1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRangeList.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <memory> 80 #include <optional> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 namespace llvm { 100 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 101 } 102 103 extern bool WriteNewDbgInfoFormatToBitcode; 104 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 105 106 namespace { 107 108 /// These are manifest constants used by the bitcode writer. They do not need to 109 /// be kept in sync with the reader, but need to be consistent within this file. 110 enum { 111 // VALUE_SYMTAB_BLOCK abbrev id's. 112 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 113 VST_ENTRY_7_ABBREV, 114 VST_ENTRY_6_ABBREV, 115 VST_BBENTRY_6_ABBREV, 116 117 // CONSTANTS_BLOCK abbrev id's. 118 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 119 CONSTANTS_INTEGER_ABBREV, 120 CONSTANTS_CE_CAST_Abbrev, 121 CONSTANTS_NULL_Abbrev, 122 123 // FUNCTION_BLOCK abbrev id's. 124 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 125 FUNCTION_INST_UNOP_ABBREV, 126 FUNCTION_INST_UNOP_FLAGS_ABBREV, 127 FUNCTION_INST_BINOP_ABBREV, 128 FUNCTION_INST_BINOP_FLAGS_ABBREV, 129 FUNCTION_INST_CAST_ABBREV, 130 FUNCTION_INST_CAST_FLAGS_ABBREV, 131 FUNCTION_INST_RET_VOID_ABBREV, 132 FUNCTION_INST_RET_VAL_ABBREV, 133 FUNCTION_INST_UNREACHABLE_ABBREV, 134 FUNCTION_INST_GEP_ABBREV, 135 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 136 }; 137 138 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 139 /// file type. 140 class BitcodeWriterBase { 141 protected: 142 /// The stream created and owned by the client. 143 BitstreamWriter &Stream; 144 145 StringTableBuilder &StrtabBuilder; 146 147 public: 148 /// Constructs a BitcodeWriterBase object that writes to the provided 149 /// \p Stream. 150 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 151 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 152 153 protected: 154 void writeModuleVersion(); 155 }; 156 157 void BitcodeWriterBase::writeModuleVersion() { 158 // VERSION: [version#] 159 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 160 } 161 162 /// Base class to manage the module bitcode writing, currently subclassed for 163 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 164 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 165 protected: 166 /// The Module to write to bitcode. 167 const Module &M; 168 169 /// Enumerates ids for all values in the module. 170 ValueEnumerator VE; 171 172 /// Optional per-module index to write for ThinLTO. 173 const ModuleSummaryIndex *Index; 174 175 /// Map that holds the correspondence between GUIDs in the summary index, 176 /// that came from indirect call profiles, and a value id generated by this 177 /// class to use in the VST and summary block records. 178 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 179 180 /// Tracks the last value id recorded in the GUIDToValueMap. 181 unsigned GlobalValueId; 182 183 /// Saves the offset of the VSTOffset record that must eventually be 184 /// backpatched with the offset of the actual VST. 185 uint64_t VSTOffsetPlaceholder = 0; 186 187 public: 188 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 189 /// writing to the provided \p Buffer. 190 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 191 BitstreamWriter &Stream, 192 bool ShouldPreserveUseListOrder, 193 const ModuleSummaryIndex *Index) 194 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 195 VE(M, ShouldPreserveUseListOrder), Index(Index) { 196 // Assign ValueIds to any callee values in the index that came from 197 // indirect call profiles and were recorded as a GUID not a Value* 198 // (which would have been assigned an ID by the ValueEnumerator). 199 // The starting ValueId is just after the number of values in the 200 // ValueEnumerator, so that they can be emitted in the VST. 201 GlobalValueId = VE.getValues().size(); 202 if (!Index) 203 return; 204 for (const auto &GUIDSummaryLists : *Index) 205 // Examine all summaries for this GUID. 206 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 207 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) { 208 // For each call in the function summary, see if the call 209 // is to a GUID (which means it is for an indirect call, 210 // otherwise we would have a Value for it). If so, synthesize 211 // a value id. 212 for (auto &CallEdge : FS->calls()) 213 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 214 assignValueId(CallEdge.first.getGUID()); 215 216 // For each referenced variables in the function summary, see if the 217 // variable is represented by a GUID (as opposed to a symbol to 218 // declarations or definitions in the module). If so, synthesize a 219 // value id. 220 for (auto &RefEdge : FS->refs()) 221 if (!RefEdge.haveGVs() || !RefEdge.getValue()) 222 assignValueId(RefEdge.getGUID()); 223 } 224 } 225 226 protected: 227 void writePerModuleGlobalValueSummary(); 228 229 private: 230 void writePerModuleFunctionSummaryRecord( 231 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 232 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 233 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 234 void writeModuleLevelReferences(const GlobalVariable &V, 235 SmallVector<uint64_t, 64> &NameVals, 236 unsigned FSModRefsAbbrev, 237 unsigned FSModVTableRefsAbbrev); 238 239 void assignValueId(GlobalValue::GUID ValGUID) { 240 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 241 } 242 243 unsigned getValueId(GlobalValue::GUID ValGUID) { 244 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 245 // Expect that any GUID value had a value Id assigned by an 246 // earlier call to assignValueId. 247 assert(VMI != GUIDToValueIdMap.end() && 248 "GUID does not have assigned value Id"); 249 return VMI->second; 250 } 251 252 // Helper to get the valueId for the type of value recorded in VI. 253 unsigned getValueId(ValueInfo VI) { 254 if (!VI.haveGVs() || !VI.getValue()) 255 return getValueId(VI.getGUID()); 256 return VE.getValueID(VI.getValue()); 257 } 258 259 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 260 }; 261 262 /// Class to manage the bitcode writing for a module. 263 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 264 /// True if a module hash record should be written. 265 bool GenerateHash; 266 267 /// If non-null, when GenerateHash is true, the resulting hash is written 268 /// into ModHash. 269 ModuleHash *ModHash; 270 271 SHA1 Hasher; 272 273 /// The start bit of the identification block. 274 uint64_t BitcodeStartBit; 275 276 public: 277 /// Constructs a ModuleBitcodeWriter object for the given Module, 278 /// writing to the provided \p Buffer. 279 ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 280 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 281 const ModuleSummaryIndex *Index, bool GenerateHash, 282 ModuleHash *ModHash = nullptr) 283 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 284 ShouldPreserveUseListOrder, Index), 285 GenerateHash(GenerateHash), ModHash(ModHash), 286 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 287 288 /// Emit the current module to the bitstream. 289 void write(); 290 291 private: 292 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 293 294 size_t addToStrtab(StringRef Str); 295 296 void writeAttributeGroupTable(); 297 void writeAttributeTable(); 298 void writeTypeTable(); 299 void writeComdats(); 300 void writeValueSymbolTableForwardDecl(); 301 void writeModuleInfo(); 302 void writeValueAsMetadata(const ValueAsMetadata *MD, 303 SmallVectorImpl<uint64_t> &Record); 304 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 unsigned createDILocationAbbrev(); 307 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned &Abbrev); 309 unsigned createGenericDINodeAbbrev(); 310 void writeGenericDINode(const GenericDINode *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 312 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 313 unsigned Abbrev); 314 void writeDIGenericSubrange(const DIGenericSubrange *N, 315 SmallVectorImpl<uint64_t> &Record, 316 unsigned Abbrev); 317 void writeDIEnumerator(const DIEnumerator *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIStringType(const DIStringType *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDIDerivedType(const DIDerivedType *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDICompositeType(const DICompositeType *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDISubroutineType(const DISubroutineType *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDICompileUnit(const DICompileUnit *N, 333 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 334 void writeDISubprogram(const DISubprogram *N, 335 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 336 void writeDILexicalBlock(const DILexicalBlock *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDICommonBlock(const DICommonBlock *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 350 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 355 SmallVectorImpl<uint64_t> &Record, 356 unsigned Abbrev); 357 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIGlobalVariable(const DIGlobalVariable *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 void writeDILocalVariable(const DILocalVariable *N, 364 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 365 void writeDILabel(const DILabel *N, 366 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 367 void writeDIExpression(const DIExpression *N, 368 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 369 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 370 SmallVectorImpl<uint64_t> &Record, 371 unsigned Abbrev); 372 void writeDIObjCProperty(const DIObjCProperty *N, 373 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 374 void writeDIImportedEntity(const DIImportedEntity *N, 375 SmallVectorImpl<uint64_t> &Record, 376 unsigned Abbrev); 377 unsigned createNamedMetadataAbbrev(); 378 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 379 unsigned createMetadataStringsAbbrev(); 380 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 381 SmallVectorImpl<uint64_t> &Record); 382 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 383 SmallVectorImpl<uint64_t> &Record, 384 std::vector<unsigned> *MDAbbrevs = nullptr, 385 std::vector<uint64_t> *IndexPos = nullptr); 386 void writeModuleMetadata(); 387 void writeFunctionMetadata(const Function &F); 388 void writeFunctionMetadataAttachment(const Function &F); 389 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 390 const GlobalObject &GO); 391 void writeModuleMetadataKinds(); 392 void writeOperandBundleTags(); 393 void writeSyncScopeNames(); 394 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 395 void writeModuleConstants(); 396 bool pushValueAndType(const Value *V, unsigned InstID, 397 SmallVectorImpl<unsigned> &Vals); 398 void writeOperandBundles(const CallBase &CB, unsigned InstID); 399 void pushValue(const Value *V, unsigned InstID, 400 SmallVectorImpl<unsigned> &Vals); 401 void pushValueSigned(const Value *V, unsigned InstID, 402 SmallVectorImpl<uint64_t> &Vals); 403 void writeInstruction(const Instruction &I, unsigned InstID, 404 SmallVectorImpl<unsigned> &Vals); 405 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 406 void writeGlobalValueSymbolTable( 407 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 408 void writeUseList(UseListOrder &&Order); 409 void writeUseListBlock(const Function *F); 410 void 411 writeFunction(const Function &F, 412 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 413 void writeBlockInfo(); 414 void writeModuleHash(StringRef View); 415 416 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 417 return unsigned(SSID); 418 } 419 420 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 421 }; 422 423 /// Class to manage the bitcode writing for a combined index. 424 class IndexBitcodeWriter : public BitcodeWriterBase { 425 /// The combined index to write to bitcode. 426 const ModuleSummaryIndex &Index; 427 428 /// When writing combined summaries, provides the set of global value 429 /// summaries for which the value (function, function alias, etc) should be 430 /// imported as a declaration. 431 const GVSummaryPtrSet *DecSummaries = nullptr; 432 433 /// When writing a subset of the index for distributed backends, client 434 /// provides a map of modules to the corresponding GUIDs/summaries to write. 435 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex; 436 437 /// Map that holds the correspondence between the GUID used in the combined 438 /// index and a value id generated by this class to use in references. 439 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 440 441 // The stack ids used by this index, which will be a subset of those in 442 // the full index in the case of distributed indexes. 443 std::vector<uint64_t> StackIds; 444 445 // Keep a map of the stack id indices used by records being written for this 446 // index to the index of the corresponding stack id in the above StackIds 447 // vector. Ensures we write each referenced stack id once. 448 DenseMap<unsigned, unsigned> StackIdIndicesToIndex; 449 450 /// Tracks the last value id recorded in the GUIDToValueMap. 451 unsigned GlobalValueId = 0; 452 453 /// Tracks the assignment of module paths in the module path string table to 454 /// an id assigned for use in summary references to the module path. 455 DenseMap<StringRef, uint64_t> ModuleIdMap; 456 457 public: 458 /// Constructs a IndexBitcodeWriter object for the given combined index, 459 /// writing to the provided \p Buffer. When writing a subset of the index 460 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 461 /// If provided, \p DecSummaries specifies the set of summaries for which 462 /// the corresponding functions or aliased functions should be imported as a 463 /// declaration (but not definition) for each module. 464 IndexBitcodeWriter( 465 BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 466 const ModuleSummaryIndex &Index, 467 const GVSummaryPtrSet *DecSummaries = nullptr, 468 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr) 469 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 470 DecSummaries(DecSummaries), 471 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 472 473 // See if the StackIdIndex was already added to the StackId map and 474 // vector. If not, record it. 475 auto RecordStackIdReference = [&](unsigned StackIdIndex) { 476 // If the StackIdIndex is not yet in the map, the below insert ensures 477 // that it will point to the new StackIds vector entry we push to just 478 // below. 479 auto Inserted = 480 StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()}); 481 if (Inserted.second) 482 StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex)); 483 }; 484 485 // Assign unique value ids to all summaries to be written, for use 486 // in writing out the call graph edges. Save the mapping from GUID 487 // to the new global value id to use when writing those edges, which 488 // are currently saved in the index in terms of GUID. 489 forEachSummary([&](GVInfo I, bool IsAliasee) { 490 GUIDToValueIdMap[I.first] = ++GlobalValueId; 491 if (IsAliasee) 492 return; 493 auto *FS = dyn_cast<FunctionSummary>(I.second); 494 if (!FS) 495 return; 496 // Record all stack id indices actually used in the summary entries being 497 // written, so that we can compact them in the case of distributed ThinLTO 498 // indexes. 499 for (auto &CI : FS->callsites()) { 500 // If the stack id list is empty, this callsite info was synthesized for 501 // a missing tail call frame. Ensure that the callee's GUID gets a value 502 // id. Normally we only generate these for defined summaries, which in 503 // the case of distributed ThinLTO is only the functions already defined 504 // in the module or that we want to import. We don't bother to include 505 // all the callee symbols as they aren't normally needed in the backend. 506 // However, for the synthesized callsite infos we do need the callee 507 // GUID in the backend so that we can correlate the identified callee 508 // with this callsite info (which for non-tail calls is done by the 509 // ordering of the callsite infos and verified via stack ids). 510 if (CI.StackIdIndices.empty()) { 511 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 512 continue; 513 } 514 for (auto Idx : CI.StackIdIndices) 515 RecordStackIdReference(Idx); 516 } 517 for (auto &AI : FS->allocs()) 518 for (auto &MIB : AI.MIBs) 519 for (auto Idx : MIB.StackIdIndices) 520 RecordStackIdReference(Idx); 521 }); 522 } 523 524 /// The below iterator returns the GUID and associated summary. 525 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 526 527 /// Calls the callback for each value GUID and summary to be written to 528 /// bitcode. This hides the details of whether they are being pulled from the 529 /// entire index or just those in a provided ModuleToSummariesForIndex map. 530 template<typename Functor> 531 void forEachSummary(Functor Callback) { 532 if (ModuleToSummariesForIndex) { 533 for (auto &M : *ModuleToSummariesForIndex) 534 for (auto &Summary : M.second) { 535 Callback(Summary, false); 536 // Ensure aliasee is handled, e.g. for assigning a valueId, 537 // even if we are not importing the aliasee directly (the 538 // imported alias will contain a copy of aliasee). 539 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 540 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 541 } 542 } else { 543 for (auto &Summaries : Index) 544 for (auto &Summary : Summaries.second.SummaryList) 545 Callback({Summaries.first, Summary.get()}, false); 546 } 547 } 548 549 /// Calls the callback for each entry in the modulePaths StringMap that 550 /// should be written to the module path string table. This hides the details 551 /// of whether they are being pulled from the entire index or just those in a 552 /// provided ModuleToSummariesForIndex map. 553 template <typename Functor> void forEachModule(Functor Callback) { 554 if (ModuleToSummariesForIndex) { 555 for (const auto &M : *ModuleToSummariesForIndex) { 556 const auto &MPI = Index.modulePaths().find(M.first); 557 if (MPI == Index.modulePaths().end()) { 558 // This should only happen if the bitcode file was empty, in which 559 // case we shouldn't be importing (the ModuleToSummariesForIndex 560 // would only include the module we are writing and index for). 561 assert(ModuleToSummariesForIndex->size() == 1); 562 continue; 563 } 564 Callback(*MPI); 565 } 566 } else { 567 // Since StringMap iteration order isn't guaranteed, order by path string 568 // first. 569 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 570 // map lookup. 571 std::vector<StringRef> ModulePaths; 572 for (auto &[ModPath, _] : Index.modulePaths()) 573 ModulePaths.push_back(ModPath); 574 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 575 for (auto &ModPath : ModulePaths) 576 Callback(*Index.modulePaths().find(ModPath)); 577 } 578 } 579 580 /// Main entry point for writing a combined index to bitcode. 581 void write(); 582 583 private: 584 void writeModStrings(); 585 void writeCombinedGlobalValueSummary(); 586 587 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 588 auto VMI = GUIDToValueIdMap.find(ValGUID); 589 if (VMI == GUIDToValueIdMap.end()) 590 return std::nullopt; 591 return VMI->second; 592 } 593 594 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 595 }; 596 597 } // end anonymous namespace 598 599 static unsigned getEncodedCastOpcode(unsigned Opcode) { 600 switch (Opcode) { 601 default: llvm_unreachable("Unknown cast instruction!"); 602 case Instruction::Trunc : return bitc::CAST_TRUNC; 603 case Instruction::ZExt : return bitc::CAST_ZEXT; 604 case Instruction::SExt : return bitc::CAST_SEXT; 605 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 606 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 607 case Instruction::UIToFP : return bitc::CAST_UITOFP; 608 case Instruction::SIToFP : return bitc::CAST_SITOFP; 609 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 610 case Instruction::FPExt : return bitc::CAST_FPEXT; 611 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 612 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 613 case Instruction::BitCast : return bitc::CAST_BITCAST; 614 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 615 } 616 } 617 618 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 619 switch (Opcode) { 620 default: llvm_unreachable("Unknown binary instruction!"); 621 case Instruction::FNeg: return bitc::UNOP_FNEG; 622 } 623 } 624 625 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 626 switch (Opcode) { 627 default: llvm_unreachable("Unknown binary instruction!"); 628 case Instruction::Add: 629 case Instruction::FAdd: return bitc::BINOP_ADD; 630 case Instruction::Sub: 631 case Instruction::FSub: return bitc::BINOP_SUB; 632 case Instruction::Mul: 633 case Instruction::FMul: return bitc::BINOP_MUL; 634 case Instruction::UDiv: return bitc::BINOP_UDIV; 635 case Instruction::FDiv: 636 case Instruction::SDiv: return bitc::BINOP_SDIV; 637 case Instruction::URem: return bitc::BINOP_UREM; 638 case Instruction::FRem: 639 case Instruction::SRem: return bitc::BINOP_SREM; 640 case Instruction::Shl: return bitc::BINOP_SHL; 641 case Instruction::LShr: return bitc::BINOP_LSHR; 642 case Instruction::AShr: return bitc::BINOP_ASHR; 643 case Instruction::And: return bitc::BINOP_AND; 644 case Instruction::Or: return bitc::BINOP_OR; 645 case Instruction::Xor: return bitc::BINOP_XOR; 646 } 647 } 648 649 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 650 switch (Op) { 651 default: llvm_unreachable("Unknown RMW operation!"); 652 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 653 case AtomicRMWInst::Add: return bitc::RMW_ADD; 654 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 655 case AtomicRMWInst::And: return bitc::RMW_AND; 656 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 657 case AtomicRMWInst::Or: return bitc::RMW_OR; 658 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 659 case AtomicRMWInst::Max: return bitc::RMW_MAX; 660 case AtomicRMWInst::Min: return bitc::RMW_MIN; 661 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 662 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 663 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 664 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 665 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 666 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 667 case AtomicRMWInst::UIncWrap: 668 return bitc::RMW_UINC_WRAP; 669 case AtomicRMWInst::UDecWrap: 670 return bitc::RMW_UDEC_WRAP; 671 case AtomicRMWInst::USubCond: 672 return bitc::RMW_USUB_COND; 673 case AtomicRMWInst::USubSat: 674 return bitc::RMW_USUB_SAT; 675 } 676 } 677 678 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 679 switch (Ordering) { 680 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 681 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 682 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 683 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 684 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 685 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 686 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 687 } 688 llvm_unreachable("Invalid ordering"); 689 } 690 691 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 692 StringRef Str, unsigned AbbrevToUse) { 693 SmallVector<unsigned, 64> Vals; 694 695 // Code: [strchar x N] 696 for (char C : Str) { 697 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 698 AbbrevToUse = 0; 699 Vals.push_back(C); 700 } 701 702 // Emit the finished record. 703 Stream.EmitRecord(Code, Vals, AbbrevToUse); 704 } 705 706 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 707 switch (Kind) { 708 case Attribute::Alignment: 709 return bitc::ATTR_KIND_ALIGNMENT; 710 case Attribute::AllocAlign: 711 return bitc::ATTR_KIND_ALLOC_ALIGN; 712 case Attribute::AllocSize: 713 return bitc::ATTR_KIND_ALLOC_SIZE; 714 case Attribute::AlwaysInline: 715 return bitc::ATTR_KIND_ALWAYS_INLINE; 716 case Attribute::Builtin: 717 return bitc::ATTR_KIND_BUILTIN; 718 case Attribute::ByVal: 719 return bitc::ATTR_KIND_BY_VAL; 720 case Attribute::Convergent: 721 return bitc::ATTR_KIND_CONVERGENT; 722 case Attribute::InAlloca: 723 return bitc::ATTR_KIND_IN_ALLOCA; 724 case Attribute::Cold: 725 return bitc::ATTR_KIND_COLD; 726 case Attribute::DisableSanitizerInstrumentation: 727 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 728 case Attribute::FnRetThunkExtern: 729 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 730 case Attribute::Hot: 731 return bitc::ATTR_KIND_HOT; 732 case Attribute::ElementType: 733 return bitc::ATTR_KIND_ELEMENTTYPE; 734 case Attribute::HybridPatchable: 735 return bitc::ATTR_KIND_HYBRID_PATCHABLE; 736 case Attribute::InlineHint: 737 return bitc::ATTR_KIND_INLINE_HINT; 738 case Attribute::InReg: 739 return bitc::ATTR_KIND_IN_REG; 740 case Attribute::JumpTable: 741 return bitc::ATTR_KIND_JUMP_TABLE; 742 case Attribute::MinSize: 743 return bitc::ATTR_KIND_MIN_SIZE; 744 case Attribute::AllocatedPointer: 745 return bitc::ATTR_KIND_ALLOCATED_POINTER; 746 case Attribute::AllocKind: 747 return bitc::ATTR_KIND_ALLOC_KIND; 748 case Attribute::Memory: 749 return bitc::ATTR_KIND_MEMORY; 750 case Attribute::NoFPClass: 751 return bitc::ATTR_KIND_NOFPCLASS; 752 case Attribute::Naked: 753 return bitc::ATTR_KIND_NAKED; 754 case Attribute::Nest: 755 return bitc::ATTR_KIND_NEST; 756 case Attribute::NoAlias: 757 return bitc::ATTR_KIND_NO_ALIAS; 758 case Attribute::NoBuiltin: 759 return bitc::ATTR_KIND_NO_BUILTIN; 760 case Attribute::NoCallback: 761 return bitc::ATTR_KIND_NO_CALLBACK; 762 case Attribute::NoCapture: 763 return bitc::ATTR_KIND_NO_CAPTURE; 764 case Attribute::NoDuplicate: 765 return bitc::ATTR_KIND_NO_DUPLICATE; 766 case Attribute::NoFree: 767 return bitc::ATTR_KIND_NOFREE; 768 case Attribute::NoImplicitFloat: 769 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 770 case Attribute::NoInline: 771 return bitc::ATTR_KIND_NO_INLINE; 772 case Attribute::NoRecurse: 773 return bitc::ATTR_KIND_NO_RECURSE; 774 case Attribute::NoMerge: 775 return bitc::ATTR_KIND_NO_MERGE; 776 case Attribute::NonLazyBind: 777 return bitc::ATTR_KIND_NON_LAZY_BIND; 778 case Attribute::NonNull: 779 return bitc::ATTR_KIND_NON_NULL; 780 case Attribute::Dereferenceable: 781 return bitc::ATTR_KIND_DEREFERENCEABLE; 782 case Attribute::DereferenceableOrNull: 783 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 784 case Attribute::NoRedZone: 785 return bitc::ATTR_KIND_NO_RED_ZONE; 786 case Attribute::NoReturn: 787 return bitc::ATTR_KIND_NO_RETURN; 788 case Attribute::NoSync: 789 return bitc::ATTR_KIND_NOSYNC; 790 case Attribute::NoCfCheck: 791 return bitc::ATTR_KIND_NOCF_CHECK; 792 case Attribute::NoProfile: 793 return bitc::ATTR_KIND_NO_PROFILE; 794 case Attribute::SkipProfile: 795 return bitc::ATTR_KIND_SKIP_PROFILE; 796 case Attribute::NoUnwind: 797 return bitc::ATTR_KIND_NO_UNWIND; 798 case Attribute::NoSanitizeBounds: 799 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 800 case Attribute::NoSanitizeCoverage: 801 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 802 case Attribute::NullPointerIsValid: 803 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 804 case Attribute::OptimizeForDebugging: 805 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 806 case Attribute::OptForFuzzing: 807 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 808 case Attribute::OptimizeForSize: 809 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 810 case Attribute::OptimizeNone: 811 return bitc::ATTR_KIND_OPTIMIZE_NONE; 812 case Attribute::ReadNone: 813 return bitc::ATTR_KIND_READ_NONE; 814 case Attribute::ReadOnly: 815 return bitc::ATTR_KIND_READ_ONLY; 816 case Attribute::Returned: 817 return bitc::ATTR_KIND_RETURNED; 818 case Attribute::ReturnsTwice: 819 return bitc::ATTR_KIND_RETURNS_TWICE; 820 case Attribute::SExt: 821 return bitc::ATTR_KIND_S_EXT; 822 case Attribute::Speculatable: 823 return bitc::ATTR_KIND_SPECULATABLE; 824 case Attribute::StackAlignment: 825 return bitc::ATTR_KIND_STACK_ALIGNMENT; 826 case Attribute::StackProtect: 827 return bitc::ATTR_KIND_STACK_PROTECT; 828 case Attribute::StackProtectReq: 829 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 830 case Attribute::StackProtectStrong: 831 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 832 case Attribute::SafeStack: 833 return bitc::ATTR_KIND_SAFESTACK; 834 case Attribute::ShadowCallStack: 835 return bitc::ATTR_KIND_SHADOWCALLSTACK; 836 case Attribute::StrictFP: 837 return bitc::ATTR_KIND_STRICT_FP; 838 case Attribute::StructRet: 839 return bitc::ATTR_KIND_STRUCT_RET; 840 case Attribute::SanitizeAddress: 841 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 842 case Attribute::SanitizeHWAddress: 843 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 844 case Attribute::SanitizeThread: 845 return bitc::ATTR_KIND_SANITIZE_THREAD; 846 case Attribute::SanitizeMemory: 847 return bitc::ATTR_KIND_SANITIZE_MEMORY; 848 case Attribute::SanitizeNumericalStability: 849 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY; 850 case Attribute::SanitizeRealtime: 851 return bitc::ATTR_KIND_SANITIZE_REALTIME; 852 case Attribute::SpeculativeLoadHardening: 853 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 854 case Attribute::SwiftError: 855 return bitc::ATTR_KIND_SWIFT_ERROR; 856 case Attribute::SwiftSelf: 857 return bitc::ATTR_KIND_SWIFT_SELF; 858 case Attribute::SwiftAsync: 859 return bitc::ATTR_KIND_SWIFT_ASYNC; 860 case Attribute::UWTable: 861 return bitc::ATTR_KIND_UW_TABLE; 862 case Attribute::VScaleRange: 863 return bitc::ATTR_KIND_VSCALE_RANGE; 864 case Attribute::WillReturn: 865 return bitc::ATTR_KIND_WILLRETURN; 866 case Attribute::WriteOnly: 867 return bitc::ATTR_KIND_WRITEONLY; 868 case Attribute::ZExt: 869 return bitc::ATTR_KIND_Z_EXT; 870 case Attribute::ImmArg: 871 return bitc::ATTR_KIND_IMMARG; 872 case Attribute::SanitizeMemTag: 873 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 874 case Attribute::Preallocated: 875 return bitc::ATTR_KIND_PREALLOCATED; 876 case Attribute::NoUndef: 877 return bitc::ATTR_KIND_NOUNDEF; 878 case Attribute::ByRef: 879 return bitc::ATTR_KIND_BYREF; 880 case Attribute::MustProgress: 881 return bitc::ATTR_KIND_MUSTPROGRESS; 882 case Attribute::PresplitCoroutine: 883 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 884 case Attribute::Writable: 885 return bitc::ATTR_KIND_WRITABLE; 886 case Attribute::CoroDestroyOnlyWhenComplete: 887 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 888 case Attribute::CoroElideSafe: 889 return bitc::ATTR_KIND_CORO_ELIDE_SAFE; 890 case Attribute::DeadOnUnwind: 891 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 892 case Attribute::Range: 893 return bitc::ATTR_KIND_RANGE; 894 case Attribute::Initializes: 895 return bitc::ATTR_KIND_INITIALIZES; 896 case Attribute::NoExt: 897 return bitc::ATTR_KIND_NO_EXT; 898 case Attribute::EndAttrKinds: 899 llvm_unreachable("Can not encode end-attribute kinds marker."); 900 case Attribute::None: 901 llvm_unreachable("Can not encode none-attribute."); 902 case Attribute::EmptyKey: 903 case Attribute::TombstoneKey: 904 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 905 } 906 907 llvm_unreachable("Trying to encode unknown attribute"); 908 } 909 910 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 911 if ((int64_t)V >= 0) 912 Vals.push_back(V << 1); 913 else 914 Vals.push_back((-V << 1) | 1); 915 } 916 917 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 918 // We have an arbitrary precision integer value to write whose 919 // bit width is > 64. However, in canonical unsigned integer 920 // format it is likely that the high bits are going to be zero. 921 // So, we only write the number of active words. 922 unsigned NumWords = A.getActiveWords(); 923 const uint64_t *RawData = A.getRawData(); 924 for (unsigned i = 0; i < NumWords; i++) 925 emitSignedInt64(Vals, RawData[i]); 926 } 927 928 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 929 const ConstantRange &CR, bool EmitBitWidth) { 930 unsigned BitWidth = CR.getBitWidth(); 931 if (EmitBitWidth) 932 Record.push_back(BitWidth); 933 if (BitWidth > 64) { 934 Record.push_back(CR.getLower().getActiveWords() | 935 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 936 emitWideAPInt(Record, CR.getLower()); 937 emitWideAPInt(Record, CR.getUpper()); 938 } else { 939 emitSignedInt64(Record, CR.getLower().getSExtValue()); 940 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 941 } 942 } 943 944 void ModuleBitcodeWriter::writeAttributeGroupTable() { 945 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 946 VE.getAttributeGroups(); 947 if (AttrGrps.empty()) return; 948 949 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 950 951 SmallVector<uint64_t, 64> Record; 952 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 953 unsigned AttrListIndex = Pair.first; 954 AttributeSet AS = Pair.second; 955 Record.push_back(VE.getAttributeGroupID(Pair)); 956 Record.push_back(AttrListIndex); 957 958 for (Attribute Attr : AS) { 959 if (Attr.isEnumAttribute()) { 960 Record.push_back(0); 961 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 962 } else if (Attr.isIntAttribute()) { 963 Record.push_back(1); 964 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 965 Record.push_back(Attr.getValueAsInt()); 966 } else if (Attr.isStringAttribute()) { 967 StringRef Kind = Attr.getKindAsString(); 968 StringRef Val = Attr.getValueAsString(); 969 970 Record.push_back(Val.empty() ? 3 : 4); 971 Record.append(Kind.begin(), Kind.end()); 972 Record.push_back(0); 973 if (!Val.empty()) { 974 Record.append(Val.begin(), Val.end()); 975 Record.push_back(0); 976 } 977 } else if (Attr.isTypeAttribute()) { 978 Type *Ty = Attr.getValueAsType(); 979 Record.push_back(Ty ? 6 : 5); 980 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 981 if (Ty) 982 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 983 } else if (Attr.isConstantRangeAttribute()) { 984 Record.push_back(7); 985 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 986 emitConstantRange(Record, Attr.getValueAsConstantRange(), 987 /*EmitBitWidth=*/true); 988 } else { 989 assert(Attr.isConstantRangeListAttribute()); 990 Record.push_back(8); 991 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 992 ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList(); 993 Record.push_back(Val.size()); 994 Record.push_back(Val[0].getBitWidth()); 995 for (auto &CR : Val) 996 emitConstantRange(Record, CR, /*EmitBitWidth=*/false); 997 } 998 } 999 1000 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 1001 Record.clear(); 1002 } 1003 1004 Stream.ExitBlock(); 1005 } 1006 1007 void ModuleBitcodeWriter::writeAttributeTable() { 1008 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 1009 if (Attrs.empty()) return; 1010 1011 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 1012 1013 SmallVector<uint64_t, 64> Record; 1014 for (const AttributeList &AL : Attrs) { 1015 for (unsigned i : AL.indexes()) { 1016 AttributeSet AS = AL.getAttributes(i); 1017 if (AS.hasAttributes()) 1018 Record.push_back(VE.getAttributeGroupID({i, AS})); 1019 } 1020 1021 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 1022 Record.clear(); 1023 } 1024 1025 Stream.ExitBlock(); 1026 } 1027 1028 /// WriteTypeTable - Write out the type table for a module. 1029 void ModuleBitcodeWriter::writeTypeTable() { 1030 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 1031 1032 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 1033 SmallVector<uint64_t, 64> TypeVals; 1034 1035 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 1036 1037 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 1038 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1039 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 1040 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 1041 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1042 1043 // Abbrev for TYPE_CODE_FUNCTION. 1044 Abbv = std::make_shared<BitCodeAbbrev>(); 1045 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1049 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1050 1051 // Abbrev for TYPE_CODE_STRUCT_ANON. 1052 Abbv = std::make_shared<BitCodeAbbrev>(); 1053 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1057 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1058 1059 // Abbrev for TYPE_CODE_STRUCT_NAME. 1060 Abbv = std::make_shared<BitCodeAbbrev>(); 1061 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1064 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1065 1066 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1067 Abbv = std::make_shared<BitCodeAbbrev>(); 1068 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1072 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1073 1074 // Abbrev for TYPE_CODE_ARRAY. 1075 Abbv = std::make_shared<BitCodeAbbrev>(); 1076 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1079 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1080 1081 // Emit an entry count so the reader can reserve space. 1082 TypeVals.push_back(TypeList.size()); 1083 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1084 TypeVals.clear(); 1085 1086 // Loop over all of the types, emitting each in turn. 1087 for (Type *T : TypeList) { 1088 int AbbrevToUse = 0; 1089 unsigned Code = 0; 1090 1091 switch (T->getTypeID()) { 1092 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1093 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1094 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1095 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1096 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1097 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1098 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1099 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1100 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1101 case Type::MetadataTyID: 1102 Code = bitc::TYPE_CODE_METADATA; 1103 break; 1104 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1105 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1106 case Type::IntegerTyID: 1107 // INTEGER: [width] 1108 Code = bitc::TYPE_CODE_INTEGER; 1109 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1110 break; 1111 case Type::PointerTyID: { 1112 PointerType *PTy = cast<PointerType>(T); 1113 unsigned AddressSpace = PTy->getAddressSpace(); 1114 // OPAQUE_POINTER: [address space] 1115 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1116 TypeVals.push_back(AddressSpace); 1117 if (AddressSpace == 0) 1118 AbbrevToUse = OpaquePtrAbbrev; 1119 break; 1120 } 1121 case Type::FunctionTyID: { 1122 FunctionType *FT = cast<FunctionType>(T); 1123 // FUNCTION: [isvararg, retty, paramty x N] 1124 Code = bitc::TYPE_CODE_FUNCTION; 1125 TypeVals.push_back(FT->isVarArg()); 1126 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1127 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1128 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1129 AbbrevToUse = FunctionAbbrev; 1130 break; 1131 } 1132 case Type::StructTyID: { 1133 StructType *ST = cast<StructType>(T); 1134 // STRUCT: [ispacked, eltty x N] 1135 TypeVals.push_back(ST->isPacked()); 1136 // Output all of the element types. 1137 for (Type *ET : ST->elements()) 1138 TypeVals.push_back(VE.getTypeID(ET)); 1139 1140 if (ST->isLiteral()) { 1141 Code = bitc::TYPE_CODE_STRUCT_ANON; 1142 AbbrevToUse = StructAnonAbbrev; 1143 } else { 1144 if (ST->isOpaque()) { 1145 Code = bitc::TYPE_CODE_OPAQUE; 1146 } else { 1147 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1148 AbbrevToUse = StructNamedAbbrev; 1149 } 1150 1151 // Emit the name if it is present. 1152 if (!ST->getName().empty()) 1153 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1154 StructNameAbbrev); 1155 } 1156 break; 1157 } 1158 case Type::ArrayTyID: { 1159 ArrayType *AT = cast<ArrayType>(T); 1160 // ARRAY: [numelts, eltty] 1161 Code = bitc::TYPE_CODE_ARRAY; 1162 TypeVals.push_back(AT->getNumElements()); 1163 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1164 AbbrevToUse = ArrayAbbrev; 1165 break; 1166 } 1167 case Type::FixedVectorTyID: 1168 case Type::ScalableVectorTyID: { 1169 VectorType *VT = cast<VectorType>(T); 1170 // VECTOR [numelts, eltty] or 1171 // [numelts, eltty, scalable] 1172 Code = bitc::TYPE_CODE_VECTOR; 1173 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1174 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1175 if (isa<ScalableVectorType>(VT)) 1176 TypeVals.push_back(true); 1177 break; 1178 } 1179 case Type::TargetExtTyID: { 1180 TargetExtType *TET = cast<TargetExtType>(T); 1181 Code = bitc::TYPE_CODE_TARGET_TYPE; 1182 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1183 StructNameAbbrev); 1184 TypeVals.push_back(TET->getNumTypeParameters()); 1185 for (Type *InnerTy : TET->type_params()) 1186 TypeVals.push_back(VE.getTypeID(InnerTy)); 1187 for (unsigned IntParam : TET->int_params()) 1188 TypeVals.push_back(IntParam); 1189 break; 1190 } 1191 case Type::TypedPointerTyID: 1192 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1193 } 1194 1195 // Emit the finished record. 1196 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1197 TypeVals.clear(); 1198 } 1199 1200 Stream.ExitBlock(); 1201 } 1202 1203 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1204 switch (Linkage) { 1205 case GlobalValue::ExternalLinkage: 1206 return 0; 1207 case GlobalValue::WeakAnyLinkage: 1208 return 16; 1209 case GlobalValue::AppendingLinkage: 1210 return 2; 1211 case GlobalValue::InternalLinkage: 1212 return 3; 1213 case GlobalValue::LinkOnceAnyLinkage: 1214 return 18; 1215 case GlobalValue::ExternalWeakLinkage: 1216 return 7; 1217 case GlobalValue::CommonLinkage: 1218 return 8; 1219 case GlobalValue::PrivateLinkage: 1220 return 9; 1221 case GlobalValue::WeakODRLinkage: 1222 return 17; 1223 case GlobalValue::LinkOnceODRLinkage: 1224 return 19; 1225 case GlobalValue::AvailableExternallyLinkage: 1226 return 12; 1227 } 1228 llvm_unreachable("Invalid linkage"); 1229 } 1230 1231 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1232 return getEncodedLinkage(GV.getLinkage()); 1233 } 1234 1235 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1236 uint64_t RawFlags = 0; 1237 RawFlags |= Flags.ReadNone; 1238 RawFlags |= (Flags.ReadOnly << 1); 1239 RawFlags |= (Flags.NoRecurse << 2); 1240 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1241 RawFlags |= (Flags.NoInline << 4); 1242 RawFlags |= (Flags.AlwaysInline << 5); 1243 RawFlags |= (Flags.NoUnwind << 6); 1244 RawFlags |= (Flags.MayThrow << 7); 1245 RawFlags |= (Flags.HasUnknownCall << 8); 1246 RawFlags |= (Flags.MustBeUnreachable << 9); 1247 return RawFlags; 1248 } 1249 1250 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1251 // in BitcodeReader.cpp. 1252 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags, 1253 bool ImportAsDecl = false) { 1254 uint64_t RawFlags = 0; 1255 1256 RawFlags |= Flags.NotEligibleToImport; // bool 1257 RawFlags |= (Flags.Live << 1); 1258 RawFlags |= (Flags.DSOLocal << 2); 1259 RawFlags |= (Flags.CanAutoHide << 3); 1260 1261 // Linkage don't need to be remapped at that time for the summary. Any future 1262 // change to the getEncodedLinkage() function will need to be taken into 1263 // account here as well. 1264 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1265 1266 RawFlags |= (Flags.Visibility << 8); // 2 bits 1267 1268 unsigned ImportType = Flags.ImportType | ImportAsDecl; 1269 RawFlags |= (ImportType << 10); // 1 bit 1270 1271 return RawFlags; 1272 } 1273 1274 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1275 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1276 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1277 return RawFlags; 1278 } 1279 1280 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1281 uint64_t RawFlags = 0; 1282 1283 RawFlags |= CI.Hotness; // 3 bits 1284 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1285 1286 return RawFlags; 1287 } 1288 1289 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1290 uint64_t RawFlags = 0; 1291 1292 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1293 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1294 1295 return RawFlags; 1296 } 1297 1298 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1299 switch (GV.getVisibility()) { 1300 case GlobalValue::DefaultVisibility: return 0; 1301 case GlobalValue::HiddenVisibility: return 1; 1302 case GlobalValue::ProtectedVisibility: return 2; 1303 } 1304 llvm_unreachable("Invalid visibility"); 1305 } 1306 1307 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1308 switch (GV.getDLLStorageClass()) { 1309 case GlobalValue::DefaultStorageClass: return 0; 1310 case GlobalValue::DLLImportStorageClass: return 1; 1311 case GlobalValue::DLLExportStorageClass: return 2; 1312 } 1313 llvm_unreachable("Invalid DLL storage class"); 1314 } 1315 1316 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1317 switch (GV.getThreadLocalMode()) { 1318 case GlobalVariable::NotThreadLocal: return 0; 1319 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1320 case GlobalVariable::LocalDynamicTLSModel: return 2; 1321 case GlobalVariable::InitialExecTLSModel: return 3; 1322 case GlobalVariable::LocalExecTLSModel: return 4; 1323 } 1324 llvm_unreachable("Invalid TLS model"); 1325 } 1326 1327 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1328 switch (C.getSelectionKind()) { 1329 case Comdat::Any: 1330 return bitc::COMDAT_SELECTION_KIND_ANY; 1331 case Comdat::ExactMatch: 1332 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1333 case Comdat::Largest: 1334 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1335 case Comdat::NoDeduplicate: 1336 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1337 case Comdat::SameSize: 1338 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1339 } 1340 llvm_unreachable("Invalid selection kind"); 1341 } 1342 1343 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1344 switch (GV.getUnnamedAddr()) { 1345 case GlobalValue::UnnamedAddr::None: return 0; 1346 case GlobalValue::UnnamedAddr::Local: return 2; 1347 case GlobalValue::UnnamedAddr::Global: return 1; 1348 } 1349 llvm_unreachable("Invalid unnamed_addr"); 1350 } 1351 1352 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1353 if (GenerateHash) 1354 Hasher.update(Str); 1355 return StrtabBuilder.add(Str); 1356 } 1357 1358 void ModuleBitcodeWriter::writeComdats() { 1359 SmallVector<unsigned, 64> Vals; 1360 for (const Comdat *C : VE.getComdats()) { 1361 // COMDAT: [strtab offset, strtab size, selection_kind] 1362 Vals.push_back(addToStrtab(C->getName())); 1363 Vals.push_back(C->getName().size()); 1364 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1365 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1366 Vals.clear(); 1367 } 1368 } 1369 1370 /// Write a record that will eventually hold the word offset of the 1371 /// module-level VST. For now the offset is 0, which will be backpatched 1372 /// after the real VST is written. Saves the bit offset to backpatch. 1373 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1374 // Write a placeholder value in for the offset of the real VST, 1375 // which is written after the function blocks so that it can include 1376 // the offset of each function. The placeholder offset will be 1377 // updated when the real VST is written. 1378 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1379 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1380 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1381 // hold the real VST offset. Must use fixed instead of VBR as we don't 1382 // know how many VBR chunks to reserve ahead of time. 1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1384 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1385 1386 // Emit the placeholder 1387 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1388 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1389 1390 // Compute and save the bit offset to the placeholder, which will be 1391 // patched when the real VST is written. We can simply subtract the 32-bit 1392 // fixed size from the current bit number to get the location to backpatch. 1393 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1394 } 1395 1396 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1397 1398 /// Determine the encoding to use for the given string name and length. 1399 static StringEncoding getStringEncoding(StringRef Str) { 1400 bool isChar6 = true; 1401 for (char C : Str) { 1402 if (isChar6) 1403 isChar6 = BitCodeAbbrevOp::isChar6(C); 1404 if ((unsigned char)C & 128) 1405 // don't bother scanning the rest. 1406 return SE_Fixed8; 1407 } 1408 if (isChar6) 1409 return SE_Char6; 1410 return SE_Fixed7; 1411 } 1412 1413 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1414 "Sanitizer Metadata is too large for naive serialization."); 1415 static unsigned 1416 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1417 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1418 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1419 } 1420 1421 /// Emit top-level description of module, including target triple, inline asm, 1422 /// descriptors for global variables, and function prototype info. 1423 /// Returns the bit offset to backpatch with the location of the real VST. 1424 void ModuleBitcodeWriter::writeModuleInfo() { 1425 // Emit various pieces of data attached to a module. 1426 if (!M.getTargetTriple().empty()) 1427 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1428 0 /*TODO*/); 1429 const std::string &DL = M.getDataLayoutStr(); 1430 if (!DL.empty()) 1431 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1432 if (!M.getModuleInlineAsm().empty()) 1433 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1434 0 /*TODO*/); 1435 1436 // Emit information about sections and GC, computing how many there are. Also 1437 // compute the maximum alignment value. 1438 std::map<std::string, unsigned> SectionMap; 1439 std::map<std::string, unsigned> GCMap; 1440 MaybeAlign MaxAlignment; 1441 unsigned MaxGlobalType = 0; 1442 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1443 if (A) 1444 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1445 }; 1446 for (const GlobalVariable &GV : M.globals()) { 1447 UpdateMaxAlignment(GV.getAlign()); 1448 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1449 if (GV.hasSection()) { 1450 // Give section names unique ID's. 1451 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1452 if (!Entry) { 1453 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1454 0 /*TODO*/); 1455 Entry = SectionMap.size(); 1456 } 1457 } 1458 } 1459 for (const Function &F : M) { 1460 UpdateMaxAlignment(F.getAlign()); 1461 if (F.hasSection()) { 1462 // Give section names unique ID's. 1463 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1464 if (!Entry) { 1465 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1466 0 /*TODO*/); 1467 Entry = SectionMap.size(); 1468 } 1469 } 1470 if (F.hasGC()) { 1471 // Same for GC names. 1472 unsigned &Entry = GCMap[F.getGC()]; 1473 if (!Entry) { 1474 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1475 0 /*TODO*/); 1476 Entry = GCMap.size(); 1477 } 1478 } 1479 } 1480 1481 // Emit abbrev for globals, now that we know # sections and max alignment. 1482 unsigned SimpleGVarAbbrev = 0; 1483 if (!M.global_empty()) { 1484 // Add an abbrev for common globals with no visibility or thread localness. 1485 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1486 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1490 Log2_32_Ceil(MaxGlobalType+1))); 1491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1492 //| explicitType << 1 1493 //| constant 1494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1496 if (!MaxAlignment) // Alignment. 1497 Abbv->Add(BitCodeAbbrevOp(0)); 1498 else { 1499 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1501 Log2_32_Ceil(MaxEncAlignment+1))); 1502 } 1503 if (SectionMap.empty()) // Section. 1504 Abbv->Add(BitCodeAbbrevOp(0)); 1505 else 1506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1507 Log2_32_Ceil(SectionMap.size()+1))); 1508 // Don't bother emitting vis + thread local. 1509 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1510 } 1511 1512 SmallVector<unsigned, 64> Vals; 1513 // Emit the module's source file name. 1514 { 1515 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1516 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1517 if (Bits == SE_Char6) 1518 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1519 else if (Bits == SE_Fixed7) 1520 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1521 1522 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1523 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1524 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1526 Abbv->Add(AbbrevOpToUse); 1527 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1528 1529 for (const auto P : M.getSourceFileName()) 1530 Vals.push_back((unsigned char)P); 1531 1532 // Emit the finished record. 1533 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1534 Vals.clear(); 1535 } 1536 1537 // Emit the global variable information. 1538 for (const GlobalVariable &GV : M.globals()) { 1539 unsigned AbbrevToUse = 0; 1540 1541 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1542 // linkage, alignment, section, visibility, threadlocal, 1543 // unnamed_addr, externally_initialized, dllstorageclass, 1544 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1545 Vals.push_back(addToStrtab(GV.getName())); 1546 Vals.push_back(GV.getName().size()); 1547 Vals.push_back(VE.getTypeID(GV.getValueType())); 1548 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1549 Vals.push_back(GV.isDeclaration() ? 0 : 1550 (VE.getValueID(GV.getInitializer()) + 1)); 1551 Vals.push_back(getEncodedLinkage(GV)); 1552 Vals.push_back(getEncodedAlign(GV.getAlign())); 1553 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1554 : 0); 1555 if (GV.isThreadLocal() || 1556 GV.getVisibility() != GlobalValue::DefaultVisibility || 1557 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1558 GV.isExternallyInitialized() || 1559 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1560 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1561 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1562 Vals.push_back(getEncodedVisibility(GV)); 1563 Vals.push_back(getEncodedThreadLocalMode(GV)); 1564 Vals.push_back(getEncodedUnnamedAddr(GV)); 1565 Vals.push_back(GV.isExternallyInitialized()); 1566 Vals.push_back(getEncodedDLLStorageClass(GV)); 1567 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1568 1569 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1570 Vals.push_back(VE.getAttributeListID(AL)); 1571 1572 Vals.push_back(GV.isDSOLocal()); 1573 Vals.push_back(addToStrtab(GV.getPartition())); 1574 Vals.push_back(GV.getPartition().size()); 1575 1576 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1577 GV.getSanitizerMetadata()) 1578 : 0)); 1579 Vals.push_back(GV.getCodeModelRaw()); 1580 } else { 1581 AbbrevToUse = SimpleGVarAbbrev; 1582 } 1583 1584 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1585 Vals.clear(); 1586 } 1587 1588 // Emit the function proto information. 1589 for (const Function &F : M) { 1590 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1591 // linkage, paramattrs, alignment, section, visibility, gc, 1592 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1593 // prefixdata, personalityfn, DSO_Local, addrspace] 1594 Vals.push_back(addToStrtab(F.getName())); 1595 Vals.push_back(F.getName().size()); 1596 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1597 Vals.push_back(F.getCallingConv()); 1598 Vals.push_back(F.isDeclaration()); 1599 Vals.push_back(getEncodedLinkage(F)); 1600 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1601 Vals.push_back(getEncodedAlign(F.getAlign())); 1602 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1603 : 0); 1604 Vals.push_back(getEncodedVisibility(F)); 1605 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1606 Vals.push_back(getEncodedUnnamedAddr(F)); 1607 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1608 : 0); 1609 Vals.push_back(getEncodedDLLStorageClass(F)); 1610 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1611 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1612 : 0); 1613 Vals.push_back( 1614 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1615 1616 Vals.push_back(F.isDSOLocal()); 1617 Vals.push_back(F.getAddressSpace()); 1618 Vals.push_back(addToStrtab(F.getPartition())); 1619 Vals.push_back(F.getPartition().size()); 1620 1621 unsigned AbbrevToUse = 0; 1622 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1623 Vals.clear(); 1624 } 1625 1626 // Emit the alias information. 1627 for (const GlobalAlias &A : M.aliases()) { 1628 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1629 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1630 // DSO_Local] 1631 Vals.push_back(addToStrtab(A.getName())); 1632 Vals.push_back(A.getName().size()); 1633 Vals.push_back(VE.getTypeID(A.getValueType())); 1634 Vals.push_back(A.getType()->getAddressSpace()); 1635 Vals.push_back(VE.getValueID(A.getAliasee())); 1636 Vals.push_back(getEncodedLinkage(A)); 1637 Vals.push_back(getEncodedVisibility(A)); 1638 Vals.push_back(getEncodedDLLStorageClass(A)); 1639 Vals.push_back(getEncodedThreadLocalMode(A)); 1640 Vals.push_back(getEncodedUnnamedAddr(A)); 1641 Vals.push_back(A.isDSOLocal()); 1642 Vals.push_back(addToStrtab(A.getPartition())); 1643 Vals.push_back(A.getPartition().size()); 1644 1645 unsigned AbbrevToUse = 0; 1646 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1647 Vals.clear(); 1648 } 1649 1650 // Emit the ifunc information. 1651 for (const GlobalIFunc &I : M.ifuncs()) { 1652 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1653 // val#, linkage, visibility, DSO_Local] 1654 Vals.push_back(addToStrtab(I.getName())); 1655 Vals.push_back(I.getName().size()); 1656 Vals.push_back(VE.getTypeID(I.getValueType())); 1657 Vals.push_back(I.getType()->getAddressSpace()); 1658 Vals.push_back(VE.getValueID(I.getResolver())); 1659 Vals.push_back(getEncodedLinkage(I)); 1660 Vals.push_back(getEncodedVisibility(I)); 1661 Vals.push_back(I.isDSOLocal()); 1662 Vals.push_back(addToStrtab(I.getPartition())); 1663 Vals.push_back(I.getPartition().size()); 1664 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1665 Vals.clear(); 1666 } 1667 1668 writeValueSymbolTableForwardDecl(); 1669 } 1670 1671 static uint64_t getOptimizationFlags(const Value *V) { 1672 uint64_t Flags = 0; 1673 1674 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1675 if (OBO->hasNoSignedWrap()) 1676 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1677 if (OBO->hasNoUnsignedWrap()) 1678 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1679 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1680 if (PEO->isExact()) 1681 Flags |= 1 << bitc::PEO_EXACT; 1682 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1683 if (PDI->isDisjoint()) 1684 Flags |= 1 << bitc::PDI_DISJOINT; 1685 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1686 if (FPMO->hasAllowReassoc()) 1687 Flags |= bitc::AllowReassoc; 1688 if (FPMO->hasNoNaNs()) 1689 Flags |= bitc::NoNaNs; 1690 if (FPMO->hasNoInfs()) 1691 Flags |= bitc::NoInfs; 1692 if (FPMO->hasNoSignedZeros()) 1693 Flags |= bitc::NoSignedZeros; 1694 if (FPMO->hasAllowReciprocal()) 1695 Flags |= bitc::AllowReciprocal; 1696 if (FPMO->hasAllowContract()) 1697 Flags |= bitc::AllowContract; 1698 if (FPMO->hasApproxFunc()) 1699 Flags |= bitc::ApproxFunc; 1700 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1701 if (NNI->hasNonNeg()) 1702 Flags |= 1 << bitc::PNNI_NON_NEG; 1703 } else if (const auto *TI = dyn_cast<TruncInst>(V)) { 1704 if (TI->hasNoSignedWrap()) 1705 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; 1706 if (TI->hasNoUnsignedWrap()) 1707 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; 1708 } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) { 1709 if (GEP->isInBounds()) 1710 Flags |= 1 << bitc::GEP_INBOUNDS; 1711 if (GEP->hasNoUnsignedSignedWrap()) 1712 Flags |= 1 << bitc::GEP_NUSW; 1713 if (GEP->hasNoUnsignedWrap()) 1714 Flags |= 1 << bitc::GEP_NUW; 1715 } 1716 1717 return Flags; 1718 } 1719 1720 void ModuleBitcodeWriter::writeValueAsMetadata( 1721 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1722 // Mimic an MDNode with a value as one operand. 1723 Value *V = MD->getValue(); 1724 Record.push_back(VE.getTypeID(V->getType())); 1725 Record.push_back(VE.getValueID(V)); 1726 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1727 Record.clear(); 1728 } 1729 1730 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1731 SmallVectorImpl<uint64_t> &Record, 1732 unsigned Abbrev) { 1733 for (const MDOperand &MDO : N->operands()) { 1734 Metadata *MD = MDO; 1735 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1736 "Unexpected function-local metadata"); 1737 Record.push_back(VE.getMetadataOrNullID(MD)); 1738 } 1739 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1740 : bitc::METADATA_NODE, 1741 Record, Abbrev); 1742 Record.clear(); 1743 } 1744 1745 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1746 // Assume the column is usually under 128, and always output the inlined-at 1747 // location (it's never more expensive than building an array size 1). 1748 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1749 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1756 return Stream.EmitAbbrev(std::move(Abbv)); 1757 } 1758 1759 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1760 SmallVectorImpl<uint64_t> &Record, 1761 unsigned &Abbrev) { 1762 if (!Abbrev) 1763 Abbrev = createDILocationAbbrev(); 1764 1765 Record.push_back(N->isDistinct()); 1766 Record.push_back(N->getLine()); 1767 Record.push_back(N->getColumn()); 1768 Record.push_back(VE.getMetadataID(N->getScope())); 1769 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1770 Record.push_back(N->isImplicitCode()); 1771 1772 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1773 Record.clear(); 1774 } 1775 1776 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1777 // Assume the column is usually under 128, and always output the inlined-at 1778 // location (it's never more expensive than building an array size 1). 1779 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1780 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1787 return Stream.EmitAbbrev(std::move(Abbv)); 1788 } 1789 1790 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1791 SmallVectorImpl<uint64_t> &Record, 1792 unsigned &Abbrev) { 1793 if (!Abbrev) 1794 Abbrev = createGenericDINodeAbbrev(); 1795 1796 Record.push_back(N->isDistinct()); 1797 Record.push_back(N->getTag()); 1798 Record.push_back(0); // Per-tag version field; unused for now. 1799 1800 for (auto &I : N->operands()) 1801 Record.push_back(VE.getMetadataOrNullID(I)); 1802 1803 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1804 Record.clear(); 1805 } 1806 1807 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1808 SmallVectorImpl<uint64_t> &Record, 1809 unsigned Abbrev) { 1810 const uint64_t Version = 2 << 1; 1811 Record.push_back((uint64_t)N->isDistinct() | Version); 1812 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1813 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1816 1817 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1818 Record.clear(); 1819 } 1820 1821 void ModuleBitcodeWriter::writeDIGenericSubrange( 1822 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1823 unsigned Abbrev) { 1824 Record.push_back((uint64_t)N->isDistinct()); 1825 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1826 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1827 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1828 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1829 1830 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1831 Record.clear(); 1832 } 1833 1834 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1835 SmallVectorImpl<uint64_t> &Record, 1836 unsigned Abbrev) { 1837 const uint64_t IsBigInt = 1 << 2; 1838 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1839 Record.push_back(N->getValue().getBitWidth()); 1840 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1841 emitWideAPInt(Record, N->getValue()); 1842 1843 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1844 Record.clear(); 1845 } 1846 1847 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1848 SmallVectorImpl<uint64_t> &Record, 1849 unsigned Abbrev) { 1850 Record.push_back(N->isDistinct()); 1851 Record.push_back(N->getTag()); 1852 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1853 Record.push_back(N->getSizeInBits()); 1854 Record.push_back(N->getAlignInBits()); 1855 Record.push_back(N->getEncoding()); 1856 Record.push_back(N->getFlags()); 1857 1858 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1859 Record.clear(); 1860 } 1861 1862 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1863 SmallVectorImpl<uint64_t> &Record, 1864 unsigned Abbrev) { 1865 Record.push_back(N->isDistinct()); 1866 Record.push_back(N->getTag()); 1867 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1868 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1869 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1870 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1871 Record.push_back(N->getSizeInBits()); 1872 Record.push_back(N->getAlignInBits()); 1873 Record.push_back(N->getEncoding()); 1874 1875 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1876 Record.clear(); 1877 } 1878 1879 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1880 SmallVectorImpl<uint64_t> &Record, 1881 unsigned Abbrev) { 1882 Record.push_back(N->isDistinct()); 1883 Record.push_back(N->getTag()); 1884 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1885 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1886 Record.push_back(N->getLine()); 1887 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1889 Record.push_back(N->getSizeInBits()); 1890 Record.push_back(N->getAlignInBits()); 1891 Record.push_back(N->getOffsetInBits()); 1892 Record.push_back(N->getFlags()); 1893 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1894 1895 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1896 // that there is no DWARF address space associated with DIDerivedType. 1897 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1898 Record.push_back(*DWARFAddressSpace + 1); 1899 else 1900 Record.push_back(0); 1901 1902 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1903 1904 if (auto PtrAuthData = N->getPtrAuthData()) 1905 Record.push_back(PtrAuthData->RawData); 1906 else 1907 Record.push_back(0); 1908 1909 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1910 Record.clear(); 1911 } 1912 1913 void ModuleBitcodeWriter::writeDICompositeType( 1914 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1915 unsigned Abbrev) { 1916 const unsigned IsNotUsedInOldTypeRef = 0x2; 1917 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1918 Record.push_back(N->getTag()); 1919 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1920 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1921 Record.push_back(N->getLine()); 1922 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1923 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1924 Record.push_back(N->getSizeInBits()); 1925 Record.push_back(N->getAlignInBits()); 1926 Record.push_back(N->getOffsetInBits()); 1927 Record.push_back(N->getFlags()); 1928 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1929 Record.push_back(N->getRuntimeLang()); 1930 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1931 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1932 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1933 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1934 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1935 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1936 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1937 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1938 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1939 1940 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1941 Record.clear(); 1942 } 1943 1944 void ModuleBitcodeWriter::writeDISubroutineType( 1945 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1946 unsigned Abbrev) { 1947 const unsigned HasNoOldTypeRefs = 0x2; 1948 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1949 Record.push_back(N->getFlags()); 1950 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1951 Record.push_back(N->getCC()); 1952 1953 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1954 Record.clear(); 1955 } 1956 1957 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1958 SmallVectorImpl<uint64_t> &Record, 1959 unsigned Abbrev) { 1960 Record.push_back(N->isDistinct()); 1961 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1962 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1963 if (N->getRawChecksum()) { 1964 Record.push_back(N->getRawChecksum()->Kind); 1965 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1966 } else { 1967 // Maintain backwards compatibility with the old internal representation of 1968 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1969 Record.push_back(0); 1970 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1971 } 1972 auto Source = N->getRawSource(); 1973 if (Source) 1974 Record.push_back(VE.getMetadataOrNullID(Source)); 1975 1976 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1977 Record.clear(); 1978 } 1979 1980 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1981 SmallVectorImpl<uint64_t> &Record, 1982 unsigned Abbrev) { 1983 assert(N->isDistinct() && "Expected distinct compile units"); 1984 Record.push_back(/* IsDistinct */ true); 1985 Record.push_back(N->getSourceLanguage()); 1986 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1987 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1988 Record.push_back(N->isOptimized()); 1989 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1990 Record.push_back(N->getRuntimeVersion()); 1991 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1992 Record.push_back(N->getEmissionKind()); 1993 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1994 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1995 Record.push_back(/* subprograms */ 0); 1996 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1997 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1998 Record.push_back(N->getDWOId()); 1999 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 2000 Record.push_back(N->getSplitDebugInlining()); 2001 Record.push_back(N->getDebugInfoForProfiling()); 2002 Record.push_back((unsigned)N->getNameTableKind()); 2003 Record.push_back(N->getRangesBaseAddress()); 2004 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 2005 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 2006 2007 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 2008 Record.clear(); 2009 } 2010 2011 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 2012 SmallVectorImpl<uint64_t> &Record, 2013 unsigned Abbrev) { 2014 const uint64_t HasUnitFlag = 1 << 1; 2015 const uint64_t HasSPFlagsFlag = 1 << 2; 2016 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 2017 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2018 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2019 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2020 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2021 Record.push_back(N->getLine()); 2022 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2023 Record.push_back(N->getScopeLine()); 2024 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 2025 Record.push_back(N->getSPFlags()); 2026 Record.push_back(N->getVirtualIndex()); 2027 Record.push_back(N->getFlags()); 2028 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 2029 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 2030 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 2031 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 2032 Record.push_back(N->getThisAdjustment()); 2033 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 2034 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2035 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 2036 2037 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 2038 Record.clear(); 2039 } 2040 2041 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 2042 SmallVectorImpl<uint64_t> &Record, 2043 unsigned Abbrev) { 2044 Record.push_back(N->isDistinct()); 2045 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2046 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2047 Record.push_back(N->getLine()); 2048 Record.push_back(N->getColumn()); 2049 2050 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 2051 Record.clear(); 2052 } 2053 2054 void ModuleBitcodeWriter::writeDILexicalBlockFile( 2055 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 2056 unsigned Abbrev) { 2057 Record.push_back(N->isDistinct()); 2058 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2059 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2060 Record.push_back(N->getDiscriminator()); 2061 2062 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 2063 Record.clear(); 2064 } 2065 2066 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 2067 SmallVectorImpl<uint64_t> &Record, 2068 unsigned Abbrev) { 2069 Record.push_back(N->isDistinct()); 2070 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2071 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2072 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2073 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2074 Record.push_back(N->getLineNo()); 2075 2076 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2077 Record.clear(); 2078 } 2079 2080 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2081 SmallVectorImpl<uint64_t> &Record, 2082 unsigned Abbrev) { 2083 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2084 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2085 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2086 2087 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2088 Record.clear(); 2089 } 2090 2091 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2092 SmallVectorImpl<uint64_t> &Record, 2093 unsigned Abbrev) { 2094 Record.push_back(N->isDistinct()); 2095 Record.push_back(N->getMacinfoType()); 2096 Record.push_back(N->getLine()); 2097 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2098 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2099 2100 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2101 Record.clear(); 2102 } 2103 2104 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2105 SmallVectorImpl<uint64_t> &Record, 2106 unsigned Abbrev) { 2107 Record.push_back(N->isDistinct()); 2108 Record.push_back(N->getMacinfoType()); 2109 Record.push_back(N->getLine()); 2110 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2111 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2112 2113 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2114 Record.clear(); 2115 } 2116 2117 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2118 SmallVectorImpl<uint64_t> &Record) { 2119 Record.reserve(N->getArgs().size()); 2120 for (ValueAsMetadata *MD : N->getArgs()) 2121 Record.push_back(VE.getMetadataID(MD)); 2122 2123 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2124 Record.clear(); 2125 } 2126 2127 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2128 SmallVectorImpl<uint64_t> &Record, 2129 unsigned Abbrev) { 2130 Record.push_back(N->isDistinct()); 2131 for (auto &I : N->operands()) 2132 Record.push_back(VE.getMetadataOrNullID(I)); 2133 Record.push_back(N->getLineNo()); 2134 Record.push_back(N->getIsDecl()); 2135 2136 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2137 Record.clear(); 2138 } 2139 2140 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2141 SmallVectorImpl<uint64_t> &Record, 2142 unsigned Abbrev) { 2143 // There are no arguments for this metadata type. 2144 Record.push_back(N->isDistinct()); 2145 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2146 Record.clear(); 2147 } 2148 2149 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2150 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2151 unsigned Abbrev) { 2152 Record.push_back(N->isDistinct()); 2153 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2154 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2155 Record.push_back(N->isDefault()); 2156 2157 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2158 Record.clear(); 2159 } 2160 2161 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2162 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2163 unsigned Abbrev) { 2164 Record.push_back(N->isDistinct()); 2165 Record.push_back(N->getTag()); 2166 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2167 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2168 Record.push_back(N->isDefault()); 2169 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2170 2171 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2172 Record.clear(); 2173 } 2174 2175 void ModuleBitcodeWriter::writeDIGlobalVariable( 2176 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2177 unsigned Abbrev) { 2178 const uint64_t Version = 2 << 1; 2179 Record.push_back((uint64_t)N->isDistinct() | Version); 2180 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2181 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2182 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2183 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2184 Record.push_back(N->getLine()); 2185 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2186 Record.push_back(N->isLocalToUnit()); 2187 Record.push_back(N->isDefinition()); 2188 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2189 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2190 Record.push_back(N->getAlignInBits()); 2191 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2192 2193 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2194 Record.clear(); 2195 } 2196 2197 void ModuleBitcodeWriter::writeDILocalVariable( 2198 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2199 unsigned Abbrev) { 2200 // In order to support all possible bitcode formats in BitcodeReader we need 2201 // to distinguish the following cases: 2202 // 1) Record has no artificial tag (Record[1]), 2203 // has no obsolete inlinedAt field (Record[9]). 2204 // In this case Record size will be 8, HasAlignment flag is false. 2205 // 2) Record has artificial tag (Record[1]), 2206 // has no obsolete inlignedAt field (Record[9]). 2207 // In this case Record size will be 9, HasAlignment flag is false. 2208 // 3) Record has both artificial tag (Record[1]) and 2209 // obsolete inlignedAt field (Record[9]). 2210 // In this case Record size will be 10, HasAlignment flag is false. 2211 // 4) Record has neither artificial tag, nor inlignedAt field, but 2212 // HasAlignment flag is true and Record[8] contains alignment value. 2213 const uint64_t HasAlignmentFlag = 1 << 1; 2214 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2215 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2216 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2217 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2218 Record.push_back(N->getLine()); 2219 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2220 Record.push_back(N->getArg()); 2221 Record.push_back(N->getFlags()); 2222 Record.push_back(N->getAlignInBits()); 2223 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2224 2225 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2226 Record.clear(); 2227 } 2228 2229 void ModuleBitcodeWriter::writeDILabel( 2230 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2231 unsigned Abbrev) { 2232 Record.push_back((uint64_t)N->isDistinct()); 2233 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2234 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2235 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2236 Record.push_back(N->getLine()); 2237 2238 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2239 Record.clear(); 2240 } 2241 2242 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2243 SmallVectorImpl<uint64_t> &Record, 2244 unsigned Abbrev) { 2245 Record.reserve(N->getElements().size() + 1); 2246 const uint64_t Version = 3 << 1; 2247 Record.push_back((uint64_t)N->isDistinct() | Version); 2248 Record.append(N->elements_begin(), N->elements_end()); 2249 2250 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2251 Record.clear(); 2252 } 2253 2254 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2255 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2256 unsigned Abbrev) { 2257 Record.push_back(N->isDistinct()); 2258 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2259 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2260 2261 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2262 Record.clear(); 2263 } 2264 2265 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2266 SmallVectorImpl<uint64_t> &Record, 2267 unsigned Abbrev) { 2268 Record.push_back(N->isDistinct()); 2269 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2270 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2271 Record.push_back(N->getLine()); 2272 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2273 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2274 Record.push_back(N->getAttributes()); 2275 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2276 2277 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2278 Record.clear(); 2279 } 2280 2281 void ModuleBitcodeWriter::writeDIImportedEntity( 2282 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2283 unsigned Abbrev) { 2284 Record.push_back(N->isDistinct()); 2285 Record.push_back(N->getTag()); 2286 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2287 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2288 Record.push_back(N->getLine()); 2289 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2290 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2291 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2292 2293 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2294 Record.clear(); 2295 } 2296 2297 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2298 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2299 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2302 return Stream.EmitAbbrev(std::move(Abbv)); 2303 } 2304 2305 void ModuleBitcodeWriter::writeNamedMetadata( 2306 SmallVectorImpl<uint64_t> &Record) { 2307 if (M.named_metadata_empty()) 2308 return; 2309 2310 unsigned Abbrev = createNamedMetadataAbbrev(); 2311 for (const NamedMDNode &NMD : M.named_metadata()) { 2312 // Write name. 2313 StringRef Str = NMD.getName(); 2314 Record.append(Str.bytes_begin(), Str.bytes_end()); 2315 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2316 Record.clear(); 2317 2318 // Write named metadata operands. 2319 for (const MDNode *N : NMD.operands()) 2320 Record.push_back(VE.getMetadataID(N)); 2321 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2322 Record.clear(); 2323 } 2324 } 2325 2326 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2327 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2328 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2332 return Stream.EmitAbbrev(std::move(Abbv)); 2333 } 2334 2335 /// Write out a record for MDString. 2336 /// 2337 /// All the metadata strings in a metadata block are emitted in a single 2338 /// record. The sizes and strings themselves are shoved into a blob. 2339 void ModuleBitcodeWriter::writeMetadataStrings( 2340 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2341 if (Strings.empty()) 2342 return; 2343 2344 // Start the record with the number of strings. 2345 Record.push_back(bitc::METADATA_STRINGS); 2346 Record.push_back(Strings.size()); 2347 2348 // Emit the sizes of the strings in the blob. 2349 SmallString<256> Blob; 2350 { 2351 BitstreamWriter W(Blob); 2352 for (const Metadata *MD : Strings) 2353 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2354 W.FlushToWord(); 2355 } 2356 2357 // Add the offset to the strings to the record. 2358 Record.push_back(Blob.size()); 2359 2360 // Add the strings to the blob. 2361 for (const Metadata *MD : Strings) 2362 Blob.append(cast<MDString>(MD)->getString()); 2363 2364 // Emit the final record. 2365 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2366 Record.clear(); 2367 } 2368 2369 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2370 enum MetadataAbbrev : unsigned { 2371 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2372 #include "llvm/IR/Metadata.def" 2373 LastPlusOne 2374 }; 2375 2376 void ModuleBitcodeWriter::writeMetadataRecords( 2377 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2378 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2379 if (MDs.empty()) 2380 return; 2381 2382 // Initialize MDNode abbreviations. 2383 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2384 #include "llvm/IR/Metadata.def" 2385 2386 for (const Metadata *MD : MDs) { 2387 if (IndexPos) 2388 IndexPos->push_back(Stream.GetCurrentBitNo()); 2389 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2390 assert(N->isResolved() && "Expected forward references to be resolved"); 2391 2392 switch (N->getMetadataID()) { 2393 default: 2394 llvm_unreachable("Invalid MDNode subclass"); 2395 #define HANDLE_MDNODE_LEAF(CLASS) \ 2396 case Metadata::CLASS##Kind: \ 2397 if (MDAbbrevs) \ 2398 write##CLASS(cast<CLASS>(N), Record, \ 2399 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2400 else \ 2401 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2402 continue; 2403 #include "llvm/IR/Metadata.def" 2404 } 2405 } 2406 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2407 writeDIArgList(AL, Record); 2408 continue; 2409 } 2410 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2411 } 2412 } 2413 2414 void ModuleBitcodeWriter::writeModuleMetadata() { 2415 if (!VE.hasMDs() && M.named_metadata_empty()) 2416 return; 2417 2418 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2419 SmallVector<uint64_t, 64> Record; 2420 2421 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2422 // block and load any metadata. 2423 std::vector<unsigned> MDAbbrevs; 2424 2425 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2426 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2427 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2428 createGenericDINodeAbbrev(); 2429 2430 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2431 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2434 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2435 2436 Abbv = std::make_shared<BitCodeAbbrev>(); 2437 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2440 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2441 2442 // Emit MDStrings together upfront. 2443 writeMetadataStrings(VE.getMDStrings(), Record); 2444 2445 // We only emit an index for the metadata record if we have more than a given 2446 // (naive) threshold of metadatas, otherwise it is not worth it. 2447 if (VE.getNonMDStrings().size() > IndexThreshold) { 2448 // Write a placeholder value in for the offset of the metadata index, 2449 // which is written after the records, so that it can include 2450 // the offset of each entry. The placeholder offset will be 2451 // updated after all records are emitted. 2452 uint64_t Vals[] = {0, 0}; 2453 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2454 } 2455 2456 // Compute and save the bit offset to the current position, which will be 2457 // patched when we emit the index later. We can simply subtract the 64-bit 2458 // fixed size from the current bit number to get the location to backpatch. 2459 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2460 2461 // This index will contain the bitpos for each individual record. 2462 std::vector<uint64_t> IndexPos; 2463 IndexPos.reserve(VE.getNonMDStrings().size()); 2464 2465 // Write all the records 2466 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2467 2468 if (VE.getNonMDStrings().size() > IndexThreshold) { 2469 // Now that we have emitted all the records we will emit the index. But 2470 // first 2471 // backpatch the forward reference so that the reader can skip the records 2472 // efficiently. 2473 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2474 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2475 2476 // Delta encode the index. 2477 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2478 for (auto &Elt : IndexPos) { 2479 auto EltDelta = Elt - PreviousValue; 2480 PreviousValue = Elt; 2481 Elt = EltDelta; 2482 } 2483 // Emit the index record. 2484 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2485 IndexPos.clear(); 2486 } 2487 2488 // Write the named metadata now. 2489 writeNamedMetadata(Record); 2490 2491 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2492 SmallVector<uint64_t, 4> Record; 2493 Record.push_back(VE.getValueID(&GO)); 2494 pushGlobalMetadataAttachment(Record, GO); 2495 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2496 }; 2497 for (const Function &F : M) 2498 if (F.isDeclaration() && F.hasMetadata()) 2499 AddDeclAttachedMetadata(F); 2500 // FIXME: Only store metadata for declarations here, and move data for global 2501 // variable definitions to a separate block (PR28134). 2502 for (const GlobalVariable &GV : M.globals()) 2503 if (GV.hasMetadata()) 2504 AddDeclAttachedMetadata(GV); 2505 2506 Stream.ExitBlock(); 2507 } 2508 2509 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2510 if (!VE.hasMDs()) 2511 return; 2512 2513 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2514 SmallVector<uint64_t, 64> Record; 2515 writeMetadataStrings(VE.getMDStrings(), Record); 2516 writeMetadataRecords(VE.getNonMDStrings(), Record); 2517 Stream.ExitBlock(); 2518 } 2519 2520 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2521 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2522 // [n x [id, mdnode]] 2523 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2524 GO.getAllMetadata(MDs); 2525 for (const auto &I : MDs) { 2526 Record.push_back(I.first); 2527 Record.push_back(VE.getMetadataID(I.second)); 2528 } 2529 } 2530 2531 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2532 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2533 2534 SmallVector<uint64_t, 64> Record; 2535 2536 if (F.hasMetadata()) { 2537 pushGlobalMetadataAttachment(Record, F); 2538 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2539 Record.clear(); 2540 } 2541 2542 // Write metadata attachments 2543 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2544 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2545 for (const BasicBlock &BB : F) 2546 for (const Instruction &I : BB) { 2547 MDs.clear(); 2548 I.getAllMetadataOtherThanDebugLoc(MDs); 2549 2550 // If no metadata, ignore instruction. 2551 if (MDs.empty()) continue; 2552 2553 Record.push_back(VE.getInstructionID(&I)); 2554 2555 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2556 Record.push_back(MDs[i].first); 2557 Record.push_back(VE.getMetadataID(MDs[i].second)); 2558 } 2559 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2560 Record.clear(); 2561 } 2562 2563 Stream.ExitBlock(); 2564 } 2565 2566 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2567 SmallVector<uint64_t, 64> Record; 2568 2569 // Write metadata kinds 2570 // METADATA_KIND - [n x [id, name]] 2571 SmallVector<StringRef, 8> Names; 2572 M.getMDKindNames(Names); 2573 2574 if (Names.empty()) return; 2575 2576 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2577 2578 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2579 Record.push_back(MDKindID); 2580 StringRef KName = Names[MDKindID]; 2581 Record.append(KName.begin(), KName.end()); 2582 2583 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2584 Record.clear(); 2585 } 2586 2587 Stream.ExitBlock(); 2588 } 2589 2590 void ModuleBitcodeWriter::writeOperandBundleTags() { 2591 // Write metadata kinds 2592 // 2593 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2594 // 2595 // OPERAND_BUNDLE_TAG - [strchr x N] 2596 2597 SmallVector<StringRef, 8> Tags; 2598 M.getOperandBundleTags(Tags); 2599 2600 if (Tags.empty()) 2601 return; 2602 2603 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2604 2605 SmallVector<uint64_t, 64> Record; 2606 2607 for (auto Tag : Tags) { 2608 Record.append(Tag.begin(), Tag.end()); 2609 2610 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2611 Record.clear(); 2612 } 2613 2614 Stream.ExitBlock(); 2615 } 2616 2617 void ModuleBitcodeWriter::writeSyncScopeNames() { 2618 SmallVector<StringRef, 8> SSNs; 2619 M.getContext().getSyncScopeNames(SSNs); 2620 if (SSNs.empty()) 2621 return; 2622 2623 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2624 2625 SmallVector<uint64_t, 64> Record; 2626 for (auto SSN : SSNs) { 2627 Record.append(SSN.begin(), SSN.end()); 2628 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2629 Record.clear(); 2630 } 2631 2632 Stream.ExitBlock(); 2633 } 2634 2635 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2636 bool isGlobal) { 2637 if (FirstVal == LastVal) return; 2638 2639 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2640 2641 unsigned AggregateAbbrev = 0; 2642 unsigned String8Abbrev = 0; 2643 unsigned CString7Abbrev = 0; 2644 unsigned CString6Abbrev = 0; 2645 // If this is a constant pool for the module, emit module-specific abbrevs. 2646 if (isGlobal) { 2647 // Abbrev for CST_CODE_AGGREGATE. 2648 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2649 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2652 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2653 2654 // Abbrev for CST_CODE_STRING. 2655 Abbv = std::make_shared<BitCodeAbbrev>(); 2656 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2659 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2660 // Abbrev for CST_CODE_CSTRING. 2661 Abbv = std::make_shared<BitCodeAbbrev>(); 2662 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2665 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2666 // Abbrev for CST_CODE_CSTRING. 2667 Abbv = std::make_shared<BitCodeAbbrev>(); 2668 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2671 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2672 } 2673 2674 SmallVector<uint64_t, 64> Record; 2675 2676 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2677 Type *LastTy = nullptr; 2678 for (unsigned i = FirstVal; i != LastVal; ++i) { 2679 const Value *V = Vals[i].first; 2680 // If we need to switch types, do so now. 2681 if (V->getType() != LastTy) { 2682 LastTy = V->getType(); 2683 Record.push_back(VE.getTypeID(LastTy)); 2684 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2685 CONSTANTS_SETTYPE_ABBREV); 2686 Record.clear(); 2687 } 2688 2689 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2690 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2691 Record.push_back( 2692 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2693 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2694 2695 // Add the asm string. 2696 const std::string &AsmStr = IA->getAsmString(); 2697 Record.push_back(AsmStr.size()); 2698 Record.append(AsmStr.begin(), AsmStr.end()); 2699 2700 // Add the constraint string. 2701 const std::string &ConstraintStr = IA->getConstraintString(); 2702 Record.push_back(ConstraintStr.size()); 2703 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2704 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2705 Record.clear(); 2706 continue; 2707 } 2708 const Constant *C = cast<Constant>(V); 2709 unsigned Code = -1U; 2710 unsigned AbbrevToUse = 0; 2711 if (C->isNullValue()) { 2712 Code = bitc::CST_CODE_NULL; 2713 } else if (isa<PoisonValue>(C)) { 2714 Code = bitc::CST_CODE_POISON; 2715 } else if (isa<UndefValue>(C)) { 2716 Code = bitc::CST_CODE_UNDEF; 2717 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2718 if (IV->getBitWidth() <= 64) { 2719 uint64_t V = IV->getSExtValue(); 2720 emitSignedInt64(Record, V); 2721 Code = bitc::CST_CODE_INTEGER; 2722 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2723 } else { // Wide integers, > 64 bits in size. 2724 emitWideAPInt(Record, IV->getValue()); 2725 Code = bitc::CST_CODE_WIDE_INTEGER; 2726 } 2727 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2728 Code = bitc::CST_CODE_FLOAT; 2729 Type *Ty = CFP->getType()->getScalarType(); 2730 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2731 Ty->isDoubleTy()) { 2732 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2733 } else if (Ty->isX86_FP80Ty()) { 2734 // api needed to prevent premature destruction 2735 // bits are not in the same order as a normal i80 APInt, compensate. 2736 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2737 const uint64_t *p = api.getRawData(); 2738 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2739 Record.push_back(p[0] & 0xffffLL); 2740 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2741 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2742 const uint64_t *p = api.getRawData(); 2743 Record.push_back(p[0]); 2744 Record.push_back(p[1]); 2745 } else { 2746 assert(0 && "Unknown FP type!"); 2747 } 2748 } else if (isa<ConstantDataSequential>(C) && 2749 cast<ConstantDataSequential>(C)->isString()) { 2750 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2751 // Emit constant strings specially. 2752 unsigned NumElts = Str->getNumElements(); 2753 // If this is a null-terminated string, use the denser CSTRING encoding. 2754 if (Str->isCString()) { 2755 Code = bitc::CST_CODE_CSTRING; 2756 --NumElts; // Don't encode the null, which isn't allowed by char6. 2757 } else { 2758 Code = bitc::CST_CODE_STRING; 2759 AbbrevToUse = String8Abbrev; 2760 } 2761 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2762 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2763 for (unsigned i = 0; i != NumElts; ++i) { 2764 unsigned char V = Str->getElementAsInteger(i); 2765 Record.push_back(V); 2766 isCStr7 &= (V & 128) == 0; 2767 if (isCStrChar6) 2768 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2769 } 2770 2771 if (isCStrChar6) 2772 AbbrevToUse = CString6Abbrev; 2773 else if (isCStr7) 2774 AbbrevToUse = CString7Abbrev; 2775 } else if (const ConstantDataSequential *CDS = 2776 dyn_cast<ConstantDataSequential>(C)) { 2777 Code = bitc::CST_CODE_DATA; 2778 Type *EltTy = CDS->getElementType(); 2779 if (isa<IntegerType>(EltTy)) { 2780 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2781 Record.push_back(CDS->getElementAsInteger(i)); 2782 } else { 2783 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2784 Record.push_back( 2785 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2786 } 2787 } else if (isa<ConstantAggregate>(C)) { 2788 Code = bitc::CST_CODE_AGGREGATE; 2789 for (const Value *Op : C->operands()) 2790 Record.push_back(VE.getValueID(Op)); 2791 AbbrevToUse = AggregateAbbrev; 2792 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2793 switch (CE->getOpcode()) { 2794 default: 2795 if (Instruction::isCast(CE->getOpcode())) { 2796 Code = bitc::CST_CODE_CE_CAST; 2797 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2798 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2799 Record.push_back(VE.getValueID(C->getOperand(0))); 2800 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2801 } else { 2802 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2803 Code = bitc::CST_CODE_CE_BINOP; 2804 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2805 Record.push_back(VE.getValueID(C->getOperand(0))); 2806 Record.push_back(VE.getValueID(C->getOperand(1))); 2807 uint64_t Flags = getOptimizationFlags(CE); 2808 if (Flags != 0) 2809 Record.push_back(Flags); 2810 } 2811 break; 2812 case Instruction::FNeg: { 2813 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2814 Code = bitc::CST_CODE_CE_UNOP; 2815 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2816 Record.push_back(VE.getValueID(C->getOperand(0))); 2817 uint64_t Flags = getOptimizationFlags(CE); 2818 if (Flags != 0) 2819 Record.push_back(Flags); 2820 break; 2821 } 2822 case Instruction::GetElementPtr: { 2823 Code = bitc::CST_CODE_CE_GEP; 2824 const auto *GO = cast<GEPOperator>(C); 2825 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2826 Record.push_back(getOptimizationFlags(GO)); 2827 if (std::optional<ConstantRange> Range = GO->getInRange()) { 2828 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; 2829 emitConstantRange(Record, *Range, /*EmitBitWidth=*/true); 2830 } 2831 for (const Value *Op : CE->operands()) { 2832 Record.push_back(VE.getTypeID(Op->getType())); 2833 Record.push_back(VE.getValueID(Op)); 2834 } 2835 break; 2836 } 2837 case Instruction::ExtractElement: 2838 Code = bitc::CST_CODE_CE_EXTRACTELT; 2839 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2840 Record.push_back(VE.getValueID(C->getOperand(0))); 2841 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2842 Record.push_back(VE.getValueID(C->getOperand(1))); 2843 break; 2844 case Instruction::InsertElement: 2845 Code = bitc::CST_CODE_CE_INSERTELT; 2846 Record.push_back(VE.getValueID(C->getOperand(0))); 2847 Record.push_back(VE.getValueID(C->getOperand(1))); 2848 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2849 Record.push_back(VE.getValueID(C->getOperand(2))); 2850 break; 2851 case Instruction::ShuffleVector: 2852 // If the return type and argument types are the same, this is a 2853 // standard shufflevector instruction. If the types are different, 2854 // then the shuffle is widening or truncating the input vectors, and 2855 // the argument type must also be encoded. 2856 if (C->getType() == C->getOperand(0)->getType()) { 2857 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2858 } else { 2859 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2860 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2861 } 2862 Record.push_back(VE.getValueID(C->getOperand(0))); 2863 Record.push_back(VE.getValueID(C->getOperand(1))); 2864 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2865 break; 2866 } 2867 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2868 Code = bitc::CST_CODE_BLOCKADDRESS; 2869 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2870 Record.push_back(VE.getValueID(BA->getFunction())); 2871 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2872 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2873 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2874 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2875 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2876 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2877 Code = bitc::CST_CODE_NO_CFI_VALUE; 2878 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2879 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2880 } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) { 2881 Code = bitc::CST_CODE_PTRAUTH; 2882 Record.push_back(VE.getValueID(CPA->getPointer())); 2883 Record.push_back(VE.getValueID(CPA->getKey())); 2884 Record.push_back(VE.getValueID(CPA->getDiscriminator())); 2885 Record.push_back(VE.getValueID(CPA->getAddrDiscriminator())); 2886 } else { 2887 #ifndef NDEBUG 2888 C->dump(); 2889 #endif 2890 llvm_unreachable("Unknown constant!"); 2891 } 2892 Stream.EmitRecord(Code, Record, AbbrevToUse); 2893 Record.clear(); 2894 } 2895 2896 Stream.ExitBlock(); 2897 } 2898 2899 void ModuleBitcodeWriter::writeModuleConstants() { 2900 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2901 2902 // Find the first constant to emit, which is the first non-globalvalue value. 2903 // We know globalvalues have been emitted by WriteModuleInfo. 2904 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2905 if (!isa<GlobalValue>(Vals[i].first)) { 2906 writeConstants(i, Vals.size(), true); 2907 return; 2908 } 2909 } 2910 } 2911 2912 /// pushValueAndType - The file has to encode both the value and type id for 2913 /// many values, because we need to know what type to create for forward 2914 /// references. However, most operands are not forward references, so this type 2915 /// field is not needed. 2916 /// 2917 /// This function adds V's value ID to Vals. If the value ID is higher than the 2918 /// instruction ID, then it is a forward reference, and it also includes the 2919 /// type ID. The value ID that is written is encoded relative to the InstID. 2920 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2921 SmallVectorImpl<unsigned> &Vals) { 2922 unsigned ValID = VE.getValueID(V); 2923 // Make encoding relative to the InstID. 2924 Vals.push_back(InstID - ValID); 2925 if (ValID >= InstID) { 2926 Vals.push_back(VE.getTypeID(V->getType())); 2927 return true; 2928 } 2929 return false; 2930 } 2931 2932 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2933 unsigned InstID) { 2934 SmallVector<unsigned, 64> Record; 2935 LLVMContext &C = CS.getContext(); 2936 2937 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2938 const auto &Bundle = CS.getOperandBundleAt(i); 2939 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2940 2941 for (auto &Input : Bundle.Inputs) 2942 pushValueAndType(Input, InstID, Record); 2943 2944 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2945 Record.clear(); 2946 } 2947 } 2948 2949 /// pushValue - Like pushValueAndType, but where the type of the value is 2950 /// omitted (perhaps it was already encoded in an earlier operand). 2951 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2952 SmallVectorImpl<unsigned> &Vals) { 2953 unsigned ValID = VE.getValueID(V); 2954 Vals.push_back(InstID - ValID); 2955 } 2956 2957 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2958 SmallVectorImpl<uint64_t> &Vals) { 2959 unsigned ValID = VE.getValueID(V); 2960 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2961 emitSignedInt64(Vals, diff); 2962 } 2963 2964 /// WriteInstruction - Emit an instruction to the specified stream. 2965 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2966 unsigned InstID, 2967 SmallVectorImpl<unsigned> &Vals) { 2968 unsigned Code = 0; 2969 unsigned AbbrevToUse = 0; 2970 VE.setInstructionID(&I); 2971 switch (I.getOpcode()) { 2972 default: 2973 if (Instruction::isCast(I.getOpcode())) { 2974 Code = bitc::FUNC_CODE_INST_CAST; 2975 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2976 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2977 Vals.push_back(VE.getTypeID(I.getType())); 2978 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2979 uint64_t Flags = getOptimizationFlags(&I); 2980 if (Flags != 0) { 2981 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2982 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2983 Vals.push_back(Flags); 2984 } 2985 } else { 2986 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2987 Code = bitc::FUNC_CODE_INST_BINOP; 2988 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2989 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2990 pushValue(I.getOperand(1), InstID, Vals); 2991 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2992 uint64_t Flags = getOptimizationFlags(&I); 2993 if (Flags != 0) { 2994 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2995 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2996 Vals.push_back(Flags); 2997 } 2998 } 2999 break; 3000 case Instruction::FNeg: { 3001 Code = bitc::FUNC_CODE_INST_UNOP; 3002 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3003 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 3004 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 3005 uint64_t Flags = getOptimizationFlags(&I); 3006 if (Flags != 0) { 3007 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 3008 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 3009 Vals.push_back(Flags); 3010 } 3011 break; 3012 } 3013 case Instruction::GetElementPtr: { 3014 Code = bitc::FUNC_CODE_INST_GEP; 3015 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 3016 auto &GEPInst = cast<GetElementPtrInst>(I); 3017 Vals.push_back(getOptimizationFlags(&I)); 3018 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 3019 for (const Value *Op : I.operands()) 3020 pushValueAndType(Op, InstID, Vals); 3021 break; 3022 } 3023 case Instruction::ExtractValue: { 3024 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 3025 pushValueAndType(I.getOperand(0), InstID, Vals); 3026 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 3027 Vals.append(EVI->idx_begin(), EVI->idx_end()); 3028 break; 3029 } 3030 case Instruction::InsertValue: { 3031 Code = bitc::FUNC_CODE_INST_INSERTVAL; 3032 pushValueAndType(I.getOperand(0), InstID, Vals); 3033 pushValueAndType(I.getOperand(1), InstID, Vals); 3034 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 3035 Vals.append(IVI->idx_begin(), IVI->idx_end()); 3036 break; 3037 } 3038 case Instruction::Select: { 3039 Code = bitc::FUNC_CODE_INST_VSELECT; 3040 pushValueAndType(I.getOperand(1), InstID, Vals); 3041 pushValue(I.getOperand(2), InstID, Vals); 3042 pushValueAndType(I.getOperand(0), InstID, Vals); 3043 uint64_t Flags = getOptimizationFlags(&I); 3044 if (Flags != 0) 3045 Vals.push_back(Flags); 3046 break; 3047 } 3048 case Instruction::ExtractElement: 3049 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 3050 pushValueAndType(I.getOperand(0), InstID, Vals); 3051 pushValueAndType(I.getOperand(1), InstID, Vals); 3052 break; 3053 case Instruction::InsertElement: 3054 Code = bitc::FUNC_CODE_INST_INSERTELT; 3055 pushValueAndType(I.getOperand(0), InstID, Vals); 3056 pushValue(I.getOperand(1), InstID, Vals); 3057 pushValueAndType(I.getOperand(2), InstID, Vals); 3058 break; 3059 case Instruction::ShuffleVector: 3060 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 3061 pushValueAndType(I.getOperand(0), InstID, Vals); 3062 pushValue(I.getOperand(1), InstID, Vals); 3063 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 3064 Vals); 3065 break; 3066 case Instruction::ICmp: 3067 case Instruction::FCmp: { 3068 // compare returning Int1Ty or vector of Int1Ty 3069 Code = bitc::FUNC_CODE_INST_CMP2; 3070 pushValueAndType(I.getOperand(0), InstID, Vals); 3071 pushValue(I.getOperand(1), InstID, Vals); 3072 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3073 uint64_t Flags = getOptimizationFlags(&I); 3074 if (Flags != 0) 3075 Vals.push_back(Flags); 3076 break; 3077 } 3078 3079 case Instruction::Ret: 3080 { 3081 Code = bitc::FUNC_CODE_INST_RET; 3082 unsigned NumOperands = I.getNumOperands(); 3083 if (NumOperands == 0) 3084 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3085 else if (NumOperands == 1) { 3086 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3087 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3088 } else { 3089 for (const Value *Op : I.operands()) 3090 pushValueAndType(Op, InstID, Vals); 3091 } 3092 } 3093 break; 3094 case Instruction::Br: 3095 { 3096 Code = bitc::FUNC_CODE_INST_BR; 3097 const BranchInst &II = cast<BranchInst>(I); 3098 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3099 if (II.isConditional()) { 3100 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3101 pushValue(II.getCondition(), InstID, Vals); 3102 } 3103 } 3104 break; 3105 case Instruction::Switch: 3106 { 3107 Code = bitc::FUNC_CODE_INST_SWITCH; 3108 const SwitchInst &SI = cast<SwitchInst>(I); 3109 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3110 pushValue(SI.getCondition(), InstID, Vals); 3111 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3112 for (auto Case : SI.cases()) { 3113 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3114 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3115 } 3116 } 3117 break; 3118 case Instruction::IndirectBr: 3119 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3120 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3121 // Encode the address operand as relative, but not the basic blocks. 3122 pushValue(I.getOperand(0), InstID, Vals); 3123 for (const Value *Op : drop_begin(I.operands())) 3124 Vals.push_back(VE.getValueID(Op)); 3125 break; 3126 3127 case Instruction::Invoke: { 3128 const InvokeInst *II = cast<InvokeInst>(&I); 3129 const Value *Callee = II->getCalledOperand(); 3130 FunctionType *FTy = II->getFunctionType(); 3131 3132 if (II->hasOperandBundles()) 3133 writeOperandBundles(*II, InstID); 3134 3135 Code = bitc::FUNC_CODE_INST_INVOKE; 3136 3137 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3138 Vals.push_back(II->getCallingConv() | 1 << 13); 3139 Vals.push_back(VE.getValueID(II->getNormalDest())); 3140 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3141 Vals.push_back(VE.getTypeID(FTy)); 3142 pushValueAndType(Callee, InstID, Vals); 3143 3144 // Emit value #'s for the fixed parameters. 3145 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3146 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3147 3148 // Emit type/value pairs for varargs params. 3149 if (FTy->isVarArg()) { 3150 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3151 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3152 } 3153 break; 3154 } 3155 case Instruction::Resume: 3156 Code = bitc::FUNC_CODE_INST_RESUME; 3157 pushValueAndType(I.getOperand(0), InstID, Vals); 3158 break; 3159 case Instruction::CleanupRet: { 3160 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3161 const auto &CRI = cast<CleanupReturnInst>(I); 3162 pushValue(CRI.getCleanupPad(), InstID, Vals); 3163 if (CRI.hasUnwindDest()) 3164 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3165 break; 3166 } 3167 case Instruction::CatchRet: { 3168 Code = bitc::FUNC_CODE_INST_CATCHRET; 3169 const auto &CRI = cast<CatchReturnInst>(I); 3170 pushValue(CRI.getCatchPad(), InstID, Vals); 3171 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3172 break; 3173 } 3174 case Instruction::CleanupPad: 3175 case Instruction::CatchPad: { 3176 const auto &FuncletPad = cast<FuncletPadInst>(I); 3177 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3178 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3179 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3180 3181 unsigned NumArgOperands = FuncletPad.arg_size(); 3182 Vals.push_back(NumArgOperands); 3183 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3184 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3185 break; 3186 } 3187 case Instruction::CatchSwitch: { 3188 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3189 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3190 3191 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3192 3193 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3194 Vals.push_back(NumHandlers); 3195 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3196 Vals.push_back(VE.getValueID(CatchPadBB)); 3197 3198 if (CatchSwitch.hasUnwindDest()) 3199 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3200 break; 3201 } 3202 case Instruction::CallBr: { 3203 const CallBrInst *CBI = cast<CallBrInst>(&I); 3204 const Value *Callee = CBI->getCalledOperand(); 3205 FunctionType *FTy = CBI->getFunctionType(); 3206 3207 if (CBI->hasOperandBundles()) 3208 writeOperandBundles(*CBI, InstID); 3209 3210 Code = bitc::FUNC_CODE_INST_CALLBR; 3211 3212 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3213 3214 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3215 1 << bitc::CALL_EXPLICIT_TYPE); 3216 3217 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3218 Vals.push_back(CBI->getNumIndirectDests()); 3219 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3220 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3221 3222 Vals.push_back(VE.getTypeID(FTy)); 3223 pushValueAndType(Callee, InstID, Vals); 3224 3225 // Emit value #'s for the fixed parameters. 3226 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3227 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3228 3229 // Emit type/value pairs for varargs params. 3230 if (FTy->isVarArg()) { 3231 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3232 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3233 } 3234 break; 3235 } 3236 case Instruction::Unreachable: 3237 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3238 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3239 break; 3240 3241 case Instruction::PHI: { 3242 const PHINode &PN = cast<PHINode>(I); 3243 Code = bitc::FUNC_CODE_INST_PHI; 3244 // With the newer instruction encoding, forward references could give 3245 // negative valued IDs. This is most common for PHIs, so we use 3246 // signed VBRs. 3247 SmallVector<uint64_t, 128> Vals64; 3248 Vals64.push_back(VE.getTypeID(PN.getType())); 3249 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3250 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3251 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3252 } 3253 3254 uint64_t Flags = getOptimizationFlags(&I); 3255 if (Flags != 0) 3256 Vals64.push_back(Flags); 3257 3258 // Emit a Vals64 vector and exit. 3259 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3260 Vals64.clear(); 3261 return; 3262 } 3263 3264 case Instruction::LandingPad: { 3265 const LandingPadInst &LP = cast<LandingPadInst>(I); 3266 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3267 Vals.push_back(VE.getTypeID(LP.getType())); 3268 Vals.push_back(LP.isCleanup()); 3269 Vals.push_back(LP.getNumClauses()); 3270 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3271 if (LP.isCatch(I)) 3272 Vals.push_back(LandingPadInst::Catch); 3273 else 3274 Vals.push_back(LandingPadInst::Filter); 3275 pushValueAndType(LP.getClause(I), InstID, Vals); 3276 } 3277 break; 3278 } 3279 3280 case Instruction::Alloca: { 3281 Code = bitc::FUNC_CODE_INST_ALLOCA; 3282 const AllocaInst &AI = cast<AllocaInst>(I); 3283 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3284 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3285 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3286 using APV = AllocaPackedValues; 3287 unsigned Record = 0; 3288 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3289 Bitfield::set<APV::AlignLower>( 3290 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3291 Bitfield::set<APV::AlignUpper>(Record, 3292 EncodedAlign >> APV::AlignLower::Bits); 3293 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3294 Bitfield::set<APV::ExplicitType>(Record, true); 3295 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3296 Vals.push_back(Record); 3297 3298 unsigned AS = AI.getAddressSpace(); 3299 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3300 Vals.push_back(AS); 3301 break; 3302 } 3303 3304 case Instruction::Load: 3305 if (cast<LoadInst>(I).isAtomic()) { 3306 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3307 pushValueAndType(I.getOperand(0), InstID, Vals); 3308 } else { 3309 Code = bitc::FUNC_CODE_INST_LOAD; 3310 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3311 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3312 } 3313 Vals.push_back(VE.getTypeID(I.getType())); 3314 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3315 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3316 if (cast<LoadInst>(I).isAtomic()) { 3317 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3318 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3319 } 3320 break; 3321 case Instruction::Store: 3322 if (cast<StoreInst>(I).isAtomic()) 3323 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3324 else 3325 Code = bitc::FUNC_CODE_INST_STORE; 3326 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3327 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3328 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3329 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3330 if (cast<StoreInst>(I).isAtomic()) { 3331 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3332 Vals.push_back( 3333 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3334 } 3335 break; 3336 case Instruction::AtomicCmpXchg: 3337 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3338 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3339 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3340 pushValue(I.getOperand(2), InstID, Vals); // newval. 3341 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3342 Vals.push_back( 3343 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3344 Vals.push_back( 3345 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3346 Vals.push_back( 3347 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3348 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3349 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3350 break; 3351 case Instruction::AtomicRMW: 3352 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3353 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3354 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3355 Vals.push_back( 3356 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3357 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3358 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3359 Vals.push_back( 3360 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3361 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3362 break; 3363 case Instruction::Fence: 3364 Code = bitc::FUNC_CODE_INST_FENCE; 3365 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3366 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3367 break; 3368 case Instruction::Call: { 3369 const CallInst &CI = cast<CallInst>(I); 3370 FunctionType *FTy = CI.getFunctionType(); 3371 3372 if (CI.hasOperandBundles()) 3373 writeOperandBundles(CI, InstID); 3374 3375 Code = bitc::FUNC_CODE_INST_CALL; 3376 3377 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3378 3379 unsigned Flags = getOptimizationFlags(&I); 3380 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3381 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3382 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3383 1 << bitc::CALL_EXPLICIT_TYPE | 3384 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3385 unsigned(Flags != 0) << bitc::CALL_FMF); 3386 if (Flags != 0) 3387 Vals.push_back(Flags); 3388 3389 Vals.push_back(VE.getTypeID(FTy)); 3390 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3391 3392 // Emit value #'s for the fixed parameters. 3393 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3394 // Check for labels (can happen with asm labels). 3395 if (FTy->getParamType(i)->isLabelTy()) 3396 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3397 else 3398 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3399 } 3400 3401 // Emit type/value pairs for varargs params. 3402 if (FTy->isVarArg()) { 3403 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3404 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3405 } 3406 break; 3407 } 3408 case Instruction::VAArg: 3409 Code = bitc::FUNC_CODE_INST_VAARG; 3410 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3411 pushValue(I.getOperand(0), InstID, Vals); // valist. 3412 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3413 break; 3414 case Instruction::Freeze: 3415 Code = bitc::FUNC_CODE_INST_FREEZE; 3416 pushValueAndType(I.getOperand(0), InstID, Vals); 3417 break; 3418 } 3419 3420 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3421 Vals.clear(); 3422 } 3423 3424 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3425 /// to allow clients to efficiently find the function body. 3426 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3427 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3428 // Get the offset of the VST we are writing, and backpatch it into 3429 // the VST forward declaration record. 3430 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3431 // The BitcodeStartBit was the stream offset of the identification block. 3432 VSTOffset -= bitcodeStartBit(); 3433 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3434 // Note that we add 1 here because the offset is relative to one word 3435 // before the start of the identification block, which was historically 3436 // always the start of the regular bitcode header. 3437 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3438 3439 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3440 3441 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3442 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3445 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3446 3447 for (const Function &F : M) { 3448 uint64_t Record[2]; 3449 3450 if (F.isDeclaration()) 3451 continue; 3452 3453 Record[0] = VE.getValueID(&F); 3454 3455 // Save the word offset of the function (from the start of the 3456 // actual bitcode written to the stream). 3457 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3458 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3459 // Note that we add 1 here because the offset is relative to one word 3460 // before the start of the identification block, which was historically 3461 // always the start of the regular bitcode header. 3462 Record[1] = BitcodeIndex / 32 + 1; 3463 3464 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3465 } 3466 3467 Stream.ExitBlock(); 3468 } 3469 3470 /// Emit names for arguments, instructions and basic blocks in a function. 3471 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3472 const ValueSymbolTable &VST) { 3473 if (VST.empty()) 3474 return; 3475 3476 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3477 3478 // FIXME: Set up the abbrev, we know how many values there are! 3479 // FIXME: We know if the type names can use 7-bit ascii. 3480 SmallVector<uint64_t, 64> NameVals; 3481 3482 for (const ValueName &Name : VST) { 3483 // Figure out the encoding to use for the name. 3484 StringEncoding Bits = getStringEncoding(Name.getKey()); 3485 3486 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3487 NameVals.push_back(VE.getValueID(Name.getValue())); 3488 3489 // VST_CODE_ENTRY: [valueid, namechar x N] 3490 // VST_CODE_BBENTRY: [bbid, namechar x N] 3491 unsigned Code; 3492 if (isa<BasicBlock>(Name.getValue())) { 3493 Code = bitc::VST_CODE_BBENTRY; 3494 if (Bits == SE_Char6) 3495 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3496 } else { 3497 Code = bitc::VST_CODE_ENTRY; 3498 if (Bits == SE_Char6) 3499 AbbrevToUse = VST_ENTRY_6_ABBREV; 3500 else if (Bits == SE_Fixed7) 3501 AbbrevToUse = VST_ENTRY_7_ABBREV; 3502 } 3503 3504 for (const auto P : Name.getKey()) 3505 NameVals.push_back((unsigned char)P); 3506 3507 // Emit the finished record. 3508 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3509 NameVals.clear(); 3510 } 3511 3512 Stream.ExitBlock(); 3513 } 3514 3515 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3516 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3517 unsigned Code; 3518 if (isa<BasicBlock>(Order.V)) 3519 Code = bitc::USELIST_CODE_BB; 3520 else 3521 Code = bitc::USELIST_CODE_DEFAULT; 3522 3523 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3524 Record.push_back(VE.getValueID(Order.V)); 3525 Stream.EmitRecord(Code, Record); 3526 } 3527 3528 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3529 assert(VE.shouldPreserveUseListOrder() && 3530 "Expected to be preserving use-list order"); 3531 3532 auto hasMore = [&]() { 3533 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3534 }; 3535 if (!hasMore()) 3536 // Nothing to do. 3537 return; 3538 3539 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3540 while (hasMore()) { 3541 writeUseList(std::move(VE.UseListOrders.back())); 3542 VE.UseListOrders.pop_back(); 3543 } 3544 Stream.ExitBlock(); 3545 } 3546 3547 /// Emit a function body to the module stream. 3548 void ModuleBitcodeWriter::writeFunction( 3549 const Function &F, 3550 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3551 // Save the bitcode index of the start of this function block for recording 3552 // in the VST. 3553 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3554 3555 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3556 VE.incorporateFunction(F); 3557 3558 SmallVector<unsigned, 64> Vals; 3559 3560 // Emit the number of basic blocks, so the reader can create them ahead of 3561 // time. 3562 Vals.push_back(VE.getBasicBlocks().size()); 3563 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3564 Vals.clear(); 3565 3566 // If there are function-local constants, emit them now. 3567 unsigned CstStart, CstEnd; 3568 VE.getFunctionConstantRange(CstStart, CstEnd); 3569 writeConstants(CstStart, CstEnd, false); 3570 3571 // If there is function-local metadata, emit it now. 3572 writeFunctionMetadata(F); 3573 3574 // Keep a running idea of what the instruction ID is. 3575 unsigned InstID = CstEnd; 3576 3577 bool NeedsMetadataAttachment = F.hasMetadata(); 3578 3579 DILocation *LastDL = nullptr; 3580 SmallSetVector<Function *, 4> BlockAddressUsers; 3581 3582 // Finally, emit all the instructions, in order. 3583 for (const BasicBlock &BB : F) { 3584 for (const Instruction &I : BB) { 3585 writeInstruction(I, InstID, Vals); 3586 3587 if (!I.getType()->isVoidTy()) 3588 ++InstID; 3589 3590 // If the instruction has metadata, write a metadata attachment later. 3591 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3592 3593 // If the instruction has a debug location, emit it. 3594 if (DILocation *DL = I.getDebugLoc()) { 3595 if (DL == LastDL) { 3596 // Just repeat the same debug loc as last time. 3597 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3598 } else { 3599 Vals.push_back(DL->getLine()); 3600 Vals.push_back(DL->getColumn()); 3601 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3602 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3603 Vals.push_back(DL->isImplicitCode()); 3604 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3605 Vals.clear(); 3606 LastDL = DL; 3607 } 3608 } 3609 3610 // If the instruction has DbgRecords attached to it, emit them. Note that 3611 // they come after the instruction so that it's easy to attach them again 3612 // when reading the bitcode, even though conceptually the debug locations 3613 // start "before" the instruction. 3614 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3615 /// Try to push the value only (unwrapped), otherwise push the 3616 /// metadata wrapped value. Returns true if the value was pushed 3617 /// without the ValueAsMetadata wrapper. 3618 auto PushValueOrMetadata = [&Vals, InstID, 3619 this](Metadata *RawLocation) { 3620 assert(RawLocation && 3621 "RawLocation unexpectedly null in DbgVariableRecord"); 3622 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3623 SmallVector<unsigned, 2> ValAndType; 3624 // If the value is a fwd-ref the type is also pushed. We don't 3625 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3626 // returns false if the value is pushed without type). 3627 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3628 Vals.push_back(ValAndType[0]); 3629 return true; 3630 } 3631 } 3632 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3633 // fwd-ref. Push the metadata ID. 3634 Vals.push_back(VE.getMetadataID(RawLocation)); 3635 return false; 3636 }; 3637 3638 // Write out non-instruction debug information attached to this 3639 // instruction. Write it after the instruction so that it's easy to 3640 // re-attach to the instruction reading the records in. 3641 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { 3642 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3643 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); 3644 Vals.push_back(VE.getMetadataID(DLR->getLabel())); 3645 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3646 Vals.clear(); 3647 continue; 3648 } 3649 3650 // First 3 fields are common to all kinds: 3651 // DILocation, DILocalVariable, DIExpression 3652 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3653 // ..., LocationMetadata 3654 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3655 // ..., Value 3656 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3657 // ..., LocationMetadata 3658 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3659 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3660 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3661 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3662 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3663 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3664 if (DVR.isDbgValue()) { 3665 if (PushValueOrMetadata(DVR.getRawLocation())) 3666 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3667 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3668 else 3669 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3670 } else if (DVR.isDbgDeclare()) { 3671 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3672 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3673 } else { 3674 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3675 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3676 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3677 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3678 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3679 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3680 } 3681 Vals.clear(); 3682 } 3683 } 3684 } 3685 3686 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3687 SmallVector<Value *> Worklist{BA}; 3688 SmallPtrSet<Value *, 8> Visited{BA}; 3689 while (!Worklist.empty()) { 3690 Value *V = Worklist.pop_back_val(); 3691 for (User *U : V->users()) { 3692 if (auto *I = dyn_cast<Instruction>(U)) { 3693 Function *P = I->getFunction(); 3694 if (P != &F) 3695 BlockAddressUsers.insert(P); 3696 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3697 Visited.insert(U).second) 3698 Worklist.push_back(U); 3699 } 3700 } 3701 } 3702 } 3703 3704 if (!BlockAddressUsers.empty()) { 3705 Vals.resize(BlockAddressUsers.size()); 3706 for (auto I : llvm::enumerate(BlockAddressUsers)) 3707 Vals[I.index()] = VE.getValueID(I.value()); 3708 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3709 Vals.clear(); 3710 } 3711 3712 // Emit names for all the instructions etc. 3713 if (auto *Symtab = F.getValueSymbolTable()) 3714 writeFunctionLevelValueSymbolTable(*Symtab); 3715 3716 if (NeedsMetadataAttachment) 3717 writeFunctionMetadataAttachment(F); 3718 if (VE.shouldPreserveUseListOrder()) 3719 writeUseListBlock(&F); 3720 VE.purgeFunction(); 3721 Stream.ExitBlock(); 3722 } 3723 3724 // Emit blockinfo, which defines the standard abbreviations etc. 3725 void ModuleBitcodeWriter::writeBlockInfo() { 3726 // We only want to emit block info records for blocks that have multiple 3727 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3728 // Other blocks can define their abbrevs inline. 3729 Stream.EnterBlockInfoBlock(); 3730 3731 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3732 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3737 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3738 VST_ENTRY_8_ABBREV) 3739 llvm_unreachable("Unexpected abbrev ordering!"); 3740 } 3741 3742 { // 7-bit fixed width VST_CODE_ENTRY strings. 3743 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3744 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3748 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3749 VST_ENTRY_7_ABBREV) 3750 llvm_unreachable("Unexpected abbrev ordering!"); 3751 } 3752 { // 6-bit char6 VST_CODE_ENTRY strings. 3753 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3754 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3758 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3759 VST_ENTRY_6_ABBREV) 3760 llvm_unreachable("Unexpected abbrev ordering!"); 3761 } 3762 { // 6-bit char6 VST_CODE_BBENTRY strings. 3763 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3764 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3768 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3769 VST_BBENTRY_6_ABBREV) 3770 llvm_unreachable("Unexpected abbrev ordering!"); 3771 } 3772 3773 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3774 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3775 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3777 VE.computeBitsRequiredForTypeIndices())); 3778 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3779 CONSTANTS_SETTYPE_ABBREV) 3780 llvm_unreachable("Unexpected abbrev ordering!"); 3781 } 3782 3783 { // INTEGER abbrev for CONSTANTS_BLOCK. 3784 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3785 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3787 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3788 CONSTANTS_INTEGER_ABBREV) 3789 llvm_unreachable("Unexpected abbrev ordering!"); 3790 } 3791 3792 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3793 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3794 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3797 VE.computeBitsRequiredForTypeIndices())); 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3799 3800 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3801 CONSTANTS_CE_CAST_Abbrev) 3802 llvm_unreachable("Unexpected abbrev ordering!"); 3803 } 3804 { // NULL abbrev for CONSTANTS_BLOCK. 3805 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3806 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3807 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3808 CONSTANTS_NULL_Abbrev) 3809 llvm_unreachable("Unexpected abbrev ordering!"); 3810 } 3811 3812 // FIXME: This should only use space for first class types! 3813 3814 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3815 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3816 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3819 VE.computeBitsRequiredForTypeIndices())); 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3822 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3823 FUNCTION_INST_LOAD_ABBREV) 3824 llvm_unreachable("Unexpected abbrev ordering!"); 3825 } 3826 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3827 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3828 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3831 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3832 FUNCTION_INST_UNOP_ABBREV) 3833 llvm_unreachable("Unexpected abbrev ordering!"); 3834 } 3835 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3836 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3837 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3841 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3842 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3843 llvm_unreachable("Unexpected abbrev ordering!"); 3844 } 3845 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3846 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3847 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3851 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3852 FUNCTION_INST_BINOP_ABBREV) 3853 llvm_unreachable("Unexpected abbrev ordering!"); 3854 } 3855 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3856 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3857 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3862 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3863 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3864 llvm_unreachable("Unexpected abbrev ordering!"); 3865 } 3866 { // INST_CAST abbrev for FUNCTION_BLOCK. 3867 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3868 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3869 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3871 VE.computeBitsRequiredForTypeIndices())); 3872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3873 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3874 FUNCTION_INST_CAST_ABBREV) 3875 llvm_unreachable("Unexpected abbrev ordering!"); 3876 } 3877 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3878 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3879 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3882 VE.computeBitsRequiredForTypeIndices())); 3883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3885 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3886 FUNCTION_INST_CAST_FLAGS_ABBREV) 3887 llvm_unreachable("Unexpected abbrev ordering!"); 3888 } 3889 3890 { // INST_RET abbrev for FUNCTION_BLOCK. 3891 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3892 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3893 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3894 FUNCTION_INST_RET_VOID_ABBREV) 3895 llvm_unreachable("Unexpected abbrev ordering!"); 3896 } 3897 { // INST_RET abbrev for FUNCTION_BLOCK. 3898 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3899 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3901 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3902 FUNCTION_INST_RET_VAL_ABBREV) 3903 llvm_unreachable("Unexpected abbrev ordering!"); 3904 } 3905 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3906 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3907 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3908 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3909 FUNCTION_INST_UNREACHABLE_ABBREV) 3910 llvm_unreachable("Unexpected abbrev ordering!"); 3911 } 3912 { 3913 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3914 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3917 Log2_32_Ceil(VE.getTypes().size() + 1))); 3918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3920 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3921 FUNCTION_INST_GEP_ABBREV) 3922 llvm_unreachable("Unexpected abbrev ordering!"); 3923 } 3924 { 3925 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3926 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3931 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3932 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3933 llvm_unreachable("Unexpected abbrev ordering! 1"); 3934 } 3935 Stream.ExitBlock(); 3936 } 3937 3938 /// Write the module path strings, currently only used when generating 3939 /// a combined index file. 3940 void IndexBitcodeWriter::writeModStrings() { 3941 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3942 3943 // TODO: See which abbrev sizes we actually need to emit 3944 3945 // 8-bit fixed-width MST_ENTRY strings. 3946 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3947 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3951 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3952 3953 // 7-bit fixed width MST_ENTRY strings. 3954 Abbv = std::make_shared<BitCodeAbbrev>(); 3955 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3959 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3960 3961 // 6-bit char6 MST_ENTRY strings. 3962 Abbv = std::make_shared<BitCodeAbbrev>(); 3963 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3967 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3968 3969 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3970 Abbv = std::make_shared<BitCodeAbbrev>(); 3971 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3977 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3978 3979 SmallVector<unsigned, 64> Vals; 3980 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3981 StringRef Key = MPSE.getKey(); 3982 const auto &Hash = MPSE.getValue(); 3983 StringEncoding Bits = getStringEncoding(Key); 3984 unsigned AbbrevToUse = Abbrev8Bit; 3985 if (Bits == SE_Char6) 3986 AbbrevToUse = Abbrev6Bit; 3987 else if (Bits == SE_Fixed7) 3988 AbbrevToUse = Abbrev7Bit; 3989 3990 auto ModuleId = ModuleIdMap.size(); 3991 ModuleIdMap[Key] = ModuleId; 3992 Vals.push_back(ModuleId); 3993 Vals.append(Key.begin(), Key.end()); 3994 3995 // Emit the finished record. 3996 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3997 3998 // Emit an optional hash for the module now 3999 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 4000 Vals.assign(Hash.begin(), Hash.end()); 4001 // Emit the hash record. 4002 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 4003 } 4004 4005 Vals.clear(); 4006 }); 4007 Stream.ExitBlock(); 4008 } 4009 4010 /// Write the function type metadata related records that need to appear before 4011 /// a function summary entry (whether per-module or combined). 4012 template <typename Fn> 4013 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 4014 FunctionSummary *FS, 4015 Fn GetValueID) { 4016 if (!FS->type_tests().empty()) 4017 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 4018 4019 SmallVector<uint64_t, 64> Record; 4020 4021 auto WriteVFuncIdVec = [&](uint64_t Ty, 4022 ArrayRef<FunctionSummary::VFuncId> VFs) { 4023 if (VFs.empty()) 4024 return; 4025 Record.clear(); 4026 for (auto &VF : VFs) { 4027 Record.push_back(VF.GUID); 4028 Record.push_back(VF.Offset); 4029 } 4030 Stream.EmitRecord(Ty, Record); 4031 }; 4032 4033 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 4034 FS->type_test_assume_vcalls()); 4035 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 4036 FS->type_checked_load_vcalls()); 4037 4038 auto WriteConstVCallVec = [&](uint64_t Ty, 4039 ArrayRef<FunctionSummary::ConstVCall> VCs) { 4040 for (auto &VC : VCs) { 4041 Record.clear(); 4042 Record.push_back(VC.VFunc.GUID); 4043 Record.push_back(VC.VFunc.Offset); 4044 llvm::append_range(Record, VC.Args); 4045 Stream.EmitRecord(Ty, Record); 4046 } 4047 }; 4048 4049 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 4050 FS->type_test_assume_const_vcalls()); 4051 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 4052 FS->type_checked_load_const_vcalls()); 4053 4054 auto WriteRange = [&](ConstantRange Range) { 4055 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 4056 assert(Range.getLower().getNumWords() == 1); 4057 assert(Range.getUpper().getNumWords() == 1); 4058 emitSignedInt64(Record, *Range.getLower().getRawData()); 4059 emitSignedInt64(Record, *Range.getUpper().getRawData()); 4060 }; 4061 4062 if (!FS->paramAccesses().empty()) { 4063 Record.clear(); 4064 for (auto &Arg : FS->paramAccesses()) { 4065 size_t UndoSize = Record.size(); 4066 Record.push_back(Arg.ParamNo); 4067 WriteRange(Arg.Use); 4068 Record.push_back(Arg.Calls.size()); 4069 for (auto &Call : Arg.Calls) { 4070 Record.push_back(Call.ParamNo); 4071 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4072 if (!ValueID) { 4073 // If ValueID is unknown we can't drop just this call, we must drop 4074 // entire parameter. 4075 Record.resize(UndoSize); 4076 break; 4077 } 4078 Record.push_back(*ValueID); 4079 WriteRange(Call.Offsets); 4080 } 4081 } 4082 if (!Record.empty()) 4083 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4084 } 4085 } 4086 4087 /// Collect type IDs from type tests used by function. 4088 static void 4089 getReferencedTypeIds(FunctionSummary *FS, 4090 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4091 if (!FS->type_tests().empty()) 4092 for (auto &TT : FS->type_tests()) 4093 ReferencedTypeIds.insert(TT); 4094 4095 auto GetReferencedTypesFromVFuncIdVec = 4096 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4097 for (auto &VF : VFs) 4098 ReferencedTypeIds.insert(VF.GUID); 4099 }; 4100 4101 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4102 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4103 4104 auto GetReferencedTypesFromConstVCallVec = 4105 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4106 for (auto &VC : VCs) 4107 ReferencedTypeIds.insert(VC.VFunc.GUID); 4108 }; 4109 4110 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4111 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4112 } 4113 4114 static void writeWholeProgramDevirtResolutionByArg( 4115 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4116 const WholeProgramDevirtResolution::ByArg &ByArg) { 4117 NameVals.push_back(args.size()); 4118 llvm::append_range(NameVals, args); 4119 4120 NameVals.push_back(ByArg.TheKind); 4121 NameVals.push_back(ByArg.Info); 4122 NameVals.push_back(ByArg.Byte); 4123 NameVals.push_back(ByArg.Bit); 4124 } 4125 4126 static void writeWholeProgramDevirtResolution( 4127 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4128 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4129 NameVals.push_back(Id); 4130 4131 NameVals.push_back(Wpd.TheKind); 4132 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4133 NameVals.push_back(Wpd.SingleImplName.size()); 4134 4135 NameVals.push_back(Wpd.ResByArg.size()); 4136 for (auto &A : Wpd.ResByArg) 4137 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4138 } 4139 4140 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4141 StringTableBuilder &StrtabBuilder, 4142 const std::string &Id, 4143 const TypeIdSummary &Summary) { 4144 NameVals.push_back(StrtabBuilder.add(Id)); 4145 NameVals.push_back(Id.size()); 4146 4147 NameVals.push_back(Summary.TTRes.TheKind); 4148 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4149 NameVals.push_back(Summary.TTRes.AlignLog2); 4150 NameVals.push_back(Summary.TTRes.SizeM1); 4151 NameVals.push_back(Summary.TTRes.BitMask); 4152 NameVals.push_back(Summary.TTRes.InlineBits); 4153 4154 for (auto &W : Summary.WPDRes) 4155 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4156 W.second); 4157 } 4158 4159 static void writeTypeIdCompatibleVtableSummaryRecord( 4160 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4161 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 4162 ValueEnumerator &VE) { 4163 NameVals.push_back(StrtabBuilder.add(Id)); 4164 NameVals.push_back(Id.size()); 4165 4166 for (auto &P : Summary) { 4167 NameVals.push_back(P.AddressPointOffset); 4168 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4169 } 4170 } 4171 4172 static void writeFunctionHeapProfileRecords( 4173 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4174 unsigned AllocAbbrev, bool PerModule, 4175 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4176 std::function<unsigned(unsigned)> GetStackIndex) { 4177 SmallVector<uint64_t> Record; 4178 4179 for (auto &CI : FS->callsites()) { 4180 Record.clear(); 4181 // Per module callsite clones should always have a single entry of 4182 // value 0. 4183 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4184 Record.push_back(GetValueID(CI.Callee)); 4185 if (!PerModule) { 4186 Record.push_back(CI.StackIdIndices.size()); 4187 Record.push_back(CI.Clones.size()); 4188 } 4189 for (auto Id : CI.StackIdIndices) 4190 Record.push_back(GetStackIndex(Id)); 4191 if (!PerModule) { 4192 for (auto V : CI.Clones) 4193 Record.push_back(V); 4194 } 4195 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4196 : bitc::FS_COMBINED_CALLSITE_INFO, 4197 Record, CallsiteAbbrev); 4198 } 4199 4200 for (auto &AI : FS->allocs()) { 4201 Record.clear(); 4202 // Per module alloc versions should always have a single entry of 4203 // value 0. 4204 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4205 Record.push_back(AI.MIBs.size()); 4206 if (!PerModule) 4207 Record.push_back(AI.Versions.size()); 4208 for (auto &MIB : AI.MIBs) { 4209 Record.push_back((uint8_t)MIB.AllocType); 4210 Record.push_back(MIB.StackIdIndices.size()); 4211 for (auto Id : MIB.StackIdIndices) 4212 Record.push_back(GetStackIndex(Id)); 4213 } 4214 if (!PerModule) { 4215 for (auto V : AI.Versions) 4216 Record.push_back(V); 4217 } 4218 assert(AI.TotalSizes.empty() || AI.TotalSizes.size() == AI.MIBs.size()); 4219 if (!AI.TotalSizes.empty()) { 4220 for (auto Size : AI.TotalSizes) 4221 Record.push_back(Size); 4222 } 4223 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4224 : bitc::FS_COMBINED_ALLOC_INFO, 4225 Record, AllocAbbrev); 4226 } 4227 } 4228 4229 // Helper to emit a single function summary record. 4230 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4231 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4232 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4233 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4234 unsigned AllocAbbrev, const Function &F) { 4235 NameVals.push_back(ValueID); 4236 4237 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4238 4239 writeFunctionTypeMetadataRecords( 4240 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4241 return {VE.getValueID(VI.getValue())}; 4242 }); 4243 4244 writeFunctionHeapProfileRecords( 4245 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4246 /*PerModule*/ true, 4247 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4248 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4249 4250 auto SpecialRefCnts = FS->specialRefCounts(); 4251 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4252 NameVals.push_back(FS->instCount()); 4253 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4254 NameVals.push_back(FS->refs().size()); 4255 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4256 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4257 4258 for (auto &RI : FS->refs()) 4259 NameVals.push_back(getValueId(RI)); 4260 4261 const bool UseRelBFRecord = 4262 WriteRelBFToSummary && !F.hasProfileData() && 4263 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4264 for (auto &ECI : FS->calls()) { 4265 NameVals.push_back(getValueId(ECI.first)); 4266 if (UseRelBFRecord) 4267 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4268 else 4269 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4270 } 4271 4272 unsigned FSAbbrev = 4273 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4274 unsigned Code = 4275 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4276 4277 // Emit the finished record. 4278 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4279 NameVals.clear(); 4280 } 4281 4282 // Collect the global value references in the given variable's initializer, 4283 // and emit them in a summary record. 4284 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4285 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4286 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4287 auto VI = Index->getValueInfo(V.getGUID()); 4288 if (!VI || VI.getSummaryList().empty()) { 4289 // Only declarations should not have a summary (a declaration might however 4290 // have a summary if the def was in module level asm). 4291 assert(V.isDeclaration()); 4292 return; 4293 } 4294 auto *Summary = VI.getSummaryList()[0].get(); 4295 NameVals.push_back(VE.getValueID(&V)); 4296 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4297 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4298 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4299 4300 auto VTableFuncs = VS->vTableFuncs(); 4301 if (!VTableFuncs.empty()) 4302 NameVals.push_back(VS->refs().size()); 4303 4304 unsigned SizeBeforeRefs = NameVals.size(); 4305 for (auto &RI : VS->refs()) 4306 NameVals.push_back(VE.getValueID(RI.getValue())); 4307 // Sort the refs for determinism output, the vector returned by FS->refs() has 4308 // been initialized from a DenseSet. 4309 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4310 4311 if (VTableFuncs.empty()) 4312 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4313 FSModRefsAbbrev); 4314 else { 4315 // VTableFuncs pairs should already be sorted by offset. 4316 for (auto &P : VTableFuncs) { 4317 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4318 NameVals.push_back(P.VTableOffset); 4319 } 4320 4321 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4322 FSModVTableRefsAbbrev); 4323 } 4324 NameVals.clear(); 4325 } 4326 4327 /// Emit the per-module summary section alongside the rest of 4328 /// the module's bitcode. 4329 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4330 // By default we compile with ThinLTO if the module has a summary, but the 4331 // client can request full LTO with a module flag. 4332 bool IsThinLTO = true; 4333 if (auto *MD = 4334 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4335 IsThinLTO = MD->getZExtValue(); 4336 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4337 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4338 4); 4339 4340 Stream.EmitRecord( 4341 bitc::FS_VERSION, 4342 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4343 4344 // Write the index flags. 4345 uint64_t Flags = 0; 4346 // Bits 1-3 are set only in the combined index, skip them. 4347 if (Index->enableSplitLTOUnit()) 4348 Flags |= 0x8; 4349 if (Index->hasUnifiedLTO()) 4350 Flags |= 0x200; 4351 4352 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4353 4354 if (Index->begin() == Index->end()) { 4355 Stream.ExitBlock(); 4356 return; 4357 } 4358 4359 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4360 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4362 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4365 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4366 4367 for (const auto &GVI : valueIds()) { 4368 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4369 ArrayRef<uint32_t>{GVI.second, 4370 static_cast<uint32_t>(GVI.first >> 32), 4371 static_cast<uint32_t>(GVI.first)}, 4372 ValueGuidAbbrev); 4373 } 4374 4375 if (!Index->stackIds().empty()) { 4376 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4377 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4378 // numids x stackid 4379 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4380 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4381 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4382 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4383 } 4384 4385 // Abbrev for FS_PERMODULE_PROFILE. 4386 Abbv = std::make_shared<BitCodeAbbrev>(); 4387 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4395 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4398 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4399 4400 // Abbrev for FS_PERMODULE_RELBF. 4401 Abbv = std::make_shared<BitCodeAbbrev>(); 4402 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4410 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4413 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4414 4415 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4416 Abbv = std::make_shared<BitCodeAbbrev>(); 4417 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4422 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4423 4424 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4425 Abbv = std::make_shared<BitCodeAbbrev>(); 4426 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4430 // numrefs x valueid, n x (valueid , offset) 4431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4433 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4434 4435 // Abbrev for FS_ALIAS. 4436 Abbv = std::make_shared<BitCodeAbbrev>(); 4437 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4441 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4442 4443 // Abbrev for FS_TYPE_ID_METADATA 4444 Abbv = std::make_shared<BitCodeAbbrev>(); 4445 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4448 // n x (valueid , offset) 4449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4451 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4452 4453 Abbv = std::make_shared<BitCodeAbbrev>(); 4454 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4456 // n x stackidindex 4457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4459 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4460 4461 Abbv = std::make_shared<BitCodeAbbrev>(); 4462 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4464 // n x (alloc type, numstackids, numstackids x stackidindex) 4465 // optional: nummib x total size 4466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4468 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4469 4470 SmallVector<uint64_t, 64> NameVals; 4471 // Iterate over the list of functions instead of the Index to 4472 // ensure the ordering is stable. 4473 for (const Function &F : M) { 4474 // Summary emission does not support anonymous functions, they have to 4475 // renamed using the anonymous function renaming pass. 4476 if (!F.hasName()) 4477 report_fatal_error("Unexpected anonymous function when writing summary"); 4478 4479 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4480 if (!VI || VI.getSummaryList().empty()) { 4481 // Only declarations should not have a summary (a declaration might 4482 // however have a summary if the def was in module level asm). 4483 assert(F.isDeclaration()); 4484 continue; 4485 } 4486 auto *Summary = VI.getSummaryList()[0].get(); 4487 writePerModuleFunctionSummaryRecord( 4488 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4489 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); 4490 } 4491 4492 // Capture references from GlobalVariable initializers, which are outside 4493 // of a function scope. 4494 for (const GlobalVariable &G : M.globals()) 4495 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4496 FSModVTableRefsAbbrev); 4497 4498 for (const GlobalAlias &A : M.aliases()) { 4499 auto *Aliasee = A.getAliaseeObject(); 4500 // Skip ifunc and nameless functions which don't have an entry in the 4501 // summary. 4502 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4503 continue; 4504 auto AliasId = VE.getValueID(&A); 4505 auto AliaseeId = VE.getValueID(Aliasee); 4506 NameVals.push_back(AliasId); 4507 auto *Summary = Index->getGlobalValueSummary(A); 4508 AliasSummary *AS = cast<AliasSummary>(Summary); 4509 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4510 NameVals.push_back(AliaseeId); 4511 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4512 NameVals.clear(); 4513 } 4514 4515 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4516 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4517 S.second, VE); 4518 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4519 TypeIdCompatibleVtableAbbrev); 4520 NameVals.clear(); 4521 } 4522 4523 if (Index->getBlockCount()) 4524 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4525 ArrayRef<uint64_t>{Index->getBlockCount()}); 4526 4527 Stream.ExitBlock(); 4528 } 4529 4530 /// Emit the combined summary section into the combined index file. 4531 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4532 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4533 Stream.EmitRecord( 4534 bitc::FS_VERSION, 4535 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4536 4537 // Write the index flags. 4538 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4539 4540 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4541 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4543 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4546 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4547 4548 for (const auto &GVI : valueIds()) { 4549 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4550 ArrayRef<uint32_t>{GVI.second, 4551 static_cast<uint32_t>(GVI.first >> 32), 4552 static_cast<uint32_t>(GVI.first)}, 4553 ValueGuidAbbrev); 4554 } 4555 4556 // Write the stack ids used by this index, which will be a subset of those in 4557 // the full index in the case of distributed indexes. 4558 if (!StackIds.empty()) { 4559 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4560 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4561 // numids x stackid 4562 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4563 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4564 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4565 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4566 } 4567 4568 // Abbrev for FS_COMBINED_PROFILE. 4569 Abbv = std::make_shared<BitCodeAbbrev>(); 4570 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4580 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4583 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4584 4585 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4586 Abbv = std::make_shared<BitCodeAbbrev>(); 4587 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4593 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4594 4595 // Abbrev for FS_COMBINED_ALIAS. 4596 Abbv = std::make_shared<BitCodeAbbrev>(); 4597 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4602 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4603 4604 Abbv = std::make_shared<BitCodeAbbrev>(); 4605 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4609 // numstackindices x stackidindex, numver x version 4610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4612 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4613 4614 Abbv = std::make_shared<BitCodeAbbrev>(); 4615 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4618 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4619 // numver x version 4620 // optional: nummib x total size 4621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4623 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4624 4625 auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool { 4626 if (DecSummaries == nullptr) 4627 return false; 4628 return DecSummaries->count(GVS); 4629 }; 4630 4631 // The aliases are emitted as a post-pass, and will point to the value 4632 // id of the aliasee. Save them in a vector for post-processing. 4633 SmallVector<AliasSummary *, 64> Aliases; 4634 4635 // Save the value id for each summary for alias emission. 4636 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4637 4638 SmallVector<uint64_t, 64> NameVals; 4639 4640 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4641 // with the type ids referenced by this index file. 4642 std::set<GlobalValue::GUID> ReferencedTypeIds; 4643 4644 // For local linkage, we also emit the original name separately 4645 // immediately after the record. 4646 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4647 // We don't need to emit the original name if we are writing the index for 4648 // distributed backends (in which case ModuleToSummariesForIndex is 4649 // non-null). The original name is only needed during the thin link, since 4650 // for SamplePGO the indirect call targets for local functions have 4651 // have the original name annotated in profile. 4652 // Continue to emit it when writing out the entire combined index, which is 4653 // used in testing the thin link via llvm-lto. 4654 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4655 return; 4656 NameVals.push_back(S.getOriginalName()); 4657 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4658 NameVals.clear(); 4659 }; 4660 4661 DenseSet<GlobalValue::GUID> DefOrUseGUIDs; 4662 forEachSummary([&](GVInfo I, bool IsAliasee) { 4663 GlobalValueSummary *S = I.second; 4664 assert(S); 4665 DefOrUseGUIDs.insert(I.first); 4666 for (const ValueInfo &VI : S->refs()) 4667 DefOrUseGUIDs.insert(VI.getGUID()); 4668 4669 auto ValueId = getValueId(I.first); 4670 assert(ValueId); 4671 SummaryToValueIdMap[S] = *ValueId; 4672 4673 // If this is invoked for an aliasee, we want to record the above 4674 // mapping, but then not emit a summary entry (if the aliasee is 4675 // to be imported, we will invoke this separately with IsAliasee=false). 4676 if (IsAliasee) 4677 return; 4678 4679 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4680 // Will process aliases as a post-pass because the reader wants all 4681 // global to be loaded first. 4682 Aliases.push_back(AS); 4683 return; 4684 } 4685 4686 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4687 NameVals.push_back(*ValueId); 4688 assert(ModuleIdMap.count(VS->modulePath())); 4689 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4690 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4691 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4692 for (auto &RI : VS->refs()) { 4693 auto RefValueId = getValueId(RI.getGUID()); 4694 if (!RefValueId) 4695 continue; 4696 NameVals.push_back(*RefValueId); 4697 } 4698 4699 // Emit the finished record. 4700 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4701 FSModRefsAbbrev); 4702 NameVals.clear(); 4703 MaybeEmitOriginalName(*S); 4704 return; 4705 } 4706 4707 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4708 if (!VI) 4709 return std::nullopt; 4710 return getValueId(VI.getGUID()); 4711 }; 4712 4713 auto *FS = cast<FunctionSummary>(S); 4714 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4715 getReferencedTypeIds(FS, ReferencedTypeIds); 4716 4717 writeFunctionHeapProfileRecords( 4718 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4719 /*PerModule*/ false, 4720 /*GetValueId*/ 4721 [&](const ValueInfo &VI) -> unsigned { 4722 std::optional<unsigned> ValueID = GetValueId(VI); 4723 // This can happen in shared index files for distributed ThinLTO if 4724 // the callee function summary is not included. Record 0 which we 4725 // will have to deal with conservatively when doing any kind of 4726 // validation in the ThinLTO backends. 4727 if (!ValueID) 4728 return 0; 4729 return *ValueID; 4730 }, 4731 /*GetStackIndex*/ 4732 [&](unsigned I) { 4733 // Get the corresponding index into the list of StackIds actually 4734 // being written for this combined index (which may be a subset in 4735 // the case of distributed indexes). 4736 assert(StackIdIndicesToIndex.contains(I)); 4737 return StackIdIndicesToIndex[I]; 4738 }); 4739 4740 NameVals.push_back(*ValueId); 4741 assert(ModuleIdMap.count(FS->modulePath())); 4742 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4743 NameVals.push_back( 4744 getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS))); 4745 NameVals.push_back(FS->instCount()); 4746 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4747 // TODO: Stop writing entry count and bump bitcode version. 4748 NameVals.push_back(0 /* EntryCount */); 4749 4750 // Fill in below 4751 NameVals.push_back(0); // numrefs 4752 NameVals.push_back(0); // rorefcnt 4753 NameVals.push_back(0); // worefcnt 4754 4755 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4756 for (auto &RI : FS->refs()) { 4757 auto RefValueId = getValueId(RI.getGUID()); 4758 if (!RefValueId) 4759 continue; 4760 NameVals.push_back(*RefValueId); 4761 if (RI.isReadOnly()) 4762 RORefCnt++; 4763 else if (RI.isWriteOnly()) 4764 WORefCnt++; 4765 Count++; 4766 } 4767 NameVals[6] = Count; 4768 NameVals[7] = RORefCnt; 4769 NameVals[8] = WORefCnt; 4770 4771 for (auto &EI : FS->calls()) { 4772 // If this GUID doesn't have a value id, it doesn't have a function 4773 // summary and we don't need to record any calls to it. 4774 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4775 if (!CallValueId) 4776 continue; 4777 NameVals.push_back(*CallValueId); 4778 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4779 } 4780 4781 // Emit the finished record. 4782 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4783 FSCallsProfileAbbrev); 4784 NameVals.clear(); 4785 MaybeEmitOriginalName(*S); 4786 }); 4787 4788 for (auto *AS : Aliases) { 4789 auto AliasValueId = SummaryToValueIdMap[AS]; 4790 assert(AliasValueId); 4791 NameVals.push_back(AliasValueId); 4792 assert(ModuleIdMap.count(AS->modulePath())); 4793 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4794 NameVals.push_back( 4795 getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS))); 4796 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4797 assert(AliaseeValueId); 4798 NameVals.push_back(AliaseeValueId); 4799 4800 // Emit the finished record. 4801 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4802 NameVals.clear(); 4803 MaybeEmitOriginalName(*AS); 4804 4805 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4806 getReferencedTypeIds(FS, ReferencedTypeIds); 4807 } 4808 4809 if (!Index.cfiFunctionDefs().empty()) { 4810 for (auto &S : Index.cfiFunctionDefs()) { 4811 if (DefOrUseGUIDs.contains( 4812 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4813 NameVals.push_back(StrtabBuilder.add(S)); 4814 NameVals.push_back(S.size()); 4815 } 4816 } 4817 if (!NameVals.empty()) { 4818 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4819 NameVals.clear(); 4820 } 4821 } 4822 4823 if (!Index.cfiFunctionDecls().empty()) { 4824 for (auto &S : Index.cfiFunctionDecls()) { 4825 if (DefOrUseGUIDs.contains( 4826 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4827 NameVals.push_back(StrtabBuilder.add(S)); 4828 NameVals.push_back(S.size()); 4829 } 4830 } 4831 if (!NameVals.empty()) { 4832 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4833 NameVals.clear(); 4834 } 4835 } 4836 4837 // Walk the GUIDs that were referenced, and write the 4838 // corresponding type id records. 4839 for (auto &T : ReferencedTypeIds) { 4840 auto TidIter = Index.typeIds().equal_range(T); 4841 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) { 4842 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, TypeIdPair.first, 4843 TypeIdPair.second); 4844 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4845 NameVals.clear(); 4846 } 4847 } 4848 4849 if (Index.getBlockCount()) 4850 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4851 ArrayRef<uint64_t>{Index.getBlockCount()}); 4852 4853 Stream.ExitBlock(); 4854 } 4855 4856 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4857 /// current llvm version, and a record for the epoch number. 4858 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4859 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4860 4861 // Write the "user readable" string identifying the bitcode producer 4862 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4863 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4866 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4867 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4868 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4869 4870 // Write the epoch version 4871 Abbv = std::make_shared<BitCodeAbbrev>(); 4872 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4874 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4875 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4876 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4877 Stream.ExitBlock(); 4878 } 4879 4880 void ModuleBitcodeWriter::writeModuleHash(StringRef View) { 4881 // Emit the module's hash. 4882 // MODULE_CODE_HASH: [5*i32] 4883 if (GenerateHash) { 4884 uint32_t Vals[5]; 4885 Hasher.update(ArrayRef<uint8_t>( 4886 reinterpret_cast<const uint8_t *>(View.data()), View.size())); 4887 std::array<uint8_t, 20> Hash = Hasher.result(); 4888 for (int Pos = 0; Pos < 20; Pos += 4) { 4889 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4890 } 4891 4892 // Emit the finished record. 4893 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4894 4895 if (ModHash) 4896 // Save the written hash value. 4897 llvm::copy(Vals, std::begin(*ModHash)); 4898 } 4899 } 4900 4901 void ModuleBitcodeWriter::write() { 4902 writeIdentificationBlock(Stream); 4903 4904 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4905 // We will want to write the module hash at this point. Block any flushing so 4906 // we can have access to the whole underlying data later. 4907 Stream.markAndBlockFlushing(); 4908 4909 writeModuleVersion(); 4910 4911 // Emit blockinfo, which defines the standard abbreviations etc. 4912 writeBlockInfo(); 4913 4914 // Emit information describing all of the types in the module. 4915 writeTypeTable(); 4916 4917 // Emit information about attribute groups. 4918 writeAttributeGroupTable(); 4919 4920 // Emit information about parameter attributes. 4921 writeAttributeTable(); 4922 4923 writeComdats(); 4924 4925 // Emit top-level description of module, including target triple, inline asm, 4926 // descriptors for global variables, and function prototype info. 4927 writeModuleInfo(); 4928 4929 // Emit constants. 4930 writeModuleConstants(); 4931 4932 // Emit metadata kind names. 4933 writeModuleMetadataKinds(); 4934 4935 // Emit metadata. 4936 writeModuleMetadata(); 4937 4938 // Emit module-level use-lists. 4939 if (VE.shouldPreserveUseListOrder()) 4940 writeUseListBlock(nullptr); 4941 4942 writeOperandBundleTags(); 4943 writeSyncScopeNames(); 4944 4945 // Emit function bodies. 4946 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4947 for (const Function &F : M) 4948 if (!F.isDeclaration()) 4949 writeFunction(F, FunctionToBitcodeIndex); 4950 4951 // Need to write after the above call to WriteFunction which populates 4952 // the summary information in the index. 4953 if (Index) 4954 writePerModuleGlobalValueSummary(); 4955 4956 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4957 4958 writeModuleHash(Stream.getMarkedBufferAndResumeFlushing()); 4959 4960 Stream.ExitBlock(); 4961 } 4962 4963 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4964 uint32_t &Position) { 4965 support::endian::write32le(&Buffer[Position], Value); 4966 Position += 4; 4967 } 4968 4969 /// If generating a bc file on darwin, we have to emit a 4970 /// header and trailer to make it compatible with the system archiver. To do 4971 /// this we emit the following header, and then emit a trailer that pads the 4972 /// file out to be a multiple of 16 bytes. 4973 /// 4974 /// struct bc_header { 4975 /// uint32_t Magic; // 0x0B17C0DE 4976 /// uint32_t Version; // Version, currently always 0. 4977 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4978 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4979 /// uint32_t CPUType; // CPU specifier. 4980 /// ... potentially more later ... 4981 /// }; 4982 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4983 const Triple &TT) { 4984 unsigned CPUType = ~0U; 4985 4986 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4987 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4988 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4989 // specific constants here because they are implicitly part of the Darwin ABI. 4990 enum { 4991 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4992 DARWIN_CPU_TYPE_X86 = 7, 4993 DARWIN_CPU_TYPE_ARM = 12, 4994 DARWIN_CPU_TYPE_POWERPC = 18 4995 }; 4996 4997 Triple::ArchType Arch = TT.getArch(); 4998 if (Arch == Triple::x86_64) 4999 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 5000 else if (Arch == Triple::x86) 5001 CPUType = DARWIN_CPU_TYPE_X86; 5002 else if (Arch == Triple::ppc) 5003 CPUType = DARWIN_CPU_TYPE_POWERPC; 5004 else if (Arch == Triple::ppc64) 5005 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 5006 else if (Arch == Triple::arm || Arch == Triple::thumb) 5007 CPUType = DARWIN_CPU_TYPE_ARM; 5008 5009 // Traditional Bitcode starts after header. 5010 assert(Buffer.size() >= BWH_HeaderSize && 5011 "Expected header size to be reserved"); 5012 unsigned BCOffset = BWH_HeaderSize; 5013 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 5014 5015 // Write the magic and version. 5016 unsigned Position = 0; 5017 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 5018 writeInt32ToBuffer(0, Buffer, Position); // Version. 5019 writeInt32ToBuffer(BCOffset, Buffer, Position); 5020 writeInt32ToBuffer(BCSize, Buffer, Position); 5021 writeInt32ToBuffer(CPUType, Buffer, Position); 5022 5023 // If the file is not a multiple of 16 bytes, insert dummy padding. 5024 while (Buffer.size() & 15) 5025 Buffer.push_back(0); 5026 } 5027 5028 /// Helper to write the header common to all bitcode files. 5029 static void writeBitcodeHeader(BitstreamWriter &Stream) { 5030 // Emit the file header. 5031 Stream.Emit((unsigned)'B', 8); 5032 Stream.Emit((unsigned)'C', 8); 5033 Stream.Emit(0x0, 4); 5034 Stream.Emit(0xC, 4); 5035 Stream.Emit(0xE, 4); 5036 Stream.Emit(0xD, 4); 5037 } 5038 5039 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 5040 : Stream(new BitstreamWriter(Buffer)) { 5041 writeBitcodeHeader(*Stream); 5042 } 5043 5044 BitcodeWriter::BitcodeWriter(raw_ostream &FS) 5045 : Stream(new BitstreamWriter(FS, FlushThreshold)) { 5046 writeBitcodeHeader(*Stream); 5047 } 5048 5049 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 5050 5051 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 5052 Stream->EnterSubblock(Block, 3); 5053 5054 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5055 Abbv->Add(BitCodeAbbrevOp(Record)); 5056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 5057 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 5058 5059 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 5060 5061 Stream->ExitBlock(); 5062 } 5063 5064 void BitcodeWriter::writeSymtab() { 5065 assert(!WroteStrtab && !WroteSymtab); 5066 5067 // If any module has module-level inline asm, we will require a registered asm 5068 // parser for the target so that we can create an accurate symbol table for 5069 // the module. 5070 for (Module *M : Mods) { 5071 if (M->getModuleInlineAsm().empty()) 5072 continue; 5073 5074 std::string Err; 5075 const Triple TT(M->getTargetTriple()); 5076 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 5077 if (!T || !T->hasMCAsmParser()) 5078 return; 5079 } 5080 5081 WroteSymtab = true; 5082 SmallVector<char, 0> Symtab; 5083 // The irsymtab::build function may be unable to create a symbol table if the 5084 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 5085 // table is not required for correctness, but we still want to be able to 5086 // write malformed modules to bitcode files, so swallow the error. 5087 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 5088 consumeError(std::move(E)); 5089 return; 5090 } 5091 5092 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 5093 {Symtab.data(), Symtab.size()}); 5094 } 5095 5096 void BitcodeWriter::writeStrtab() { 5097 assert(!WroteStrtab); 5098 5099 std::vector<char> Strtab; 5100 StrtabBuilder.finalizeInOrder(); 5101 Strtab.resize(StrtabBuilder.getSize()); 5102 StrtabBuilder.write((uint8_t *)Strtab.data()); 5103 5104 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 5105 {Strtab.data(), Strtab.size()}); 5106 5107 WroteStrtab = true; 5108 } 5109 5110 void BitcodeWriter::copyStrtab(StringRef Strtab) { 5111 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 5112 WroteStrtab = true; 5113 } 5114 5115 void BitcodeWriter::writeModule(const Module &M, 5116 bool ShouldPreserveUseListOrder, 5117 const ModuleSummaryIndex *Index, 5118 bool GenerateHash, ModuleHash *ModHash) { 5119 assert(!WroteStrtab); 5120 5121 // The Mods vector is used by irsymtab::build, which requires non-const 5122 // Modules in case it needs to materialize metadata. But the bitcode writer 5123 // requires that the module is materialized, so we can cast to non-const here, 5124 // after checking that it is in fact materialized. 5125 assert(M.isMaterialized()); 5126 Mods.push_back(const_cast<Module *>(&M)); 5127 5128 ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream, 5129 ShouldPreserveUseListOrder, Index, 5130 GenerateHash, ModHash); 5131 ModuleWriter.write(); 5132 } 5133 5134 void BitcodeWriter::writeIndex( 5135 const ModuleSummaryIndex *Index, 5136 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5137 const GVSummaryPtrSet *DecSummaries) { 5138 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries, 5139 ModuleToSummariesForIndex); 5140 IndexWriter.write(); 5141 } 5142 5143 /// Write the specified module to the specified output stream. 5144 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5145 bool ShouldPreserveUseListOrder, 5146 const ModuleSummaryIndex *Index, 5147 bool GenerateHash, ModuleHash *ModHash) { 5148 auto Write = [&](BitcodeWriter &Writer) { 5149 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5150 ModHash); 5151 Writer.writeSymtab(); 5152 Writer.writeStrtab(); 5153 }; 5154 Triple TT(M.getTargetTriple()); 5155 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) { 5156 // If this is darwin or another generic macho target, reserve space for the 5157 // header. Note that the header is computed *after* the output is known, so 5158 // we currently explicitly use a buffer, write to it, and then subsequently 5159 // flush to Out. 5160 SmallVector<char, 0> Buffer; 5161 Buffer.reserve(256 * 1024); 5162 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5163 BitcodeWriter Writer(Buffer); 5164 Write(Writer); 5165 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5166 Out.write(Buffer.data(), Buffer.size()); 5167 } else { 5168 BitcodeWriter Writer(Out); 5169 Write(Writer); 5170 } 5171 } 5172 5173 void IndexBitcodeWriter::write() { 5174 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5175 5176 writeModuleVersion(); 5177 5178 // Write the module paths in the combined index. 5179 writeModStrings(); 5180 5181 // Write the summary combined index records. 5182 writeCombinedGlobalValueSummary(); 5183 5184 Stream.ExitBlock(); 5185 } 5186 5187 // Write the specified module summary index to the given raw output stream, 5188 // where it will be written in a new bitcode block. This is used when 5189 // writing the combined index file for ThinLTO. When writing a subset of the 5190 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5191 void llvm::writeIndexToFile( 5192 const ModuleSummaryIndex &Index, raw_ostream &Out, 5193 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5194 const GVSummaryPtrSet *DecSummaries) { 5195 SmallVector<char, 0> Buffer; 5196 Buffer.reserve(256 * 1024); 5197 5198 BitcodeWriter Writer(Buffer); 5199 Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries); 5200 Writer.writeStrtab(); 5201 5202 Out.write((char *)&Buffer.front(), Buffer.size()); 5203 } 5204 5205 namespace { 5206 5207 /// Class to manage the bitcode writing for a thin link bitcode file. 5208 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5209 /// ModHash is for use in ThinLTO incremental build, generated while writing 5210 /// the module bitcode file. 5211 const ModuleHash *ModHash; 5212 5213 public: 5214 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5215 BitstreamWriter &Stream, 5216 const ModuleSummaryIndex &Index, 5217 const ModuleHash &ModHash) 5218 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5219 /*ShouldPreserveUseListOrder=*/false, &Index), 5220 ModHash(&ModHash) {} 5221 5222 void write(); 5223 5224 private: 5225 void writeSimplifiedModuleInfo(); 5226 }; 5227 5228 } // end anonymous namespace 5229 5230 // This function writes a simpilified module info for thin link bitcode file. 5231 // It only contains the source file name along with the name(the offset and 5232 // size in strtab) and linkage for global values. For the global value info 5233 // entry, in order to keep linkage at offset 5, there are three zeros used 5234 // as padding. 5235 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5236 SmallVector<unsigned, 64> Vals; 5237 // Emit the module's source file name. 5238 { 5239 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5240 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5241 if (Bits == SE_Char6) 5242 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5243 else if (Bits == SE_Fixed7) 5244 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5245 5246 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5247 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5248 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5250 Abbv->Add(AbbrevOpToUse); 5251 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5252 5253 for (const auto P : M.getSourceFileName()) 5254 Vals.push_back((unsigned char)P); 5255 5256 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5257 Vals.clear(); 5258 } 5259 5260 // Emit the global variable information. 5261 for (const GlobalVariable &GV : M.globals()) { 5262 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5263 Vals.push_back(StrtabBuilder.add(GV.getName())); 5264 Vals.push_back(GV.getName().size()); 5265 Vals.push_back(0); 5266 Vals.push_back(0); 5267 Vals.push_back(0); 5268 Vals.push_back(getEncodedLinkage(GV)); 5269 5270 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5271 Vals.clear(); 5272 } 5273 5274 // Emit the function proto information. 5275 for (const Function &F : M) { 5276 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5277 Vals.push_back(StrtabBuilder.add(F.getName())); 5278 Vals.push_back(F.getName().size()); 5279 Vals.push_back(0); 5280 Vals.push_back(0); 5281 Vals.push_back(0); 5282 Vals.push_back(getEncodedLinkage(F)); 5283 5284 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5285 Vals.clear(); 5286 } 5287 5288 // Emit the alias information. 5289 for (const GlobalAlias &A : M.aliases()) { 5290 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5291 Vals.push_back(StrtabBuilder.add(A.getName())); 5292 Vals.push_back(A.getName().size()); 5293 Vals.push_back(0); 5294 Vals.push_back(0); 5295 Vals.push_back(0); 5296 Vals.push_back(getEncodedLinkage(A)); 5297 5298 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5299 Vals.clear(); 5300 } 5301 5302 // Emit the ifunc information. 5303 for (const GlobalIFunc &I : M.ifuncs()) { 5304 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5305 Vals.push_back(StrtabBuilder.add(I.getName())); 5306 Vals.push_back(I.getName().size()); 5307 Vals.push_back(0); 5308 Vals.push_back(0); 5309 Vals.push_back(0); 5310 Vals.push_back(getEncodedLinkage(I)); 5311 5312 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5313 Vals.clear(); 5314 } 5315 } 5316 5317 void ThinLinkBitcodeWriter::write() { 5318 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5319 5320 writeModuleVersion(); 5321 5322 writeSimplifiedModuleInfo(); 5323 5324 writePerModuleGlobalValueSummary(); 5325 5326 // Write module hash. 5327 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5328 5329 Stream.ExitBlock(); 5330 } 5331 5332 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5333 const ModuleSummaryIndex &Index, 5334 const ModuleHash &ModHash) { 5335 assert(!WroteStrtab); 5336 5337 // The Mods vector is used by irsymtab::build, which requires non-const 5338 // Modules in case it needs to materialize metadata. But the bitcode writer 5339 // requires that the module is materialized, so we can cast to non-const here, 5340 // after checking that it is in fact materialized. 5341 assert(M.isMaterialized()); 5342 Mods.push_back(const_cast<Module *>(&M)); 5343 5344 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5345 ModHash); 5346 ThinLinkWriter.write(); 5347 } 5348 5349 // Write the specified thin link bitcode file to the given raw output stream, 5350 // where it will be written in a new bitcode block. This is used when 5351 // writing the per-module index file for ThinLTO. 5352 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5353 const ModuleSummaryIndex &Index, 5354 const ModuleHash &ModHash) { 5355 SmallVector<char, 0> Buffer; 5356 Buffer.reserve(256 * 1024); 5357 5358 BitcodeWriter Writer(Buffer); 5359 Writer.writeThinLinkBitcode(M, Index, ModHash); 5360 Writer.writeSymtab(); 5361 Writer.writeStrtab(); 5362 5363 Out.write((char *)&Buffer.front(), Buffer.size()); 5364 } 5365 5366 static const char *getSectionNameForBitcode(const Triple &T) { 5367 switch (T.getObjectFormat()) { 5368 case Triple::MachO: 5369 return "__LLVM,__bitcode"; 5370 case Triple::COFF: 5371 case Triple::ELF: 5372 case Triple::Wasm: 5373 case Triple::UnknownObjectFormat: 5374 return ".llvmbc"; 5375 case Triple::GOFF: 5376 llvm_unreachable("GOFF is not yet implemented"); 5377 break; 5378 case Triple::SPIRV: 5379 if (T.getVendor() == Triple::AMD) 5380 return ".llvmbc"; 5381 llvm_unreachable("SPIRV is not yet implemented"); 5382 break; 5383 case Triple::XCOFF: 5384 llvm_unreachable("XCOFF is not yet implemented"); 5385 break; 5386 case Triple::DXContainer: 5387 llvm_unreachable("DXContainer is not yet implemented"); 5388 break; 5389 } 5390 llvm_unreachable("Unimplemented ObjectFormatType"); 5391 } 5392 5393 static const char *getSectionNameForCommandline(const Triple &T) { 5394 switch (T.getObjectFormat()) { 5395 case Triple::MachO: 5396 return "__LLVM,__cmdline"; 5397 case Triple::COFF: 5398 case Triple::ELF: 5399 case Triple::Wasm: 5400 case Triple::UnknownObjectFormat: 5401 return ".llvmcmd"; 5402 case Triple::GOFF: 5403 llvm_unreachable("GOFF is not yet implemented"); 5404 break; 5405 case Triple::SPIRV: 5406 if (T.getVendor() == Triple::AMD) 5407 return ".llvmcmd"; 5408 llvm_unreachable("SPIRV is not yet implemented"); 5409 break; 5410 case Triple::XCOFF: 5411 llvm_unreachable("XCOFF is not yet implemented"); 5412 break; 5413 case Triple::DXContainer: 5414 llvm_unreachable("DXC is not yet implemented"); 5415 break; 5416 } 5417 llvm_unreachable("Unimplemented ObjectFormatType"); 5418 } 5419 5420 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5421 bool EmbedBitcode, bool EmbedCmdline, 5422 const std::vector<uint8_t> &CmdArgs) { 5423 // Save llvm.compiler.used and remove it. 5424 SmallVector<Constant *, 2> UsedArray; 5425 SmallVector<GlobalValue *, 4> UsedGlobals; 5426 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5427 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5428 for (auto *GV : UsedGlobals) { 5429 if (GV->getName() != "llvm.embedded.module" && 5430 GV->getName() != "llvm.cmdline") 5431 UsedArray.push_back( 5432 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5433 } 5434 if (Used) 5435 Used->eraseFromParent(); 5436 5437 // Embed the bitcode for the llvm module. 5438 std::string Data; 5439 ArrayRef<uint8_t> ModuleData; 5440 Triple T(M.getTargetTriple()); 5441 5442 if (EmbedBitcode) { 5443 if (Buf.getBufferSize() == 0 || 5444 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5445 (const unsigned char *)Buf.getBufferEnd())) { 5446 // If the input is LLVM Assembly, bitcode is produced by serializing 5447 // the module. Use-lists order need to be preserved in this case. 5448 llvm::raw_string_ostream OS(Data); 5449 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5450 ModuleData = 5451 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5452 } else 5453 // If the input is LLVM bitcode, write the input byte stream directly. 5454 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5455 Buf.getBufferSize()); 5456 } 5457 llvm::Constant *ModuleConstant = 5458 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5459 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5460 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5461 ModuleConstant); 5462 GV->setSection(getSectionNameForBitcode(T)); 5463 // Set alignment to 1 to prevent padding between two contributions from input 5464 // sections after linking. 5465 GV->setAlignment(Align(1)); 5466 UsedArray.push_back( 5467 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5468 if (llvm::GlobalVariable *Old = 5469 M.getGlobalVariable("llvm.embedded.module", true)) { 5470 assert(Old->hasZeroLiveUses() && 5471 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5472 GV->takeName(Old); 5473 Old->eraseFromParent(); 5474 } else { 5475 GV->setName("llvm.embedded.module"); 5476 } 5477 5478 // Skip if only bitcode needs to be embedded. 5479 if (EmbedCmdline) { 5480 // Embed command-line options. 5481 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5482 CmdArgs.size()); 5483 llvm::Constant *CmdConstant = 5484 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5485 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5486 llvm::GlobalValue::PrivateLinkage, 5487 CmdConstant); 5488 GV->setSection(getSectionNameForCommandline(T)); 5489 GV->setAlignment(Align(1)); 5490 UsedArray.push_back( 5491 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5492 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5493 assert(Old->hasZeroLiveUses() && 5494 "llvm.cmdline can only be used once in llvm.compiler.used"); 5495 GV->takeName(Old); 5496 Old->eraseFromParent(); 5497 } else { 5498 GV->setName("llvm.cmdline"); 5499 } 5500 } 5501 5502 if (UsedArray.empty()) 5503 return; 5504 5505 // Recreate llvm.compiler.used. 5506 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5507 auto *NewUsed = new GlobalVariable( 5508 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5509 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5510 NewUsed->setSection("llvm.metadata"); 5511 } 5512