getOperand(2), InstID, Vals, VE); 1572 break; 1573 case Instruction::ICmp: 1574 case Instruction::FCmp: 1575 // compare returning Int1Ty or vector of Int1Ty 1576 Code = bitc::FUNC_CODE_INST_CMP2; 1577 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1578 pushValue(I.getOperand(1), InstID, Vals, VE); 1579 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1580 break; 1581 1582 case Instruction::Ret: 1583 { 1584 Code = bitc::FUNC_CODE_INST_RET; 1585 unsigned NumOperands = I.getNumOperands(); 1586 if (NumOperands == 0) 1587 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1588 else if (NumOperands == 1) { 1589 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1590 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1591 } else { 1592 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1593 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1594 } 1595 } 1596 break; 1597 case Instruction::Br: 1598 { 1599 Code = bitc::FUNC_CODE_INST_BR; 1600 const BranchInst &II = cast<BranchInst>(I); 1601 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1602 if (II.isConditional()) { 1603 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1604 pushValue(II.getCondition(), InstID, Vals, VE); 1605 } 1606 } 1607 break; 1608 case Instruction::Switch: 1609 { 1610 Code = bitc::FUNC_CODE_INST_SWITCH; 1611 const SwitchInst &SI = cast<SwitchInst>(I); 1612 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1613 pushValue(SI.getCondition(), InstID, Vals, VE); 1614 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1615 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1616 i != e; ++i) { 1617 Vals.push_back(VE.getValueID(i.getCaseValue())); 1618 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1619 } 1620 } 1621 break; 1622 case Instruction::IndirectBr: 1623 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1624 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1625 // Encode the address operand as relative, but not the basic blocks. 1626 pushValue(I.getOperand(0), InstID, Vals, VE); 1627 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1628 Vals.push_back(VE.getValueID(I.getOperand(i))); 1629 break; 1630 1631 case Instruction::Invoke: { 1632 const InvokeInst *II = cast<InvokeInst>(&I); 1633 const Value *Callee(II->getCalledValue()); 1634 PointerType *PTy = cast<PointerType>(Callee->getType()); 1635 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1636 Code = bitc::FUNC_CODE_INST_INVOKE; 1637 1638 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1639 Vals.push_back(II->getCallingConv()); 1640 Vals.push_back(VE.getValueID(II->getNormalDest())); 1641 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1642 PushValueAndType(Callee, InstID, Vals, VE); 1643 1644 // Emit value #'s for the fixed parameters. 1645 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1646 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1647 1648 // Emit type/value pairs for varargs params. 1649 if (FTy->isVarArg()) { 1650 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1651 i != e; ++i) 1652 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1653 } 1654 break; 1655 } 1656 case Instruction::Resume: 1657 Code = bitc::FUNC_CODE_INST_RESUME; 1658 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1659 break; 1660 case Instruction::Unreachable: 1661 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1662 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1663 break; 1664 1665 case Instruction::PHI: { 1666 const PHINode &PN = cast<PHINode>(I); 1667 Code = bitc::FUNC_CODE_INST_PHI; 1668 // With the newer instruction encoding, forward references could give 1669 // negative valued IDs. This is most common for PHIs, so we use 1670 // signed VBRs. 1671 SmallVector<uint64_t, 128> Vals64; 1672 Vals64.push_back(VE.getTypeID(PN.getType())); 1673 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1674 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1675 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1676 } 1677 // Emit a Vals64 vector and exit. 1678 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1679 Vals64.clear(); 1680 return; 1681 } 1682 1683 case Instruction::LandingPad: { 1684 const LandingPadInst &LP = cast<LandingPadInst>(I); 1685 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1686 Vals.push_back(VE.getTypeID(LP.getType())); 1687 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1688 Vals.push_back(LP.isCleanup()); 1689 Vals.push_back(LP.getNumClauses()); 1690 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1691 if (LP.isCatch(I)) 1692 Vals.push_back(LandingPadInst::Catch); 1693 else 1694 Vals.push_back(LandingPadInst::Filter); 1695 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1696 } 1697 break; 1698 } 1699 1700 case Instruction::Alloca: { 1701 Code = bitc::FUNC_CODE_INST_ALLOCA; 1702 Vals.push_back(VE.getTypeID(I.getType())); 1703 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1704 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1705 const AllocaInst &AI = cast<AllocaInst>(I); 1706 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1707 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1708 "not enough bits for maximum alignment"); 1709 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1710 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1711 Vals.push_back(AlignRecord); 1712 break; 1713 } 1714 1715 case Instruction::Load: 1716 if (cast<LoadInst>(I).isAtomic()) { 1717 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1718 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1719 } else { 1720 Code = bitc::FUNC_CODE_INST_LOAD; 1721 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1722 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1723 } 1724 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1725 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1726 if (cast<LoadInst>(I).isAtomic()) { 1727 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1728 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1729 } 1730 break; 1731 case Instruction::Store: 1732 if (cast<StoreInst>(I).isAtomic()) 1733 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1734 else 1735 Code = bitc::FUNC_CODE_INST_STORE; 1736 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1737 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1738 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1739 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1740 if (cast<StoreInst>(I).isAtomic()) { 1741 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1742 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1743 } 1744 break; 1745 case Instruction::AtomicCmpXchg: 1746 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1747 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1748 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1749 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1750 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1751 Vals.push_back(GetEncodedOrdering( 1752 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1753 Vals.push_back(GetEncodedSynchScope( 1754 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1755 Vals.push_back(GetEncodedOrdering( 1756 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1757 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1758 break; 1759 case Instruction::AtomicRMW: 1760 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1761 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1762 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1763 Vals.push_back(GetEncodedRMWOperation( 1764 cast<AtomicRMWInst>(I).getOperation())); 1765 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1766 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1767 Vals.push_back(GetEncodedSynchScope( 1768 cast<AtomicRMWInst>(I).getSynchScope())); 1769 break; 1770 case Instruction::Fence: 1771 Code = bitc::FUNC_CODE_INST_FENCE; 1772 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1773 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1774 break; 1775 case Instruction::Call: { 1776 const CallInst &CI = cast<CallInst>(I); 1777 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1778 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1779 1780 Code = bitc::FUNC_CODE_INST_CALL; 1781 1782 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1783 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1784 unsigned(CI.isMustTailCall()) << 14); 1785 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1786 1787 // Emit value #'s for the fixed parameters. 1788 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1789 // Check for labels (can happen with asm labels). 1790 if (FTy->getParamType(i)->isLabelTy()) 1791 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1792 else 1793 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1794 } 1795 1796 // Emit type/value pairs for varargs params. 1797 if (FTy->isVarArg()) { 1798 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1799 i != e; ++i) 1800 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1801 } 1802 break; 1803 } 1804 case Instruction::VAArg: 1805 Code = bitc::FUNC_CODE_INST_VAARG; 1806 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1807 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1808 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1809 break; 1810 } 1811 1812 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1813 Vals.clear(); 1814 } 1815 1816 // Emit names for globals/functions etc. 1817 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1818 const ValueEnumerator &VE, 1819 BitstreamWriter &Stream) { 1820 if (VST.empty()) return; 1821 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1822 1823 // FIXME: Set up the abbrev, we know how many values there are! 1824 // FIXME: We know if the type names can use 7-bit ascii. 1825 SmallVector<unsigned, 64> NameVals; 1826 1827 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1828 SI != SE; ++SI) { 1829 1830 const ValueName &Name = *SI; 1831 1832 // Figure out the encoding to use for the name. 1833 bool is7Bit = true; 1834 bool isChar6 = true; 1835 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1836 C != E; ++C) { 1837 if (isChar6) 1838 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1839 if ((unsigned char)*C & 128) { 1840 is7Bit = false; 1841 break; // don't bother scanning the rest. 1842 } 1843 } 1844 1845 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1846 1847 // VST_ENTRY: [valueid, namechar x N] 1848 // VST_BBENTRY: [bbid, namechar x N] 1849 unsigned Code; 1850 if (isa<BasicBlock>(SI->getValue())) { 1851 Code = bitc::VST_CODE_BBENTRY; 1852 if (isChar6) 1853 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1854 } else { 1855 Code = bitc::VST_CODE_ENTRY; 1856 if (isChar6) 1857 AbbrevToUse = VST_ENTRY_6_ABBREV; 1858 else if (is7Bit) 1859 AbbrevToUse = VST_ENTRY_7_ABBREV; 1860 } 1861 1862 NameVals.push_back(VE.getValueID(SI->getValue())); 1863 for (const char *P = Name.getKeyData(), 1864 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1865 NameVals.push_back((unsigned char)*P); 1866 1867 // Emit the finished record. 1868 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1869 NameVals.clear(); 1870 } 1871 Stream.ExitBlock(); 1872 } 1873 1874 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1875 BitstreamWriter &Stream) { 1876 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1877 unsigned Code; 1878 if (isa<BasicBlock>(Order.V)) 1879 Code = bitc::USELIST_CODE_BB; 1880 else 1881 Code = bitc::USELIST_CODE_DEFAULT; 1882 1883 SmallVector<uint64_t, 64> Record; 1884 for (unsigned I : Order.Shuffle) 1885 Record.push_back(I); 1886 Record.push_back(VE.getValueID(Order.V)); 1887 Stream.EmitRecord(Code, Record); 1888 } 1889 1890 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1891 BitstreamWriter &Stream) { 1892 auto hasMore = [&]() { 1893 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1894 }; 1895 if (!hasMore()) 1896 // Nothing to do. 1897 return; 1898 1899 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1900 while (hasMore()) { 1901 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1902 VE.UseListOrders.pop_back(); 1903 } 1904 Stream.ExitBlock(); 1905 } 1906 1907 /// WriteFunction - Emit a function body to the module stream. 1908 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1909 BitstreamWriter &Stream) { 1910 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1911 VE.incorporateFunction(F); 1912 1913 SmallVector<unsigned, 64> Vals; 1914 1915 // Emit the number of basic blocks, so the reader can create them ahead of 1916 // time. 1917 Vals.push_back(VE.getBasicBlocks().size()); 1918 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1919 Vals.clear(); 1920 1921 // If there are function-local constants, emit them now. 1922 unsigned CstStart, CstEnd; 1923 VE.getFunctionConstantRange(CstStart, CstEnd); 1924 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1925 1926 // If there is function-local metadata, emit it now. 1927 WriteFunctionLocalMetadata(F, VE, Stream); 1928 1929 // Keep a running idea of what the instruction ID is. 1930 unsigned InstID = CstEnd; 1931 1932 bool NeedsMetadataAttachment = false; 1933 1934 DebugLoc LastDL; 1935 1936 // Finally, emit all the instructions, in order. 1937 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1938 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1939 I != E; ++I) { 1940 WriteInstruction(*I, InstID, VE, Stream, Vals); 1941 1942 if (!I->getType()->isVoidTy()) 1943 ++InstID; 1944 1945 // If the instruction has metadata, write a metadata attachment later. 1946 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1947 1948 // If the instruction has a debug location, emit it. 1949 DebugLoc DL = I->getDebugLoc(); 1950 if (DL.isUnknown()) { 1951 // nothing todo. 1952 } else if (DL == LastDL) { 1953 // Just repeat the same debug loc as last time. 1954 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1955 } else { 1956 MDNode *Scope, *IA; 1957 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1958 assert(Scope && "Expected valid scope"); 1959 1960 Vals.push_back(DL.getLine()); 1961 Vals.push_back(DL.getCol()); 1962 Vals.push_back(VE.getMetadataOrNullID(Scope)); 1963 Vals.push_back(VE.getMetadataOrNullID(IA)); 1964 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1965 Vals.clear(); 1966 1967 LastDL = DL; 1968 } 1969 } 1970 1971 // Emit names for all the instructions etc. 1972 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1973 1974 if (NeedsMetadataAttachment) 1975 WriteMetadataAttachment(F, VE, Stream); 1976 if (shouldPreserveBitcodeUseListOrder()) 1977 WriteUseListBlock(&F, VE, Stream); 1978 VE.purgeFunction(); 1979 Stream.ExitBlock(); 1980 } 1981 1982 // Emit blockinfo, which defines the standard abbreviations etc. 1983 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1984 // We only want to emit block info records for blocks that have multiple 1985 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1986 // Other blocks can define their abbrevs inline. 1987 Stream.EnterBlockInfoBlock(2); 1988 1989 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1990 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1995 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1996 Abbv) != VST_ENTRY_8_ABBREV) 1997 llvm_unreachable("Unexpected abbrev ordering!"); 1998 } 1999 2000 { // 7-bit fixed width VST_ENTRY strings. 2001 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2002 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2006 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2007 Abbv) != VST_ENTRY_7_ABBREV) 2008 llvm_unreachable("Unexpected abbrev ordering!"); 2009 } 2010 { // 6-bit char6 VST_ENTRY strings. 2011 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2012 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2016 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2017 Abbv) != VST_ENTRY_6_ABBREV) 2018 llvm_unreachable("Unexpected abbrev ordering!"); 2019 } 2020 { // 6-bit char6 VST_BBENTRY strings. 2021 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2022 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2026 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2027 Abbv) != VST_BBENTRY_6_ABBREV) 2028 llvm_unreachable("Unexpected abbrev ordering!"); 2029 } 2030 2031 2032 2033 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2034 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2035 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2037 Log2_32_Ceil(VE.getTypes().size()+1))); 2038 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2039 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2040 llvm_unreachable("Unexpected abbrev ordering!"); 2041 } 2042 2043 { // INTEGER abbrev for CONSTANTS_BLOCK. 2044 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2045 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2047 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2048 Abbv) != CONSTANTS_INTEGER_ABBREV) 2049 llvm_unreachable("Unexpected abbrev ordering!"); 2050 } 2051 2052 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2053 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2054 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2057 Log2_32_Ceil(VE.getTypes().size()+1))); 2058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2059 2060 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2061 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2062 llvm_unreachable("Unexpected abbrev ordering!"); 2063 } 2064 { // NULL abbrev for CONSTANTS_BLOCK. 2065 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2066 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2067 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2068 Abbv) != CONSTANTS_NULL_Abbrev) 2069 llvm_unreachable("Unexpected abbrev ordering!"); 2070 } 2071 2072 // FIXME: This should only use space for first class types! 2073 2074 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2075 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2076 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2080 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2081 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2082 llvm_unreachable("Unexpected abbrev ordering!"); 2083 } 2084 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2085 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2086 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2090 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2091 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2092 llvm_unreachable("Unexpected abbrev ordering!"); 2093 } 2094 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2095 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2096 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2101 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2102 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2103 llvm_unreachable("Unexpected abbrev ordering!"); 2104 } 2105 { // INST_CAST abbrev for FUNCTION_BLOCK. 2106 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2107 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2110 Log2_32_Ceil(VE.getTypes().size()+1))); 2111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2112 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2113 Abbv) != FUNCTION_INST_CAST_ABBREV) 2114 llvm_unreachable("Unexpected abbrev ordering!"); 2115 } 2116 2117 { // INST_RET abbrev for FUNCTION_BLOCK. 2118 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2119 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2120 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2121 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2122 llvm_unreachable("Unexpected abbrev ordering!"); 2123 } 2124 { // INST_RET abbrev for FUNCTION_BLOCK. 2125 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2126 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2128 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2129 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2130 llvm_unreachable("Unexpected abbrev ordering!"); 2131 } 2132 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2133 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2134 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2135 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2136 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2137 llvm_unreachable("Unexpected abbrev ordering!"); 2138 } 2139 2140 Stream.ExitBlock(); 2141 } 2142 2143 /// WriteModule - Emit the specified module to the bitstream. 2144 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 2145 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2146 2147 SmallVector<unsigned, 1> Vals; 2148 unsigned CurVersion = 1; 2149 Vals.push_back(CurVersion); 2150 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2151 2152 // Analyze the module, enumerating globals, functions, etc. 2153 ValueEnumerator VE(*M); 2154 2155 // Emit blockinfo, which defines the standard abbreviations etc. 2156 WriteBlockInfo(VE, Stream); 2157 2158 // Emit information about attribute groups. 2159 WriteAttributeGroupTable(VE, Stream); 2160 2161 // Emit information about parameter attributes. 2162 WriteAttributeTable(VE, Stream); 2163 2164 // Emit information describing all of the types in the module. 2165 WriteTypeTable(VE, Stream); 2166 2167 writeComdats(VE, Stream); 2168 2169 // Emit top-level description of module, including target triple, inline asm, 2170 // descriptors for global variables, and function prototype info. 2171 WriteModuleInfo(M, VE, Stream); 2172 2173 // Emit constants. 2174 WriteModuleConstants(VE, Stream); 2175 2176 // Emit metadata. 2177 WriteModuleMetadata(M, VE, Stream); 2178 2179 // Emit metadata. 2180 WriteModuleMetadataStore(M, Stream); 2181 2182 // Emit names for globals/functions etc. 2183 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2184 2185 // Emit module-level use-lists. 2186 if (shouldPreserveBitcodeUseListOrder()) 2187 WriteUseListBlock(nullptr, VE, Stream); 2188 2189 // Emit function bodies. 2190 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2191 if (!F->isDeclaration()) 2192 WriteFunction(*F, VE, Stream); 2193 2194 Stream.ExitBlock(); 2195 } 2196 2197 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2198 /// header and trailer to make it compatible with the system archiver. To do 2199 /// this we emit the following header, and then emit a trailer that pads the 2200 /// file out to be a multiple of 16 bytes. 2201 /// 2202 /// struct bc_header { 2203 /// uint32_t Magic; // 0x0B17C0DE 2204 /// uint32_t Version; // Version, currently always 0. 2205 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2206 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2207 /// uint32_t CPUType; // CPU specifier. 2208 /// ... potentially more later ... 2209 /// }; 2210 enum { 2211 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2212 DarwinBCHeaderSize = 5*4 2213 }; 2214 2215 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2216 uint32_t &Position) { 2217 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2218 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2219 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2220 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2221 Position += 4; 2222 } 2223 2224 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2225 const Triple &TT) { 2226 unsigned CPUType = ~0U; 2227 2228 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2229 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2230 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2231 // specific constants here because they are implicitly part of the Darwin ABI. 2232 enum { 2233 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2234 DARWIN_CPU_TYPE_X86 = 7, 2235 DARWIN_CPU_TYPE_ARM = 12, 2236 DARWIN_CPU_TYPE_POWERPC = 18 2237 }; 2238 2239 Triple::ArchType Arch = TT.getArch(); 2240 if (Arch == Triple::x86_64) 2241 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2242 else if (Arch == Triple::x86) 2243 CPUType = DARWIN_CPU_TYPE_X86; 2244 else if (Arch == Triple::ppc) 2245 CPUType = DARWIN_CPU_TYPE_POWERPC; 2246 else if (Arch == Triple::ppc64) 2247 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2248 else if (Arch == Triple::arm || Arch == Triple::thumb) 2249 CPUType = DARWIN_CPU_TYPE_ARM; 2250 2251 // Traditional Bitcode starts after header. 2252 assert(Buffer.size() >= DarwinBCHeaderSize && 2253 "Expected header size to be reserved"); 2254 unsigned BCOffset = DarwinBCHeaderSize; 2255 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2256 2257 // Write the magic and version. 2258 unsigned Position = 0; 2259 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2260 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2261 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2262 WriteInt32ToBuffer(BCSize , Buffer, Position); 2263 WriteInt32ToBuffer(CPUType , Buffer, Position); 2264 2265 // If the file is not a multiple of 16 bytes, insert dummy padding. 2266 while (Buffer.size() & 15) 2267 Buffer.push_back(0); 2268 } 2269 2270 /// WriteBitcodeToFile - Write the specified module to the specified output 2271 /// stream. 2272 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2273 SmallVector<char, 0> Buffer; 2274 Buffer.reserve(256*1024); 2275 2276 // If this is darwin or another generic macho target, reserve space for the 2277 // header. 2278 Triple TT(M->getTargetTriple()); 2279 if (TT.isOSDarwin()) 2280 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2281 2282 // Emit the module into the buffer. 2283 { 2284 BitstreamWriter Stream(Buffer); 2285 2286 // Emit the file header. 2287 Stream.Emit((unsigned)'B', 8); 2288 Stream.Emit((unsigned)'C', 8); 2289 Stream.Emit(0x0, 4); 2290 Stream.Emit(0xC, 4); 2291 Stream.Emit(0xE, 4); 2292 Stream.Emit(0xD, 4); 2293 2294 // Emit the module. 2295 WriteModule(M, Stream); 2296 } 2297 2298 if (TT.isOSDarwin()) 2299 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2300 2301 // Write the generated bitstream to "Out". 2302 Out.write((char*)&Buffer.front(), Buffer.size()); 2303 } 2304