xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 16c7bdaf3245d23b9b441144f5efb610e2044927)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Bitcode/BitCodes.h"
29 #include "llvm/Bitcode/BitstreamWriter.h"
30 #include "llvm/Bitcode/LLVMBitCodes.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/Object/IRSymtab.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Endian.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/SHA1.h"
69 #include "llvm/Support/TargetRegistry.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 static cl::opt<unsigned>
85     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
86                    cl::desc("Number of metadatas above which we emit an index "
87                             "to enable lazy-loading"));
88 
89 cl::opt<bool> WriteRelBFToSummary(
90     "write-relbf-to-summary", cl::Hidden, cl::init(false),
91     cl::desc("Write relative block frequency to function summary "));
92 namespace {
93 
94 /// These are manifest constants used by the bitcode writer. They do not need to
95 /// be kept in sync with the reader, but need to be consistent within this file.
96 enum {
97   // VALUE_SYMTAB_BLOCK abbrev id's.
98   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
99   VST_ENTRY_7_ABBREV,
100   VST_ENTRY_6_ABBREV,
101   VST_BBENTRY_6_ABBREV,
102 
103   // CONSTANTS_BLOCK abbrev id's.
104   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
105   CONSTANTS_INTEGER_ABBREV,
106   CONSTANTS_CE_CAST_Abbrev,
107   CONSTANTS_NULL_Abbrev,
108 
109   // FUNCTION_BLOCK abbrev id's.
110   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
111   FUNCTION_INST_BINOP_ABBREV,
112   FUNCTION_INST_BINOP_FLAGS_ABBREV,
113   FUNCTION_INST_CAST_ABBREV,
114   FUNCTION_INST_RET_VOID_ABBREV,
115   FUNCTION_INST_RET_VAL_ABBREV,
116   FUNCTION_INST_UNREACHABLE_ABBREV,
117   FUNCTION_INST_GEP_ABBREV,
118 };
119 
120 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
121 /// file type.
122 class BitcodeWriterBase {
123 protected:
124   /// The stream created and owned by the client.
125   BitstreamWriter &Stream;
126 
127   StringTableBuilder &StrtabBuilder;
128 
129 public:
130   /// Constructs a BitcodeWriterBase object that writes to the provided
131   /// \p Stream.
132   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
133       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
134 
135 protected:
136   void writeBitcodeHeader();
137   void writeModuleVersion();
138 };
139 
140 void BitcodeWriterBase::writeModuleVersion() {
141   // VERSION: [version#]
142   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
143 }
144 
145 /// Base class to manage the module bitcode writing, currently subclassed for
146 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
147 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
148 protected:
149   /// The Module to write to bitcode.
150   const Module &M;
151 
152   /// Enumerates ids for all values in the module.
153   ValueEnumerator VE;
154 
155   /// Optional per-module index to write for ThinLTO.
156   const ModuleSummaryIndex *Index;
157 
158   /// Map that holds the correspondence between GUIDs in the summary index,
159   /// that came from indirect call profiles, and a value id generated by this
160   /// class to use in the VST and summary block records.
161   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
162 
163   /// Tracks the last value id recorded in the GUIDToValueMap.
164   unsigned GlobalValueId;
165 
166   /// Saves the offset of the VSTOffset record that must eventually be
167   /// backpatched with the offset of the actual VST.
168   uint64_t VSTOffsetPlaceholder = 0;
169 
170 public:
171   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
172   /// writing to the provided \p Buffer.
173   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
174                           BitstreamWriter &Stream,
175                           bool ShouldPreserveUseListOrder,
176                           const ModuleSummaryIndex *Index)
177       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
178         VE(M, ShouldPreserveUseListOrder), Index(Index) {
179     // Assign ValueIds to any callee values in the index that came from
180     // indirect call profiles and were recorded as a GUID not a Value*
181     // (which would have been assigned an ID by the ValueEnumerator).
182     // The starting ValueId is just after the number of values in the
183     // ValueEnumerator, so that they can be emitted in the VST.
184     GlobalValueId = VE.getValues().size();
185     if (!Index)
186       return;
187     for (const auto &GUIDSummaryLists : *Index)
188       // Examine all summaries for this GUID.
189       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
190         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
191           // For each call in the function summary, see if the call
192           // is to a GUID (which means it is for an indirect call,
193           // otherwise we would have a Value for it). If so, synthesize
194           // a value id.
195           for (auto &CallEdge : FS->calls())
196             if (!CallEdge.first.getValue())
197               assignValueId(CallEdge.first.getGUID());
198   }
199 
200 protected:
201   void writePerModuleGlobalValueSummary();
202 
203 private:
204   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
205                                            GlobalValueSummary *Summary,
206                                            unsigned ValueID,
207                                            unsigned FSCallsAbbrev,
208                                            unsigned FSCallsProfileAbbrev,
209                                            const Function &F);
210   void writeModuleLevelReferences(const GlobalVariable &V,
211                                   SmallVector<uint64_t, 64> &NameVals,
212                                   unsigned FSModRefsAbbrev);
213 
214   void assignValueId(GlobalValue::GUID ValGUID) {
215     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
216   }
217 
218   unsigned getValueId(GlobalValue::GUID ValGUID) {
219     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
220     // Expect that any GUID value had a value Id assigned by an
221     // earlier call to assignValueId.
222     assert(VMI != GUIDToValueIdMap.end() &&
223            "GUID does not have assigned value Id");
224     return VMI->second;
225   }
226 
227   // Helper to get the valueId for the type of value recorded in VI.
228   unsigned getValueId(ValueInfo VI) {
229     if (!VI.getValue())
230       return getValueId(VI.getGUID());
231     return VE.getValueID(VI.getValue());
232   }
233 
234   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
235 };
236 
237 /// Class to manage the bitcode writing for a module.
238 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
239   /// Pointer to the buffer allocated by caller for bitcode writing.
240   const SmallVectorImpl<char> &Buffer;
241 
242   /// True if a module hash record should be written.
243   bool GenerateHash;
244 
245   /// If non-null, when GenerateHash is true, the resulting hash is written
246   /// into ModHash.
247   ModuleHash *ModHash;
248 
249   SHA1 Hasher;
250 
251   /// The start bit of the identification block.
252   uint64_t BitcodeStartBit;
253 
254 public:
255   /// Constructs a ModuleBitcodeWriter object for the given Module,
256   /// writing to the provided \p Buffer.
257   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
258                       StringTableBuilder &StrtabBuilder,
259                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
260                       const ModuleSummaryIndex *Index, bool GenerateHash,
261                       ModuleHash *ModHash = nullptr)
262       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
263                                 ShouldPreserveUseListOrder, Index),
264         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
265         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
266 
267   /// Emit the current module to the bitstream.
268   void write();
269 
270 private:
271   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
272 
273   size_t addToStrtab(StringRef Str);
274 
275   void writeAttributeGroupTable();
276   void writeAttributeTable();
277   void writeTypeTable();
278   void writeComdats();
279   void writeValueSymbolTableForwardDecl();
280   void writeModuleInfo();
281   void writeValueAsMetadata(const ValueAsMetadata *MD,
282                             SmallVectorImpl<uint64_t> &Record);
283   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
284                     unsigned Abbrev);
285   unsigned createDILocationAbbrev();
286   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
287                        unsigned &Abbrev);
288   unsigned createGenericDINodeAbbrev();
289   void writeGenericDINode(const GenericDINode *N,
290                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
291   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
292                        unsigned Abbrev);
293   void writeDIEnumerator(const DIEnumerator *N,
294                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
295   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
296                         unsigned Abbrev);
297   void writeDIDerivedType(const DIDerivedType *N,
298                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
299   void writeDICompositeType(const DICompositeType *N,
300                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
301   void writeDISubroutineType(const DISubroutineType *N,
302                              SmallVectorImpl<uint64_t> &Record,
303                              unsigned Abbrev);
304   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
305                    unsigned Abbrev);
306   void writeDICompileUnit(const DICompileUnit *N,
307                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
308   void writeDISubprogram(const DISubprogram *N,
309                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
310   void writeDILexicalBlock(const DILexicalBlock *N,
311                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
312   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
313                                SmallVectorImpl<uint64_t> &Record,
314                                unsigned Abbrev);
315   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
316                         unsigned Abbrev);
317   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
318                     unsigned Abbrev);
319   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
320                         unsigned Abbrev);
321   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
322                      unsigned Abbrev);
323   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
324                                     SmallVectorImpl<uint64_t> &Record,
325                                     unsigned Abbrev);
326   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
327                                      SmallVectorImpl<uint64_t> &Record,
328                                      unsigned Abbrev);
329   void writeDIGlobalVariable(const DIGlobalVariable *N,
330                              SmallVectorImpl<uint64_t> &Record,
331                              unsigned Abbrev);
332   void writeDILocalVariable(const DILocalVariable *N,
333                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
334   void writeDIExpression(const DIExpression *N,
335                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
336   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
337                                        SmallVectorImpl<uint64_t> &Record,
338                                        unsigned Abbrev);
339   void writeDIObjCProperty(const DIObjCProperty *N,
340                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
341   void writeDIImportedEntity(const DIImportedEntity *N,
342                              SmallVectorImpl<uint64_t> &Record,
343                              unsigned Abbrev);
344   unsigned createNamedMetadataAbbrev();
345   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
346   unsigned createMetadataStringsAbbrev();
347   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
348                             SmallVectorImpl<uint64_t> &Record);
349   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
350                             SmallVectorImpl<uint64_t> &Record,
351                             std::vector<unsigned> *MDAbbrevs = nullptr,
352                             std::vector<uint64_t> *IndexPos = nullptr);
353   void writeModuleMetadata();
354   void writeFunctionMetadata(const Function &F);
355   void writeFunctionMetadataAttachment(const Function &F);
356   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
357   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
358                                     const GlobalObject &GO);
359   void writeModuleMetadataKinds();
360   void writeOperandBundleTags();
361   void writeSyncScopeNames();
362   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
363   void writeModuleConstants();
364   bool pushValueAndType(const Value *V, unsigned InstID,
365                         SmallVectorImpl<unsigned> &Vals);
366   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
367   void pushValue(const Value *V, unsigned InstID,
368                  SmallVectorImpl<unsigned> &Vals);
369   void pushValueSigned(const Value *V, unsigned InstID,
370                        SmallVectorImpl<uint64_t> &Vals);
371   void writeInstruction(const Instruction &I, unsigned InstID,
372                         SmallVectorImpl<unsigned> &Vals);
373   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
374   void writeGlobalValueSymbolTable(
375       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
376   void writeUseList(UseListOrder &&Order);
377   void writeUseListBlock(const Function *F);
378   void
379   writeFunction(const Function &F,
380                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
381   void writeBlockInfo();
382   void writeModuleHash(size_t BlockStartPos);
383 
384   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
385     return unsigned(SSID);
386   }
387 };
388 
389 /// Class to manage the bitcode writing for a combined index.
390 class IndexBitcodeWriter : public BitcodeWriterBase {
391   /// The combined index to write to bitcode.
392   const ModuleSummaryIndex &Index;
393 
394   /// When writing a subset of the index for distributed backends, client
395   /// provides a map of modules to the corresponding GUIDs/summaries to write.
396   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
397 
398   /// Map that holds the correspondence between the GUID used in the combined
399   /// index and a value id generated by this class to use in references.
400   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
401 
402   /// Tracks the last value id recorded in the GUIDToValueMap.
403   unsigned GlobalValueId = 0;
404 
405 public:
406   /// Constructs a IndexBitcodeWriter object for the given combined index,
407   /// writing to the provided \p Buffer. When writing a subset of the index
408   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
409   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
410                      const ModuleSummaryIndex &Index,
411                      const std::map<std::string, GVSummaryMapTy>
412                          *ModuleToSummariesForIndex = nullptr)
413       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
414         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
415     // Assign unique value ids to all summaries to be written, for use
416     // in writing out the call graph edges. Save the mapping from GUID
417     // to the new global value id to use when writing those edges, which
418     // are currently saved in the index in terms of GUID.
419     forEachSummary([&](GVInfo I, bool) {
420       GUIDToValueIdMap[I.first] = ++GlobalValueId;
421     });
422   }
423 
424   /// The below iterator returns the GUID and associated summary.
425   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
426 
427   /// Calls the callback for each value GUID and summary to be written to
428   /// bitcode. This hides the details of whether they are being pulled from the
429   /// entire index or just those in a provided ModuleToSummariesForIndex map.
430   template<typename Functor>
431   void forEachSummary(Functor Callback) {
432     if (ModuleToSummariesForIndex) {
433       for (auto &M : *ModuleToSummariesForIndex)
434         for (auto &Summary : M.second) {
435           Callback(Summary, false);
436           // Ensure aliasee is handled, e.g. for assigning a valueId,
437           // even if we are not importing the aliasee directly (the
438           // imported alias will contain a copy of aliasee).
439           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
440             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
441         }
442     } else {
443       for (auto &Summaries : Index)
444         for (auto &Summary : Summaries.second.SummaryList)
445           Callback({Summaries.first, Summary.get()}, false);
446     }
447   }
448 
449   /// Calls the callback for each entry in the modulePaths StringMap that
450   /// should be written to the module path string table. This hides the details
451   /// of whether they are being pulled from the entire index or just those in a
452   /// provided ModuleToSummariesForIndex map.
453   template <typename Functor> void forEachModule(Functor Callback) {
454     if (ModuleToSummariesForIndex) {
455       for (const auto &M : *ModuleToSummariesForIndex) {
456         const auto &MPI = Index.modulePaths().find(M.first);
457         if (MPI == Index.modulePaths().end()) {
458           // This should only happen if the bitcode file was empty, in which
459           // case we shouldn't be importing (the ModuleToSummariesForIndex
460           // would only include the module we are writing and index for).
461           assert(ModuleToSummariesForIndex->size() == 1);
462           continue;
463         }
464         Callback(*MPI);
465       }
466     } else {
467       for (const auto &MPSE : Index.modulePaths())
468         Callback(MPSE);
469     }
470   }
471 
472   /// Main entry point for writing a combined index to bitcode.
473   void write();
474 
475 private:
476   void writeModStrings();
477   void writeCombinedGlobalValueSummary();
478 
479   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
480     auto VMI = GUIDToValueIdMap.find(ValGUID);
481     if (VMI == GUIDToValueIdMap.end())
482       return None;
483     return VMI->second;
484   }
485 
486   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
487 };
488 
489 } // end anonymous namespace
490 
491 static unsigned getEncodedCastOpcode(unsigned Opcode) {
492   switch (Opcode) {
493   default: llvm_unreachable("Unknown cast instruction!");
494   case Instruction::Trunc   : return bitc::CAST_TRUNC;
495   case Instruction::ZExt    : return bitc::CAST_ZEXT;
496   case Instruction::SExt    : return bitc::CAST_SEXT;
497   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
498   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
499   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
500   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
501   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
502   case Instruction::FPExt   : return bitc::CAST_FPEXT;
503   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
504   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
505   case Instruction::BitCast : return bitc::CAST_BITCAST;
506   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
507   }
508 }
509 
510 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
511   switch (Opcode) {
512   default: llvm_unreachable("Unknown binary instruction!");
513   case Instruction::Add:
514   case Instruction::FAdd: return bitc::BINOP_ADD;
515   case Instruction::Sub:
516   case Instruction::FSub: return bitc::BINOP_SUB;
517   case Instruction::Mul:
518   case Instruction::FMul: return bitc::BINOP_MUL;
519   case Instruction::UDiv: return bitc::BINOP_UDIV;
520   case Instruction::FDiv:
521   case Instruction::SDiv: return bitc::BINOP_SDIV;
522   case Instruction::URem: return bitc::BINOP_UREM;
523   case Instruction::FRem:
524   case Instruction::SRem: return bitc::BINOP_SREM;
525   case Instruction::Shl:  return bitc::BINOP_SHL;
526   case Instruction::LShr: return bitc::BINOP_LSHR;
527   case Instruction::AShr: return bitc::BINOP_ASHR;
528   case Instruction::And:  return bitc::BINOP_AND;
529   case Instruction::Or:   return bitc::BINOP_OR;
530   case Instruction::Xor:  return bitc::BINOP_XOR;
531   }
532 }
533 
534 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
535   switch (Op) {
536   default: llvm_unreachable("Unknown RMW operation!");
537   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
538   case AtomicRMWInst::Add: return bitc::RMW_ADD;
539   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
540   case AtomicRMWInst::And: return bitc::RMW_AND;
541   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
542   case AtomicRMWInst::Or: return bitc::RMW_OR;
543   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
544   case AtomicRMWInst::Max: return bitc::RMW_MAX;
545   case AtomicRMWInst::Min: return bitc::RMW_MIN;
546   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
547   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
548   }
549 }
550 
551 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
552   switch (Ordering) {
553   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
554   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
555   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
556   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
557   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
558   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
559   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
560   }
561   llvm_unreachable("Invalid ordering");
562 }
563 
564 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
565                               StringRef Str, unsigned AbbrevToUse) {
566   SmallVector<unsigned, 64> Vals;
567 
568   // Code: [strchar x N]
569   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
570     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
571       AbbrevToUse = 0;
572     Vals.push_back(Str[i]);
573   }
574 
575   // Emit the finished record.
576   Stream.EmitRecord(Code, Vals, AbbrevToUse);
577 }
578 
579 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
580   switch (Kind) {
581   case Attribute::Alignment:
582     return bitc::ATTR_KIND_ALIGNMENT;
583   case Attribute::AllocSize:
584     return bitc::ATTR_KIND_ALLOC_SIZE;
585   case Attribute::AlwaysInline:
586     return bitc::ATTR_KIND_ALWAYS_INLINE;
587   case Attribute::ArgMemOnly:
588     return bitc::ATTR_KIND_ARGMEMONLY;
589   case Attribute::Builtin:
590     return bitc::ATTR_KIND_BUILTIN;
591   case Attribute::ByVal:
592     return bitc::ATTR_KIND_BY_VAL;
593   case Attribute::Convergent:
594     return bitc::ATTR_KIND_CONVERGENT;
595   case Attribute::InAlloca:
596     return bitc::ATTR_KIND_IN_ALLOCA;
597   case Attribute::Cold:
598     return bitc::ATTR_KIND_COLD;
599   case Attribute::InaccessibleMemOnly:
600     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
601   case Attribute::InaccessibleMemOrArgMemOnly:
602     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
603   case Attribute::InlineHint:
604     return bitc::ATTR_KIND_INLINE_HINT;
605   case Attribute::InReg:
606     return bitc::ATTR_KIND_IN_REG;
607   case Attribute::JumpTable:
608     return bitc::ATTR_KIND_JUMP_TABLE;
609   case Attribute::MinSize:
610     return bitc::ATTR_KIND_MIN_SIZE;
611   case Attribute::Naked:
612     return bitc::ATTR_KIND_NAKED;
613   case Attribute::Nest:
614     return bitc::ATTR_KIND_NEST;
615   case Attribute::NoAlias:
616     return bitc::ATTR_KIND_NO_ALIAS;
617   case Attribute::NoBuiltin:
618     return bitc::ATTR_KIND_NO_BUILTIN;
619   case Attribute::NoCapture:
620     return bitc::ATTR_KIND_NO_CAPTURE;
621   case Attribute::NoDuplicate:
622     return bitc::ATTR_KIND_NO_DUPLICATE;
623   case Attribute::NoImplicitFloat:
624     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
625   case Attribute::NoInline:
626     return bitc::ATTR_KIND_NO_INLINE;
627   case Attribute::NoRecurse:
628     return bitc::ATTR_KIND_NO_RECURSE;
629   case Attribute::NonLazyBind:
630     return bitc::ATTR_KIND_NON_LAZY_BIND;
631   case Attribute::NonNull:
632     return bitc::ATTR_KIND_NON_NULL;
633   case Attribute::Dereferenceable:
634     return bitc::ATTR_KIND_DEREFERENCEABLE;
635   case Attribute::DereferenceableOrNull:
636     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
637   case Attribute::NoRedZone:
638     return bitc::ATTR_KIND_NO_RED_ZONE;
639   case Attribute::NoReturn:
640     return bitc::ATTR_KIND_NO_RETURN;
641   case Attribute::NoUnwind:
642     return bitc::ATTR_KIND_NO_UNWIND;
643   case Attribute::OptimizeForSize:
644     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
645   case Attribute::OptimizeNone:
646     return bitc::ATTR_KIND_OPTIMIZE_NONE;
647   case Attribute::ReadNone:
648     return bitc::ATTR_KIND_READ_NONE;
649   case Attribute::ReadOnly:
650     return bitc::ATTR_KIND_READ_ONLY;
651   case Attribute::Returned:
652     return bitc::ATTR_KIND_RETURNED;
653   case Attribute::ReturnsTwice:
654     return bitc::ATTR_KIND_RETURNS_TWICE;
655   case Attribute::SExt:
656     return bitc::ATTR_KIND_S_EXT;
657   case Attribute::Speculatable:
658     return bitc::ATTR_KIND_SPECULATABLE;
659   case Attribute::StackAlignment:
660     return bitc::ATTR_KIND_STACK_ALIGNMENT;
661   case Attribute::StackProtect:
662     return bitc::ATTR_KIND_STACK_PROTECT;
663   case Attribute::StackProtectReq:
664     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
665   case Attribute::StackProtectStrong:
666     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
667   case Attribute::SafeStack:
668     return bitc::ATTR_KIND_SAFESTACK;
669   case Attribute::StrictFP:
670     return bitc::ATTR_KIND_STRICT_FP;
671   case Attribute::StructRet:
672     return bitc::ATTR_KIND_STRUCT_RET;
673   case Attribute::SanitizeAddress:
674     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
675   case Attribute::SanitizeHWAddress:
676     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
677   case Attribute::SanitizeThread:
678     return bitc::ATTR_KIND_SANITIZE_THREAD;
679   case Attribute::SanitizeMemory:
680     return bitc::ATTR_KIND_SANITIZE_MEMORY;
681   case Attribute::SwiftError:
682     return bitc::ATTR_KIND_SWIFT_ERROR;
683   case Attribute::SwiftSelf:
684     return bitc::ATTR_KIND_SWIFT_SELF;
685   case Attribute::UWTable:
686     return bitc::ATTR_KIND_UW_TABLE;
687   case Attribute::WriteOnly:
688     return bitc::ATTR_KIND_WRITEONLY;
689   case Attribute::ZExt:
690     return bitc::ATTR_KIND_Z_EXT;
691   case Attribute::EndAttrKinds:
692     llvm_unreachable("Can not encode end-attribute kinds marker.");
693   case Attribute::None:
694     llvm_unreachable("Can not encode none-attribute.");
695   }
696 
697   llvm_unreachable("Trying to encode unknown attribute");
698 }
699 
700 void ModuleBitcodeWriter::writeAttributeGroupTable() {
701   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
702       VE.getAttributeGroups();
703   if (AttrGrps.empty()) return;
704 
705   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
706 
707   SmallVector<uint64_t, 64> Record;
708   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
709     unsigned AttrListIndex = Pair.first;
710     AttributeSet AS = Pair.second;
711     Record.push_back(VE.getAttributeGroupID(Pair));
712     Record.push_back(AttrListIndex);
713 
714     for (Attribute Attr : AS) {
715       if (Attr.isEnumAttribute()) {
716         Record.push_back(0);
717         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
718       } else if (Attr.isIntAttribute()) {
719         Record.push_back(1);
720         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
721         Record.push_back(Attr.getValueAsInt());
722       } else {
723         StringRef Kind = Attr.getKindAsString();
724         StringRef Val = Attr.getValueAsString();
725 
726         Record.push_back(Val.empty() ? 3 : 4);
727         Record.append(Kind.begin(), Kind.end());
728         Record.push_back(0);
729         if (!Val.empty()) {
730           Record.append(Val.begin(), Val.end());
731           Record.push_back(0);
732         }
733       }
734     }
735 
736     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
737     Record.clear();
738   }
739 
740   Stream.ExitBlock();
741 }
742 
743 void ModuleBitcodeWriter::writeAttributeTable() {
744   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
745   if (Attrs.empty()) return;
746 
747   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
748 
749   SmallVector<uint64_t, 64> Record;
750   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
751     AttributeList AL = Attrs[i];
752     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
753       AttributeSet AS = AL.getAttributes(i);
754       if (AS.hasAttributes())
755         Record.push_back(VE.getAttributeGroupID({i, AS}));
756     }
757 
758     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
759     Record.clear();
760   }
761 
762   Stream.ExitBlock();
763 }
764 
765 /// WriteTypeTable - Write out the type table for a module.
766 void ModuleBitcodeWriter::writeTypeTable() {
767   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
768 
769   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
770   SmallVector<uint64_t, 64> TypeVals;
771 
772   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
773 
774   // Abbrev for TYPE_CODE_POINTER.
775   auto Abbv = std::make_shared<BitCodeAbbrev>();
776   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
777   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
778   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
779   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
780 
781   // Abbrev for TYPE_CODE_FUNCTION.
782   Abbv = std::make_shared<BitCodeAbbrev>();
783   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
784   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
785   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
786   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
787   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
788 
789   // Abbrev for TYPE_CODE_STRUCT_ANON.
790   Abbv = std::make_shared<BitCodeAbbrev>();
791   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
792   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
793   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
794   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
795   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
796 
797   // Abbrev for TYPE_CODE_STRUCT_NAME.
798   Abbv = std::make_shared<BitCodeAbbrev>();
799   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
800   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
801   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
802   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
803 
804   // Abbrev for TYPE_CODE_STRUCT_NAMED.
805   Abbv = std::make_shared<BitCodeAbbrev>();
806   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
807   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
808   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
809   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
810   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
811 
812   // Abbrev for TYPE_CODE_ARRAY.
813   Abbv = std::make_shared<BitCodeAbbrev>();
814   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
815   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
816   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
817   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
818 
819   // Emit an entry count so the reader can reserve space.
820   TypeVals.push_back(TypeList.size());
821   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
822   TypeVals.clear();
823 
824   // Loop over all of the types, emitting each in turn.
825   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
826     Type *T = TypeList[i];
827     int AbbrevToUse = 0;
828     unsigned Code = 0;
829 
830     switch (T->getTypeID()) {
831     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
832     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
833     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
834     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
835     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
836     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
837     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
838     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
839     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
840     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
841     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
842     case Type::IntegerTyID:
843       // INTEGER: [width]
844       Code = bitc::TYPE_CODE_INTEGER;
845       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
846       break;
847     case Type::PointerTyID: {
848       PointerType *PTy = cast<PointerType>(T);
849       // POINTER: [pointee type, address space]
850       Code = bitc::TYPE_CODE_POINTER;
851       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
852       unsigned AddressSpace = PTy->getAddressSpace();
853       TypeVals.push_back(AddressSpace);
854       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
855       break;
856     }
857     case Type::FunctionTyID: {
858       FunctionType *FT = cast<FunctionType>(T);
859       // FUNCTION: [isvararg, retty, paramty x N]
860       Code = bitc::TYPE_CODE_FUNCTION;
861       TypeVals.push_back(FT->isVarArg());
862       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
863       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
864         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
865       AbbrevToUse = FunctionAbbrev;
866       break;
867     }
868     case Type::StructTyID: {
869       StructType *ST = cast<StructType>(T);
870       // STRUCT: [ispacked, eltty x N]
871       TypeVals.push_back(ST->isPacked());
872       // Output all of the element types.
873       for (StructType::element_iterator I = ST->element_begin(),
874            E = ST->element_end(); I != E; ++I)
875         TypeVals.push_back(VE.getTypeID(*I));
876 
877       if (ST->isLiteral()) {
878         Code = bitc::TYPE_CODE_STRUCT_ANON;
879         AbbrevToUse = StructAnonAbbrev;
880       } else {
881         if (ST->isOpaque()) {
882           Code = bitc::TYPE_CODE_OPAQUE;
883         } else {
884           Code = bitc::TYPE_CODE_STRUCT_NAMED;
885           AbbrevToUse = StructNamedAbbrev;
886         }
887 
888         // Emit the name if it is present.
889         if (!ST->getName().empty())
890           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
891                             StructNameAbbrev);
892       }
893       break;
894     }
895     case Type::ArrayTyID: {
896       ArrayType *AT = cast<ArrayType>(T);
897       // ARRAY: [numelts, eltty]
898       Code = bitc::TYPE_CODE_ARRAY;
899       TypeVals.push_back(AT->getNumElements());
900       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
901       AbbrevToUse = ArrayAbbrev;
902       break;
903     }
904     case Type::VectorTyID: {
905       VectorType *VT = cast<VectorType>(T);
906       // VECTOR [numelts, eltty]
907       Code = bitc::TYPE_CODE_VECTOR;
908       TypeVals.push_back(VT->getNumElements());
909       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
910       break;
911     }
912     }
913 
914     // Emit the finished record.
915     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
916     TypeVals.clear();
917   }
918 
919   Stream.ExitBlock();
920 }
921 
922 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
923   switch (Linkage) {
924   case GlobalValue::ExternalLinkage:
925     return 0;
926   case GlobalValue::WeakAnyLinkage:
927     return 16;
928   case GlobalValue::AppendingLinkage:
929     return 2;
930   case GlobalValue::InternalLinkage:
931     return 3;
932   case GlobalValue::LinkOnceAnyLinkage:
933     return 18;
934   case GlobalValue::ExternalWeakLinkage:
935     return 7;
936   case GlobalValue::CommonLinkage:
937     return 8;
938   case GlobalValue::PrivateLinkage:
939     return 9;
940   case GlobalValue::WeakODRLinkage:
941     return 17;
942   case GlobalValue::LinkOnceODRLinkage:
943     return 19;
944   case GlobalValue::AvailableExternallyLinkage:
945     return 12;
946   }
947   llvm_unreachable("Invalid linkage");
948 }
949 
950 static unsigned getEncodedLinkage(const GlobalValue &GV) {
951   return getEncodedLinkage(GV.getLinkage());
952 }
953 
954 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
955   uint64_t RawFlags = 0;
956   RawFlags |= Flags.ReadNone;
957   RawFlags |= (Flags.ReadOnly << 1);
958   RawFlags |= (Flags.NoRecurse << 2);
959   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
960   return RawFlags;
961 }
962 
963 // Decode the flags for GlobalValue in the summary
964 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
965   uint64_t RawFlags = 0;
966 
967   RawFlags |= Flags.NotEligibleToImport; // bool
968   RawFlags |= (Flags.Live << 1);
969   RawFlags |= (Flags.DSOLocal << 2);
970 
971   // Linkage don't need to be remapped at that time for the summary. Any future
972   // change to the getEncodedLinkage() function will need to be taken into
973   // account here as well.
974   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
975 
976   return RawFlags;
977 }
978 
979 static unsigned getEncodedVisibility(const GlobalValue &GV) {
980   switch (GV.getVisibility()) {
981   case GlobalValue::DefaultVisibility:   return 0;
982   case GlobalValue::HiddenVisibility:    return 1;
983   case GlobalValue::ProtectedVisibility: return 2;
984   }
985   llvm_unreachable("Invalid visibility");
986 }
987 
988 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
989   switch (GV.getDLLStorageClass()) {
990   case GlobalValue::DefaultStorageClass:   return 0;
991   case GlobalValue::DLLImportStorageClass: return 1;
992   case GlobalValue::DLLExportStorageClass: return 2;
993   }
994   llvm_unreachable("Invalid DLL storage class");
995 }
996 
997 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
998   switch (GV.getThreadLocalMode()) {
999     case GlobalVariable::NotThreadLocal:         return 0;
1000     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1001     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1002     case GlobalVariable::InitialExecTLSModel:    return 3;
1003     case GlobalVariable::LocalExecTLSModel:      return 4;
1004   }
1005   llvm_unreachable("Invalid TLS model");
1006 }
1007 
1008 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1009   switch (C.getSelectionKind()) {
1010   case Comdat::Any:
1011     return bitc::COMDAT_SELECTION_KIND_ANY;
1012   case Comdat::ExactMatch:
1013     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1014   case Comdat::Largest:
1015     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1016   case Comdat::NoDuplicates:
1017     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1018   case Comdat::SameSize:
1019     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1020   }
1021   llvm_unreachable("Invalid selection kind");
1022 }
1023 
1024 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1025   switch (GV.getUnnamedAddr()) {
1026   case GlobalValue::UnnamedAddr::None:   return 0;
1027   case GlobalValue::UnnamedAddr::Local:  return 2;
1028   case GlobalValue::UnnamedAddr::Global: return 1;
1029   }
1030   llvm_unreachable("Invalid unnamed_addr");
1031 }
1032 
1033 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1034   if (GenerateHash)
1035     Hasher.update(Str);
1036   return StrtabBuilder.add(Str);
1037 }
1038 
1039 void ModuleBitcodeWriter::writeComdats() {
1040   SmallVector<unsigned, 64> Vals;
1041   for (const Comdat *C : VE.getComdats()) {
1042     // COMDAT: [strtab offset, strtab size, selection_kind]
1043     Vals.push_back(addToStrtab(C->getName()));
1044     Vals.push_back(C->getName().size());
1045     Vals.push_back(getEncodedComdatSelectionKind(*C));
1046     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1047     Vals.clear();
1048   }
1049 }
1050 
1051 /// Write a record that will eventually hold the word offset of the
1052 /// module-level VST. For now the offset is 0, which will be backpatched
1053 /// after the real VST is written. Saves the bit offset to backpatch.
1054 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1055   // Write a placeholder value in for the offset of the real VST,
1056   // which is written after the function blocks so that it can include
1057   // the offset of each function. The placeholder offset will be
1058   // updated when the real VST is written.
1059   auto Abbv = std::make_shared<BitCodeAbbrev>();
1060   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1061   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1062   // hold the real VST offset. Must use fixed instead of VBR as we don't
1063   // know how many VBR chunks to reserve ahead of time.
1064   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1065   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1066 
1067   // Emit the placeholder
1068   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1069   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1070 
1071   // Compute and save the bit offset to the placeholder, which will be
1072   // patched when the real VST is written. We can simply subtract the 32-bit
1073   // fixed size from the current bit number to get the location to backpatch.
1074   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1075 }
1076 
1077 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1078 
1079 /// Determine the encoding to use for the given string name and length.
1080 static StringEncoding getStringEncoding(StringRef Str) {
1081   bool isChar6 = true;
1082   for (char C : Str) {
1083     if (isChar6)
1084       isChar6 = BitCodeAbbrevOp::isChar6(C);
1085     if ((unsigned char)C & 128)
1086       // don't bother scanning the rest.
1087       return SE_Fixed8;
1088   }
1089   if (isChar6)
1090     return SE_Char6;
1091   return SE_Fixed7;
1092 }
1093 
1094 /// Emit top-level description of module, including target triple, inline asm,
1095 /// descriptors for global variables, and function prototype info.
1096 /// Returns the bit offset to backpatch with the location of the real VST.
1097 void ModuleBitcodeWriter::writeModuleInfo() {
1098   // Emit various pieces of data attached to a module.
1099   if (!M.getTargetTriple().empty())
1100     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1101                       0 /*TODO*/);
1102   const std::string &DL = M.getDataLayoutStr();
1103   if (!DL.empty())
1104     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1105   if (!M.getModuleInlineAsm().empty())
1106     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1107                       0 /*TODO*/);
1108 
1109   // Emit information about sections and GC, computing how many there are. Also
1110   // compute the maximum alignment value.
1111   std::map<std::string, unsigned> SectionMap;
1112   std::map<std::string, unsigned> GCMap;
1113   unsigned MaxAlignment = 0;
1114   unsigned MaxGlobalType = 0;
1115   for (const GlobalValue &GV : M.globals()) {
1116     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1117     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1118     if (GV.hasSection()) {
1119       // Give section names unique ID's.
1120       unsigned &Entry = SectionMap[GV.getSection()];
1121       if (!Entry) {
1122         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1123                           0 /*TODO*/);
1124         Entry = SectionMap.size();
1125       }
1126     }
1127   }
1128   for (const Function &F : M) {
1129     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1130     if (F.hasSection()) {
1131       // Give section names unique ID's.
1132       unsigned &Entry = SectionMap[F.getSection()];
1133       if (!Entry) {
1134         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1135                           0 /*TODO*/);
1136         Entry = SectionMap.size();
1137       }
1138     }
1139     if (F.hasGC()) {
1140       // Same for GC names.
1141       unsigned &Entry = GCMap[F.getGC()];
1142       if (!Entry) {
1143         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1144                           0 /*TODO*/);
1145         Entry = GCMap.size();
1146       }
1147     }
1148   }
1149 
1150   // Emit abbrev for globals, now that we know # sections and max alignment.
1151   unsigned SimpleGVarAbbrev = 0;
1152   if (!M.global_empty()) {
1153     // Add an abbrev for common globals with no visibility or thread localness.
1154     auto Abbv = std::make_shared<BitCodeAbbrev>();
1155     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1156     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1157     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1158     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1159                               Log2_32_Ceil(MaxGlobalType+1)));
1160     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1161                                                            //| explicitType << 1
1162                                                            //| constant
1163     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1164     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1165     if (MaxAlignment == 0)                                 // Alignment.
1166       Abbv->Add(BitCodeAbbrevOp(0));
1167     else {
1168       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1169       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1170                                Log2_32_Ceil(MaxEncAlignment+1)));
1171     }
1172     if (SectionMap.empty())                                    // Section.
1173       Abbv->Add(BitCodeAbbrevOp(0));
1174     else
1175       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1176                                Log2_32_Ceil(SectionMap.size()+1)));
1177     // Don't bother emitting vis + thread local.
1178     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1179   }
1180 
1181   SmallVector<unsigned, 64> Vals;
1182   // Emit the module's source file name.
1183   {
1184     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1185     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1186     if (Bits == SE_Char6)
1187       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1188     else if (Bits == SE_Fixed7)
1189       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1190 
1191     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1192     auto Abbv = std::make_shared<BitCodeAbbrev>();
1193     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1194     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1195     Abbv->Add(AbbrevOpToUse);
1196     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1197 
1198     for (const auto P : M.getSourceFileName())
1199       Vals.push_back((unsigned char)P);
1200 
1201     // Emit the finished record.
1202     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1203     Vals.clear();
1204   }
1205 
1206   // Emit the global variable information.
1207   for (const GlobalVariable &GV : M.globals()) {
1208     unsigned AbbrevToUse = 0;
1209 
1210     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1211     //             linkage, alignment, section, visibility, threadlocal,
1212     //             unnamed_addr, externally_initialized, dllstorageclass,
1213     //             comdat, attributes, DSO_Local]
1214     Vals.push_back(addToStrtab(GV.getName()));
1215     Vals.push_back(GV.getName().size());
1216     Vals.push_back(VE.getTypeID(GV.getValueType()));
1217     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1218     Vals.push_back(GV.isDeclaration() ? 0 :
1219                    (VE.getValueID(GV.getInitializer()) + 1));
1220     Vals.push_back(getEncodedLinkage(GV));
1221     Vals.push_back(Log2_32(GV.getAlignment())+1);
1222     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1223     if (GV.isThreadLocal() ||
1224         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1225         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1226         GV.isExternallyInitialized() ||
1227         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1228         GV.hasComdat() ||
1229         GV.hasAttributes() ||
1230         GV.isDSOLocal()) {
1231       Vals.push_back(getEncodedVisibility(GV));
1232       Vals.push_back(getEncodedThreadLocalMode(GV));
1233       Vals.push_back(getEncodedUnnamedAddr(GV));
1234       Vals.push_back(GV.isExternallyInitialized());
1235       Vals.push_back(getEncodedDLLStorageClass(GV));
1236       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1237 
1238       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1239       Vals.push_back(VE.getAttributeListID(AL));
1240 
1241       Vals.push_back(GV.isDSOLocal());
1242     } else {
1243       AbbrevToUse = SimpleGVarAbbrev;
1244     }
1245 
1246     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1247     Vals.clear();
1248   }
1249 
1250   // Emit the function proto information.
1251   for (const Function &F : M) {
1252     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1253     //             linkage, paramattrs, alignment, section, visibility, gc,
1254     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1255     //             prefixdata, personalityfn, DSO_Local]
1256     Vals.push_back(addToStrtab(F.getName()));
1257     Vals.push_back(F.getName().size());
1258     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1259     Vals.push_back(F.getCallingConv());
1260     Vals.push_back(F.isDeclaration());
1261     Vals.push_back(getEncodedLinkage(F));
1262     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1263     Vals.push_back(Log2_32(F.getAlignment())+1);
1264     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1265     Vals.push_back(getEncodedVisibility(F));
1266     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1267     Vals.push_back(getEncodedUnnamedAddr(F));
1268     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1269                                        : 0);
1270     Vals.push_back(getEncodedDLLStorageClass(F));
1271     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1272     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1273                                      : 0);
1274     Vals.push_back(
1275         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1276 
1277     Vals.push_back(F.isDSOLocal());
1278     unsigned AbbrevToUse = 0;
1279     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1280     Vals.clear();
1281   }
1282 
1283   // Emit the alias information.
1284   for (const GlobalAlias &A : M.aliases()) {
1285     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1286     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1287     //         DSO_Local]
1288     Vals.push_back(addToStrtab(A.getName()));
1289     Vals.push_back(A.getName().size());
1290     Vals.push_back(VE.getTypeID(A.getValueType()));
1291     Vals.push_back(A.getType()->getAddressSpace());
1292     Vals.push_back(VE.getValueID(A.getAliasee()));
1293     Vals.push_back(getEncodedLinkage(A));
1294     Vals.push_back(getEncodedVisibility(A));
1295     Vals.push_back(getEncodedDLLStorageClass(A));
1296     Vals.push_back(getEncodedThreadLocalMode(A));
1297     Vals.push_back(getEncodedUnnamedAddr(A));
1298     Vals.push_back(A.isDSOLocal());
1299 
1300     unsigned AbbrevToUse = 0;
1301     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1302     Vals.clear();
1303   }
1304 
1305   // Emit the ifunc information.
1306   for (const GlobalIFunc &I : M.ifuncs()) {
1307     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1308     //         val#, linkage, visibility, DSO_Local]
1309     Vals.push_back(addToStrtab(I.getName()));
1310     Vals.push_back(I.getName().size());
1311     Vals.push_back(VE.getTypeID(I.getValueType()));
1312     Vals.push_back(I.getType()->getAddressSpace());
1313     Vals.push_back(VE.getValueID(I.getResolver()));
1314     Vals.push_back(getEncodedLinkage(I));
1315     Vals.push_back(getEncodedVisibility(I));
1316     Vals.push_back(I.isDSOLocal());
1317     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1318     Vals.clear();
1319   }
1320 
1321   writeValueSymbolTableForwardDecl();
1322 }
1323 
1324 static uint64_t getOptimizationFlags(const Value *V) {
1325   uint64_t Flags = 0;
1326 
1327   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1328     if (OBO->hasNoSignedWrap())
1329       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1330     if (OBO->hasNoUnsignedWrap())
1331       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1332   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1333     if (PEO->isExact())
1334       Flags |= 1 << bitc::PEO_EXACT;
1335   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1336     if (FPMO->hasAllowReassoc())
1337       Flags |= bitc::AllowReassoc;
1338     if (FPMO->hasNoNaNs())
1339       Flags |= bitc::NoNaNs;
1340     if (FPMO->hasNoInfs())
1341       Flags |= bitc::NoInfs;
1342     if (FPMO->hasNoSignedZeros())
1343       Flags |= bitc::NoSignedZeros;
1344     if (FPMO->hasAllowReciprocal())
1345       Flags |= bitc::AllowReciprocal;
1346     if (FPMO->hasAllowContract())
1347       Flags |= bitc::AllowContract;
1348     if (FPMO->hasApproxFunc())
1349       Flags |= bitc::ApproxFunc;
1350   }
1351 
1352   return Flags;
1353 }
1354 
1355 void ModuleBitcodeWriter::writeValueAsMetadata(
1356     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1357   // Mimic an MDNode with a value as one operand.
1358   Value *V = MD->getValue();
1359   Record.push_back(VE.getTypeID(V->getType()));
1360   Record.push_back(VE.getValueID(V));
1361   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1362   Record.clear();
1363 }
1364 
1365 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1366                                        SmallVectorImpl<uint64_t> &Record,
1367                                        unsigned Abbrev) {
1368   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1369     Metadata *MD = N->getOperand(i);
1370     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1371            "Unexpected function-local metadata");
1372     Record.push_back(VE.getMetadataOrNullID(MD));
1373   }
1374   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1375                                     : bitc::METADATA_NODE,
1376                     Record, Abbrev);
1377   Record.clear();
1378 }
1379 
1380 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1381   // Assume the column is usually under 128, and always output the inlined-at
1382   // location (it's never more expensive than building an array size 1).
1383   auto Abbv = std::make_shared<BitCodeAbbrev>();
1384   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1385   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1386   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1387   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1388   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1389   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1390   return Stream.EmitAbbrev(std::move(Abbv));
1391 }
1392 
1393 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1394                                           SmallVectorImpl<uint64_t> &Record,
1395                                           unsigned &Abbrev) {
1396   if (!Abbrev)
1397     Abbrev = createDILocationAbbrev();
1398 
1399   Record.push_back(N->isDistinct());
1400   Record.push_back(N->getLine());
1401   Record.push_back(N->getColumn());
1402   Record.push_back(VE.getMetadataID(N->getScope()));
1403   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1404 
1405   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1406   Record.clear();
1407 }
1408 
1409 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1410   // Assume the column is usually under 128, and always output the inlined-at
1411   // location (it's never more expensive than building an array size 1).
1412   auto Abbv = std::make_shared<BitCodeAbbrev>();
1413   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1414   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1415   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1416   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1417   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1418   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1419   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1420   return Stream.EmitAbbrev(std::move(Abbv));
1421 }
1422 
1423 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1424                                              SmallVectorImpl<uint64_t> &Record,
1425                                              unsigned &Abbrev) {
1426   if (!Abbrev)
1427     Abbrev = createGenericDINodeAbbrev();
1428 
1429   Record.push_back(N->isDistinct());
1430   Record.push_back(N->getTag());
1431   Record.push_back(0); // Per-tag version field; unused for now.
1432 
1433   for (auto &I : N->operands())
1434     Record.push_back(VE.getMetadataOrNullID(I));
1435 
1436   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1437   Record.clear();
1438 }
1439 
1440 static uint64_t rotateSign(int64_t I) {
1441   uint64_t U = I;
1442   return I < 0 ? ~(U << 1) : U << 1;
1443 }
1444 
1445 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1446                                           SmallVectorImpl<uint64_t> &Record,
1447                                           unsigned Abbrev) {
1448   const uint64_t Version = 1 << 1;
1449   Record.push_back((uint64_t)N->isDistinct() | Version);
1450   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1451   Record.push_back(rotateSign(N->getLowerBound()));
1452 
1453   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1454   Record.clear();
1455 }
1456 
1457 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1458                                             SmallVectorImpl<uint64_t> &Record,
1459                                             unsigned Abbrev) {
1460   Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1461   Record.push_back(rotateSign(N->getValue()));
1462   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1463 
1464   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1465   Record.clear();
1466 }
1467 
1468 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1469                                            SmallVectorImpl<uint64_t> &Record,
1470                                            unsigned Abbrev) {
1471   Record.push_back(N->isDistinct());
1472   Record.push_back(N->getTag());
1473   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1474   Record.push_back(N->getSizeInBits());
1475   Record.push_back(N->getAlignInBits());
1476   Record.push_back(N->getEncoding());
1477 
1478   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1479   Record.clear();
1480 }
1481 
1482 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1483                                              SmallVectorImpl<uint64_t> &Record,
1484                                              unsigned Abbrev) {
1485   Record.push_back(N->isDistinct());
1486   Record.push_back(N->getTag());
1487   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1488   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1489   Record.push_back(N->getLine());
1490   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1491   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1492   Record.push_back(N->getSizeInBits());
1493   Record.push_back(N->getAlignInBits());
1494   Record.push_back(N->getOffsetInBits());
1495   Record.push_back(N->getFlags());
1496   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1497 
1498   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1499   // that there is no DWARF address space associated with DIDerivedType.
1500   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1501     Record.push_back(*DWARFAddressSpace + 1);
1502   else
1503     Record.push_back(0);
1504 
1505   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1506   Record.clear();
1507 }
1508 
1509 void ModuleBitcodeWriter::writeDICompositeType(
1510     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1511     unsigned Abbrev) {
1512   const unsigned IsNotUsedInOldTypeRef = 0x2;
1513   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1514   Record.push_back(N->getTag());
1515   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1516   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1517   Record.push_back(N->getLine());
1518   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1519   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1520   Record.push_back(N->getSizeInBits());
1521   Record.push_back(N->getAlignInBits());
1522   Record.push_back(N->getOffsetInBits());
1523   Record.push_back(N->getFlags());
1524   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1525   Record.push_back(N->getRuntimeLang());
1526   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1527   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1528   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1529   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1530 
1531   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1532   Record.clear();
1533 }
1534 
1535 void ModuleBitcodeWriter::writeDISubroutineType(
1536     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1537     unsigned Abbrev) {
1538   const unsigned HasNoOldTypeRefs = 0x2;
1539   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1540   Record.push_back(N->getFlags());
1541   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1542   Record.push_back(N->getCC());
1543 
1544   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1545   Record.clear();
1546 }
1547 
1548 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1549                                       SmallVectorImpl<uint64_t> &Record,
1550                                       unsigned Abbrev) {
1551   Record.push_back(N->isDistinct());
1552   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1553   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1554   if (N->getRawChecksum()) {
1555     Record.push_back(N->getRawChecksum()->Kind);
1556     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1557   } else {
1558     // Maintain backwards compatibility with the old internal representation of
1559     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1560     Record.push_back(0);
1561     Record.push_back(VE.getMetadataOrNullID(nullptr));
1562   }
1563   auto Source = N->getRawSource();
1564   if (Source)
1565     Record.push_back(VE.getMetadataOrNullID(*Source));
1566 
1567   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1568   Record.clear();
1569 }
1570 
1571 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1572                                              SmallVectorImpl<uint64_t> &Record,
1573                                              unsigned Abbrev) {
1574   assert(N->isDistinct() && "Expected distinct compile units");
1575   Record.push_back(/* IsDistinct */ true);
1576   Record.push_back(N->getSourceLanguage());
1577   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1578   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1579   Record.push_back(N->isOptimized());
1580   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1581   Record.push_back(N->getRuntimeVersion());
1582   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1583   Record.push_back(N->getEmissionKind());
1584   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1585   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1586   Record.push_back(/* subprograms */ 0);
1587   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1588   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1589   Record.push_back(N->getDWOId());
1590   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1591   Record.push_back(N->getSplitDebugInlining());
1592   Record.push_back(N->getDebugInfoForProfiling());
1593   Record.push_back(N->getGnuPubnames());
1594 
1595   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1596   Record.clear();
1597 }
1598 
1599 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1600                                             SmallVectorImpl<uint64_t> &Record,
1601                                             unsigned Abbrev) {
1602   uint64_t HasUnitFlag = 1 << 1;
1603   Record.push_back(N->isDistinct() | HasUnitFlag);
1604   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1605   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1606   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1607   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1608   Record.push_back(N->getLine());
1609   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1610   Record.push_back(N->isLocalToUnit());
1611   Record.push_back(N->isDefinition());
1612   Record.push_back(N->getScopeLine());
1613   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1614   Record.push_back(N->getVirtuality());
1615   Record.push_back(N->getVirtualIndex());
1616   Record.push_back(N->getFlags());
1617   Record.push_back(N->isOptimized());
1618   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1619   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1620   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1621   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1622   Record.push_back(N->getThisAdjustment());
1623   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1624 
1625   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1626   Record.clear();
1627 }
1628 
1629 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1630                                               SmallVectorImpl<uint64_t> &Record,
1631                                               unsigned Abbrev) {
1632   Record.push_back(N->isDistinct());
1633   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1634   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1635   Record.push_back(N->getLine());
1636   Record.push_back(N->getColumn());
1637 
1638   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1639   Record.clear();
1640 }
1641 
1642 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1643     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1644     unsigned Abbrev) {
1645   Record.push_back(N->isDistinct());
1646   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1647   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1648   Record.push_back(N->getDiscriminator());
1649 
1650   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1651   Record.clear();
1652 }
1653 
1654 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1655                                            SmallVectorImpl<uint64_t> &Record,
1656                                            unsigned Abbrev) {
1657   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1658   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1659   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1660 
1661   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1662   Record.clear();
1663 }
1664 
1665 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1666                                        SmallVectorImpl<uint64_t> &Record,
1667                                        unsigned Abbrev) {
1668   Record.push_back(N->isDistinct());
1669   Record.push_back(N->getMacinfoType());
1670   Record.push_back(N->getLine());
1671   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1672   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1673 
1674   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1675   Record.clear();
1676 }
1677 
1678 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1679                                            SmallVectorImpl<uint64_t> &Record,
1680                                            unsigned Abbrev) {
1681   Record.push_back(N->isDistinct());
1682   Record.push_back(N->getMacinfoType());
1683   Record.push_back(N->getLine());
1684   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1685   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1686 
1687   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1688   Record.clear();
1689 }
1690 
1691 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1692                                         SmallVectorImpl<uint64_t> &Record,
1693                                         unsigned Abbrev) {
1694   Record.push_back(N->isDistinct());
1695   for (auto &I : N->operands())
1696     Record.push_back(VE.getMetadataOrNullID(I));
1697 
1698   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1699   Record.clear();
1700 }
1701 
1702 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1703     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1704     unsigned Abbrev) {
1705   Record.push_back(N->isDistinct());
1706   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1707   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1708 
1709   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1710   Record.clear();
1711 }
1712 
1713 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1714     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1715     unsigned Abbrev) {
1716   Record.push_back(N->isDistinct());
1717   Record.push_back(N->getTag());
1718   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1719   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1720   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1721 
1722   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1723   Record.clear();
1724 }
1725 
1726 void ModuleBitcodeWriter::writeDIGlobalVariable(
1727     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1728     unsigned Abbrev) {
1729   const uint64_t Version = 1 << 1;
1730   Record.push_back((uint64_t)N->isDistinct() | Version);
1731   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1732   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1733   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1734   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1735   Record.push_back(N->getLine());
1736   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1737   Record.push_back(N->isLocalToUnit());
1738   Record.push_back(N->isDefinition());
1739   Record.push_back(/* expr */ 0);
1740   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1741   Record.push_back(N->getAlignInBits());
1742 
1743   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1744   Record.clear();
1745 }
1746 
1747 void ModuleBitcodeWriter::writeDILocalVariable(
1748     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1749     unsigned Abbrev) {
1750   // In order to support all possible bitcode formats in BitcodeReader we need
1751   // to distinguish the following cases:
1752   // 1) Record has no artificial tag (Record[1]),
1753   //   has no obsolete inlinedAt field (Record[9]).
1754   //   In this case Record size will be 8, HasAlignment flag is false.
1755   // 2) Record has artificial tag (Record[1]),
1756   //   has no obsolete inlignedAt field (Record[9]).
1757   //   In this case Record size will be 9, HasAlignment flag is false.
1758   // 3) Record has both artificial tag (Record[1]) and
1759   //   obsolete inlignedAt field (Record[9]).
1760   //   In this case Record size will be 10, HasAlignment flag is false.
1761   // 4) Record has neither artificial tag, nor inlignedAt field, but
1762   //   HasAlignment flag is true and Record[8] contains alignment value.
1763   const uint64_t HasAlignmentFlag = 1 << 1;
1764   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1765   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1766   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1767   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1768   Record.push_back(N->getLine());
1769   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1770   Record.push_back(N->getArg());
1771   Record.push_back(N->getFlags());
1772   Record.push_back(N->getAlignInBits());
1773 
1774   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1775   Record.clear();
1776 }
1777 
1778 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1779                                             SmallVectorImpl<uint64_t> &Record,
1780                                             unsigned Abbrev) {
1781   Record.reserve(N->getElements().size() + 1);
1782   const uint64_t Version = 3 << 1;
1783   Record.push_back((uint64_t)N->isDistinct() | Version);
1784   Record.append(N->elements_begin(), N->elements_end());
1785 
1786   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1787   Record.clear();
1788 }
1789 
1790 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1791     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1792     unsigned Abbrev) {
1793   Record.push_back(N->isDistinct());
1794   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1795   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1796 
1797   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1798   Record.clear();
1799 }
1800 
1801 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1802                                               SmallVectorImpl<uint64_t> &Record,
1803                                               unsigned Abbrev) {
1804   Record.push_back(N->isDistinct());
1805   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1806   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1807   Record.push_back(N->getLine());
1808   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1809   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1810   Record.push_back(N->getAttributes());
1811   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1812 
1813   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1814   Record.clear();
1815 }
1816 
1817 void ModuleBitcodeWriter::writeDIImportedEntity(
1818     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1819     unsigned Abbrev) {
1820   Record.push_back(N->isDistinct());
1821   Record.push_back(N->getTag());
1822   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1823   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1824   Record.push_back(N->getLine());
1825   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1826   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1827 
1828   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1829   Record.clear();
1830 }
1831 
1832 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1833   auto Abbv = std::make_shared<BitCodeAbbrev>();
1834   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1835   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1836   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1837   return Stream.EmitAbbrev(std::move(Abbv));
1838 }
1839 
1840 void ModuleBitcodeWriter::writeNamedMetadata(
1841     SmallVectorImpl<uint64_t> &Record) {
1842   if (M.named_metadata_empty())
1843     return;
1844 
1845   unsigned Abbrev = createNamedMetadataAbbrev();
1846   for (const NamedMDNode &NMD : M.named_metadata()) {
1847     // Write name.
1848     StringRef Str = NMD.getName();
1849     Record.append(Str.bytes_begin(), Str.bytes_end());
1850     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1851     Record.clear();
1852 
1853     // Write named metadata operands.
1854     for (const MDNode *N : NMD.operands())
1855       Record.push_back(VE.getMetadataID(N));
1856     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1857     Record.clear();
1858   }
1859 }
1860 
1861 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1862   auto Abbv = std::make_shared<BitCodeAbbrev>();
1863   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1864   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1865   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1866   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1867   return Stream.EmitAbbrev(std::move(Abbv));
1868 }
1869 
1870 /// Write out a record for MDString.
1871 ///
1872 /// All the metadata strings in a metadata block are emitted in a single
1873 /// record.  The sizes and strings themselves are shoved into a blob.
1874 void ModuleBitcodeWriter::writeMetadataStrings(
1875     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1876   if (Strings.empty())
1877     return;
1878 
1879   // Start the record with the number of strings.
1880   Record.push_back(bitc::METADATA_STRINGS);
1881   Record.push_back(Strings.size());
1882 
1883   // Emit the sizes of the strings in the blob.
1884   SmallString<256> Blob;
1885   {
1886     BitstreamWriter W(Blob);
1887     for (const Metadata *MD : Strings)
1888       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1889     W.FlushToWord();
1890   }
1891 
1892   // Add the offset to the strings to the record.
1893   Record.push_back(Blob.size());
1894 
1895   // Add the strings to the blob.
1896   for (const Metadata *MD : Strings)
1897     Blob.append(cast<MDString>(MD)->getString());
1898 
1899   // Emit the final record.
1900   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1901   Record.clear();
1902 }
1903 
1904 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1905 enum MetadataAbbrev : unsigned {
1906 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1907 #include "llvm/IR/Metadata.def"
1908   LastPlusOne
1909 };
1910 
1911 void ModuleBitcodeWriter::writeMetadataRecords(
1912     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
1913     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1914   if (MDs.empty())
1915     return;
1916 
1917   // Initialize MDNode abbreviations.
1918 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1919 #include "llvm/IR/Metadata.def"
1920 
1921   for (const Metadata *MD : MDs) {
1922     if (IndexPos)
1923       IndexPos->push_back(Stream.GetCurrentBitNo());
1924     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1925       assert(N->isResolved() && "Expected forward references to be resolved");
1926 
1927       switch (N->getMetadataID()) {
1928       default:
1929         llvm_unreachable("Invalid MDNode subclass");
1930 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1931   case Metadata::CLASS##Kind:                                                  \
1932     if (MDAbbrevs)                                                             \
1933       write##CLASS(cast<CLASS>(N), Record,                                     \
1934                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1935     else                                                                       \
1936       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1937     continue;
1938 #include "llvm/IR/Metadata.def"
1939       }
1940     }
1941     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1942   }
1943 }
1944 
1945 void ModuleBitcodeWriter::writeModuleMetadata() {
1946   if (!VE.hasMDs() && M.named_metadata_empty())
1947     return;
1948 
1949   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1950   SmallVector<uint64_t, 64> Record;
1951 
1952   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1953   // block and load any metadata.
1954   std::vector<unsigned> MDAbbrevs;
1955 
1956   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1957   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1958   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1959       createGenericDINodeAbbrev();
1960 
1961   auto Abbv = std::make_shared<BitCodeAbbrev>();
1962   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
1963   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1964   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1965   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1966 
1967   Abbv = std::make_shared<BitCodeAbbrev>();
1968   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
1969   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1970   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1971   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1972 
1973   // Emit MDStrings together upfront.
1974   writeMetadataStrings(VE.getMDStrings(), Record);
1975 
1976   // We only emit an index for the metadata record if we have more than a given
1977   // (naive) threshold of metadatas, otherwise it is not worth it.
1978   if (VE.getNonMDStrings().size() > IndexThreshold) {
1979     // Write a placeholder value in for the offset of the metadata index,
1980     // which is written after the records, so that it can include
1981     // the offset of each entry. The placeholder offset will be
1982     // updated after all records are emitted.
1983     uint64_t Vals[] = {0, 0};
1984     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
1985   }
1986 
1987   // Compute and save the bit offset to the current position, which will be
1988   // patched when we emit the index later. We can simply subtract the 64-bit
1989   // fixed size from the current bit number to get the location to backpatch.
1990   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
1991 
1992   // This index will contain the bitpos for each individual record.
1993   std::vector<uint64_t> IndexPos;
1994   IndexPos.reserve(VE.getNonMDStrings().size());
1995 
1996   // Write all the records
1997   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1998 
1999   if (VE.getNonMDStrings().size() > IndexThreshold) {
2000     // Now that we have emitted all the records we will emit the index. But
2001     // first
2002     // backpatch the forward reference so that the reader can skip the records
2003     // efficiently.
2004     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2005                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2006 
2007     // Delta encode the index.
2008     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2009     for (auto &Elt : IndexPos) {
2010       auto EltDelta = Elt - PreviousValue;
2011       PreviousValue = Elt;
2012       Elt = EltDelta;
2013     }
2014     // Emit the index record.
2015     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2016     IndexPos.clear();
2017   }
2018 
2019   // Write the named metadata now.
2020   writeNamedMetadata(Record);
2021 
2022   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2023     SmallVector<uint64_t, 4> Record;
2024     Record.push_back(VE.getValueID(&GO));
2025     pushGlobalMetadataAttachment(Record, GO);
2026     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2027   };
2028   for (const Function &F : M)
2029     if (F.isDeclaration() && F.hasMetadata())
2030       AddDeclAttachedMetadata(F);
2031   // FIXME: Only store metadata for declarations here, and move data for global
2032   // variable definitions to a separate block (PR28134).
2033   for (const GlobalVariable &GV : M.globals())
2034     if (GV.hasMetadata())
2035       AddDeclAttachedMetadata(GV);
2036 
2037   Stream.ExitBlock();
2038 }
2039 
2040 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2041   if (!VE.hasMDs())
2042     return;
2043 
2044   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2045   SmallVector<uint64_t, 64> Record;
2046   writeMetadataStrings(VE.getMDStrings(), Record);
2047   writeMetadataRecords(VE.getNonMDStrings(), Record);
2048   Stream.ExitBlock();
2049 }
2050 
2051 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2052     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2053   // [n x [id, mdnode]]
2054   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2055   GO.getAllMetadata(MDs);
2056   for (const auto &I : MDs) {
2057     Record.push_back(I.first);
2058     Record.push_back(VE.getMetadataID(I.second));
2059   }
2060 }
2061 
2062 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2063   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2064 
2065   SmallVector<uint64_t, 64> Record;
2066 
2067   if (F.hasMetadata()) {
2068     pushGlobalMetadataAttachment(Record, F);
2069     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2070     Record.clear();
2071   }
2072 
2073   // Write metadata attachments
2074   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2075   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2076   for (const BasicBlock &BB : F)
2077     for (const Instruction &I : BB) {
2078       MDs.clear();
2079       I.getAllMetadataOtherThanDebugLoc(MDs);
2080 
2081       // If no metadata, ignore instruction.
2082       if (MDs.empty()) continue;
2083 
2084       Record.push_back(VE.getInstructionID(&I));
2085 
2086       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2087         Record.push_back(MDs[i].first);
2088         Record.push_back(VE.getMetadataID(MDs[i].second));
2089       }
2090       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2091       Record.clear();
2092     }
2093 
2094   Stream.ExitBlock();
2095 }
2096 
2097 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2098   SmallVector<uint64_t, 64> Record;
2099 
2100   // Write metadata kinds
2101   // METADATA_KIND - [n x [id, name]]
2102   SmallVector<StringRef, 8> Names;
2103   M.getMDKindNames(Names);
2104 
2105   if (Names.empty()) return;
2106 
2107   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2108 
2109   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2110     Record.push_back(MDKindID);
2111     StringRef KName = Names[MDKindID];
2112     Record.append(KName.begin(), KName.end());
2113 
2114     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2115     Record.clear();
2116   }
2117 
2118   Stream.ExitBlock();
2119 }
2120 
2121 void ModuleBitcodeWriter::writeOperandBundleTags() {
2122   // Write metadata kinds
2123   //
2124   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2125   //
2126   // OPERAND_BUNDLE_TAG - [strchr x N]
2127 
2128   SmallVector<StringRef, 8> Tags;
2129   M.getOperandBundleTags(Tags);
2130 
2131   if (Tags.empty())
2132     return;
2133 
2134   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2135 
2136   SmallVector<uint64_t, 64> Record;
2137 
2138   for (auto Tag : Tags) {
2139     Record.append(Tag.begin(), Tag.end());
2140 
2141     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2142     Record.clear();
2143   }
2144 
2145   Stream.ExitBlock();
2146 }
2147 
2148 void ModuleBitcodeWriter::writeSyncScopeNames() {
2149   SmallVector<StringRef, 8> SSNs;
2150   M.getContext().getSyncScopeNames(SSNs);
2151   if (SSNs.empty())
2152     return;
2153 
2154   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2155 
2156   SmallVector<uint64_t, 64> Record;
2157   for (auto SSN : SSNs) {
2158     Record.append(SSN.begin(), SSN.end());
2159     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2160     Record.clear();
2161   }
2162 
2163   Stream.ExitBlock();
2164 }
2165 
2166 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2167   if ((int64_t)V >= 0)
2168     Vals.push_back(V << 1);
2169   else
2170     Vals.push_back((-V << 1) | 1);
2171 }
2172 
2173 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2174                                          bool isGlobal) {
2175   if (FirstVal == LastVal) return;
2176 
2177   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2178 
2179   unsigned AggregateAbbrev = 0;
2180   unsigned String8Abbrev = 0;
2181   unsigned CString7Abbrev = 0;
2182   unsigned CString6Abbrev = 0;
2183   // If this is a constant pool for the module, emit module-specific abbrevs.
2184   if (isGlobal) {
2185     // Abbrev for CST_CODE_AGGREGATE.
2186     auto Abbv = std::make_shared<BitCodeAbbrev>();
2187     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2188     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2189     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2190     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2191 
2192     // Abbrev for CST_CODE_STRING.
2193     Abbv = std::make_shared<BitCodeAbbrev>();
2194     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2195     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2196     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2197     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2198     // Abbrev for CST_CODE_CSTRING.
2199     Abbv = std::make_shared<BitCodeAbbrev>();
2200     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2201     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2202     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2203     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2204     // Abbrev for CST_CODE_CSTRING.
2205     Abbv = std::make_shared<BitCodeAbbrev>();
2206     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2207     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2208     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2209     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2210   }
2211 
2212   SmallVector<uint64_t, 64> Record;
2213 
2214   const ValueEnumerator::ValueList &Vals = VE.getValues();
2215   Type *LastTy = nullptr;
2216   for (unsigned i = FirstVal; i != LastVal; ++i) {
2217     const Value *V = Vals[i].first;
2218     // If we need to switch types, do so now.
2219     if (V->getType() != LastTy) {
2220       LastTy = V->getType();
2221       Record.push_back(VE.getTypeID(LastTy));
2222       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2223                         CONSTANTS_SETTYPE_ABBREV);
2224       Record.clear();
2225     }
2226 
2227     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2228       Record.push_back(unsigned(IA->hasSideEffects()) |
2229                        unsigned(IA->isAlignStack()) << 1 |
2230                        unsigned(IA->getDialect()&1) << 2);
2231 
2232       // Add the asm string.
2233       const std::string &AsmStr = IA->getAsmString();
2234       Record.push_back(AsmStr.size());
2235       Record.append(AsmStr.begin(), AsmStr.end());
2236 
2237       // Add the constraint string.
2238       const std::string &ConstraintStr = IA->getConstraintString();
2239       Record.push_back(ConstraintStr.size());
2240       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2241       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2242       Record.clear();
2243       continue;
2244     }
2245     const Constant *C = cast<Constant>(V);
2246     unsigned Code = -1U;
2247     unsigned AbbrevToUse = 0;
2248     if (C->isNullValue()) {
2249       Code = bitc::CST_CODE_NULL;
2250     } else if (isa<UndefValue>(C)) {
2251       Code = bitc::CST_CODE_UNDEF;
2252     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2253       if (IV->getBitWidth() <= 64) {
2254         uint64_t V = IV->getSExtValue();
2255         emitSignedInt64(Record, V);
2256         Code = bitc::CST_CODE_INTEGER;
2257         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2258       } else {                             // Wide integers, > 64 bits in size.
2259         // We have an arbitrary precision integer value to write whose
2260         // bit width is > 64. However, in canonical unsigned integer
2261         // format it is likely that the high bits are going to be zero.
2262         // So, we only write the number of active words.
2263         unsigned NWords = IV->getValue().getActiveWords();
2264         const uint64_t *RawWords = IV->getValue().getRawData();
2265         for (unsigned i = 0; i != NWords; ++i) {
2266           emitSignedInt64(Record, RawWords[i]);
2267         }
2268         Code = bitc::CST_CODE_WIDE_INTEGER;
2269       }
2270     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2271       Code = bitc::CST_CODE_FLOAT;
2272       Type *Ty = CFP->getType();
2273       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2274         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2275       } else if (Ty->isX86_FP80Ty()) {
2276         // api needed to prevent premature destruction
2277         // bits are not in the same order as a normal i80 APInt, compensate.
2278         APInt api = CFP->getValueAPF().bitcastToAPInt();
2279         const uint64_t *p = api.getRawData();
2280         Record.push_back((p[1] << 48) | (p[0] >> 16));
2281         Record.push_back(p[0] & 0xffffLL);
2282       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2283         APInt api = CFP->getValueAPF().bitcastToAPInt();
2284         const uint64_t *p = api.getRawData();
2285         Record.push_back(p[0]);
2286         Record.push_back(p[1]);
2287       } else {
2288         assert(0 && "Unknown FP type!");
2289       }
2290     } else if (isa<ConstantDataSequential>(C) &&
2291                cast<ConstantDataSequential>(C)->isString()) {
2292       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2293       // Emit constant strings specially.
2294       unsigned NumElts = Str->getNumElements();
2295       // If this is a null-terminated string, use the denser CSTRING encoding.
2296       if (Str->isCString()) {
2297         Code = bitc::CST_CODE_CSTRING;
2298         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2299       } else {
2300         Code = bitc::CST_CODE_STRING;
2301         AbbrevToUse = String8Abbrev;
2302       }
2303       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2304       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2305       for (unsigned i = 0; i != NumElts; ++i) {
2306         unsigned char V = Str->getElementAsInteger(i);
2307         Record.push_back(V);
2308         isCStr7 &= (V & 128) == 0;
2309         if (isCStrChar6)
2310           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2311       }
2312 
2313       if (isCStrChar6)
2314         AbbrevToUse = CString6Abbrev;
2315       else if (isCStr7)
2316         AbbrevToUse = CString7Abbrev;
2317     } else if (const ConstantDataSequential *CDS =
2318                   dyn_cast<ConstantDataSequential>(C)) {
2319       Code = bitc::CST_CODE_DATA;
2320       Type *EltTy = CDS->getType()->getElementType();
2321       if (isa<IntegerType>(EltTy)) {
2322         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2323           Record.push_back(CDS->getElementAsInteger(i));
2324       } else {
2325         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2326           Record.push_back(
2327               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2328       }
2329     } else if (isa<ConstantAggregate>(C)) {
2330       Code = bitc::CST_CODE_AGGREGATE;
2331       for (const Value *Op : C->operands())
2332         Record.push_back(VE.getValueID(Op));
2333       AbbrevToUse = AggregateAbbrev;
2334     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2335       switch (CE->getOpcode()) {
2336       default:
2337         if (Instruction::isCast(CE->getOpcode())) {
2338           Code = bitc::CST_CODE_CE_CAST;
2339           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2340           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2341           Record.push_back(VE.getValueID(C->getOperand(0)));
2342           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2343         } else {
2344           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2345           Code = bitc::CST_CODE_CE_BINOP;
2346           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2347           Record.push_back(VE.getValueID(C->getOperand(0)));
2348           Record.push_back(VE.getValueID(C->getOperand(1)));
2349           uint64_t Flags = getOptimizationFlags(CE);
2350           if (Flags != 0)
2351             Record.push_back(Flags);
2352         }
2353         break;
2354       case Instruction::GetElementPtr: {
2355         Code = bitc::CST_CODE_CE_GEP;
2356         const auto *GO = cast<GEPOperator>(C);
2357         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2358         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2359           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2360           Record.push_back((*Idx << 1) | GO->isInBounds());
2361         } else if (GO->isInBounds())
2362           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2363         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2364           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2365           Record.push_back(VE.getValueID(C->getOperand(i)));
2366         }
2367         break;
2368       }
2369       case Instruction::Select:
2370         Code = bitc::CST_CODE_CE_SELECT;
2371         Record.push_back(VE.getValueID(C->getOperand(0)));
2372         Record.push_back(VE.getValueID(C->getOperand(1)));
2373         Record.push_back(VE.getValueID(C->getOperand(2)));
2374         break;
2375       case Instruction::ExtractElement:
2376         Code = bitc::CST_CODE_CE_EXTRACTELT;
2377         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2378         Record.push_back(VE.getValueID(C->getOperand(0)));
2379         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2380         Record.push_back(VE.getValueID(C->getOperand(1)));
2381         break;
2382       case Instruction::InsertElement:
2383         Code = bitc::CST_CODE_CE_INSERTELT;
2384         Record.push_back(VE.getValueID(C->getOperand(0)));
2385         Record.push_back(VE.getValueID(C->getOperand(1)));
2386         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2387         Record.push_back(VE.getValueID(C->getOperand(2)));
2388         break;
2389       case Instruction::ShuffleVector:
2390         // If the return type and argument types are the same, this is a
2391         // standard shufflevector instruction.  If the types are different,
2392         // then the shuffle is widening or truncating the input vectors, and
2393         // the argument type must also be encoded.
2394         if (C->getType() == C->getOperand(0)->getType()) {
2395           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2396         } else {
2397           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2398           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2399         }
2400         Record.push_back(VE.getValueID(C->getOperand(0)));
2401         Record.push_back(VE.getValueID(C->getOperand(1)));
2402         Record.push_back(VE.getValueID(C->getOperand(2)));
2403         break;
2404       case Instruction::ICmp:
2405       case Instruction::FCmp:
2406         Code = bitc::CST_CODE_CE_CMP;
2407         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2408         Record.push_back(VE.getValueID(C->getOperand(0)));
2409         Record.push_back(VE.getValueID(C->getOperand(1)));
2410         Record.push_back(CE->getPredicate());
2411         break;
2412       }
2413     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2414       Code = bitc::CST_CODE_BLOCKADDRESS;
2415       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2416       Record.push_back(VE.getValueID(BA->getFunction()));
2417       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2418     } else {
2419 #ifndef NDEBUG
2420       C->dump();
2421 #endif
2422       llvm_unreachable("Unknown constant!");
2423     }
2424     Stream.EmitRecord(Code, Record, AbbrevToUse);
2425     Record.clear();
2426   }
2427 
2428   Stream.ExitBlock();
2429 }
2430 
2431 void ModuleBitcodeWriter::writeModuleConstants() {
2432   const ValueEnumerator::ValueList &Vals = VE.getValues();
2433 
2434   // Find the first constant to emit, which is the first non-globalvalue value.
2435   // We know globalvalues have been emitted by WriteModuleInfo.
2436   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2437     if (!isa<GlobalValue>(Vals[i].first)) {
2438       writeConstants(i, Vals.size(), true);
2439       return;
2440     }
2441   }
2442 }
2443 
2444 /// pushValueAndType - The file has to encode both the value and type id for
2445 /// many values, because we need to know what type to create for forward
2446 /// references.  However, most operands are not forward references, so this type
2447 /// field is not needed.
2448 ///
2449 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2450 /// instruction ID, then it is a forward reference, and it also includes the
2451 /// type ID.  The value ID that is written is encoded relative to the InstID.
2452 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2453                                            SmallVectorImpl<unsigned> &Vals) {
2454   unsigned ValID = VE.getValueID(V);
2455   // Make encoding relative to the InstID.
2456   Vals.push_back(InstID - ValID);
2457   if (ValID >= InstID) {
2458     Vals.push_back(VE.getTypeID(V->getType()));
2459     return true;
2460   }
2461   return false;
2462 }
2463 
2464 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2465                                               unsigned InstID) {
2466   SmallVector<unsigned, 64> Record;
2467   LLVMContext &C = CS.getInstruction()->getContext();
2468 
2469   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2470     const auto &Bundle = CS.getOperandBundleAt(i);
2471     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2472 
2473     for (auto &Input : Bundle.Inputs)
2474       pushValueAndType(Input, InstID, Record);
2475 
2476     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2477     Record.clear();
2478   }
2479 }
2480 
2481 /// pushValue - Like pushValueAndType, but where the type of the value is
2482 /// omitted (perhaps it was already encoded in an earlier operand).
2483 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2484                                     SmallVectorImpl<unsigned> &Vals) {
2485   unsigned ValID = VE.getValueID(V);
2486   Vals.push_back(InstID - ValID);
2487 }
2488 
2489 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2490                                           SmallVectorImpl<uint64_t> &Vals) {
2491   unsigned ValID = VE.getValueID(V);
2492   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2493   emitSignedInt64(Vals, diff);
2494 }
2495 
2496 /// WriteInstruction - Emit an instruction to the specified stream.
2497 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2498                                            unsigned InstID,
2499                                            SmallVectorImpl<unsigned> &Vals) {
2500   unsigned Code = 0;
2501   unsigned AbbrevToUse = 0;
2502   VE.setInstructionID(&I);
2503   switch (I.getOpcode()) {
2504   default:
2505     if (Instruction::isCast(I.getOpcode())) {
2506       Code = bitc::FUNC_CODE_INST_CAST;
2507       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2508         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2509       Vals.push_back(VE.getTypeID(I.getType()));
2510       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2511     } else {
2512       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2513       Code = bitc::FUNC_CODE_INST_BINOP;
2514       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2515         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2516       pushValue(I.getOperand(1), InstID, Vals);
2517       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2518       uint64_t Flags = getOptimizationFlags(&I);
2519       if (Flags != 0) {
2520         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2521           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2522         Vals.push_back(Flags);
2523       }
2524     }
2525     break;
2526 
2527   case Instruction::GetElementPtr: {
2528     Code = bitc::FUNC_CODE_INST_GEP;
2529     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2530     auto &GEPInst = cast<GetElementPtrInst>(I);
2531     Vals.push_back(GEPInst.isInBounds());
2532     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2533     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2534       pushValueAndType(I.getOperand(i), InstID, Vals);
2535     break;
2536   }
2537   case Instruction::ExtractValue: {
2538     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2539     pushValueAndType(I.getOperand(0), InstID, Vals);
2540     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2541     Vals.append(EVI->idx_begin(), EVI->idx_end());
2542     break;
2543   }
2544   case Instruction::InsertValue: {
2545     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2546     pushValueAndType(I.getOperand(0), InstID, Vals);
2547     pushValueAndType(I.getOperand(1), InstID, Vals);
2548     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2549     Vals.append(IVI->idx_begin(), IVI->idx_end());
2550     break;
2551   }
2552   case Instruction::Select:
2553     Code = bitc::FUNC_CODE_INST_VSELECT;
2554     pushValueAndType(I.getOperand(1), InstID, Vals);
2555     pushValue(I.getOperand(2), InstID, Vals);
2556     pushValueAndType(I.getOperand(0), InstID, Vals);
2557     break;
2558   case Instruction::ExtractElement:
2559     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2560     pushValueAndType(I.getOperand(0), InstID, Vals);
2561     pushValueAndType(I.getOperand(1), InstID, Vals);
2562     break;
2563   case Instruction::InsertElement:
2564     Code = bitc::FUNC_CODE_INST_INSERTELT;
2565     pushValueAndType(I.getOperand(0), InstID, Vals);
2566     pushValue(I.getOperand(1), InstID, Vals);
2567     pushValueAndType(I.getOperand(2), InstID, Vals);
2568     break;
2569   case Instruction::ShuffleVector:
2570     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2571     pushValueAndType(I.getOperand(0), InstID, Vals);
2572     pushValue(I.getOperand(1), InstID, Vals);
2573     pushValue(I.getOperand(2), InstID, Vals);
2574     break;
2575   case Instruction::ICmp:
2576   case Instruction::FCmp: {
2577     // compare returning Int1Ty or vector of Int1Ty
2578     Code = bitc::FUNC_CODE_INST_CMP2;
2579     pushValueAndType(I.getOperand(0), InstID, Vals);
2580     pushValue(I.getOperand(1), InstID, Vals);
2581     Vals.push_back(cast<CmpInst>(I).getPredicate());
2582     uint64_t Flags = getOptimizationFlags(&I);
2583     if (Flags != 0)
2584       Vals.push_back(Flags);
2585     break;
2586   }
2587 
2588   case Instruction::Ret:
2589     {
2590       Code = bitc::FUNC_CODE_INST_RET;
2591       unsigned NumOperands = I.getNumOperands();
2592       if (NumOperands == 0)
2593         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2594       else if (NumOperands == 1) {
2595         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2596           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2597       } else {
2598         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2599           pushValueAndType(I.getOperand(i), InstID, Vals);
2600       }
2601     }
2602     break;
2603   case Instruction::Br:
2604     {
2605       Code = bitc::FUNC_CODE_INST_BR;
2606       const BranchInst &II = cast<BranchInst>(I);
2607       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2608       if (II.isConditional()) {
2609         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2610         pushValue(II.getCondition(), InstID, Vals);
2611       }
2612     }
2613     break;
2614   case Instruction::Switch:
2615     {
2616       Code = bitc::FUNC_CODE_INST_SWITCH;
2617       const SwitchInst &SI = cast<SwitchInst>(I);
2618       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2619       pushValue(SI.getCondition(), InstID, Vals);
2620       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2621       for (auto Case : SI.cases()) {
2622         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2623         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2624       }
2625     }
2626     break;
2627   case Instruction::IndirectBr:
2628     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2629     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2630     // Encode the address operand as relative, but not the basic blocks.
2631     pushValue(I.getOperand(0), InstID, Vals);
2632     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2633       Vals.push_back(VE.getValueID(I.getOperand(i)));
2634     break;
2635 
2636   case Instruction::Invoke: {
2637     const InvokeInst *II = cast<InvokeInst>(&I);
2638     const Value *Callee = II->getCalledValue();
2639     FunctionType *FTy = II->getFunctionType();
2640 
2641     if (II->hasOperandBundles())
2642       writeOperandBundles(II, InstID);
2643 
2644     Code = bitc::FUNC_CODE_INST_INVOKE;
2645 
2646     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2647     Vals.push_back(II->getCallingConv() | 1 << 13);
2648     Vals.push_back(VE.getValueID(II->getNormalDest()));
2649     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2650     Vals.push_back(VE.getTypeID(FTy));
2651     pushValueAndType(Callee, InstID, Vals);
2652 
2653     // Emit value #'s for the fixed parameters.
2654     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2655       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2656 
2657     // Emit type/value pairs for varargs params.
2658     if (FTy->isVarArg()) {
2659       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2660            i != e; ++i)
2661         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2662     }
2663     break;
2664   }
2665   case Instruction::Resume:
2666     Code = bitc::FUNC_CODE_INST_RESUME;
2667     pushValueAndType(I.getOperand(0), InstID, Vals);
2668     break;
2669   case Instruction::CleanupRet: {
2670     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2671     const auto &CRI = cast<CleanupReturnInst>(I);
2672     pushValue(CRI.getCleanupPad(), InstID, Vals);
2673     if (CRI.hasUnwindDest())
2674       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2675     break;
2676   }
2677   case Instruction::CatchRet: {
2678     Code = bitc::FUNC_CODE_INST_CATCHRET;
2679     const auto &CRI = cast<CatchReturnInst>(I);
2680     pushValue(CRI.getCatchPad(), InstID, Vals);
2681     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2682     break;
2683   }
2684   case Instruction::CleanupPad:
2685   case Instruction::CatchPad: {
2686     const auto &FuncletPad = cast<FuncletPadInst>(I);
2687     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2688                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2689     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2690 
2691     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2692     Vals.push_back(NumArgOperands);
2693     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2694       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2695     break;
2696   }
2697   case Instruction::CatchSwitch: {
2698     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2699     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2700 
2701     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2702 
2703     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2704     Vals.push_back(NumHandlers);
2705     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2706       Vals.push_back(VE.getValueID(CatchPadBB));
2707 
2708     if (CatchSwitch.hasUnwindDest())
2709       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2710     break;
2711   }
2712   case Instruction::Unreachable:
2713     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2714     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2715     break;
2716 
2717   case Instruction::PHI: {
2718     const PHINode &PN = cast<PHINode>(I);
2719     Code = bitc::FUNC_CODE_INST_PHI;
2720     // With the newer instruction encoding, forward references could give
2721     // negative valued IDs.  This is most common for PHIs, so we use
2722     // signed VBRs.
2723     SmallVector<uint64_t, 128> Vals64;
2724     Vals64.push_back(VE.getTypeID(PN.getType()));
2725     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2726       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2727       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2728     }
2729     // Emit a Vals64 vector and exit.
2730     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2731     Vals64.clear();
2732     return;
2733   }
2734 
2735   case Instruction::LandingPad: {
2736     const LandingPadInst &LP = cast<LandingPadInst>(I);
2737     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2738     Vals.push_back(VE.getTypeID(LP.getType()));
2739     Vals.push_back(LP.isCleanup());
2740     Vals.push_back(LP.getNumClauses());
2741     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2742       if (LP.isCatch(I))
2743         Vals.push_back(LandingPadInst::Catch);
2744       else
2745         Vals.push_back(LandingPadInst::Filter);
2746       pushValueAndType(LP.getClause(I), InstID, Vals);
2747     }
2748     break;
2749   }
2750 
2751   case Instruction::Alloca: {
2752     Code = bitc::FUNC_CODE_INST_ALLOCA;
2753     const AllocaInst &AI = cast<AllocaInst>(I);
2754     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2755     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2756     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2757     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2758     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2759            "not enough bits for maximum alignment");
2760     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2761     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2762     AlignRecord |= 1 << 6;
2763     AlignRecord |= AI.isSwiftError() << 7;
2764     Vals.push_back(AlignRecord);
2765     break;
2766   }
2767 
2768   case Instruction::Load:
2769     if (cast<LoadInst>(I).isAtomic()) {
2770       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2771       pushValueAndType(I.getOperand(0), InstID, Vals);
2772     } else {
2773       Code = bitc::FUNC_CODE_INST_LOAD;
2774       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2775         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2776     }
2777     Vals.push_back(VE.getTypeID(I.getType()));
2778     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2779     Vals.push_back(cast<LoadInst>(I).isVolatile());
2780     if (cast<LoadInst>(I).isAtomic()) {
2781       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2782       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2783     }
2784     break;
2785   case Instruction::Store:
2786     if (cast<StoreInst>(I).isAtomic())
2787       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2788     else
2789       Code = bitc::FUNC_CODE_INST_STORE;
2790     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2791     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2792     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2793     Vals.push_back(cast<StoreInst>(I).isVolatile());
2794     if (cast<StoreInst>(I).isAtomic()) {
2795       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2796       Vals.push_back(
2797           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2798     }
2799     break;
2800   case Instruction::AtomicCmpXchg:
2801     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2802     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2803     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2804     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2805     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2806     Vals.push_back(
2807         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2808     Vals.push_back(
2809         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2810     Vals.push_back(
2811         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2812     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2813     break;
2814   case Instruction::AtomicRMW:
2815     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2816     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2817     pushValue(I.getOperand(1), InstID, Vals);        // val.
2818     Vals.push_back(
2819         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2820     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2821     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2822     Vals.push_back(
2823         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2824     break;
2825   case Instruction::Fence:
2826     Code = bitc::FUNC_CODE_INST_FENCE;
2827     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2828     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2829     break;
2830   case Instruction::Call: {
2831     const CallInst &CI = cast<CallInst>(I);
2832     FunctionType *FTy = CI.getFunctionType();
2833 
2834     if (CI.hasOperandBundles())
2835       writeOperandBundles(&CI, InstID);
2836 
2837     Code = bitc::FUNC_CODE_INST_CALL;
2838 
2839     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2840 
2841     unsigned Flags = getOptimizationFlags(&I);
2842     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2843                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2844                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2845                    1 << bitc::CALL_EXPLICIT_TYPE |
2846                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2847                    unsigned(Flags != 0) << bitc::CALL_FMF);
2848     if (Flags != 0)
2849       Vals.push_back(Flags);
2850 
2851     Vals.push_back(VE.getTypeID(FTy));
2852     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2853 
2854     // Emit value #'s for the fixed parameters.
2855     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2856       // Check for labels (can happen with asm labels).
2857       if (FTy->getParamType(i)->isLabelTy())
2858         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2859       else
2860         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2861     }
2862 
2863     // Emit type/value pairs for varargs params.
2864     if (FTy->isVarArg()) {
2865       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2866            i != e; ++i)
2867         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2868     }
2869     break;
2870   }
2871   case Instruction::VAArg:
2872     Code = bitc::FUNC_CODE_INST_VAARG;
2873     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2874     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2875     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2876     break;
2877   }
2878 
2879   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2880   Vals.clear();
2881 }
2882 
2883 /// Write a GlobalValue VST to the module. The purpose of this data structure is
2884 /// to allow clients to efficiently find the function body.
2885 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
2886   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2887   // Get the offset of the VST we are writing, and backpatch it into
2888   // the VST forward declaration record.
2889   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2890   // The BitcodeStartBit was the stream offset of the identification block.
2891   VSTOffset -= bitcodeStartBit();
2892   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2893   // Note that we add 1 here because the offset is relative to one word
2894   // before the start of the identification block, which was historically
2895   // always the start of the regular bitcode header.
2896   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
2897 
2898   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2899 
2900   auto Abbv = std::make_shared<BitCodeAbbrev>();
2901   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2902   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2903   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2904   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2905 
2906   for (const Function &F : M) {
2907     uint64_t Record[2];
2908 
2909     if (F.isDeclaration())
2910       continue;
2911 
2912     Record[0] = VE.getValueID(&F);
2913 
2914     // Save the word offset of the function (from the start of the
2915     // actual bitcode written to the stream).
2916     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
2917     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2918     // Note that we add 1 here because the offset is relative to one word
2919     // before the start of the identification block, which was historically
2920     // always the start of the regular bitcode header.
2921     Record[1] = BitcodeIndex / 32 + 1;
2922 
2923     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
2924   }
2925 
2926   Stream.ExitBlock();
2927 }
2928 
2929 /// Emit names for arguments, instructions and basic blocks in a function.
2930 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
2931     const ValueSymbolTable &VST) {
2932   if (VST.empty())
2933     return;
2934 
2935   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2936 
2937   // FIXME: Set up the abbrev, we know how many values there are!
2938   // FIXME: We know if the type names can use 7-bit ascii.
2939   SmallVector<uint64_t, 64> NameVals;
2940 
2941   for (const ValueName &Name : VST) {
2942     // Figure out the encoding to use for the name.
2943     StringEncoding Bits = getStringEncoding(Name.getKey());
2944 
2945     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2946     NameVals.push_back(VE.getValueID(Name.getValue()));
2947 
2948     // VST_CODE_ENTRY:   [valueid, namechar x N]
2949     // VST_CODE_BBENTRY: [bbid, namechar x N]
2950     unsigned Code;
2951     if (isa<BasicBlock>(Name.getValue())) {
2952       Code = bitc::VST_CODE_BBENTRY;
2953       if (Bits == SE_Char6)
2954         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2955     } else {
2956       Code = bitc::VST_CODE_ENTRY;
2957       if (Bits == SE_Char6)
2958         AbbrevToUse = VST_ENTRY_6_ABBREV;
2959       else if (Bits == SE_Fixed7)
2960         AbbrevToUse = VST_ENTRY_7_ABBREV;
2961     }
2962 
2963     for (const auto P : Name.getKey())
2964       NameVals.push_back((unsigned char)P);
2965 
2966     // Emit the finished record.
2967     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2968     NameVals.clear();
2969   }
2970 
2971   Stream.ExitBlock();
2972 }
2973 
2974 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
2975   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2976   unsigned Code;
2977   if (isa<BasicBlock>(Order.V))
2978     Code = bitc::USELIST_CODE_BB;
2979   else
2980     Code = bitc::USELIST_CODE_DEFAULT;
2981 
2982   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2983   Record.push_back(VE.getValueID(Order.V));
2984   Stream.EmitRecord(Code, Record);
2985 }
2986 
2987 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
2988   assert(VE.shouldPreserveUseListOrder() &&
2989          "Expected to be preserving use-list order");
2990 
2991   auto hasMore = [&]() {
2992     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2993   };
2994   if (!hasMore())
2995     // Nothing to do.
2996     return;
2997 
2998   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2999   while (hasMore()) {
3000     writeUseList(std::move(VE.UseListOrders.back()));
3001     VE.UseListOrders.pop_back();
3002   }
3003   Stream.ExitBlock();
3004 }
3005 
3006 /// Emit a function body to the module stream.
3007 void ModuleBitcodeWriter::writeFunction(
3008     const Function &F,
3009     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3010   // Save the bitcode index of the start of this function block for recording
3011   // in the VST.
3012   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3013 
3014   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3015   VE.incorporateFunction(F);
3016 
3017   SmallVector<unsigned, 64> Vals;
3018 
3019   // Emit the number of basic blocks, so the reader can create them ahead of
3020   // time.
3021   Vals.push_back(VE.getBasicBlocks().size());
3022   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3023   Vals.clear();
3024 
3025   // If there are function-local constants, emit them now.
3026   unsigned CstStart, CstEnd;
3027   VE.getFunctionConstantRange(CstStart, CstEnd);
3028   writeConstants(CstStart, CstEnd, false);
3029 
3030   // If there is function-local metadata, emit it now.
3031   writeFunctionMetadata(F);
3032 
3033   // Keep a running idea of what the instruction ID is.
3034   unsigned InstID = CstEnd;
3035 
3036   bool NeedsMetadataAttachment = F.hasMetadata();
3037 
3038   DILocation *LastDL = nullptr;
3039   // Finally, emit all the instructions, in order.
3040   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3041     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3042          I != E; ++I) {
3043       writeInstruction(*I, InstID, Vals);
3044 
3045       if (!I->getType()->isVoidTy())
3046         ++InstID;
3047 
3048       // If the instruction has metadata, write a metadata attachment later.
3049       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3050 
3051       // If the instruction has a debug location, emit it.
3052       DILocation *DL = I->getDebugLoc();
3053       if (!DL)
3054         continue;
3055 
3056       if (DL == LastDL) {
3057         // Just repeat the same debug loc as last time.
3058         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3059         continue;
3060       }
3061 
3062       Vals.push_back(DL->getLine());
3063       Vals.push_back(DL->getColumn());
3064       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3065       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3066       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3067       Vals.clear();
3068 
3069       LastDL = DL;
3070     }
3071 
3072   // Emit names for all the instructions etc.
3073   if (auto *Symtab = F.getValueSymbolTable())
3074     writeFunctionLevelValueSymbolTable(*Symtab);
3075 
3076   if (NeedsMetadataAttachment)
3077     writeFunctionMetadataAttachment(F);
3078   if (VE.shouldPreserveUseListOrder())
3079     writeUseListBlock(&F);
3080   VE.purgeFunction();
3081   Stream.ExitBlock();
3082 }
3083 
3084 // Emit blockinfo, which defines the standard abbreviations etc.
3085 void ModuleBitcodeWriter::writeBlockInfo() {
3086   // We only want to emit block info records for blocks that have multiple
3087   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3088   // Other blocks can define their abbrevs inline.
3089   Stream.EnterBlockInfoBlock();
3090 
3091   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3092     auto Abbv = std::make_shared<BitCodeAbbrev>();
3093     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3094     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3095     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3096     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3097     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3098         VST_ENTRY_8_ABBREV)
3099       llvm_unreachable("Unexpected abbrev ordering!");
3100   }
3101 
3102   { // 7-bit fixed width VST_CODE_ENTRY strings.
3103     auto Abbv = std::make_shared<BitCodeAbbrev>();
3104     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3105     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3106     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3107     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3108     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3109         VST_ENTRY_7_ABBREV)
3110       llvm_unreachable("Unexpected abbrev ordering!");
3111   }
3112   { // 6-bit char6 VST_CODE_ENTRY strings.
3113     auto Abbv = std::make_shared<BitCodeAbbrev>();
3114     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3115     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3116     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3117     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3118     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3119         VST_ENTRY_6_ABBREV)
3120       llvm_unreachable("Unexpected abbrev ordering!");
3121   }
3122   { // 6-bit char6 VST_CODE_BBENTRY strings.
3123     auto Abbv = std::make_shared<BitCodeAbbrev>();
3124     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3125     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3126     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3127     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3128     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3129         VST_BBENTRY_6_ABBREV)
3130       llvm_unreachable("Unexpected abbrev ordering!");
3131   }
3132 
3133   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3134     auto Abbv = std::make_shared<BitCodeAbbrev>();
3135     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3136     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3137                               VE.computeBitsRequiredForTypeIndicies()));
3138     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3139         CONSTANTS_SETTYPE_ABBREV)
3140       llvm_unreachable("Unexpected abbrev ordering!");
3141   }
3142 
3143   { // INTEGER abbrev for CONSTANTS_BLOCK.
3144     auto Abbv = std::make_shared<BitCodeAbbrev>();
3145     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3146     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3147     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3148         CONSTANTS_INTEGER_ABBREV)
3149       llvm_unreachable("Unexpected abbrev ordering!");
3150   }
3151 
3152   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3153     auto Abbv = std::make_shared<BitCodeAbbrev>();
3154     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3155     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3156     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3157                               VE.computeBitsRequiredForTypeIndicies()));
3158     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3159 
3160     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3161         CONSTANTS_CE_CAST_Abbrev)
3162       llvm_unreachable("Unexpected abbrev ordering!");
3163   }
3164   { // NULL abbrev for CONSTANTS_BLOCK.
3165     auto Abbv = std::make_shared<BitCodeAbbrev>();
3166     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3167     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3168         CONSTANTS_NULL_Abbrev)
3169       llvm_unreachable("Unexpected abbrev ordering!");
3170   }
3171 
3172   // FIXME: This should only use space for first class types!
3173 
3174   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3175     auto Abbv = std::make_shared<BitCodeAbbrev>();
3176     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3177     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3178     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3179                               VE.computeBitsRequiredForTypeIndicies()));
3180     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3181     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3182     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3183         FUNCTION_INST_LOAD_ABBREV)
3184       llvm_unreachable("Unexpected abbrev ordering!");
3185   }
3186   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3187     auto Abbv = std::make_shared<BitCodeAbbrev>();
3188     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3189     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3190     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3191     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3192     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3193         FUNCTION_INST_BINOP_ABBREV)
3194       llvm_unreachable("Unexpected abbrev ordering!");
3195   }
3196   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3197     auto Abbv = std::make_shared<BitCodeAbbrev>();
3198     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3199     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3200     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3201     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3202     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3203     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3204         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3205       llvm_unreachable("Unexpected abbrev ordering!");
3206   }
3207   { // INST_CAST abbrev for FUNCTION_BLOCK.
3208     auto Abbv = std::make_shared<BitCodeAbbrev>();
3209     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3210     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3211     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3212                               VE.computeBitsRequiredForTypeIndicies()));
3213     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3214     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3215         FUNCTION_INST_CAST_ABBREV)
3216       llvm_unreachable("Unexpected abbrev ordering!");
3217   }
3218 
3219   { // INST_RET abbrev for FUNCTION_BLOCK.
3220     auto Abbv = std::make_shared<BitCodeAbbrev>();
3221     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3222     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3223         FUNCTION_INST_RET_VOID_ABBREV)
3224       llvm_unreachable("Unexpected abbrev ordering!");
3225   }
3226   { // INST_RET abbrev for FUNCTION_BLOCK.
3227     auto Abbv = std::make_shared<BitCodeAbbrev>();
3228     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3229     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3230     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3231         FUNCTION_INST_RET_VAL_ABBREV)
3232       llvm_unreachable("Unexpected abbrev ordering!");
3233   }
3234   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3235     auto Abbv = std::make_shared<BitCodeAbbrev>();
3236     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3237     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3238         FUNCTION_INST_UNREACHABLE_ABBREV)
3239       llvm_unreachable("Unexpected abbrev ordering!");
3240   }
3241   {
3242     auto Abbv = std::make_shared<BitCodeAbbrev>();
3243     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3244     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3245     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3246                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3247     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3248     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3249     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3250         FUNCTION_INST_GEP_ABBREV)
3251       llvm_unreachable("Unexpected abbrev ordering!");
3252   }
3253 
3254   Stream.ExitBlock();
3255 }
3256 
3257 /// Write the module path strings, currently only used when generating
3258 /// a combined index file.
3259 void IndexBitcodeWriter::writeModStrings() {
3260   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3261 
3262   // TODO: See which abbrev sizes we actually need to emit
3263 
3264   // 8-bit fixed-width MST_ENTRY strings.
3265   auto Abbv = std::make_shared<BitCodeAbbrev>();
3266   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3267   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3268   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3269   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3270   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3271 
3272   // 7-bit fixed width MST_ENTRY strings.
3273   Abbv = std::make_shared<BitCodeAbbrev>();
3274   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3275   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3276   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3277   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3278   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3279 
3280   // 6-bit char6 MST_ENTRY strings.
3281   Abbv = std::make_shared<BitCodeAbbrev>();
3282   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3283   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3284   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3285   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3286   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3287 
3288   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3289   Abbv = std::make_shared<BitCodeAbbrev>();
3290   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3291   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3292   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3293   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3294   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3295   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3296   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3297 
3298   SmallVector<unsigned, 64> Vals;
3299   forEachModule(
3300       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3301         StringRef Key = MPSE.getKey();
3302         const auto &Value = MPSE.getValue();
3303         StringEncoding Bits = getStringEncoding(Key);
3304         unsigned AbbrevToUse = Abbrev8Bit;
3305         if (Bits == SE_Char6)
3306           AbbrevToUse = Abbrev6Bit;
3307         else if (Bits == SE_Fixed7)
3308           AbbrevToUse = Abbrev7Bit;
3309 
3310         Vals.push_back(Value.first);
3311         Vals.append(Key.begin(), Key.end());
3312 
3313         // Emit the finished record.
3314         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3315 
3316         // Emit an optional hash for the module now
3317         const auto &Hash = Value.second;
3318         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3319           Vals.assign(Hash.begin(), Hash.end());
3320           // Emit the hash record.
3321           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3322         }
3323 
3324         Vals.clear();
3325       });
3326   Stream.ExitBlock();
3327 }
3328 
3329 /// Write the function type metadata related records that need to appear before
3330 /// a function summary entry (whether per-module or combined).
3331 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3332                                              FunctionSummary *FS) {
3333   if (!FS->type_tests().empty())
3334     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3335 
3336   SmallVector<uint64_t, 64> Record;
3337 
3338   auto WriteVFuncIdVec = [&](uint64_t Ty,
3339                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3340     if (VFs.empty())
3341       return;
3342     Record.clear();
3343     for (auto &VF : VFs) {
3344       Record.push_back(VF.GUID);
3345       Record.push_back(VF.Offset);
3346     }
3347     Stream.EmitRecord(Ty, Record);
3348   };
3349 
3350   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3351                   FS->type_test_assume_vcalls());
3352   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3353                   FS->type_checked_load_vcalls());
3354 
3355   auto WriteConstVCallVec = [&](uint64_t Ty,
3356                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3357     for (auto &VC : VCs) {
3358       Record.clear();
3359       Record.push_back(VC.VFunc.GUID);
3360       Record.push_back(VC.VFunc.Offset);
3361       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3362       Stream.EmitRecord(Ty, Record);
3363     }
3364   };
3365 
3366   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3367                      FS->type_test_assume_const_vcalls());
3368   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3369                      FS->type_checked_load_const_vcalls());
3370 }
3371 
3372 static void writeWholeProgramDevirtResolutionByArg(
3373     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3374     const WholeProgramDevirtResolution::ByArg &ByArg) {
3375   NameVals.push_back(args.size());
3376   NameVals.insert(NameVals.end(), args.begin(), args.end());
3377 
3378   NameVals.push_back(ByArg.TheKind);
3379   NameVals.push_back(ByArg.Info);
3380   NameVals.push_back(ByArg.Byte);
3381   NameVals.push_back(ByArg.Bit);
3382 }
3383 
3384 static void writeWholeProgramDevirtResolution(
3385     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3386     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3387   NameVals.push_back(Id);
3388 
3389   NameVals.push_back(Wpd.TheKind);
3390   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3391   NameVals.push_back(Wpd.SingleImplName.size());
3392 
3393   NameVals.push_back(Wpd.ResByArg.size());
3394   for (auto &A : Wpd.ResByArg)
3395     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3396 }
3397 
3398 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3399                                      StringTableBuilder &StrtabBuilder,
3400                                      const std::string &Id,
3401                                      const TypeIdSummary &Summary) {
3402   NameVals.push_back(StrtabBuilder.add(Id));
3403   NameVals.push_back(Id.size());
3404 
3405   NameVals.push_back(Summary.TTRes.TheKind);
3406   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3407   NameVals.push_back(Summary.TTRes.AlignLog2);
3408   NameVals.push_back(Summary.TTRes.SizeM1);
3409   NameVals.push_back(Summary.TTRes.BitMask);
3410   NameVals.push_back(Summary.TTRes.InlineBits);
3411 
3412   for (auto &W : Summary.WPDRes)
3413     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3414                                       W.second);
3415 }
3416 
3417 // Helper to emit a single function summary record.
3418 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3419     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3420     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3421     const Function &F) {
3422   NameVals.push_back(ValueID);
3423 
3424   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3425   writeFunctionTypeMetadataRecords(Stream, FS);
3426 
3427   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3428   NameVals.push_back(FS->instCount());
3429   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3430   NameVals.push_back(FS->refs().size());
3431 
3432   for (auto &RI : FS->refs())
3433     NameVals.push_back(VE.getValueID(RI.getValue()));
3434 
3435   bool HasProfileData = F.hasProfileData();
3436   for (auto &ECI : FS->calls()) {
3437     NameVals.push_back(getValueId(ECI.first));
3438     if (HasProfileData)
3439       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3440     else if (WriteRelBFToSummary)
3441       NameVals.push_back(ECI.second.RelBlockFreq);
3442   }
3443 
3444   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3445   unsigned Code =
3446       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3447                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3448                                              : bitc::FS_PERMODULE));
3449 
3450   // Emit the finished record.
3451   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3452   NameVals.clear();
3453 }
3454 
3455 // Collect the global value references in the given variable's initializer,
3456 // and emit them in a summary record.
3457 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3458     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3459     unsigned FSModRefsAbbrev) {
3460   auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName()));
3461   if (!VI || VI.getSummaryList().empty()) {
3462     // Only declarations should not have a summary (a declaration might however
3463     // have a summary if the def was in module level asm).
3464     assert(V.isDeclaration());
3465     return;
3466   }
3467   auto *Summary = VI.getSummaryList()[0].get();
3468   NameVals.push_back(VE.getValueID(&V));
3469   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3470   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3471 
3472   unsigned SizeBeforeRefs = NameVals.size();
3473   for (auto &RI : VS->refs())
3474     NameVals.push_back(VE.getValueID(RI.getValue()));
3475   // Sort the refs for determinism output, the vector returned by FS->refs() has
3476   // been initialized from a DenseSet.
3477   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3478 
3479   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3480                     FSModRefsAbbrev);
3481   NameVals.clear();
3482 }
3483 
3484 // Current version for the summary.
3485 // This is bumped whenever we introduce changes in the way some record are
3486 // interpreted, like flags for instance.
3487 static const uint64_t INDEX_VERSION = 4;
3488 
3489 /// Emit the per-module summary section alongside the rest of
3490 /// the module's bitcode.
3491 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3492   // By default we compile with ThinLTO if the module has a summary, but the
3493   // client can request full LTO with a module flag.
3494   bool IsThinLTO = true;
3495   if (auto *MD =
3496           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3497     IsThinLTO = MD->getZExtValue();
3498   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3499                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3500                        4);
3501 
3502   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3503 
3504   if (Index->begin() == Index->end()) {
3505     Stream.ExitBlock();
3506     return;
3507   }
3508 
3509   for (const auto &GVI : valueIds()) {
3510     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3511                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3512   }
3513 
3514   // Abbrev for FS_PERMODULE_PROFILE.
3515   auto Abbv = std::make_shared<BitCodeAbbrev>();
3516   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3517   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3518   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3519   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3520   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3521   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3522   // numrefs x valueid, n x (valueid, hotness)
3523   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3524   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3525   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3526 
3527   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3528   Abbv = std::make_shared<BitCodeAbbrev>();
3529   if (WriteRelBFToSummary)
3530     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3531   else
3532     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3533   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3534   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3535   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3536   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3537   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3538   // numrefs x valueid, n x (valueid [, rel_block_freq])
3539   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3540   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3541   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3542 
3543   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3544   Abbv = std::make_shared<BitCodeAbbrev>();
3545   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3546   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3547   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3548   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3549   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3550   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3551 
3552   // Abbrev for FS_ALIAS.
3553   Abbv = std::make_shared<BitCodeAbbrev>();
3554   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3555   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3556   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3557   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3558   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3559 
3560   SmallVector<uint64_t, 64> NameVals;
3561   // Iterate over the list of functions instead of the Index to
3562   // ensure the ordering is stable.
3563   for (const Function &F : M) {
3564     // Summary emission does not support anonymous functions, they have to
3565     // renamed using the anonymous function renaming pass.
3566     if (!F.hasName())
3567       report_fatal_error("Unexpected anonymous function when writing summary");
3568 
3569     ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName()));
3570     if (!VI || VI.getSummaryList().empty()) {
3571       // Only declarations should not have a summary (a declaration might
3572       // however have a summary if the def was in module level asm).
3573       assert(F.isDeclaration());
3574       continue;
3575     }
3576     auto *Summary = VI.getSummaryList()[0].get();
3577     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3578                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3579   }
3580 
3581   // Capture references from GlobalVariable initializers, which are outside
3582   // of a function scope.
3583   for (const GlobalVariable &G : M.globals())
3584     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3585 
3586   for (const GlobalAlias &A : M.aliases()) {
3587     auto *Aliasee = A.getBaseObject();
3588     if (!Aliasee->hasName())
3589       // Nameless function don't have an entry in the summary, skip it.
3590       continue;
3591     auto AliasId = VE.getValueID(&A);
3592     auto AliaseeId = VE.getValueID(Aliasee);
3593     NameVals.push_back(AliasId);
3594     auto *Summary = Index->getGlobalValueSummary(A);
3595     AliasSummary *AS = cast<AliasSummary>(Summary);
3596     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3597     NameVals.push_back(AliaseeId);
3598     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3599     NameVals.clear();
3600   }
3601 
3602   Stream.ExitBlock();
3603 }
3604 
3605 /// Emit the combined summary section into the combined index file.
3606 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3607   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3608   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3609 
3610   // Write the index flags.
3611   uint64_t Flags = 0;
3612   if (Index.withGlobalValueDeadStripping())
3613     Flags |= 0x1;
3614   if (Index.skipModuleByDistributedBackend())
3615     Flags |= 0x2;
3616   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3617 
3618   for (const auto &GVI : valueIds()) {
3619     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3620                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3621   }
3622 
3623   // Abbrev for FS_COMBINED.
3624   auto Abbv = std::make_shared<BitCodeAbbrev>();
3625   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3626   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3627   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3628   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3629   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3630   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3631   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3632   // numrefs x valueid, n x (valueid)
3633   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3634   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3635   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3636 
3637   // Abbrev for FS_COMBINED_PROFILE.
3638   Abbv = std::make_shared<BitCodeAbbrev>();
3639   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3640   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3641   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3642   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3643   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3644   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3645   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3646   // numrefs x valueid, n x (valueid, hotness)
3647   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3648   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3649   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3650 
3651   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3652   Abbv = std::make_shared<BitCodeAbbrev>();
3653   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3654   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3655   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3656   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3657   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3658   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3659   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3660 
3661   // Abbrev for FS_COMBINED_ALIAS.
3662   Abbv = std::make_shared<BitCodeAbbrev>();
3663   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3664   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3665   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3666   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3667   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3668   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3669 
3670   // The aliases are emitted as a post-pass, and will point to the value
3671   // id of the aliasee. Save them in a vector for post-processing.
3672   SmallVector<AliasSummary *, 64> Aliases;
3673 
3674   // Save the value id for each summary for alias emission.
3675   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3676 
3677   SmallVector<uint64_t, 64> NameVals;
3678 
3679   // For local linkage, we also emit the original name separately
3680   // immediately after the record.
3681   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3682     if (!GlobalValue::isLocalLinkage(S.linkage()))
3683       return;
3684     NameVals.push_back(S.getOriginalName());
3685     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3686     NameVals.clear();
3687   };
3688 
3689   forEachSummary([&](GVInfo I, bool IsAliasee) {
3690     GlobalValueSummary *S = I.second;
3691     assert(S);
3692 
3693     auto ValueId = getValueId(I.first);
3694     assert(ValueId);
3695     SummaryToValueIdMap[S] = *ValueId;
3696 
3697     // If this is invoked for an aliasee, we want to record the above
3698     // mapping, but then not emit a summary entry (if the aliasee is
3699     // to be imported, we will invoke this separately with IsAliasee=false).
3700     if (IsAliasee)
3701       return;
3702 
3703     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3704       // Will process aliases as a post-pass because the reader wants all
3705       // global to be loaded first.
3706       Aliases.push_back(AS);
3707       return;
3708     }
3709 
3710     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3711       NameVals.push_back(*ValueId);
3712       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3713       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3714       for (auto &RI : VS->refs()) {
3715         auto RefValueId = getValueId(RI.getGUID());
3716         if (!RefValueId)
3717           continue;
3718         NameVals.push_back(*RefValueId);
3719       }
3720 
3721       // Emit the finished record.
3722       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3723                         FSModRefsAbbrev);
3724       NameVals.clear();
3725       MaybeEmitOriginalName(*S);
3726       return;
3727     }
3728 
3729     auto *FS = cast<FunctionSummary>(S);
3730     writeFunctionTypeMetadataRecords(Stream, FS);
3731 
3732     NameVals.push_back(*ValueId);
3733     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3734     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3735     NameVals.push_back(FS->instCount());
3736     NameVals.push_back(getEncodedFFlags(FS->fflags()));
3737     // Fill in below
3738     NameVals.push_back(0);
3739 
3740     unsigned Count = 0;
3741     for (auto &RI : FS->refs()) {
3742       auto RefValueId = getValueId(RI.getGUID());
3743       if (!RefValueId)
3744         continue;
3745       NameVals.push_back(*RefValueId);
3746       Count++;
3747     }
3748     NameVals[5] = Count;
3749 
3750     bool HasProfileData = false;
3751     for (auto &EI : FS->calls()) {
3752       HasProfileData |=
3753           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
3754       if (HasProfileData)
3755         break;
3756     }
3757 
3758     for (auto &EI : FS->calls()) {
3759       // If this GUID doesn't have a value id, it doesn't have a function
3760       // summary and we don't need to record any calls to it.
3761       GlobalValue::GUID GUID = EI.first.getGUID();
3762       auto CallValueId = getValueId(GUID);
3763       if (!CallValueId) {
3764         // For SamplePGO, the indirect call targets for local functions will
3765         // have its original name annotated in profile. We try to find the
3766         // corresponding PGOFuncName as the GUID.
3767         GUID = Index.getGUIDFromOriginalID(GUID);
3768         if (GUID == 0)
3769           continue;
3770         CallValueId = getValueId(GUID);
3771         if (!CallValueId)
3772           continue;
3773         // The mapping from OriginalId to GUID may return a GUID
3774         // that corresponds to a static variable. Filter it out here.
3775         // This can happen when
3776         // 1) There is a call to a library function which does not have
3777         // a CallValidId;
3778         // 2) There is a static variable with the  OriginalGUID identical
3779         // to the GUID of the library function in 1);
3780         // When this happens, the logic for SamplePGO kicks in and
3781         // the static variable in 2) will be found, which needs to be
3782         // filtered out.
3783         auto *GVSum = Index.getGlobalValueSummary(GUID, false);
3784         if (GVSum &&
3785             GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
3786           continue;
3787       }
3788       NameVals.push_back(*CallValueId);
3789       if (HasProfileData)
3790         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3791     }
3792 
3793     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3794     unsigned Code =
3795         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3796 
3797     // Emit the finished record.
3798     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3799     NameVals.clear();
3800     MaybeEmitOriginalName(*S);
3801   });
3802 
3803   for (auto *AS : Aliases) {
3804     auto AliasValueId = SummaryToValueIdMap[AS];
3805     assert(AliasValueId);
3806     NameVals.push_back(AliasValueId);
3807     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3808     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3809     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3810     assert(AliaseeValueId);
3811     NameVals.push_back(AliaseeValueId);
3812 
3813     // Emit the finished record.
3814     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3815     NameVals.clear();
3816     MaybeEmitOriginalName(*AS);
3817   }
3818 
3819   if (!Index.cfiFunctionDefs().empty()) {
3820     for (auto &S : Index.cfiFunctionDefs()) {
3821       NameVals.push_back(StrtabBuilder.add(S));
3822       NameVals.push_back(S.size());
3823     }
3824     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
3825     NameVals.clear();
3826   }
3827 
3828   if (!Index.cfiFunctionDecls().empty()) {
3829     for (auto &S : Index.cfiFunctionDecls()) {
3830       NameVals.push_back(StrtabBuilder.add(S));
3831       NameVals.push_back(S.size());
3832     }
3833     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
3834     NameVals.clear();
3835   }
3836 
3837   if (!Index.typeIds().empty()) {
3838     for (auto &S : Index.typeIds()) {
3839       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, S.first, S.second);
3840       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
3841       NameVals.clear();
3842     }
3843   }
3844 
3845   Stream.ExitBlock();
3846 }
3847 
3848 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
3849 /// current llvm version, and a record for the epoch number.
3850 static void writeIdentificationBlock(BitstreamWriter &Stream) {
3851   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3852 
3853   // Write the "user readable" string identifying the bitcode producer
3854   auto Abbv = std::make_shared<BitCodeAbbrev>();
3855   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3856   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3857   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3858   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3859   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
3860                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3861 
3862   // Write the epoch version
3863   Abbv = std::make_shared<BitCodeAbbrev>();
3864   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3865   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3866   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3867   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3868   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3869   Stream.ExitBlock();
3870 }
3871 
3872 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3873   // Emit the module's hash.
3874   // MODULE_CODE_HASH: [5*i32]
3875   if (GenerateHash) {
3876     uint32_t Vals[5];
3877     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3878                                     Buffer.size() - BlockStartPos));
3879     StringRef Hash = Hasher.result();
3880     for (int Pos = 0; Pos < 20; Pos += 4) {
3881       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
3882     }
3883 
3884     // Emit the finished record.
3885     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3886 
3887     if (ModHash)
3888       // Save the written hash value.
3889       std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash));
3890   }
3891 }
3892 
3893 void ModuleBitcodeWriter::write() {
3894   writeIdentificationBlock(Stream);
3895 
3896   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3897   size_t BlockStartPos = Buffer.size();
3898 
3899   writeModuleVersion();
3900 
3901   // Emit blockinfo, which defines the standard abbreviations etc.
3902   writeBlockInfo();
3903 
3904   // Emit information about attribute groups.
3905   writeAttributeGroupTable();
3906 
3907   // Emit information about parameter attributes.
3908   writeAttributeTable();
3909 
3910   // Emit information describing all of the types in the module.
3911   writeTypeTable();
3912 
3913   writeComdats();
3914 
3915   // Emit top-level description of module, including target triple, inline asm,
3916   // descriptors for global variables, and function prototype info.
3917   writeModuleInfo();
3918 
3919   // Emit constants.
3920   writeModuleConstants();
3921 
3922   // Emit metadata kind names.
3923   writeModuleMetadataKinds();
3924 
3925   // Emit metadata.
3926   writeModuleMetadata();
3927 
3928   // Emit module-level use-lists.
3929   if (VE.shouldPreserveUseListOrder())
3930     writeUseListBlock(nullptr);
3931 
3932   writeOperandBundleTags();
3933   writeSyncScopeNames();
3934 
3935   // Emit function bodies.
3936   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
3937   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
3938     if (!F->isDeclaration())
3939       writeFunction(*F, FunctionToBitcodeIndex);
3940 
3941   // Need to write after the above call to WriteFunction which populates
3942   // the summary information in the index.
3943   if (Index)
3944     writePerModuleGlobalValueSummary();
3945 
3946   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
3947 
3948   writeModuleHash(BlockStartPos);
3949 
3950   Stream.ExitBlock();
3951 }
3952 
3953 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3954                                uint32_t &Position) {
3955   support::endian::write32le(&Buffer[Position], Value);
3956   Position += 4;
3957 }
3958 
3959 /// If generating a bc file on darwin, we have to emit a
3960 /// header and trailer to make it compatible with the system archiver.  To do
3961 /// this we emit the following header, and then emit a trailer that pads the
3962 /// file out to be a multiple of 16 bytes.
3963 ///
3964 /// struct bc_header {
3965 ///   uint32_t Magic;         // 0x0B17C0DE
3966 ///   uint32_t Version;       // Version, currently always 0.
3967 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3968 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
3969 ///   uint32_t CPUType;       // CPU specifier.
3970 ///   ... potentially more later ...
3971 /// };
3972 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3973                                          const Triple &TT) {
3974   unsigned CPUType = ~0U;
3975 
3976   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3977   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3978   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
3979   // specific constants here because they are implicitly part of the Darwin ABI.
3980   enum {
3981     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
3982     DARWIN_CPU_TYPE_X86        = 7,
3983     DARWIN_CPU_TYPE_ARM        = 12,
3984     DARWIN_CPU_TYPE_POWERPC    = 18
3985   };
3986 
3987   Triple::ArchType Arch = TT.getArch();
3988   if (Arch == Triple::x86_64)
3989     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
3990   else if (Arch == Triple::x86)
3991     CPUType = DARWIN_CPU_TYPE_X86;
3992   else if (Arch == Triple::ppc)
3993     CPUType = DARWIN_CPU_TYPE_POWERPC;
3994   else if (Arch == Triple::ppc64)
3995     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
3996   else if (Arch == Triple::arm || Arch == Triple::thumb)
3997     CPUType = DARWIN_CPU_TYPE_ARM;
3998 
3999   // Traditional Bitcode starts after header.
4000   assert(Buffer.size() >= BWH_HeaderSize &&
4001          "Expected header size to be reserved");
4002   unsigned BCOffset = BWH_HeaderSize;
4003   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4004 
4005   // Write the magic and version.
4006   unsigned Position = 0;
4007   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4008   writeInt32ToBuffer(0, Buffer, Position); // Version.
4009   writeInt32ToBuffer(BCOffset, Buffer, Position);
4010   writeInt32ToBuffer(BCSize, Buffer, Position);
4011   writeInt32ToBuffer(CPUType, Buffer, Position);
4012 
4013   // If the file is not a multiple of 16 bytes, insert dummy padding.
4014   while (Buffer.size() & 15)
4015     Buffer.push_back(0);
4016 }
4017 
4018 /// Helper to write the header common to all bitcode files.
4019 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4020   // Emit the file header.
4021   Stream.Emit((unsigned)'B', 8);
4022   Stream.Emit((unsigned)'C', 8);
4023   Stream.Emit(0x0, 4);
4024   Stream.Emit(0xC, 4);
4025   Stream.Emit(0xE, 4);
4026   Stream.Emit(0xD, 4);
4027 }
4028 
4029 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4030     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4031   writeBitcodeHeader(*Stream);
4032 }
4033 
4034 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4035 
4036 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4037   Stream->EnterSubblock(Block, 3);
4038 
4039   auto Abbv = std::make_shared<BitCodeAbbrev>();
4040   Abbv->Add(BitCodeAbbrevOp(Record));
4041   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4042   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4043 
4044   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4045 
4046   Stream->ExitBlock();
4047 }
4048 
4049 void BitcodeWriter::writeSymtab() {
4050   assert(!WroteStrtab && !WroteSymtab);
4051 
4052   // If any module has module-level inline asm, we will require a registered asm
4053   // parser for the target so that we can create an accurate symbol table for
4054   // the module.
4055   for (Module *M : Mods) {
4056     if (M->getModuleInlineAsm().empty())
4057       continue;
4058 
4059     std::string Err;
4060     const Triple TT(M->getTargetTriple());
4061     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4062     if (!T || !T->hasMCAsmParser())
4063       return;
4064   }
4065 
4066   WroteSymtab = true;
4067   SmallVector<char, 0> Symtab;
4068   // The irsymtab::build function may be unable to create a symbol table if the
4069   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4070   // table is not required for correctness, but we still want to be able to
4071   // write malformed modules to bitcode files, so swallow the error.
4072   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4073     consumeError(std::move(E));
4074     return;
4075   }
4076 
4077   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4078             {Symtab.data(), Symtab.size()});
4079 }
4080 
4081 void BitcodeWriter::writeStrtab() {
4082   assert(!WroteStrtab);
4083 
4084   std::vector<char> Strtab;
4085   StrtabBuilder.finalizeInOrder();
4086   Strtab.resize(StrtabBuilder.getSize());
4087   StrtabBuilder.write((uint8_t *)Strtab.data());
4088 
4089   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4090             {Strtab.data(), Strtab.size()});
4091 
4092   WroteStrtab = true;
4093 }
4094 
4095 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4096   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4097   WroteStrtab = true;
4098 }
4099 
4100 void BitcodeWriter::writeModule(const Module &M,
4101                                 bool ShouldPreserveUseListOrder,
4102                                 const ModuleSummaryIndex *Index,
4103                                 bool GenerateHash, ModuleHash *ModHash) {
4104   assert(!WroteStrtab);
4105 
4106   // The Mods vector is used by irsymtab::build, which requires non-const
4107   // Modules in case it needs to materialize metadata. But the bitcode writer
4108   // requires that the module is materialized, so we can cast to non-const here,
4109   // after checking that it is in fact materialized.
4110   assert(M.isMaterialized());
4111   Mods.push_back(const_cast<Module *>(&M));
4112 
4113   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4114                                    ShouldPreserveUseListOrder, Index,
4115                                    GenerateHash, ModHash);
4116   ModuleWriter.write();
4117 }
4118 
4119 void BitcodeWriter::writeIndex(
4120     const ModuleSummaryIndex *Index,
4121     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4122   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4123                                  ModuleToSummariesForIndex);
4124   IndexWriter.write();
4125 }
4126 
4127 /// Write the specified module to the specified output stream.
4128 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4129                               bool ShouldPreserveUseListOrder,
4130                               const ModuleSummaryIndex *Index,
4131                               bool GenerateHash, ModuleHash *ModHash) {
4132   SmallVector<char, 0> Buffer;
4133   Buffer.reserve(256*1024);
4134 
4135   // If this is darwin or another generic macho target, reserve space for the
4136   // header.
4137   Triple TT(M.getTargetTriple());
4138   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4139     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4140 
4141   BitcodeWriter Writer(Buffer);
4142   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4143                      ModHash);
4144   Writer.writeSymtab();
4145   Writer.writeStrtab();
4146 
4147   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4148     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4149 
4150   // Write the generated bitstream to "Out".
4151   Out.write((char*)&Buffer.front(), Buffer.size());
4152 }
4153 
4154 void IndexBitcodeWriter::write() {
4155   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4156 
4157   writeModuleVersion();
4158 
4159   // Write the module paths in the combined index.
4160   writeModStrings();
4161 
4162   // Write the summary combined index records.
4163   writeCombinedGlobalValueSummary();
4164 
4165   Stream.ExitBlock();
4166 }
4167 
4168 // Write the specified module summary index to the given raw output stream,
4169 // where it will be written in a new bitcode block. This is used when
4170 // writing the combined index file for ThinLTO. When writing a subset of the
4171 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4172 void llvm::WriteIndexToFile(
4173     const ModuleSummaryIndex &Index, raw_ostream &Out,
4174     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4175   SmallVector<char, 0> Buffer;
4176   Buffer.reserve(256 * 1024);
4177 
4178   BitcodeWriter Writer(Buffer);
4179   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4180   Writer.writeStrtab();
4181 
4182   Out.write((char *)&Buffer.front(), Buffer.size());
4183 }
4184 
4185 namespace {
4186 
4187 /// Class to manage the bitcode writing for a thin link bitcode file.
4188 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4189   /// ModHash is for use in ThinLTO incremental build, generated while writing
4190   /// the module bitcode file.
4191   const ModuleHash *ModHash;
4192 
4193 public:
4194   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4195                         BitstreamWriter &Stream,
4196                         const ModuleSummaryIndex &Index,
4197                         const ModuleHash &ModHash)
4198       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4199                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4200         ModHash(&ModHash) {}
4201 
4202   void write();
4203 
4204 private:
4205   void writeSimplifiedModuleInfo();
4206 };
4207 
4208 } // end anonymous namespace
4209 
4210 // This function writes a simpilified module info for thin link bitcode file.
4211 // It only contains the source file name along with the name(the offset and
4212 // size in strtab) and linkage for global values. For the global value info
4213 // entry, in order to keep linkage at offset 5, there are three zeros used
4214 // as padding.
4215 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4216   SmallVector<unsigned, 64> Vals;
4217   // Emit the module's source file name.
4218   {
4219     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4220     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4221     if (Bits == SE_Char6)
4222       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4223     else if (Bits == SE_Fixed7)
4224       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4225 
4226     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4227     auto Abbv = std::make_shared<BitCodeAbbrev>();
4228     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4229     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4230     Abbv->Add(AbbrevOpToUse);
4231     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4232 
4233     for (const auto P : M.getSourceFileName())
4234       Vals.push_back((unsigned char)P);
4235 
4236     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4237     Vals.clear();
4238   }
4239 
4240   // Emit the global variable information.
4241   for (const GlobalVariable &GV : M.globals()) {
4242     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4243     Vals.push_back(StrtabBuilder.add(GV.getName()));
4244     Vals.push_back(GV.getName().size());
4245     Vals.push_back(0);
4246     Vals.push_back(0);
4247     Vals.push_back(0);
4248     Vals.push_back(getEncodedLinkage(GV));
4249 
4250     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4251     Vals.clear();
4252   }
4253 
4254   // Emit the function proto information.
4255   for (const Function &F : M) {
4256     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4257     Vals.push_back(StrtabBuilder.add(F.getName()));
4258     Vals.push_back(F.getName().size());
4259     Vals.push_back(0);
4260     Vals.push_back(0);
4261     Vals.push_back(0);
4262     Vals.push_back(getEncodedLinkage(F));
4263 
4264     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4265     Vals.clear();
4266   }
4267 
4268   // Emit the alias information.
4269   for (const GlobalAlias &A : M.aliases()) {
4270     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4271     Vals.push_back(StrtabBuilder.add(A.getName()));
4272     Vals.push_back(A.getName().size());
4273     Vals.push_back(0);
4274     Vals.push_back(0);
4275     Vals.push_back(0);
4276     Vals.push_back(getEncodedLinkage(A));
4277 
4278     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4279     Vals.clear();
4280   }
4281 
4282   // Emit the ifunc information.
4283   for (const GlobalIFunc &I : M.ifuncs()) {
4284     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4285     Vals.push_back(StrtabBuilder.add(I.getName()));
4286     Vals.push_back(I.getName().size());
4287     Vals.push_back(0);
4288     Vals.push_back(0);
4289     Vals.push_back(0);
4290     Vals.push_back(getEncodedLinkage(I));
4291 
4292     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4293     Vals.clear();
4294   }
4295 }
4296 
4297 void ThinLinkBitcodeWriter::write() {
4298   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4299 
4300   writeModuleVersion();
4301 
4302   writeSimplifiedModuleInfo();
4303 
4304   writePerModuleGlobalValueSummary();
4305 
4306   // Write module hash.
4307   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4308 
4309   Stream.ExitBlock();
4310 }
4311 
4312 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4313                                          const ModuleSummaryIndex &Index,
4314                                          const ModuleHash &ModHash) {
4315   assert(!WroteStrtab);
4316 
4317   // The Mods vector is used by irsymtab::build, which requires non-const
4318   // Modules in case it needs to materialize metadata. But the bitcode writer
4319   // requires that the module is materialized, so we can cast to non-const here,
4320   // after checking that it is in fact materialized.
4321   assert(M.isMaterialized());
4322   Mods.push_back(const_cast<Module *>(&M));
4323 
4324   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4325                                        ModHash);
4326   ThinLinkWriter.write();
4327 }
4328 
4329 // Write the specified thin link bitcode file to the given raw output stream,
4330 // where it will be written in a new bitcode block. This is used when
4331 // writing the per-module index file for ThinLTO.
4332 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4333                                       const ModuleSummaryIndex &Index,
4334                                       const ModuleHash &ModHash) {
4335   SmallVector<char, 0> Buffer;
4336   Buffer.reserve(256 * 1024);
4337 
4338   BitcodeWriter Writer(Buffer);
4339   Writer.writeThinLinkBitcode(M, Index, ModHash);
4340   Writer.writeSymtab();
4341   Writer.writeStrtab();
4342 
4343   Out.write((char *)&Buffer.front(), Buffer.size());
4344 }
4345