1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/Bitcode/BitcodeCommon.h" 30 #include "llvm/Bitcode/BitcodeReader.h" 31 #include "llvm/Bitcode/LLVMBitCodes.h" 32 #include "llvm/Bitstream/BitCodes.h" 33 #include "llvm/Bitstream/BitstreamWriter.h" 34 #include "llvm/Config/llvm-config.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Comdat.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/UseListOrder.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/MC/StringTableBuilder.h" 63 #include "llvm/MC/TargetRegistry.h" 64 #include "llvm/Object/IRSymtab.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Endian.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/SHA1.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <memory> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 101 namespace { 102 103 /// These are manifest constants used by the bitcode writer. They do not need to 104 /// be kept in sync with the reader, but need to be consistent within this file. 105 enum { 106 // VALUE_SYMTAB_BLOCK abbrev id's. 107 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 VST_ENTRY_7_ABBREV, 109 VST_ENTRY_6_ABBREV, 110 VST_BBENTRY_6_ABBREV, 111 112 // CONSTANTS_BLOCK abbrev id's. 113 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 CONSTANTS_INTEGER_ABBREV, 115 CONSTANTS_CE_CAST_Abbrev, 116 CONSTANTS_NULL_Abbrev, 117 118 // FUNCTION_BLOCK abbrev id's. 119 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 120 FUNCTION_INST_UNOP_ABBREV, 121 FUNCTION_INST_UNOP_FLAGS_ABBREV, 122 FUNCTION_INST_BINOP_ABBREV, 123 FUNCTION_INST_BINOP_FLAGS_ABBREV, 124 FUNCTION_INST_CAST_ABBREV, 125 FUNCTION_INST_RET_VOID_ABBREV, 126 FUNCTION_INST_RET_VAL_ABBREV, 127 FUNCTION_INST_UNREACHABLE_ABBREV, 128 FUNCTION_INST_GEP_ABBREV, 129 }; 130 131 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 132 /// file type. 133 class BitcodeWriterBase { 134 protected: 135 /// The stream created and owned by the client. 136 BitstreamWriter &Stream; 137 138 StringTableBuilder &StrtabBuilder; 139 140 public: 141 /// Constructs a BitcodeWriterBase object that writes to the provided 142 /// \p Stream. 143 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 144 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 145 146 protected: 147 void writeModuleVersion(); 148 }; 149 150 void BitcodeWriterBase::writeModuleVersion() { 151 // VERSION: [version#] 152 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 153 } 154 155 /// Base class to manage the module bitcode writing, currently subclassed for 156 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 157 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 158 protected: 159 /// The Module to write to bitcode. 160 const Module &M; 161 162 /// Enumerates ids for all values in the module. 163 ValueEnumerator VE; 164 165 /// Optional per-module index to write for ThinLTO. 166 const ModuleSummaryIndex *Index; 167 168 /// Map that holds the correspondence between GUIDs in the summary index, 169 /// that came from indirect call profiles, and a value id generated by this 170 /// class to use in the VST and summary block records. 171 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 172 173 /// Tracks the last value id recorded in the GUIDToValueMap. 174 unsigned GlobalValueId; 175 176 /// Saves the offset of the VSTOffset record that must eventually be 177 /// backpatched with the offset of the actual VST. 178 uint64_t VSTOffsetPlaceholder = 0; 179 180 public: 181 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 182 /// writing to the provided \p Buffer. 183 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 184 BitstreamWriter &Stream, 185 bool ShouldPreserveUseListOrder, 186 const ModuleSummaryIndex *Index) 187 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 188 VE(M, ShouldPreserveUseListOrder), Index(Index) { 189 // Assign ValueIds to any callee values in the index that came from 190 // indirect call profiles and were recorded as a GUID not a Value* 191 // (which would have been assigned an ID by the ValueEnumerator). 192 // The starting ValueId is just after the number of values in the 193 // ValueEnumerator, so that they can be emitted in the VST. 194 GlobalValueId = VE.getValues().size(); 195 if (!Index) 196 return; 197 for (const auto &GUIDSummaryLists : *Index) 198 // Examine all summaries for this GUID. 199 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 200 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 201 // For each call in the function summary, see if the call 202 // is to a GUID (which means it is for an indirect call, 203 // otherwise we would have a Value for it). If so, synthesize 204 // a value id. 205 for (auto &CallEdge : FS->calls()) 206 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 207 assignValueId(CallEdge.first.getGUID()); 208 } 209 210 protected: 211 void writePerModuleGlobalValueSummary(); 212 213 private: 214 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 215 GlobalValueSummary *Summary, 216 unsigned ValueID, 217 unsigned FSCallsAbbrev, 218 unsigned FSCallsProfileAbbrev, 219 const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 344 SmallVectorImpl<uint64_t> &Record, 345 unsigned Abbrev); 346 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIGlobalVariable(const DIGlobalVariable *N, 350 SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDILocalVariable(const DILocalVariable *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDILabel(const DILabel *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIExpression(const DIExpression *N, 357 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 358 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 359 SmallVectorImpl<uint64_t> &Record, 360 unsigned Abbrev); 361 void writeDIObjCProperty(const DIObjCProperty *N, 362 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 363 void writeDIImportedEntity(const DIImportedEntity *N, 364 SmallVectorImpl<uint64_t> &Record, 365 unsigned Abbrev); 366 unsigned createNamedMetadataAbbrev(); 367 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 368 unsigned createMetadataStringsAbbrev(); 369 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 370 SmallVectorImpl<uint64_t> &Record); 371 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 372 SmallVectorImpl<uint64_t> &Record, 373 std::vector<unsigned> *MDAbbrevs = nullptr, 374 std::vector<uint64_t> *IndexPos = nullptr); 375 void writeModuleMetadata(); 376 void writeFunctionMetadata(const Function &F); 377 void writeFunctionMetadataAttachment(const Function &F); 378 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 379 const GlobalObject &GO); 380 void writeModuleMetadataKinds(); 381 void writeOperandBundleTags(); 382 void writeSyncScopeNames(); 383 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 384 void writeModuleConstants(); 385 bool pushValueAndType(const Value *V, unsigned InstID, 386 SmallVectorImpl<unsigned> &Vals); 387 void writeOperandBundles(const CallBase &CB, unsigned InstID); 388 void pushValue(const Value *V, unsigned InstID, 389 SmallVectorImpl<unsigned> &Vals); 390 void pushValueSigned(const Value *V, unsigned InstID, 391 SmallVectorImpl<uint64_t> &Vals); 392 void writeInstruction(const Instruction &I, unsigned InstID, 393 SmallVectorImpl<unsigned> &Vals); 394 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 395 void writeGlobalValueSymbolTable( 396 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 397 void writeUseList(UseListOrder &&Order); 398 void writeUseListBlock(const Function *F); 399 void 400 writeFunction(const Function &F, 401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 402 void writeBlockInfo(); 403 void writeModuleHash(size_t BlockStartPos); 404 405 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 406 return unsigned(SSID); 407 } 408 409 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 410 }; 411 412 /// Class to manage the bitcode writing for a combined index. 413 class IndexBitcodeWriter : public BitcodeWriterBase { 414 /// The combined index to write to bitcode. 415 const ModuleSummaryIndex &Index; 416 417 /// When writing a subset of the index for distributed backends, client 418 /// provides a map of modules to the corresponding GUIDs/summaries to write. 419 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 420 421 /// Map that holds the correspondence between the GUID used in the combined 422 /// index and a value id generated by this class to use in references. 423 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 424 425 /// Tracks the last value id recorded in the GUIDToValueMap. 426 unsigned GlobalValueId = 0; 427 428 public: 429 /// Constructs a IndexBitcodeWriter object for the given combined index, 430 /// writing to the provided \p Buffer. When writing a subset of the index 431 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 432 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 433 const ModuleSummaryIndex &Index, 434 const std::map<std::string, GVSummaryMapTy> 435 *ModuleToSummariesForIndex = nullptr) 436 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 437 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 438 // Assign unique value ids to all summaries to be written, for use 439 // in writing out the call graph edges. Save the mapping from GUID 440 // to the new global value id to use when writing those edges, which 441 // are currently saved in the index in terms of GUID. 442 forEachSummary([&](GVInfo I, bool) { 443 GUIDToValueIdMap[I.first] = ++GlobalValueId; 444 }); 445 } 446 447 /// The below iterator returns the GUID and associated summary. 448 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 449 450 /// Calls the callback for each value GUID and summary to be written to 451 /// bitcode. This hides the details of whether they are being pulled from the 452 /// entire index or just those in a provided ModuleToSummariesForIndex map. 453 template<typename Functor> 454 void forEachSummary(Functor Callback) { 455 if (ModuleToSummariesForIndex) { 456 for (auto &M : *ModuleToSummariesForIndex) 457 for (auto &Summary : M.second) { 458 Callback(Summary, false); 459 // Ensure aliasee is handled, e.g. for assigning a valueId, 460 // even if we are not importing the aliasee directly (the 461 // imported alias will contain a copy of aliasee). 462 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 463 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 464 } 465 } else { 466 for (auto &Summaries : Index) 467 for (auto &Summary : Summaries.second.SummaryList) 468 Callback({Summaries.first, Summary.get()}, false); 469 } 470 } 471 472 /// Calls the callback for each entry in the modulePaths StringMap that 473 /// should be written to the module path string table. This hides the details 474 /// of whether they are being pulled from the entire index or just those in a 475 /// provided ModuleToSummariesForIndex map. 476 template <typename Functor> void forEachModule(Functor Callback) { 477 if (ModuleToSummariesForIndex) { 478 for (const auto &M : *ModuleToSummariesForIndex) { 479 const auto &MPI = Index.modulePaths().find(M.first); 480 if (MPI == Index.modulePaths().end()) { 481 // This should only happen if the bitcode file was empty, in which 482 // case we shouldn't be importing (the ModuleToSummariesForIndex 483 // would only include the module we are writing and index for). 484 assert(ModuleToSummariesForIndex->size() == 1); 485 continue; 486 } 487 Callback(*MPI); 488 } 489 } else { 490 for (const auto &MPSE : Index.modulePaths()) 491 Callback(MPSE); 492 } 493 } 494 495 /// Main entry point for writing a combined index to bitcode. 496 void write(); 497 498 private: 499 void writeModStrings(); 500 void writeCombinedGlobalValueSummary(); 501 502 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 503 auto VMI = GUIDToValueIdMap.find(ValGUID); 504 if (VMI == GUIDToValueIdMap.end()) 505 return None; 506 return VMI->second; 507 } 508 509 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 510 }; 511 512 } // end anonymous namespace 513 514 static unsigned getEncodedCastOpcode(unsigned Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Unknown cast instruction!"); 517 case Instruction::Trunc : return bitc::CAST_TRUNC; 518 case Instruction::ZExt : return bitc::CAST_ZEXT; 519 case Instruction::SExt : return bitc::CAST_SEXT; 520 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 521 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 522 case Instruction::UIToFP : return bitc::CAST_UITOFP; 523 case Instruction::SIToFP : return bitc::CAST_SITOFP; 524 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 525 case Instruction::FPExt : return bitc::CAST_FPEXT; 526 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 527 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 528 case Instruction::BitCast : return bitc::CAST_BITCAST; 529 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 530 } 531 } 532 533 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 534 switch (Opcode) { 535 default: llvm_unreachable("Unknown binary instruction!"); 536 case Instruction::FNeg: return bitc::UNOP_FNEG; 537 } 538 } 539 540 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 541 switch (Opcode) { 542 default: llvm_unreachable("Unknown binary instruction!"); 543 case Instruction::Add: 544 case Instruction::FAdd: return bitc::BINOP_ADD; 545 case Instruction::Sub: 546 case Instruction::FSub: return bitc::BINOP_SUB; 547 case Instruction::Mul: 548 case Instruction::FMul: return bitc::BINOP_MUL; 549 case Instruction::UDiv: return bitc::BINOP_UDIV; 550 case Instruction::FDiv: 551 case Instruction::SDiv: return bitc::BINOP_SDIV; 552 case Instruction::URem: return bitc::BINOP_UREM; 553 case Instruction::FRem: 554 case Instruction::SRem: return bitc::BINOP_SREM; 555 case Instruction::Shl: return bitc::BINOP_SHL; 556 case Instruction::LShr: return bitc::BINOP_LSHR; 557 case Instruction::AShr: return bitc::BINOP_ASHR; 558 case Instruction::And: return bitc::BINOP_AND; 559 case Instruction::Or: return bitc::BINOP_OR; 560 case Instruction::Xor: return bitc::BINOP_XOR; 561 } 562 } 563 564 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 565 switch (Op) { 566 default: llvm_unreachable("Unknown RMW operation!"); 567 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 568 case AtomicRMWInst::Add: return bitc::RMW_ADD; 569 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 570 case AtomicRMWInst::And: return bitc::RMW_AND; 571 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 572 case AtomicRMWInst::Or: return bitc::RMW_OR; 573 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 574 case AtomicRMWInst::Max: return bitc::RMW_MAX; 575 case AtomicRMWInst::Min: return bitc::RMW_MIN; 576 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 577 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 578 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 579 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 580 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 581 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 582 } 583 } 584 585 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 586 switch (Ordering) { 587 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 588 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 589 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 590 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 591 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 592 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 593 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 594 } 595 llvm_unreachable("Invalid ordering"); 596 } 597 598 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 599 StringRef Str, unsigned AbbrevToUse) { 600 SmallVector<unsigned, 64> Vals; 601 602 // Code: [strchar x N] 603 for (char C : Str) { 604 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 605 AbbrevToUse = 0; 606 Vals.push_back(C); 607 } 608 609 // Emit the finished record. 610 Stream.EmitRecord(Code, Vals, AbbrevToUse); 611 } 612 613 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 614 switch (Kind) { 615 case Attribute::Alignment: 616 return bitc::ATTR_KIND_ALIGNMENT; 617 case Attribute::AllocAlign: 618 return bitc::ATTR_KIND_ALLOC_ALIGN; 619 case Attribute::AllocSize: 620 return bitc::ATTR_KIND_ALLOC_SIZE; 621 case Attribute::AlwaysInline: 622 return bitc::ATTR_KIND_ALWAYS_INLINE; 623 case Attribute::ArgMemOnly: 624 return bitc::ATTR_KIND_ARGMEMONLY; 625 case Attribute::Builtin: 626 return bitc::ATTR_KIND_BUILTIN; 627 case Attribute::ByVal: 628 return bitc::ATTR_KIND_BY_VAL; 629 case Attribute::Convergent: 630 return bitc::ATTR_KIND_CONVERGENT; 631 case Attribute::InAlloca: 632 return bitc::ATTR_KIND_IN_ALLOCA; 633 case Attribute::Cold: 634 return bitc::ATTR_KIND_COLD; 635 case Attribute::DisableSanitizerInstrumentation: 636 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 637 case Attribute::FnRetThunkExtern: 638 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 639 case Attribute::Hot: 640 return bitc::ATTR_KIND_HOT; 641 case Attribute::ElementType: 642 return bitc::ATTR_KIND_ELEMENTTYPE; 643 case Attribute::InaccessibleMemOnly: 644 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 645 case Attribute::InaccessibleMemOrArgMemOnly: 646 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 647 case Attribute::InlineHint: 648 return bitc::ATTR_KIND_INLINE_HINT; 649 case Attribute::InReg: 650 return bitc::ATTR_KIND_IN_REG; 651 case Attribute::JumpTable: 652 return bitc::ATTR_KIND_JUMP_TABLE; 653 case Attribute::MinSize: 654 return bitc::ATTR_KIND_MIN_SIZE; 655 case Attribute::AllocatedPointer: 656 return bitc::ATTR_KIND_ALLOCATED_POINTER; 657 case Attribute::AllocKind: 658 return bitc::ATTR_KIND_ALLOC_KIND; 659 case Attribute::Naked: 660 return bitc::ATTR_KIND_NAKED; 661 case Attribute::Nest: 662 return bitc::ATTR_KIND_NEST; 663 case Attribute::NoAlias: 664 return bitc::ATTR_KIND_NO_ALIAS; 665 case Attribute::NoBuiltin: 666 return bitc::ATTR_KIND_NO_BUILTIN; 667 case Attribute::NoCallback: 668 return bitc::ATTR_KIND_NO_CALLBACK; 669 case Attribute::NoCapture: 670 return bitc::ATTR_KIND_NO_CAPTURE; 671 case Attribute::NoDuplicate: 672 return bitc::ATTR_KIND_NO_DUPLICATE; 673 case Attribute::NoFree: 674 return bitc::ATTR_KIND_NOFREE; 675 case Attribute::NoImplicitFloat: 676 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 677 case Attribute::NoInline: 678 return bitc::ATTR_KIND_NO_INLINE; 679 case Attribute::NoRecurse: 680 return bitc::ATTR_KIND_NO_RECURSE; 681 case Attribute::NoMerge: 682 return bitc::ATTR_KIND_NO_MERGE; 683 case Attribute::NonLazyBind: 684 return bitc::ATTR_KIND_NON_LAZY_BIND; 685 case Attribute::NonNull: 686 return bitc::ATTR_KIND_NON_NULL; 687 case Attribute::Dereferenceable: 688 return bitc::ATTR_KIND_DEREFERENCEABLE; 689 case Attribute::DereferenceableOrNull: 690 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 691 case Attribute::NoRedZone: 692 return bitc::ATTR_KIND_NO_RED_ZONE; 693 case Attribute::NoReturn: 694 return bitc::ATTR_KIND_NO_RETURN; 695 case Attribute::NoSync: 696 return bitc::ATTR_KIND_NOSYNC; 697 case Attribute::NoCfCheck: 698 return bitc::ATTR_KIND_NOCF_CHECK; 699 case Attribute::NoProfile: 700 return bitc::ATTR_KIND_NO_PROFILE; 701 case Attribute::SkipProfile: 702 return bitc::ATTR_KIND_SKIP_PROFILE; 703 case Attribute::NoUnwind: 704 return bitc::ATTR_KIND_NO_UNWIND; 705 case Attribute::NoSanitizeBounds: 706 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 707 case Attribute::NoSanitizeCoverage: 708 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 709 case Attribute::NullPointerIsValid: 710 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 711 case Attribute::OptForFuzzing: 712 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 713 case Attribute::OptimizeForSize: 714 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 715 case Attribute::OptimizeNone: 716 return bitc::ATTR_KIND_OPTIMIZE_NONE; 717 case Attribute::ReadNone: 718 return bitc::ATTR_KIND_READ_NONE; 719 case Attribute::ReadOnly: 720 return bitc::ATTR_KIND_READ_ONLY; 721 case Attribute::Returned: 722 return bitc::ATTR_KIND_RETURNED; 723 case Attribute::ReturnsTwice: 724 return bitc::ATTR_KIND_RETURNS_TWICE; 725 case Attribute::SExt: 726 return bitc::ATTR_KIND_S_EXT; 727 case Attribute::Speculatable: 728 return bitc::ATTR_KIND_SPECULATABLE; 729 case Attribute::StackAlignment: 730 return bitc::ATTR_KIND_STACK_ALIGNMENT; 731 case Attribute::StackProtect: 732 return bitc::ATTR_KIND_STACK_PROTECT; 733 case Attribute::StackProtectReq: 734 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 735 case Attribute::StackProtectStrong: 736 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 737 case Attribute::SafeStack: 738 return bitc::ATTR_KIND_SAFESTACK; 739 case Attribute::ShadowCallStack: 740 return bitc::ATTR_KIND_SHADOWCALLSTACK; 741 case Attribute::StrictFP: 742 return bitc::ATTR_KIND_STRICT_FP; 743 case Attribute::StructRet: 744 return bitc::ATTR_KIND_STRUCT_RET; 745 case Attribute::SanitizeAddress: 746 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 747 case Attribute::SanitizeHWAddress: 748 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 749 case Attribute::SanitizeThread: 750 return bitc::ATTR_KIND_SANITIZE_THREAD; 751 case Attribute::SanitizeMemory: 752 return bitc::ATTR_KIND_SANITIZE_MEMORY; 753 case Attribute::SpeculativeLoadHardening: 754 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 755 case Attribute::SwiftError: 756 return bitc::ATTR_KIND_SWIFT_ERROR; 757 case Attribute::SwiftSelf: 758 return bitc::ATTR_KIND_SWIFT_SELF; 759 case Attribute::SwiftAsync: 760 return bitc::ATTR_KIND_SWIFT_ASYNC; 761 case Attribute::UWTable: 762 return bitc::ATTR_KIND_UW_TABLE; 763 case Attribute::VScaleRange: 764 return bitc::ATTR_KIND_VSCALE_RANGE; 765 case Attribute::WillReturn: 766 return bitc::ATTR_KIND_WILLRETURN; 767 case Attribute::WriteOnly: 768 return bitc::ATTR_KIND_WRITEONLY; 769 case Attribute::ZExt: 770 return bitc::ATTR_KIND_Z_EXT; 771 case Attribute::ImmArg: 772 return bitc::ATTR_KIND_IMMARG; 773 case Attribute::SanitizeMemTag: 774 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 775 case Attribute::Preallocated: 776 return bitc::ATTR_KIND_PREALLOCATED; 777 case Attribute::NoUndef: 778 return bitc::ATTR_KIND_NOUNDEF; 779 case Attribute::ByRef: 780 return bitc::ATTR_KIND_BYREF; 781 case Attribute::MustProgress: 782 return bitc::ATTR_KIND_MUSTPROGRESS; 783 case Attribute::PresplitCoroutine: 784 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 785 case Attribute::EndAttrKinds: 786 llvm_unreachable("Can not encode end-attribute kinds marker."); 787 case Attribute::None: 788 llvm_unreachable("Can not encode none-attribute."); 789 case Attribute::EmptyKey: 790 case Attribute::TombstoneKey: 791 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 792 } 793 794 llvm_unreachable("Trying to encode unknown attribute"); 795 } 796 797 void ModuleBitcodeWriter::writeAttributeGroupTable() { 798 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 799 VE.getAttributeGroups(); 800 if (AttrGrps.empty()) return; 801 802 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 803 804 SmallVector<uint64_t, 64> Record; 805 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 806 unsigned AttrListIndex = Pair.first; 807 AttributeSet AS = Pair.second; 808 Record.push_back(VE.getAttributeGroupID(Pair)); 809 Record.push_back(AttrListIndex); 810 811 for (Attribute Attr : AS) { 812 if (Attr.isEnumAttribute()) { 813 Record.push_back(0); 814 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 815 } else if (Attr.isIntAttribute()) { 816 Record.push_back(1); 817 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 818 Record.push_back(Attr.getValueAsInt()); 819 } else if (Attr.isStringAttribute()) { 820 StringRef Kind = Attr.getKindAsString(); 821 StringRef Val = Attr.getValueAsString(); 822 823 Record.push_back(Val.empty() ? 3 : 4); 824 Record.append(Kind.begin(), Kind.end()); 825 Record.push_back(0); 826 if (!Val.empty()) { 827 Record.append(Val.begin(), Val.end()); 828 Record.push_back(0); 829 } 830 } else { 831 assert(Attr.isTypeAttribute()); 832 Type *Ty = Attr.getValueAsType(); 833 Record.push_back(Ty ? 6 : 5); 834 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 835 if (Ty) 836 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 837 } 838 } 839 840 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 841 Record.clear(); 842 } 843 844 Stream.ExitBlock(); 845 } 846 847 void ModuleBitcodeWriter::writeAttributeTable() { 848 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 849 if (Attrs.empty()) return; 850 851 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 852 853 SmallVector<uint64_t, 64> Record; 854 for (const AttributeList &AL : Attrs) { 855 for (unsigned i : AL.indexes()) { 856 AttributeSet AS = AL.getAttributes(i); 857 if (AS.hasAttributes()) 858 Record.push_back(VE.getAttributeGroupID({i, AS})); 859 } 860 861 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 862 Record.clear(); 863 } 864 865 Stream.ExitBlock(); 866 } 867 868 /// WriteTypeTable - Write out the type table for a module. 869 void ModuleBitcodeWriter::writeTypeTable() { 870 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 871 872 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 873 SmallVector<uint64_t, 64> TypeVals; 874 875 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 876 877 // Abbrev for TYPE_CODE_POINTER. 878 auto Abbv = std::make_shared<BitCodeAbbrev>(); 879 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 881 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 882 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 883 884 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 885 Abbv = std::make_shared<BitCodeAbbrev>(); 886 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 887 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 888 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 889 890 // Abbrev for TYPE_CODE_FUNCTION. 891 Abbv = std::make_shared<BitCodeAbbrev>(); 892 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 896 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 897 898 // Abbrev for TYPE_CODE_STRUCT_ANON. 899 Abbv = std::make_shared<BitCodeAbbrev>(); 900 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 904 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 905 906 // Abbrev for TYPE_CODE_STRUCT_NAME. 907 Abbv = std::make_shared<BitCodeAbbrev>(); 908 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 911 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 912 913 // Abbrev for TYPE_CODE_STRUCT_NAMED. 914 Abbv = std::make_shared<BitCodeAbbrev>(); 915 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 919 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 920 921 // Abbrev for TYPE_CODE_ARRAY. 922 Abbv = std::make_shared<BitCodeAbbrev>(); 923 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 926 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 927 928 // Emit an entry count so the reader can reserve space. 929 TypeVals.push_back(TypeList.size()); 930 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 931 TypeVals.clear(); 932 933 // Loop over all of the types, emitting each in turn. 934 for (Type *T : TypeList) { 935 int AbbrevToUse = 0; 936 unsigned Code = 0; 937 938 switch (T->getTypeID()) { 939 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 940 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 941 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 942 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 943 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 944 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 945 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 946 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 947 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 948 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 949 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 950 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 951 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 952 case Type::IntegerTyID: 953 // INTEGER: [width] 954 Code = bitc::TYPE_CODE_INTEGER; 955 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 956 break; 957 case Type::PointerTyID: { 958 PointerType *PTy = cast<PointerType>(T); 959 unsigned AddressSpace = PTy->getAddressSpace(); 960 if (PTy->isOpaque()) { 961 // OPAQUE_POINTER: [address space] 962 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 963 TypeVals.push_back(AddressSpace); 964 if (AddressSpace == 0) 965 AbbrevToUse = OpaquePtrAbbrev; 966 } else { 967 // POINTER: [pointee type, address space] 968 Code = bitc::TYPE_CODE_POINTER; 969 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 970 TypeVals.push_back(AddressSpace); 971 if (AddressSpace == 0) 972 AbbrevToUse = PtrAbbrev; 973 } 974 break; 975 } 976 case Type::FunctionTyID: { 977 FunctionType *FT = cast<FunctionType>(T); 978 // FUNCTION: [isvararg, retty, paramty x N] 979 Code = bitc::TYPE_CODE_FUNCTION; 980 TypeVals.push_back(FT->isVarArg()); 981 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 982 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 983 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 984 AbbrevToUse = FunctionAbbrev; 985 break; 986 } 987 case Type::StructTyID: { 988 StructType *ST = cast<StructType>(T); 989 // STRUCT: [ispacked, eltty x N] 990 TypeVals.push_back(ST->isPacked()); 991 // Output all of the element types. 992 for (Type *ET : ST->elements()) 993 TypeVals.push_back(VE.getTypeID(ET)); 994 995 if (ST->isLiteral()) { 996 Code = bitc::TYPE_CODE_STRUCT_ANON; 997 AbbrevToUse = StructAnonAbbrev; 998 } else { 999 if (ST->isOpaque()) { 1000 Code = bitc::TYPE_CODE_OPAQUE; 1001 } else { 1002 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1003 AbbrevToUse = StructNamedAbbrev; 1004 } 1005 1006 // Emit the name if it is present. 1007 if (!ST->getName().empty()) 1008 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1009 StructNameAbbrev); 1010 } 1011 break; 1012 } 1013 case Type::ArrayTyID: { 1014 ArrayType *AT = cast<ArrayType>(T); 1015 // ARRAY: [numelts, eltty] 1016 Code = bitc::TYPE_CODE_ARRAY; 1017 TypeVals.push_back(AT->getNumElements()); 1018 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1019 AbbrevToUse = ArrayAbbrev; 1020 break; 1021 } 1022 case Type::FixedVectorTyID: 1023 case Type::ScalableVectorTyID: { 1024 VectorType *VT = cast<VectorType>(T); 1025 // VECTOR [numelts, eltty] or 1026 // [numelts, eltty, scalable] 1027 Code = bitc::TYPE_CODE_VECTOR; 1028 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1029 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1030 if (isa<ScalableVectorType>(VT)) 1031 TypeVals.push_back(true); 1032 break; 1033 } 1034 case Type::TypedPointerTyID: 1035 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1036 } 1037 1038 // Emit the finished record. 1039 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1040 TypeVals.clear(); 1041 } 1042 1043 Stream.ExitBlock(); 1044 } 1045 1046 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1047 switch (Linkage) { 1048 case GlobalValue::ExternalLinkage: 1049 return 0; 1050 case GlobalValue::WeakAnyLinkage: 1051 return 16; 1052 case GlobalValue::AppendingLinkage: 1053 return 2; 1054 case GlobalValue::InternalLinkage: 1055 return 3; 1056 case GlobalValue::LinkOnceAnyLinkage: 1057 return 18; 1058 case GlobalValue::ExternalWeakLinkage: 1059 return 7; 1060 case GlobalValue::CommonLinkage: 1061 return 8; 1062 case GlobalValue::PrivateLinkage: 1063 return 9; 1064 case GlobalValue::WeakODRLinkage: 1065 return 17; 1066 case GlobalValue::LinkOnceODRLinkage: 1067 return 19; 1068 case GlobalValue::AvailableExternallyLinkage: 1069 return 12; 1070 } 1071 llvm_unreachable("Invalid linkage"); 1072 } 1073 1074 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1075 return getEncodedLinkage(GV.getLinkage()); 1076 } 1077 1078 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1079 uint64_t RawFlags = 0; 1080 RawFlags |= Flags.ReadNone; 1081 RawFlags |= (Flags.ReadOnly << 1); 1082 RawFlags |= (Flags.NoRecurse << 2); 1083 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1084 RawFlags |= (Flags.NoInline << 4); 1085 RawFlags |= (Flags.AlwaysInline << 5); 1086 RawFlags |= (Flags.NoUnwind << 6); 1087 RawFlags |= (Flags.MayThrow << 7); 1088 RawFlags |= (Flags.HasUnknownCall << 8); 1089 RawFlags |= (Flags.MustBeUnreachable << 9); 1090 return RawFlags; 1091 } 1092 1093 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1094 // in BitcodeReader.cpp. 1095 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1096 uint64_t RawFlags = 0; 1097 1098 RawFlags |= Flags.NotEligibleToImport; // bool 1099 RawFlags |= (Flags.Live << 1); 1100 RawFlags |= (Flags.DSOLocal << 2); 1101 RawFlags |= (Flags.CanAutoHide << 3); 1102 1103 // Linkage don't need to be remapped at that time for the summary. Any future 1104 // change to the getEncodedLinkage() function will need to be taken into 1105 // account here as well. 1106 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1107 1108 RawFlags |= (Flags.Visibility << 8); // 2 bits 1109 1110 return RawFlags; 1111 } 1112 1113 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1114 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1115 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1116 return RawFlags; 1117 } 1118 1119 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1120 switch (GV.getVisibility()) { 1121 case GlobalValue::DefaultVisibility: return 0; 1122 case GlobalValue::HiddenVisibility: return 1; 1123 case GlobalValue::ProtectedVisibility: return 2; 1124 } 1125 llvm_unreachable("Invalid visibility"); 1126 } 1127 1128 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1129 switch (GV.getDLLStorageClass()) { 1130 case GlobalValue::DefaultStorageClass: return 0; 1131 case GlobalValue::DLLImportStorageClass: return 1; 1132 case GlobalValue::DLLExportStorageClass: return 2; 1133 } 1134 llvm_unreachable("Invalid DLL storage class"); 1135 } 1136 1137 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1138 switch (GV.getThreadLocalMode()) { 1139 case GlobalVariable::NotThreadLocal: return 0; 1140 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1141 case GlobalVariable::LocalDynamicTLSModel: return 2; 1142 case GlobalVariable::InitialExecTLSModel: return 3; 1143 case GlobalVariable::LocalExecTLSModel: return 4; 1144 } 1145 llvm_unreachable("Invalid TLS model"); 1146 } 1147 1148 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1149 switch (C.getSelectionKind()) { 1150 case Comdat::Any: 1151 return bitc::COMDAT_SELECTION_KIND_ANY; 1152 case Comdat::ExactMatch: 1153 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1154 case Comdat::Largest: 1155 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1156 case Comdat::NoDeduplicate: 1157 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1158 case Comdat::SameSize: 1159 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1160 } 1161 llvm_unreachable("Invalid selection kind"); 1162 } 1163 1164 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1165 switch (GV.getUnnamedAddr()) { 1166 case GlobalValue::UnnamedAddr::None: return 0; 1167 case GlobalValue::UnnamedAddr::Local: return 2; 1168 case GlobalValue::UnnamedAddr::Global: return 1; 1169 } 1170 llvm_unreachable("Invalid unnamed_addr"); 1171 } 1172 1173 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1174 if (GenerateHash) 1175 Hasher.update(Str); 1176 return StrtabBuilder.add(Str); 1177 } 1178 1179 void ModuleBitcodeWriter::writeComdats() { 1180 SmallVector<unsigned, 64> Vals; 1181 for (const Comdat *C : VE.getComdats()) { 1182 // COMDAT: [strtab offset, strtab size, selection_kind] 1183 Vals.push_back(addToStrtab(C->getName())); 1184 Vals.push_back(C->getName().size()); 1185 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1186 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1187 Vals.clear(); 1188 } 1189 } 1190 1191 /// Write a record that will eventually hold the word offset of the 1192 /// module-level VST. For now the offset is 0, which will be backpatched 1193 /// after the real VST is written. Saves the bit offset to backpatch. 1194 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1195 // Write a placeholder value in for the offset of the real VST, 1196 // which is written after the function blocks so that it can include 1197 // the offset of each function. The placeholder offset will be 1198 // updated when the real VST is written. 1199 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1200 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1201 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1202 // hold the real VST offset. Must use fixed instead of VBR as we don't 1203 // know how many VBR chunks to reserve ahead of time. 1204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1205 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1206 1207 // Emit the placeholder 1208 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1209 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1210 1211 // Compute and save the bit offset to the placeholder, which will be 1212 // patched when the real VST is written. We can simply subtract the 32-bit 1213 // fixed size from the current bit number to get the location to backpatch. 1214 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1215 } 1216 1217 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1218 1219 /// Determine the encoding to use for the given string name and length. 1220 static StringEncoding getStringEncoding(StringRef Str) { 1221 bool isChar6 = true; 1222 for (char C : Str) { 1223 if (isChar6) 1224 isChar6 = BitCodeAbbrevOp::isChar6(C); 1225 if ((unsigned char)C & 128) 1226 // don't bother scanning the rest. 1227 return SE_Fixed8; 1228 } 1229 if (isChar6) 1230 return SE_Char6; 1231 return SE_Fixed7; 1232 } 1233 1234 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1235 "Sanitizer Metadata is too large for naive serialization."); 1236 static unsigned 1237 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1238 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1239 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1240 } 1241 1242 /// Emit top-level description of module, including target triple, inline asm, 1243 /// descriptors for global variables, and function prototype info. 1244 /// Returns the bit offset to backpatch with the location of the real VST. 1245 void ModuleBitcodeWriter::writeModuleInfo() { 1246 // Emit various pieces of data attached to a module. 1247 if (!M.getTargetTriple().empty()) 1248 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1249 0 /*TODO*/); 1250 const std::string &DL = M.getDataLayoutStr(); 1251 if (!DL.empty()) 1252 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1253 if (!M.getModuleInlineAsm().empty()) 1254 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1255 0 /*TODO*/); 1256 1257 // Emit information about sections and GC, computing how many there are. Also 1258 // compute the maximum alignment value. 1259 std::map<std::string, unsigned> SectionMap; 1260 std::map<std::string, unsigned> GCMap; 1261 MaybeAlign MaxAlignment; 1262 unsigned MaxGlobalType = 0; 1263 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1264 if (A) 1265 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1266 }; 1267 for (const GlobalVariable &GV : M.globals()) { 1268 UpdateMaxAlignment(GV.getAlign()); 1269 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1270 if (GV.hasSection()) { 1271 // Give section names unique ID's. 1272 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1273 if (!Entry) { 1274 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1275 0 /*TODO*/); 1276 Entry = SectionMap.size(); 1277 } 1278 } 1279 } 1280 for (const Function &F : M) { 1281 UpdateMaxAlignment(F.getAlign()); 1282 if (F.hasSection()) { 1283 // Give section names unique ID's. 1284 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1285 if (!Entry) { 1286 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1287 0 /*TODO*/); 1288 Entry = SectionMap.size(); 1289 } 1290 } 1291 if (F.hasGC()) { 1292 // Same for GC names. 1293 unsigned &Entry = GCMap[F.getGC()]; 1294 if (!Entry) { 1295 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1296 0 /*TODO*/); 1297 Entry = GCMap.size(); 1298 } 1299 } 1300 } 1301 1302 // Emit abbrev for globals, now that we know # sections and max alignment. 1303 unsigned SimpleGVarAbbrev = 0; 1304 if (!M.global_empty()) { 1305 // Add an abbrev for common globals with no visibility or thread localness. 1306 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1307 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1311 Log2_32_Ceil(MaxGlobalType+1))); 1312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1313 //| explicitType << 1 1314 //| constant 1315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1317 if (!MaxAlignment) // Alignment. 1318 Abbv->Add(BitCodeAbbrevOp(0)); 1319 else { 1320 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1322 Log2_32_Ceil(MaxEncAlignment+1))); 1323 } 1324 if (SectionMap.empty()) // Section. 1325 Abbv->Add(BitCodeAbbrevOp(0)); 1326 else 1327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1328 Log2_32_Ceil(SectionMap.size()+1))); 1329 // Don't bother emitting vis + thread local. 1330 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1331 } 1332 1333 SmallVector<unsigned, 64> Vals; 1334 // Emit the module's source file name. 1335 { 1336 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1337 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1338 if (Bits == SE_Char6) 1339 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1340 else if (Bits == SE_Fixed7) 1341 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1342 1343 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1344 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1345 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1347 Abbv->Add(AbbrevOpToUse); 1348 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1349 1350 for (const auto P : M.getSourceFileName()) 1351 Vals.push_back((unsigned char)P); 1352 1353 // Emit the finished record. 1354 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1355 Vals.clear(); 1356 } 1357 1358 // Emit the global variable information. 1359 for (const GlobalVariable &GV : M.globals()) { 1360 unsigned AbbrevToUse = 0; 1361 1362 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1363 // linkage, alignment, section, visibility, threadlocal, 1364 // unnamed_addr, externally_initialized, dllstorageclass, 1365 // comdat, attributes, DSO_Local, GlobalSanitizer] 1366 Vals.push_back(addToStrtab(GV.getName())); 1367 Vals.push_back(GV.getName().size()); 1368 Vals.push_back(VE.getTypeID(GV.getValueType())); 1369 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1370 Vals.push_back(GV.isDeclaration() ? 0 : 1371 (VE.getValueID(GV.getInitializer()) + 1)); 1372 Vals.push_back(getEncodedLinkage(GV)); 1373 Vals.push_back(getEncodedAlign(GV.getAlign())); 1374 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1375 : 0); 1376 if (GV.isThreadLocal() || 1377 GV.getVisibility() != GlobalValue::DefaultVisibility || 1378 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1379 GV.isExternallyInitialized() || 1380 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1381 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1382 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1383 Vals.push_back(getEncodedVisibility(GV)); 1384 Vals.push_back(getEncodedThreadLocalMode(GV)); 1385 Vals.push_back(getEncodedUnnamedAddr(GV)); 1386 Vals.push_back(GV.isExternallyInitialized()); 1387 Vals.push_back(getEncodedDLLStorageClass(GV)); 1388 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1389 1390 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1391 Vals.push_back(VE.getAttributeListID(AL)); 1392 1393 Vals.push_back(GV.isDSOLocal()); 1394 Vals.push_back(addToStrtab(GV.getPartition())); 1395 Vals.push_back(GV.getPartition().size()); 1396 1397 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1398 GV.getSanitizerMetadata()) 1399 : 0)); 1400 } else { 1401 AbbrevToUse = SimpleGVarAbbrev; 1402 } 1403 1404 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1405 Vals.clear(); 1406 } 1407 1408 // Emit the function proto information. 1409 for (const Function &F : M) { 1410 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1411 // linkage, paramattrs, alignment, section, visibility, gc, 1412 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1413 // prefixdata, personalityfn, DSO_Local, addrspace] 1414 Vals.push_back(addToStrtab(F.getName())); 1415 Vals.push_back(F.getName().size()); 1416 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1417 Vals.push_back(F.getCallingConv()); 1418 Vals.push_back(F.isDeclaration()); 1419 Vals.push_back(getEncodedLinkage(F)); 1420 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1421 Vals.push_back(getEncodedAlign(F.getAlign())); 1422 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1423 : 0); 1424 Vals.push_back(getEncodedVisibility(F)); 1425 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1426 Vals.push_back(getEncodedUnnamedAddr(F)); 1427 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1428 : 0); 1429 Vals.push_back(getEncodedDLLStorageClass(F)); 1430 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1431 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1432 : 0); 1433 Vals.push_back( 1434 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1435 1436 Vals.push_back(F.isDSOLocal()); 1437 Vals.push_back(F.getAddressSpace()); 1438 Vals.push_back(addToStrtab(F.getPartition())); 1439 Vals.push_back(F.getPartition().size()); 1440 1441 unsigned AbbrevToUse = 0; 1442 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1443 Vals.clear(); 1444 } 1445 1446 // Emit the alias information. 1447 for (const GlobalAlias &A : M.aliases()) { 1448 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1449 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1450 // DSO_Local] 1451 Vals.push_back(addToStrtab(A.getName())); 1452 Vals.push_back(A.getName().size()); 1453 Vals.push_back(VE.getTypeID(A.getValueType())); 1454 Vals.push_back(A.getType()->getAddressSpace()); 1455 Vals.push_back(VE.getValueID(A.getAliasee())); 1456 Vals.push_back(getEncodedLinkage(A)); 1457 Vals.push_back(getEncodedVisibility(A)); 1458 Vals.push_back(getEncodedDLLStorageClass(A)); 1459 Vals.push_back(getEncodedThreadLocalMode(A)); 1460 Vals.push_back(getEncodedUnnamedAddr(A)); 1461 Vals.push_back(A.isDSOLocal()); 1462 Vals.push_back(addToStrtab(A.getPartition())); 1463 Vals.push_back(A.getPartition().size()); 1464 1465 unsigned AbbrevToUse = 0; 1466 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1467 Vals.clear(); 1468 } 1469 1470 // Emit the ifunc information. 1471 for (const GlobalIFunc &I : M.ifuncs()) { 1472 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1473 // val#, linkage, visibility, DSO_Local] 1474 Vals.push_back(addToStrtab(I.getName())); 1475 Vals.push_back(I.getName().size()); 1476 Vals.push_back(VE.getTypeID(I.getValueType())); 1477 Vals.push_back(I.getType()->getAddressSpace()); 1478 Vals.push_back(VE.getValueID(I.getResolver())); 1479 Vals.push_back(getEncodedLinkage(I)); 1480 Vals.push_back(getEncodedVisibility(I)); 1481 Vals.push_back(I.isDSOLocal()); 1482 Vals.push_back(addToStrtab(I.getPartition())); 1483 Vals.push_back(I.getPartition().size()); 1484 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1485 Vals.clear(); 1486 } 1487 1488 writeValueSymbolTableForwardDecl(); 1489 } 1490 1491 static uint64_t getOptimizationFlags(const Value *V) { 1492 uint64_t Flags = 0; 1493 1494 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1495 if (OBO->hasNoSignedWrap()) 1496 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1497 if (OBO->hasNoUnsignedWrap()) 1498 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1499 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1500 if (PEO->isExact()) 1501 Flags |= 1 << bitc::PEO_EXACT; 1502 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1503 if (FPMO->hasAllowReassoc()) 1504 Flags |= bitc::AllowReassoc; 1505 if (FPMO->hasNoNaNs()) 1506 Flags |= bitc::NoNaNs; 1507 if (FPMO->hasNoInfs()) 1508 Flags |= bitc::NoInfs; 1509 if (FPMO->hasNoSignedZeros()) 1510 Flags |= bitc::NoSignedZeros; 1511 if (FPMO->hasAllowReciprocal()) 1512 Flags |= bitc::AllowReciprocal; 1513 if (FPMO->hasAllowContract()) 1514 Flags |= bitc::AllowContract; 1515 if (FPMO->hasApproxFunc()) 1516 Flags |= bitc::ApproxFunc; 1517 } 1518 1519 return Flags; 1520 } 1521 1522 void ModuleBitcodeWriter::writeValueAsMetadata( 1523 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1524 // Mimic an MDNode with a value as one operand. 1525 Value *V = MD->getValue(); 1526 Record.push_back(VE.getTypeID(V->getType())); 1527 Record.push_back(VE.getValueID(V)); 1528 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1529 Record.clear(); 1530 } 1531 1532 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1533 SmallVectorImpl<uint64_t> &Record, 1534 unsigned Abbrev) { 1535 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1536 Metadata *MD = N->getOperand(i); 1537 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1538 "Unexpected function-local metadata"); 1539 Record.push_back(VE.getMetadataOrNullID(MD)); 1540 } 1541 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1542 : bitc::METADATA_NODE, 1543 Record, Abbrev); 1544 Record.clear(); 1545 } 1546 1547 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1548 // Assume the column is usually under 128, and always output the inlined-at 1549 // location (it's never more expensive than building an array size 1). 1550 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1551 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1558 return Stream.EmitAbbrev(std::move(Abbv)); 1559 } 1560 1561 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1562 SmallVectorImpl<uint64_t> &Record, 1563 unsigned &Abbrev) { 1564 if (!Abbrev) 1565 Abbrev = createDILocationAbbrev(); 1566 1567 Record.push_back(N->isDistinct()); 1568 Record.push_back(N->getLine()); 1569 Record.push_back(N->getColumn()); 1570 Record.push_back(VE.getMetadataID(N->getScope())); 1571 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1572 Record.push_back(N->isImplicitCode()); 1573 1574 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1575 Record.clear(); 1576 } 1577 1578 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1579 // Assume the column is usually under 128, and always output the inlined-at 1580 // location (it's never more expensive than building an array size 1). 1581 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1582 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1589 return Stream.EmitAbbrev(std::move(Abbv)); 1590 } 1591 1592 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1593 SmallVectorImpl<uint64_t> &Record, 1594 unsigned &Abbrev) { 1595 if (!Abbrev) 1596 Abbrev = createGenericDINodeAbbrev(); 1597 1598 Record.push_back(N->isDistinct()); 1599 Record.push_back(N->getTag()); 1600 Record.push_back(0); // Per-tag version field; unused for now. 1601 1602 for (auto &I : N->operands()) 1603 Record.push_back(VE.getMetadataOrNullID(I)); 1604 1605 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1606 Record.clear(); 1607 } 1608 1609 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1610 SmallVectorImpl<uint64_t> &Record, 1611 unsigned Abbrev) { 1612 const uint64_t Version = 2 << 1; 1613 Record.push_back((uint64_t)N->isDistinct() | Version); 1614 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1615 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1616 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1617 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1618 1619 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1620 Record.clear(); 1621 } 1622 1623 void ModuleBitcodeWriter::writeDIGenericSubrange( 1624 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1625 unsigned Abbrev) { 1626 Record.push_back((uint64_t)N->isDistinct()); 1627 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1628 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1629 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1630 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1631 1632 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1633 Record.clear(); 1634 } 1635 1636 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1637 if ((int64_t)V >= 0) 1638 Vals.push_back(V << 1); 1639 else 1640 Vals.push_back((-V << 1) | 1); 1641 } 1642 1643 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1644 // We have an arbitrary precision integer value to write whose 1645 // bit width is > 64. However, in canonical unsigned integer 1646 // format it is likely that the high bits are going to be zero. 1647 // So, we only write the number of active words. 1648 unsigned NumWords = A.getActiveWords(); 1649 const uint64_t *RawData = A.getRawData(); 1650 for (unsigned i = 0; i < NumWords; i++) 1651 emitSignedInt64(Vals, RawData[i]); 1652 } 1653 1654 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1655 SmallVectorImpl<uint64_t> &Record, 1656 unsigned Abbrev) { 1657 const uint64_t IsBigInt = 1 << 2; 1658 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1659 Record.push_back(N->getValue().getBitWidth()); 1660 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1661 emitWideAPInt(Record, N->getValue()); 1662 1663 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1668 SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 Record.push_back(N->isDistinct()); 1671 Record.push_back(N->getTag()); 1672 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1673 Record.push_back(N->getSizeInBits()); 1674 Record.push_back(N->getAlignInBits()); 1675 Record.push_back(N->getEncoding()); 1676 Record.push_back(N->getFlags()); 1677 1678 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1679 Record.clear(); 1680 } 1681 1682 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1683 SmallVectorImpl<uint64_t> &Record, 1684 unsigned Abbrev) { 1685 Record.push_back(N->isDistinct()); 1686 Record.push_back(N->getTag()); 1687 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1688 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1689 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1690 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1691 Record.push_back(N->getSizeInBits()); 1692 Record.push_back(N->getAlignInBits()); 1693 Record.push_back(N->getEncoding()); 1694 1695 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1696 Record.clear(); 1697 } 1698 1699 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1700 SmallVectorImpl<uint64_t> &Record, 1701 unsigned Abbrev) { 1702 Record.push_back(N->isDistinct()); 1703 Record.push_back(N->getTag()); 1704 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1705 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1706 Record.push_back(N->getLine()); 1707 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1708 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1709 Record.push_back(N->getSizeInBits()); 1710 Record.push_back(N->getAlignInBits()); 1711 Record.push_back(N->getOffsetInBits()); 1712 Record.push_back(N->getFlags()); 1713 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1714 1715 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1716 // that there is no DWARF address space associated with DIDerivedType. 1717 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1718 Record.push_back(*DWARFAddressSpace + 1); 1719 else 1720 Record.push_back(0); 1721 1722 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1723 1724 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1725 Record.clear(); 1726 } 1727 1728 void ModuleBitcodeWriter::writeDICompositeType( 1729 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1730 unsigned Abbrev) { 1731 const unsigned IsNotUsedInOldTypeRef = 0x2; 1732 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1733 Record.push_back(N->getTag()); 1734 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1735 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1736 Record.push_back(N->getLine()); 1737 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1738 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1739 Record.push_back(N->getSizeInBits()); 1740 Record.push_back(N->getAlignInBits()); 1741 Record.push_back(N->getOffsetInBits()); 1742 Record.push_back(N->getFlags()); 1743 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1744 Record.push_back(N->getRuntimeLang()); 1745 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1746 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1747 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1748 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1749 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1750 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1753 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1754 1755 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1756 Record.clear(); 1757 } 1758 1759 void ModuleBitcodeWriter::writeDISubroutineType( 1760 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1761 unsigned Abbrev) { 1762 const unsigned HasNoOldTypeRefs = 0x2; 1763 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1764 Record.push_back(N->getFlags()); 1765 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1766 Record.push_back(N->getCC()); 1767 1768 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1769 Record.clear(); 1770 } 1771 1772 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1773 SmallVectorImpl<uint64_t> &Record, 1774 unsigned Abbrev) { 1775 Record.push_back(N->isDistinct()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1778 if (N->getRawChecksum()) { 1779 Record.push_back(N->getRawChecksum()->Kind); 1780 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1781 } else { 1782 // Maintain backwards compatibility with the old internal representation of 1783 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1784 Record.push_back(0); 1785 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1786 } 1787 auto Source = N->getRawSource(); 1788 if (Source) 1789 Record.push_back(VE.getMetadataOrNullID(*Source)); 1790 1791 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1792 Record.clear(); 1793 } 1794 1795 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1796 SmallVectorImpl<uint64_t> &Record, 1797 unsigned Abbrev) { 1798 assert(N->isDistinct() && "Expected distinct compile units"); 1799 Record.push_back(/* IsDistinct */ true); 1800 Record.push_back(N->getSourceLanguage()); 1801 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1803 Record.push_back(N->isOptimized()); 1804 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1805 Record.push_back(N->getRuntimeVersion()); 1806 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1807 Record.push_back(N->getEmissionKind()); 1808 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1809 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1810 Record.push_back(/* subprograms */ 0); 1811 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1813 Record.push_back(N->getDWOId()); 1814 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1815 Record.push_back(N->getSplitDebugInlining()); 1816 Record.push_back(N->getDebugInfoForProfiling()); 1817 Record.push_back((unsigned)N->getNameTableKind()); 1818 Record.push_back(N->getRangesBaseAddress()); 1819 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1820 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1821 1822 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1823 Record.clear(); 1824 } 1825 1826 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1827 SmallVectorImpl<uint64_t> &Record, 1828 unsigned Abbrev) { 1829 const uint64_t HasUnitFlag = 1 << 1; 1830 const uint64_t HasSPFlagsFlag = 1 << 2; 1831 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1832 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1833 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1834 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1835 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1836 Record.push_back(N->getLine()); 1837 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1838 Record.push_back(N->getScopeLine()); 1839 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1840 Record.push_back(N->getSPFlags()); 1841 Record.push_back(N->getVirtualIndex()); 1842 Record.push_back(N->getFlags()); 1843 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1844 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1845 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1846 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1847 Record.push_back(N->getThisAdjustment()); 1848 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1849 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1850 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1851 1852 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1853 Record.clear(); 1854 } 1855 1856 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1857 SmallVectorImpl<uint64_t> &Record, 1858 unsigned Abbrev) { 1859 Record.push_back(N->isDistinct()); 1860 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1861 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1862 Record.push_back(N->getLine()); 1863 Record.push_back(N->getColumn()); 1864 1865 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1866 Record.clear(); 1867 } 1868 1869 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1870 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1871 unsigned Abbrev) { 1872 Record.push_back(N->isDistinct()); 1873 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1874 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1875 Record.push_back(N->getDiscriminator()); 1876 1877 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1878 Record.clear(); 1879 } 1880 1881 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1882 SmallVectorImpl<uint64_t> &Record, 1883 unsigned Abbrev) { 1884 Record.push_back(N->isDistinct()); 1885 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1886 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1887 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1889 Record.push_back(N->getLineNo()); 1890 1891 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1892 Record.clear(); 1893 } 1894 1895 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1896 SmallVectorImpl<uint64_t> &Record, 1897 unsigned Abbrev) { 1898 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1899 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1900 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1901 1902 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1903 Record.clear(); 1904 } 1905 1906 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1907 SmallVectorImpl<uint64_t> &Record, 1908 unsigned Abbrev) { 1909 Record.push_back(N->isDistinct()); 1910 Record.push_back(N->getMacinfoType()); 1911 Record.push_back(N->getLine()); 1912 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1913 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1914 1915 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1916 Record.clear(); 1917 } 1918 1919 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1920 SmallVectorImpl<uint64_t> &Record, 1921 unsigned Abbrev) { 1922 Record.push_back(N->isDistinct()); 1923 Record.push_back(N->getMacinfoType()); 1924 Record.push_back(N->getLine()); 1925 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1926 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1927 1928 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1929 Record.clear(); 1930 } 1931 1932 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1933 SmallVectorImpl<uint64_t> &Record, 1934 unsigned Abbrev) { 1935 Record.reserve(N->getArgs().size()); 1936 for (ValueAsMetadata *MD : N->getArgs()) 1937 Record.push_back(VE.getMetadataID(MD)); 1938 1939 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1940 Record.clear(); 1941 } 1942 1943 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1944 SmallVectorImpl<uint64_t> &Record, 1945 unsigned Abbrev) { 1946 Record.push_back(N->isDistinct()); 1947 for (auto &I : N->operands()) 1948 Record.push_back(VE.getMetadataOrNullID(I)); 1949 Record.push_back(N->getLineNo()); 1950 Record.push_back(N->getIsDecl()); 1951 1952 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1953 Record.clear(); 1954 } 1955 1956 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1957 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1958 unsigned Abbrev) { 1959 Record.push_back(N->isDistinct()); 1960 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1961 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1962 Record.push_back(N->isDefault()); 1963 1964 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1965 Record.clear(); 1966 } 1967 1968 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1969 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1970 unsigned Abbrev) { 1971 Record.push_back(N->isDistinct()); 1972 Record.push_back(N->getTag()); 1973 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1974 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1975 Record.push_back(N->isDefault()); 1976 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1977 1978 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1979 Record.clear(); 1980 } 1981 1982 void ModuleBitcodeWriter::writeDIGlobalVariable( 1983 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1984 unsigned Abbrev) { 1985 const uint64_t Version = 2 << 1; 1986 Record.push_back((uint64_t)N->isDistinct() | Version); 1987 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1988 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1989 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1990 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1991 Record.push_back(N->getLine()); 1992 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1993 Record.push_back(N->isLocalToUnit()); 1994 Record.push_back(N->isDefinition()); 1995 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1996 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1997 Record.push_back(N->getAlignInBits()); 1998 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1999 2000 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2001 Record.clear(); 2002 } 2003 2004 void ModuleBitcodeWriter::writeDILocalVariable( 2005 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2006 unsigned Abbrev) { 2007 // In order to support all possible bitcode formats in BitcodeReader we need 2008 // to distinguish the following cases: 2009 // 1) Record has no artificial tag (Record[1]), 2010 // has no obsolete inlinedAt field (Record[9]). 2011 // In this case Record size will be 8, HasAlignment flag is false. 2012 // 2) Record has artificial tag (Record[1]), 2013 // has no obsolete inlignedAt field (Record[9]). 2014 // In this case Record size will be 9, HasAlignment flag is false. 2015 // 3) Record has both artificial tag (Record[1]) and 2016 // obsolete inlignedAt field (Record[9]). 2017 // In this case Record size will be 10, HasAlignment flag is false. 2018 // 4) Record has neither artificial tag, nor inlignedAt field, but 2019 // HasAlignment flag is true and Record[8] contains alignment value. 2020 const uint64_t HasAlignmentFlag = 1 << 1; 2021 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2022 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2023 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2024 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2025 Record.push_back(N->getLine()); 2026 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2027 Record.push_back(N->getArg()); 2028 Record.push_back(N->getFlags()); 2029 Record.push_back(N->getAlignInBits()); 2030 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2031 2032 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2033 Record.clear(); 2034 } 2035 2036 void ModuleBitcodeWriter::writeDILabel( 2037 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2038 unsigned Abbrev) { 2039 Record.push_back((uint64_t)N->isDistinct()); 2040 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2041 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2042 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2043 Record.push_back(N->getLine()); 2044 2045 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2046 Record.clear(); 2047 } 2048 2049 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2050 SmallVectorImpl<uint64_t> &Record, 2051 unsigned Abbrev) { 2052 Record.reserve(N->getElements().size() + 1); 2053 const uint64_t Version = 3 << 1; 2054 Record.push_back((uint64_t)N->isDistinct() | Version); 2055 Record.append(N->elements_begin(), N->elements_end()); 2056 2057 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2058 Record.clear(); 2059 } 2060 2061 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2062 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2063 unsigned Abbrev) { 2064 Record.push_back(N->isDistinct()); 2065 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2066 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2067 2068 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2069 Record.clear(); 2070 } 2071 2072 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2073 SmallVectorImpl<uint64_t> &Record, 2074 unsigned Abbrev) { 2075 Record.push_back(N->isDistinct()); 2076 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2077 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2078 Record.push_back(N->getLine()); 2079 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2080 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2081 Record.push_back(N->getAttributes()); 2082 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2083 2084 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2085 Record.clear(); 2086 } 2087 2088 void ModuleBitcodeWriter::writeDIImportedEntity( 2089 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2090 unsigned Abbrev) { 2091 Record.push_back(N->isDistinct()); 2092 Record.push_back(N->getTag()); 2093 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2094 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2095 Record.push_back(N->getLine()); 2096 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2097 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2098 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2099 2100 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2101 Record.clear(); 2102 } 2103 2104 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2105 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2106 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2109 return Stream.EmitAbbrev(std::move(Abbv)); 2110 } 2111 2112 void ModuleBitcodeWriter::writeNamedMetadata( 2113 SmallVectorImpl<uint64_t> &Record) { 2114 if (M.named_metadata_empty()) 2115 return; 2116 2117 unsigned Abbrev = createNamedMetadataAbbrev(); 2118 for (const NamedMDNode &NMD : M.named_metadata()) { 2119 // Write name. 2120 StringRef Str = NMD.getName(); 2121 Record.append(Str.bytes_begin(), Str.bytes_end()); 2122 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2123 Record.clear(); 2124 2125 // Write named metadata operands. 2126 for (const MDNode *N : NMD.operands()) 2127 Record.push_back(VE.getMetadataID(N)); 2128 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2129 Record.clear(); 2130 } 2131 } 2132 2133 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2134 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2135 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2139 return Stream.EmitAbbrev(std::move(Abbv)); 2140 } 2141 2142 /// Write out a record for MDString. 2143 /// 2144 /// All the metadata strings in a metadata block are emitted in a single 2145 /// record. The sizes and strings themselves are shoved into a blob. 2146 void ModuleBitcodeWriter::writeMetadataStrings( 2147 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2148 if (Strings.empty()) 2149 return; 2150 2151 // Start the record with the number of strings. 2152 Record.push_back(bitc::METADATA_STRINGS); 2153 Record.push_back(Strings.size()); 2154 2155 // Emit the sizes of the strings in the blob. 2156 SmallString<256> Blob; 2157 { 2158 BitstreamWriter W(Blob); 2159 for (const Metadata *MD : Strings) 2160 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2161 W.FlushToWord(); 2162 } 2163 2164 // Add the offset to the strings to the record. 2165 Record.push_back(Blob.size()); 2166 2167 // Add the strings to the blob. 2168 for (const Metadata *MD : Strings) 2169 Blob.append(cast<MDString>(MD)->getString()); 2170 2171 // Emit the final record. 2172 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2173 Record.clear(); 2174 } 2175 2176 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2177 enum MetadataAbbrev : unsigned { 2178 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2179 #include "llvm/IR/Metadata.def" 2180 LastPlusOne 2181 }; 2182 2183 void ModuleBitcodeWriter::writeMetadataRecords( 2184 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2185 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2186 if (MDs.empty()) 2187 return; 2188 2189 // Initialize MDNode abbreviations. 2190 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2191 #include "llvm/IR/Metadata.def" 2192 2193 for (const Metadata *MD : MDs) { 2194 if (IndexPos) 2195 IndexPos->push_back(Stream.GetCurrentBitNo()); 2196 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2197 assert(N->isResolved() && "Expected forward references to be resolved"); 2198 2199 switch (N->getMetadataID()) { 2200 default: 2201 llvm_unreachable("Invalid MDNode subclass"); 2202 #define HANDLE_MDNODE_LEAF(CLASS) \ 2203 case Metadata::CLASS##Kind: \ 2204 if (MDAbbrevs) \ 2205 write##CLASS(cast<CLASS>(N), Record, \ 2206 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2207 else \ 2208 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2209 continue; 2210 #include "llvm/IR/Metadata.def" 2211 } 2212 } 2213 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2214 } 2215 } 2216 2217 void ModuleBitcodeWriter::writeModuleMetadata() { 2218 if (!VE.hasMDs() && M.named_metadata_empty()) 2219 return; 2220 2221 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2222 SmallVector<uint64_t, 64> Record; 2223 2224 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2225 // block and load any metadata. 2226 std::vector<unsigned> MDAbbrevs; 2227 2228 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2229 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2230 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2231 createGenericDINodeAbbrev(); 2232 2233 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2234 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2237 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2238 2239 Abbv = std::make_shared<BitCodeAbbrev>(); 2240 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2243 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2244 2245 // Emit MDStrings together upfront. 2246 writeMetadataStrings(VE.getMDStrings(), Record); 2247 2248 // We only emit an index for the metadata record if we have more than a given 2249 // (naive) threshold of metadatas, otherwise it is not worth it. 2250 if (VE.getNonMDStrings().size() > IndexThreshold) { 2251 // Write a placeholder value in for the offset of the metadata index, 2252 // which is written after the records, so that it can include 2253 // the offset of each entry. The placeholder offset will be 2254 // updated after all records are emitted. 2255 uint64_t Vals[] = {0, 0}; 2256 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2257 } 2258 2259 // Compute and save the bit offset to the current position, which will be 2260 // patched when we emit the index later. We can simply subtract the 64-bit 2261 // fixed size from the current bit number to get the location to backpatch. 2262 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2263 2264 // This index will contain the bitpos for each individual record. 2265 std::vector<uint64_t> IndexPos; 2266 IndexPos.reserve(VE.getNonMDStrings().size()); 2267 2268 // Write all the records 2269 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2270 2271 if (VE.getNonMDStrings().size() > IndexThreshold) { 2272 // Now that we have emitted all the records we will emit the index. But 2273 // first 2274 // backpatch the forward reference so that the reader can skip the records 2275 // efficiently. 2276 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2277 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2278 2279 // Delta encode the index. 2280 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2281 for (auto &Elt : IndexPos) { 2282 auto EltDelta = Elt - PreviousValue; 2283 PreviousValue = Elt; 2284 Elt = EltDelta; 2285 } 2286 // Emit the index record. 2287 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2288 IndexPos.clear(); 2289 } 2290 2291 // Write the named metadata now. 2292 writeNamedMetadata(Record); 2293 2294 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2295 SmallVector<uint64_t, 4> Record; 2296 Record.push_back(VE.getValueID(&GO)); 2297 pushGlobalMetadataAttachment(Record, GO); 2298 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2299 }; 2300 for (const Function &F : M) 2301 if (F.isDeclaration() && F.hasMetadata()) 2302 AddDeclAttachedMetadata(F); 2303 // FIXME: Only store metadata for declarations here, and move data for global 2304 // variable definitions to a separate block (PR28134). 2305 for (const GlobalVariable &GV : M.globals()) 2306 if (GV.hasMetadata()) 2307 AddDeclAttachedMetadata(GV); 2308 2309 Stream.ExitBlock(); 2310 } 2311 2312 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2313 if (!VE.hasMDs()) 2314 return; 2315 2316 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2317 SmallVector<uint64_t, 64> Record; 2318 writeMetadataStrings(VE.getMDStrings(), Record); 2319 writeMetadataRecords(VE.getNonMDStrings(), Record); 2320 Stream.ExitBlock(); 2321 } 2322 2323 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2324 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2325 // [n x [id, mdnode]] 2326 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2327 GO.getAllMetadata(MDs); 2328 for (const auto &I : MDs) { 2329 Record.push_back(I.first); 2330 Record.push_back(VE.getMetadataID(I.second)); 2331 } 2332 } 2333 2334 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2335 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2336 2337 SmallVector<uint64_t, 64> Record; 2338 2339 if (F.hasMetadata()) { 2340 pushGlobalMetadataAttachment(Record, F); 2341 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2342 Record.clear(); 2343 } 2344 2345 // Write metadata attachments 2346 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2347 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2348 for (const BasicBlock &BB : F) 2349 for (const Instruction &I : BB) { 2350 MDs.clear(); 2351 I.getAllMetadataOtherThanDebugLoc(MDs); 2352 2353 // If no metadata, ignore instruction. 2354 if (MDs.empty()) continue; 2355 2356 Record.push_back(VE.getInstructionID(&I)); 2357 2358 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2359 Record.push_back(MDs[i].first); 2360 Record.push_back(VE.getMetadataID(MDs[i].second)); 2361 } 2362 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2363 Record.clear(); 2364 } 2365 2366 Stream.ExitBlock(); 2367 } 2368 2369 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2370 SmallVector<uint64_t, 64> Record; 2371 2372 // Write metadata kinds 2373 // METADATA_KIND - [n x [id, name]] 2374 SmallVector<StringRef, 8> Names; 2375 M.getMDKindNames(Names); 2376 2377 if (Names.empty()) return; 2378 2379 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2380 2381 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2382 Record.push_back(MDKindID); 2383 StringRef KName = Names[MDKindID]; 2384 Record.append(KName.begin(), KName.end()); 2385 2386 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2387 Record.clear(); 2388 } 2389 2390 Stream.ExitBlock(); 2391 } 2392 2393 void ModuleBitcodeWriter::writeOperandBundleTags() { 2394 // Write metadata kinds 2395 // 2396 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2397 // 2398 // OPERAND_BUNDLE_TAG - [strchr x N] 2399 2400 SmallVector<StringRef, 8> Tags; 2401 M.getOperandBundleTags(Tags); 2402 2403 if (Tags.empty()) 2404 return; 2405 2406 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2407 2408 SmallVector<uint64_t, 64> Record; 2409 2410 for (auto Tag : Tags) { 2411 Record.append(Tag.begin(), Tag.end()); 2412 2413 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2414 Record.clear(); 2415 } 2416 2417 Stream.ExitBlock(); 2418 } 2419 2420 void ModuleBitcodeWriter::writeSyncScopeNames() { 2421 SmallVector<StringRef, 8> SSNs; 2422 M.getContext().getSyncScopeNames(SSNs); 2423 if (SSNs.empty()) 2424 return; 2425 2426 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2427 2428 SmallVector<uint64_t, 64> Record; 2429 for (auto SSN : SSNs) { 2430 Record.append(SSN.begin(), SSN.end()); 2431 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2432 Record.clear(); 2433 } 2434 2435 Stream.ExitBlock(); 2436 } 2437 2438 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2439 bool isGlobal) { 2440 if (FirstVal == LastVal) return; 2441 2442 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2443 2444 unsigned AggregateAbbrev = 0; 2445 unsigned String8Abbrev = 0; 2446 unsigned CString7Abbrev = 0; 2447 unsigned CString6Abbrev = 0; 2448 // If this is a constant pool for the module, emit module-specific abbrevs. 2449 if (isGlobal) { 2450 // Abbrev for CST_CODE_AGGREGATE. 2451 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2452 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2455 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2456 2457 // Abbrev for CST_CODE_STRING. 2458 Abbv = std::make_shared<BitCodeAbbrev>(); 2459 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2462 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2463 // Abbrev for CST_CODE_CSTRING. 2464 Abbv = std::make_shared<BitCodeAbbrev>(); 2465 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2468 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2469 // Abbrev for CST_CODE_CSTRING. 2470 Abbv = std::make_shared<BitCodeAbbrev>(); 2471 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2474 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2475 } 2476 2477 SmallVector<uint64_t, 64> Record; 2478 2479 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2480 Type *LastTy = nullptr; 2481 for (unsigned i = FirstVal; i != LastVal; ++i) { 2482 const Value *V = Vals[i].first; 2483 // If we need to switch types, do so now. 2484 if (V->getType() != LastTy) { 2485 LastTy = V->getType(); 2486 Record.push_back(VE.getTypeID(LastTy)); 2487 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2488 CONSTANTS_SETTYPE_ABBREV); 2489 Record.clear(); 2490 } 2491 2492 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2493 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2494 Record.push_back( 2495 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2496 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2497 2498 // Add the asm string. 2499 const std::string &AsmStr = IA->getAsmString(); 2500 Record.push_back(AsmStr.size()); 2501 Record.append(AsmStr.begin(), AsmStr.end()); 2502 2503 // Add the constraint string. 2504 const std::string &ConstraintStr = IA->getConstraintString(); 2505 Record.push_back(ConstraintStr.size()); 2506 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2507 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2508 Record.clear(); 2509 continue; 2510 } 2511 const Constant *C = cast<Constant>(V); 2512 unsigned Code = -1U; 2513 unsigned AbbrevToUse = 0; 2514 if (C->isNullValue()) { 2515 Code = bitc::CST_CODE_NULL; 2516 } else if (isa<PoisonValue>(C)) { 2517 Code = bitc::CST_CODE_POISON; 2518 } else if (isa<UndefValue>(C)) { 2519 Code = bitc::CST_CODE_UNDEF; 2520 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2521 if (IV->getBitWidth() <= 64) { 2522 uint64_t V = IV->getSExtValue(); 2523 emitSignedInt64(Record, V); 2524 Code = bitc::CST_CODE_INTEGER; 2525 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2526 } else { // Wide integers, > 64 bits in size. 2527 emitWideAPInt(Record, IV->getValue()); 2528 Code = bitc::CST_CODE_WIDE_INTEGER; 2529 } 2530 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2531 Code = bitc::CST_CODE_FLOAT; 2532 Type *Ty = CFP->getType(); 2533 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2534 Ty->isDoubleTy()) { 2535 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2536 } else if (Ty->isX86_FP80Ty()) { 2537 // api needed to prevent premature destruction 2538 // bits are not in the same order as a normal i80 APInt, compensate. 2539 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2540 const uint64_t *p = api.getRawData(); 2541 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2542 Record.push_back(p[0] & 0xffffLL); 2543 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2544 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2545 const uint64_t *p = api.getRawData(); 2546 Record.push_back(p[0]); 2547 Record.push_back(p[1]); 2548 } else { 2549 assert(0 && "Unknown FP type!"); 2550 } 2551 } else if (isa<ConstantDataSequential>(C) && 2552 cast<ConstantDataSequential>(C)->isString()) { 2553 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2554 // Emit constant strings specially. 2555 unsigned NumElts = Str->getNumElements(); 2556 // If this is a null-terminated string, use the denser CSTRING encoding. 2557 if (Str->isCString()) { 2558 Code = bitc::CST_CODE_CSTRING; 2559 --NumElts; // Don't encode the null, which isn't allowed by char6. 2560 } else { 2561 Code = bitc::CST_CODE_STRING; 2562 AbbrevToUse = String8Abbrev; 2563 } 2564 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2565 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2566 for (unsigned i = 0; i != NumElts; ++i) { 2567 unsigned char V = Str->getElementAsInteger(i); 2568 Record.push_back(V); 2569 isCStr7 &= (V & 128) == 0; 2570 if (isCStrChar6) 2571 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2572 } 2573 2574 if (isCStrChar6) 2575 AbbrevToUse = CString6Abbrev; 2576 else if (isCStr7) 2577 AbbrevToUse = CString7Abbrev; 2578 } else if (const ConstantDataSequential *CDS = 2579 dyn_cast<ConstantDataSequential>(C)) { 2580 Code = bitc::CST_CODE_DATA; 2581 Type *EltTy = CDS->getElementType(); 2582 if (isa<IntegerType>(EltTy)) { 2583 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2584 Record.push_back(CDS->getElementAsInteger(i)); 2585 } else { 2586 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2587 Record.push_back( 2588 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2589 } 2590 } else if (isa<ConstantAggregate>(C)) { 2591 Code = bitc::CST_CODE_AGGREGATE; 2592 for (const Value *Op : C->operands()) 2593 Record.push_back(VE.getValueID(Op)); 2594 AbbrevToUse = AggregateAbbrev; 2595 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2596 switch (CE->getOpcode()) { 2597 default: 2598 if (Instruction::isCast(CE->getOpcode())) { 2599 Code = bitc::CST_CODE_CE_CAST; 2600 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2601 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2602 Record.push_back(VE.getValueID(C->getOperand(0))); 2603 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2604 } else { 2605 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2606 Code = bitc::CST_CODE_CE_BINOP; 2607 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2608 Record.push_back(VE.getValueID(C->getOperand(0))); 2609 Record.push_back(VE.getValueID(C->getOperand(1))); 2610 uint64_t Flags = getOptimizationFlags(CE); 2611 if (Flags != 0) 2612 Record.push_back(Flags); 2613 } 2614 break; 2615 case Instruction::FNeg: { 2616 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2617 Code = bitc::CST_CODE_CE_UNOP; 2618 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2619 Record.push_back(VE.getValueID(C->getOperand(0))); 2620 uint64_t Flags = getOptimizationFlags(CE); 2621 if (Flags != 0) 2622 Record.push_back(Flags); 2623 break; 2624 } 2625 case Instruction::GetElementPtr: { 2626 Code = bitc::CST_CODE_CE_GEP; 2627 const auto *GO = cast<GEPOperator>(C); 2628 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2629 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2630 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2631 Record.push_back((*Idx << 1) | GO->isInBounds()); 2632 } else if (GO->isInBounds()) 2633 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2634 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2635 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2636 Record.push_back(VE.getValueID(C->getOperand(i))); 2637 } 2638 break; 2639 } 2640 case Instruction::Select: 2641 Code = bitc::CST_CODE_CE_SELECT; 2642 Record.push_back(VE.getValueID(C->getOperand(0))); 2643 Record.push_back(VE.getValueID(C->getOperand(1))); 2644 Record.push_back(VE.getValueID(C->getOperand(2))); 2645 break; 2646 case Instruction::ExtractElement: 2647 Code = bitc::CST_CODE_CE_EXTRACTELT; 2648 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2649 Record.push_back(VE.getValueID(C->getOperand(0))); 2650 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2651 Record.push_back(VE.getValueID(C->getOperand(1))); 2652 break; 2653 case Instruction::InsertElement: 2654 Code = bitc::CST_CODE_CE_INSERTELT; 2655 Record.push_back(VE.getValueID(C->getOperand(0))); 2656 Record.push_back(VE.getValueID(C->getOperand(1))); 2657 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2658 Record.push_back(VE.getValueID(C->getOperand(2))); 2659 break; 2660 case Instruction::ShuffleVector: 2661 // If the return type and argument types are the same, this is a 2662 // standard shufflevector instruction. If the types are different, 2663 // then the shuffle is widening or truncating the input vectors, and 2664 // the argument type must also be encoded. 2665 if (C->getType() == C->getOperand(0)->getType()) { 2666 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2667 } else { 2668 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2669 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2670 } 2671 Record.push_back(VE.getValueID(C->getOperand(0))); 2672 Record.push_back(VE.getValueID(C->getOperand(1))); 2673 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2674 break; 2675 case Instruction::ICmp: 2676 case Instruction::FCmp: 2677 Code = bitc::CST_CODE_CE_CMP; 2678 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2679 Record.push_back(VE.getValueID(C->getOperand(0))); 2680 Record.push_back(VE.getValueID(C->getOperand(1))); 2681 Record.push_back(CE->getPredicate()); 2682 break; 2683 } 2684 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2685 Code = bitc::CST_CODE_BLOCKADDRESS; 2686 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2687 Record.push_back(VE.getValueID(BA->getFunction())); 2688 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2689 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2690 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2691 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2692 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2693 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2694 Code = bitc::CST_CODE_NO_CFI_VALUE; 2695 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2696 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2697 } else { 2698 #ifndef NDEBUG 2699 C->dump(); 2700 #endif 2701 llvm_unreachable("Unknown constant!"); 2702 } 2703 Stream.EmitRecord(Code, Record, AbbrevToUse); 2704 Record.clear(); 2705 } 2706 2707 Stream.ExitBlock(); 2708 } 2709 2710 void ModuleBitcodeWriter::writeModuleConstants() { 2711 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2712 2713 // Find the first constant to emit, which is the first non-globalvalue value. 2714 // We know globalvalues have been emitted by WriteModuleInfo. 2715 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2716 if (!isa<GlobalValue>(Vals[i].first)) { 2717 writeConstants(i, Vals.size(), true); 2718 return; 2719 } 2720 } 2721 } 2722 2723 /// pushValueAndType - The file has to encode both the value and type id for 2724 /// many values, because we need to know what type to create for forward 2725 /// references. However, most operands are not forward references, so this type 2726 /// field is not needed. 2727 /// 2728 /// This function adds V's value ID to Vals. If the value ID is higher than the 2729 /// instruction ID, then it is a forward reference, and it also includes the 2730 /// type ID. The value ID that is written is encoded relative to the InstID. 2731 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2732 SmallVectorImpl<unsigned> &Vals) { 2733 unsigned ValID = VE.getValueID(V); 2734 // Make encoding relative to the InstID. 2735 Vals.push_back(InstID - ValID); 2736 if (ValID >= InstID) { 2737 Vals.push_back(VE.getTypeID(V->getType())); 2738 return true; 2739 } 2740 return false; 2741 } 2742 2743 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2744 unsigned InstID) { 2745 SmallVector<unsigned, 64> Record; 2746 LLVMContext &C = CS.getContext(); 2747 2748 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2749 const auto &Bundle = CS.getOperandBundleAt(i); 2750 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2751 2752 for (auto &Input : Bundle.Inputs) 2753 pushValueAndType(Input, InstID, Record); 2754 2755 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2756 Record.clear(); 2757 } 2758 } 2759 2760 /// pushValue - Like pushValueAndType, but where the type of the value is 2761 /// omitted (perhaps it was already encoded in an earlier operand). 2762 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2763 SmallVectorImpl<unsigned> &Vals) { 2764 unsigned ValID = VE.getValueID(V); 2765 Vals.push_back(InstID - ValID); 2766 } 2767 2768 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2769 SmallVectorImpl<uint64_t> &Vals) { 2770 unsigned ValID = VE.getValueID(V); 2771 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2772 emitSignedInt64(Vals, diff); 2773 } 2774 2775 /// WriteInstruction - Emit an instruction to the specified stream. 2776 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2777 unsigned InstID, 2778 SmallVectorImpl<unsigned> &Vals) { 2779 unsigned Code = 0; 2780 unsigned AbbrevToUse = 0; 2781 VE.setInstructionID(&I); 2782 switch (I.getOpcode()) { 2783 default: 2784 if (Instruction::isCast(I.getOpcode())) { 2785 Code = bitc::FUNC_CODE_INST_CAST; 2786 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2787 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2788 Vals.push_back(VE.getTypeID(I.getType())); 2789 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2790 } else { 2791 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2792 Code = bitc::FUNC_CODE_INST_BINOP; 2793 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2794 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2795 pushValue(I.getOperand(1), InstID, Vals); 2796 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2797 uint64_t Flags = getOptimizationFlags(&I); 2798 if (Flags != 0) { 2799 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2800 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2801 Vals.push_back(Flags); 2802 } 2803 } 2804 break; 2805 case Instruction::FNeg: { 2806 Code = bitc::FUNC_CODE_INST_UNOP; 2807 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2808 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2809 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2810 uint64_t Flags = getOptimizationFlags(&I); 2811 if (Flags != 0) { 2812 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2813 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2814 Vals.push_back(Flags); 2815 } 2816 break; 2817 } 2818 case Instruction::GetElementPtr: { 2819 Code = bitc::FUNC_CODE_INST_GEP; 2820 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2821 auto &GEPInst = cast<GetElementPtrInst>(I); 2822 Vals.push_back(GEPInst.isInBounds()); 2823 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2824 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2825 pushValueAndType(I.getOperand(i), InstID, Vals); 2826 break; 2827 } 2828 case Instruction::ExtractValue: { 2829 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2830 pushValueAndType(I.getOperand(0), InstID, Vals); 2831 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2832 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2833 break; 2834 } 2835 case Instruction::InsertValue: { 2836 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2837 pushValueAndType(I.getOperand(0), InstID, Vals); 2838 pushValueAndType(I.getOperand(1), InstID, Vals); 2839 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2840 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2841 break; 2842 } 2843 case Instruction::Select: { 2844 Code = bitc::FUNC_CODE_INST_VSELECT; 2845 pushValueAndType(I.getOperand(1), InstID, Vals); 2846 pushValue(I.getOperand(2), InstID, Vals); 2847 pushValueAndType(I.getOperand(0), InstID, Vals); 2848 uint64_t Flags = getOptimizationFlags(&I); 2849 if (Flags != 0) 2850 Vals.push_back(Flags); 2851 break; 2852 } 2853 case Instruction::ExtractElement: 2854 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2855 pushValueAndType(I.getOperand(0), InstID, Vals); 2856 pushValueAndType(I.getOperand(1), InstID, Vals); 2857 break; 2858 case Instruction::InsertElement: 2859 Code = bitc::FUNC_CODE_INST_INSERTELT; 2860 pushValueAndType(I.getOperand(0), InstID, Vals); 2861 pushValue(I.getOperand(1), InstID, Vals); 2862 pushValueAndType(I.getOperand(2), InstID, Vals); 2863 break; 2864 case Instruction::ShuffleVector: 2865 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2866 pushValueAndType(I.getOperand(0), InstID, Vals); 2867 pushValue(I.getOperand(1), InstID, Vals); 2868 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2869 Vals); 2870 break; 2871 case Instruction::ICmp: 2872 case Instruction::FCmp: { 2873 // compare returning Int1Ty or vector of Int1Ty 2874 Code = bitc::FUNC_CODE_INST_CMP2; 2875 pushValueAndType(I.getOperand(0), InstID, Vals); 2876 pushValue(I.getOperand(1), InstID, Vals); 2877 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2878 uint64_t Flags = getOptimizationFlags(&I); 2879 if (Flags != 0) 2880 Vals.push_back(Flags); 2881 break; 2882 } 2883 2884 case Instruction::Ret: 2885 { 2886 Code = bitc::FUNC_CODE_INST_RET; 2887 unsigned NumOperands = I.getNumOperands(); 2888 if (NumOperands == 0) 2889 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2890 else if (NumOperands == 1) { 2891 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2892 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2893 } else { 2894 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2895 pushValueAndType(I.getOperand(i), InstID, Vals); 2896 } 2897 } 2898 break; 2899 case Instruction::Br: 2900 { 2901 Code = bitc::FUNC_CODE_INST_BR; 2902 const BranchInst &II = cast<BranchInst>(I); 2903 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2904 if (II.isConditional()) { 2905 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2906 pushValue(II.getCondition(), InstID, Vals); 2907 } 2908 } 2909 break; 2910 case Instruction::Switch: 2911 { 2912 Code = bitc::FUNC_CODE_INST_SWITCH; 2913 const SwitchInst &SI = cast<SwitchInst>(I); 2914 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2915 pushValue(SI.getCondition(), InstID, Vals); 2916 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2917 for (auto Case : SI.cases()) { 2918 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2919 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2920 } 2921 } 2922 break; 2923 case Instruction::IndirectBr: 2924 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2925 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2926 // Encode the address operand as relative, but not the basic blocks. 2927 pushValue(I.getOperand(0), InstID, Vals); 2928 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2929 Vals.push_back(VE.getValueID(I.getOperand(i))); 2930 break; 2931 2932 case Instruction::Invoke: { 2933 const InvokeInst *II = cast<InvokeInst>(&I); 2934 const Value *Callee = II->getCalledOperand(); 2935 FunctionType *FTy = II->getFunctionType(); 2936 2937 if (II->hasOperandBundles()) 2938 writeOperandBundles(*II, InstID); 2939 2940 Code = bitc::FUNC_CODE_INST_INVOKE; 2941 2942 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2943 Vals.push_back(II->getCallingConv() | 1 << 13); 2944 Vals.push_back(VE.getValueID(II->getNormalDest())); 2945 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2946 Vals.push_back(VE.getTypeID(FTy)); 2947 pushValueAndType(Callee, InstID, Vals); 2948 2949 // Emit value #'s for the fixed parameters. 2950 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2951 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2952 2953 // Emit type/value pairs for varargs params. 2954 if (FTy->isVarArg()) { 2955 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2956 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2957 } 2958 break; 2959 } 2960 case Instruction::Resume: 2961 Code = bitc::FUNC_CODE_INST_RESUME; 2962 pushValueAndType(I.getOperand(0), InstID, Vals); 2963 break; 2964 case Instruction::CleanupRet: { 2965 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2966 const auto &CRI = cast<CleanupReturnInst>(I); 2967 pushValue(CRI.getCleanupPad(), InstID, Vals); 2968 if (CRI.hasUnwindDest()) 2969 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2970 break; 2971 } 2972 case Instruction::CatchRet: { 2973 Code = bitc::FUNC_CODE_INST_CATCHRET; 2974 const auto &CRI = cast<CatchReturnInst>(I); 2975 pushValue(CRI.getCatchPad(), InstID, Vals); 2976 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2977 break; 2978 } 2979 case Instruction::CleanupPad: 2980 case Instruction::CatchPad: { 2981 const auto &FuncletPad = cast<FuncletPadInst>(I); 2982 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2983 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2984 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2985 2986 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2987 Vals.push_back(NumArgOperands); 2988 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2989 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2990 break; 2991 } 2992 case Instruction::CatchSwitch: { 2993 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2994 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2995 2996 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2997 2998 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2999 Vals.push_back(NumHandlers); 3000 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3001 Vals.push_back(VE.getValueID(CatchPadBB)); 3002 3003 if (CatchSwitch.hasUnwindDest()) 3004 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3005 break; 3006 } 3007 case Instruction::CallBr: { 3008 const CallBrInst *CBI = cast<CallBrInst>(&I); 3009 const Value *Callee = CBI->getCalledOperand(); 3010 FunctionType *FTy = CBI->getFunctionType(); 3011 3012 if (CBI->hasOperandBundles()) 3013 writeOperandBundles(*CBI, InstID); 3014 3015 Code = bitc::FUNC_CODE_INST_CALLBR; 3016 3017 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3018 3019 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3020 1 << bitc::CALL_EXPLICIT_TYPE); 3021 3022 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3023 Vals.push_back(CBI->getNumIndirectDests()); 3024 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3025 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3026 3027 Vals.push_back(VE.getTypeID(FTy)); 3028 pushValueAndType(Callee, InstID, Vals); 3029 3030 // Emit value #'s for the fixed parameters. 3031 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3032 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3033 3034 // Emit type/value pairs for varargs params. 3035 if (FTy->isVarArg()) { 3036 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3037 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3038 } 3039 break; 3040 } 3041 case Instruction::Unreachable: 3042 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3043 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3044 break; 3045 3046 case Instruction::PHI: { 3047 const PHINode &PN = cast<PHINode>(I); 3048 Code = bitc::FUNC_CODE_INST_PHI; 3049 // With the newer instruction encoding, forward references could give 3050 // negative valued IDs. This is most common for PHIs, so we use 3051 // signed VBRs. 3052 SmallVector<uint64_t, 128> Vals64; 3053 Vals64.push_back(VE.getTypeID(PN.getType())); 3054 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3055 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3056 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3057 } 3058 3059 uint64_t Flags = getOptimizationFlags(&I); 3060 if (Flags != 0) 3061 Vals64.push_back(Flags); 3062 3063 // Emit a Vals64 vector and exit. 3064 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3065 Vals64.clear(); 3066 return; 3067 } 3068 3069 case Instruction::LandingPad: { 3070 const LandingPadInst &LP = cast<LandingPadInst>(I); 3071 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3072 Vals.push_back(VE.getTypeID(LP.getType())); 3073 Vals.push_back(LP.isCleanup()); 3074 Vals.push_back(LP.getNumClauses()); 3075 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3076 if (LP.isCatch(I)) 3077 Vals.push_back(LandingPadInst::Catch); 3078 else 3079 Vals.push_back(LandingPadInst::Filter); 3080 pushValueAndType(LP.getClause(I), InstID, Vals); 3081 } 3082 break; 3083 } 3084 3085 case Instruction::Alloca: { 3086 Code = bitc::FUNC_CODE_INST_ALLOCA; 3087 const AllocaInst &AI = cast<AllocaInst>(I); 3088 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3089 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3090 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3091 using APV = AllocaPackedValues; 3092 unsigned Record = 0; 3093 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3094 Bitfield::set<APV::AlignLower>( 3095 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3096 Bitfield::set<APV::AlignUpper>(Record, 3097 EncodedAlign >> APV::AlignLower::Bits); 3098 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3099 Bitfield::set<APV::ExplicitType>(Record, true); 3100 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3101 Vals.push_back(Record); 3102 3103 unsigned AS = AI.getAddressSpace(); 3104 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3105 Vals.push_back(AS); 3106 break; 3107 } 3108 3109 case Instruction::Load: 3110 if (cast<LoadInst>(I).isAtomic()) { 3111 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3112 pushValueAndType(I.getOperand(0), InstID, Vals); 3113 } else { 3114 Code = bitc::FUNC_CODE_INST_LOAD; 3115 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3116 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3117 } 3118 Vals.push_back(VE.getTypeID(I.getType())); 3119 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3120 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3121 if (cast<LoadInst>(I).isAtomic()) { 3122 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3123 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3124 } 3125 break; 3126 case Instruction::Store: 3127 if (cast<StoreInst>(I).isAtomic()) 3128 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3129 else 3130 Code = bitc::FUNC_CODE_INST_STORE; 3131 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3132 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3133 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3134 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3135 if (cast<StoreInst>(I).isAtomic()) { 3136 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3137 Vals.push_back( 3138 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3139 } 3140 break; 3141 case Instruction::AtomicCmpXchg: 3142 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3143 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3144 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3145 pushValue(I.getOperand(2), InstID, Vals); // newval. 3146 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3147 Vals.push_back( 3148 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3149 Vals.push_back( 3150 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3151 Vals.push_back( 3152 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3153 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3154 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3155 break; 3156 case Instruction::AtomicRMW: 3157 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3158 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3159 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3160 Vals.push_back( 3161 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3162 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3163 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3164 Vals.push_back( 3165 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3166 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3167 break; 3168 case Instruction::Fence: 3169 Code = bitc::FUNC_CODE_INST_FENCE; 3170 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3171 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3172 break; 3173 case Instruction::Call: { 3174 const CallInst &CI = cast<CallInst>(I); 3175 FunctionType *FTy = CI.getFunctionType(); 3176 3177 if (CI.hasOperandBundles()) 3178 writeOperandBundles(CI, InstID); 3179 3180 Code = bitc::FUNC_CODE_INST_CALL; 3181 3182 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3183 3184 unsigned Flags = getOptimizationFlags(&I); 3185 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3186 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3187 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3188 1 << bitc::CALL_EXPLICIT_TYPE | 3189 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3190 unsigned(Flags != 0) << bitc::CALL_FMF); 3191 if (Flags != 0) 3192 Vals.push_back(Flags); 3193 3194 Vals.push_back(VE.getTypeID(FTy)); 3195 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3196 3197 // Emit value #'s for the fixed parameters. 3198 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3199 // Check for labels (can happen with asm labels). 3200 if (FTy->getParamType(i)->isLabelTy()) 3201 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3202 else 3203 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3204 } 3205 3206 // Emit type/value pairs for varargs params. 3207 if (FTy->isVarArg()) { 3208 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3209 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3210 } 3211 break; 3212 } 3213 case Instruction::VAArg: 3214 Code = bitc::FUNC_CODE_INST_VAARG; 3215 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3216 pushValue(I.getOperand(0), InstID, Vals); // valist. 3217 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3218 break; 3219 case Instruction::Freeze: 3220 Code = bitc::FUNC_CODE_INST_FREEZE; 3221 pushValueAndType(I.getOperand(0), InstID, Vals); 3222 break; 3223 } 3224 3225 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3226 Vals.clear(); 3227 } 3228 3229 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3230 /// to allow clients to efficiently find the function body. 3231 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3232 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3233 // Get the offset of the VST we are writing, and backpatch it into 3234 // the VST forward declaration record. 3235 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3236 // The BitcodeStartBit was the stream offset of the identification block. 3237 VSTOffset -= bitcodeStartBit(); 3238 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3239 // Note that we add 1 here because the offset is relative to one word 3240 // before the start of the identification block, which was historically 3241 // always the start of the regular bitcode header. 3242 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3243 3244 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3245 3246 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3247 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3250 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3251 3252 for (const Function &F : M) { 3253 uint64_t Record[2]; 3254 3255 if (F.isDeclaration()) 3256 continue; 3257 3258 Record[0] = VE.getValueID(&F); 3259 3260 // Save the word offset of the function (from the start of the 3261 // actual bitcode written to the stream). 3262 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3263 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3264 // Note that we add 1 here because the offset is relative to one word 3265 // before the start of the identification block, which was historically 3266 // always the start of the regular bitcode header. 3267 Record[1] = BitcodeIndex / 32 + 1; 3268 3269 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3270 } 3271 3272 Stream.ExitBlock(); 3273 } 3274 3275 /// Emit names for arguments, instructions and basic blocks in a function. 3276 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3277 const ValueSymbolTable &VST) { 3278 if (VST.empty()) 3279 return; 3280 3281 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3282 3283 // FIXME: Set up the abbrev, we know how many values there are! 3284 // FIXME: We know if the type names can use 7-bit ascii. 3285 SmallVector<uint64_t, 64> NameVals; 3286 3287 for (const ValueName &Name : VST) { 3288 // Figure out the encoding to use for the name. 3289 StringEncoding Bits = getStringEncoding(Name.getKey()); 3290 3291 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3292 NameVals.push_back(VE.getValueID(Name.getValue())); 3293 3294 // VST_CODE_ENTRY: [valueid, namechar x N] 3295 // VST_CODE_BBENTRY: [bbid, namechar x N] 3296 unsigned Code; 3297 if (isa<BasicBlock>(Name.getValue())) { 3298 Code = bitc::VST_CODE_BBENTRY; 3299 if (Bits == SE_Char6) 3300 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3301 } else { 3302 Code = bitc::VST_CODE_ENTRY; 3303 if (Bits == SE_Char6) 3304 AbbrevToUse = VST_ENTRY_6_ABBREV; 3305 else if (Bits == SE_Fixed7) 3306 AbbrevToUse = VST_ENTRY_7_ABBREV; 3307 } 3308 3309 for (const auto P : Name.getKey()) 3310 NameVals.push_back((unsigned char)P); 3311 3312 // Emit the finished record. 3313 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3314 NameVals.clear(); 3315 } 3316 3317 Stream.ExitBlock(); 3318 } 3319 3320 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3321 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3322 unsigned Code; 3323 if (isa<BasicBlock>(Order.V)) 3324 Code = bitc::USELIST_CODE_BB; 3325 else 3326 Code = bitc::USELIST_CODE_DEFAULT; 3327 3328 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3329 Record.push_back(VE.getValueID(Order.V)); 3330 Stream.EmitRecord(Code, Record); 3331 } 3332 3333 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3334 assert(VE.shouldPreserveUseListOrder() && 3335 "Expected to be preserving use-list order"); 3336 3337 auto hasMore = [&]() { 3338 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3339 }; 3340 if (!hasMore()) 3341 // Nothing to do. 3342 return; 3343 3344 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3345 while (hasMore()) { 3346 writeUseList(std::move(VE.UseListOrders.back())); 3347 VE.UseListOrders.pop_back(); 3348 } 3349 Stream.ExitBlock(); 3350 } 3351 3352 /// Emit a function body to the module stream. 3353 void ModuleBitcodeWriter::writeFunction( 3354 const Function &F, 3355 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3356 // Save the bitcode index of the start of this function block for recording 3357 // in the VST. 3358 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3359 3360 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3361 VE.incorporateFunction(F); 3362 3363 SmallVector<unsigned, 64> Vals; 3364 3365 // Emit the number of basic blocks, so the reader can create them ahead of 3366 // time. 3367 Vals.push_back(VE.getBasicBlocks().size()); 3368 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3369 Vals.clear(); 3370 3371 // If there are function-local constants, emit them now. 3372 unsigned CstStart, CstEnd; 3373 VE.getFunctionConstantRange(CstStart, CstEnd); 3374 writeConstants(CstStart, CstEnd, false); 3375 3376 // If there is function-local metadata, emit it now. 3377 writeFunctionMetadata(F); 3378 3379 // Keep a running idea of what the instruction ID is. 3380 unsigned InstID = CstEnd; 3381 3382 bool NeedsMetadataAttachment = F.hasMetadata(); 3383 3384 DILocation *LastDL = nullptr; 3385 SmallSetVector<Function *, 4> BlockAddressUsers; 3386 3387 // Finally, emit all the instructions, in order. 3388 for (const BasicBlock &BB : F) { 3389 for (const Instruction &I : BB) { 3390 writeInstruction(I, InstID, Vals); 3391 3392 if (!I.getType()->isVoidTy()) 3393 ++InstID; 3394 3395 // If the instruction has metadata, write a metadata attachment later. 3396 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3397 3398 // If the instruction has a debug location, emit it. 3399 DILocation *DL = I.getDebugLoc(); 3400 if (!DL) 3401 continue; 3402 3403 if (DL == LastDL) { 3404 // Just repeat the same debug loc as last time. 3405 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3406 continue; 3407 } 3408 3409 Vals.push_back(DL->getLine()); 3410 Vals.push_back(DL->getColumn()); 3411 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3412 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3413 Vals.push_back(DL->isImplicitCode()); 3414 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3415 Vals.clear(); 3416 3417 LastDL = DL; 3418 } 3419 3420 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3421 SmallVector<Value *> Worklist{BA}; 3422 SmallPtrSet<Value *, 8> Visited{BA}; 3423 while (!Worklist.empty()) { 3424 Value *V = Worklist.pop_back_val(); 3425 for (User *U : V->users()) { 3426 if (auto *I = dyn_cast<Instruction>(U)) { 3427 Function *P = I->getFunction(); 3428 if (P != &F) 3429 BlockAddressUsers.insert(P); 3430 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3431 Visited.insert(U).second) 3432 Worklist.push_back(U); 3433 } 3434 } 3435 } 3436 } 3437 3438 if (!BlockAddressUsers.empty()) { 3439 Vals.resize(BlockAddressUsers.size()); 3440 for (auto I : llvm::enumerate(BlockAddressUsers)) 3441 Vals[I.index()] = VE.getValueID(I.value()); 3442 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3443 Vals.clear(); 3444 } 3445 3446 // Emit names for all the instructions etc. 3447 if (auto *Symtab = F.getValueSymbolTable()) 3448 writeFunctionLevelValueSymbolTable(*Symtab); 3449 3450 if (NeedsMetadataAttachment) 3451 writeFunctionMetadataAttachment(F); 3452 if (VE.shouldPreserveUseListOrder()) 3453 writeUseListBlock(&F); 3454 VE.purgeFunction(); 3455 Stream.ExitBlock(); 3456 } 3457 3458 // Emit blockinfo, which defines the standard abbreviations etc. 3459 void ModuleBitcodeWriter::writeBlockInfo() { 3460 // We only want to emit block info records for blocks that have multiple 3461 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3462 // Other blocks can define their abbrevs inline. 3463 Stream.EnterBlockInfoBlock(); 3464 3465 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3466 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3471 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3472 VST_ENTRY_8_ABBREV) 3473 llvm_unreachable("Unexpected abbrev ordering!"); 3474 } 3475 3476 { // 7-bit fixed width VST_CODE_ENTRY strings. 3477 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3478 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3482 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3483 VST_ENTRY_7_ABBREV) 3484 llvm_unreachable("Unexpected abbrev ordering!"); 3485 } 3486 { // 6-bit char6 VST_CODE_ENTRY strings. 3487 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3488 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3492 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3493 VST_ENTRY_6_ABBREV) 3494 llvm_unreachable("Unexpected abbrev ordering!"); 3495 } 3496 { // 6-bit char6 VST_CODE_BBENTRY strings. 3497 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3498 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3502 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3503 VST_BBENTRY_6_ABBREV) 3504 llvm_unreachable("Unexpected abbrev ordering!"); 3505 } 3506 3507 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3508 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3509 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3511 VE.computeBitsRequiredForTypeIndicies())); 3512 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3513 CONSTANTS_SETTYPE_ABBREV) 3514 llvm_unreachable("Unexpected abbrev ordering!"); 3515 } 3516 3517 { // INTEGER abbrev for CONSTANTS_BLOCK. 3518 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3519 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3521 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3522 CONSTANTS_INTEGER_ABBREV) 3523 llvm_unreachable("Unexpected abbrev ordering!"); 3524 } 3525 3526 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3527 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3528 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3531 VE.computeBitsRequiredForTypeIndicies())); 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3533 3534 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3535 CONSTANTS_CE_CAST_Abbrev) 3536 llvm_unreachable("Unexpected abbrev ordering!"); 3537 } 3538 { // NULL abbrev for CONSTANTS_BLOCK. 3539 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3540 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3541 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3542 CONSTANTS_NULL_Abbrev) 3543 llvm_unreachable("Unexpected abbrev ordering!"); 3544 } 3545 3546 // FIXME: This should only use space for first class types! 3547 3548 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3549 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3550 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3553 VE.computeBitsRequiredForTypeIndicies())); 3554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3556 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3557 FUNCTION_INST_LOAD_ABBREV) 3558 llvm_unreachable("Unexpected abbrev ordering!"); 3559 } 3560 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3561 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3562 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3565 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3566 FUNCTION_INST_UNOP_ABBREV) 3567 llvm_unreachable("Unexpected abbrev ordering!"); 3568 } 3569 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3570 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3571 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3575 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3576 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3577 llvm_unreachable("Unexpected abbrev ordering!"); 3578 } 3579 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3580 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3581 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3585 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3586 FUNCTION_INST_BINOP_ABBREV) 3587 llvm_unreachable("Unexpected abbrev ordering!"); 3588 } 3589 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3590 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3591 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3596 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3597 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3598 llvm_unreachable("Unexpected abbrev ordering!"); 3599 } 3600 { // INST_CAST abbrev for FUNCTION_BLOCK. 3601 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3602 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3605 VE.computeBitsRequiredForTypeIndicies())); 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3607 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3608 FUNCTION_INST_CAST_ABBREV) 3609 llvm_unreachable("Unexpected abbrev ordering!"); 3610 } 3611 3612 { // INST_RET abbrev for FUNCTION_BLOCK. 3613 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3614 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3615 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3616 FUNCTION_INST_RET_VOID_ABBREV) 3617 llvm_unreachable("Unexpected abbrev ordering!"); 3618 } 3619 { // INST_RET abbrev for FUNCTION_BLOCK. 3620 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3621 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3623 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3624 FUNCTION_INST_RET_VAL_ABBREV) 3625 llvm_unreachable("Unexpected abbrev ordering!"); 3626 } 3627 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3628 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3629 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3630 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3631 FUNCTION_INST_UNREACHABLE_ABBREV) 3632 llvm_unreachable("Unexpected abbrev ordering!"); 3633 } 3634 { 3635 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3636 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3639 Log2_32_Ceil(VE.getTypes().size() + 1))); 3640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3642 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3643 FUNCTION_INST_GEP_ABBREV) 3644 llvm_unreachable("Unexpected abbrev ordering!"); 3645 } 3646 3647 Stream.ExitBlock(); 3648 } 3649 3650 /// Write the module path strings, currently only used when generating 3651 /// a combined index file. 3652 void IndexBitcodeWriter::writeModStrings() { 3653 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3654 3655 // TODO: See which abbrev sizes we actually need to emit 3656 3657 // 8-bit fixed-width MST_ENTRY strings. 3658 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3659 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3663 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3664 3665 // 7-bit fixed width MST_ENTRY strings. 3666 Abbv = std::make_shared<BitCodeAbbrev>(); 3667 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3671 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3672 3673 // 6-bit char6 MST_ENTRY strings. 3674 Abbv = std::make_shared<BitCodeAbbrev>(); 3675 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3679 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3680 3681 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3682 Abbv = std::make_shared<BitCodeAbbrev>(); 3683 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3689 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3690 3691 SmallVector<unsigned, 64> Vals; 3692 forEachModule( 3693 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3694 StringRef Key = MPSE.getKey(); 3695 const auto &Value = MPSE.getValue(); 3696 StringEncoding Bits = getStringEncoding(Key); 3697 unsigned AbbrevToUse = Abbrev8Bit; 3698 if (Bits == SE_Char6) 3699 AbbrevToUse = Abbrev6Bit; 3700 else if (Bits == SE_Fixed7) 3701 AbbrevToUse = Abbrev7Bit; 3702 3703 Vals.push_back(Value.first); 3704 Vals.append(Key.begin(), Key.end()); 3705 3706 // Emit the finished record. 3707 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3708 3709 // Emit an optional hash for the module now 3710 const auto &Hash = Value.second; 3711 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3712 Vals.assign(Hash.begin(), Hash.end()); 3713 // Emit the hash record. 3714 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3715 } 3716 3717 Vals.clear(); 3718 }); 3719 Stream.ExitBlock(); 3720 } 3721 3722 /// Write the function type metadata related records that need to appear before 3723 /// a function summary entry (whether per-module or combined). 3724 template <typename Fn> 3725 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3726 FunctionSummary *FS, 3727 Fn GetValueID) { 3728 if (!FS->type_tests().empty()) 3729 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3730 3731 SmallVector<uint64_t, 64> Record; 3732 3733 auto WriteVFuncIdVec = [&](uint64_t Ty, 3734 ArrayRef<FunctionSummary::VFuncId> VFs) { 3735 if (VFs.empty()) 3736 return; 3737 Record.clear(); 3738 for (auto &VF : VFs) { 3739 Record.push_back(VF.GUID); 3740 Record.push_back(VF.Offset); 3741 } 3742 Stream.EmitRecord(Ty, Record); 3743 }; 3744 3745 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3746 FS->type_test_assume_vcalls()); 3747 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3748 FS->type_checked_load_vcalls()); 3749 3750 auto WriteConstVCallVec = [&](uint64_t Ty, 3751 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3752 for (auto &VC : VCs) { 3753 Record.clear(); 3754 Record.push_back(VC.VFunc.GUID); 3755 Record.push_back(VC.VFunc.Offset); 3756 llvm::append_range(Record, VC.Args); 3757 Stream.EmitRecord(Ty, Record); 3758 } 3759 }; 3760 3761 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3762 FS->type_test_assume_const_vcalls()); 3763 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3764 FS->type_checked_load_const_vcalls()); 3765 3766 auto WriteRange = [&](ConstantRange Range) { 3767 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3768 assert(Range.getLower().getNumWords() == 1); 3769 assert(Range.getUpper().getNumWords() == 1); 3770 emitSignedInt64(Record, *Range.getLower().getRawData()); 3771 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3772 }; 3773 3774 if (!FS->paramAccesses().empty()) { 3775 Record.clear(); 3776 for (auto &Arg : FS->paramAccesses()) { 3777 size_t UndoSize = Record.size(); 3778 Record.push_back(Arg.ParamNo); 3779 WriteRange(Arg.Use); 3780 Record.push_back(Arg.Calls.size()); 3781 for (auto &Call : Arg.Calls) { 3782 Record.push_back(Call.ParamNo); 3783 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3784 if (!ValueID) { 3785 // If ValueID is unknown we can't drop just this call, we must drop 3786 // entire parameter. 3787 Record.resize(UndoSize); 3788 break; 3789 } 3790 Record.push_back(*ValueID); 3791 WriteRange(Call.Offsets); 3792 } 3793 } 3794 if (!Record.empty()) 3795 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3796 } 3797 } 3798 3799 /// Collect type IDs from type tests used by function. 3800 static void 3801 getReferencedTypeIds(FunctionSummary *FS, 3802 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3803 if (!FS->type_tests().empty()) 3804 for (auto &TT : FS->type_tests()) 3805 ReferencedTypeIds.insert(TT); 3806 3807 auto GetReferencedTypesFromVFuncIdVec = 3808 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3809 for (auto &VF : VFs) 3810 ReferencedTypeIds.insert(VF.GUID); 3811 }; 3812 3813 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3814 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3815 3816 auto GetReferencedTypesFromConstVCallVec = 3817 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3818 for (auto &VC : VCs) 3819 ReferencedTypeIds.insert(VC.VFunc.GUID); 3820 }; 3821 3822 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3823 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3824 } 3825 3826 static void writeWholeProgramDevirtResolutionByArg( 3827 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3828 const WholeProgramDevirtResolution::ByArg &ByArg) { 3829 NameVals.push_back(args.size()); 3830 llvm::append_range(NameVals, args); 3831 3832 NameVals.push_back(ByArg.TheKind); 3833 NameVals.push_back(ByArg.Info); 3834 NameVals.push_back(ByArg.Byte); 3835 NameVals.push_back(ByArg.Bit); 3836 } 3837 3838 static void writeWholeProgramDevirtResolution( 3839 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3840 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3841 NameVals.push_back(Id); 3842 3843 NameVals.push_back(Wpd.TheKind); 3844 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3845 NameVals.push_back(Wpd.SingleImplName.size()); 3846 3847 NameVals.push_back(Wpd.ResByArg.size()); 3848 for (auto &A : Wpd.ResByArg) 3849 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3850 } 3851 3852 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3853 StringTableBuilder &StrtabBuilder, 3854 const std::string &Id, 3855 const TypeIdSummary &Summary) { 3856 NameVals.push_back(StrtabBuilder.add(Id)); 3857 NameVals.push_back(Id.size()); 3858 3859 NameVals.push_back(Summary.TTRes.TheKind); 3860 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3861 NameVals.push_back(Summary.TTRes.AlignLog2); 3862 NameVals.push_back(Summary.TTRes.SizeM1); 3863 NameVals.push_back(Summary.TTRes.BitMask); 3864 NameVals.push_back(Summary.TTRes.InlineBits); 3865 3866 for (auto &W : Summary.WPDRes) 3867 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3868 W.second); 3869 } 3870 3871 static void writeTypeIdCompatibleVtableSummaryRecord( 3872 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3873 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3874 ValueEnumerator &VE) { 3875 NameVals.push_back(StrtabBuilder.add(Id)); 3876 NameVals.push_back(Id.size()); 3877 3878 for (auto &P : Summary) { 3879 NameVals.push_back(P.AddressPointOffset); 3880 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3881 } 3882 } 3883 3884 // Helper to emit a single function summary record. 3885 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3886 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3887 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3888 const Function &F) { 3889 NameVals.push_back(ValueID); 3890 3891 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3892 3893 writeFunctionTypeMetadataRecords( 3894 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3895 return {VE.getValueID(VI.getValue())}; 3896 }); 3897 3898 auto SpecialRefCnts = FS->specialRefCounts(); 3899 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3900 NameVals.push_back(FS->instCount()); 3901 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3902 NameVals.push_back(FS->refs().size()); 3903 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3904 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3905 3906 for (auto &RI : FS->refs()) 3907 NameVals.push_back(VE.getValueID(RI.getValue())); 3908 3909 bool HasProfileData = 3910 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3911 for (auto &ECI : FS->calls()) { 3912 NameVals.push_back(getValueId(ECI.first)); 3913 if (HasProfileData) 3914 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3915 else if (WriteRelBFToSummary) 3916 NameVals.push_back(ECI.second.RelBlockFreq); 3917 } 3918 3919 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3920 unsigned Code = 3921 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3922 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3923 : bitc::FS_PERMODULE)); 3924 3925 // Emit the finished record. 3926 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3927 NameVals.clear(); 3928 } 3929 3930 // Collect the global value references in the given variable's initializer, 3931 // and emit them in a summary record. 3932 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3933 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3934 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3935 auto VI = Index->getValueInfo(V.getGUID()); 3936 if (!VI || VI.getSummaryList().empty()) { 3937 // Only declarations should not have a summary (a declaration might however 3938 // have a summary if the def was in module level asm). 3939 assert(V.isDeclaration()); 3940 return; 3941 } 3942 auto *Summary = VI.getSummaryList()[0].get(); 3943 NameVals.push_back(VE.getValueID(&V)); 3944 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3945 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3946 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3947 3948 auto VTableFuncs = VS->vTableFuncs(); 3949 if (!VTableFuncs.empty()) 3950 NameVals.push_back(VS->refs().size()); 3951 3952 unsigned SizeBeforeRefs = NameVals.size(); 3953 for (auto &RI : VS->refs()) 3954 NameVals.push_back(VE.getValueID(RI.getValue())); 3955 // Sort the refs for determinism output, the vector returned by FS->refs() has 3956 // been initialized from a DenseSet. 3957 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3958 3959 if (VTableFuncs.empty()) 3960 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3961 FSModRefsAbbrev); 3962 else { 3963 // VTableFuncs pairs should already be sorted by offset. 3964 for (auto &P : VTableFuncs) { 3965 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3966 NameVals.push_back(P.VTableOffset); 3967 } 3968 3969 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3970 FSModVTableRefsAbbrev); 3971 } 3972 NameVals.clear(); 3973 } 3974 3975 /// Emit the per-module summary section alongside the rest of 3976 /// the module's bitcode. 3977 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3978 // By default we compile with ThinLTO if the module has a summary, but the 3979 // client can request full LTO with a module flag. 3980 bool IsThinLTO = true; 3981 if (auto *MD = 3982 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3983 IsThinLTO = MD->getZExtValue(); 3984 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3985 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3986 4); 3987 3988 Stream.EmitRecord( 3989 bitc::FS_VERSION, 3990 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3991 3992 // Write the index flags. 3993 uint64_t Flags = 0; 3994 // Bits 1-3 are set only in the combined index, skip them. 3995 if (Index->enableSplitLTOUnit()) 3996 Flags |= 0x8; 3997 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3998 3999 if (Index->begin() == Index->end()) { 4000 Stream.ExitBlock(); 4001 return; 4002 } 4003 4004 for (const auto &GVI : valueIds()) { 4005 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4006 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4007 } 4008 4009 // Abbrev for FS_PERMODULE_PROFILE. 4010 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4011 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4019 // numrefs x valueid, n x (valueid, hotness) 4020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4022 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4023 4024 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4025 Abbv = std::make_shared<BitCodeAbbrev>(); 4026 if (WriteRelBFToSummary) 4027 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4028 else 4029 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4037 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4040 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4041 4042 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4043 Abbv = std::make_shared<BitCodeAbbrev>(); 4044 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4049 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4050 4051 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4052 Abbv = std::make_shared<BitCodeAbbrev>(); 4053 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4057 // numrefs x valueid, n x (valueid , offset) 4058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4060 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4061 4062 // Abbrev for FS_ALIAS. 4063 Abbv = std::make_shared<BitCodeAbbrev>(); 4064 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4068 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4069 4070 // Abbrev for FS_TYPE_ID_METADATA 4071 Abbv = std::make_shared<BitCodeAbbrev>(); 4072 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4075 // n x (valueid , offset) 4076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4078 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4079 4080 SmallVector<uint64_t, 64> NameVals; 4081 // Iterate over the list of functions instead of the Index to 4082 // ensure the ordering is stable. 4083 for (const Function &F : M) { 4084 // Summary emission does not support anonymous functions, they have to 4085 // renamed using the anonymous function renaming pass. 4086 if (!F.hasName()) 4087 report_fatal_error("Unexpected anonymous function when writing summary"); 4088 4089 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4090 if (!VI || VI.getSummaryList().empty()) { 4091 // Only declarations should not have a summary (a declaration might 4092 // however have a summary if the def was in module level asm). 4093 assert(F.isDeclaration()); 4094 continue; 4095 } 4096 auto *Summary = VI.getSummaryList()[0].get(); 4097 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4098 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4099 } 4100 4101 // Capture references from GlobalVariable initializers, which are outside 4102 // of a function scope. 4103 for (const GlobalVariable &G : M.globals()) 4104 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4105 FSModVTableRefsAbbrev); 4106 4107 for (const GlobalAlias &A : M.aliases()) { 4108 auto *Aliasee = A.getAliaseeObject(); 4109 // Skip ifunc and nameless functions which don't have an entry in the 4110 // summary. 4111 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4112 continue; 4113 auto AliasId = VE.getValueID(&A); 4114 auto AliaseeId = VE.getValueID(Aliasee); 4115 NameVals.push_back(AliasId); 4116 auto *Summary = Index->getGlobalValueSummary(A); 4117 AliasSummary *AS = cast<AliasSummary>(Summary); 4118 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4119 NameVals.push_back(AliaseeId); 4120 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4121 NameVals.clear(); 4122 } 4123 4124 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4125 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4126 S.second, VE); 4127 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4128 TypeIdCompatibleVtableAbbrev); 4129 NameVals.clear(); 4130 } 4131 4132 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4133 ArrayRef<uint64_t>{Index->getBlockCount()}); 4134 4135 Stream.ExitBlock(); 4136 } 4137 4138 /// Emit the combined summary section into the combined index file. 4139 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4140 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4141 Stream.EmitRecord( 4142 bitc::FS_VERSION, 4143 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4144 4145 // Write the index flags. 4146 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4147 4148 for (const auto &GVI : valueIds()) { 4149 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4150 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4151 } 4152 4153 // Abbrev for FS_COMBINED. 4154 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4155 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4165 // numrefs x valueid, n x (valueid) 4166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4168 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4169 4170 // Abbrev for FS_COMBINED_PROFILE. 4171 Abbv = std::make_shared<BitCodeAbbrev>(); 4172 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4182 // numrefs x valueid, n x (valueid, hotness) 4183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4185 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4186 4187 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4188 Abbv = std::make_shared<BitCodeAbbrev>(); 4189 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4195 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4196 4197 // Abbrev for FS_COMBINED_ALIAS. 4198 Abbv = std::make_shared<BitCodeAbbrev>(); 4199 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4204 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4205 4206 // The aliases are emitted as a post-pass, and will point to the value 4207 // id of the aliasee. Save them in a vector for post-processing. 4208 SmallVector<AliasSummary *, 64> Aliases; 4209 4210 // Save the value id for each summary for alias emission. 4211 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4212 4213 SmallVector<uint64_t, 64> NameVals; 4214 4215 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4216 // with the type ids referenced by this index file. 4217 std::set<GlobalValue::GUID> ReferencedTypeIds; 4218 4219 // For local linkage, we also emit the original name separately 4220 // immediately after the record. 4221 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4222 // We don't need to emit the original name if we are writing the index for 4223 // distributed backends (in which case ModuleToSummariesForIndex is 4224 // non-null). The original name is only needed during the thin link, since 4225 // for SamplePGO the indirect call targets for local functions have 4226 // have the original name annotated in profile. 4227 // Continue to emit it when writing out the entire combined index, which is 4228 // used in testing the thin link via llvm-lto. 4229 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4230 return; 4231 NameVals.push_back(S.getOriginalName()); 4232 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4233 NameVals.clear(); 4234 }; 4235 4236 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4237 forEachSummary([&](GVInfo I, bool IsAliasee) { 4238 GlobalValueSummary *S = I.second; 4239 assert(S); 4240 DefOrUseGUIDs.insert(I.first); 4241 for (const ValueInfo &VI : S->refs()) 4242 DefOrUseGUIDs.insert(VI.getGUID()); 4243 4244 auto ValueId = getValueId(I.first); 4245 assert(ValueId); 4246 SummaryToValueIdMap[S] = *ValueId; 4247 4248 // If this is invoked for an aliasee, we want to record the above 4249 // mapping, but then not emit a summary entry (if the aliasee is 4250 // to be imported, we will invoke this separately with IsAliasee=false). 4251 if (IsAliasee) 4252 return; 4253 4254 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4255 // Will process aliases as a post-pass because the reader wants all 4256 // global to be loaded first. 4257 Aliases.push_back(AS); 4258 return; 4259 } 4260 4261 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4262 NameVals.push_back(*ValueId); 4263 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4264 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4265 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4266 for (auto &RI : VS->refs()) { 4267 auto RefValueId = getValueId(RI.getGUID()); 4268 if (!RefValueId) 4269 continue; 4270 NameVals.push_back(*RefValueId); 4271 } 4272 4273 // Emit the finished record. 4274 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4275 FSModRefsAbbrev); 4276 NameVals.clear(); 4277 MaybeEmitOriginalName(*S); 4278 return; 4279 } 4280 4281 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4282 return getValueId(VI.getGUID()); 4283 }; 4284 4285 auto *FS = cast<FunctionSummary>(S); 4286 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4287 getReferencedTypeIds(FS, ReferencedTypeIds); 4288 4289 NameVals.push_back(*ValueId); 4290 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4291 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4292 NameVals.push_back(FS->instCount()); 4293 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4294 NameVals.push_back(FS->entryCount()); 4295 4296 // Fill in below 4297 NameVals.push_back(0); // numrefs 4298 NameVals.push_back(0); // rorefcnt 4299 NameVals.push_back(0); // worefcnt 4300 4301 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4302 for (auto &RI : FS->refs()) { 4303 auto RefValueId = getValueId(RI.getGUID()); 4304 if (!RefValueId) 4305 continue; 4306 NameVals.push_back(*RefValueId); 4307 if (RI.isReadOnly()) 4308 RORefCnt++; 4309 else if (RI.isWriteOnly()) 4310 WORefCnt++; 4311 Count++; 4312 } 4313 NameVals[6] = Count; 4314 NameVals[7] = RORefCnt; 4315 NameVals[8] = WORefCnt; 4316 4317 bool HasProfileData = false; 4318 for (auto &EI : FS->calls()) { 4319 HasProfileData |= 4320 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4321 if (HasProfileData) 4322 break; 4323 } 4324 4325 for (auto &EI : FS->calls()) { 4326 // If this GUID doesn't have a value id, it doesn't have a function 4327 // summary and we don't need to record any calls to it. 4328 Optional<unsigned> CallValueId = GetValueId(EI.first); 4329 if (!CallValueId) 4330 continue; 4331 NameVals.push_back(*CallValueId); 4332 if (HasProfileData) 4333 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4334 } 4335 4336 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4337 unsigned Code = 4338 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4339 4340 // Emit the finished record. 4341 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4342 NameVals.clear(); 4343 MaybeEmitOriginalName(*S); 4344 }); 4345 4346 for (auto *AS : Aliases) { 4347 auto AliasValueId = SummaryToValueIdMap[AS]; 4348 assert(AliasValueId); 4349 NameVals.push_back(AliasValueId); 4350 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4351 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4352 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4353 assert(AliaseeValueId); 4354 NameVals.push_back(AliaseeValueId); 4355 4356 // Emit the finished record. 4357 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4358 NameVals.clear(); 4359 MaybeEmitOriginalName(*AS); 4360 4361 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4362 getReferencedTypeIds(FS, ReferencedTypeIds); 4363 } 4364 4365 if (!Index.cfiFunctionDefs().empty()) { 4366 for (auto &S : Index.cfiFunctionDefs()) { 4367 if (DefOrUseGUIDs.count( 4368 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4369 NameVals.push_back(StrtabBuilder.add(S)); 4370 NameVals.push_back(S.size()); 4371 } 4372 } 4373 if (!NameVals.empty()) { 4374 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4375 NameVals.clear(); 4376 } 4377 } 4378 4379 if (!Index.cfiFunctionDecls().empty()) { 4380 for (auto &S : Index.cfiFunctionDecls()) { 4381 if (DefOrUseGUIDs.count( 4382 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4383 NameVals.push_back(StrtabBuilder.add(S)); 4384 NameVals.push_back(S.size()); 4385 } 4386 } 4387 if (!NameVals.empty()) { 4388 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4389 NameVals.clear(); 4390 } 4391 } 4392 4393 // Walk the GUIDs that were referenced, and write the 4394 // corresponding type id records. 4395 for (auto &T : ReferencedTypeIds) { 4396 auto TidIter = Index.typeIds().equal_range(T); 4397 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4398 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4399 It->second.second); 4400 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4401 NameVals.clear(); 4402 } 4403 } 4404 4405 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4406 ArrayRef<uint64_t>{Index.getBlockCount()}); 4407 4408 Stream.ExitBlock(); 4409 } 4410 4411 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4412 /// current llvm version, and a record for the epoch number. 4413 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4414 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4415 4416 // Write the "user readable" string identifying the bitcode producer 4417 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4418 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4421 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4422 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4423 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4424 4425 // Write the epoch version 4426 Abbv = std::make_shared<BitCodeAbbrev>(); 4427 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4429 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4430 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4431 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4432 Stream.ExitBlock(); 4433 } 4434 4435 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4436 // Emit the module's hash. 4437 // MODULE_CODE_HASH: [5*i32] 4438 if (GenerateHash) { 4439 uint32_t Vals[5]; 4440 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4441 Buffer.size() - BlockStartPos)); 4442 std::array<uint8_t, 20> Hash = Hasher.result(); 4443 for (int Pos = 0; Pos < 20; Pos += 4) { 4444 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4445 } 4446 4447 // Emit the finished record. 4448 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4449 4450 if (ModHash) 4451 // Save the written hash value. 4452 llvm::copy(Vals, std::begin(*ModHash)); 4453 } 4454 } 4455 4456 void ModuleBitcodeWriter::write() { 4457 writeIdentificationBlock(Stream); 4458 4459 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4460 size_t BlockStartPos = Buffer.size(); 4461 4462 writeModuleVersion(); 4463 4464 // Emit blockinfo, which defines the standard abbreviations etc. 4465 writeBlockInfo(); 4466 4467 // Emit information describing all of the types in the module. 4468 writeTypeTable(); 4469 4470 // Emit information about attribute groups. 4471 writeAttributeGroupTable(); 4472 4473 // Emit information about parameter attributes. 4474 writeAttributeTable(); 4475 4476 writeComdats(); 4477 4478 // Emit top-level description of module, including target triple, inline asm, 4479 // descriptors for global variables, and function prototype info. 4480 writeModuleInfo(); 4481 4482 // Emit constants. 4483 writeModuleConstants(); 4484 4485 // Emit metadata kind names. 4486 writeModuleMetadataKinds(); 4487 4488 // Emit metadata. 4489 writeModuleMetadata(); 4490 4491 // Emit module-level use-lists. 4492 if (VE.shouldPreserveUseListOrder()) 4493 writeUseListBlock(nullptr); 4494 4495 writeOperandBundleTags(); 4496 writeSyncScopeNames(); 4497 4498 // Emit function bodies. 4499 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4500 for (const Function &F : M) 4501 if (!F.isDeclaration()) 4502 writeFunction(F, FunctionToBitcodeIndex); 4503 4504 // Need to write after the above call to WriteFunction which populates 4505 // the summary information in the index. 4506 if (Index) 4507 writePerModuleGlobalValueSummary(); 4508 4509 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4510 4511 writeModuleHash(BlockStartPos); 4512 4513 Stream.ExitBlock(); 4514 } 4515 4516 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4517 uint32_t &Position) { 4518 support::endian::write32le(&Buffer[Position], Value); 4519 Position += 4; 4520 } 4521 4522 /// If generating a bc file on darwin, we have to emit a 4523 /// header and trailer to make it compatible with the system archiver. To do 4524 /// this we emit the following header, and then emit a trailer that pads the 4525 /// file out to be a multiple of 16 bytes. 4526 /// 4527 /// struct bc_header { 4528 /// uint32_t Magic; // 0x0B17C0DE 4529 /// uint32_t Version; // Version, currently always 0. 4530 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4531 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4532 /// uint32_t CPUType; // CPU specifier. 4533 /// ... potentially more later ... 4534 /// }; 4535 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4536 const Triple &TT) { 4537 unsigned CPUType = ~0U; 4538 4539 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4540 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4541 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4542 // specific constants here because they are implicitly part of the Darwin ABI. 4543 enum { 4544 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4545 DARWIN_CPU_TYPE_X86 = 7, 4546 DARWIN_CPU_TYPE_ARM = 12, 4547 DARWIN_CPU_TYPE_POWERPC = 18 4548 }; 4549 4550 Triple::ArchType Arch = TT.getArch(); 4551 if (Arch == Triple::x86_64) 4552 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4553 else if (Arch == Triple::x86) 4554 CPUType = DARWIN_CPU_TYPE_X86; 4555 else if (Arch == Triple::ppc) 4556 CPUType = DARWIN_CPU_TYPE_POWERPC; 4557 else if (Arch == Triple::ppc64) 4558 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4559 else if (Arch == Triple::arm || Arch == Triple::thumb) 4560 CPUType = DARWIN_CPU_TYPE_ARM; 4561 4562 // Traditional Bitcode starts after header. 4563 assert(Buffer.size() >= BWH_HeaderSize && 4564 "Expected header size to be reserved"); 4565 unsigned BCOffset = BWH_HeaderSize; 4566 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4567 4568 // Write the magic and version. 4569 unsigned Position = 0; 4570 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4571 writeInt32ToBuffer(0, Buffer, Position); // Version. 4572 writeInt32ToBuffer(BCOffset, Buffer, Position); 4573 writeInt32ToBuffer(BCSize, Buffer, Position); 4574 writeInt32ToBuffer(CPUType, Buffer, Position); 4575 4576 // If the file is not a multiple of 16 bytes, insert dummy padding. 4577 while (Buffer.size() & 15) 4578 Buffer.push_back(0); 4579 } 4580 4581 /// Helper to write the header common to all bitcode files. 4582 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4583 // Emit the file header. 4584 Stream.Emit((unsigned)'B', 8); 4585 Stream.Emit((unsigned)'C', 8); 4586 Stream.Emit(0x0, 4); 4587 Stream.Emit(0xC, 4); 4588 Stream.Emit(0xE, 4); 4589 Stream.Emit(0xD, 4); 4590 } 4591 4592 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4593 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4594 writeBitcodeHeader(*Stream); 4595 } 4596 4597 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4598 4599 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4600 Stream->EnterSubblock(Block, 3); 4601 4602 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4603 Abbv->Add(BitCodeAbbrevOp(Record)); 4604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4605 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4606 4607 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4608 4609 Stream->ExitBlock(); 4610 } 4611 4612 void BitcodeWriter::writeSymtab() { 4613 assert(!WroteStrtab && !WroteSymtab); 4614 4615 // If any module has module-level inline asm, we will require a registered asm 4616 // parser for the target so that we can create an accurate symbol table for 4617 // the module. 4618 for (Module *M : Mods) { 4619 if (M->getModuleInlineAsm().empty()) 4620 continue; 4621 4622 std::string Err; 4623 const Triple TT(M->getTargetTriple()); 4624 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4625 if (!T || !T->hasMCAsmParser()) 4626 return; 4627 } 4628 4629 WroteSymtab = true; 4630 SmallVector<char, 0> Symtab; 4631 // The irsymtab::build function may be unable to create a symbol table if the 4632 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4633 // table is not required for correctness, but we still want to be able to 4634 // write malformed modules to bitcode files, so swallow the error. 4635 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4636 consumeError(std::move(E)); 4637 return; 4638 } 4639 4640 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4641 {Symtab.data(), Symtab.size()}); 4642 } 4643 4644 void BitcodeWriter::writeStrtab() { 4645 assert(!WroteStrtab); 4646 4647 std::vector<char> Strtab; 4648 StrtabBuilder.finalizeInOrder(); 4649 Strtab.resize(StrtabBuilder.getSize()); 4650 StrtabBuilder.write((uint8_t *)Strtab.data()); 4651 4652 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4653 {Strtab.data(), Strtab.size()}); 4654 4655 WroteStrtab = true; 4656 } 4657 4658 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4659 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4660 WroteStrtab = true; 4661 } 4662 4663 void BitcodeWriter::writeModule(const Module &M, 4664 bool ShouldPreserveUseListOrder, 4665 const ModuleSummaryIndex *Index, 4666 bool GenerateHash, ModuleHash *ModHash) { 4667 assert(!WroteStrtab); 4668 4669 // The Mods vector is used by irsymtab::build, which requires non-const 4670 // Modules in case it needs to materialize metadata. But the bitcode writer 4671 // requires that the module is materialized, so we can cast to non-const here, 4672 // after checking that it is in fact materialized. 4673 assert(M.isMaterialized()); 4674 Mods.push_back(const_cast<Module *>(&M)); 4675 4676 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4677 ShouldPreserveUseListOrder, Index, 4678 GenerateHash, ModHash); 4679 ModuleWriter.write(); 4680 } 4681 4682 void BitcodeWriter::writeIndex( 4683 const ModuleSummaryIndex *Index, 4684 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4685 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4686 ModuleToSummariesForIndex); 4687 IndexWriter.write(); 4688 } 4689 4690 /// Write the specified module to the specified output stream. 4691 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4692 bool ShouldPreserveUseListOrder, 4693 const ModuleSummaryIndex *Index, 4694 bool GenerateHash, ModuleHash *ModHash) { 4695 SmallVector<char, 0> Buffer; 4696 Buffer.reserve(256*1024); 4697 4698 // If this is darwin or another generic macho target, reserve space for the 4699 // header. 4700 Triple TT(M.getTargetTriple()); 4701 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4702 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4703 4704 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4705 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4706 ModHash); 4707 Writer.writeSymtab(); 4708 Writer.writeStrtab(); 4709 4710 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4711 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4712 4713 // Write the generated bitstream to "Out". 4714 if (!Buffer.empty()) 4715 Out.write((char *)&Buffer.front(), Buffer.size()); 4716 } 4717 4718 void IndexBitcodeWriter::write() { 4719 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4720 4721 writeModuleVersion(); 4722 4723 // Write the module paths in the combined index. 4724 writeModStrings(); 4725 4726 // Write the summary combined index records. 4727 writeCombinedGlobalValueSummary(); 4728 4729 Stream.ExitBlock(); 4730 } 4731 4732 // Write the specified module summary index to the given raw output stream, 4733 // where it will be written in a new bitcode block. This is used when 4734 // writing the combined index file for ThinLTO. When writing a subset of the 4735 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4736 void llvm::writeIndexToFile( 4737 const ModuleSummaryIndex &Index, raw_ostream &Out, 4738 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4739 SmallVector<char, 0> Buffer; 4740 Buffer.reserve(256 * 1024); 4741 4742 BitcodeWriter Writer(Buffer); 4743 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4744 Writer.writeStrtab(); 4745 4746 Out.write((char *)&Buffer.front(), Buffer.size()); 4747 } 4748 4749 namespace { 4750 4751 /// Class to manage the bitcode writing for a thin link bitcode file. 4752 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4753 /// ModHash is for use in ThinLTO incremental build, generated while writing 4754 /// the module bitcode file. 4755 const ModuleHash *ModHash; 4756 4757 public: 4758 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4759 BitstreamWriter &Stream, 4760 const ModuleSummaryIndex &Index, 4761 const ModuleHash &ModHash) 4762 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4763 /*ShouldPreserveUseListOrder=*/false, &Index), 4764 ModHash(&ModHash) {} 4765 4766 void write(); 4767 4768 private: 4769 void writeSimplifiedModuleInfo(); 4770 }; 4771 4772 } // end anonymous namespace 4773 4774 // This function writes a simpilified module info for thin link bitcode file. 4775 // It only contains the source file name along with the name(the offset and 4776 // size in strtab) and linkage for global values. For the global value info 4777 // entry, in order to keep linkage at offset 5, there are three zeros used 4778 // as padding. 4779 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4780 SmallVector<unsigned, 64> Vals; 4781 // Emit the module's source file name. 4782 { 4783 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4784 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4785 if (Bits == SE_Char6) 4786 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4787 else if (Bits == SE_Fixed7) 4788 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4789 4790 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4791 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4792 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4794 Abbv->Add(AbbrevOpToUse); 4795 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4796 4797 for (const auto P : M.getSourceFileName()) 4798 Vals.push_back((unsigned char)P); 4799 4800 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4801 Vals.clear(); 4802 } 4803 4804 // Emit the global variable information. 4805 for (const GlobalVariable &GV : M.globals()) { 4806 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4807 Vals.push_back(StrtabBuilder.add(GV.getName())); 4808 Vals.push_back(GV.getName().size()); 4809 Vals.push_back(0); 4810 Vals.push_back(0); 4811 Vals.push_back(0); 4812 Vals.push_back(getEncodedLinkage(GV)); 4813 4814 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4815 Vals.clear(); 4816 } 4817 4818 // Emit the function proto information. 4819 for (const Function &F : M) { 4820 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4821 Vals.push_back(StrtabBuilder.add(F.getName())); 4822 Vals.push_back(F.getName().size()); 4823 Vals.push_back(0); 4824 Vals.push_back(0); 4825 Vals.push_back(0); 4826 Vals.push_back(getEncodedLinkage(F)); 4827 4828 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4829 Vals.clear(); 4830 } 4831 4832 // Emit the alias information. 4833 for (const GlobalAlias &A : M.aliases()) { 4834 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4835 Vals.push_back(StrtabBuilder.add(A.getName())); 4836 Vals.push_back(A.getName().size()); 4837 Vals.push_back(0); 4838 Vals.push_back(0); 4839 Vals.push_back(0); 4840 Vals.push_back(getEncodedLinkage(A)); 4841 4842 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4843 Vals.clear(); 4844 } 4845 4846 // Emit the ifunc information. 4847 for (const GlobalIFunc &I : M.ifuncs()) { 4848 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4849 Vals.push_back(StrtabBuilder.add(I.getName())); 4850 Vals.push_back(I.getName().size()); 4851 Vals.push_back(0); 4852 Vals.push_back(0); 4853 Vals.push_back(0); 4854 Vals.push_back(getEncodedLinkage(I)); 4855 4856 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4857 Vals.clear(); 4858 } 4859 } 4860 4861 void ThinLinkBitcodeWriter::write() { 4862 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4863 4864 writeModuleVersion(); 4865 4866 writeSimplifiedModuleInfo(); 4867 4868 writePerModuleGlobalValueSummary(); 4869 4870 // Write module hash. 4871 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4872 4873 Stream.ExitBlock(); 4874 } 4875 4876 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4877 const ModuleSummaryIndex &Index, 4878 const ModuleHash &ModHash) { 4879 assert(!WroteStrtab); 4880 4881 // The Mods vector is used by irsymtab::build, which requires non-const 4882 // Modules in case it needs to materialize metadata. But the bitcode writer 4883 // requires that the module is materialized, so we can cast to non-const here, 4884 // after checking that it is in fact materialized. 4885 assert(M.isMaterialized()); 4886 Mods.push_back(const_cast<Module *>(&M)); 4887 4888 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4889 ModHash); 4890 ThinLinkWriter.write(); 4891 } 4892 4893 // Write the specified thin link bitcode file to the given raw output stream, 4894 // where it will be written in a new bitcode block. This is used when 4895 // writing the per-module index file for ThinLTO. 4896 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4897 const ModuleSummaryIndex &Index, 4898 const ModuleHash &ModHash) { 4899 SmallVector<char, 0> Buffer; 4900 Buffer.reserve(256 * 1024); 4901 4902 BitcodeWriter Writer(Buffer); 4903 Writer.writeThinLinkBitcode(M, Index, ModHash); 4904 Writer.writeSymtab(); 4905 Writer.writeStrtab(); 4906 4907 Out.write((char *)&Buffer.front(), Buffer.size()); 4908 } 4909 4910 static const char *getSectionNameForBitcode(const Triple &T) { 4911 switch (T.getObjectFormat()) { 4912 case Triple::MachO: 4913 return "__LLVM,__bitcode"; 4914 case Triple::COFF: 4915 case Triple::ELF: 4916 case Triple::Wasm: 4917 case Triple::UnknownObjectFormat: 4918 return ".llvmbc"; 4919 case Triple::GOFF: 4920 llvm_unreachable("GOFF is not yet implemented"); 4921 break; 4922 case Triple::SPIRV: 4923 llvm_unreachable("SPIRV is not yet implemented"); 4924 break; 4925 case Triple::XCOFF: 4926 llvm_unreachable("XCOFF is not yet implemented"); 4927 break; 4928 case Triple::DXContainer: 4929 llvm_unreachable("DXContainer is not yet implemented"); 4930 break; 4931 } 4932 llvm_unreachable("Unimplemented ObjectFormatType"); 4933 } 4934 4935 static const char *getSectionNameForCommandline(const Triple &T) { 4936 switch (T.getObjectFormat()) { 4937 case Triple::MachO: 4938 return "__LLVM,__cmdline"; 4939 case Triple::COFF: 4940 case Triple::ELF: 4941 case Triple::Wasm: 4942 case Triple::UnknownObjectFormat: 4943 return ".llvmcmd"; 4944 case Triple::GOFF: 4945 llvm_unreachable("GOFF is not yet implemented"); 4946 break; 4947 case Triple::SPIRV: 4948 llvm_unreachable("SPIRV is not yet implemented"); 4949 break; 4950 case Triple::XCOFF: 4951 llvm_unreachable("XCOFF is not yet implemented"); 4952 break; 4953 case Triple::DXContainer: 4954 llvm_unreachable("DXC is not yet implemented"); 4955 break; 4956 } 4957 llvm_unreachable("Unimplemented ObjectFormatType"); 4958 } 4959 4960 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4961 bool EmbedBitcode, bool EmbedCmdline, 4962 const std::vector<uint8_t> &CmdArgs) { 4963 // Save llvm.compiler.used and remove it. 4964 SmallVector<Constant *, 2> UsedArray; 4965 SmallVector<GlobalValue *, 4> UsedGlobals; 4966 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4967 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4968 for (auto *GV : UsedGlobals) { 4969 if (GV->getName() != "llvm.embedded.module" && 4970 GV->getName() != "llvm.cmdline") 4971 UsedArray.push_back( 4972 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4973 } 4974 if (Used) 4975 Used->eraseFromParent(); 4976 4977 // Embed the bitcode for the llvm module. 4978 std::string Data; 4979 ArrayRef<uint8_t> ModuleData; 4980 Triple T(M.getTargetTriple()); 4981 4982 if (EmbedBitcode) { 4983 if (Buf.getBufferSize() == 0 || 4984 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4985 (const unsigned char *)Buf.getBufferEnd())) { 4986 // If the input is LLVM Assembly, bitcode is produced by serializing 4987 // the module. Use-lists order need to be preserved in this case. 4988 llvm::raw_string_ostream OS(Data); 4989 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4990 ModuleData = 4991 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4992 } else 4993 // If the input is LLVM bitcode, write the input byte stream directly. 4994 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4995 Buf.getBufferSize()); 4996 } 4997 llvm::Constant *ModuleConstant = 4998 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4999 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5000 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5001 ModuleConstant); 5002 GV->setSection(getSectionNameForBitcode(T)); 5003 // Set alignment to 1 to prevent padding between two contributions from input 5004 // sections after linking. 5005 GV->setAlignment(Align(1)); 5006 UsedArray.push_back( 5007 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5008 if (llvm::GlobalVariable *Old = 5009 M.getGlobalVariable("llvm.embedded.module", true)) { 5010 assert(Old->hasZeroLiveUses() && 5011 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5012 GV->takeName(Old); 5013 Old->eraseFromParent(); 5014 } else { 5015 GV->setName("llvm.embedded.module"); 5016 } 5017 5018 // Skip if only bitcode needs to be embedded. 5019 if (EmbedCmdline) { 5020 // Embed command-line options. 5021 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5022 CmdArgs.size()); 5023 llvm::Constant *CmdConstant = 5024 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5025 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5026 llvm::GlobalValue::PrivateLinkage, 5027 CmdConstant); 5028 GV->setSection(getSectionNameForCommandline(T)); 5029 GV->setAlignment(Align(1)); 5030 UsedArray.push_back( 5031 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5032 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5033 assert(Old->hasZeroLiveUses() && 5034 "llvm.cmdline can only be used once in llvm.compiler.used"); 5035 GV->takeName(Old); 5036 Old->eraseFromParent(); 5037 } else { 5038 GV->setName("llvm.cmdline"); 5039 } 5040 } 5041 5042 if (UsedArray.empty()) 5043 return; 5044 5045 // Recreate llvm.compiler.used. 5046 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5047 auto *NewUsed = new GlobalVariable( 5048 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5049 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5050 NewUsed->setSection("llvm.metadata"); 5051 } 5052