1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/Bitcode/BitcodeCommon.h" 30 #include "llvm/Bitcode/BitcodeReader.h" 31 #include "llvm/Bitcode/LLVMBitCodes.h" 32 #include "llvm/Bitstream/BitCodes.h" 33 #include "llvm/Bitstream/BitstreamWriter.h" 34 #include "llvm/Config/llvm-config.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Comdat.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/UseListOrder.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/MC/StringTableBuilder.h" 63 #include "llvm/MC/TargetRegistry.h" 64 #include "llvm/Object/IRSymtab.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Endian.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/SHA1.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <memory> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 101 namespace { 102 103 /// These are manifest constants used by the bitcode writer. They do not need to 104 /// be kept in sync with the reader, but need to be consistent within this file. 105 enum { 106 // VALUE_SYMTAB_BLOCK abbrev id's. 107 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 VST_ENTRY_7_ABBREV, 109 VST_ENTRY_6_ABBREV, 110 VST_BBENTRY_6_ABBREV, 111 112 // CONSTANTS_BLOCK abbrev id's. 113 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 CONSTANTS_INTEGER_ABBREV, 115 CONSTANTS_CE_CAST_Abbrev, 116 CONSTANTS_NULL_Abbrev, 117 118 // FUNCTION_BLOCK abbrev id's. 119 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 120 FUNCTION_INST_UNOP_ABBREV, 121 FUNCTION_INST_UNOP_FLAGS_ABBREV, 122 FUNCTION_INST_BINOP_ABBREV, 123 FUNCTION_INST_BINOP_FLAGS_ABBREV, 124 FUNCTION_INST_CAST_ABBREV, 125 FUNCTION_INST_RET_VOID_ABBREV, 126 FUNCTION_INST_RET_VAL_ABBREV, 127 FUNCTION_INST_UNREACHABLE_ABBREV, 128 FUNCTION_INST_GEP_ABBREV, 129 }; 130 131 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 132 /// file type. 133 class BitcodeWriterBase { 134 protected: 135 /// The stream created and owned by the client. 136 BitstreamWriter &Stream; 137 138 StringTableBuilder &StrtabBuilder; 139 140 public: 141 /// Constructs a BitcodeWriterBase object that writes to the provided 142 /// \p Stream. 143 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 144 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 145 146 protected: 147 void writeModuleVersion(); 148 }; 149 150 void BitcodeWriterBase::writeModuleVersion() { 151 // VERSION: [version#] 152 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 153 } 154 155 /// Base class to manage the module bitcode writing, currently subclassed for 156 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 157 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 158 protected: 159 /// The Module to write to bitcode. 160 const Module &M; 161 162 /// Enumerates ids for all values in the module. 163 ValueEnumerator VE; 164 165 /// Optional per-module index to write for ThinLTO. 166 const ModuleSummaryIndex *Index; 167 168 /// Map that holds the correspondence between GUIDs in the summary index, 169 /// that came from indirect call profiles, and a value id generated by this 170 /// class to use in the VST and summary block records. 171 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 172 173 /// Tracks the last value id recorded in the GUIDToValueMap. 174 unsigned GlobalValueId; 175 176 /// Saves the offset of the VSTOffset record that must eventually be 177 /// backpatched with the offset of the actual VST. 178 uint64_t VSTOffsetPlaceholder = 0; 179 180 public: 181 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 182 /// writing to the provided \p Buffer. 183 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 184 BitstreamWriter &Stream, 185 bool ShouldPreserveUseListOrder, 186 const ModuleSummaryIndex *Index) 187 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 188 VE(M, ShouldPreserveUseListOrder), Index(Index) { 189 // Assign ValueIds to any callee values in the index that came from 190 // indirect call profiles and were recorded as a GUID not a Value* 191 // (which would have been assigned an ID by the ValueEnumerator). 192 // The starting ValueId is just after the number of values in the 193 // ValueEnumerator, so that they can be emitted in the VST. 194 GlobalValueId = VE.getValues().size(); 195 if (!Index) 196 return; 197 for (const auto &GUIDSummaryLists : *Index) 198 // Examine all summaries for this GUID. 199 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 200 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 201 // For each call in the function summary, see if the call 202 // is to a GUID (which means it is for an indirect call, 203 // otherwise we would have a Value for it). If so, synthesize 204 // a value id. 205 for (auto &CallEdge : FS->calls()) 206 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 207 assignValueId(CallEdge.first.getGUID()); 208 } 209 210 protected: 211 void writePerModuleGlobalValueSummary(); 212 213 private: 214 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 215 GlobalValueSummary *Summary, 216 unsigned ValueID, 217 unsigned FSCallsAbbrev, 218 unsigned FSCallsProfileAbbrev, 219 const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 344 SmallVectorImpl<uint64_t> &Record, 345 unsigned Abbrev); 346 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIGlobalVariable(const DIGlobalVariable *N, 350 SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDILocalVariable(const DILocalVariable *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDILabel(const DILabel *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIExpression(const DIExpression *N, 357 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 358 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 359 SmallVectorImpl<uint64_t> &Record, 360 unsigned Abbrev); 361 void writeDIObjCProperty(const DIObjCProperty *N, 362 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 363 void writeDIImportedEntity(const DIImportedEntity *N, 364 SmallVectorImpl<uint64_t> &Record, 365 unsigned Abbrev); 366 unsigned createNamedMetadataAbbrev(); 367 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 368 unsigned createMetadataStringsAbbrev(); 369 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 370 SmallVectorImpl<uint64_t> &Record); 371 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 372 SmallVectorImpl<uint64_t> &Record, 373 std::vector<unsigned> *MDAbbrevs = nullptr, 374 std::vector<uint64_t> *IndexPos = nullptr); 375 void writeModuleMetadata(); 376 void writeFunctionMetadata(const Function &F); 377 void writeFunctionMetadataAttachment(const Function &F); 378 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 379 const GlobalObject &GO); 380 void writeModuleMetadataKinds(); 381 void writeOperandBundleTags(); 382 void writeSyncScopeNames(); 383 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 384 void writeModuleConstants(); 385 bool pushValueAndType(const Value *V, unsigned InstID, 386 SmallVectorImpl<unsigned> &Vals); 387 void writeOperandBundles(const CallBase &CB, unsigned InstID); 388 void pushValue(const Value *V, unsigned InstID, 389 SmallVectorImpl<unsigned> &Vals); 390 void pushValueSigned(const Value *V, unsigned InstID, 391 SmallVectorImpl<uint64_t> &Vals); 392 void writeInstruction(const Instruction &I, unsigned InstID, 393 SmallVectorImpl<unsigned> &Vals); 394 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 395 void writeGlobalValueSymbolTable( 396 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 397 void writeUseList(UseListOrder &&Order); 398 void writeUseListBlock(const Function *F); 399 void 400 writeFunction(const Function &F, 401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 402 void writeBlockInfo(); 403 void writeModuleHash(size_t BlockStartPos); 404 405 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 406 return unsigned(SSID); 407 } 408 409 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 410 }; 411 412 /// Class to manage the bitcode writing for a combined index. 413 class IndexBitcodeWriter : public BitcodeWriterBase { 414 /// The combined index to write to bitcode. 415 const ModuleSummaryIndex &Index; 416 417 /// When writing a subset of the index for distributed backends, client 418 /// provides a map of modules to the corresponding GUIDs/summaries to write. 419 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 420 421 /// Map that holds the correspondence between the GUID used in the combined 422 /// index and a value id generated by this class to use in references. 423 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 424 425 /// Tracks the last value id recorded in the GUIDToValueMap. 426 unsigned GlobalValueId = 0; 427 428 public: 429 /// Constructs a IndexBitcodeWriter object for the given combined index, 430 /// writing to the provided \p Buffer. When writing a subset of the index 431 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 432 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 433 const ModuleSummaryIndex &Index, 434 const std::map<std::string, GVSummaryMapTy> 435 *ModuleToSummariesForIndex = nullptr) 436 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 437 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 438 // Assign unique value ids to all summaries to be written, for use 439 // in writing out the call graph edges. Save the mapping from GUID 440 // to the new global value id to use when writing those edges, which 441 // are currently saved in the index in terms of GUID. 442 forEachSummary([&](GVInfo I, bool) { 443 GUIDToValueIdMap[I.first] = ++GlobalValueId; 444 }); 445 } 446 447 /// The below iterator returns the GUID and associated summary. 448 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 449 450 /// Calls the callback for each value GUID and summary to be written to 451 /// bitcode. This hides the details of whether they are being pulled from the 452 /// entire index or just those in a provided ModuleToSummariesForIndex map. 453 template<typename Functor> 454 void forEachSummary(Functor Callback) { 455 if (ModuleToSummariesForIndex) { 456 for (auto &M : *ModuleToSummariesForIndex) 457 for (auto &Summary : M.second) { 458 Callback(Summary, false); 459 // Ensure aliasee is handled, e.g. for assigning a valueId, 460 // even if we are not importing the aliasee directly (the 461 // imported alias will contain a copy of aliasee). 462 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 463 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 464 } 465 } else { 466 for (auto &Summaries : Index) 467 for (auto &Summary : Summaries.second.SummaryList) 468 Callback({Summaries.first, Summary.get()}, false); 469 } 470 } 471 472 /// Calls the callback for each entry in the modulePaths StringMap that 473 /// should be written to the module path string table. This hides the details 474 /// of whether they are being pulled from the entire index or just those in a 475 /// provided ModuleToSummariesForIndex map. 476 template <typename Functor> void forEachModule(Functor Callback) { 477 if (ModuleToSummariesForIndex) { 478 for (const auto &M : *ModuleToSummariesForIndex) { 479 const auto &MPI = Index.modulePaths().find(M.first); 480 if (MPI == Index.modulePaths().end()) { 481 // This should only happen if the bitcode file was empty, in which 482 // case we shouldn't be importing (the ModuleToSummariesForIndex 483 // would only include the module we are writing and index for). 484 assert(ModuleToSummariesForIndex->size() == 1); 485 continue; 486 } 487 Callback(*MPI); 488 } 489 } else { 490 for (const auto &MPSE : Index.modulePaths()) 491 Callback(MPSE); 492 } 493 } 494 495 /// Main entry point for writing a combined index to bitcode. 496 void write(); 497 498 private: 499 void writeModStrings(); 500 void writeCombinedGlobalValueSummary(); 501 502 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 503 auto VMI = GUIDToValueIdMap.find(ValGUID); 504 if (VMI == GUIDToValueIdMap.end()) 505 return None; 506 return VMI->second; 507 } 508 509 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 510 }; 511 512 } // end anonymous namespace 513 514 static unsigned getEncodedCastOpcode(unsigned Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Unknown cast instruction!"); 517 case Instruction::Trunc : return bitc::CAST_TRUNC; 518 case Instruction::ZExt : return bitc::CAST_ZEXT; 519 case Instruction::SExt : return bitc::CAST_SEXT; 520 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 521 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 522 case Instruction::UIToFP : return bitc::CAST_UITOFP; 523 case Instruction::SIToFP : return bitc::CAST_SITOFP; 524 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 525 case Instruction::FPExt : return bitc::CAST_FPEXT; 526 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 527 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 528 case Instruction::BitCast : return bitc::CAST_BITCAST; 529 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 530 } 531 } 532 533 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 534 switch (Opcode) { 535 default: llvm_unreachable("Unknown binary instruction!"); 536 case Instruction::FNeg: return bitc::UNOP_FNEG; 537 } 538 } 539 540 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 541 switch (Opcode) { 542 default: llvm_unreachable("Unknown binary instruction!"); 543 case Instruction::Add: 544 case Instruction::FAdd: return bitc::BINOP_ADD; 545 case Instruction::Sub: 546 case Instruction::FSub: return bitc::BINOP_SUB; 547 case Instruction::Mul: 548 case Instruction::FMul: return bitc::BINOP_MUL; 549 case Instruction::UDiv: return bitc::BINOP_UDIV; 550 case Instruction::FDiv: 551 case Instruction::SDiv: return bitc::BINOP_SDIV; 552 case Instruction::URem: return bitc::BINOP_UREM; 553 case Instruction::FRem: 554 case Instruction::SRem: return bitc::BINOP_SREM; 555 case Instruction::Shl: return bitc::BINOP_SHL; 556 case Instruction::LShr: return bitc::BINOP_LSHR; 557 case Instruction::AShr: return bitc::BINOP_ASHR; 558 case Instruction::And: return bitc::BINOP_AND; 559 case Instruction::Or: return bitc::BINOP_OR; 560 case Instruction::Xor: return bitc::BINOP_XOR; 561 } 562 } 563 564 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 565 switch (Op) { 566 default: llvm_unreachable("Unknown RMW operation!"); 567 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 568 case AtomicRMWInst::Add: return bitc::RMW_ADD; 569 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 570 case AtomicRMWInst::And: return bitc::RMW_AND; 571 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 572 case AtomicRMWInst::Or: return bitc::RMW_OR; 573 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 574 case AtomicRMWInst::Max: return bitc::RMW_MAX; 575 case AtomicRMWInst::Min: return bitc::RMW_MIN; 576 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 577 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 578 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 579 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 580 } 581 } 582 583 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 584 switch (Ordering) { 585 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 586 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 587 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 588 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 589 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 590 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 591 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 592 } 593 llvm_unreachable("Invalid ordering"); 594 } 595 596 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 597 StringRef Str, unsigned AbbrevToUse) { 598 SmallVector<unsigned, 64> Vals; 599 600 // Code: [strchar x N] 601 for (char C : Str) { 602 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 603 AbbrevToUse = 0; 604 Vals.push_back(C); 605 } 606 607 // Emit the finished record. 608 Stream.EmitRecord(Code, Vals, AbbrevToUse); 609 } 610 611 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 612 switch (Kind) { 613 case Attribute::Alignment: 614 return bitc::ATTR_KIND_ALIGNMENT; 615 case Attribute::AllocAlign: 616 return bitc::ATTR_KIND_ALLOC_ALIGN; 617 case Attribute::AllocSize: 618 return bitc::ATTR_KIND_ALLOC_SIZE; 619 case Attribute::AlwaysInline: 620 return bitc::ATTR_KIND_ALWAYS_INLINE; 621 case Attribute::ArgMemOnly: 622 return bitc::ATTR_KIND_ARGMEMONLY; 623 case Attribute::Builtin: 624 return bitc::ATTR_KIND_BUILTIN; 625 case Attribute::ByVal: 626 return bitc::ATTR_KIND_BY_VAL; 627 case Attribute::Convergent: 628 return bitc::ATTR_KIND_CONVERGENT; 629 case Attribute::InAlloca: 630 return bitc::ATTR_KIND_IN_ALLOCA; 631 case Attribute::Cold: 632 return bitc::ATTR_KIND_COLD; 633 case Attribute::DisableSanitizerInstrumentation: 634 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 635 case Attribute::Hot: 636 return bitc::ATTR_KIND_HOT; 637 case Attribute::ElementType: 638 return bitc::ATTR_KIND_ELEMENTTYPE; 639 case Attribute::InaccessibleMemOnly: 640 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 641 case Attribute::InaccessibleMemOrArgMemOnly: 642 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 643 case Attribute::InlineHint: 644 return bitc::ATTR_KIND_INLINE_HINT; 645 case Attribute::InReg: 646 return bitc::ATTR_KIND_IN_REG; 647 case Attribute::JumpTable: 648 return bitc::ATTR_KIND_JUMP_TABLE; 649 case Attribute::MinSize: 650 return bitc::ATTR_KIND_MIN_SIZE; 651 case Attribute::AllocatedPointer: 652 return bitc::ATTR_KIND_ALLOCATED_POINTER; 653 case Attribute::AllocKind: 654 return bitc::ATTR_KIND_ALLOC_KIND; 655 case Attribute::Naked: 656 return bitc::ATTR_KIND_NAKED; 657 case Attribute::Nest: 658 return bitc::ATTR_KIND_NEST; 659 case Attribute::NoAlias: 660 return bitc::ATTR_KIND_NO_ALIAS; 661 case Attribute::NoBuiltin: 662 return bitc::ATTR_KIND_NO_BUILTIN; 663 case Attribute::NoCallback: 664 return bitc::ATTR_KIND_NO_CALLBACK; 665 case Attribute::NoCapture: 666 return bitc::ATTR_KIND_NO_CAPTURE; 667 case Attribute::NoDuplicate: 668 return bitc::ATTR_KIND_NO_DUPLICATE; 669 case Attribute::NoFree: 670 return bitc::ATTR_KIND_NOFREE; 671 case Attribute::NoImplicitFloat: 672 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 673 case Attribute::NoInline: 674 return bitc::ATTR_KIND_NO_INLINE; 675 case Attribute::NoRecurse: 676 return bitc::ATTR_KIND_NO_RECURSE; 677 case Attribute::NoMerge: 678 return bitc::ATTR_KIND_NO_MERGE; 679 case Attribute::NonLazyBind: 680 return bitc::ATTR_KIND_NON_LAZY_BIND; 681 case Attribute::NonNull: 682 return bitc::ATTR_KIND_NON_NULL; 683 case Attribute::Dereferenceable: 684 return bitc::ATTR_KIND_DEREFERENCEABLE; 685 case Attribute::DereferenceableOrNull: 686 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 687 case Attribute::NoRedZone: 688 return bitc::ATTR_KIND_NO_RED_ZONE; 689 case Attribute::NoReturn: 690 return bitc::ATTR_KIND_NO_RETURN; 691 case Attribute::NoSync: 692 return bitc::ATTR_KIND_NOSYNC; 693 case Attribute::NoCfCheck: 694 return bitc::ATTR_KIND_NOCF_CHECK; 695 case Attribute::NoProfile: 696 return bitc::ATTR_KIND_NO_PROFILE; 697 case Attribute::NoUnwind: 698 return bitc::ATTR_KIND_NO_UNWIND; 699 case Attribute::NoSanitizeBounds: 700 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 701 case Attribute::NoSanitizeCoverage: 702 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 703 case Attribute::NullPointerIsValid: 704 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 705 case Attribute::OptForFuzzing: 706 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 707 case Attribute::OptimizeForSize: 708 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 709 case Attribute::OptimizeNone: 710 return bitc::ATTR_KIND_OPTIMIZE_NONE; 711 case Attribute::ReadNone: 712 return bitc::ATTR_KIND_READ_NONE; 713 case Attribute::ReadOnly: 714 return bitc::ATTR_KIND_READ_ONLY; 715 case Attribute::Returned: 716 return bitc::ATTR_KIND_RETURNED; 717 case Attribute::ReturnsTwice: 718 return bitc::ATTR_KIND_RETURNS_TWICE; 719 case Attribute::SExt: 720 return bitc::ATTR_KIND_S_EXT; 721 case Attribute::Speculatable: 722 return bitc::ATTR_KIND_SPECULATABLE; 723 case Attribute::StackAlignment: 724 return bitc::ATTR_KIND_STACK_ALIGNMENT; 725 case Attribute::StackProtect: 726 return bitc::ATTR_KIND_STACK_PROTECT; 727 case Attribute::StackProtectReq: 728 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 729 case Attribute::StackProtectStrong: 730 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 731 case Attribute::SafeStack: 732 return bitc::ATTR_KIND_SAFESTACK; 733 case Attribute::ShadowCallStack: 734 return bitc::ATTR_KIND_SHADOWCALLSTACK; 735 case Attribute::StrictFP: 736 return bitc::ATTR_KIND_STRICT_FP; 737 case Attribute::StructRet: 738 return bitc::ATTR_KIND_STRUCT_RET; 739 case Attribute::SanitizeAddress: 740 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 741 case Attribute::SanitizeHWAddress: 742 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 743 case Attribute::SanitizeThread: 744 return bitc::ATTR_KIND_SANITIZE_THREAD; 745 case Attribute::SanitizeMemory: 746 return bitc::ATTR_KIND_SANITIZE_MEMORY; 747 case Attribute::SpeculativeLoadHardening: 748 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 749 case Attribute::SwiftError: 750 return bitc::ATTR_KIND_SWIFT_ERROR; 751 case Attribute::SwiftSelf: 752 return bitc::ATTR_KIND_SWIFT_SELF; 753 case Attribute::SwiftAsync: 754 return bitc::ATTR_KIND_SWIFT_ASYNC; 755 case Attribute::UWTable: 756 return bitc::ATTR_KIND_UW_TABLE; 757 case Attribute::VScaleRange: 758 return bitc::ATTR_KIND_VSCALE_RANGE; 759 case Attribute::WillReturn: 760 return bitc::ATTR_KIND_WILLRETURN; 761 case Attribute::WriteOnly: 762 return bitc::ATTR_KIND_WRITEONLY; 763 case Attribute::ZExt: 764 return bitc::ATTR_KIND_Z_EXT; 765 case Attribute::ImmArg: 766 return bitc::ATTR_KIND_IMMARG; 767 case Attribute::SanitizeMemTag: 768 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 769 case Attribute::Preallocated: 770 return bitc::ATTR_KIND_PREALLOCATED; 771 case Attribute::NoUndef: 772 return bitc::ATTR_KIND_NOUNDEF; 773 case Attribute::ByRef: 774 return bitc::ATTR_KIND_BYREF; 775 case Attribute::MustProgress: 776 return bitc::ATTR_KIND_MUSTPROGRESS; 777 case Attribute::PresplitCoroutine: 778 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 779 case Attribute::EndAttrKinds: 780 llvm_unreachable("Can not encode end-attribute kinds marker."); 781 case Attribute::None: 782 llvm_unreachable("Can not encode none-attribute."); 783 case Attribute::EmptyKey: 784 case Attribute::TombstoneKey: 785 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 786 } 787 788 llvm_unreachable("Trying to encode unknown attribute"); 789 } 790 791 void ModuleBitcodeWriter::writeAttributeGroupTable() { 792 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 793 VE.getAttributeGroups(); 794 if (AttrGrps.empty()) return; 795 796 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 797 798 SmallVector<uint64_t, 64> Record; 799 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 800 unsigned AttrListIndex = Pair.first; 801 AttributeSet AS = Pair.second; 802 Record.push_back(VE.getAttributeGroupID(Pair)); 803 Record.push_back(AttrListIndex); 804 805 for (Attribute Attr : AS) { 806 if (Attr.isEnumAttribute()) { 807 Record.push_back(0); 808 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 809 } else if (Attr.isIntAttribute()) { 810 Record.push_back(1); 811 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 812 Record.push_back(Attr.getValueAsInt()); 813 } else if (Attr.isStringAttribute()) { 814 StringRef Kind = Attr.getKindAsString(); 815 StringRef Val = Attr.getValueAsString(); 816 817 Record.push_back(Val.empty() ? 3 : 4); 818 Record.append(Kind.begin(), Kind.end()); 819 Record.push_back(0); 820 if (!Val.empty()) { 821 Record.append(Val.begin(), Val.end()); 822 Record.push_back(0); 823 } 824 } else { 825 assert(Attr.isTypeAttribute()); 826 Type *Ty = Attr.getValueAsType(); 827 Record.push_back(Ty ? 6 : 5); 828 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 829 if (Ty) 830 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 831 } 832 } 833 834 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 835 Record.clear(); 836 } 837 838 Stream.ExitBlock(); 839 } 840 841 void ModuleBitcodeWriter::writeAttributeTable() { 842 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 843 if (Attrs.empty()) return; 844 845 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 846 847 SmallVector<uint64_t, 64> Record; 848 for (const AttributeList &AL : Attrs) { 849 for (unsigned i : AL.indexes()) { 850 AttributeSet AS = AL.getAttributes(i); 851 if (AS.hasAttributes()) 852 Record.push_back(VE.getAttributeGroupID({i, AS})); 853 } 854 855 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 856 Record.clear(); 857 } 858 859 Stream.ExitBlock(); 860 } 861 862 /// WriteTypeTable - Write out the type table for a module. 863 void ModuleBitcodeWriter::writeTypeTable() { 864 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 865 866 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 867 SmallVector<uint64_t, 64> TypeVals; 868 869 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 870 871 // Abbrev for TYPE_CODE_POINTER. 872 auto Abbv = std::make_shared<BitCodeAbbrev>(); 873 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 875 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 876 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 877 878 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 879 Abbv = std::make_shared<BitCodeAbbrev>(); 880 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 881 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 882 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 883 884 // Abbrev for TYPE_CODE_FUNCTION. 885 Abbv = std::make_shared<BitCodeAbbrev>(); 886 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 890 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 891 892 // Abbrev for TYPE_CODE_STRUCT_ANON. 893 Abbv = std::make_shared<BitCodeAbbrev>(); 894 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 898 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 899 900 // Abbrev for TYPE_CODE_STRUCT_NAME. 901 Abbv = std::make_shared<BitCodeAbbrev>(); 902 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 905 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 906 907 // Abbrev for TYPE_CODE_STRUCT_NAMED. 908 Abbv = std::make_shared<BitCodeAbbrev>(); 909 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 913 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 914 915 // Abbrev for TYPE_CODE_ARRAY. 916 Abbv = std::make_shared<BitCodeAbbrev>(); 917 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 920 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 921 922 // Emit an entry count so the reader can reserve space. 923 TypeVals.push_back(TypeList.size()); 924 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 925 TypeVals.clear(); 926 927 // Loop over all of the types, emitting each in turn. 928 for (Type *T : TypeList) { 929 int AbbrevToUse = 0; 930 unsigned Code = 0; 931 932 switch (T->getTypeID()) { 933 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 934 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 935 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 936 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 937 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 938 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 939 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 940 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 941 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 942 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 943 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 944 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 945 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 946 case Type::IntegerTyID: 947 // INTEGER: [width] 948 Code = bitc::TYPE_CODE_INTEGER; 949 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 950 break; 951 case Type::PointerTyID: { 952 PointerType *PTy = cast<PointerType>(T); 953 unsigned AddressSpace = PTy->getAddressSpace(); 954 if (PTy->isOpaque()) { 955 // OPAQUE_POINTER: [address space] 956 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 957 TypeVals.push_back(AddressSpace); 958 if (AddressSpace == 0) 959 AbbrevToUse = OpaquePtrAbbrev; 960 } else { 961 // POINTER: [pointee type, address space] 962 Code = bitc::TYPE_CODE_POINTER; 963 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 964 TypeVals.push_back(AddressSpace); 965 if (AddressSpace == 0) 966 AbbrevToUse = PtrAbbrev; 967 } 968 break; 969 } 970 case Type::FunctionTyID: { 971 FunctionType *FT = cast<FunctionType>(T); 972 // FUNCTION: [isvararg, retty, paramty x N] 973 Code = bitc::TYPE_CODE_FUNCTION; 974 TypeVals.push_back(FT->isVarArg()); 975 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 976 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 977 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 978 AbbrevToUse = FunctionAbbrev; 979 break; 980 } 981 case Type::StructTyID: { 982 StructType *ST = cast<StructType>(T); 983 // STRUCT: [ispacked, eltty x N] 984 TypeVals.push_back(ST->isPacked()); 985 // Output all of the element types. 986 for (Type *ET : ST->elements()) 987 TypeVals.push_back(VE.getTypeID(ET)); 988 989 if (ST->isLiteral()) { 990 Code = bitc::TYPE_CODE_STRUCT_ANON; 991 AbbrevToUse = StructAnonAbbrev; 992 } else { 993 if (ST->isOpaque()) { 994 Code = bitc::TYPE_CODE_OPAQUE; 995 } else { 996 Code = bitc::TYPE_CODE_STRUCT_NAMED; 997 AbbrevToUse = StructNamedAbbrev; 998 } 999 1000 // Emit the name if it is present. 1001 if (!ST->getName().empty()) 1002 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1003 StructNameAbbrev); 1004 } 1005 break; 1006 } 1007 case Type::ArrayTyID: { 1008 ArrayType *AT = cast<ArrayType>(T); 1009 // ARRAY: [numelts, eltty] 1010 Code = bitc::TYPE_CODE_ARRAY; 1011 TypeVals.push_back(AT->getNumElements()); 1012 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1013 AbbrevToUse = ArrayAbbrev; 1014 break; 1015 } 1016 case Type::FixedVectorTyID: 1017 case Type::ScalableVectorTyID: { 1018 VectorType *VT = cast<VectorType>(T); 1019 // VECTOR [numelts, eltty] or 1020 // [numelts, eltty, scalable] 1021 Code = bitc::TYPE_CODE_VECTOR; 1022 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1023 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1024 if (isa<ScalableVectorType>(VT)) 1025 TypeVals.push_back(true); 1026 break; 1027 } 1028 case Type::DXILPointerTyID: 1029 llvm_unreachable("DXIL pointers cannot be added to IR modules"); 1030 } 1031 1032 // Emit the finished record. 1033 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1034 TypeVals.clear(); 1035 } 1036 1037 Stream.ExitBlock(); 1038 } 1039 1040 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1041 switch (Linkage) { 1042 case GlobalValue::ExternalLinkage: 1043 return 0; 1044 case GlobalValue::WeakAnyLinkage: 1045 return 16; 1046 case GlobalValue::AppendingLinkage: 1047 return 2; 1048 case GlobalValue::InternalLinkage: 1049 return 3; 1050 case GlobalValue::LinkOnceAnyLinkage: 1051 return 18; 1052 case GlobalValue::ExternalWeakLinkage: 1053 return 7; 1054 case GlobalValue::CommonLinkage: 1055 return 8; 1056 case GlobalValue::PrivateLinkage: 1057 return 9; 1058 case GlobalValue::WeakODRLinkage: 1059 return 17; 1060 case GlobalValue::LinkOnceODRLinkage: 1061 return 19; 1062 case GlobalValue::AvailableExternallyLinkage: 1063 return 12; 1064 } 1065 llvm_unreachable("Invalid linkage"); 1066 } 1067 1068 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1069 return getEncodedLinkage(GV.getLinkage()); 1070 } 1071 1072 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1073 uint64_t RawFlags = 0; 1074 RawFlags |= Flags.ReadNone; 1075 RawFlags |= (Flags.ReadOnly << 1); 1076 RawFlags |= (Flags.NoRecurse << 2); 1077 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1078 RawFlags |= (Flags.NoInline << 4); 1079 RawFlags |= (Flags.AlwaysInline << 5); 1080 RawFlags |= (Flags.NoUnwind << 6); 1081 RawFlags |= (Flags.MayThrow << 7); 1082 RawFlags |= (Flags.HasUnknownCall << 8); 1083 RawFlags |= (Flags.MustBeUnreachable << 9); 1084 return RawFlags; 1085 } 1086 1087 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1088 // in BitcodeReader.cpp. 1089 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1090 uint64_t RawFlags = 0; 1091 1092 RawFlags |= Flags.NotEligibleToImport; // bool 1093 RawFlags |= (Flags.Live << 1); 1094 RawFlags |= (Flags.DSOLocal << 2); 1095 RawFlags |= (Flags.CanAutoHide << 3); 1096 1097 // Linkage don't need to be remapped at that time for the summary. Any future 1098 // change to the getEncodedLinkage() function will need to be taken into 1099 // account here as well. 1100 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1101 1102 RawFlags |= (Flags.Visibility << 8); // 2 bits 1103 1104 return RawFlags; 1105 } 1106 1107 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1108 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1109 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1110 return RawFlags; 1111 } 1112 1113 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1114 switch (GV.getVisibility()) { 1115 case GlobalValue::DefaultVisibility: return 0; 1116 case GlobalValue::HiddenVisibility: return 1; 1117 case GlobalValue::ProtectedVisibility: return 2; 1118 } 1119 llvm_unreachable("Invalid visibility"); 1120 } 1121 1122 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1123 switch (GV.getDLLStorageClass()) { 1124 case GlobalValue::DefaultStorageClass: return 0; 1125 case GlobalValue::DLLImportStorageClass: return 1; 1126 case GlobalValue::DLLExportStorageClass: return 2; 1127 } 1128 llvm_unreachable("Invalid DLL storage class"); 1129 } 1130 1131 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1132 switch (GV.getThreadLocalMode()) { 1133 case GlobalVariable::NotThreadLocal: return 0; 1134 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1135 case GlobalVariable::LocalDynamicTLSModel: return 2; 1136 case GlobalVariable::InitialExecTLSModel: return 3; 1137 case GlobalVariable::LocalExecTLSModel: return 4; 1138 } 1139 llvm_unreachable("Invalid TLS model"); 1140 } 1141 1142 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1143 switch (C.getSelectionKind()) { 1144 case Comdat::Any: 1145 return bitc::COMDAT_SELECTION_KIND_ANY; 1146 case Comdat::ExactMatch: 1147 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1148 case Comdat::Largest: 1149 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1150 case Comdat::NoDeduplicate: 1151 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1152 case Comdat::SameSize: 1153 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1154 } 1155 llvm_unreachable("Invalid selection kind"); 1156 } 1157 1158 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1159 switch (GV.getUnnamedAddr()) { 1160 case GlobalValue::UnnamedAddr::None: return 0; 1161 case GlobalValue::UnnamedAddr::Local: return 2; 1162 case GlobalValue::UnnamedAddr::Global: return 1; 1163 } 1164 llvm_unreachable("Invalid unnamed_addr"); 1165 } 1166 1167 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1168 if (GenerateHash) 1169 Hasher.update(Str); 1170 return StrtabBuilder.add(Str); 1171 } 1172 1173 void ModuleBitcodeWriter::writeComdats() { 1174 SmallVector<unsigned, 64> Vals; 1175 for (const Comdat *C : VE.getComdats()) { 1176 // COMDAT: [strtab offset, strtab size, selection_kind] 1177 Vals.push_back(addToStrtab(C->getName())); 1178 Vals.push_back(C->getName().size()); 1179 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1180 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1181 Vals.clear(); 1182 } 1183 } 1184 1185 /// Write a record that will eventually hold the word offset of the 1186 /// module-level VST. For now the offset is 0, which will be backpatched 1187 /// after the real VST is written. Saves the bit offset to backpatch. 1188 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1189 // Write a placeholder value in for the offset of the real VST, 1190 // which is written after the function blocks so that it can include 1191 // the offset of each function. The placeholder offset will be 1192 // updated when the real VST is written. 1193 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1194 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1195 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1196 // hold the real VST offset. Must use fixed instead of VBR as we don't 1197 // know how many VBR chunks to reserve ahead of time. 1198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1199 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1200 1201 // Emit the placeholder 1202 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1203 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1204 1205 // Compute and save the bit offset to the placeholder, which will be 1206 // patched when the real VST is written. We can simply subtract the 32-bit 1207 // fixed size from the current bit number to get the location to backpatch. 1208 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1209 } 1210 1211 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1212 1213 /// Determine the encoding to use for the given string name and length. 1214 static StringEncoding getStringEncoding(StringRef Str) { 1215 bool isChar6 = true; 1216 for (char C : Str) { 1217 if (isChar6) 1218 isChar6 = BitCodeAbbrevOp::isChar6(C); 1219 if ((unsigned char)C & 128) 1220 // don't bother scanning the rest. 1221 return SE_Fixed8; 1222 } 1223 if (isChar6) 1224 return SE_Char6; 1225 return SE_Fixed7; 1226 } 1227 1228 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1229 "Sanitizer Metadata is too large for naive serialization."); 1230 static unsigned 1231 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1232 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1233 (Meta.NoMemtag << 2) | (Meta.IsDynInit << 3); 1234 } 1235 1236 /// Emit top-level description of module, including target triple, inline asm, 1237 /// descriptors for global variables, and function prototype info. 1238 /// Returns the bit offset to backpatch with the location of the real VST. 1239 void ModuleBitcodeWriter::writeModuleInfo() { 1240 // Emit various pieces of data attached to a module. 1241 if (!M.getTargetTriple().empty()) 1242 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1243 0 /*TODO*/); 1244 const std::string &DL = M.getDataLayoutStr(); 1245 if (!DL.empty()) 1246 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1247 if (!M.getModuleInlineAsm().empty()) 1248 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1249 0 /*TODO*/); 1250 1251 // Emit information about sections and GC, computing how many there are. Also 1252 // compute the maximum alignment value. 1253 std::map<std::string, unsigned> SectionMap; 1254 std::map<std::string, unsigned> GCMap; 1255 MaybeAlign MaxAlignment; 1256 unsigned MaxGlobalType = 0; 1257 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1258 if (A) 1259 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1260 }; 1261 for (const GlobalVariable &GV : M.globals()) { 1262 UpdateMaxAlignment(GV.getAlign()); 1263 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1264 if (GV.hasSection()) { 1265 // Give section names unique ID's. 1266 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1267 if (!Entry) { 1268 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1269 0 /*TODO*/); 1270 Entry = SectionMap.size(); 1271 } 1272 } 1273 } 1274 for (const Function &F : M) { 1275 UpdateMaxAlignment(F.getAlign()); 1276 if (F.hasSection()) { 1277 // Give section names unique ID's. 1278 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1279 if (!Entry) { 1280 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1281 0 /*TODO*/); 1282 Entry = SectionMap.size(); 1283 } 1284 } 1285 if (F.hasGC()) { 1286 // Same for GC names. 1287 unsigned &Entry = GCMap[F.getGC()]; 1288 if (!Entry) { 1289 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1290 0 /*TODO*/); 1291 Entry = GCMap.size(); 1292 } 1293 } 1294 } 1295 1296 // Emit abbrev for globals, now that we know # sections and max alignment. 1297 unsigned SimpleGVarAbbrev = 0; 1298 if (!M.global_empty()) { 1299 // Add an abbrev for common globals with no visibility or thread localness. 1300 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1301 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1305 Log2_32_Ceil(MaxGlobalType+1))); 1306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1307 //| explicitType << 1 1308 //| constant 1309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1311 if (!MaxAlignment) // Alignment. 1312 Abbv->Add(BitCodeAbbrevOp(0)); 1313 else { 1314 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1316 Log2_32_Ceil(MaxEncAlignment+1))); 1317 } 1318 if (SectionMap.empty()) // Section. 1319 Abbv->Add(BitCodeAbbrevOp(0)); 1320 else 1321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1322 Log2_32_Ceil(SectionMap.size()+1))); 1323 // Don't bother emitting vis + thread local. 1324 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1325 } 1326 1327 SmallVector<unsigned, 64> Vals; 1328 // Emit the module's source file name. 1329 { 1330 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1331 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1332 if (Bits == SE_Char6) 1333 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1334 else if (Bits == SE_Fixed7) 1335 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1336 1337 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1338 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1339 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1341 Abbv->Add(AbbrevOpToUse); 1342 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1343 1344 for (const auto P : M.getSourceFileName()) 1345 Vals.push_back((unsigned char)P); 1346 1347 // Emit the finished record. 1348 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1349 Vals.clear(); 1350 } 1351 1352 // Emit the global variable information. 1353 for (const GlobalVariable &GV : M.globals()) { 1354 unsigned AbbrevToUse = 0; 1355 1356 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1357 // linkage, alignment, section, visibility, threadlocal, 1358 // unnamed_addr, externally_initialized, dllstorageclass, 1359 // comdat, attributes, DSO_Local, GlobalSanitizer] 1360 Vals.push_back(addToStrtab(GV.getName())); 1361 Vals.push_back(GV.getName().size()); 1362 Vals.push_back(VE.getTypeID(GV.getValueType())); 1363 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1364 Vals.push_back(GV.isDeclaration() ? 0 : 1365 (VE.getValueID(GV.getInitializer()) + 1)); 1366 Vals.push_back(getEncodedLinkage(GV)); 1367 Vals.push_back(getEncodedAlign(GV.getAlign())); 1368 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1369 : 0); 1370 if (GV.isThreadLocal() || 1371 GV.getVisibility() != GlobalValue::DefaultVisibility || 1372 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1373 GV.isExternallyInitialized() || 1374 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1375 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1376 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1377 Vals.push_back(getEncodedVisibility(GV)); 1378 Vals.push_back(getEncodedThreadLocalMode(GV)); 1379 Vals.push_back(getEncodedUnnamedAddr(GV)); 1380 Vals.push_back(GV.isExternallyInitialized()); 1381 Vals.push_back(getEncodedDLLStorageClass(GV)); 1382 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1383 1384 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1385 Vals.push_back(VE.getAttributeListID(AL)); 1386 1387 Vals.push_back(GV.isDSOLocal()); 1388 Vals.push_back(addToStrtab(GV.getPartition())); 1389 Vals.push_back(GV.getPartition().size()); 1390 1391 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1392 GV.getSanitizerMetadata()) 1393 : 0)); 1394 } else { 1395 AbbrevToUse = SimpleGVarAbbrev; 1396 } 1397 1398 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1399 Vals.clear(); 1400 } 1401 1402 // Emit the function proto information. 1403 for (const Function &F : M) { 1404 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1405 // linkage, paramattrs, alignment, section, visibility, gc, 1406 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1407 // prefixdata, personalityfn, DSO_Local, addrspace] 1408 Vals.push_back(addToStrtab(F.getName())); 1409 Vals.push_back(F.getName().size()); 1410 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1411 Vals.push_back(F.getCallingConv()); 1412 Vals.push_back(F.isDeclaration()); 1413 Vals.push_back(getEncodedLinkage(F)); 1414 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1415 Vals.push_back(getEncodedAlign(F.getAlign())); 1416 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1417 : 0); 1418 Vals.push_back(getEncodedVisibility(F)); 1419 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1420 Vals.push_back(getEncodedUnnamedAddr(F)); 1421 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1422 : 0); 1423 Vals.push_back(getEncodedDLLStorageClass(F)); 1424 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1425 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1426 : 0); 1427 Vals.push_back( 1428 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1429 1430 Vals.push_back(F.isDSOLocal()); 1431 Vals.push_back(F.getAddressSpace()); 1432 Vals.push_back(addToStrtab(F.getPartition())); 1433 Vals.push_back(F.getPartition().size()); 1434 1435 unsigned AbbrevToUse = 0; 1436 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1437 Vals.clear(); 1438 } 1439 1440 // Emit the alias information. 1441 for (const GlobalAlias &A : M.aliases()) { 1442 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1443 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1444 // DSO_Local] 1445 Vals.push_back(addToStrtab(A.getName())); 1446 Vals.push_back(A.getName().size()); 1447 Vals.push_back(VE.getTypeID(A.getValueType())); 1448 Vals.push_back(A.getType()->getAddressSpace()); 1449 Vals.push_back(VE.getValueID(A.getAliasee())); 1450 Vals.push_back(getEncodedLinkage(A)); 1451 Vals.push_back(getEncodedVisibility(A)); 1452 Vals.push_back(getEncodedDLLStorageClass(A)); 1453 Vals.push_back(getEncodedThreadLocalMode(A)); 1454 Vals.push_back(getEncodedUnnamedAddr(A)); 1455 Vals.push_back(A.isDSOLocal()); 1456 Vals.push_back(addToStrtab(A.getPartition())); 1457 Vals.push_back(A.getPartition().size()); 1458 1459 unsigned AbbrevToUse = 0; 1460 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1461 Vals.clear(); 1462 } 1463 1464 // Emit the ifunc information. 1465 for (const GlobalIFunc &I : M.ifuncs()) { 1466 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1467 // val#, linkage, visibility, DSO_Local] 1468 Vals.push_back(addToStrtab(I.getName())); 1469 Vals.push_back(I.getName().size()); 1470 Vals.push_back(VE.getTypeID(I.getValueType())); 1471 Vals.push_back(I.getType()->getAddressSpace()); 1472 Vals.push_back(VE.getValueID(I.getResolver())); 1473 Vals.push_back(getEncodedLinkage(I)); 1474 Vals.push_back(getEncodedVisibility(I)); 1475 Vals.push_back(I.isDSOLocal()); 1476 Vals.push_back(addToStrtab(I.getPartition())); 1477 Vals.push_back(I.getPartition().size()); 1478 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1479 Vals.clear(); 1480 } 1481 1482 writeValueSymbolTableForwardDecl(); 1483 } 1484 1485 static uint64_t getOptimizationFlags(const Value *V) { 1486 uint64_t Flags = 0; 1487 1488 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1489 if (OBO->hasNoSignedWrap()) 1490 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1491 if (OBO->hasNoUnsignedWrap()) 1492 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1493 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1494 if (PEO->isExact()) 1495 Flags |= 1 << bitc::PEO_EXACT; 1496 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1497 if (FPMO->hasAllowReassoc()) 1498 Flags |= bitc::AllowReassoc; 1499 if (FPMO->hasNoNaNs()) 1500 Flags |= bitc::NoNaNs; 1501 if (FPMO->hasNoInfs()) 1502 Flags |= bitc::NoInfs; 1503 if (FPMO->hasNoSignedZeros()) 1504 Flags |= bitc::NoSignedZeros; 1505 if (FPMO->hasAllowReciprocal()) 1506 Flags |= bitc::AllowReciprocal; 1507 if (FPMO->hasAllowContract()) 1508 Flags |= bitc::AllowContract; 1509 if (FPMO->hasApproxFunc()) 1510 Flags |= bitc::ApproxFunc; 1511 } 1512 1513 return Flags; 1514 } 1515 1516 void ModuleBitcodeWriter::writeValueAsMetadata( 1517 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1518 // Mimic an MDNode with a value as one operand. 1519 Value *V = MD->getValue(); 1520 Record.push_back(VE.getTypeID(V->getType())); 1521 Record.push_back(VE.getValueID(V)); 1522 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1523 Record.clear(); 1524 } 1525 1526 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1527 SmallVectorImpl<uint64_t> &Record, 1528 unsigned Abbrev) { 1529 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1530 Metadata *MD = N->getOperand(i); 1531 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1532 "Unexpected function-local metadata"); 1533 Record.push_back(VE.getMetadataOrNullID(MD)); 1534 } 1535 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1536 : bitc::METADATA_NODE, 1537 Record, Abbrev); 1538 Record.clear(); 1539 } 1540 1541 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1542 // Assume the column is usually under 128, and always output the inlined-at 1543 // location (it's never more expensive than building an array size 1). 1544 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1545 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1552 return Stream.EmitAbbrev(std::move(Abbv)); 1553 } 1554 1555 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1556 SmallVectorImpl<uint64_t> &Record, 1557 unsigned &Abbrev) { 1558 if (!Abbrev) 1559 Abbrev = createDILocationAbbrev(); 1560 1561 Record.push_back(N->isDistinct()); 1562 Record.push_back(N->getLine()); 1563 Record.push_back(N->getColumn()); 1564 Record.push_back(VE.getMetadataID(N->getScope())); 1565 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1566 Record.push_back(N->isImplicitCode()); 1567 1568 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1569 Record.clear(); 1570 } 1571 1572 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1573 // Assume the column is usually under 128, and always output the inlined-at 1574 // location (it's never more expensive than building an array size 1). 1575 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1576 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1583 return Stream.EmitAbbrev(std::move(Abbv)); 1584 } 1585 1586 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1587 SmallVectorImpl<uint64_t> &Record, 1588 unsigned &Abbrev) { 1589 if (!Abbrev) 1590 Abbrev = createGenericDINodeAbbrev(); 1591 1592 Record.push_back(N->isDistinct()); 1593 Record.push_back(N->getTag()); 1594 Record.push_back(0); // Per-tag version field; unused for now. 1595 1596 for (auto &I : N->operands()) 1597 Record.push_back(VE.getMetadataOrNullID(I)); 1598 1599 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1600 Record.clear(); 1601 } 1602 1603 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1604 SmallVectorImpl<uint64_t> &Record, 1605 unsigned Abbrev) { 1606 const uint64_t Version = 2 << 1; 1607 Record.push_back((uint64_t)N->isDistinct() | Version); 1608 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1609 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1610 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1611 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1612 1613 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1614 Record.clear(); 1615 } 1616 1617 void ModuleBitcodeWriter::writeDIGenericSubrange( 1618 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1619 unsigned Abbrev) { 1620 Record.push_back((uint64_t)N->isDistinct()); 1621 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1622 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1623 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1624 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1625 1626 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1627 Record.clear(); 1628 } 1629 1630 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1631 if ((int64_t)V >= 0) 1632 Vals.push_back(V << 1); 1633 else 1634 Vals.push_back((-V << 1) | 1); 1635 } 1636 1637 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1638 // We have an arbitrary precision integer value to write whose 1639 // bit width is > 64. However, in canonical unsigned integer 1640 // format it is likely that the high bits are going to be zero. 1641 // So, we only write the number of active words. 1642 unsigned NumWords = A.getActiveWords(); 1643 const uint64_t *RawData = A.getRawData(); 1644 for (unsigned i = 0; i < NumWords; i++) 1645 emitSignedInt64(Vals, RawData[i]); 1646 } 1647 1648 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1649 SmallVectorImpl<uint64_t> &Record, 1650 unsigned Abbrev) { 1651 const uint64_t IsBigInt = 1 << 2; 1652 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1653 Record.push_back(N->getValue().getBitWidth()); 1654 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1655 emitWideAPInt(Record, N->getValue()); 1656 1657 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1658 Record.clear(); 1659 } 1660 1661 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1662 SmallVectorImpl<uint64_t> &Record, 1663 unsigned Abbrev) { 1664 Record.push_back(N->isDistinct()); 1665 Record.push_back(N->getTag()); 1666 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1667 Record.push_back(N->getSizeInBits()); 1668 Record.push_back(N->getAlignInBits()); 1669 Record.push_back(N->getEncoding()); 1670 Record.push_back(N->getFlags()); 1671 1672 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1673 Record.clear(); 1674 } 1675 1676 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1677 SmallVectorImpl<uint64_t> &Record, 1678 unsigned Abbrev) { 1679 Record.push_back(N->isDistinct()); 1680 Record.push_back(N->getTag()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1682 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1684 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1685 Record.push_back(N->getSizeInBits()); 1686 Record.push_back(N->getAlignInBits()); 1687 Record.push_back(N->getEncoding()); 1688 1689 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1690 Record.clear(); 1691 } 1692 1693 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1694 SmallVectorImpl<uint64_t> &Record, 1695 unsigned Abbrev) { 1696 Record.push_back(N->isDistinct()); 1697 Record.push_back(N->getTag()); 1698 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1699 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1700 Record.push_back(N->getLine()); 1701 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1702 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1703 Record.push_back(N->getSizeInBits()); 1704 Record.push_back(N->getAlignInBits()); 1705 Record.push_back(N->getOffsetInBits()); 1706 Record.push_back(N->getFlags()); 1707 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1708 1709 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1710 // that there is no DWARF address space associated with DIDerivedType. 1711 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1712 Record.push_back(*DWARFAddressSpace + 1); 1713 else 1714 Record.push_back(0); 1715 1716 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1717 1718 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1719 Record.clear(); 1720 } 1721 1722 void ModuleBitcodeWriter::writeDICompositeType( 1723 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1724 unsigned Abbrev) { 1725 const unsigned IsNotUsedInOldTypeRef = 0x2; 1726 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1727 Record.push_back(N->getTag()); 1728 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1729 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1730 Record.push_back(N->getLine()); 1731 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1732 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1733 Record.push_back(N->getSizeInBits()); 1734 Record.push_back(N->getAlignInBits()); 1735 Record.push_back(N->getOffsetInBits()); 1736 Record.push_back(N->getFlags()); 1737 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1738 Record.push_back(N->getRuntimeLang()); 1739 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1740 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1741 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1742 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1743 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1744 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1745 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1746 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1747 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1748 1749 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1750 Record.clear(); 1751 } 1752 1753 void ModuleBitcodeWriter::writeDISubroutineType( 1754 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1755 unsigned Abbrev) { 1756 const unsigned HasNoOldTypeRefs = 0x2; 1757 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1758 Record.push_back(N->getFlags()); 1759 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1760 Record.push_back(N->getCC()); 1761 1762 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1763 Record.clear(); 1764 } 1765 1766 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1767 SmallVectorImpl<uint64_t> &Record, 1768 unsigned Abbrev) { 1769 Record.push_back(N->isDistinct()); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1772 if (N->getRawChecksum()) { 1773 Record.push_back(N->getRawChecksum()->Kind); 1774 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1775 } else { 1776 // Maintain backwards compatibility with the old internal representation of 1777 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1778 Record.push_back(0); 1779 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1780 } 1781 auto Source = N->getRawSource(); 1782 if (Source) 1783 Record.push_back(VE.getMetadataOrNullID(*Source)); 1784 1785 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1786 Record.clear(); 1787 } 1788 1789 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1790 SmallVectorImpl<uint64_t> &Record, 1791 unsigned Abbrev) { 1792 assert(N->isDistinct() && "Expected distinct compile units"); 1793 Record.push_back(/* IsDistinct */ true); 1794 Record.push_back(N->getSourceLanguage()); 1795 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1796 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1797 Record.push_back(N->isOptimized()); 1798 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1799 Record.push_back(N->getRuntimeVersion()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1801 Record.push_back(N->getEmissionKind()); 1802 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1804 Record.push_back(/* subprograms */ 0); 1805 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1806 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1807 Record.push_back(N->getDWOId()); 1808 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1809 Record.push_back(N->getSplitDebugInlining()); 1810 Record.push_back(N->getDebugInfoForProfiling()); 1811 Record.push_back((unsigned)N->getNameTableKind()); 1812 Record.push_back(N->getRangesBaseAddress()); 1813 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1815 1816 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1817 Record.clear(); 1818 } 1819 1820 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1821 SmallVectorImpl<uint64_t> &Record, 1822 unsigned Abbrev) { 1823 const uint64_t HasUnitFlag = 1 << 1; 1824 const uint64_t HasSPFlagsFlag = 1 << 2; 1825 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1826 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1827 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1828 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1829 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1830 Record.push_back(N->getLine()); 1831 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1832 Record.push_back(N->getScopeLine()); 1833 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1834 Record.push_back(N->getSPFlags()); 1835 Record.push_back(N->getVirtualIndex()); 1836 Record.push_back(N->getFlags()); 1837 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1838 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1839 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1840 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1841 Record.push_back(N->getThisAdjustment()); 1842 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1843 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1844 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1845 1846 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1847 Record.clear(); 1848 } 1849 1850 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1851 SmallVectorImpl<uint64_t> &Record, 1852 unsigned Abbrev) { 1853 Record.push_back(N->isDistinct()); 1854 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1856 Record.push_back(N->getLine()); 1857 Record.push_back(N->getColumn()); 1858 1859 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1860 Record.clear(); 1861 } 1862 1863 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1864 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1865 unsigned Abbrev) { 1866 Record.push_back(N->isDistinct()); 1867 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1868 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1869 Record.push_back(N->getDiscriminator()); 1870 1871 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1872 Record.clear(); 1873 } 1874 1875 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1876 SmallVectorImpl<uint64_t> &Record, 1877 unsigned Abbrev) { 1878 Record.push_back(N->isDistinct()); 1879 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1880 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1881 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1882 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1883 Record.push_back(N->getLineNo()); 1884 1885 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1886 Record.clear(); 1887 } 1888 1889 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1890 SmallVectorImpl<uint64_t> &Record, 1891 unsigned Abbrev) { 1892 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1893 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1894 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1895 1896 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1897 Record.clear(); 1898 } 1899 1900 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1901 SmallVectorImpl<uint64_t> &Record, 1902 unsigned Abbrev) { 1903 Record.push_back(N->isDistinct()); 1904 Record.push_back(N->getMacinfoType()); 1905 Record.push_back(N->getLine()); 1906 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1907 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1908 1909 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1910 Record.clear(); 1911 } 1912 1913 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1914 SmallVectorImpl<uint64_t> &Record, 1915 unsigned Abbrev) { 1916 Record.push_back(N->isDistinct()); 1917 Record.push_back(N->getMacinfoType()); 1918 Record.push_back(N->getLine()); 1919 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1920 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1921 1922 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1923 Record.clear(); 1924 } 1925 1926 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1927 SmallVectorImpl<uint64_t> &Record, 1928 unsigned Abbrev) { 1929 Record.reserve(N->getArgs().size()); 1930 for (ValueAsMetadata *MD : N->getArgs()) 1931 Record.push_back(VE.getMetadataID(MD)); 1932 1933 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1934 Record.clear(); 1935 } 1936 1937 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1938 SmallVectorImpl<uint64_t> &Record, 1939 unsigned Abbrev) { 1940 Record.push_back(N->isDistinct()); 1941 for (auto &I : N->operands()) 1942 Record.push_back(VE.getMetadataOrNullID(I)); 1943 Record.push_back(N->getLineNo()); 1944 Record.push_back(N->getIsDecl()); 1945 1946 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1947 Record.clear(); 1948 } 1949 1950 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1951 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1952 unsigned Abbrev) { 1953 Record.push_back(N->isDistinct()); 1954 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1955 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1956 Record.push_back(N->isDefault()); 1957 1958 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1959 Record.clear(); 1960 } 1961 1962 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1963 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1964 unsigned Abbrev) { 1965 Record.push_back(N->isDistinct()); 1966 Record.push_back(N->getTag()); 1967 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1968 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1969 Record.push_back(N->isDefault()); 1970 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1971 1972 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1973 Record.clear(); 1974 } 1975 1976 void ModuleBitcodeWriter::writeDIGlobalVariable( 1977 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1978 unsigned Abbrev) { 1979 const uint64_t Version = 2 << 1; 1980 Record.push_back((uint64_t)N->isDistinct() | Version); 1981 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1982 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1983 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1984 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1985 Record.push_back(N->getLine()); 1986 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1987 Record.push_back(N->isLocalToUnit()); 1988 Record.push_back(N->isDefinition()); 1989 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1990 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1991 Record.push_back(N->getAlignInBits()); 1992 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1993 1994 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1995 Record.clear(); 1996 } 1997 1998 void ModuleBitcodeWriter::writeDILocalVariable( 1999 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2000 unsigned Abbrev) { 2001 // In order to support all possible bitcode formats in BitcodeReader we need 2002 // to distinguish the following cases: 2003 // 1) Record has no artificial tag (Record[1]), 2004 // has no obsolete inlinedAt field (Record[9]). 2005 // In this case Record size will be 8, HasAlignment flag is false. 2006 // 2) Record has artificial tag (Record[1]), 2007 // has no obsolete inlignedAt field (Record[9]). 2008 // In this case Record size will be 9, HasAlignment flag is false. 2009 // 3) Record has both artificial tag (Record[1]) and 2010 // obsolete inlignedAt field (Record[9]). 2011 // In this case Record size will be 10, HasAlignment flag is false. 2012 // 4) Record has neither artificial tag, nor inlignedAt field, but 2013 // HasAlignment flag is true and Record[8] contains alignment value. 2014 const uint64_t HasAlignmentFlag = 1 << 1; 2015 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2016 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2017 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2018 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2019 Record.push_back(N->getLine()); 2020 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2021 Record.push_back(N->getArg()); 2022 Record.push_back(N->getFlags()); 2023 Record.push_back(N->getAlignInBits()); 2024 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2025 2026 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2027 Record.clear(); 2028 } 2029 2030 void ModuleBitcodeWriter::writeDILabel( 2031 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2032 unsigned Abbrev) { 2033 Record.push_back((uint64_t)N->isDistinct()); 2034 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2035 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2036 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2037 Record.push_back(N->getLine()); 2038 2039 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2040 Record.clear(); 2041 } 2042 2043 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2044 SmallVectorImpl<uint64_t> &Record, 2045 unsigned Abbrev) { 2046 Record.reserve(N->getElements().size() + 1); 2047 const uint64_t Version = 3 << 1; 2048 Record.push_back((uint64_t)N->isDistinct() | Version); 2049 Record.append(N->elements_begin(), N->elements_end()); 2050 2051 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2052 Record.clear(); 2053 } 2054 2055 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2056 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2057 unsigned Abbrev) { 2058 Record.push_back(N->isDistinct()); 2059 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2060 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2061 2062 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2063 Record.clear(); 2064 } 2065 2066 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2067 SmallVectorImpl<uint64_t> &Record, 2068 unsigned Abbrev) { 2069 Record.push_back(N->isDistinct()); 2070 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2071 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2072 Record.push_back(N->getLine()); 2073 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2074 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2075 Record.push_back(N->getAttributes()); 2076 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2077 2078 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2079 Record.clear(); 2080 } 2081 2082 void ModuleBitcodeWriter::writeDIImportedEntity( 2083 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2084 unsigned Abbrev) { 2085 Record.push_back(N->isDistinct()); 2086 Record.push_back(N->getTag()); 2087 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2088 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2089 Record.push_back(N->getLine()); 2090 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2091 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2092 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2093 2094 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2095 Record.clear(); 2096 } 2097 2098 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2099 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2100 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2103 return Stream.EmitAbbrev(std::move(Abbv)); 2104 } 2105 2106 void ModuleBitcodeWriter::writeNamedMetadata( 2107 SmallVectorImpl<uint64_t> &Record) { 2108 if (M.named_metadata_empty()) 2109 return; 2110 2111 unsigned Abbrev = createNamedMetadataAbbrev(); 2112 for (const NamedMDNode &NMD : M.named_metadata()) { 2113 // Write name. 2114 StringRef Str = NMD.getName(); 2115 Record.append(Str.bytes_begin(), Str.bytes_end()); 2116 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2117 Record.clear(); 2118 2119 // Write named metadata operands. 2120 for (const MDNode *N : NMD.operands()) 2121 Record.push_back(VE.getMetadataID(N)); 2122 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2123 Record.clear(); 2124 } 2125 } 2126 2127 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2128 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2129 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2133 return Stream.EmitAbbrev(std::move(Abbv)); 2134 } 2135 2136 /// Write out a record for MDString. 2137 /// 2138 /// All the metadata strings in a metadata block are emitted in a single 2139 /// record. The sizes and strings themselves are shoved into a blob. 2140 void ModuleBitcodeWriter::writeMetadataStrings( 2141 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2142 if (Strings.empty()) 2143 return; 2144 2145 // Start the record with the number of strings. 2146 Record.push_back(bitc::METADATA_STRINGS); 2147 Record.push_back(Strings.size()); 2148 2149 // Emit the sizes of the strings in the blob. 2150 SmallString<256> Blob; 2151 { 2152 BitstreamWriter W(Blob); 2153 for (const Metadata *MD : Strings) 2154 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2155 W.FlushToWord(); 2156 } 2157 2158 // Add the offset to the strings to the record. 2159 Record.push_back(Blob.size()); 2160 2161 // Add the strings to the blob. 2162 for (const Metadata *MD : Strings) 2163 Blob.append(cast<MDString>(MD)->getString()); 2164 2165 // Emit the final record. 2166 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2167 Record.clear(); 2168 } 2169 2170 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2171 enum MetadataAbbrev : unsigned { 2172 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2173 #include "llvm/IR/Metadata.def" 2174 LastPlusOne 2175 }; 2176 2177 void ModuleBitcodeWriter::writeMetadataRecords( 2178 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2179 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2180 if (MDs.empty()) 2181 return; 2182 2183 // Initialize MDNode abbreviations. 2184 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2185 #include "llvm/IR/Metadata.def" 2186 2187 for (const Metadata *MD : MDs) { 2188 if (IndexPos) 2189 IndexPos->push_back(Stream.GetCurrentBitNo()); 2190 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2191 assert(N->isResolved() && "Expected forward references to be resolved"); 2192 2193 switch (N->getMetadataID()) { 2194 default: 2195 llvm_unreachable("Invalid MDNode subclass"); 2196 #define HANDLE_MDNODE_LEAF(CLASS) \ 2197 case Metadata::CLASS##Kind: \ 2198 if (MDAbbrevs) \ 2199 write##CLASS(cast<CLASS>(N), Record, \ 2200 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2201 else \ 2202 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2203 continue; 2204 #include "llvm/IR/Metadata.def" 2205 } 2206 } 2207 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2208 } 2209 } 2210 2211 void ModuleBitcodeWriter::writeModuleMetadata() { 2212 if (!VE.hasMDs() && M.named_metadata_empty()) 2213 return; 2214 2215 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2216 SmallVector<uint64_t, 64> Record; 2217 2218 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2219 // block and load any metadata. 2220 std::vector<unsigned> MDAbbrevs; 2221 2222 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2223 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2224 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2225 createGenericDINodeAbbrev(); 2226 2227 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2228 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2231 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2232 2233 Abbv = std::make_shared<BitCodeAbbrev>(); 2234 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2237 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2238 2239 // Emit MDStrings together upfront. 2240 writeMetadataStrings(VE.getMDStrings(), Record); 2241 2242 // We only emit an index for the metadata record if we have more than a given 2243 // (naive) threshold of metadatas, otherwise it is not worth it. 2244 if (VE.getNonMDStrings().size() > IndexThreshold) { 2245 // Write a placeholder value in for the offset of the metadata index, 2246 // which is written after the records, so that it can include 2247 // the offset of each entry. The placeholder offset will be 2248 // updated after all records are emitted. 2249 uint64_t Vals[] = {0, 0}; 2250 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2251 } 2252 2253 // Compute and save the bit offset to the current position, which will be 2254 // patched when we emit the index later. We can simply subtract the 64-bit 2255 // fixed size from the current bit number to get the location to backpatch. 2256 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2257 2258 // This index will contain the bitpos for each individual record. 2259 std::vector<uint64_t> IndexPos; 2260 IndexPos.reserve(VE.getNonMDStrings().size()); 2261 2262 // Write all the records 2263 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2264 2265 if (VE.getNonMDStrings().size() > IndexThreshold) { 2266 // Now that we have emitted all the records we will emit the index. But 2267 // first 2268 // backpatch the forward reference so that the reader can skip the records 2269 // efficiently. 2270 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2271 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2272 2273 // Delta encode the index. 2274 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2275 for (auto &Elt : IndexPos) { 2276 auto EltDelta = Elt - PreviousValue; 2277 PreviousValue = Elt; 2278 Elt = EltDelta; 2279 } 2280 // Emit the index record. 2281 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2282 IndexPos.clear(); 2283 } 2284 2285 // Write the named metadata now. 2286 writeNamedMetadata(Record); 2287 2288 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2289 SmallVector<uint64_t, 4> Record; 2290 Record.push_back(VE.getValueID(&GO)); 2291 pushGlobalMetadataAttachment(Record, GO); 2292 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2293 }; 2294 for (const Function &F : M) 2295 if (F.isDeclaration() && F.hasMetadata()) 2296 AddDeclAttachedMetadata(F); 2297 // FIXME: Only store metadata for declarations here, and move data for global 2298 // variable definitions to a separate block (PR28134). 2299 for (const GlobalVariable &GV : M.globals()) 2300 if (GV.hasMetadata()) 2301 AddDeclAttachedMetadata(GV); 2302 2303 Stream.ExitBlock(); 2304 } 2305 2306 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2307 if (!VE.hasMDs()) 2308 return; 2309 2310 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2311 SmallVector<uint64_t, 64> Record; 2312 writeMetadataStrings(VE.getMDStrings(), Record); 2313 writeMetadataRecords(VE.getNonMDStrings(), Record); 2314 Stream.ExitBlock(); 2315 } 2316 2317 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2318 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2319 // [n x [id, mdnode]] 2320 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2321 GO.getAllMetadata(MDs); 2322 for (const auto &I : MDs) { 2323 Record.push_back(I.first); 2324 Record.push_back(VE.getMetadataID(I.second)); 2325 } 2326 } 2327 2328 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2329 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2330 2331 SmallVector<uint64_t, 64> Record; 2332 2333 if (F.hasMetadata()) { 2334 pushGlobalMetadataAttachment(Record, F); 2335 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2336 Record.clear(); 2337 } 2338 2339 // Write metadata attachments 2340 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2341 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2342 for (const BasicBlock &BB : F) 2343 for (const Instruction &I : BB) { 2344 MDs.clear(); 2345 I.getAllMetadataOtherThanDebugLoc(MDs); 2346 2347 // If no metadata, ignore instruction. 2348 if (MDs.empty()) continue; 2349 2350 Record.push_back(VE.getInstructionID(&I)); 2351 2352 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2353 Record.push_back(MDs[i].first); 2354 Record.push_back(VE.getMetadataID(MDs[i].second)); 2355 } 2356 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2357 Record.clear(); 2358 } 2359 2360 Stream.ExitBlock(); 2361 } 2362 2363 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2364 SmallVector<uint64_t, 64> Record; 2365 2366 // Write metadata kinds 2367 // METADATA_KIND - [n x [id, name]] 2368 SmallVector<StringRef, 8> Names; 2369 M.getMDKindNames(Names); 2370 2371 if (Names.empty()) return; 2372 2373 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2374 2375 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2376 Record.push_back(MDKindID); 2377 StringRef KName = Names[MDKindID]; 2378 Record.append(KName.begin(), KName.end()); 2379 2380 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2381 Record.clear(); 2382 } 2383 2384 Stream.ExitBlock(); 2385 } 2386 2387 void ModuleBitcodeWriter::writeOperandBundleTags() { 2388 // Write metadata kinds 2389 // 2390 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2391 // 2392 // OPERAND_BUNDLE_TAG - [strchr x N] 2393 2394 SmallVector<StringRef, 8> Tags; 2395 M.getOperandBundleTags(Tags); 2396 2397 if (Tags.empty()) 2398 return; 2399 2400 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2401 2402 SmallVector<uint64_t, 64> Record; 2403 2404 for (auto Tag : Tags) { 2405 Record.append(Tag.begin(), Tag.end()); 2406 2407 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2408 Record.clear(); 2409 } 2410 2411 Stream.ExitBlock(); 2412 } 2413 2414 void ModuleBitcodeWriter::writeSyncScopeNames() { 2415 SmallVector<StringRef, 8> SSNs; 2416 M.getContext().getSyncScopeNames(SSNs); 2417 if (SSNs.empty()) 2418 return; 2419 2420 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2421 2422 SmallVector<uint64_t, 64> Record; 2423 for (auto SSN : SSNs) { 2424 Record.append(SSN.begin(), SSN.end()); 2425 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2426 Record.clear(); 2427 } 2428 2429 Stream.ExitBlock(); 2430 } 2431 2432 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2433 bool isGlobal) { 2434 if (FirstVal == LastVal) return; 2435 2436 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2437 2438 unsigned AggregateAbbrev = 0; 2439 unsigned String8Abbrev = 0; 2440 unsigned CString7Abbrev = 0; 2441 unsigned CString6Abbrev = 0; 2442 // If this is a constant pool for the module, emit module-specific abbrevs. 2443 if (isGlobal) { 2444 // Abbrev for CST_CODE_AGGREGATE. 2445 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2446 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2449 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2450 2451 // Abbrev for CST_CODE_STRING. 2452 Abbv = std::make_shared<BitCodeAbbrev>(); 2453 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2456 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2457 // Abbrev for CST_CODE_CSTRING. 2458 Abbv = std::make_shared<BitCodeAbbrev>(); 2459 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2462 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2463 // Abbrev for CST_CODE_CSTRING. 2464 Abbv = std::make_shared<BitCodeAbbrev>(); 2465 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2468 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2469 } 2470 2471 SmallVector<uint64_t, 64> Record; 2472 2473 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2474 Type *LastTy = nullptr; 2475 for (unsigned i = FirstVal; i != LastVal; ++i) { 2476 const Value *V = Vals[i].first; 2477 // If we need to switch types, do so now. 2478 if (V->getType() != LastTy) { 2479 LastTy = V->getType(); 2480 Record.push_back(VE.getTypeID(LastTy)); 2481 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2482 CONSTANTS_SETTYPE_ABBREV); 2483 Record.clear(); 2484 } 2485 2486 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2487 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2488 Record.push_back( 2489 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2490 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2491 2492 // Add the asm string. 2493 const std::string &AsmStr = IA->getAsmString(); 2494 Record.push_back(AsmStr.size()); 2495 Record.append(AsmStr.begin(), AsmStr.end()); 2496 2497 // Add the constraint string. 2498 const std::string &ConstraintStr = IA->getConstraintString(); 2499 Record.push_back(ConstraintStr.size()); 2500 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2501 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2502 Record.clear(); 2503 continue; 2504 } 2505 const Constant *C = cast<Constant>(V); 2506 unsigned Code = -1U; 2507 unsigned AbbrevToUse = 0; 2508 if (C->isNullValue()) { 2509 Code = bitc::CST_CODE_NULL; 2510 } else if (isa<PoisonValue>(C)) { 2511 Code = bitc::CST_CODE_POISON; 2512 } else if (isa<UndefValue>(C)) { 2513 Code = bitc::CST_CODE_UNDEF; 2514 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2515 if (IV->getBitWidth() <= 64) { 2516 uint64_t V = IV->getSExtValue(); 2517 emitSignedInt64(Record, V); 2518 Code = bitc::CST_CODE_INTEGER; 2519 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2520 } else { // Wide integers, > 64 bits in size. 2521 emitWideAPInt(Record, IV->getValue()); 2522 Code = bitc::CST_CODE_WIDE_INTEGER; 2523 } 2524 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2525 Code = bitc::CST_CODE_FLOAT; 2526 Type *Ty = CFP->getType(); 2527 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2528 Ty->isDoubleTy()) { 2529 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2530 } else if (Ty->isX86_FP80Ty()) { 2531 // api needed to prevent premature destruction 2532 // bits are not in the same order as a normal i80 APInt, compensate. 2533 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2534 const uint64_t *p = api.getRawData(); 2535 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2536 Record.push_back(p[0] & 0xffffLL); 2537 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2538 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2539 const uint64_t *p = api.getRawData(); 2540 Record.push_back(p[0]); 2541 Record.push_back(p[1]); 2542 } else { 2543 assert(0 && "Unknown FP type!"); 2544 } 2545 } else if (isa<ConstantDataSequential>(C) && 2546 cast<ConstantDataSequential>(C)->isString()) { 2547 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2548 // Emit constant strings specially. 2549 unsigned NumElts = Str->getNumElements(); 2550 // If this is a null-terminated string, use the denser CSTRING encoding. 2551 if (Str->isCString()) { 2552 Code = bitc::CST_CODE_CSTRING; 2553 --NumElts; // Don't encode the null, which isn't allowed by char6. 2554 } else { 2555 Code = bitc::CST_CODE_STRING; 2556 AbbrevToUse = String8Abbrev; 2557 } 2558 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2559 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2560 for (unsigned i = 0; i != NumElts; ++i) { 2561 unsigned char V = Str->getElementAsInteger(i); 2562 Record.push_back(V); 2563 isCStr7 &= (V & 128) == 0; 2564 if (isCStrChar6) 2565 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2566 } 2567 2568 if (isCStrChar6) 2569 AbbrevToUse = CString6Abbrev; 2570 else if (isCStr7) 2571 AbbrevToUse = CString7Abbrev; 2572 } else if (const ConstantDataSequential *CDS = 2573 dyn_cast<ConstantDataSequential>(C)) { 2574 Code = bitc::CST_CODE_DATA; 2575 Type *EltTy = CDS->getElementType(); 2576 if (isa<IntegerType>(EltTy)) { 2577 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2578 Record.push_back(CDS->getElementAsInteger(i)); 2579 } else { 2580 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2581 Record.push_back( 2582 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2583 } 2584 } else if (isa<ConstantAggregate>(C)) { 2585 Code = bitc::CST_CODE_AGGREGATE; 2586 for (const Value *Op : C->operands()) 2587 Record.push_back(VE.getValueID(Op)); 2588 AbbrevToUse = AggregateAbbrev; 2589 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2590 switch (CE->getOpcode()) { 2591 default: 2592 if (Instruction::isCast(CE->getOpcode())) { 2593 Code = bitc::CST_CODE_CE_CAST; 2594 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2595 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2596 Record.push_back(VE.getValueID(C->getOperand(0))); 2597 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2598 } else { 2599 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2600 Code = bitc::CST_CODE_CE_BINOP; 2601 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2602 Record.push_back(VE.getValueID(C->getOperand(0))); 2603 Record.push_back(VE.getValueID(C->getOperand(1))); 2604 uint64_t Flags = getOptimizationFlags(CE); 2605 if (Flags != 0) 2606 Record.push_back(Flags); 2607 } 2608 break; 2609 case Instruction::FNeg: { 2610 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2611 Code = bitc::CST_CODE_CE_UNOP; 2612 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2613 Record.push_back(VE.getValueID(C->getOperand(0))); 2614 uint64_t Flags = getOptimizationFlags(CE); 2615 if (Flags != 0) 2616 Record.push_back(Flags); 2617 break; 2618 } 2619 case Instruction::GetElementPtr: { 2620 Code = bitc::CST_CODE_CE_GEP; 2621 const auto *GO = cast<GEPOperator>(C); 2622 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2623 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2624 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2625 Record.push_back((*Idx << 1) | GO->isInBounds()); 2626 } else if (GO->isInBounds()) 2627 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2628 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2629 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2630 Record.push_back(VE.getValueID(C->getOperand(i))); 2631 } 2632 break; 2633 } 2634 case Instruction::Select: 2635 Code = bitc::CST_CODE_CE_SELECT; 2636 Record.push_back(VE.getValueID(C->getOperand(0))); 2637 Record.push_back(VE.getValueID(C->getOperand(1))); 2638 Record.push_back(VE.getValueID(C->getOperand(2))); 2639 break; 2640 case Instruction::ExtractElement: 2641 Code = bitc::CST_CODE_CE_EXTRACTELT; 2642 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2643 Record.push_back(VE.getValueID(C->getOperand(0))); 2644 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2645 Record.push_back(VE.getValueID(C->getOperand(1))); 2646 break; 2647 case Instruction::InsertElement: 2648 Code = bitc::CST_CODE_CE_INSERTELT; 2649 Record.push_back(VE.getValueID(C->getOperand(0))); 2650 Record.push_back(VE.getValueID(C->getOperand(1))); 2651 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2652 Record.push_back(VE.getValueID(C->getOperand(2))); 2653 break; 2654 case Instruction::ShuffleVector: 2655 // If the return type and argument types are the same, this is a 2656 // standard shufflevector instruction. If the types are different, 2657 // then the shuffle is widening or truncating the input vectors, and 2658 // the argument type must also be encoded. 2659 if (C->getType() == C->getOperand(0)->getType()) { 2660 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2661 } else { 2662 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2663 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2664 } 2665 Record.push_back(VE.getValueID(C->getOperand(0))); 2666 Record.push_back(VE.getValueID(C->getOperand(1))); 2667 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2668 break; 2669 case Instruction::ICmp: 2670 case Instruction::FCmp: 2671 Code = bitc::CST_CODE_CE_CMP; 2672 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2673 Record.push_back(VE.getValueID(C->getOperand(0))); 2674 Record.push_back(VE.getValueID(C->getOperand(1))); 2675 Record.push_back(CE->getPredicate()); 2676 break; 2677 case Instruction::InsertValue: 2678 report_fatal_error("insertvalue constexprs not supported"); 2679 break; 2680 } 2681 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2682 Code = bitc::CST_CODE_BLOCKADDRESS; 2683 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2684 Record.push_back(VE.getValueID(BA->getFunction())); 2685 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2686 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2687 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2688 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2689 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2690 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2691 Code = bitc::CST_CODE_NO_CFI_VALUE; 2692 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2693 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2694 } else { 2695 #ifndef NDEBUG 2696 C->dump(); 2697 #endif 2698 llvm_unreachable("Unknown constant!"); 2699 } 2700 Stream.EmitRecord(Code, Record, AbbrevToUse); 2701 Record.clear(); 2702 } 2703 2704 Stream.ExitBlock(); 2705 } 2706 2707 void ModuleBitcodeWriter::writeModuleConstants() { 2708 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2709 2710 // Find the first constant to emit, which is the first non-globalvalue value. 2711 // We know globalvalues have been emitted by WriteModuleInfo. 2712 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2713 if (!isa<GlobalValue>(Vals[i].first)) { 2714 writeConstants(i, Vals.size(), true); 2715 return; 2716 } 2717 } 2718 } 2719 2720 /// pushValueAndType - The file has to encode both the value and type id for 2721 /// many values, because we need to know what type to create for forward 2722 /// references. However, most operands are not forward references, so this type 2723 /// field is not needed. 2724 /// 2725 /// This function adds V's value ID to Vals. If the value ID is higher than the 2726 /// instruction ID, then it is a forward reference, and it also includes the 2727 /// type ID. The value ID that is written is encoded relative to the InstID. 2728 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2729 SmallVectorImpl<unsigned> &Vals) { 2730 unsigned ValID = VE.getValueID(V); 2731 // Make encoding relative to the InstID. 2732 Vals.push_back(InstID - ValID); 2733 if (ValID >= InstID) { 2734 Vals.push_back(VE.getTypeID(V->getType())); 2735 return true; 2736 } 2737 return false; 2738 } 2739 2740 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2741 unsigned InstID) { 2742 SmallVector<unsigned, 64> Record; 2743 LLVMContext &C = CS.getContext(); 2744 2745 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2746 const auto &Bundle = CS.getOperandBundleAt(i); 2747 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2748 2749 for (auto &Input : Bundle.Inputs) 2750 pushValueAndType(Input, InstID, Record); 2751 2752 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2753 Record.clear(); 2754 } 2755 } 2756 2757 /// pushValue - Like pushValueAndType, but where the type of the value is 2758 /// omitted (perhaps it was already encoded in an earlier operand). 2759 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2760 SmallVectorImpl<unsigned> &Vals) { 2761 unsigned ValID = VE.getValueID(V); 2762 Vals.push_back(InstID - ValID); 2763 } 2764 2765 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2766 SmallVectorImpl<uint64_t> &Vals) { 2767 unsigned ValID = VE.getValueID(V); 2768 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2769 emitSignedInt64(Vals, diff); 2770 } 2771 2772 /// WriteInstruction - Emit an instruction to the specified stream. 2773 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2774 unsigned InstID, 2775 SmallVectorImpl<unsigned> &Vals) { 2776 unsigned Code = 0; 2777 unsigned AbbrevToUse = 0; 2778 VE.setInstructionID(&I); 2779 switch (I.getOpcode()) { 2780 default: 2781 if (Instruction::isCast(I.getOpcode())) { 2782 Code = bitc::FUNC_CODE_INST_CAST; 2783 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2784 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2785 Vals.push_back(VE.getTypeID(I.getType())); 2786 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2787 } else { 2788 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2789 Code = bitc::FUNC_CODE_INST_BINOP; 2790 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2791 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2792 pushValue(I.getOperand(1), InstID, Vals); 2793 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2794 uint64_t Flags = getOptimizationFlags(&I); 2795 if (Flags != 0) { 2796 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2797 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2798 Vals.push_back(Flags); 2799 } 2800 } 2801 break; 2802 case Instruction::FNeg: { 2803 Code = bitc::FUNC_CODE_INST_UNOP; 2804 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2805 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2806 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2807 uint64_t Flags = getOptimizationFlags(&I); 2808 if (Flags != 0) { 2809 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2810 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2811 Vals.push_back(Flags); 2812 } 2813 break; 2814 } 2815 case Instruction::GetElementPtr: { 2816 Code = bitc::FUNC_CODE_INST_GEP; 2817 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2818 auto &GEPInst = cast<GetElementPtrInst>(I); 2819 Vals.push_back(GEPInst.isInBounds()); 2820 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2821 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2822 pushValueAndType(I.getOperand(i), InstID, Vals); 2823 break; 2824 } 2825 case Instruction::ExtractValue: { 2826 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2827 pushValueAndType(I.getOperand(0), InstID, Vals); 2828 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2829 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2830 break; 2831 } 2832 case Instruction::InsertValue: { 2833 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2834 pushValueAndType(I.getOperand(0), InstID, Vals); 2835 pushValueAndType(I.getOperand(1), InstID, Vals); 2836 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2837 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2838 break; 2839 } 2840 case Instruction::Select: { 2841 Code = bitc::FUNC_CODE_INST_VSELECT; 2842 pushValueAndType(I.getOperand(1), InstID, Vals); 2843 pushValue(I.getOperand(2), InstID, Vals); 2844 pushValueAndType(I.getOperand(0), InstID, Vals); 2845 uint64_t Flags = getOptimizationFlags(&I); 2846 if (Flags != 0) 2847 Vals.push_back(Flags); 2848 break; 2849 } 2850 case Instruction::ExtractElement: 2851 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2852 pushValueAndType(I.getOperand(0), InstID, Vals); 2853 pushValueAndType(I.getOperand(1), InstID, Vals); 2854 break; 2855 case Instruction::InsertElement: 2856 Code = bitc::FUNC_CODE_INST_INSERTELT; 2857 pushValueAndType(I.getOperand(0), InstID, Vals); 2858 pushValue(I.getOperand(1), InstID, Vals); 2859 pushValueAndType(I.getOperand(2), InstID, Vals); 2860 break; 2861 case Instruction::ShuffleVector: 2862 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2863 pushValueAndType(I.getOperand(0), InstID, Vals); 2864 pushValue(I.getOperand(1), InstID, Vals); 2865 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2866 Vals); 2867 break; 2868 case Instruction::ICmp: 2869 case Instruction::FCmp: { 2870 // compare returning Int1Ty or vector of Int1Ty 2871 Code = bitc::FUNC_CODE_INST_CMP2; 2872 pushValueAndType(I.getOperand(0), InstID, Vals); 2873 pushValue(I.getOperand(1), InstID, Vals); 2874 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2875 uint64_t Flags = getOptimizationFlags(&I); 2876 if (Flags != 0) 2877 Vals.push_back(Flags); 2878 break; 2879 } 2880 2881 case Instruction::Ret: 2882 { 2883 Code = bitc::FUNC_CODE_INST_RET; 2884 unsigned NumOperands = I.getNumOperands(); 2885 if (NumOperands == 0) 2886 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2887 else if (NumOperands == 1) { 2888 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2889 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2890 } else { 2891 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2892 pushValueAndType(I.getOperand(i), InstID, Vals); 2893 } 2894 } 2895 break; 2896 case Instruction::Br: 2897 { 2898 Code = bitc::FUNC_CODE_INST_BR; 2899 const BranchInst &II = cast<BranchInst>(I); 2900 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2901 if (II.isConditional()) { 2902 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2903 pushValue(II.getCondition(), InstID, Vals); 2904 } 2905 } 2906 break; 2907 case Instruction::Switch: 2908 { 2909 Code = bitc::FUNC_CODE_INST_SWITCH; 2910 const SwitchInst &SI = cast<SwitchInst>(I); 2911 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2912 pushValue(SI.getCondition(), InstID, Vals); 2913 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2914 for (auto Case : SI.cases()) { 2915 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2916 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2917 } 2918 } 2919 break; 2920 case Instruction::IndirectBr: 2921 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2922 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2923 // Encode the address operand as relative, but not the basic blocks. 2924 pushValue(I.getOperand(0), InstID, Vals); 2925 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2926 Vals.push_back(VE.getValueID(I.getOperand(i))); 2927 break; 2928 2929 case Instruction::Invoke: { 2930 const InvokeInst *II = cast<InvokeInst>(&I); 2931 const Value *Callee = II->getCalledOperand(); 2932 FunctionType *FTy = II->getFunctionType(); 2933 2934 if (II->hasOperandBundles()) 2935 writeOperandBundles(*II, InstID); 2936 2937 Code = bitc::FUNC_CODE_INST_INVOKE; 2938 2939 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2940 Vals.push_back(II->getCallingConv() | 1 << 13); 2941 Vals.push_back(VE.getValueID(II->getNormalDest())); 2942 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2943 Vals.push_back(VE.getTypeID(FTy)); 2944 pushValueAndType(Callee, InstID, Vals); 2945 2946 // Emit value #'s for the fixed parameters. 2947 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2948 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2949 2950 // Emit type/value pairs for varargs params. 2951 if (FTy->isVarArg()) { 2952 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2953 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2954 } 2955 break; 2956 } 2957 case Instruction::Resume: 2958 Code = bitc::FUNC_CODE_INST_RESUME; 2959 pushValueAndType(I.getOperand(0), InstID, Vals); 2960 break; 2961 case Instruction::CleanupRet: { 2962 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2963 const auto &CRI = cast<CleanupReturnInst>(I); 2964 pushValue(CRI.getCleanupPad(), InstID, Vals); 2965 if (CRI.hasUnwindDest()) 2966 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2967 break; 2968 } 2969 case Instruction::CatchRet: { 2970 Code = bitc::FUNC_CODE_INST_CATCHRET; 2971 const auto &CRI = cast<CatchReturnInst>(I); 2972 pushValue(CRI.getCatchPad(), InstID, Vals); 2973 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2974 break; 2975 } 2976 case Instruction::CleanupPad: 2977 case Instruction::CatchPad: { 2978 const auto &FuncletPad = cast<FuncletPadInst>(I); 2979 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2980 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2981 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2982 2983 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2984 Vals.push_back(NumArgOperands); 2985 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2986 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2987 break; 2988 } 2989 case Instruction::CatchSwitch: { 2990 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2991 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2992 2993 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2994 2995 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2996 Vals.push_back(NumHandlers); 2997 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2998 Vals.push_back(VE.getValueID(CatchPadBB)); 2999 3000 if (CatchSwitch.hasUnwindDest()) 3001 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3002 break; 3003 } 3004 case Instruction::CallBr: { 3005 const CallBrInst *CBI = cast<CallBrInst>(&I); 3006 const Value *Callee = CBI->getCalledOperand(); 3007 FunctionType *FTy = CBI->getFunctionType(); 3008 3009 if (CBI->hasOperandBundles()) 3010 writeOperandBundles(*CBI, InstID); 3011 3012 Code = bitc::FUNC_CODE_INST_CALLBR; 3013 3014 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3015 3016 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3017 1 << bitc::CALL_EXPLICIT_TYPE); 3018 3019 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3020 Vals.push_back(CBI->getNumIndirectDests()); 3021 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3022 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3023 3024 Vals.push_back(VE.getTypeID(FTy)); 3025 pushValueAndType(Callee, InstID, Vals); 3026 3027 // Emit value #'s for the fixed parameters. 3028 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3029 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3030 3031 // Emit type/value pairs for varargs params. 3032 if (FTy->isVarArg()) { 3033 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3034 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3035 } 3036 break; 3037 } 3038 case Instruction::Unreachable: 3039 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3040 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3041 break; 3042 3043 case Instruction::PHI: { 3044 const PHINode &PN = cast<PHINode>(I); 3045 Code = bitc::FUNC_CODE_INST_PHI; 3046 // With the newer instruction encoding, forward references could give 3047 // negative valued IDs. This is most common for PHIs, so we use 3048 // signed VBRs. 3049 SmallVector<uint64_t, 128> Vals64; 3050 Vals64.push_back(VE.getTypeID(PN.getType())); 3051 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3052 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3053 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3054 } 3055 3056 uint64_t Flags = getOptimizationFlags(&I); 3057 if (Flags != 0) 3058 Vals64.push_back(Flags); 3059 3060 // Emit a Vals64 vector and exit. 3061 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3062 Vals64.clear(); 3063 return; 3064 } 3065 3066 case Instruction::LandingPad: { 3067 const LandingPadInst &LP = cast<LandingPadInst>(I); 3068 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3069 Vals.push_back(VE.getTypeID(LP.getType())); 3070 Vals.push_back(LP.isCleanup()); 3071 Vals.push_back(LP.getNumClauses()); 3072 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3073 if (LP.isCatch(I)) 3074 Vals.push_back(LandingPadInst::Catch); 3075 else 3076 Vals.push_back(LandingPadInst::Filter); 3077 pushValueAndType(LP.getClause(I), InstID, Vals); 3078 } 3079 break; 3080 } 3081 3082 case Instruction::Alloca: { 3083 Code = bitc::FUNC_CODE_INST_ALLOCA; 3084 const AllocaInst &AI = cast<AllocaInst>(I); 3085 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3086 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3087 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3088 using APV = AllocaPackedValues; 3089 unsigned Record = 0; 3090 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3091 Bitfield::set<APV::AlignLower>( 3092 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3093 Bitfield::set<APV::AlignUpper>(Record, 3094 EncodedAlign >> APV::AlignLower::Bits); 3095 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3096 Bitfield::set<APV::ExplicitType>(Record, true); 3097 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3098 Vals.push_back(Record); 3099 3100 unsigned AS = AI.getAddressSpace(); 3101 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3102 Vals.push_back(AS); 3103 break; 3104 } 3105 3106 case Instruction::Load: 3107 if (cast<LoadInst>(I).isAtomic()) { 3108 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3109 pushValueAndType(I.getOperand(0), InstID, Vals); 3110 } else { 3111 Code = bitc::FUNC_CODE_INST_LOAD; 3112 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3113 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3114 } 3115 Vals.push_back(VE.getTypeID(I.getType())); 3116 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3117 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3118 if (cast<LoadInst>(I).isAtomic()) { 3119 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3120 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3121 } 3122 break; 3123 case Instruction::Store: 3124 if (cast<StoreInst>(I).isAtomic()) 3125 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3126 else 3127 Code = bitc::FUNC_CODE_INST_STORE; 3128 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3129 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3130 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3131 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3132 if (cast<StoreInst>(I).isAtomic()) { 3133 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3134 Vals.push_back( 3135 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3136 } 3137 break; 3138 case Instruction::AtomicCmpXchg: 3139 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3140 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3141 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3142 pushValue(I.getOperand(2), InstID, Vals); // newval. 3143 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3144 Vals.push_back( 3145 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3146 Vals.push_back( 3147 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3148 Vals.push_back( 3149 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3150 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3151 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3152 break; 3153 case Instruction::AtomicRMW: 3154 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3155 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3156 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3157 Vals.push_back( 3158 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3159 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3160 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3161 Vals.push_back( 3162 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3163 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3164 break; 3165 case Instruction::Fence: 3166 Code = bitc::FUNC_CODE_INST_FENCE; 3167 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3168 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3169 break; 3170 case Instruction::Call: { 3171 const CallInst &CI = cast<CallInst>(I); 3172 FunctionType *FTy = CI.getFunctionType(); 3173 3174 if (CI.hasOperandBundles()) 3175 writeOperandBundles(CI, InstID); 3176 3177 Code = bitc::FUNC_CODE_INST_CALL; 3178 3179 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3180 3181 unsigned Flags = getOptimizationFlags(&I); 3182 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3183 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3184 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3185 1 << bitc::CALL_EXPLICIT_TYPE | 3186 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3187 unsigned(Flags != 0) << bitc::CALL_FMF); 3188 if (Flags != 0) 3189 Vals.push_back(Flags); 3190 3191 Vals.push_back(VE.getTypeID(FTy)); 3192 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3193 3194 // Emit value #'s for the fixed parameters. 3195 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3196 // Check for labels (can happen with asm labels). 3197 if (FTy->getParamType(i)->isLabelTy()) 3198 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3199 else 3200 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3201 } 3202 3203 // Emit type/value pairs for varargs params. 3204 if (FTy->isVarArg()) { 3205 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3206 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3207 } 3208 break; 3209 } 3210 case Instruction::VAArg: 3211 Code = bitc::FUNC_CODE_INST_VAARG; 3212 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3213 pushValue(I.getOperand(0), InstID, Vals); // valist. 3214 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3215 break; 3216 case Instruction::Freeze: 3217 Code = bitc::FUNC_CODE_INST_FREEZE; 3218 pushValueAndType(I.getOperand(0), InstID, Vals); 3219 break; 3220 } 3221 3222 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3223 Vals.clear(); 3224 } 3225 3226 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3227 /// to allow clients to efficiently find the function body. 3228 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3229 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3230 // Get the offset of the VST we are writing, and backpatch it into 3231 // the VST forward declaration record. 3232 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3233 // The BitcodeStartBit was the stream offset of the identification block. 3234 VSTOffset -= bitcodeStartBit(); 3235 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3236 // Note that we add 1 here because the offset is relative to one word 3237 // before the start of the identification block, which was historically 3238 // always the start of the regular bitcode header. 3239 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3240 3241 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3242 3243 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3244 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3247 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3248 3249 for (const Function &F : M) { 3250 uint64_t Record[2]; 3251 3252 if (F.isDeclaration()) 3253 continue; 3254 3255 Record[0] = VE.getValueID(&F); 3256 3257 // Save the word offset of the function (from the start of the 3258 // actual bitcode written to the stream). 3259 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3260 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3261 // Note that we add 1 here because the offset is relative to one word 3262 // before the start of the identification block, which was historically 3263 // always the start of the regular bitcode header. 3264 Record[1] = BitcodeIndex / 32 + 1; 3265 3266 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3267 } 3268 3269 Stream.ExitBlock(); 3270 } 3271 3272 /// Emit names for arguments, instructions and basic blocks in a function. 3273 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3274 const ValueSymbolTable &VST) { 3275 if (VST.empty()) 3276 return; 3277 3278 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3279 3280 // FIXME: Set up the abbrev, we know how many values there are! 3281 // FIXME: We know if the type names can use 7-bit ascii. 3282 SmallVector<uint64_t, 64> NameVals; 3283 3284 for (const ValueName &Name : VST) { 3285 // Figure out the encoding to use for the name. 3286 StringEncoding Bits = getStringEncoding(Name.getKey()); 3287 3288 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3289 NameVals.push_back(VE.getValueID(Name.getValue())); 3290 3291 // VST_CODE_ENTRY: [valueid, namechar x N] 3292 // VST_CODE_BBENTRY: [bbid, namechar x N] 3293 unsigned Code; 3294 if (isa<BasicBlock>(Name.getValue())) { 3295 Code = bitc::VST_CODE_BBENTRY; 3296 if (Bits == SE_Char6) 3297 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3298 } else { 3299 Code = bitc::VST_CODE_ENTRY; 3300 if (Bits == SE_Char6) 3301 AbbrevToUse = VST_ENTRY_6_ABBREV; 3302 else if (Bits == SE_Fixed7) 3303 AbbrevToUse = VST_ENTRY_7_ABBREV; 3304 } 3305 3306 for (const auto P : Name.getKey()) 3307 NameVals.push_back((unsigned char)P); 3308 3309 // Emit the finished record. 3310 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3311 NameVals.clear(); 3312 } 3313 3314 Stream.ExitBlock(); 3315 } 3316 3317 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3318 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3319 unsigned Code; 3320 if (isa<BasicBlock>(Order.V)) 3321 Code = bitc::USELIST_CODE_BB; 3322 else 3323 Code = bitc::USELIST_CODE_DEFAULT; 3324 3325 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3326 Record.push_back(VE.getValueID(Order.V)); 3327 Stream.EmitRecord(Code, Record); 3328 } 3329 3330 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3331 assert(VE.shouldPreserveUseListOrder() && 3332 "Expected to be preserving use-list order"); 3333 3334 auto hasMore = [&]() { 3335 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3336 }; 3337 if (!hasMore()) 3338 // Nothing to do. 3339 return; 3340 3341 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3342 while (hasMore()) { 3343 writeUseList(std::move(VE.UseListOrders.back())); 3344 VE.UseListOrders.pop_back(); 3345 } 3346 Stream.ExitBlock(); 3347 } 3348 3349 /// Emit a function body to the module stream. 3350 void ModuleBitcodeWriter::writeFunction( 3351 const Function &F, 3352 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3353 // Save the bitcode index of the start of this function block for recording 3354 // in the VST. 3355 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3356 3357 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3358 VE.incorporateFunction(F); 3359 3360 SmallVector<unsigned, 64> Vals; 3361 3362 // Emit the number of basic blocks, so the reader can create them ahead of 3363 // time. 3364 Vals.push_back(VE.getBasicBlocks().size()); 3365 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3366 Vals.clear(); 3367 3368 // If there are function-local constants, emit them now. 3369 unsigned CstStart, CstEnd; 3370 VE.getFunctionConstantRange(CstStart, CstEnd); 3371 writeConstants(CstStart, CstEnd, false); 3372 3373 // If there is function-local metadata, emit it now. 3374 writeFunctionMetadata(F); 3375 3376 // Keep a running idea of what the instruction ID is. 3377 unsigned InstID = CstEnd; 3378 3379 bool NeedsMetadataAttachment = F.hasMetadata(); 3380 3381 DILocation *LastDL = nullptr; 3382 SmallSetVector<Function *, 4> BlockAddressUsers; 3383 3384 // Finally, emit all the instructions, in order. 3385 for (const BasicBlock &BB : F) { 3386 for (const Instruction &I : BB) { 3387 writeInstruction(I, InstID, Vals); 3388 3389 if (!I.getType()->isVoidTy()) 3390 ++InstID; 3391 3392 // If the instruction has metadata, write a metadata attachment later. 3393 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3394 3395 // If the instruction has a debug location, emit it. 3396 DILocation *DL = I.getDebugLoc(); 3397 if (!DL) 3398 continue; 3399 3400 if (DL == LastDL) { 3401 // Just repeat the same debug loc as last time. 3402 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3403 continue; 3404 } 3405 3406 Vals.push_back(DL->getLine()); 3407 Vals.push_back(DL->getColumn()); 3408 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3409 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3410 Vals.push_back(DL->isImplicitCode()); 3411 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3412 Vals.clear(); 3413 3414 LastDL = DL; 3415 } 3416 3417 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3418 SmallVector<Value *> Worklist{BA}; 3419 SmallPtrSet<Value *, 8> Visited{BA}; 3420 while (!Worklist.empty()) { 3421 Value *V = Worklist.pop_back_val(); 3422 for (User *U : V->users()) { 3423 if (auto *I = dyn_cast<Instruction>(U)) { 3424 Function *P = I->getFunction(); 3425 if (P != &F) 3426 BlockAddressUsers.insert(P); 3427 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3428 Visited.insert(U).second) 3429 Worklist.push_back(U); 3430 } 3431 } 3432 } 3433 } 3434 3435 if (!BlockAddressUsers.empty()) { 3436 Vals.resize(BlockAddressUsers.size()); 3437 for (auto I : llvm::enumerate(BlockAddressUsers)) 3438 Vals[I.index()] = VE.getValueID(I.value()); 3439 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3440 Vals.clear(); 3441 } 3442 3443 // Emit names for all the instructions etc. 3444 if (auto *Symtab = F.getValueSymbolTable()) 3445 writeFunctionLevelValueSymbolTable(*Symtab); 3446 3447 if (NeedsMetadataAttachment) 3448 writeFunctionMetadataAttachment(F); 3449 if (VE.shouldPreserveUseListOrder()) 3450 writeUseListBlock(&F); 3451 VE.purgeFunction(); 3452 Stream.ExitBlock(); 3453 } 3454 3455 // Emit blockinfo, which defines the standard abbreviations etc. 3456 void ModuleBitcodeWriter::writeBlockInfo() { 3457 // We only want to emit block info records for blocks that have multiple 3458 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3459 // Other blocks can define their abbrevs inline. 3460 Stream.EnterBlockInfoBlock(); 3461 3462 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3463 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3468 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3469 VST_ENTRY_8_ABBREV) 3470 llvm_unreachable("Unexpected abbrev ordering!"); 3471 } 3472 3473 { // 7-bit fixed width VST_CODE_ENTRY strings. 3474 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3475 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3479 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3480 VST_ENTRY_7_ABBREV) 3481 llvm_unreachable("Unexpected abbrev ordering!"); 3482 } 3483 { // 6-bit char6 VST_CODE_ENTRY strings. 3484 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3485 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3489 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3490 VST_ENTRY_6_ABBREV) 3491 llvm_unreachable("Unexpected abbrev ordering!"); 3492 } 3493 { // 6-bit char6 VST_CODE_BBENTRY strings. 3494 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3495 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3499 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3500 VST_BBENTRY_6_ABBREV) 3501 llvm_unreachable("Unexpected abbrev ordering!"); 3502 } 3503 3504 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3505 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3506 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3508 VE.computeBitsRequiredForTypeIndicies())); 3509 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3510 CONSTANTS_SETTYPE_ABBREV) 3511 llvm_unreachable("Unexpected abbrev ordering!"); 3512 } 3513 3514 { // INTEGER abbrev for CONSTANTS_BLOCK. 3515 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3516 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3518 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3519 CONSTANTS_INTEGER_ABBREV) 3520 llvm_unreachable("Unexpected abbrev ordering!"); 3521 } 3522 3523 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3524 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3525 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3528 VE.computeBitsRequiredForTypeIndicies())); 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3530 3531 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3532 CONSTANTS_CE_CAST_Abbrev) 3533 llvm_unreachable("Unexpected abbrev ordering!"); 3534 } 3535 { // NULL abbrev for CONSTANTS_BLOCK. 3536 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3537 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3538 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3539 CONSTANTS_NULL_Abbrev) 3540 llvm_unreachable("Unexpected abbrev ordering!"); 3541 } 3542 3543 // FIXME: This should only use space for first class types! 3544 3545 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3546 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3547 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3550 VE.computeBitsRequiredForTypeIndicies())); 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3553 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3554 FUNCTION_INST_LOAD_ABBREV) 3555 llvm_unreachable("Unexpected abbrev ordering!"); 3556 } 3557 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3558 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3559 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3562 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3563 FUNCTION_INST_UNOP_ABBREV) 3564 llvm_unreachable("Unexpected abbrev ordering!"); 3565 } 3566 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3567 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3568 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3572 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3573 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3574 llvm_unreachable("Unexpected abbrev ordering!"); 3575 } 3576 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3577 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3578 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3582 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3583 FUNCTION_INST_BINOP_ABBREV) 3584 llvm_unreachable("Unexpected abbrev ordering!"); 3585 } 3586 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3587 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3588 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3593 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3594 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3595 llvm_unreachable("Unexpected abbrev ordering!"); 3596 } 3597 { // INST_CAST abbrev for FUNCTION_BLOCK. 3598 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3599 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3602 VE.computeBitsRequiredForTypeIndicies())); 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3604 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3605 FUNCTION_INST_CAST_ABBREV) 3606 llvm_unreachable("Unexpected abbrev ordering!"); 3607 } 3608 3609 { // INST_RET abbrev for FUNCTION_BLOCK. 3610 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3611 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3612 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3613 FUNCTION_INST_RET_VOID_ABBREV) 3614 llvm_unreachable("Unexpected abbrev ordering!"); 3615 } 3616 { // INST_RET abbrev for FUNCTION_BLOCK. 3617 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3618 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3620 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3621 FUNCTION_INST_RET_VAL_ABBREV) 3622 llvm_unreachable("Unexpected abbrev ordering!"); 3623 } 3624 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3625 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3626 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3627 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3628 FUNCTION_INST_UNREACHABLE_ABBREV) 3629 llvm_unreachable("Unexpected abbrev ordering!"); 3630 } 3631 { 3632 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3633 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3636 Log2_32_Ceil(VE.getTypes().size() + 1))); 3637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3639 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3640 FUNCTION_INST_GEP_ABBREV) 3641 llvm_unreachable("Unexpected abbrev ordering!"); 3642 } 3643 3644 Stream.ExitBlock(); 3645 } 3646 3647 /// Write the module path strings, currently only used when generating 3648 /// a combined index file. 3649 void IndexBitcodeWriter::writeModStrings() { 3650 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3651 3652 // TODO: See which abbrev sizes we actually need to emit 3653 3654 // 8-bit fixed-width MST_ENTRY strings. 3655 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3656 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3660 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3661 3662 // 7-bit fixed width MST_ENTRY strings. 3663 Abbv = std::make_shared<BitCodeAbbrev>(); 3664 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3668 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3669 3670 // 6-bit char6 MST_ENTRY strings. 3671 Abbv = std::make_shared<BitCodeAbbrev>(); 3672 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3676 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3677 3678 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3679 Abbv = std::make_shared<BitCodeAbbrev>(); 3680 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3686 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3687 3688 SmallVector<unsigned, 64> Vals; 3689 forEachModule( 3690 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3691 StringRef Key = MPSE.getKey(); 3692 const auto &Value = MPSE.getValue(); 3693 StringEncoding Bits = getStringEncoding(Key); 3694 unsigned AbbrevToUse = Abbrev8Bit; 3695 if (Bits == SE_Char6) 3696 AbbrevToUse = Abbrev6Bit; 3697 else if (Bits == SE_Fixed7) 3698 AbbrevToUse = Abbrev7Bit; 3699 3700 Vals.push_back(Value.first); 3701 Vals.append(Key.begin(), Key.end()); 3702 3703 // Emit the finished record. 3704 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3705 3706 // Emit an optional hash for the module now 3707 const auto &Hash = Value.second; 3708 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3709 Vals.assign(Hash.begin(), Hash.end()); 3710 // Emit the hash record. 3711 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3712 } 3713 3714 Vals.clear(); 3715 }); 3716 Stream.ExitBlock(); 3717 } 3718 3719 /// Write the function type metadata related records that need to appear before 3720 /// a function summary entry (whether per-module or combined). 3721 template <typename Fn> 3722 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3723 FunctionSummary *FS, 3724 Fn GetValueID) { 3725 if (!FS->type_tests().empty()) 3726 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3727 3728 SmallVector<uint64_t, 64> Record; 3729 3730 auto WriteVFuncIdVec = [&](uint64_t Ty, 3731 ArrayRef<FunctionSummary::VFuncId> VFs) { 3732 if (VFs.empty()) 3733 return; 3734 Record.clear(); 3735 for (auto &VF : VFs) { 3736 Record.push_back(VF.GUID); 3737 Record.push_back(VF.Offset); 3738 } 3739 Stream.EmitRecord(Ty, Record); 3740 }; 3741 3742 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3743 FS->type_test_assume_vcalls()); 3744 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3745 FS->type_checked_load_vcalls()); 3746 3747 auto WriteConstVCallVec = [&](uint64_t Ty, 3748 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3749 for (auto &VC : VCs) { 3750 Record.clear(); 3751 Record.push_back(VC.VFunc.GUID); 3752 Record.push_back(VC.VFunc.Offset); 3753 llvm::append_range(Record, VC.Args); 3754 Stream.EmitRecord(Ty, Record); 3755 } 3756 }; 3757 3758 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3759 FS->type_test_assume_const_vcalls()); 3760 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3761 FS->type_checked_load_const_vcalls()); 3762 3763 auto WriteRange = [&](ConstantRange Range) { 3764 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3765 assert(Range.getLower().getNumWords() == 1); 3766 assert(Range.getUpper().getNumWords() == 1); 3767 emitSignedInt64(Record, *Range.getLower().getRawData()); 3768 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3769 }; 3770 3771 if (!FS->paramAccesses().empty()) { 3772 Record.clear(); 3773 for (auto &Arg : FS->paramAccesses()) { 3774 size_t UndoSize = Record.size(); 3775 Record.push_back(Arg.ParamNo); 3776 WriteRange(Arg.Use); 3777 Record.push_back(Arg.Calls.size()); 3778 for (auto &Call : Arg.Calls) { 3779 Record.push_back(Call.ParamNo); 3780 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3781 if (!ValueID) { 3782 // If ValueID is unknown we can't drop just this call, we must drop 3783 // entire parameter. 3784 Record.resize(UndoSize); 3785 break; 3786 } 3787 Record.push_back(*ValueID); 3788 WriteRange(Call.Offsets); 3789 } 3790 } 3791 if (!Record.empty()) 3792 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3793 } 3794 } 3795 3796 /// Collect type IDs from type tests used by function. 3797 static void 3798 getReferencedTypeIds(FunctionSummary *FS, 3799 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3800 if (!FS->type_tests().empty()) 3801 for (auto &TT : FS->type_tests()) 3802 ReferencedTypeIds.insert(TT); 3803 3804 auto GetReferencedTypesFromVFuncIdVec = 3805 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3806 for (auto &VF : VFs) 3807 ReferencedTypeIds.insert(VF.GUID); 3808 }; 3809 3810 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3811 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3812 3813 auto GetReferencedTypesFromConstVCallVec = 3814 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3815 for (auto &VC : VCs) 3816 ReferencedTypeIds.insert(VC.VFunc.GUID); 3817 }; 3818 3819 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3820 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3821 } 3822 3823 static void writeWholeProgramDevirtResolutionByArg( 3824 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3825 const WholeProgramDevirtResolution::ByArg &ByArg) { 3826 NameVals.push_back(args.size()); 3827 llvm::append_range(NameVals, args); 3828 3829 NameVals.push_back(ByArg.TheKind); 3830 NameVals.push_back(ByArg.Info); 3831 NameVals.push_back(ByArg.Byte); 3832 NameVals.push_back(ByArg.Bit); 3833 } 3834 3835 static void writeWholeProgramDevirtResolution( 3836 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3837 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3838 NameVals.push_back(Id); 3839 3840 NameVals.push_back(Wpd.TheKind); 3841 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3842 NameVals.push_back(Wpd.SingleImplName.size()); 3843 3844 NameVals.push_back(Wpd.ResByArg.size()); 3845 for (auto &A : Wpd.ResByArg) 3846 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3847 } 3848 3849 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3850 StringTableBuilder &StrtabBuilder, 3851 const std::string &Id, 3852 const TypeIdSummary &Summary) { 3853 NameVals.push_back(StrtabBuilder.add(Id)); 3854 NameVals.push_back(Id.size()); 3855 3856 NameVals.push_back(Summary.TTRes.TheKind); 3857 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3858 NameVals.push_back(Summary.TTRes.AlignLog2); 3859 NameVals.push_back(Summary.TTRes.SizeM1); 3860 NameVals.push_back(Summary.TTRes.BitMask); 3861 NameVals.push_back(Summary.TTRes.InlineBits); 3862 3863 for (auto &W : Summary.WPDRes) 3864 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3865 W.second); 3866 } 3867 3868 static void writeTypeIdCompatibleVtableSummaryRecord( 3869 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3870 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3871 ValueEnumerator &VE) { 3872 NameVals.push_back(StrtabBuilder.add(Id)); 3873 NameVals.push_back(Id.size()); 3874 3875 for (auto &P : Summary) { 3876 NameVals.push_back(P.AddressPointOffset); 3877 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3878 } 3879 } 3880 3881 // Helper to emit a single function summary record. 3882 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3883 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3884 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3885 const Function &F) { 3886 NameVals.push_back(ValueID); 3887 3888 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3889 3890 writeFunctionTypeMetadataRecords( 3891 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3892 return {VE.getValueID(VI.getValue())}; 3893 }); 3894 3895 auto SpecialRefCnts = FS->specialRefCounts(); 3896 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3897 NameVals.push_back(FS->instCount()); 3898 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3899 NameVals.push_back(FS->refs().size()); 3900 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3901 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3902 3903 for (auto &RI : FS->refs()) 3904 NameVals.push_back(VE.getValueID(RI.getValue())); 3905 3906 bool HasProfileData = 3907 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3908 for (auto &ECI : FS->calls()) { 3909 NameVals.push_back(getValueId(ECI.first)); 3910 if (HasProfileData) 3911 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3912 else if (WriteRelBFToSummary) 3913 NameVals.push_back(ECI.second.RelBlockFreq); 3914 } 3915 3916 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3917 unsigned Code = 3918 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3919 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3920 : bitc::FS_PERMODULE)); 3921 3922 // Emit the finished record. 3923 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3924 NameVals.clear(); 3925 } 3926 3927 // Collect the global value references in the given variable's initializer, 3928 // and emit them in a summary record. 3929 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3930 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3931 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3932 auto VI = Index->getValueInfo(V.getGUID()); 3933 if (!VI || VI.getSummaryList().empty()) { 3934 // Only declarations should not have a summary (a declaration might however 3935 // have a summary if the def was in module level asm). 3936 assert(V.isDeclaration()); 3937 return; 3938 } 3939 auto *Summary = VI.getSummaryList()[0].get(); 3940 NameVals.push_back(VE.getValueID(&V)); 3941 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3942 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3943 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3944 3945 auto VTableFuncs = VS->vTableFuncs(); 3946 if (!VTableFuncs.empty()) 3947 NameVals.push_back(VS->refs().size()); 3948 3949 unsigned SizeBeforeRefs = NameVals.size(); 3950 for (auto &RI : VS->refs()) 3951 NameVals.push_back(VE.getValueID(RI.getValue())); 3952 // Sort the refs for determinism output, the vector returned by FS->refs() has 3953 // been initialized from a DenseSet. 3954 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3955 3956 if (VTableFuncs.empty()) 3957 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3958 FSModRefsAbbrev); 3959 else { 3960 // VTableFuncs pairs should already be sorted by offset. 3961 for (auto &P : VTableFuncs) { 3962 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3963 NameVals.push_back(P.VTableOffset); 3964 } 3965 3966 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3967 FSModVTableRefsAbbrev); 3968 } 3969 NameVals.clear(); 3970 } 3971 3972 /// Emit the per-module summary section alongside the rest of 3973 /// the module's bitcode. 3974 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3975 // By default we compile with ThinLTO if the module has a summary, but the 3976 // client can request full LTO with a module flag. 3977 bool IsThinLTO = true; 3978 if (auto *MD = 3979 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3980 IsThinLTO = MD->getZExtValue(); 3981 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3982 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3983 4); 3984 3985 Stream.EmitRecord( 3986 bitc::FS_VERSION, 3987 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3988 3989 // Write the index flags. 3990 uint64_t Flags = 0; 3991 // Bits 1-3 are set only in the combined index, skip them. 3992 if (Index->enableSplitLTOUnit()) 3993 Flags |= 0x8; 3994 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3995 3996 if (Index->begin() == Index->end()) { 3997 Stream.ExitBlock(); 3998 return; 3999 } 4000 4001 for (const auto &GVI : valueIds()) { 4002 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4003 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4004 } 4005 4006 // Abbrev for FS_PERMODULE_PROFILE. 4007 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4008 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4016 // numrefs x valueid, n x (valueid, hotness) 4017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4019 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4020 4021 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4022 Abbv = std::make_shared<BitCodeAbbrev>(); 4023 if (WriteRelBFToSummary) 4024 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4025 else 4026 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4034 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4037 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4038 4039 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4040 Abbv = std::make_shared<BitCodeAbbrev>(); 4041 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4046 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4047 4048 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4049 Abbv = std::make_shared<BitCodeAbbrev>(); 4050 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4054 // numrefs x valueid, n x (valueid , offset) 4055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4057 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4058 4059 // Abbrev for FS_ALIAS. 4060 Abbv = std::make_shared<BitCodeAbbrev>(); 4061 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4065 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4066 4067 // Abbrev for FS_TYPE_ID_METADATA 4068 Abbv = std::make_shared<BitCodeAbbrev>(); 4069 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4072 // n x (valueid , offset) 4073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4075 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4076 4077 SmallVector<uint64_t, 64> NameVals; 4078 // Iterate over the list of functions instead of the Index to 4079 // ensure the ordering is stable. 4080 for (const Function &F : M) { 4081 // Summary emission does not support anonymous functions, they have to 4082 // renamed using the anonymous function renaming pass. 4083 if (!F.hasName()) 4084 report_fatal_error("Unexpected anonymous function when writing summary"); 4085 4086 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4087 if (!VI || VI.getSummaryList().empty()) { 4088 // Only declarations should not have a summary (a declaration might 4089 // however have a summary if the def was in module level asm). 4090 assert(F.isDeclaration()); 4091 continue; 4092 } 4093 auto *Summary = VI.getSummaryList()[0].get(); 4094 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4095 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4096 } 4097 4098 // Capture references from GlobalVariable initializers, which are outside 4099 // of a function scope. 4100 for (const GlobalVariable &G : M.globals()) 4101 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4102 FSModVTableRefsAbbrev); 4103 4104 for (const GlobalAlias &A : M.aliases()) { 4105 auto *Aliasee = A.getAliaseeObject(); 4106 if (!Aliasee->hasName()) 4107 // Nameless function don't have an entry in the summary, skip it. 4108 continue; 4109 auto AliasId = VE.getValueID(&A); 4110 auto AliaseeId = VE.getValueID(Aliasee); 4111 NameVals.push_back(AliasId); 4112 auto *Summary = Index->getGlobalValueSummary(A); 4113 AliasSummary *AS = cast<AliasSummary>(Summary); 4114 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4115 NameVals.push_back(AliaseeId); 4116 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4117 NameVals.clear(); 4118 } 4119 4120 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4121 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4122 S.second, VE); 4123 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4124 TypeIdCompatibleVtableAbbrev); 4125 NameVals.clear(); 4126 } 4127 4128 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4129 ArrayRef<uint64_t>{Index->getBlockCount()}); 4130 4131 Stream.ExitBlock(); 4132 } 4133 4134 /// Emit the combined summary section into the combined index file. 4135 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4136 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4137 Stream.EmitRecord( 4138 bitc::FS_VERSION, 4139 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4140 4141 // Write the index flags. 4142 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4143 4144 for (const auto &GVI : valueIds()) { 4145 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4146 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4147 } 4148 4149 // Abbrev for FS_COMBINED. 4150 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4151 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4161 // numrefs x valueid, n x (valueid) 4162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4164 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4165 4166 // Abbrev for FS_COMBINED_PROFILE. 4167 Abbv = std::make_shared<BitCodeAbbrev>(); 4168 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4178 // numrefs x valueid, n x (valueid, hotness) 4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4181 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4182 4183 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4184 Abbv = std::make_shared<BitCodeAbbrev>(); 4185 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4191 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4192 4193 // Abbrev for FS_COMBINED_ALIAS. 4194 Abbv = std::make_shared<BitCodeAbbrev>(); 4195 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4200 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4201 4202 // The aliases are emitted as a post-pass, and will point to the value 4203 // id of the aliasee. Save them in a vector for post-processing. 4204 SmallVector<AliasSummary *, 64> Aliases; 4205 4206 // Save the value id for each summary for alias emission. 4207 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4208 4209 SmallVector<uint64_t, 64> NameVals; 4210 4211 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4212 // with the type ids referenced by this index file. 4213 std::set<GlobalValue::GUID> ReferencedTypeIds; 4214 4215 // For local linkage, we also emit the original name separately 4216 // immediately after the record. 4217 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4218 // We don't need to emit the original name if we are writing the index for 4219 // distributed backends (in which case ModuleToSummariesForIndex is 4220 // non-null). The original name is only needed during the thin link, since 4221 // for SamplePGO the indirect call targets for local functions have 4222 // have the original name annotated in profile. 4223 // Continue to emit it when writing out the entire combined index, which is 4224 // used in testing the thin link via llvm-lto. 4225 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4226 return; 4227 NameVals.push_back(S.getOriginalName()); 4228 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4229 NameVals.clear(); 4230 }; 4231 4232 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4233 forEachSummary([&](GVInfo I, bool IsAliasee) { 4234 GlobalValueSummary *S = I.second; 4235 assert(S); 4236 DefOrUseGUIDs.insert(I.first); 4237 for (const ValueInfo &VI : S->refs()) 4238 DefOrUseGUIDs.insert(VI.getGUID()); 4239 4240 auto ValueId = getValueId(I.first); 4241 assert(ValueId); 4242 SummaryToValueIdMap[S] = *ValueId; 4243 4244 // If this is invoked for an aliasee, we want to record the above 4245 // mapping, but then not emit a summary entry (if the aliasee is 4246 // to be imported, we will invoke this separately with IsAliasee=false). 4247 if (IsAliasee) 4248 return; 4249 4250 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4251 // Will process aliases as a post-pass because the reader wants all 4252 // global to be loaded first. 4253 Aliases.push_back(AS); 4254 return; 4255 } 4256 4257 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4258 NameVals.push_back(*ValueId); 4259 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4260 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4261 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4262 for (auto &RI : VS->refs()) { 4263 auto RefValueId = getValueId(RI.getGUID()); 4264 if (!RefValueId) 4265 continue; 4266 NameVals.push_back(*RefValueId); 4267 } 4268 4269 // Emit the finished record. 4270 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4271 FSModRefsAbbrev); 4272 NameVals.clear(); 4273 MaybeEmitOriginalName(*S); 4274 return; 4275 } 4276 4277 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4278 return getValueId(VI.getGUID()); 4279 }; 4280 4281 auto *FS = cast<FunctionSummary>(S); 4282 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4283 getReferencedTypeIds(FS, ReferencedTypeIds); 4284 4285 NameVals.push_back(*ValueId); 4286 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4287 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4288 NameVals.push_back(FS->instCount()); 4289 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4290 NameVals.push_back(FS->entryCount()); 4291 4292 // Fill in below 4293 NameVals.push_back(0); // numrefs 4294 NameVals.push_back(0); // rorefcnt 4295 NameVals.push_back(0); // worefcnt 4296 4297 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4298 for (auto &RI : FS->refs()) { 4299 auto RefValueId = getValueId(RI.getGUID()); 4300 if (!RefValueId) 4301 continue; 4302 NameVals.push_back(*RefValueId); 4303 if (RI.isReadOnly()) 4304 RORefCnt++; 4305 else if (RI.isWriteOnly()) 4306 WORefCnt++; 4307 Count++; 4308 } 4309 NameVals[6] = Count; 4310 NameVals[7] = RORefCnt; 4311 NameVals[8] = WORefCnt; 4312 4313 bool HasProfileData = false; 4314 for (auto &EI : FS->calls()) { 4315 HasProfileData |= 4316 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4317 if (HasProfileData) 4318 break; 4319 } 4320 4321 for (auto &EI : FS->calls()) { 4322 // If this GUID doesn't have a value id, it doesn't have a function 4323 // summary and we don't need to record any calls to it. 4324 Optional<unsigned> CallValueId = GetValueId(EI.first); 4325 if (!CallValueId) 4326 continue; 4327 NameVals.push_back(*CallValueId); 4328 if (HasProfileData) 4329 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4330 } 4331 4332 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4333 unsigned Code = 4334 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4335 4336 // Emit the finished record. 4337 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4338 NameVals.clear(); 4339 MaybeEmitOriginalName(*S); 4340 }); 4341 4342 for (auto *AS : Aliases) { 4343 auto AliasValueId = SummaryToValueIdMap[AS]; 4344 assert(AliasValueId); 4345 NameVals.push_back(AliasValueId); 4346 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4347 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4348 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4349 assert(AliaseeValueId); 4350 NameVals.push_back(AliaseeValueId); 4351 4352 // Emit the finished record. 4353 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4354 NameVals.clear(); 4355 MaybeEmitOriginalName(*AS); 4356 4357 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4358 getReferencedTypeIds(FS, ReferencedTypeIds); 4359 } 4360 4361 if (!Index.cfiFunctionDefs().empty()) { 4362 for (auto &S : Index.cfiFunctionDefs()) { 4363 if (DefOrUseGUIDs.count( 4364 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4365 NameVals.push_back(StrtabBuilder.add(S)); 4366 NameVals.push_back(S.size()); 4367 } 4368 } 4369 if (!NameVals.empty()) { 4370 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4371 NameVals.clear(); 4372 } 4373 } 4374 4375 if (!Index.cfiFunctionDecls().empty()) { 4376 for (auto &S : Index.cfiFunctionDecls()) { 4377 if (DefOrUseGUIDs.count( 4378 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4379 NameVals.push_back(StrtabBuilder.add(S)); 4380 NameVals.push_back(S.size()); 4381 } 4382 } 4383 if (!NameVals.empty()) { 4384 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4385 NameVals.clear(); 4386 } 4387 } 4388 4389 // Walk the GUIDs that were referenced, and write the 4390 // corresponding type id records. 4391 for (auto &T : ReferencedTypeIds) { 4392 auto TidIter = Index.typeIds().equal_range(T); 4393 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4394 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4395 It->second.second); 4396 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4397 NameVals.clear(); 4398 } 4399 } 4400 4401 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4402 ArrayRef<uint64_t>{Index.getBlockCount()}); 4403 4404 Stream.ExitBlock(); 4405 } 4406 4407 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4408 /// current llvm version, and a record for the epoch number. 4409 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4410 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4411 4412 // Write the "user readable" string identifying the bitcode producer 4413 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4414 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4417 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4418 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4419 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4420 4421 // Write the epoch version 4422 Abbv = std::make_shared<BitCodeAbbrev>(); 4423 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4425 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4426 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4427 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4428 Stream.ExitBlock(); 4429 } 4430 4431 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4432 // Emit the module's hash. 4433 // MODULE_CODE_HASH: [5*i32] 4434 if (GenerateHash) { 4435 uint32_t Vals[5]; 4436 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4437 Buffer.size() - BlockStartPos)); 4438 std::array<uint8_t, 20> Hash = Hasher.result(); 4439 for (int Pos = 0; Pos < 20; Pos += 4) { 4440 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4441 } 4442 4443 // Emit the finished record. 4444 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4445 4446 if (ModHash) 4447 // Save the written hash value. 4448 llvm::copy(Vals, std::begin(*ModHash)); 4449 } 4450 } 4451 4452 void ModuleBitcodeWriter::write() { 4453 writeIdentificationBlock(Stream); 4454 4455 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4456 size_t BlockStartPos = Buffer.size(); 4457 4458 writeModuleVersion(); 4459 4460 // Emit blockinfo, which defines the standard abbreviations etc. 4461 writeBlockInfo(); 4462 4463 // Emit information describing all of the types in the module. 4464 writeTypeTable(); 4465 4466 // Emit information about attribute groups. 4467 writeAttributeGroupTable(); 4468 4469 // Emit information about parameter attributes. 4470 writeAttributeTable(); 4471 4472 writeComdats(); 4473 4474 // Emit top-level description of module, including target triple, inline asm, 4475 // descriptors for global variables, and function prototype info. 4476 writeModuleInfo(); 4477 4478 // Emit constants. 4479 writeModuleConstants(); 4480 4481 // Emit metadata kind names. 4482 writeModuleMetadataKinds(); 4483 4484 // Emit metadata. 4485 writeModuleMetadata(); 4486 4487 // Emit module-level use-lists. 4488 if (VE.shouldPreserveUseListOrder()) 4489 writeUseListBlock(nullptr); 4490 4491 writeOperandBundleTags(); 4492 writeSyncScopeNames(); 4493 4494 // Emit function bodies. 4495 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4496 for (const Function &F : M) 4497 if (!F.isDeclaration()) 4498 writeFunction(F, FunctionToBitcodeIndex); 4499 4500 // Need to write after the above call to WriteFunction which populates 4501 // the summary information in the index. 4502 if (Index) 4503 writePerModuleGlobalValueSummary(); 4504 4505 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4506 4507 writeModuleHash(BlockStartPos); 4508 4509 Stream.ExitBlock(); 4510 } 4511 4512 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4513 uint32_t &Position) { 4514 support::endian::write32le(&Buffer[Position], Value); 4515 Position += 4; 4516 } 4517 4518 /// If generating a bc file on darwin, we have to emit a 4519 /// header and trailer to make it compatible with the system archiver. To do 4520 /// this we emit the following header, and then emit a trailer that pads the 4521 /// file out to be a multiple of 16 bytes. 4522 /// 4523 /// struct bc_header { 4524 /// uint32_t Magic; // 0x0B17C0DE 4525 /// uint32_t Version; // Version, currently always 0. 4526 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4527 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4528 /// uint32_t CPUType; // CPU specifier. 4529 /// ... potentially more later ... 4530 /// }; 4531 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4532 const Triple &TT) { 4533 unsigned CPUType = ~0U; 4534 4535 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4536 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4537 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4538 // specific constants here because they are implicitly part of the Darwin ABI. 4539 enum { 4540 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4541 DARWIN_CPU_TYPE_X86 = 7, 4542 DARWIN_CPU_TYPE_ARM = 12, 4543 DARWIN_CPU_TYPE_POWERPC = 18 4544 }; 4545 4546 Triple::ArchType Arch = TT.getArch(); 4547 if (Arch == Triple::x86_64) 4548 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4549 else if (Arch == Triple::x86) 4550 CPUType = DARWIN_CPU_TYPE_X86; 4551 else if (Arch == Triple::ppc) 4552 CPUType = DARWIN_CPU_TYPE_POWERPC; 4553 else if (Arch == Triple::ppc64) 4554 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4555 else if (Arch == Triple::arm || Arch == Triple::thumb) 4556 CPUType = DARWIN_CPU_TYPE_ARM; 4557 4558 // Traditional Bitcode starts after header. 4559 assert(Buffer.size() >= BWH_HeaderSize && 4560 "Expected header size to be reserved"); 4561 unsigned BCOffset = BWH_HeaderSize; 4562 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4563 4564 // Write the magic and version. 4565 unsigned Position = 0; 4566 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4567 writeInt32ToBuffer(0, Buffer, Position); // Version. 4568 writeInt32ToBuffer(BCOffset, Buffer, Position); 4569 writeInt32ToBuffer(BCSize, Buffer, Position); 4570 writeInt32ToBuffer(CPUType, Buffer, Position); 4571 4572 // If the file is not a multiple of 16 bytes, insert dummy padding. 4573 while (Buffer.size() & 15) 4574 Buffer.push_back(0); 4575 } 4576 4577 /// Helper to write the header common to all bitcode files. 4578 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4579 // Emit the file header. 4580 Stream.Emit((unsigned)'B', 8); 4581 Stream.Emit((unsigned)'C', 8); 4582 Stream.Emit(0x0, 4); 4583 Stream.Emit(0xC, 4); 4584 Stream.Emit(0xE, 4); 4585 Stream.Emit(0xD, 4); 4586 } 4587 4588 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4589 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4590 writeBitcodeHeader(*Stream); 4591 } 4592 4593 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4594 4595 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4596 Stream->EnterSubblock(Block, 3); 4597 4598 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4599 Abbv->Add(BitCodeAbbrevOp(Record)); 4600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4601 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4602 4603 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4604 4605 Stream->ExitBlock(); 4606 } 4607 4608 void BitcodeWriter::writeSymtab() { 4609 assert(!WroteStrtab && !WroteSymtab); 4610 4611 // If any module has module-level inline asm, we will require a registered asm 4612 // parser for the target so that we can create an accurate symbol table for 4613 // the module. 4614 for (Module *M : Mods) { 4615 if (M->getModuleInlineAsm().empty()) 4616 continue; 4617 4618 std::string Err; 4619 const Triple TT(M->getTargetTriple()); 4620 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4621 if (!T || !T->hasMCAsmParser()) 4622 return; 4623 } 4624 4625 WroteSymtab = true; 4626 SmallVector<char, 0> Symtab; 4627 // The irsymtab::build function may be unable to create a symbol table if the 4628 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4629 // table is not required for correctness, but we still want to be able to 4630 // write malformed modules to bitcode files, so swallow the error. 4631 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4632 consumeError(std::move(E)); 4633 return; 4634 } 4635 4636 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4637 {Symtab.data(), Symtab.size()}); 4638 } 4639 4640 void BitcodeWriter::writeStrtab() { 4641 assert(!WroteStrtab); 4642 4643 std::vector<char> Strtab; 4644 StrtabBuilder.finalizeInOrder(); 4645 Strtab.resize(StrtabBuilder.getSize()); 4646 StrtabBuilder.write((uint8_t *)Strtab.data()); 4647 4648 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4649 {Strtab.data(), Strtab.size()}); 4650 4651 WroteStrtab = true; 4652 } 4653 4654 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4655 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4656 WroteStrtab = true; 4657 } 4658 4659 void BitcodeWriter::writeModule(const Module &M, 4660 bool ShouldPreserveUseListOrder, 4661 const ModuleSummaryIndex *Index, 4662 bool GenerateHash, ModuleHash *ModHash) { 4663 assert(!WroteStrtab); 4664 4665 // The Mods vector is used by irsymtab::build, which requires non-const 4666 // Modules in case it needs to materialize metadata. But the bitcode writer 4667 // requires that the module is materialized, so we can cast to non-const here, 4668 // after checking that it is in fact materialized. 4669 assert(M.isMaterialized()); 4670 Mods.push_back(const_cast<Module *>(&M)); 4671 4672 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4673 ShouldPreserveUseListOrder, Index, 4674 GenerateHash, ModHash); 4675 ModuleWriter.write(); 4676 } 4677 4678 void BitcodeWriter::writeIndex( 4679 const ModuleSummaryIndex *Index, 4680 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4681 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4682 ModuleToSummariesForIndex); 4683 IndexWriter.write(); 4684 } 4685 4686 /// Write the specified module to the specified output stream. 4687 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4688 bool ShouldPreserveUseListOrder, 4689 const ModuleSummaryIndex *Index, 4690 bool GenerateHash, ModuleHash *ModHash) { 4691 SmallVector<char, 0> Buffer; 4692 Buffer.reserve(256*1024); 4693 4694 // If this is darwin or another generic macho target, reserve space for the 4695 // header. 4696 Triple TT(M.getTargetTriple()); 4697 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4698 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4699 4700 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4701 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4702 ModHash); 4703 Writer.writeSymtab(); 4704 Writer.writeStrtab(); 4705 4706 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4707 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4708 4709 // Write the generated bitstream to "Out". 4710 if (!Buffer.empty()) 4711 Out.write((char *)&Buffer.front(), Buffer.size()); 4712 } 4713 4714 void IndexBitcodeWriter::write() { 4715 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4716 4717 writeModuleVersion(); 4718 4719 // Write the module paths in the combined index. 4720 writeModStrings(); 4721 4722 // Write the summary combined index records. 4723 writeCombinedGlobalValueSummary(); 4724 4725 Stream.ExitBlock(); 4726 } 4727 4728 // Write the specified module summary index to the given raw output stream, 4729 // where it will be written in a new bitcode block. This is used when 4730 // writing the combined index file for ThinLTO. When writing a subset of the 4731 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4732 void llvm::writeIndexToFile( 4733 const ModuleSummaryIndex &Index, raw_ostream &Out, 4734 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4735 SmallVector<char, 0> Buffer; 4736 Buffer.reserve(256 * 1024); 4737 4738 BitcodeWriter Writer(Buffer); 4739 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4740 Writer.writeStrtab(); 4741 4742 Out.write((char *)&Buffer.front(), Buffer.size()); 4743 } 4744 4745 namespace { 4746 4747 /// Class to manage the bitcode writing for a thin link bitcode file. 4748 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4749 /// ModHash is for use in ThinLTO incremental build, generated while writing 4750 /// the module bitcode file. 4751 const ModuleHash *ModHash; 4752 4753 public: 4754 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4755 BitstreamWriter &Stream, 4756 const ModuleSummaryIndex &Index, 4757 const ModuleHash &ModHash) 4758 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4759 /*ShouldPreserveUseListOrder=*/false, &Index), 4760 ModHash(&ModHash) {} 4761 4762 void write(); 4763 4764 private: 4765 void writeSimplifiedModuleInfo(); 4766 }; 4767 4768 } // end anonymous namespace 4769 4770 // This function writes a simpilified module info for thin link bitcode file. 4771 // It only contains the source file name along with the name(the offset and 4772 // size in strtab) and linkage for global values. For the global value info 4773 // entry, in order to keep linkage at offset 5, there are three zeros used 4774 // as padding. 4775 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4776 SmallVector<unsigned, 64> Vals; 4777 // Emit the module's source file name. 4778 { 4779 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4780 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4781 if (Bits == SE_Char6) 4782 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4783 else if (Bits == SE_Fixed7) 4784 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4785 4786 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4787 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4788 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4790 Abbv->Add(AbbrevOpToUse); 4791 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4792 4793 for (const auto P : M.getSourceFileName()) 4794 Vals.push_back((unsigned char)P); 4795 4796 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4797 Vals.clear(); 4798 } 4799 4800 // Emit the global variable information. 4801 for (const GlobalVariable &GV : M.globals()) { 4802 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4803 Vals.push_back(StrtabBuilder.add(GV.getName())); 4804 Vals.push_back(GV.getName().size()); 4805 Vals.push_back(0); 4806 Vals.push_back(0); 4807 Vals.push_back(0); 4808 Vals.push_back(getEncodedLinkage(GV)); 4809 4810 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4811 Vals.clear(); 4812 } 4813 4814 // Emit the function proto information. 4815 for (const Function &F : M) { 4816 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4817 Vals.push_back(StrtabBuilder.add(F.getName())); 4818 Vals.push_back(F.getName().size()); 4819 Vals.push_back(0); 4820 Vals.push_back(0); 4821 Vals.push_back(0); 4822 Vals.push_back(getEncodedLinkage(F)); 4823 4824 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4825 Vals.clear(); 4826 } 4827 4828 // Emit the alias information. 4829 for (const GlobalAlias &A : M.aliases()) { 4830 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4831 Vals.push_back(StrtabBuilder.add(A.getName())); 4832 Vals.push_back(A.getName().size()); 4833 Vals.push_back(0); 4834 Vals.push_back(0); 4835 Vals.push_back(0); 4836 Vals.push_back(getEncodedLinkage(A)); 4837 4838 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4839 Vals.clear(); 4840 } 4841 4842 // Emit the ifunc information. 4843 for (const GlobalIFunc &I : M.ifuncs()) { 4844 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4845 Vals.push_back(StrtabBuilder.add(I.getName())); 4846 Vals.push_back(I.getName().size()); 4847 Vals.push_back(0); 4848 Vals.push_back(0); 4849 Vals.push_back(0); 4850 Vals.push_back(getEncodedLinkage(I)); 4851 4852 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4853 Vals.clear(); 4854 } 4855 } 4856 4857 void ThinLinkBitcodeWriter::write() { 4858 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4859 4860 writeModuleVersion(); 4861 4862 writeSimplifiedModuleInfo(); 4863 4864 writePerModuleGlobalValueSummary(); 4865 4866 // Write module hash. 4867 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4868 4869 Stream.ExitBlock(); 4870 } 4871 4872 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4873 const ModuleSummaryIndex &Index, 4874 const ModuleHash &ModHash) { 4875 assert(!WroteStrtab); 4876 4877 // The Mods vector is used by irsymtab::build, which requires non-const 4878 // Modules in case it needs to materialize metadata. But the bitcode writer 4879 // requires that the module is materialized, so we can cast to non-const here, 4880 // after checking that it is in fact materialized. 4881 assert(M.isMaterialized()); 4882 Mods.push_back(const_cast<Module *>(&M)); 4883 4884 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4885 ModHash); 4886 ThinLinkWriter.write(); 4887 } 4888 4889 // Write the specified thin link bitcode file to the given raw output stream, 4890 // where it will be written in a new bitcode block. This is used when 4891 // writing the per-module index file for ThinLTO. 4892 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4893 const ModuleSummaryIndex &Index, 4894 const ModuleHash &ModHash) { 4895 SmallVector<char, 0> Buffer; 4896 Buffer.reserve(256 * 1024); 4897 4898 BitcodeWriter Writer(Buffer); 4899 Writer.writeThinLinkBitcode(M, Index, ModHash); 4900 Writer.writeSymtab(); 4901 Writer.writeStrtab(); 4902 4903 Out.write((char *)&Buffer.front(), Buffer.size()); 4904 } 4905 4906 static const char *getSectionNameForBitcode(const Triple &T) { 4907 switch (T.getObjectFormat()) { 4908 case Triple::MachO: 4909 return "__LLVM,__bitcode"; 4910 case Triple::COFF: 4911 case Triple::ELF: 4912 case Triple::Wasm: 4913 case Triple::UnknownObjectFormat: 4914 return ".llvmbc"; 4915 case Triple::GOFF: 4916 llvm_unreachable("GOFF is not yet implemented"); 4917 break; 4918 case Triple::SPIRV: 4919 llvm_unreachable("SPIRV is not yet implemented"); 4920 break; 4921 case Triple::XCOFF: 4922 llvm_unreachable("XCOFF is not yet implemented"); 4923 break; 4924 case Triple::DXContainer: 4925 llvm_unreachable("DXContainer is not yet implemented"); 4926 break; 4927 } 4928 llvm_unreachable("Unimplemented ObjectFormatType"); 4929 } 4930 4931 static const char *getSectionNameForCommandline(const Triple &T) { 4932 switch (T.getObjectFormat()) { 4933 case Triple::MachO: 4934 return "__LLVM,__cmdline"; 4935 case Triple::COFF: 4936 case Triple::ELF: 4937 case Triple::Wasm: 4938 case Triple::UnknownObjectFormat: 4939 return ".llvmcmd"; 4940 case Triple::GOFF: 4941 llvm_unreachable("GOFF is not yet implemented"); 4942 break; 4943 case Triple::SPIRV: 4944 llvm_unreachable("SPIRV is not yet implemented"); 4945 break; 4946 case Triple::XCOFF: 4947 llvm_unreachable("XCOFF is not yet implemented"); 4948 break; 4949 case Triple::DXContainer: 4950 llvm_unreachable("DXC is not yet implemented"); 4951 break; 4952 } 4953 llvm_unreachable("Unimplemented ObjectFormatType"); 4954 } 4955 4956 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4957 bool EmbedBitcode, bool EmbedCmdline, 4958 const std::vector<uint8_t> &CmdArgs) { 4959 // Save llvm.compiler.used and remove it. 4960 SmallVector<Constant *, 2> UsedArray; 4961 SmallVector<GlobalValue *, 4> UsedGlobals; 4962 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4963 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4964 for (auto *GV : UsedGlobals) { 4965 if (GV->getName() != "llvm.embedded.module" && 4966 GV->getName() != "llvm.cmdline") 4967 UsedArray.push_back( 4968 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4969 } 4970 if (Used) 4971 Used->eraseFromParent(); 4972 4973 // Embed the bitcode for the llvm module. 4974 std::string Data; 4975 ArrayRef<uint8_t> ModuleData; 4976 Triple T(M.getTargetTriple()); 4977 4978 if (EmbedBitcode) { 4979 if (Buf.getBufferSize() == 0 || 4980 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4981 (const unsigned char *)Buf.getBufferEnd())) { 4982 // If the input is LLVM Assembly, bitcode is produced by serializing 4983 // the module. Use-lists order need to be preserved in this case. 4984 llvm::raw_string_ostream OS(Data); 4985 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4986 ModuleData = 4987 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4988 } else 4989 // If the input is LLVM bitcode, write the input byte stream directly. 4990 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4991 Buf.getBufferSize()); 4992 } 4993 llvm::Constant *ModuleConstant = 4994 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4995 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4996 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4997 ModuleConstant); 4998 GV->setSection(getSectionNameForBitcode(T)); 4999 // Set alignment to 1 to prevent padding between two contributions from input 5000 // sections after linking. 5001 GV->setAlignment(Align(1)); 5002 UsedArray.push_back( 5003 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5004 if (llvm::GlobalVariable *Old = 5005 M.getGlobalVariable("llvm.embedded.module", true)) { 5006 assert(Old->hasZeroLiveUses() && 5007 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5008 GV->takeName(Old); 5009 Old->eraseFromParent(); 5010 } else { 5011 GV->setName("llvm.embedded.module"); 5012 } 5013 5014 // Skip if only bitcode needs to be embedded. 5015 if (EmbedCmdline) { 5016 // Embed command-line options. 5017 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5018 CmdArgs.size()); 5019 llvm::Constant *CmdConstant = 5020 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5021 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5022 llvm::GlobalValue::PrivateLinkage, 5023 CmdConstant); 5024 GV->setSection(getSectionNameForCommandline(T)); 5025 GV->setAlignment(Align(1)); 5026 UsedArray.push_back( 5027 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5028 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5029 assert(Old->hasZeroLiveUses() && 5030 "llvm.cmdline can only be used once in llvm.compiler.used"); 5031 GV->takeName(Old); 5032 Old->eraseFromParent(); 5033 } else { 5034 GV->setName("llvm.cmdline"); 5035 } 5036 } 5037 5038 if (UsedArray.empty()) 5039 return; 5040 5041 // Recreate llvm.compiler.used. 5042 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5043 auto *NewUsed = new GlobalVariable( 5044 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5045 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5046 NewUsed->setSection("llvm.metadata"); 5047 } 5048