1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/TypeSymbolTable.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/Streams.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/System/Program.h" 29 using namespace llvm; 30 31 /// These are manifest constants used by the bitcode writer. They do not need to 32 /// be kept in sync with the reader, but need to be consistent within this file. 33 enum { 34 CurVersion = 0, 35 36 // VALUE_SYMTAB_BLOCK abbrev id's. 37 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 38 VST_ENTRY_7_ABBREV, 39 VST_ENTRY_6_ABBREV, 40 VST_BBENTRY_6_ABBREV, 41 42 // CONSTANTS_BLOCK abbrev id's. 43 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 44 CONSTANTS_INTEGER_ABBREV, 45 CONSTANTS_CE_CAST_Abbrev, 46 CONSTANTS_NULL_Abbrev, 47 48 // FUNCTION_BLOCK abbrev id's. 49 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 50 FUNCTION_INST_BINOP_ABBREV, 51 FUNCTION_INST_CAST_ABBREV, 52 FUNCTION_INST_RET_VOID_ABBREV, 53 FUNCTION_INST_RET_VAL_ABBREV, 54 FUNCTION_INST_UNREACHABLE_ABBREV 55 }; 56 57 58 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 59 switch (Opcode) { 60 default: assert(0 && "Unknown cast instruction!"); 61 case Instruction::Trunc : return bitc::CAST_TRUNC; 62 case Instruction::ZExt : return bitc::CAST_ZEXT; 63 case Instruction::SExt : return bitc::CAST_SEXT; 64 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 65 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 66 case Instruction::UIToFP : return bitc::CAST_UITOFP; 67 case Instruction::SIToFP : return bitc::CAST_SITOFP; 68 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 69 case Instruction::FPExt : return bitc::CAST_FPEXT; 70 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 71 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 72 case Instruction::BitCast : return bitc::CAST_BITCAST; 73 } 74 } 75 76 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 77 switch (Opcode) { 78 default: assert(0 && "Unknown binary instruction!"); 79 case Instruction::Add: return bitc::BINOP_ADD; 80 case Instruction::Sub: return bitc::BINOP_SUB; 81 case Instruction::Mul: return bitc::BINOP_MUL; 82 case Instruction::UDiv: return bitc::BINOP_UDIV; 83 case Instruction::FDiv: 84 case Instruction::SDiv: return bitc::BINOP_SDIV; 85 case Instruction::URem: return bitc::BINOP_UREM; 86 case Instruction::FRem: 87 case Instruction::SRem: return bitc::BINOP_SREM; 88 case Instruction::Shl: return bitc::BINOP_SHL; 89 case Instruction::LShr: return bitc::BINOP_LSHR; 90 case Instruction::AShr: return bitc::BINOP_ASHR; 91 case Instruction::And: return bitc::BINOP_AND; 92 case Instruction::Or: return bitc::BINOP_OR; 93 case Instruction::Xor: return bitc::BINOP_XOR; 94 } 95 } 96 97 98 99 static void WriteStringRecord(unsigned Code, const std::string &Str, 100 unsigned AbbrevToUse, BitstreamWriter &Stream) { 101 SmallVector<unsigned, 64> Vals; 102 103 // Code: [strchar x N] 104 for (unsigned i = 0, e = Str.size(); i != e; ++i) 105 Vals.push_back(Str[i]); 106 107 // Emit the finished record. 108 Stream.EmitRecord(Code, Vals, AbbrevToUse); 109 } 110 111 // Emit information about parameter attributes. 112 static void WriteAttributeTable(const ValueEnumerator &VE, 113 BitstreamWriter &Stream) { 114 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 115 if (Attrs.empty()) return; 116 117 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 118 119 SmallVector<uint64_t, 64> Record; 120 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 121 const AttrListPtr &A = Attrs[i]; 122 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 123 const AttributeWithIndex &PAWI = A.getSlot(i); 124 Record.push_back(PAWI.Index); 125 126 // FIXME: remove in LLVM 3.0 127 // Store the alignment in the bitcode as a 16-bit raw value instead of a 128 // 5-bit log2 encoded value. Shift the bits above the alignment up by 129 // 11 bits. 130 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 131 if (PAWI.Attrs & Attribute::Alignment) 132 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 133 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 134 135 Record.push_back(FauxAttr); 136 } 137 138 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 139 Record.clear(); 140 } 141 142 Stream.ExitBlock(); 143 } 144 145 /// WriteTypeTable - Write out the type table for a module. 146 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 147 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 148 149 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 150 SmallVector<uint64_t, 64> TypeVals; 151 152 // Abbrev for TYPE_CODE_POINTER. 153 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 154 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 156 Log2_32_Ceil(VE.getTypes().size()+1))); 157 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 158 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 159 160 // Abbrev for TYPE_CODE_FUNCTION. 161 Abbv = new BitCodeAbbrev(); 162 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 164 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 167 Log2_32_Ceil(VE.getTypes().size()+1))); 168 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 169 170 // Abbrev for TYPE_CODE_STRUCT. 171 Abbv = new BitCodeAbbrev(); 172 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 176 Log2_32_Ceil(VE.getTypes().size()+1))); 177 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 178 179 // Abbrev for TYPE_CODE_ARRAY. 180 Abbv = new BitCodeAbbrev(); 181 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 184 Log2_32_Ceil(VE.getTypes().size()+1))); 185 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 186 187 // Emit an entry count so the reader can reserve space. 188 TypeVals.push_back(TypeList.size()); 189 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 190 TypeVals.clear(); 191 192 // Loop over all of the types, emitting each in turn. 193 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 194 const Type *T = TypeList[i].first; 195 int AbbrevToUse = 0; 196 unsigned Code = 0; 197 198 switch (T->getTypeID()) { 199 default: assert(0 && "Unknown type!"); 200 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 201 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 202 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 203 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 204 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 205 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 206 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 207 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 208 case Type::IntegerTyID: 209 // INTEGER: [width] 210 Code = bitc::TYPE_CODE_INTEGER; 211 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 212 break; 213 case Type::PointerTyID: { 214 const PointerType *PTy = cast<PointerType>(T); 215 // POINTER: [pointee type, address space] 216 Code = bitc::TYPE_CODE_POINTER; 217 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 218 unsigned AddressSpace = PTy->getAddressSpace(); 219 TypeVals.push_back(AddressSpace); 220 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 221 break; 222 } 223 case Type::FunctionTyID: { 224 const FunctionType *FT = cast<FunctionType>(T); 225 // FUNCTION: [isvararg, attrid, retty, paramty x N] 226 Code = bitc::TYPE_CODE_FUNCTION; 227 TypeVals.push_back(FT->isVarArg()); 228 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 229 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 230 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 231 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 232 AbbrevToUse = FunctionAbbrev; 233 break; 234 } 235 case Type::StructTyID: { 236 const StructType *ST = cast<StructType>(T); 237 // STRUCT: [ispacked, eltty x N] 238 Code = bitc::TYPE_CODE_STRUCT; 239 TypeVals.push_back(ST->isPacked()); 240 // Output all of the element types. 241 for (StructType::element_iterator I = ST->element_begin(), 242 E = ST->element_end(); I != E; ++I) 243 TypeVals.push_back(VE.getTypeID(*I)); 244 AbbrevToUse = StructAbbrev; 245 break; 246 } 247 case Type::ArrayTyID: { 248 const ArrayType *AT = cast<ArrayType>(T); 249 // ARRAY: [numelts, eltty] 250 Code = bitc::TYPE_CODE_ARRAY; 251 TypeVals.push_back(AT->getNumElements()); 252 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 253 AbbrevToUse = ArrayAbbrev; 254 break; 255 } 256 case Type::VectorTyID: { 257 const VectorType *VT = cast<VectorType>(T); 258 // VECTOR [numelts, eltty] 259 Code = bitc::TYPE_CODE_VECTOR; 260 TypeVals.push_back(VT->getNumElements()); 261 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 262 break; 263 } 264 } 265 266 // Emit the finished record. 267 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 268 TypeVals.clear(); 269 } 270 271 Stream.ExitBlock(); 272 } 273 274 static unsigned getEncodedLinkage(const GlobalValue *GV) { 275 switch (GV->getLinkage()) { 276 default: assert(0 && "Invalid linkage!"); 277 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 278 case GlobalValue::ExternalLinkage: return 0; 279 case GlobalValue::WeakAnyLinkage: return 1; 280 case GlobalValue::AppendingLinkage: return 2; 281 case GlobalValue::InternalLinkage: return 3; 282 case GlobalValue::LinkOnceAnyLinkage: return 4; 283 case GlobalValue::DLLImportLinkage: return 5; 284 case GlobalValue::DLLExportLinkage: return 6; 285 case GlobalValue::ExternalWeakAnyLinkage: return 7; 286 case GlobalValue::CommonAnyLinkage: return 8; 287 case GlobalValue::PrivateLinkage: return 9; 288 case GlobalValue::WeakODRLinkage: return 10; 289 case GlobalValue::LinkOnceODRLinkage: return 11; 290 case GlobalValue::ExternalWeakODRLinkage: return 12; 291 case GlobalValue::CommonODRLinkage: return 13; 292 } 293 } 294 295 static unsigned getEncodedVisibility(const GlobalValue *GV) { 296 switch (GV->getVisibility()) { 297 default: assert(0 && "Invalid visibility!"); 298 case GlobalValue::DefaultVisibility: return 0; 299 case GlobalValue::HiddenVisibility: return 1; 300 case GlobalValue::ProtectedVisibility: return 2; 301 } 302 } 303 304 // Emit top-level description of module, including target triple, inline asm, 305 // descriptors for global variables, and function prototype info. 306 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 307 BitstreamWriter &Stream) { 308 // Emit the list of dependent libraries for the Module. 309 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 310 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 311 312 // Emit various pieces of data attached to a module. 313 if (!M->getTargetTriple().empty()) 314 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 315 0/*TODO*/, Stream); 316 if (!M->getDataLayout().empty()) 317 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 318 0/*TODO*/, Stream); 319 if (!M->getModuleInlineAsm().empty()) 320 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 321 0/*TODO*/, Stream); 322 323 // Emit information about sections and GC, computing how many there are. Also 324 // compute the maximum alignment value. 325 std::map<std::string, unsigned> SectionMap; 326 std::map<std::string, unsigned> GCMap; 327 unsigned MaxAlignment = 0; 328 unsigned MaxGlobalType = 0; 329 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 330 GV != E; ++GV) { 331 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 332 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 333 334 if (!GV->hasSection()) continue; 335 // Give section names unique ID's. 336 unsigned &Entry = SectionMap[GV->getSection()]; 337 if (Entry != 0) continue; 338 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 339 0/*TODO*/, Stream); 340 Entry = SectionMap.size(); 341 } 342 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 343 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 344 if (F->hasSection()) { 345 // Give section names unique ID's. 346 unsigned &Entry = SectionMap[F->getSection()]; 347 if (!Entry) { 348 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 349 0/*TODO*/, Stream); 350 Entry = SectionMap.size(); 351 } 352 } 353 if (F->hasGC()) { 354 // Same for GC names. 355 unsigned &Entry = GCMap[F->getGC()]; 356 if (!Entry) { 357 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 358 0/*TODO*/, Stream); 359 Entry = GCMap.size(); 360 } 361 } 362 } 363 364 // Emit abbrev for globals, now that we know # sections and max alignment. 365 unsigned SimpleGVarAbbrev = 0; 366 if (!M->global_empty()) { 367 // Add an abbrev for common globals with no visibility or thread localness. 368 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 369 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 371 Log2_32_Ceil(MaxGlobalType+1))); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 375 if (MaxAlignment == 0) // Alignment. 376 Abbv->Add(BitCodeAbbrevOp(0)); 377 else { 378 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 380 Log2_32_Ceil(MaxEncAlignment+1))); 381 } 382 if (SectionMap.empty()) // Section. 383 Abbv->Add(BitCodeAbbrevOp(0)); 384 else 385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 386 Log2_32_Ceil(SectionMap.size()+1))); 387 // Don't bother emitting vis + thread local. 388 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 389 } 390 391 // Emit the global variable information. 392 SmallVector<unsigned, 64> Vals; 393 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 394 GV != E; ++GV) { 395 unsigned AbbrevToUse = 0; 396 397 // GLOBALVAR: [type, isconst, initid, 398 // linkage, alignment, section, visibility, threadlocal] 399 Vals.push_back(VE.getTypeID(GV->getType())); 400 Vals.push_back(GV->isConstant()); 401 Vals.push_back(GV->isDeclaration() ? 0 : 402 (VE.getValueID(GV->getInitializer()) + 1)); 403 Vals.push_back(getEncodedLinkage(GV)); 404 Vals.push_back(Log2_32(GV->getAlignment())+1); 405 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 406 if (GV->isThreadLocal() || 407 GV->getVisibility() != GlobalValue::DefaultVisibility) { 408 Vals.push_back(getEncodedVisibility(GV)); 409 Vals.push_back(GV->isThreadLocal()); 410 } else { 411 AbbrevToUse = SimpleGVarAbbrev; 412 } 413 414 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 415 Vals.clear(); 416 } 417 418 // Emit the function proto information. 419 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 420 // FUNCTION: [type, callingconv, isproto, paramattr, 421 // linkage, alignment, section, visibility, gc] 422 Vals.push_back(VE.getTypeID(F->getType())); 423 Vals.push_back(F->getCallingConv()); 424 Vals.push_back(F->isDeclaration()); 425 Vals.push_back(getEncodedLinkage(F)); 426 Vals.push_back(VE.getAttributeID(F->getAttributes())); 427 Vals.push_back(Log2_32(F->getAlignment())+1); 428 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 429 Vals.push_back(getEncodedVisibility(F)); 430 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 431 432 unsigned AbbrevToUse = 0; 433 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 434 Vals.clear(); 435 } 436 437 438 // Emit the alias information. 439 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 440 AI != E; ++AI) { 441 Vals.push_back(VE.getTypeID(AI->getType())); 442 Vals.push_back(VE.getValueID(AI->getAliasee())); 443 Vals.push_back(getEncodedLinkage(AI)); 444 Vals.push_back(getEncodedVisibility(AI)); 445 unsigned AbbrevToUse = 0; 446 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 447 Vals.clear(); 448 } 449 } 450 451 452 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 453 const ValueEnumerator &VE, 454 BitstreamWriter &Stream, bool isGlobal) { 455 if (FirstVal == LastVal) return; 456 457 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 458 459 unsigned AggregateAbbrev = 0; 460 unsigned String8Abbrev = 0; 461 unsigned CString7Abbrev = 0; 462 unsigned CString6Abbrev = 0; 463 // If this is a constant pool for the module, emit module-specific abbrevs. 464 if (isGlobal) { 465 // Abbrev for CST_CODE_AGGREGATE. 466 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 467 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 470 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 471 472 // Abbrev for CST_CODE_STRING. 473 Abbv = new BitCodeAbbrev(); 474 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 477 String8Abbrev = Stream.EmitAbbrev(Abbv); 478 // Abbrev for CST_CODE_CSTRING. 479 Abbv = new BitCodeAbbrev(); 480 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 483 CString7Abbrev = Stream.EmitAbbrev(Abbv); 484 // Abbrev for CST_CODE_CSTRING. 485 Abbv = new BitCodeAbbrev(); 486 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 489 CString6Abbrev = Stream.EmitAbbrev(Abbv); 490 } 491 492 SmallVector<uint64_t, 64> Record; 493 494 const ValueEnumerator::ValueList &Vals = VE.getValues(); 495 const Type *LastTy = 0; 496 for (unsigned i = FirstVal; i != LastVal; ++i) { 497 const Value *V = Vals[i].first; 498 // If we need to switch types, do so now. 499 if (V->getType() != LastTy) { 500 LastTy = V->getType(); 501 Record.push_back(VE.getTypeID(LastTy)); 502 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 503 CONSTANTS_SETTYPE_ABBREV); 504 Record.clear(); 505 } 506 507 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 508 Record.push_back(unsigned(IA->hasSideEffects())); 509 510 // Add the asm string. 511 const std::string &AsmStr = IA->getAsmString(); 512 Record.push_back(AsmStr.size()); 513 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 514 Record.push_back(AsmStr[i]); 515 516 // Add the constraint string. 517 const std::string &ConstraintStr = IA->getConstraintString(); 518 Record.push_back(ConstraintStr.size()); 519 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 520 Record.push_back(ConstraintStr[i]); 521 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 522 Record.clear(); 523 continue; 524 } 525 const Constant *C = cast<Constant>(V); 526 unsigned Code = -1U; 527 unsigned AbbrevToUse = 0; 528 if (C->isNullValue()) { 529 Code = bitc::CST_CODE_NULL; 530 } else if (isa<UndefValue>(C)) { 531 Code = bitc::CST_CODE_UNDEF; 532 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 533 if (IV->getBitWidth() <= 64) { 534 int64_t V = IV->getSExtValue(); 535 if (V >= 0) 536 Record.push_back(V << 1); 537 else 538 Record.push_back((-V << 1) | 1); 539 Code = bitc::CST_CODE_INTEGER; 540 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 541 } else { // Wide integers, > 64 bits in size. 542 // We have an arbitrary precision integer value to write whose 543 // bit width is > 64. However, in canonical unsigned integer 544 // format it is likely that the high bits are going to be zero. 545 // So, we only write the number of active words. 546 unsigned NWords = IV->getValue().getActiveWords(); 547 const uint64_t *RawWords = IV->getValue().getRawData(); 548 for (unsigned i = 0; i != NWords; ++i) { 549 int64_t V = RawWords[i]; 550 if (V >= 0) 551 Record.push_back(V << 1); 552 else 553 Record.push_back((-V << 1) | 1); 554 } 555 Code = bitc::CST_CODE_WIDE_INTEGER; 556 } 557 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 558 Code = bitc::CST_CODE_FLOAT; 559 const Type *Ty = CFP->getType(); 560 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 561 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 562 } else if (Ty == Type::X86_FP80Ty) { 563 // api needed to prevent premature destruction 564 APInt api = CFP->getValueAPF().bitcastToAPInt(); 565 const uint64_t *p = api.getRawData(); 566 Record.push_back(p[0]); 567 Record.push_back((uint16_t)p[1]); 568 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 569 APInt api = CFP->getValueAPF().bitcastToAPInt(); 570 const uint64_t *p = api.getRawData(); 571 Record.push_back(p[0]); 572 Record.push_back(p[1]); 573 } else { 574 assert (0 && "Unknown FP type!"); 575 } 576 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 577 // Emit constant strings specially. 578 unsigned NumOps = C->getNumOperands(); 579 // If this is a null-terminated string, use the denser CSTRING encoding. 580 if (C->getOperand(NumOps-1)->isNullValue()) { 581 Code = bitc::CST_CODE_CSTRING; 582 --NumOps; // Don't encode the null, which isn't allowed by char6. 583 } else { 584 Code = bitc::CST_CODE_STRING; 585 AbbrevToUse = String8Abbrev; 586 } 587 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 588 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 589 for (unsigned i = 0; i != NumOps; ++i) { 590 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 591 Record.push_back(V); 592 isCStr7 &= (V & 128) == 0; 593 if (isCStrChar6) 594 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 595 } 596 597 if (isCStrChar6) 598 AbbrevToUse = CString6Abbrev; 599 else if (isCStr7) 600 AbbrevToUse = CString7Abbrev; 601 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 602 isa<ConstantVector>(V)) { 603 Code = bitc::CST_CODE_AGGREGATE; 604 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 605 Record.push_back(VE.getValueID(C->getOperand(i))); 606 AbbrevToUse = AggregateAbbrev; 607 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 608 switch (CE->getOpcode()) { 609 default: 610 if (Instruction::isCast(CE->getOpcode())) { 611 Code = bitc::CST_CODE_CE_CAST; 612 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 613 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 614 Record.push_back(VE.getValueID(C->getOperand(0))); 615 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 616 } else { 617 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 618 Code = bitc::CST_CODE_CE_BINOP; 619 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 620 Record.push_back(VE.getValueID(C->getOperand(0))); 621 Record.push_back(VE.getValueID(C->getOperand(1))); 622 } 623 break; 624 case Instruction::GetElementPtr: 625 Code = bitc::CST_CODE_CE_GEP; 626 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 627 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 628 Record.push_back(VE.getValueID(C->getOperand(i))); 629 } 630 break; 631 case Instruction::Select: 632 Code = bitc::CST_CODE_CE_SELECT; 633 Record.push_back(VE.getValueID(C->getOperand(0))); 634 Record.push_back(VE.getValueID(C->getOperand(1))); 635 Record.push_back(VE.getValueID(C->getOperand(2))); 636 break; 637 case Instruction::ExtractElement: 638 Code = bitc::CST_CODE_CE_EXTRACTELT; 639 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 640 Record.push_back(VE.getValueID(C->getOperand(0))); 641 Record.push_back(VE.getValueID(C->getOperand(1))); 642 break; 643 case Instruction::InsertElement: 644 Code = bitc::CST_CODE_CE_INSERTELT; 645 Record.push_back(VE.getValueID(C->getOperand(0))); 646 Record.push_back(VE.getValueID(C->getOperand(1))); 647 Record.push_back(VE.getValueID(C->getOperand(2))); 648 break; 649 case Instruction::ShuffleVector: 650 // If the return type and argument types are the same, this is a 651 // standard shufflevector instruction. If the types are different, 652 // then the shuffle is widening or truncating the input vectors, and 653 // the argument type must also be encoded. 654 if (C->getType() == C->getOperand(0)->getType()) { 655 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 656 } else { 657 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 658 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 659 } 660 Record.push_back(VE.getValueID(C->getOperand(0))); 661 Record.push_back(VE.getValueID(C->getOperand(1))); 662 Record.push_back(VE.getValueID(C->getOperand(2))); 663 break; 664 case Instruction::ICmp: 665 case Instruction::FCmp: 666 case Instruction::VICmp: 667 case Instruction::VFCmp: 668 if (isa<VectorType>(C->getOperand(0)->getType()) 669 && (CE->getOpcode() == Instruction::ICmp 670 || CE->getOpcode() == Instruction::FCmp)) { 671 // compare returning vector of Int1Ty 672 assert(0 && "Unsupported constant!"); 673 } else { 674 Code = bitc::CST_CODE_CE_CMP; 675 } 676 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 677 Record.push_back(VE.getValueID(C->getOperand(0))); 678 Record.push_back(VE.getValueID(C->getOperand(1))); 679 Record.push_back(CE->getPredicate()); 680 break; 681 } 682 } else { 683 assert(0 && "Unknown constant!"); 684 } 685 Stream.EmitRecord(Code, Record, AbbrevToUse); 686 Record.clear(); 687 } 688 689 Stream.ExitBlock(); 690 } 691 692 static void WriteModuleConstants(const ValueEnumerator &VE, 693 BitstreamWriter &Stream) { 694 const ValueEnumerator::ValueList &Vals = VE.getValues(); 695 696 // Find the first constant to emit, which is the first non-globalvalue value. 697 // We know globalvalues have been emitted by WriteModuleInfo. 698 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 699 if (!isa<GlobalValue>(Vals[i].first)) { 700 WriteConstants(i, Vals.size(), VE, Stream, true); 701 return; 702 } 703 } 704 } 705 706 /// PushValueAndType - The file has to encode both the value and type id for 707 /// many values, because we need to know what type to create for forward 708 /// references. However, most operands are not forward references, so this type 709 /// field is not needed. 710 /// 711 /// This function adds V's value ID to Vals. If the value ID is higher than the 712 /// instruction ID, then it is a forward reference, and it also includes the 713 /// type ID. 714 static bool PushValueAndType(const Value *V, unsigned InstID, 715 SmallVector<unsigned, 64> &Vals, 716 ValueEnumerator &VE) { 717 unsigned ValID = VE.getValueID(V); 718 Vals.push_back(ValID); 719 if (ValID >= InstID) { 720 Vals.push_back(VE.getTypeID(V->getType())); 721 return true; 722 } 723 return false; 724 } 725 726 /// WriteInstruction - Emit an instruction to the specified stream. 727 static void WriteInstruction(const Instruction &I, unsigned InstID, 728 ValueEnumerator &VE, BitstreamWriter &Stream, 729 SmallVector<unsigned, 64> &Vals) { 730 unsigned Code = 0; 731 unsigned AbbrevToUse = 0; 732 switch (I.getOpcode()) { 733 default: 734 if (Instruction::isCast(I.getOpcode())) { 735 Code = bitc::FUNC_CODE_INST_CAST; 736 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 737 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 738 Vals.push_back(VE.getTypeID(I.getType())); 739 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 740 } else { 741 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 742 Code = bitc::FUNC_CODE_INST_BINOP; 743 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 744 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 745 Vals.push_back(VE.getValueID(I.getOperand(1))); 746 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 747 } 748 break; 749 750 case Instruction::GetElementPtr: 751 Code = bitc::FUNC_CODE_INST_GEP; 752 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 753 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 754 break; 755 case Instruction::ExtractValue: { 756 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 757 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 758 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 759 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 760 Vals.push_back(*i); 761 break; 762 } 763 case Instruction::InsertValue: { 764 Code = bitc::FUNC_CODE_INST_INSERTVAL; 765 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 766 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 767 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 768 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 769 Vals.push_back(*i); 770 break; 771 } 772 case Instruction::Select: 773 Code = bitc::FUNC_CODE_INST_VSELECT; 774 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 775 Vals.push_back(VE.getValueID(I.getOperand(2))); 776 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 777 break; 778 case Instruction::ExtractElement: 779 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 780 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 781 Vals.push_back(VE.getValueID(I.getOperand(1))); 782 break; 783 case Instruction::InsertElement: 784 Code = bitc::FUNC_CODE_INST_INSERTELT; 785 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 786 Vals.push_back(VE.getValueID(I.getOperand(1))); 787 Vals.push_back(VE.getValueID(I.getOperand(2))); 788 break; 789 case Instruction::ShuffleVector: 790 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 791 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 792 Vals.push_back(VE.getValueID(I.getOperand(1))); 793 Vals.push_back(VE.getValueID(I.getOperand(2))); 794 break; 795 case Instruction::ICmp: 796 case Instruction::FCmp: 797 case Instruction::VICmp: 798 case Instruction::VFCmp: 799 if (I.getOpcode() == Instruction::ICmp 800 || I.getOpcode() == Instruction::FCmp) { 801 // compare returning Int1Ty or vector of Int1Ty 802 Code = bitc::FUNC_CODE_INST_CMP2; 803 } else { 804 Code = bitc::FUNC_CODE_INST_CMP; 805 } 806 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 807 Vals.push_back(VE.getValueID(I.getOperand(1))); 808 Vals.push_back(cast<CmpInst>(I).getPredicate()); 809 break; 810 811 case Instruction::Ret: 812 { 813 Code = bitc::FUNC_CODE_INST_RET; 814 unsigned NumOperands = I.getNumOperands(); 815 if (NumOperands == 0) 816 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 817 else if (NumOperands == 1) { 818 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 819 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 820 } else { 821 for (unsigned i = 0, e = NumOperands; i != e; ++i) 822 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 823 } 824 } 825 break; 826 case Instruction::Br: 827 { 828 Code = bitc::FUNC_CODE_INST_BR; 829 BranchInst &II(cast<BranchInst>(I)); 830 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 831 if (II.isConditional()) { 832 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 833 Vals.push_back(VE.getValueID(II.getCondition())); 834 } 835 } 836 break; 837 case Instruction::Switch: 838 Code = bitc::FUNC_CODE_INST_SWITCH; 839 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 840 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 841 Vals.push_back(VE.getValueID(I.getOperand(i))); 842 break; 843 case Instruction::Invoke: { 844 const InvokeInst *II = cast<InvokeInst>(&I); 845 const Value *Callee(II->getCalledValue()); 846 const PointerType *PTy = cast<PointerType>(Callee->getType()); 847 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 848 Code = bitc::FUNC_CODE_INST_INVOKE; 849 850 Vals.push_back(VE.getAttributeID(II->getAttributes())); 851 Vals.push_back(II->getCallingConv()); 852 Vals.push_back(VE.getValueID(II->getNormalDest())); 853 Vals.push_back(VE.getValueID(II->getUnwindDest())); 854 PushValueAndType(Callee, InstID, Vals, VE); 855 856 // Emit value #'s for the fixed parameters. 857 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 858 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 859 860 // Emit type/value pairs for varargs params. 861 if (FTy->isVarArg()) { 862 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 863 i != e; ++i) 864 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 865 } 866 break; 867 } 868 case Instruction::Unwind: 869 Code = bitc::FUNC_CODE_INST_UNWIND; 870 break; 871 case Instruction::Unreachable: 872 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 873 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 874 break; 875 876 case Instruction::PHI: 877 Code = bitc::FUNC_CODE_INST_PHI; 878 Vals.push_back(VE.getTypeID(I.getType())); 879 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 880 Vals.push_back(VE.getValueID(I.getOperand(i))); 881 break; 882 883 case Instruction::Malloc: 884 Code = bitc::FUNC_CODE_INST_MALLOC; 885 Vals.push_back(VE.getTypeID(I.getType())); 886 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 887 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 888 break; 889 890 case Instruction::Free: 891 Code = bitc::FUNC_CODE_INST_FREE; 892 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 893 break; 894 895 case Instruction::Alloca: 896 Code = bitc::FUNC_CODE_INST_ALLOCA; 897 Vals.push_back(VE.getTypeID(I.getType())); 898 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 899 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 900 break; 901 902 case Instruction::Load: 903 Code = bitc::FUNC_CODE_INST_LOAD; 904 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 905 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 906 907 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 908 Vals.push_back(cast<LoadInst>(I).isVolatile()); 909 break; 910 case Instruction::Store: 911 Code = bitc::FUNC_CODE_INST_STORE2; 912 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 913 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 914 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 915 Vals.push_back(cast<StoreInst>(I).isVolatile()); 916 break; 917 case Instruction::Call: { 918 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 919 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 920 921 Code = bitc::FUNC_CODE_INST_CALL; 922 923 const CallInst *CI = cast<CallInst>(&I); 924 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 925 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 926 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 927 928 // Emit value #'s for the fixed parameters. 929 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 930 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 931 932 // Emit type/value pairs for varargs params. 933 if (FTy->isVarArg()) { 934 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 935 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 936 i != e; ++i) 937 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 938 } 939 break; 940 } 941 case Instruction::VAArg: 942 Code = bitc::FUNC_CODE_INST_VAARG; 943 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 944 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 945 Vals.push_back(VE.getTypeID(I.getType())); // restype. 946 break; 947 } 948 949 Stream.EmitRecord(Code, Vals, AbbrevToUse); 950 Vals.clear(); 951 } 952 953 // Emit names for globals/functions etc. 954 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 955 const ValueEnumerator &VE, 956 BitstreamWriter &Stream) { 957 if (VST.empty()) return; 958 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 959 960 // FIXME: Set up the abbrev, we know how many values there are! 961 // FIXME: We know if the type names can use 7-bit ascii. 962 SmallVector<unsigned, 64> NameVals; 963 964 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 965 SI != SE; ++SI) { 966 967 const ValueName &Name = *SI; 968 969 // Figure out the encoding to use for the name. 970 bool is7Bit = true; 971 bool isChar6 = true; 972 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 973 C != E; ++C) { 974 if (isChar6) 975 isChar6 = BitCodeAbbrevOp::isChar6(*C); 976 if ((unsigned char)*C & 128) { 977 is7Bit = false; 978 break; // don't bother scanning the rest. 979 } 980 } 981 982 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 983 984 // VST_ENTRY: [valueid, namechar x N] 985 // VST_BBENTRY: [bbid, namechar x N] 986 unsigned Code; 987 if (isa<BasicBlock>(SI->getValue())) { 988 Code = bitc::VST_CODE_BBENTRY; 989 if (isChar6) 990 AbbrevToUse = VST_BBENTRY_6_ABBREV; 991 } else { 992 Code = bitc::VST_CODE_ENTRY; 993 if (isChar6) 994 AbbrevToUse = VST_ENTRY_6_ABBREV; 995 else if (is7Bit) 996 AbbrevToUse = VST_ENTRY_7_ABBREV; 997 } 998 999 NameVals.push_back(VE.getValueID(SI->getValue())); 1000 for (const char *P = Name.getKeyData(), 1001 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1002 NameVals.push_back((unsigned char)*P); 1003 1004 // Emit the finished record. 1005 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1006 NameVals.clear(); 1007 } 1008 Stream.ExitBlock(); 1009 } 1010 1011 /// WriteFunction - Emit a function body to the module stream. 1012 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1013 BitstreamWriter &Stream) { 1014 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1015 VE.incorporateFunction(F); 1016 1017 SmallVector<unsigned, 64> Vals; 1018 1019 // Emit the number of basic blocks, so the reader can create them ahead of 1020 // time. 1021 Vals.push_back(VE.getBasicBlocks().size()); 1022 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1023 Vals.clear(); 1024 1025 // If there are function-local constants, emit them now. 1026 unsigned CstStart, CstEnd; 1027 VE.getFunctionConstantRange(CstStart, CstEnd); 1028 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1029 1030 // Keep a running idea of what the instruction ID is. 1031 unsigned InstID = CstEnd; 1032 1033 // Finally, emit all the instructions, in order. 1034 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1035 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1036 I != E; ++I) { 1037 WriteInstruction(*I, InstID, VE, Stream, Vals); 1038 if (I->getType() != Type::VoidTy) 1039 ++InstID; 1040 } 1041 1042 // Emit names for all the instructions etc. 1043 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1044 1045 VE.purgeFunction(); 1046 Stream.ExitBlock(); 1047 } 1048 1049 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1050 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1051 const ValueEnumerator &VE, 1052 BitstreamWriter &Stream) { 1053 if (TST.empty()) return; 1054 1055 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1056 1057 // 7-bit fixed width VST_CODE_ENTRY strings. 1058 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1059 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1061 Log2_32_Ceil(VE.getTypes().size()+1))); 1062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1064 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1065 1066 SmallVector<unsigned, 64> NameVals; 1067 1068 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1069 TI != TE; ++TI) { 1070 // TST_ENTRY: [typeid, namechar x N] 1071 NameVals.push_back(VE.getTypeID(TI->second)); 1072 1073 const std::string &Str = TI->first; 1074 bool is7Bit = true; 1075 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1076 NameVals.push_back((unsigned char)Str[i]); 1077 if (Str[i] & 128) 1078 is7Bit = false; 1079 } 1080 1081 // Emit the finished record. 1082 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1083 NameVals.clear(); 1084 } 1085 1086 Stream.ExitBlock(); 1087 } 1088 1089 // Emit blockinfo, which defines the standard abbreviations etc. 1090 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1091 // We only want to emit block info records for blocks that have multiple 1092 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1093 // blocks can defined their abbrevs inline. 1094 Stream.EnterBlockInfoBlock(2); 1095 1096 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1097 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1102 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1103 Abbv) != VST_ENTRY_8_ABBREV) 1104 assert(0 && "Unexpected abbrev ordering!"); 1105 } 1106 1107 { // 7-bit fixed width VST_ENTRY strings. 1108 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1109 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1113 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1114 Abbv) != VST_ENTRY_7_ABBREV) 1115 assert(0 && "Unexpected abbrev ordering!"); 1116 } 1117 { // 6-bit char6 VST_ENTRY strings. 1118 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1119 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1123 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1124 Abbv) != VST_ENTRY_6_ABBREV) 1125 assert(0 && "Unexpected abbrev ordering!"); 1126 } 1127 { // 6-bit char6 VST_BBENTRY strings. 1128 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1129 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1133 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1134 Abbv) != VST_BBENTRY_6_ABBREV) 1135 assert(0 && "Unexpected abbrev ordering!"); 1136 } 1137 1138 1139 1140 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1141 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1142 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1144 Log2_32_Ceil(VE.getTypes().size()+1))); 1145 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1146 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1147 assert(0 && "Unexpected abbrev ordering!"); 1148 } 1149 1150 { // INTEGER abbrev for CONSTANTS_BLOCK. 1151 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1152 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1154 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1155 Abbv) != CONSTANTS_INTEGER_ABBREV) 1156 assert(0 && "Unexpected abbrev ordering!"); 1157 } 1158 1159 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1160 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1161 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1164 Log2_32_Ceil(VE.getTypes().size()+1))); 1165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1166 1167 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1168 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1169 assert(0 && "Unexpected abbrev ordering!"); 1170 } 1171 { // NULL abbrev for CONSTANTS_BLOCK. 1172 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1173 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1174 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1175 Abbv) != CONSTANTS_NULL_Abbrev) 1176 assert(0 && "Unexpected abbrev ordering!"); 1177 } 1178 1179 // FIXME: This should only use space for first class types! 1180 1181 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1182 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1183 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1187 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1188 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1189 assert(0 && "Unexpected abbrev ordering!"); 1190 } 1191 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1192 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1193 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1197 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1198 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1199 assert(0 && "Unexpected abbrev ordering!"); 1200 } 1201 { // INST_CAST abbrev for FUNCTION_BLOCK. 1202 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1203 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1206 Log2_32_Ceil(VE.getTypes().size()+1))); 1207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1208 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1209 Abbv) != FUNCTION_INST_CAST_ABBREV) 1210 assert(0 && "Unexpected abbrev ordering!"); 1211 } 1212 1213 { // INST_RET abbrev for FUNCTION_BLOCK. 1214 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1215 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1216 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1217 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1218 assert(0 && "Unexpected abbrev ordering!"); 1219 } 1220 { // INST_RET abbrev for FUNCTION_BLOCK. 1221 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1222 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1224 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1225 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1226 assert(0 && "Unexpected abbrev ordering!"); 1227 } 1228 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1229 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1230 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1231 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1232 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1233 assert(0 && "Unexpected abbrev ordering!"); 1234 } 1235 1236 Stream.ExitBlock(); 1237 } 1238 1239 1240 /// WriteModule - Emit the specified module to the bitstream. 1241 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1242 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1243 1244 // Emit the version number if it is non-zero. 1245 if (CurVersion) { 1246 SmallVector<unsigned, 1> Vals; 1247 Vals.push_back(CurVersion); 1248 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1249 } 1250 1251 // Analyze the module, enumerating globals, functions, etc. 1252 ValueEnumerator VE(M); 1253 1254 // Emit blockinfo, which defines the standard abbreviations etc. 1255 WriteBlockInfo(VE, Stream); 1256 1257 // Emit information about parameter attributes. 1258 WriteAttributeTable(VE, Stream); 1259 1260 // Emit information describing all of the types in the module. 1261 WriteTypeTable(VE, Stream); 1262 1263 // Emit top-level description of module, including target triple, inline asm, 1264 // descriptors for global variables, and function prototype info. 1265 WriteModuleInfo(M, VE, Stream); 1266 1267 // Emit constants. 1268 WriteModuleConstants(VE, Stream); 1269 1270 // If we have any aggregate values in the value table, purge them - these can 1271 // only be used to initialize global variables. Doing so makes the value 1272 // namespace smaller for code in functions. 1273 int NumNonAggregates = VE.PurgeAggregateValues(); 1274 if (NumNonAggregates != -1) { 1275 SmallVector<unsigned, 1> Vals; 1276 Vals.push_back(NumNonAggregates); 1277 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1278 } 1279 1280 // Emit function bodies. 1281 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1282 if (!I->isDeclaration()) 1283 WriteFunction(*I, VE, Stream); 1284 1285 // Emit the type symbol table information. 1286 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1287 1288 // Emit names for globals/functions etc. 1289 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1290 1291 Stream.ExitBlock(); 1292 } 1293 1294 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1295 /// header and trailer to make it compatible with the system archiver. To do 1296 /// this we emit the following header, and then emit a trailer that pads the 1297 /// file out to be a multiple of 16 bytes. 1298 /// 1299 /// struct bc_header { 1300 /// uint32_t Magic; // 0x0B17C0DE 1301 /// uint32_t Version; // Version, currently always 0. 1302 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1303 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1304 /// uint32_t CPUType; // CPU specifier. 1305 /// ... potentially more later ... 1306 /// }; 1307 enum { 1308 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1309 DarwinBCHeaderSize = 5*4 1310 }; 1311 1312 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1313 const std::string &TT) { 1314 unsigned CPUType = ~0U; 1315 1316 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1317 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1318 // specific constants here because they are implicitly part of the Darwin ABI. 1319 enum { 1320 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1321 DARWIN_CPU_TYPE_X86 = 7, 1322 DARWIN_CPU_TYPE_POWERPC = 18 1323 }; 1324 1325 if (TT.find("x86_64-") == 0) 1326 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1327 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1328 TT[4] == '-' && TT[1] - '3' < 6) 1329 CPUType = DARWIN_CPU_TYPE_X86; 1330 else if (TT.find("powerpc-") == 0) 1331 CPUType = DARWIN_CPU_TYPE_POWERPC; 1332 else if (TT.find("powerpc64-") == 0) 1333 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1334 1335 // Traditional Bitcode starts after header. 1336 unsigned BCOffset = DarwinBCHeaderSize; 1337 1338 Stream.Emit(0x0B17C0DE, 32); 1339 Stream.Emit(0 , 32); // Version. 1340 Stream.Emit(BCOffset , 32); 1341 Stream.Emit(0 , 32); // Filled in later. 1342 Stream.Emit(CPUType , 32); 1343 } 1344 1345 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1346 /// finalize the header. 1347 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1348 // Update the size field in the header. 1349 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1350 1351 // If the file is not a multiple of 16 bytes, insert dummy padding. 1352 while (BufferSize & 15) { 1353 Stream.Emit(0, 8); 1354 ++BufferSize; 1355 } 1356 } 1357 1358 1359 /// WriteBitcodeToFile - Write the specified module to the specified output 1360 /// stream. 1361 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1362 raw_os_ostream RawOut(Out); 1363 // If writing to stdout, set binary mode. 1364 if (llvm::cout == Out) 1365 sys::Program::ChangeStdoutToBinary(); 1366 WriteBitcodeToFile(M, RawOut); 1367 } 1368 1369 /// WriteBitcodeToFile - Write the specified module to the specified output 1370 /// stream. 1371 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1372 std::vector<unsigned char> Buffer; 1373 BitstreamWriter Stream(Buffer); 1374 1375 Buffer.reserve(256*1024); 1376 1377 WriteBitcodeToStream( M, Stream ); 1378 1379 // If writing to stdout, set binary mode. 1380 if (&llvm::outs() == &Out) 1381 sys::Program::ChangeStdoutToBinary(); 1382 1383 // Write the generated bitstream to "Out". 1384 Out.write((char*)&Buffer.front(), Buffer.size()); 1385 1386 // Make sure it hits disk now. 1387 Out.flush(); 1388 } 1389 1390 /// WriteBitcodeToStream - Write the specified module to the specified output 1391 /// stream. 1392 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1393 // If this is darwin, emit a file header and trailer if needed. 1394 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1395 if (isDarwin) 1396 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1397 1398 // Emit the file header. 1399 Stream.Emit((unsigned)'B', 8); 1400 Stream.Emit((unsigned)'C', 8); 1401 Stream.Emit(0x0, 4); 1402 Stream.Emit(0xC, 4); 1403 Stream.Emit(0xE, 4); 1404 Stream.Emit(0xD, 4); 1405 1406 // Emit the module. 1407 WriteModule(M, Stream); 1408 1409 if (isDarwin) 1410 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1411 } 1412