1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Analysis/BlockFrequencyInfo.h" 18 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 19 #include "llvm/Analysis/BranchProbabilityInfo.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Bitcode/BitstreamWriter.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/UseListOrder.h" 36 #include "llvm/IR/ValueSymbolTable.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/Program.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cctype> 43 #include <map> 44 using namespace llvm; 45 46 /// These are manifest constants used by the bitcode writer. They do not need to 47 /// be kept in sync with the reader, but need to be consistent within this file. 48 enum { 49 // VALUE_SYMTAB_BLOCK abbrev id's. 50 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 VST_ENTRY_7_ABBREV, 52 VST_ENTRY_6_ABBREV, 53 VST_BBENTRY_6_ABBREV, 54 55 // CONSTANTS_BLOCK abbrev id's. 56 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 57 CONSTANTS_INTEGER_ABBREV, 58 CONSTANTS_CE_CAST_Abbrev, 59 CONSTANTS_NULL_Abbrev, 60 61 // FUNCTION_BLOCK abbrev id's. 62 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 63 FUNCTION_INST_BINOP_ABBREV, 64 FUNCTION_INST_BINOP_FLAGS_ABBREV, 65 FUNCTION_INST_CAST_ABBREV, 66 FUNCTION_INST_RET_VOID_ABBREV, 67 FUNCTION_INST_RET_VAL_ABBREV, 68 FUNCTION_INST_UNREACHABLE_ABBREV, 69 FUNCTION_INST_GEP_ABBREV, 70 }; 71 72 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 73 switch (Opcode) { 74 default: llvm_unreachable("Unknown cast instruction!"); 75 case Instruction::Trunc : return bitc::CAST_TRUNC; 76 case Instruction::ZExt : return bitc::CAST_ZEXT; 77 case Instruction::SExt : return bitc::CAST_SEXT; 78 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 79 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 80 case Instruction::UIToFP : return bitc::CAST_UITOFP; 81 case Instruction::SIToFP : return bitc::CAST_SITOFP; 82 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 83 case Instruction::FPExt : return bitc::CAST_FPEXT; 84 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 85 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 86 case Instruction::BitCast : return bitc::CAST_BITCAST; 87 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 88 } 89 } 90 91 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 92 switch (Opcode) { 93 default: llvm_unreachable("Unknown binary instruction!"); 94 case Instruction::Add: 95 case Instruction::FAdd: return bitc::BINOP_ADD; 96 case Instruction::Sub: 97 case Instruction::FSub: return bitc::BINOP_SUB; 98 case Instruction::Mul: 99 case Instruction::FMul: return bitc::BINOP_MUL; 100 case Instruction::UDiv: return bitc::BINOP_UDIV; 101 case Instruction::FDiv: 102 case Instruction::SDiv: return bitc::BINOP_SDIV; 103 case Instruction::URem: return bitc::BINOP_UREM; 104 case Instruction::FRem: 105 case Instruction::SRem: return bitc::BINOP_SREM; 106 case Instruction::Shl: return bitc::BINOP_SHL; 107 case Instruction::LShr: return bitc::BINOP_LSHR; 108 case Instruction::AShr: return bitc::BINOP_ASHR; 109 case Instruction::And: return bitc::BINOP_AND; 110 case Instruction::Or: return bitc::BINOP_OR; 111 case Instruction::Xor: return bitc::BINOP_XOR; 112 } 113 } 114 115 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 116 switch (Op) { 117 default: llvm_unreachable("Unknown RMW operation!"); 118 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 119 case AtomicRMWInst::Add: return bitc::RMW_ADD; 120 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 121 case AtomicRMWInst::And: return bitc::RMW_AND; 122 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 123 case AtomicRMWInst::Or: return bitc::RMW_OR; 124 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 125 case AtomicRMWInst::Max: return bitc::RMW_MAX; 126 case AtomicRMWInst::Min: return bitc::RMW_MIN; 127 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 128 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 129 } 130 } 131 132 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 133 switch (Ordering) { 134 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 135 case Unordered: return bitc::ORDERING_UNORDERED; 136 case Monotonic: return bitc::ORDERING_MONOTONIC; 137 case Acquire: return bitc::ORDERING_ACQUIRE; 138 case Release: return bitc::ORDERING_RELEASE; 139 case AcquireRelease: return bitc::ORDERING_ACQREL; 140 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 141 } 142 llvm_unreachable("Invalid ordering"); 143 } 144 145 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 146 switch (SynchScope) { 147 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 148 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 149 } 150 llvm_unreachable("Invalid synch scope"); 151 } 152 153 static void WriteStringRecord(unsigned Code, StringRef Str, 154 unsigned AbbrevToUse, BitstreamWriter &Stream) { 155 SmallVector<unsigned, 64> Vals; 156 157 // Code: [strchar x N] 158 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 159 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 160 AbbrevToUse = 0; 161 Vals.push_back(Str[i]); 162 } 163 164 // Emit the finished record. 165 Stream.EmitRecord(Code, Vals, AbbrevToUse); 166 } 167 168 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 169 switch (Kind) { 170 case Attribute::Alignment: 171 return bitc::ATTR_KIND_ALIGNMENT; 172 case Attribute::AlwaysInline: 173 return bitc::ATTR_KIND_ALWAYS_INLINE; 174 case Attribute::ArgMemOnly: 175 return bitc::ATTR_KIND_ARGMEMONLY; 176 case Attribute::Builtin: 177 return bitc::ATTR_KIND_BUILTIN; 178 case Attribute::ByVal: 179 return bitc::ATTR_KIND_BY_VAL; 180 case Attribute::Convergent: 181 return bitc::ATTR_KIND_CONVERGENT; 182 case Attribute::InAlloca: 183 return bitc::ATTR_KIND_IN_ALLOCA; 184 case Attribute::Cold: 185 return bitc::ATTR_KIND_COLD; 186 case Attribute::InaccessibleMemOnly: 187 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 188 case Attribute::InaccessibleMemOrArgMemOnly: 189 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 190 case Attribute::InlineHint: 191 return bitc::ATTR_KIND_INLINE_HINT; 192 case Attribute::InReg: 193 return bitc::ATTR_KIND_IN_REG; 194 case Attribute::JumpTable: 195 return bitc::ATTR_KIND_JUMP_TABLE; 196 case Attribute::MinSize: 197 return bitc::ATTR_KIND_MIN_SIZE; 198 case Attribute::Naked: 199 return bitc::ATTR_KIND_NAKED; 200 case Attribute::Nest: 201 return bitc::ATTR_KIND_NEST; 202 case Attribute::NoAlias: 203 return bitc::ATTR_KIND_NO_ALIAS; 204 case Attribute::NoBuiltin: 205 return bitc::ATTR_KIND_NO_BUILTIN; 206 case Attribute::NoCapture: 207 return bitc::ATTR_KIND_NO_CAPTURE; 208 case Attribute::NoDuplicate: 209 return bitc::ATTR_KIND_NO_DUPLICATE; 210 case Attribute::NoImplicitFloat: 211 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 212 case Attribute::NoInline: 213 return bitc::ATTR_KIND_NO_INLINE; 214 case Attribute::NoRecurse: 215 return bitc::ATTR_KIND_NO_RECURSE; 216 case Attribute::NonLazyBind: 217 return bitc::ATTR_KIND_NON_LAZY_BIND; 218 case Attribute::NonNull: 219 return bitc::ATTR_KIND_NON_NULL; 220 case Attribute::Dereferenceable: 221 return bitc::ATTR_KIND_DEREFERENCEABLE; 222 case Attribute::DereferenceableOrNull: 223 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 224 case Attribute::NoRedZone: 225 return bitc::ATTR_KIND_NO_RED_ZONE; 226 case Attribute::NoReturn: 227 return bitc::ATTR_KIND_NO_RETURN; 228 case Attribute::NoUnwind: 229 return bitc::ATTR_KIND_NO_UNWIND; 230 case Attribute::OptimizeForSize: 231 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 232 case Attribute::OptimizeNone: 233 return bitc::ATTR_KIND_OPTIMIZE_NONE; 234 case Attribute::ReadNone: 235 return bitc::ATTR_KIND_READ_NONE; 236 case Attribute::ReadOnly: 237 return bitc::ATTR_KIND_READ_ONLY; 238 case Attribute::Returned: 239 return bitc::ATTR_KIND_RETURNED; 240 case Attribute::ReturnsTwice: 241 return bitc::ATTR_KIND_RETURNS_TWICE; 242 case Attribute::SExt: 243 return bitc::ATTR_KIND_S_EXT; 244 case Attribute::StackAlignment: 245 return bitc::ATTR_KIND_STACK_ALIGNMENT; 246 case Attribute::StackProtect: 247 return bitc::ATTR_KIND_STACK_PROTECT; 248 case Attribute::StackProtectReq: 249 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 250 case Attribute::StackProtectStrong: 251 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 252 case Attribute::SafeStack: 253 return bitc::ATTR_KIND_SAFESTACK; 254 case Attribute::StructRet: 255 return bitc::ATTR_KIND_STRUCT_RET; 256 case Attribute::SanitizeAddress: 257 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 258 case Attribute::SanitizeThread: 259 return bitc::ATTR_KIND_SANITIZE_THREAD; 260 case Attribute::SanitizeMemory: 261 return bitc::ATTR_KIND_SANITIZE_MEMORY; 262 case Attribute::UWTable: 263 return bitc::ATTR_KIND_UW_TABLE; 264 case Attribute::ZExt: 265 return bitc::ATTR_KIND_Z_EXT; 266 case Attribute::EndAttrKinds: 267 llvm_unreachable("Can not encode end-attribute kinds marker."); 268 case Attribute::None: 269 llvm_unreachable("Can not encode none-attribute."); 270 } 271 272 llvm_unreachable("Trying to encode unknown attribute"); 273 } 274 275 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 276 BitstreamWriter &Stream) { 277 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 278 if (AttrGrps.empty()) return; 279 280 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 281 282 SmallVector<uint64_t, 64> Record; 283 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 284 AttributeSet AS = AttrGrps[i]; 285 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 286 AttributeSet A = AS.getSlotAttributes(i); 287 288 Record.push_back(VE.getAttributeGroupID(A)); 289 Record.push_back(AS.getSlotIndex(i)); 290 291 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 292 I != E; ++I) { 293 Attribute Attr = *I; 294 if (Attr.isEnumAttribute()) { 295 Record.push_back(0); 296 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 297 } else if (Attr.isIntAttribute()) { 298 Record.push_back(1); 299 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 300 Record.push_back(Attr.getValueAsInt()); 301 } else { 302 StringRef Kind = Attr.getKindAsString(); 303 StringRef Val = Attr.getValueAsString(); 304 305 Record.push_back(Val.empty() ? 3 : 4); 306 Record.append(Kind.begin(), Kind.end()); 307 Record.push_back(0); 308 if (!Val.empty()) { 309 Record.append(Val.begin(), Val.end()); 310 Record.push_back(0); 311 } 312 } 313 } 314 315 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 316 Record.clear(); 317 } 318 } 319 320 Stream.ExitBlock(); 321 } 322 323 static void WriteAttributeTable(const ValueEnumerator &VE, 324 BitstreamWriter &Stream) { 325 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 326 if (Attrs.empty()) return; 327 328 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 329 330 SmallVector<uint64_t, 64> Record; 331 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 332 const AttributeSet &A = Attrs[i]; 333 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 334 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 335 336 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 337 Record.clear(); 338 } 339 340 Stream.ExitBlock(); 341 } 342 343 /// WriteTypeTable - Write out the type table for a module. 344 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 345 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 346 347 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 348 SmallVector<uint64_t, 64> TypeVals; 349 350 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 351 352 // Abbrev for TYPE_CODE_POINTER. 353 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 354 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 356 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 357 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 358 359 // Abbrev for TYPE_CODE_FUNCTION. 360 Abbv = new BitCodeAbbrev(); 361 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 365 366 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 367 368 // Abbrev for TYPE_CODE_STRUCT_ANON. 369 Abbv = new BitCodeAbbrev(); 370 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Abbrev for TYPE_CODE_STRUCT_NAME. 378 Abbv = new BitCodeAbbrev(); 379 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 382 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 383 384 // Abbrev for TYPE_CODE_STRUCT_NAMED. 385 Abbv = new BitCodeAbbrev(); 386 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 390 391 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 392 393 // Abbrev for TYPE_CODE_ARRAY. 394 Abbv = new BitCodeAbbrev(); 395 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 398 399 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 400 401 // Emit an entry count so the reader can reserve space. 402 TypeVals.push_back(TypeList.size()); 403 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 404 TypeVals.clear(); 405 406 // Loop over all of the types, emitting each in turn. 407 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 408 Type *T = TypeList[i]; 409 int AbbrevToUse = 0; 410 unsigned Code = 0; 411 412 switch (T->getTypeID()) { 413 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 414 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 415 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 416 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 417 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 418 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 419 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 420 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 421 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 422 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 423 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 424 case Type::IntegerTyID: 425 // INTEGER: [width] 426 Code = bitc::TYPE_CODE_INTEGER; 427 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 428 break; 429 case Type::PointerTyID: { 430 PointerType *PTy = cast<PointerType>(T); 431 // POINTER: [pointee type, address space] 432 Code = bitc::TYPE_CODE_POINTER; 433 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 434 unsigned AddressSpace = PTy->getAddressSpace(); 435 TypeVals.push_back(AddressSpace); 436 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 437 break; 438 } 439 case Type::FunctionTyID: { 440 FunctionType *FT = cast<FunctionType>(T); 441 // FUNCTION: [isvararg, retty, paramty x N] 442 Code = bitc::TYPE_CODE_FUNCTION; 443 TypeVals.push_back(FT->isVarArg()); 444 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 445 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 446 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 447 AbbrevToUse = FunctionAbbrev; 448 break; 449 } 450 case Type::StructTyID: { 451 StructType *ST = cast<StructType>(T); 452 // STRUCT: [ispacked, eltty x N] 453 TypeVals.push_back(ST->isPacked()); 454 // Output all of the element types. 455 for (StructType::element_iterator I = ST->element_begin(), 456 E = ST->element_end(); I != E; ++I) 457 TypeVals.push_back(VE.getTypeID(*I)); 458 459 if (ST->isLiteral()) { 460 Code = bitc::TYPE_CODE_STRUCT_ANON; 461 AbbrevToUse = StructAnonAbbrev; 462 } else { 463 if (ST->isOpaque()) { 464 Code = bitc::TYPE_CODE_OPAQUE; 465 } else { 466 Code = bitc::TYPE_CODE_STRUCT_NAMED; 467 AbbrevToUse = StructNamedAbbrev; 468 } 469 470 // Emit the name if it is present. 471 if (!ST->getName().empty()) 472 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 473 StructNameAbbrev, Stream); 474 } 475 break; 476 } 477 case Type::ArrayTyID: { 478 ArrayType *AT = cast<ArrayType>(T); 479 // ARRAY: [numelts, eltty] 480 Code = bitc::TYPE_CODE_ARRAY; 481 TypeVals.push_back(AT->getNumElements()); 482 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 483 AbbrevToUse = ArrayAbbrev; 484 break; 485 } 486 case Type::VectorTyID: { 487 VectorType *VT = cast<VectorType>(T); 488 // VECTOR [numelts, eltty] 489 Code = bitc::TYPE_CODE_VECTOR; 490 TypeVals.push_back(VT->getNumElements()); 491 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 492 break; 493 } 494 } 495 496 // Emit the finished record. 497 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 498 TypeVals.clear(); 499 } 500 501 Stream.ExitBlock(); 502 } 503 504 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 505 switch (Linkage) { 506 case GlobalValue::ExternalLinkage: 507 return 0; 508 case GlobalValue::WeakAnyLinkage: 509 return 16; 510 case GlobalValue::AppendingLinkage: 511 return 2; 512 case GlobalValue::InternalLinkage: 513 return 3; 514 case GlobalValue::LinkOnceAnyLinkage: 515 return 18; 516 case GlobalValue::ExternalWeakLinkage: 517 return 7; 518 case GlobalValue::CommonLinkage: 519 return 8; 520 case GlobalValue::PrivateLinkage: 521 return 9; 522 case GlobalValue::WeakODRLinkage: 523 return 17; 524 case GlobalValue::LinkOnceODRLinkage: 525 return 19; 526 case GlobalValue::AvailableExternallyLinkage: 527 return 12; 528 } 529 llvm_unreachable("Invalid linkage"); 530 } 531 532 static unsigned getEncodedLinkage(const GlobalValue &GV) { 533 return getEncodedLinkage(GV.getLinkage()); 534 } 535 536 static unsigned getEncodedVisibility(const GlobalValue &GV) { 537 switch (GV.getVisibility()) { 538 case GlobalValue::DefaultVisibility: return 0; 539 case GlobalValue::HiddenVisibility: return 1; 540 case GlobalValue::ProtectedVisibility: return 2; 541 } 542 llvm_unreachable("Invalid visibility"); 543 } 544 545 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 546 switch (GV.getDLLStorageClass()) { 547 case GlobalValue::DefaultStorageClass: return 0; 548 case GlobalValue::DLLImportStorageClass: return 1; 549 case GlobalValue::DLLExportStorageClass: return 2; 550 } 551 llvm_unreachable("Invalid DLL storage class"); 552 } 553 554 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 555 switch (GV.getThreadLocalMode()) { 556 case GlobalVariable::NotThreadLocal: return 0; 557 case GlobalVariable::GeneralDynamicTLSModel: return 1; 558 case GlobalVariable::LocalDynamicTLSModel: return 2; 559 case GlobalVariable::InitialExecTLSModel: return 3; 560 case GlobalVariable::LocalExecTLSModel: return 4; 561 } 562 llvm_unreachable("Invalid TLS model"); 563 } 564 565 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 566 switch (C.getSelectionKind()) { 567 case Comdat::Any: 568 return bitc::COMDAT_SELECTION_KIND_ANY; 569 case Comdat::ExactMatch: 570 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 571 case Comdat::Largest: 572 return bitc::COMDAT_SELECTION_KIND_LARGEST; 573 case Comdat::NoDuplicates: 574 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 575 case Comdat::SameSize: 576 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 577 } 578 llvm_unreachable("Invalid selection kind"); 579 } 580 581 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 582 SmallVector<unsigned, 64> Vals; 583 for (const Comdat *C : VE.getComdats()) { 584 // COMDAT: [selection_kind, name] 585 Vals.push_back(getEncodedComdatSelectionKind(*C)); 586 size_t Size = C->getName().size(); 587 assert(isUInt<32>(Size)); 588 Vals.push_back(Size); 589 for (char Chr : C->getName()) 590 Vals.push_back((unsigned char)Chr); 591 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 592 Vals.clear(); 593 } 594 } 595 596 /// Write a record that will eventually hold the word offset of the 597 /// module-level VST. For now the offset is 0, which will be backpatched 598 /// after the real VST is written. Returns the bit offset to backpatch. 599 static uint64_t WriteValueSymbolTableForwardDecl(BitstreamWriter &Stream) { 600 // Write a placeholder value in for the offset of the real VST, 601 // which is written after the function blocks so that it can include 602 // the offset of each function. The placeholder offset will be 603 // updated when the real VST is written. 604 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 605 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 606 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 607 // hold the real VST offset. Must use fixed instead of VBR as we don't 608 // know how many VBR chunks to reserve ahead of time. 609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 610 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 611 612 // Emit the placeholder 613 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 614 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 615 616 // Compute and return the bit offset to the placeholder, which will be 617 // patched when the real VST is written. We can simply subtract the 32-bit 618 // fixed size from the current bit number to get the location to backpatch. 619 return Stream.GetCurrentBitNo() - 32; 620 } 621 622 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 623 624 /// Determine the encoding to use for the given string name and length. 625 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 626 bool isChar6 = true; 627 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 628 if (isChar6) 629 isChar6 = BitCodeAbbrevOp::isChar6(*C); 630 if ((unsigned char)*C & 128) 631 // don't bother scanning the rest. 632 return SE_Fixed8; 633 } 634 if (isChar6) 635 return SE_Char6; 636 else 637 return SE_Fixed7; 638 } 639 640 /// Emit top-level description of module, including target triple, inline asm, 641 /// descriptors for global variables, and function prototype info. 642 /// Returns the bit offset to backpatch with the location of the real VST. 643 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 644 BitstreamWriter &Stream) { 645 // Emit various pieces of data attached to a module. 646 if (!M->getTargetTriple().empty()) 647 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 648 0/*TODO*/, Stream); 649 const std::string &DL = M->getDataLayoutStr(); 650 if (!DL.empty()) 651 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 652 if (!M->getModuleInlineAsm().empty()) 653 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 654 0/*TODO*/, Stream); 655 656 // Emit information about sections and GC, computing how many there are. Also 657 // compute the maximum alignment value. 658 std::map<std::string, unsigned> SectionMap; 659 std::map<std::string, unsigned> GCMap; 660 unsigned MaxAlignment = 0; 661 unsigned MaxGlobalType = 0; 662 for (const GlobalValue &GV : M->globals()) { 663 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 664 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 665 if (GV.hasSection()) { 666 // Give section names unique ID's. 667 unsigned &Entry = SectionMap[GV.getSection()]; 668 if (!Entry) { 669 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 670 0/*TODO*/, Stream); 671 Entry = SectionMap.size(); 672 } 673 } 674 } 675 for (const Function &F : *M) { 676 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 677 if (F.hasSection()) { 678 // Give section names unique ID's. 679 unsigned &Entry = SectionMap[F.getSection()]; 680 if (!Entry) { 681 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 682 0/*TODO*/, Stream); 683 Entry = SectionMap.size(); 684 } 685 } 686 if (F.hasGC()) { 687 // Same for GC names. 688 unsigned &Entry = GCMap[F.getGC()]; 689 if (!Entry) { 690 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 691 0/*TODO*/, Stream); 692 Entry = GCMap.size(); 693 } 694 } 695 } 696 697 // Emit abbrev for globals, now that we know # sections and max alignment. 698 unsigned SimpleGVarAbbrev = 0; 699 if (!M->global_empty()) { 700 // Add an abbrev for common globals with no visibility or thread localness. 701 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 702 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 704 Log2_32_Ceil(MaxGlobalType+1))); 705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 706 //| explicitType << 1 707 //| constant 708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 710 if (MaxAlignment == 0) // Alignment. 711 Abbv->Add(BitCodeAbbrevOp(0)); 712 else { 713 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 715 Log2_32_Ceil(MaxEncAlignment+1))); 716 } 717 if (SectionMap.empty()) // Section. 718 Abbv->Add(BitCodeAbbrevOp(0)); 719 else 720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 721 Log2_32_Ceil(SectionMap.size()+1))); 722 // Don't bother emitting vis + thread local. 723 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 724 } 725 726 // Emit the global variable information. 727 SmallVector<unsigned, 64> Vals; 728 for (const GlobalVariable &GV : M->globals()) { 729 unsigned AbbrevToUse = 0; 730 731 // GLOBALVAR: [type, isconst, initid, 732 // linkage, alignment, section, visibility, threadlocal, 733 // unnamed_addr, externally_initialized, dllstorageclass, 734 // comdat] 735 Vals.push_back(VE.getTypeID(GV.getValueType())); 736 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 737 Vals.push_back(GV.isDeclaration() ? 0 : 738 (VE.getValueID(GV.getInitializer()) + 1)); 739 Vals.push_back(getEncodedLinkage(GV)); 740 Vals.push_back(Log2_32(GV.getAlignment())+1); 741 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 742 if (GV.isThreadLocal() || 743 GV.getVisibility() != GlobalValue::DefaultVisibility || 744 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 745 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 746 GV.hasComdat()) { 747 Vals.push_back(getEncodedVisibility(GV)); 748 Vals.push_back(getEncodedThreadLocalMode(GV)); 749 Vals.push_back(GV.hasUnnamedAddr()); 750 Vals.push_back(GV.isExternallyInitialized()); 751 Vals.push_back(getEncodedDLLStorageClass(GV)); 752 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 753 } else { 754 AbbrevToUse = SimpleGVarAbbrev; 755 } 756 757 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 758 Vals.clear(); 759 } 760 761 // Emit the function proto information. 762 for (const Function &F : *M) { 763 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 764 // section, visibility, gc, unnamed_addr, prologuedata, 765 // dllstorageclass, comdat, prefixdata, personalityfn] 766 Vals.push_back(VE.getTypeID(F.getFunctionType())); 767 Vals.push_back(F.getCallingConv()); 768 Vals.push_back(F.isDeclaration()); 769 Vals.push_back(getEncodedLinkage(F)); 770 Vals.push_back(VE.getAttributeID(F.getAttributes())); 771 Vals.push_back(Log2_32(F.getAlignment())+1); 772 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 773 Vals.push_back(getEncodedVisibility(F)); 774 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 775 Vals.push_back(F.hasUnnamedAddr()); 776 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 777 : 0); 778 Vals.push_back(getEncodedDLLStorageClass(F)); 779 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 780 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 781 : 0); 782 Vals.push_back( 783 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 784 785 unsigned AbbrevToUse = 0; 786 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 787 Vals.clear(); 788 } 789 790 // Emit the alias information. 791 for (const GlobalAlias &A : M->aliases()) { 792 // ALIAS: [alias type, aliasee val#, linkage, visibility] 793 Vals.push_back(VE.getTypeID(A.getValueType())); 794 Vals.push_back(A.getType()->getAddressSpace()); 795 Vals.push_back(VE.getValueID(A.getAliasee())); 796 Vals.push_back(getEncodedLinkage(A)); 797 Vals.push_back(getEncodedVisibility(A)); 798 Vals.push_back(getEncodedDLLStorageClass(A)); 799 Vals.push_back(getEncodedThreadLocalMode(A)); 800 Vals.push_back(A.hasUnnamedAddr()); 801 unsigned AbbrevToUse = 0; 802 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 803 Vals.clear(); 804 } 805 806 // Write a record indicating the number of module-level metadata IDs 807 // This is needed because the ids of metadata are assigned implicitly 808 // based on their ordering in the bitcode, with the function-level 809 // metadata ids starting after the module-level metadata ids. For 810 // function importing where we lazy load the metadata as a postpass, 811 // we want to avoid parsing the module-level metadata before parsing 812 // the imported functions. 813 { 814 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 815 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_METADATA_VALUES)); 816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 817 unsigned MDValsAbbrev = Stream.EmitAbbrev(Abbv); 818 Vals.push_back(VE.numMDs()); 819 Stream.EmitRecord(bitc::MODULE_CODE_METADATA_VALUES, Vals, MDValsAbbrev); 820 Vals.clear(); 821 } 822 823 // Emit the module's source file name. 824 { 825 StringEncoding Bits = getStringEncoding(M->getSourceFileName().data(), 826 M->getSourceFileName().size()); 827 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 828 if (Bits == SE_Char6) 829 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 830 else if (Bits == SE_Fixed7) 831 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 832 833 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 834 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 835 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 837 Abbv->Add(AbbrevOpToUse); 838 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 839 840 for (const auto P : M->getSourceFileName()) 841 Vals.push_back((unsigned char)P); 842 843 // Emit the finished record. 844 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 845 Vals.clear(); 846 } 847 848 // If we have a VST, write the VSTOFFSET record placeholder and return 849 // its offset. 850 if (M->getValueSymbolTable().empty()) 851 return 0; 852 return WriteValueSymbolTableForwardDecl(Stream); 853 } 854 855 static uint64_t GetOptimizationFlags(const Value *V) { 856 uint64_t Flags = 0; 857 858 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 859 if (OBO->hasNoSignedWrap()) 860 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 861 if (OBO->hasNoUnsignedWrap()) 862 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 863 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 864 if (PEO->isExact()) 865 Flags |= 1 << bitc::PEO_EXACT; 866 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 867 if (FPMO->hasUnsafeAlgebra()) 868 Flags |= FastMathFlags::UnsafeAlgebra; 869 if (FPMO->hasNoNaNs()) 870 Flags |= FastMathFlags::NoNaNs; 871 if (FPMO->hasNoInfs()) 872 Flags |= FastMathFlags::NoInfs; 873 if (FPMO->hasNoSignedZeros()) 874 Flags |= FastMathFlags::NoSignedZeros; 875 if (FPMO->hasAllowReciprocal()) 876 Flags |= FastMathFlags::AllowReciprocal; 877 } 878 879 return Flags; 880 } 881 882 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 883 const ValueEnumerator &VE, 884 BitstreamWriter &Stream, 885 SmallVectorImpl<uint64_t> &Record) { 886 // Mimic an MDNode with a value as one operand. 887 Value *V = MD->getValue(); 888 Record.push_back(VE.getTypeID(V->getType())); 889 Record.push_back(VE.getValueID(V)); 890 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 891 Record.clear(); 892 } 893 894 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 895 BitstreamWriter &Stream, 896 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 897 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 898 Metadata *MD = N->getOperand(i); 899 assert(!(MD && isa<LocalAsMetadata>(MD)) && 900 "Unexpected function-local metadata"); 901 Record.push_back(VE.getMetadataOrNullID(MD)); 902 } 903 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 904 : bitc::METADATA_NODE, 905 Record, Abbrev); 906 Record.clear(); 907 } 908 909 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE, 910 BitstreamWriter &Stream, 911 SmallVectorImpl<uint64_t> &Record, 912 unsigned Abbrev) { 913 Record.push_back(N->isDistinct()); 914 Record.push_back(N->getLine()); 915 Record.push_back(N->getColumn()); 916 Record.push_back(VE.getMetadataID(N->getScope())); 917 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 918 919 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 920 Record.clear(); 921 } 922 923 static void WriteGenericDINode(const GenericDINode *N, 924 const ValueEnumerator &VE, 925 BitstreamWriter &Stream, 926 SmallVectorImpl<uint64_t> &Record, 927 unsigned Abbrev) { 928 Record.push_back(N->isDistinct()); 929 Record.push_back(N->getTag()); 930 Record.push_back(0); // Per-tag version field; unused for now. 931 932 for (auto &I : N->operands()) 933 Record.push_back(VE.getMetadataOrNullID(I)); 934 935 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 936 Record.clear(); 937 } 938 939 static uint64_t rotateSign(int64_t I) { 940 uint64_t U = I; 941 return I < 0 ? ~(U << 1) : U << 1; 942 } 943 944 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &, 945 BitstreamWriter &Stream, 946 SmallVectorImpl<uint64_t> &Record, 947 unsigned Abbrev) { 948 Record.push_back(N->isDistinct()); 949 Record.push_back(N->getCount()); 950 Record.push_back(rotateSign(N->getLowerBound())); 951 952 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 953 Record.clear(); 954 } 955 956 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 957 BitstreamWriter &Stream, 958 SmallVectorImpl<uint64_t> &Record, 959 unsigned Abbrev) { 960 Record.push_back(N->isDistinct()); 961 Record.push_back(rotateSign(N->getValue())); 962 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 963 964 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 965 Record.clear(); 966 } 967 968 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 969 BitstreamWriter &Stream, 970 SmallVectorImpl<uint64_t> &Record, 971 unsigned Abbrev) { 972 Record.push_back(N->isDistinct()); 973 Record.push_back(N->getTag()); 974 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 975 Record.push_back(N->getSizeInBits()); 976 Record.push_back(N->getAlignInBits()); 977 Record.push_back(N->getEncoding()); 978 979 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 980 Record.clear(); 981 } 982 983 static void WriteDIDerivedType(const DIDerivedType *N, 984 const ValueEnumerator &VE, 985 BitstreamWriter &Stream, 986 SmallVectorImpl<uint64_t> &Record, 987 unsigned Abbrev) { 988 Record.push_back(N->isDistinct()); 989 Record.push_back(N->getTag()); 990 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 991 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 992 Record.push_back(N->getLine()); 993 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 994 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 995 Record.push_back(N->getSizeInBits()); 996 Record.push_back(N->getAlignInBits()); 997 Record.push_back(N->getOffsetInBits()); 998 Record.push_back(N->getFlags()); 999 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1000 1001 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1002 Record.clear(); 1003 } 1004 1005 static void WriteDICompositeType(const DICompositeType *N, 1006 const ValueEnumerator &VE, 1007 BitstreamWriter &Stream, 1008 SmallVectorImpl<uint64_t> &Record, 1009 unsigned Abbrev) { 1010 Record.push_back(N->isDistinct()); 1011 Record.push_back(N->getTag()); 1012 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1013 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1014 Record.push_back(N->getLine()); 1015 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1016 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1017 Record.push_back(N->getSizeInBits()); 1018 Record.push_back(N->getAlignInBits()); 1019 Record.push_back(N->getOffsetInBits()); 1020 Record.push_back(N->getFlags()); 1021 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1022 Record.push_back(N->getRuntimeLang()); 1023 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1024 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1025 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1026 1027 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1028 Record.clear(); 1029 } 1030 1031 static void WriteDISubroutineType(const DISubroutineType *N, 1032 const ValueEnumerator &VE, 1033 BitstreamWriter &Stream, 1034 SmallVectorImpl<uint64_t> &Record, 1035 unsigned Abbrev) { 1036 Record.push_back(N->isDistinct()); 1037 Record.push_back(N->getFlags()); 1038 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1039 1040 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1041 Record.clear(); 1042 } 1043 1044 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE, 1045 BitstreamWriter &Stream, 1046 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1047 Record.push_back(N->isDistinct()); 1048 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1049 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1050 1051 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1052 Record.clear(); 1053 } 1054 1055 static void WriteDICompileUnit(const DICompileUnit *N, 1056 const ValueEnumerator &VE, 1057 BitstreamWriter &Stream, 1058 SmallVectorImpl<uint64_t> &Record, 1059 unsigned Abbrev) { 1060 assert(N->isDistinct() && "Expected distinct compile units"); 1061 Record.push_back(/* IsDistinct */ true); 1062 Record.push_back(N->getSourceLanguage()); 1063 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1064 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1065 Record.push_back(N->isOptimized()); 1066 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1067 Record.push_back(N->getRuntimeVersion()); 1068 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1069 Record.push_back(N->getEmissionKind()); 1070 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1071 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1072 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 1073 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1074 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1075 Record.push_back(N->getDWOId()); 1076 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1077 1078 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1079 Record.clear(); 1080 } 1081 1082 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 1083 BitstreamWriter &Stream, 1084 SmallVectorImpl<uint64_t> &Record, 1085 unsigned Abbrev) { 1086 Record.push_back(N->isDistinct()); 1087 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1088 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1089 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1090 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1091 Record.push_back(N->getLine()); 1092 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1093 Record.push_back(N->isLocalToUnit()); 1094 Record.push_back(N->isDefinition()); 1095 Record.push_back(N->getScopeLine()); 1096 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1097 Record.push_back(N->getVirtuality()); 1098 Record.push_back(N->getVirtualIndex()); 1099 Record.push_back(N->getFlags()); 1100 Record.push_back(N->isOptimized()); 1101 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1102 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1103 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1104 1105 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1106 Record.clear(); 1107 } 1108 1109 static void WriteDILexicalBlock(const DILexicalBlock *N, 1110 const ValueEnumerator &VE, 1111 BitstreamWriter &Stream, 1112 SmallVectorImpl<uint64_t> &Record, 1113 unsigned Abbrev) { 1114 Record.push_back(N->isDistinct()); 1115 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1116 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1117 Record.push_back(N->getLine()); 1118 Record.push_back(N->getColumn()); 1119 1120 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1121 Record.clear(); 1122 } 1123 1124 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N, 1125 const ValueEnumerator &VE, 1126 BitstreamWriter &Stream, 1127 SmallVectorImpl<uint64_t> &Record, 1128 unsigned Abbrev) { 1129 Record.push_back(N->isDistinct()); 1130 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1131 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1132 Record.push_back(N->getDiscriminator()); 1133 1134 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1135 Record.clear(); 1136 } 1137 1138 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1139 BitstreamWriter &Stream, 1140 SmallVectorImpl<uint64_t> &Record, 1141 unsigned Abbrev) { 1142 Record.push_back(N->isDistinct()); 1143 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1144 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1145 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1146 Record.push_back(N->getLine()); 1147 1148 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1149 Record.clear(); 1150 } 1151 1152 static void WriteDIMacro(const DIMacro *N, const ValueEnumerator &VE, 1153 BitstreamWriter &Stream, 1154 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1155 Record.push_back(N->isDistinct()); 1156 Record.push_back(N->getMacinfoType()); 1157 Record.push_back(N->getLine()); 1158 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1159 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1160 1161 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1162 Record.clear(); 1163 } 1164 1165 static void WriteDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE, 1166 BitstreamWriter &Stream, 1167 SmallVectorImpl<uint64_t> &Record, 1168 unsigned Abbrev) { 1169 Record.push_back(N->isDistinct()); 1170 Record.push_back(N->getMacinfoType()); 1171 Record.push_back(N->getLine()); 1172 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1173 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1174 1175 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1176 Record.clear(); 1177 } 1178 1179 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE, 1180 BitstreamWriter &Stream, 1181 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1182 Record.push_back(N->isDistinct()); 1183 for (auto &I : N->operands()) 1184 Record.push_back(VE.getMetadataOrNullID(I)); 1185 1186 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1187 Record.clear(); 1188 } 1189 1190 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N, 1191 const ValueEnumerator &VE, 1192 BitstreamWriter &Stream, 1193 SmallVectorImpl<uint64_t> &Record, 1194 unsigned Abbrev) { 1195 Record.push_back(N->isDistinct()); 1196 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1197 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1198 1199 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1200 Record.clear(); 1201 } 1202 1203 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N, 1204 const ValueEnumerator &VE, 1205 BitstreamWriter &Stream, 1206 SmallVectorImpl<uint64_t> &Record, 1207 unsigned Abbrev) { 1208 Record.push_back(N->isDistinct()); 1209 Record.push_back(N->getTag()); 1210 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1211 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1212 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1213 1214 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1215 Record.clear(); 1216 } 1217 1218 static void WriteDIGlobalVariable(const DIGlobalVariable *N, 1219 const ValueEnumerator &VE, 1220 BitstreamWriter &Stream, 1221 SmallVectorImpl<uint64_t> &Record, 1222 unsigned Abbrev) { 1223 Record.push_back(N->isDistinct()); 1224 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1225 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1226 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1227 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1228 Record.push_back(N->getLine()); 1229 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1230 Record.push_back(N->isLocalToUnit()); 1231 Record.push_back(N->isDefinition()); 1232 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1233 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1234 1235 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1236 Record.clear(); 1237 } 1238 1239 static void WriteDILocalVariable(const DILocalVariable *N, 1240 const ValueEnumerator &VE, 1241 BitstreamWriter &Stream, 1242 SmallVectorImpl<uint64_t> &Record, 1243 unsigned Abbrev) { 1244 Record.push_back(N->isDistinct()); 1245 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1246 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1247 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1248 Record.push_back(N->getLine()); 1249 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1250 Record.push_back(N->getArg()); 1251 Record.push_back(N->getFlags()); 1252 1253 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1254 Record.clear(); 1255 } 1256 1257 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &, 1258 BitstreamWriter &Stream, 1259 SmallVectorImpl<uint64_t> &Record, 1260 unsigned Abbrev) { 1261 Record.reserve(N->getElements().size() + 1); 1262 1263 Record.push_back(N->isDistinct()); 1264 Record.append(N->elements_begin(), N->elements_end()); 1265 1266 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1267 Record.clear(); 1268 } 1269 1270 static void WriteDIObjCProperty(const DIObjCProperty *N, 1271 const ValueEnumerator &VE, 1272 BitstreamWriter &Stream, 1273 SmallVectorImpl<uint64_t> &Record, 1274 unsigned Abbrev) { 1275 Record.push_back(N->isDistinct()); 1276 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1277 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1278 Record.push_back(N->getLine()); 1279 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1280 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1281 Record.push_back(N->getAttributes()); 1282 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1283 1284 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1285 Record.clear(); 1286 } 1287 1288 static void WriteDIImportedEntity(const DIImportedEntity *N, 1289 const ValueEnumerator &VE, 1290 BitstreamWriter &Stream, 1291 SmallVectorImpl<uint64_t> &Record, 1292 unsigned Abbrev) { 1293 Record.push_back(N->isDistinct()); 1294 Record.push_back(N->getTag()); 1295 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1296 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1297 Record.push_back(N->getLine()); 1298 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1299 1300 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1301 Record.clear(); 1302 } 1303 1304 static void WriteModuleMetadata(const Module *M, 1305 const ValueEnumerator &VE, 1306 BitstreamWriter &Stream) { 1307 const auto &MDs = VE.getMDs(); 1308 if (MDs.empty() && M->named_metadata_empty()) 1309 return; 1310 1311 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1312 1313 unsigned MDSAbbrev = 0; 1314 if (VE.hasMDString()) { 1315 // Abbrev for METADATA_STRING. 1316 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1317 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1320 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1321 } 1322 1323 // Initialize MDNode abbreviations. 1324 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1325 #include "llvm/IR/Metadata.def" 1326 1327 if (VE.hasDILocation()) { 1328 // Abbrev for METADATA_LOCATION. 1329 // 1330 // Assume the column is usually under 128, and always output the inlined-at 1331 // location (it's never more expensive than building an array size 1). 1332 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1333 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1339 DILocationAbbrev = Stream.EmitAbbrev(Abbv); 1340 } 1341 1342 if (VE.hasGenericDINode()) { 1343 // Abbrev for METADATA_GENERIC_DEBUG. 1344 // 1345 // Assume the column is usually under 128, and always output the inlined-at 1346 // location (it's never more expensive than building an array size 1). 1347 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1348 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1355 GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv); 1356 } 1357 1358 unsigned NameAbbrev = 0; 1359 if (!M->named_metadata_empty()) { 1360 // Abbrev for METADATA_NAME. 1361 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1362 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1365 NameAbbrev = Stream.EmitAbbrev(Abbv); 1366 } 1367 1368 SmallVector<uint64_t, 64> Record; 1369 for (const Metadata *MD : MDs) { 1370 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1371 assert(N->isResolved() && "Expected forward references to be resolved"); 1372 1373 switch (N->getMetadataID()) { 1374 default: 1375 llvm_unreachable("Invalid MDNode subclass"); 1376 #define HANDLE_MDNODE_LEAF(CLASS) \ 1377 case Metadata::CLASS##Kind: \ 1378 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1379 continue; 1380 #include "llvm/IR/Metadata.def" 1381 } 1382 } 1383 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1384 WriteValueAsMetadata(MDC, VE, Stream, Record); 1385 continue; 1386 } 1387 const MDString *MDS = cast<MDString>(MD); 1388 // Code: [strchar x N] 1389 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1390 1391 // Emit the finished record. 1392 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1393 Record.clear(); 1394 } 1395 1396 // Write named metadata. 1397 for (const NamedMDNode &NMD : M->named_metadata()) { 1398 // Write name. 1399 StringRef Str = NMD.getName(); 1400 Record.append(Str.bytes_begin(), Str.bytes_end()); 1401 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1402 Record.clear(); 1403 1404 // Write named metadata operands. 1405 for (const MDNode *N : NMD.operands()) 1406 Record.push_back(VE.getMetadataID(N)); 1407 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1408 Record.clear(); 1409 } 1410 1411 Stream.ExitBlock(); 1412 } 1413 1414 static void WriteFunctionLocalMetadata(const Function &F, 1415 const ValueEnumerator &VE, 1416 BitstreamWriter &Stream) { 1417 bool StartedMetadataBlock = false; 1418 SmallVector<uint64_t, 64> Record; 1419 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1420 VE.getFunctionLocalMDs(); 1421 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1422 assert(MDs[i] && "Expected valid function-local metadata"); 1423 if (!StartedMetadataBlock) { 1424 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1425 StartedMetadataBlock = true; 1426 } 1427 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1428 } 1429 1430 if (StartedMetadataBlock) 1431 Stream.ExitBlock(); 1432 } 1433 1434 static void WriteMetadataAttachment(const Function &F, 1435 const ValueEnumerator &VE, 1436 BitstreamWriter &Stream) { 1437 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1438 1439 SmallVector<uint64_t, 64> Record; 1440 1441 // Write metadata attachments 1442 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1443 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1444 F.getAllMetadata(MDs); 1445 if (!MDs.empty()) { 1446 for (const auto &I : MDs) { 1447 Record.push_back(I.first); 1448 Record.push_back(VE.getMetadataID(I.second)); 1449 } 1450 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1451 Record.clear(); 1452 } 1453 1454 for (const BasicBlock &BB : F) 1455 for (const Instruction &I : BB) { 1456 MDs.clear(); 1457 I.getAllMetadataOtherThanDebugLoc(MDs); 1458 1459 // If no metadata, ignore instruction. 1460 if (MDs.empty()) continue; 1461 1462 Record.push_back(VE.getInstructionID(&I)); 1463 1464 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1465 Record.push_back(MDs[i].first); 1466 Record.push_back(VE.getMetadataID(MDs[i].second)); 1467 } 1468 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1469 Record.clear(); 1470 } 1471 1472 Stream.ExitBlock(); 1473 } 1474 1475 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1476 SmallVector<uint64_t, 64> Record; 1477 1478 // Write metadata kinds 1479 // METADATA_KIND - [n x [id, name]] 1480 SmallVector<StringRef, 8> Names; 1481 M->getMDKindNames(Names); 1482 1483 if (Names.empty()) return; 1484 1485 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1486 1487 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1488 Record.push_back(MDKindID); 1489 StringRef KName = Names[MDKindID]; 1490 Record.append(KName.begin(), KName.end()); 1491 1492 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1493 Record.clear(); 1494 } 1495 1496 Stream.ExitBlock(); 1497 } 1498 1499 static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) { 1500 // Write metadata kinds 1501 // 1502 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1503 // 1504 // OPERAND_BUNDLE_TAG - [strchr x N] 1505 1506 SmallVector<StringRef, 8> Tags; 1507 M->getOperandBundleTags(Tags); 1508 1509 if (Tags.empty()) 1510 return; 1511 1512 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1513 1514 SmallVector<uint64_t, 64> Record; 1515 1516 for (auto Tag : Tags) { 1517 Record.append(Tag.begin(), Tag.end()); 1518 1519 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1520 Record.clear(); 1521 } 1522 1523 Stream.ExitBlock(); 1524 } 1525 1526 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1527 if ((int64_t)V >= 0) 1528 Vals.push_back(V << 1); 1529 else 1530 Vals.push_back((-V << 1) | 1); 1531 } 1532 1533 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1534 const ValueEnumerator &VE, 1535 BitstreamWriter &Stream, bool isGlobal) { 1536 if (FirstVal == LastVal) return; 1537 1538 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1539 1540 unsigned AggregateAbbrev = 0; 1541 unsigned String8Abbrev = 0; 1542 unsigned CString7Abbrev = 0; 1543 unsigned CString6Abbrev = 0; 1544 // If this is a constant pool for the module, emit module-specific abbrevs. 1545 if (isGlobal) { 1546 // Abbrev for CST_CODE_AGGREGATE. 1547 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1548 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1551 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1552 1553 // Abbrev for CST_CODE_STRING. 1554 Abbv = new BitCodeAbbrev(); 1555 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1558 String8Abbrev = Stream.EmitAbbrev(Abbv); 1559 // Abbrev for CST_CODE_CSTRING. 1560 Abbv = new BitCodeAbbrev(); 1561 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1564 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1565 // Abbrev for CST_CODE_CSTRING. 1566 Abbv = new BitCodeAbbrev(); 1567 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1570 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1571 } 1572 1573 SmallVector<uint64_t, 64> Record; 1574 1575 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1576 Type *LastTy = nullptr; 1577 for (unsigned i = FirstVal; i != LastVal; ++i) { 1578 const Value *V = Vals[i].first; 1579 // If we need to switch types, do so now. 1580 if (V->getType() != LastTy) { 1581 LastTy = V->getType(); 1582 Record.push_back(VE.getTypeID(LastTy)); 1583 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1584 CONSTANTS_SETTYPE_ABBREV); 1585 Record.clear(); 1586 } 1587 1588 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1589 Record.push_back(unsigned(IA->hasSideEffects()) | 1590 unsigned(IA->isAlignStack()) << 1 | 1591 unsigned(IA->getDialect()&1) << 2); 1592 1593 // Add the asm string. 1594 const std::string &AsmStr = IA->getAsmString(); 1595 Record.push_back(AsmStr.size()); 1596 Record.append(AsmStr.begin(), AsmStr.end()); 1597 1598 // Add the constraint string. 1599 const std::string &ConstraintStr = IA->getConstraintString(); 1600 Record.push_back(ConstraintStr.size()); 1601 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1602 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1603 Record.clear(); 1604 continue; 1605 } 1606 const Constant *C = cast<Constant>(V); 1607 unsigned Code = -1U; 1608 unsigned AbbrevToUse = 0; 1609 if (C->isNullValue()) { 1610 Code = bitc::CST_CODE_NULL; 1611 } else if (isa<UndefValue>(C)) { 1612 Code = bitc::CST_CODE_UNDEF; 1613 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1614 if (IV->getBitWidth() <= 64) { 1615 uint64_t V = IV->getSExtValue(); 1616 emitSignedInt64(Record, V); 1617 Code = bitc::CST_CODE_INTEGER; 1618 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1619 } else { // Wide integers, > 64 bits in size. 1620 // We have an arbitrary precision integer value to write whose 1621 // bit width is > 64. However, in canonical unsigned integer 1622 // format it is likely that the high bits are going to be zero. 1623 // So, we only write the number of active words. 1624 unsigned NWords = IV->getValue().getActiveWords(); 1625 const uint64_t *RawWords = IV->getValue().getRawData(); 1626 for (unsigned i = 0; i != NWords; ++i) { 1627 emitSignedInt64(Record, RawWords[i]); 1628 } 1629 Code = bitc::CST_CODE_WIDE_INTEGER; 1630 } 1631 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1632 Code = bitc::CST_CODE_FLOAT; 1633 Type *Ty = CFP->getType(); 1634 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1635 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1636 } else if (Ty->isX86_FP80Ty()) { 1637 // api needed to prevent premature destruction 1638 // bits are not in the same order as a normal i80 APInt, compensate. 1639 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1640 const uint64_t *p = api.getRawData(); 1641 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1642 Record.push_back(p[0] & 0xffffLL); 1643 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1644 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1645 const uint64_t *p = api.getRawData(); 1646 Record.push_back(p[0]); 1647 Record.push_back(p[1]); 1648 } else { 1649 assert (0 && "Unknown FP type!"); 1650 } 1651 } else if (isa<ConstantDataSequential>(C) && 1652 cast<ConstantDataSequential>(C)->isString()) { 1653 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1654 // Emit constant strings specially. 1655 unsigned NumElts = Str->getNumElements(); 1656 // If this is a null-terminated string, use the denser CSTRING encoding. 1657 if (Str->isCString()) { 1658 Code = bitc::CST_CODE_CSTRING; 1659 --NumElts; // Don't encode the null, which isn't allowed by char6. 1660 } else { 1661 Code = bitc::CST_CODE_STRING; 1662 AbbrevToUse = String8Abbrev; 1663 } 1664 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1665 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1666 for (unsigned i = 0; i != NumElts; ++i) { 1667 unsigned char V = Str->getElementAsInteger(i); 1668 Record.push_back(V); 1669 isCStr7 &= (V & 128) == 0; 1670 if (isCStrChar6) 1671 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1672 } 1673 1674 if (isCStrChar6) 1675 AbbrevToUse = CString6Abbrev; 1676 else if (isCStr7) 1677 AbbrevToUse = CString7Abbrev; 1678 } else if (const ConstantDataSequential *CDS = 1679 dyn_cast<ConstantDataSequential>(C)) { 1680 Code = bitc::CST_CODE_DATA; 1681 Type *EltTy = CDS->getType()->getElementType(); 1682 if (isa<IntegerType>(EltTy)) { 1683 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1684 Record.push_back(CDS->getElementAsInteger(i)); 1685 } else { 1686 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1687 Record.push_back( 1688 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 1689 } 1690 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1691 isa<ConstantVector>(C)) { 1692 Code = bitc::CST_CODE_AGGREGATE; 1693 for (const Value *Op : C->operands()) 1694 Record.push_back(VE.getValueID(Op)); 1695 AbbrevToUse = AggregateAbbrev; 1696 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1697 switch (CE->getOpcode()) { 1698 default: 1699 if (Instruction::isCast(CE->getOpcode())) { 1700 Code = bitc::CST_CODE_CE_CAST; 1701 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1702 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1703 Record.push_back(VE.getValueID(C->getOperand(0))); 1704 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1705 } else { 1706 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1707 Code = bitc::CST_CODE_CE_BINOP; 1708 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1709 Record.push_back(VE.getValueID(C->getOperand(0))); 1710 Record.push_back(VE.getValueID(C->getOperand(1))); 1711 uint64_t Flags = GetOptimizationFlags(CE); 1712 if (Flags != 0) 1713 Record.push_back(Flags); 1714 } 1715 break; 1716 case Instruction::GetElementPtr: { 1717 Code = bitc::CST_CODE_CE_GEP; 1718 const auto *GO = cast<GEPOperator>(C); 1719 if (GO->isInBounds()) 1720 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1721 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1722 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1723 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1724 Record.push_back(VE.getValueID(C->getOperand(i))); 1725 } 1726 break; 1727 } 1728 case Instruction::Select: 1729 Code = bitc::CST_CODE_CE_SELECT; 1730 Record.push_back(VE.getValueID(C->getOperand(0))); 1731 Record.push_back(VE.getValueID(C->getOperand(1))); 1732 Record.push_back(VE.getValueID(C->getOperand(2))); 1733 break; 1734 case Instruction::ExtractElement: 1735 Code = bitc::CST_CODE_CE_EXTRACTELT; 1736 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1737 Record.push_back(VE.getValueID(C->getOperand(0))); 1738 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1739 Record.push_back(VE.getValueID(C->getOperand(1))); 1740 break; 1741 case Instruction::InsertElement: 1742 Code = bitc::CST_CODE_CE_INSERTELT; 1743 Record.push_back(VE.getValueID(C->getOperand(0))); 1744 Record.push_back(VE.getValueID(C->getOperand(1))); 1745 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1746 Record.push_back(VE.getValueID(C->getOperand(2))); 1747 break; 1748 case Instruction::ShuffleVector: 1749 // If the return type and argument types are the same, this is a 1750 // standard shufflevector instruction. If the types are different, 1751 // then the shuffle is widening or truncating the input vectors, and 1752 // the argument type must also be encoded. 1753 if (C->getType() == C->getOperand(0)->getType()) { 1754 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1755 } else { 1756 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1757 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1758 } 1759 Record.push_back(VE.getValueID(C->getOperand(0))); 1760 Record.push_back(VE.getValueID(C->getOperand(1))); 1761 Record.push_back(VE.getValueID(C->getOperand(2))); 1762 break; 1763 case Instruction::ICmp: 1764 case Instruction::FCmp: 1765 Code = bitc::CST_CODE_CE_CMP; 1766 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1767 Record.push_back(VE.getValueID(C->getOperand(0))); 1768 Record.push_back(VE.getValueID(C->getOperand(1))); 1769 Record.push_back(CE->getPredicate()); 1770 break; 1771 } 1772 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1773 Code = bitc::CST_CODE_BLOCKADDRESS; 1774 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1775 Record.push_back(VE.getValueID(BA->getFunction())); 1776 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1777 } else { 1778 #ifndef NDEBUG 1779 C->dump(); 1780 #endif 1781 llvm_unreachable("Unknown constant!"); 1782 } 1783 Stream.EmitRecord(Code, Record, AbbrevToUse); 1784 Record.clear(); 1785 } 1786 1787 Stream.ExitBlock(); 1788 } 1789 1790 static void WriteModuleConstants(const ValueEnumerator &VE, 1791 BitstreamWriter &Stream) { 1792 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1793 1794 // Find the first constant to emit, which is the first non-globalvalue value. 1795 // We know globalvalues have been emitted by WriteModuleInfo. 1796 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1797 if (!isa<GlobalValue>(Vals[i].first)) { 1798 WriteConstants(i, Vals.size(), VE, Stream, true); 1799 return; 1800 } 1801 } 1802 } 1803 1804 /// PushValueAndType - The file has to encode both the value and type id for 1805 /// many values, because we need to know what type to create for forward 1806 /// references. However, most operands are not forward references, so this type 1807 /// field is not needed. 1808 /// 1809 /// This function adds V's value ID to Vals. If the value ID is higher than the 1810 /// instruction ID, then it is a forward reference, and it also includes the 1811 /// type ID. The value ID that is written is encoded relative to the InstID. 1812 static bool PushValueAndType(const Value *V, unsigned InstID, 1813 SmallVectorImpl<unsigned> &Vals, 1814 ValueEnumerator &VE) { 1815 unsigned ValID = VE.getValueID(V); 1816 // Make encoding relative to the InstID. 1817 Vals.push_back(InstID - ValID); 1818 if (ValID >= InstID) { 1819 Vals.push_back(VE.getTypeID(V->getType())); 1820 return true; 1821 } 1822 return false; 1823 } 1824 1825 static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS, 1826 unsigned InstID, ValueEnumerator &VE) { 1827 SmallVector<unsigned, 64> Record; 1828 LLVMContext &C = CS.getInstruction()->getContext(); 1829 1830 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1831 const auto &Bundle = CS.getOperandBundleAt(i); 1832 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 1833 1834 for (auto &Input : Bundle.Inputs) 1835 PushValueAndType(Input, InstID, Record, VE); 1836 1837 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 1838 Record.clear(); 1839 } 1840 } 1841 1842 /// pushValue - Like PushValueAndType, but where the type of the value is 1843 /// omitted (perhaps it was already encoded in an earlier operand). 1844 static void pushValue(const Value *V, unsigned InstID, 1845 SmallVectorImpl<unsigned> &Vals, 1846 ValueEnumerator &VE) { 1847 unsigned ValID = VE.getValueID(V); 1848 Vals.push_back(InstID - ValID); 1849 } 1850 1851 static void pushValueSigned(const Value *V, unsigned InstID, 1852 SmallVectorImpl<uint64_t> &Vals, 1853 ValueEnumerator &VE) { 1854 unsigned ValID = VE.getValueID(V); 1855 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1856 emitSignedInt64(Vals, diff); 1857 } 1858 1859 /// WriteInstruction - Emit an instruction to the specified stream. 1860 static void WriteInstruction(const Instruction &I, unsigned InstID, 1861 ValueEnumerator &VE, BitstreamWriter &Stream, 1862 SmallVectorImpl<unsigned> &Vals) { 1863 unsigned Code = 0; 1864 unsigned AbbrevToUse = 0; 1865 VE.setInstructionID(&I); 1866 switch (I.getOpcode()) { 1867 default: 1868 if (Instruction::isCast(I.getOpcode())) { 1869 Code = bitc::FUNC_CODE_INST_CAST; 1870 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1871 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1872 Vals.push_back(VE.getTypeID(I.getType())); 1873 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1874 } else { 1875 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1876 Code = bitc::FUNC_CODE_INST_BINOP; 1877 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1878 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1879 pushValue(I.getOperand(1), InstID, Vals, VE); 1880 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1881 uint64_t Flags = GetOptimizationFlags(&I); 1882 if (Flags != 0) { 1883 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1884 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1885 Vals.push_back(Flags); 1886 } 1887 } 1888 break; 1889 1890 case Instruction::GetElementPtr: { 1891 Code = bitc::FUNC_CODE_INST_GEP; 1892 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1893 auto &GEPInst = cast<GetElementPtrInst>(I); 1894 Vals.push_back(GEPInst.isInBounds()); 1895 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1896 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1897 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1898 break; 1899 } 1900 case Instruction::ExtractValue: { 1901 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1902 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1903 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1904 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1905 break; 1906 } 1907 case Instruction::InsertValue: { 1908 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1909 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1910 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1911 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1912 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1913 break; 1914 } 1915 case Instruction::Select: 1916 Code = bitc::FUNC_CODE_INST_VSELECT; 1917 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1918 pushValue(I.getOperand(2), InstID, Vals, VE); 1919 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1920 break; 1921 case Instruction::ExtractElement: 1922 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1923 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1924 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1925 break; 1926 case Instruction::InsertElement: 1927 Code = bitc::FUNC_CODE_INST_INSERTELT; 1928 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1929 pushValue(I.getOperand(1), InstID, Vals, VE); 1930 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1931 break; 1932 case Instruction::ShuffleVector: 1933 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1934 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1935 pushValue(I.getOperand(1), InstID, Vals, VE); 1936 pushValue(I.getOperand(2), InstID, Vals, VE); 1937 break; 1938 case Instruction::ICmp: 1939 case Instruction::FCmp: { 1940 // compare returning Int1Ty or vector of Int1Ty 1941 Code = bitc::FUNC_CODE_INST_CMP2; 1942 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1943 pushValue(I.getOperand(1), InstID, Vals, VE); 1944 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1945 uint64_t Flags = GetOptimizationFlags(&I); 1946 if (Flags != 0) 1947 Vals.push_back(Flags); 1948 break; 1949 } 1950 1951 case Instruction::Ret: 1952 { 1953 Code = bitc::FUNC_CODE_INST_RET; 1954 unsigned NumOperands = I.getNumOperands(); 1955 if (NumOperands == 0) 1956 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1957 else if (NumOperands == 1) { 1958 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1959 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1960 } else { 1961 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1962 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1963 } 1964 } 1965 break; 1966 case Instruction::Br: 1967 { 1968 Code = bitc::FUNC_CODE_INST_BR; 1969 const BranchInst &II = cast<BranchInst>(I); 1970 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1971 if (II.isConditional()) { 1972 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1973 pushValue(II.getCondition(), InstID, Vals, VE); 1974 } 1975 } 1976 break; 1977 case Instruction::Switch: 1978 { 1979 Code = bitc::FUNC_CODE_INST_SWITCH; 1980 const SwitchInst &SI = cast<SwitchInst>(I); 1981 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1982 pushValue(SI.getCondition(), InstID, Vals, VE); 1983 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1984 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 1985 Vals.push_back(VE.getValueID(Case.getCaseValue())); 1986 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 1987 } 1988 } 1989 break; 1990 case Instruction::IndirectBr: 1991 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1992 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1993 // Encode the address operand as relative, but not the basic blocks. 1994 pushValue(I.getOperand(0), InstID, Vals, VE); 1995 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1996 Vals.push_back(VE.getValueID(I.getOperand(i))); 1997 break; 1998 1999 case Instruction::Invoke: { 2000 const InvokeInst *II = cast<InvokeInst>(&I); 2001 const Value *Callee = II->getCalledValue(); 2002 FunctionType *FTy = II->getFunctionType(); 2003 2004 if (II->hasOperandBundles()) 2005 WriteOperandBundles(Stream, II, InstID, VE); 2006 2007 Code = bitc::FUNC_CODE_INST_INVOKE; 2008 2009 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2010 Vals.push_back(II->getCallingConv() | 1 << 13); 2011 Vals.push_back(VE.getValueID(II->getNormalDest())); 2012 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2013 Vals.push_back(VE.getTypeID(FTy)); 2014 PushValueAndType(Callee, InstID, Vals, VE); 2015 2016 // Emit value #'s for the fixed parameters. 2017 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2018 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 2019 2020 // Emit type/value pairs for varargs params. 2021 if (FTy->isVarArg()) { 2022 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 2023 i != e; ++i) 2024 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 2025 } 2026 break; 2027 } 2028 case Instruction::Resume: 2029 Code = bitc::FUNC_CODE_INST_RESUME; 2030 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2031 break; 2032 case Instruction::CleanupRet: { 2033 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2034 const auto &CRI = cast<CleanupReturnInst>(I); 2035 pushValue(CRI.getCleanupPad(), InstID, Vals, VE); 2036 if (CRI.hasUnwindDest()) 2037 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2038 break; 2039 } 2040 case Instruction::CatchRet: { 2041 Code = bitc::FUNC_CODE_INST_CATCHRET; 2042 const auto &CRI = cast<CatchReturnInst>(I); 2043 pushValue(CRI.getCatchPad(), InstID, Vals, VE); 2044 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2045 break; 2046 } 2047 case Instruction::CleanupPad: 2048 case Instruction::CatchPad: { 2049 const auto &FuncletPad = cast<FuncletPadInst>(I); 2050 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2051 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2052 pushValue(FuncletPad.getParentPad(), InstID, Vals, VE); 2053 2054 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2055 Vals.push_back(NumArgOperands); 2056 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2057 PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE); 2058 break; 2059 } 2060 case Instruction::CatchSwitch: { 2061 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2062 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2063 2064 pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE); 2065 2066 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2067 Vals.push_back(NumHandlers); 2068 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2069 Vals.push_back(VE.getValueID(CatchPadBB)); 2070 2071 if (CatchSwitch.hasUnwindDest()) 2072 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2073 break; 2074 } 2075 case Instruction::Unreachable: 2076 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2077 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2078 break; 2079 2080 case Instruction::PHI: { 2081 const PHINode &PN = cast<PHINode>(I); 2082 Code = bitc::FUNC_CODE_INST_PHI; 2083 // With the newer instruction encoding, forward references could give 2084 // negative valued IDs. This is most common for PHIs, so we use 2085 // signed VBRs. 2086 SmallVector<uint64_t, 128> Vals64; 2087 Vals64.push_back(VE.getTypeID(PN.getType())); 2088 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2089 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 2090 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2091 } 2092 // Emit a Vals64 vector and exit. 2093 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2094 Vals64.clear(); 2095 return; 2096 } 2097 2098 case Instruction::LandingPad: { 2099 const LandingPadInst &LP = cast<LandingPadInst>(I); 2100 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2101 Vals.push_back(VE.getTypeID(LP.getType())); 2102 Vals.push_back(LP.isCleanup()); 2103 Vals.push_back(LP.getNumClauses()); 2104 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2105 if (LP.isCatch(I)) 2106 Vals.push_back(LandingPadInst::Catch); 2107 else 2108 Vals.push_back(LandingPadInst::Filter); 2109 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 2110 } 2111 break; 2112 } 2113 2114 case Instruction::Alloca: { 2115 Code = bitc::FUNC_CODE_INST_ALLOCA; 2116 const AllocaInst &AI = cast<AllocaInst>(I); 2117 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2118 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2119 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2120 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2121 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2122 "not enough bits for maximum alignment"); 2123 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2124 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2125 AlignRecord |= 1 << 6; 2126 // Reserve bit 7 for SwiftError flag. 2127 // AlignRecord |= AI.isSwiftError() << 7; 2128 Vals.push_back(AlignRecord); 2129 break; 2130 } 2131 2132 case Instruction::Load: 2133 if (cast<LoadInst>(I).isAtomic()) { 2134 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2135 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2136 } else { 2137 Code = bitc::FUNC_CODE_INST_LOAD; 2138 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 2139 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2140 } 2141 Vals.push_back(VE.getTypeID(I.getType())); 2142 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2143 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2144 if (cast<LoadInst>(I).isAtomic()) { 2145 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2146 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2147 } 2148 break; 2149 case Instruction::Store: 2150 if (cast<StoreInst>(I).isAtomic()) 2151 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2152 else 2153 Code = bitc::FUNC_CODE_INST_STORE; 2154 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 2155 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 2156 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2157 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2158 if (cast<StoreInst>(I).isAtomic()) { 2159 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2160 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2161 } 2162 break; 2163 case Instruction::AtomicCmpXchg: 2164 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2165 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2166 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2167 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2168 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2169 Vals.push_back(GetEncodedOrdering( 2170 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2171 Vals.push_back(GetEncodedSynchScope( 2172 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2173 Vals.push_back(GetEncodedOrdering( 2174 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2175 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2176 break; 2177 case Instruction::AtomicRMW: 2178 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2179 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2180 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2181 Vals.push_back(GetEncodedRMWOperation( 2182 cast<AtomicRMWInst>(I).getOperation())); 2183 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2184 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2185 Vals.push_back(GetEncodedSynchScope( 2186 cast<AtomicRMWInst>(I).getSynchScope())); 2187 break; 2188 case Instruction::Fence: 2189 Code = bitc::FUNC_CODE_INST_FENCE; 2190 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2191 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2192 break; 2193 case Instruction::Call: { 2194 const CallInst &CI = cast<CallInst>(I); 2195 FunctionType *FTy = CI.getFunctionType(); 2196 2197 if (CI.hasOperandBundles()) 2198 WriteOperandBundles(Stream, &CI, InstID, VE); 2199 2200 Code = bitc::FUNC_CODE_INST_CALL; 2201 2202 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2203 2204 unsigned Flags = GetOptimizationFlags(&I); 2205 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2206 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2207 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2208 1 << bitc::CALL_EXPLICIT_TYPE | 2209 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2210 unsigned(Flags != 0) << bitc::CALL_FMF); 2211 if (Flags != 0) 2212 Vals.push_back(Flags); 2213 2214 Vals.push_back(VE.getTypeID(FTy)); 2215 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2216 2217 // Emit value #'s for the fixed parameters. 2218 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2219 // Check for labels (can happen with asm labels). 2220 if (FTy->getParamType(i)->isLabelTy()) 2221 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2222 else 2223 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2224 } 2225 2226 // Emit type/value pairs for varargs params. 2227 if (FTy->isVarArg()) { 2228 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2229 i != e; ++i) 2230 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2231 } 2232 break; 2233 } 2234 case Instruction::VAArg: 2235 Code = bitc::FUNC_CODE_INST_VAARG; 2236 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2237 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2238 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2239 break; 2240 } 2241 2242 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2243 Vals.clear(); 2244 } 2245 2246 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder, 2247 /// BitcodeStartBit and ModuleSummaryIndex are only passed for the module-level 2248 /// VST, where we are including a function bitcode index and need to 2249 /// backpatch the VST forward declaration record. 2250 static void WriteValueSymbolTable( 2251 const ValueSymbolTable &VST, const ValueEnumerator &VE, 2252 BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0, 2253 uint64_t BitcodeStartBit = 0, 2254 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> 2255 *FunctionIndex = nullptr) { 2256 if (VST.empty()) { 2257 // WriteValueSymbolTableForwardDecl should have returned early as 2258 // well. Ensure this handling remains in sync by asserting that 2259 // the placeholder offset is not set. 2260 assert(VSTOffsetPlaceholder == 0); 2261 return; 2262 } 2263 2264 if (VSTOffsetPlaceholder > 0) { 2265 // Get the offset of the VST we are writing, and backpatch it into 2266 // the VST forward declaration record. 2267 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2268 // The BitcodeStartBit was the stream offset of the actual bitcode 2269 // (e.g. excluding any initial darwin header). 2270 VSTOffset -= BitcodeStartBit; 2271 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2272 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2273 } 2274 2275 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2276 2277 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2278 // records, which are not used in the per-function VSTs. 2279 unsigned FnEntry8BitAbbrev; 2280 unsigned FnEntry7BitAbbrev; 2281 unsigned FnEntry6BitAbbrev; 2282 if (VSTOffsetPlaceholder > 0) { 2283 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2284 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2285 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2290 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2291 2292 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2293 Abbv = new BitCodeAbbrev(); 2294 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2299 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2300 2301 // 6-bit char6 VST_CODE_FNENTRY function strings. 2302 Abbv = new BitCodeAbbrev(); 2303 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2308 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2309 } 2310 2311 // FIXME: Set up the abbrev, we know how many values there are! 2312 // FIXME: We know if the type names can use 7-bit ascii. 2313 SmallVector<unsigned, 64> NameVals; 2314 2315 for (const ValueName &Name : VST) { 2316 // Figure out the encoding to use for the name. 2317 StringEncoding Bits = 2318 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2319 2320 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2321 NameVals.push_back(VE.getValueID(Name.getValue())); 2322 2323 Function *F = dyn_cast<Function>(Name.getValue()); 2324 if (!F) { 2325 // If value is an alias, need to get the aliased base object to 2326 // see if it is a function. 2327 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2328 if (GA && GA->getBaseObject()) 2329 F = dyn_cast<Function>(GA->getBaseObject()); 2330 } 2331 2332 // VST_CODE_ENTRY: [valueid, namechar x N] 2333 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2334 // VST_CODE_BBENTRY: [bbid, namechar x N] 2335 unsigned Code; 2336 if (isa<BasicBlock>(Name.getValue())) { 2337 Code = bitc::VST_CODE_BBENTRY; 2338 if (Bits == SE_Char6) 2339 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2340 } else if (F && !F->isDeclaration()) { 2341 // Must be the module-level VST, where we pass in the Index and 2342 // have a VSTOffsetPlaceholder. The function-level VST should not 2343 // contain any Function symbols. 2344 assert(FunctionIndex); 2345 assert(VSTOffsetPlaceholder > 0); 2346 2347 // Save the word offset of the function (from the start of the 2348 // actual bitcode written to the stream). 2349 uint64_t BitcodeIndex = 2350 (*FunctionIndex)[F]->bitcodeIndex() - BitcodeStartBit; 2351 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2352 NameVals.push_back(BitcodeIndex / 32); 2353 2354 Code = bitc::VST_CODE_FNENTRY; 2355 AbbrevToUse = FnEntry8BitAbbrev; 2356 if (Bits == SE_Char6) 2357 AbbrevToUse = FnEntry6BitAbbrev; 2358 else if (Bits == SE_Fixed7) 2359 AbbrevToUse = FnEntry7BitAbbrev; 2360 } else { 2361 Code = bitc::VST_CODE_ENTRY; 2362 if (Bits == SE_Char6) 2363 AbbrevToUse = VST_ENTRY_6_ABBREV; 2364 else if (Bits == SE_Fixed7) 2365 AbbrevToUse = VST_ENTRY_7_ABBREV; 2366 } 2367 2368 for (const auto P : Name.getKey()) 2369 NameVals.push_back((unsigned char)P); 2370 2371 // Emit the finished record. 2372 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2373 NameVals.clear(); 2374 } 2375 Stream.ExitBlock(); 2376 } 2377 2378 /// Emit function names and summary offsets for the combined index 2379 /// used by ThinLTO. 2380 static void 2381 WriteCombinedValueSymbolTable(const ModuleSummaryIndex &Index, 2382 BitstreamWriter &Stream, 2383 std::map<uint64_t, unsigned> &GUIDToValueIdMap, 2384 uint64_t VSTOffsetPlaceholder) { 2385 assert(VSTOffsetPlaceholder > 0 && "Expected non-zero VSTOffsetPlaceholder"); 2386 // Get the offset of the VST we are writing, and backpatch it into 2387 // the VST forward declaration record. 2388 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2389 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2390 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2391 2392 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2393 2394 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2395 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_GVDEFENTRY)); 2396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // sumoffset 2398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // guid 2399 unsigned DefEntryAbbrev = Stream.EmitAbbrev(Abbv); 2400 2401 Abbv = new BitCodeAbbrev(); 2402 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2405 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2406 2407 SmallVector<uint64_t, 64> NameVals; 2408 2409 for (const auto &FII : Index) { 2410 uint64_t FuncGUID = FII.first; 2411 const auto &VMI = GUIDToValueIdMap.find(FuncGUID); 2412 assert(VMI != GUIDToValueIdMap.end()); 2413 2414 for (const auto &FI : FII.second) { 2415 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, sumoffset, guid] 2416 NameVals.push_back(VMI->second); 2417 NameVals.push_back(FI->bitcodeIndex()); 2418 NameVals.push_back(FuncGUID); 2419 2420 // Emit the finished record. 2421 Stream.EmitRecord(bitc::VST_CODE_COMBINED_GVDEFENTRY, NameVals, 2422 DefEntryAbbrev); 2423 NameVals.clear(); 2424 } 2425 GUIDToValueIdMap.erase(VMI); 2426 } 2427 for (const auto &GVI : GUIDToValueIdMap) { 2428 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2429 NameVals.push_back(GVI.second); 2430 NameVals.push_back(GVI.first); 2431 2432 // Emit the finished record. 2433 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2434 NameVals.clear(); 2435 } 2436 Stream.ExitBlock(); 2437 } 2438 2439 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2440 BitstreamWriter &Stream) { 2441 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2442 unsigned Code; 2443 if (isa<BasicBlock>(Order.V)) 2444 Code = bitc::USELIST_CODE_BB; 2445 else 2446 Code = bitc::USELIST_CODE_DEFAULT; 2447 2448 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2449 Record.push_back(VE.getValueID(Order.V)); 2450 Stream.EmitRecord(Code, Record); 2451 } 2452 2453 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2454 BitstreamWriter &Stream) { 2455 assert(VE.shouldPreserveUseListOrder() && 2456 "Expected to be preserving use-list order"); 2457 2458 auto hasMore = [&]() { 2459 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2460 }; 2461 if (!hasMore()) 2462 // Nothing to do. 2463 return; 2464 2465 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2466 while (hasMore()) { 2467 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2468 VE.UseListOrders.pop_back(); 2469 } 2470 Stream.ExitBlock(); 2471 } 2472 2473 // Walk through the operands of a given User via worklist iteration and populate 2474 // the set of GlobalValue references encountered. Invoked either on an 2475 // Instruction or a GlobalVariable (which walks its initializer). 2476 static void findRefEdges(const User *CurUser, const ValueEnumerator &VE, 2477 DenseSet<unsigned> &RefEdges, 2478 SmallPtrSet<const User *, 8> &Visited) { 2479 SmallVector<const User *, 32> Worklist; 2480 Worklist.push_back(CurUser); 2481 2482 while (!Worklist.empty()) { 2483 const User *U = Worklist.pop_back_val(); 2484 2485 if (!Visited.insert(U).second) 2486 continue; 2487 2488 ImmutableCallSite CS(U); 2489 2490 for (const auto &OI : U->operands()) { 2491 const User *Operand = dyn_cast<User>(OI); 2492 if (!Operand) 2493 continue; 2494 if (isa<BlockAddress>(Operand)) 2495 continue; 2496 if (isa<GlobalValue>(Operand)) { 2497 // We have a reference to a global value. This should be added to 2498 // the reference set unless it is a callee. Callees are handled 2499 // specially by WriteFunction and are added to a separate list. 2500 if (!(CS && CS.isCallee(&OI))) 2501 RefEdges.insert(VE.getValueID(Operand)); 2502 continue; 2503 } 2504 Worklist.push_back(Operand); 2505 } 2506 } 2507 } 2508 2509 /// Emit a function body to the module stream. 2510 static void WriteFunction( 2511 const Function &F, const Module *M, ValueEnumerator &VE, 2512 BitstreamWriter &Stream, 2513 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex, 2514 bool EmitSummaryIndex) { 2515 // Save the bitcode index of the start of this function block for recording 2516 // in the VST. 2517 uint64_t BitcodeIndex = Stream.GetCurrentBitNo(); 2518 2519 bool HasProfileData = F.getEntryCount().hasValue(); 2520 std::unique_ptr<BlockFrequencyInfo> BFI; 2521 if (EmitSummaryIndex && HasProfileData) { 2522 Function &Func = const_cast<Function &>(F); 2523 LoopInfo LI{DominatorTree(Func)}; 2524 BranchProbabilityInfo BPI{Func, LI}; 2525 BFI = llvm::make_unique<BlockFrequencyInfo>(Func, BPI, LI); 2526 } 2527 2528 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2529 VE.incorporateFunction(F); 2530 2531 SmallVector<unsigned, 64> Vals; 2532 2533 // Emit the number of basic blocks, so the reader can create them ahead of 2534 // time. 2535 Vals.push_back(VE.getBasicBlocks().size()); 2536 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2537 Vals.clear(); 2538 2539 // If there are function-local constants, emit them now. 2540 unsigned CstStart, CstEnd; 2541 VE.getFunctionConstantRange(CstStart, CstEnd); 2542 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2543 2544 // If there is function-local metadata, emit it now. 2545 WriteFunctionLocalMetadata(F, VE, Stream); 2546 2547 // Keep a running idea of what the instruction ID is. 2548 unsigned InstID = CstEnd; 2549 2550 bool NeedsMetadataAttachment = F.hasMetadata(); 2551 2552 DILocation *LastDL = nullptr; 2553 unsigned NumInsts = 0; 2554 // Map from callee ValueId to profile count. Used to accumulate profile 2555 // counts for all static calls to a given callee. 2556 DenseMap<unsigned, CalleeInfo> CallGraphEdges; 2557 DenseSet<unsigned> RefEdges; 2558 2559 SmallPtrSet<const User *, 8> Visited; 2560 // Finally, emit all the instructions, in order. 2561 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2562 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2563 I != E; ++I) { 2564 WriteInstruction(*I, InstID, VE, Stream, Vals); 2565 2566 if (!isa<DbgInfoIntrinsic>(I)) 2567 ++NumInsts; 2568 2569 if (!I->getType()->isVoidTy()) 2570 ++InstID; 2571 2572 if (EmitSummaryIndex) { 2573 if (auto CS = ImmutableCallSite(&*I)) { 2574 auto *CalledFunction = CS.getCalledFunction(); 2575 if (CalledFunction && CalledFunction->hasName() && 2576 !CalledFunction->isIntrinsic()) { 2577 auto ScaledCount = BFI ? BFI->getBlockProfileCount(&*BB) : None; 2578 unsigned CalleeId = VE.getValueID( 2579 M->getValueSymbolTable().lookup(CalledFunction->getName())); 2580 CallGraphEdges[CalleeId] += 2581 (ScaledCount ? ScaledCount.getValue() : 0); 2582 } 2583 } 2584 findRefEdges(&*I, VE, RefEdges, Visited); 2585 } 2586 2587 // If the instruction has metadata, write a metadata attachment later. 2588 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2589 2590 // If the instruction has a debug location, emit it. 2591 DILocation *DL = I->getDebugLoc(); 2592 if (!DL) 2593 continue; 2594 2595 if (DL == LastDL) { 2596 // Just repeat the same debug loc as last time. 2597 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2598 continue; 2599 } 2600 2601 Vals.push_back(DL->getLine()); 2602 Vals.push_back(DL->getColumn()); 2603 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2604 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2605 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2606 Vals.clear(); 2607 2608 LastDL = DL; 2609 } 2610 2611 std::unique_ptr<FunctionSummary> FuncSummary; 2612 if (EmitSummaryIndex) { 2613 FuncSummary = llvm::make_unique<FunctionSummary>(F.getLinkage(), NumInsts); 2614 FuncSummary->addCallGraphEdges(CallGraphEdges); 2615 FuncSummary->addRefEdges(RefEdges); 2616 } 2617 FunctionIndex[&F] = 2618 llvm::make_unique<GlobalValueInfo>(BitcodeIndex, std::move(FuncSummary)); 2619 2620 // Emit names for all the instructions etc. 2621 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2622 2623 if (NeedsMetadataAttachment) 2624 WriteMetadataAttachment(F, VE, Stream); 2625 if (VE.shouldPreserveUseListOrder()) 2626 WriteUseListBlock(&F, VE, Stream); 2627 VE.purgeFunction(); 2628 Stream.ExitBlock(); 2629 } 2630 2631 // Emit blockinfo, which defines the standard abbreviations etc. 2632 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2633 // We only want to emit block info records for blocks that have multiple 2634 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2635 // Other blocks can define their abbrevs inline. 2636 Stream.EnterBlockInfoBlock(2); 2637 2638 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2639 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2644 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2645 Abbv) != VST_ENTRY_8_ABBREV) 2646 llvm_unreachable("Unexpected abbrev ordering!"); 2647 } 2648 2649 { // 7-bit fixed width VST_CODE_ENTRY strings. 2650 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2651 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2655 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2656 Abbv) != VST_ENTRY_7_ABBREV) 2657 llvm_unreachable("Unexpected abbrev ordering!"); 2658 } 2659 { // 6-bit char6 VST_CODE_ENTRY strings. 2660 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2661 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2665 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2666 Abbv) != VST_ENTRY_6_ABBREV) 2667 llvm_unreachable("Unexpected abbrev ordering!"); 2668 } 2669 { // 6-bit char6 VST_CODE_BBENTRY strings. 2670 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2671 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2675 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2676 Abbv) != VST_BBENTRY_6_ABBREV) 2677 llvm_unreachable("Unexpected abbrev ordering!"); 2678 } 2679 2680 2681 2682 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2683 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2684 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2686 VE.computeBitsRequiredForTypeIndicies())); 2687 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2688 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2689 llvm_unreachable("Unexpected abbrev ordering!"); 2690 } 2691 2692 { // INTEGER abbrev for CONSTANTS_BLOCK. 2693 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2694 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2696 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2697 Abbv) != CONSTANTS_INTEGER_ABBREV) 2698 llvm_unreachable("Unexpected abbrev ordering!"); 2699 } 2700 2701 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2702 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2703 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2706 VE.computeBitsRequiredForTypeIndicies())); 2707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2708 2709 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2710 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2711 llvm_unreachable("Unexpected abbrev ordering!"); 2712 } 2713 { // NULL abbrev for CONSTANTS_BLOCK. 2714 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2715 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2716 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2717 Abbv) != CONSTANTS_NULL_Abbrev) 2718 llvm_unreachable("Unexpected abbrev ordering!"); 2719 } 2720 2721 // FIXME: This should only use space for first class types! 2722 2723 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2724 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2725 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2728 VE.computeBitsRequiredForTypeIndicies())); 2729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2731 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2732 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2733 llvm_unreachable("Unexpected abbrev ordering!"); 2734 } 2735 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2736 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2737 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2741 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2742 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2743 llvm_unreachable("Unexpected abbrev ordering!"); 2744 } 2745 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2746 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2747 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2752 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2753 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2754 llvm_unreachable("Unexpected abbrev ordering!"); 2755 } 2756 { // INST_CAST abbrev for FUNCTION_BLOCK. 2757 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2758 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2761 VE.computeBitsRequiredForTypeIndicies())); 2762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2763 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2764 Abbv) != FUNCTION_INST_CAST_ABBREV) 2765 llvm_unreachable("Unexpected abbrev ordering!"); 2766 } 2767 2768 { // INST_RET abbrev for FUNCTION_BLOCK. 2769 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2770 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2771 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2772 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2773 llvm_unreachable("Unexpected abbrev ordering!"); 2774 } 2775 { // INST_RET abbrev for FUNCTION_BLOCK. 2776 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2777 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2779 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2780 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2781 llvm_unreachable("Unexpected abbrev ordering!"); 2782 } 2783 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2784 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2785 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2786 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2787 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2788 llvm_unreachable("Unexpected abbrev ordering!"); 2789 } 2790 { 2791 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2792 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2795 Log2_32_Ceil(VE.getTypes().size() + 1))); 2796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2798 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2799 FUNCTION_INST_GEP_ABBREV) 2800 llvm_unreachable("Unexpected abbrev ordering!"); 2801 } 2802 2803 Stream.ExitBlock(); 2804 } 2805 2806 /// Write the module path strings, currently only used when generating 2807 /// a combined index file. 2808 static void WriteModStrings(const ModuleSummaryIndex &I, 2809 BitstreamWriter &Stream) { 2810 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 2811 2812 // TODO: See which abbrev sizes we actually need to emit 2813 2814 // 8-bit fixed-width MST_ENTRY strings. 2815 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2816 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2820 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 2821 2822 // 7-bit fixed width MST_ENTRY strings. 2823 Abbv = new BitCodeAbbrev(); 2824 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2828 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 2829 2830 // 6-bit char6 MST_ENTRY strings. 2831 Abbv = new BitCodeAbbrev(); 2832 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2836 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 2837 2838 SmallVector<unsigned, 64> NameVals; 2839 for (const StringMapEntry<uint64_t> &MPSE : I.modPathStringEntries()) { 2840 StringEncoding Bits = 2841 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 2842 unsigned AbbrevToUse = Abbrev8Bit; 2843 if (Bits == SE_Char6) 2844 AbbrevToUse = Abbrev6Bit; 2845 else if (Bits == SE_Fixed7) 2846 AbbrevToUse = Abbrev7Bit; 2847 2848 NameVals.push_back(MPSE.getValue()); 2849 2850 for (const auto P : MPSE.getKey()) 2851 NameVals.push_back((unsigned char)P); 2852 2853 // Emit the finished record. 2854 Stream.EmitRecord(bitc::MST_CODE_ENTRY, NameVals, AbbrevToUse); 2855 NameVals.clear(); 2856 } 2857 Stream.ExitBlock(); 2858 } 2859 2860 // Helper to emit a single function summary record. 2861 static void WritePerModuleFunctionSummaryRecord( 2862 SmallVector<uint64_t, 64> &NameVals, FunctionSummary *FS, unsigned ValueID, 2863 unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 2864 BitstreamWriter &Stream, const Function &F) { 2865 assert(FS); 2866 NameVals.push_back(ValueID); 2867 NameVals.push_back(getEncodedLinkage(FS->linkage())); 2868 NameVals.push_back(FS->instCount()); 2869 NameVals.push_back(FS->refs().size()); 2870 2871 for (auto &RI : FS->refs()) 2872 NameVals.push_back(RI); 2873 2874 bool HasProfileData = F.getEntryCount().hasValue(); 2875 for (auto &ECI : FS->edges()) { 2876 NameVals.push_back(ECI.first); 2877 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); 2878 NameVals.push_back(ECI.second.CallsiteCount); 2879 if (HasProfileData) 2880 NameVals.push_back(ECI.second.ProfileCount); 2881 } 2882 2883 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 2884 unsigned Code = 2885 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 2886 2887 // Emit the finished record. 2888 Stream.EmitRecord(Code, NameVals, FSAbbrev); 2889 NameVals.clear(); 2890 } 2891 2892 // Collect the global value references in the given variable's initializer, 2893 // and emit them in a summary record. 2894 static void WriteModuleLevelReferences(const GlobalVariable &V, 2895 const ValueEnumerator &VE, 2896 SmallVector<uint64_t, 64> &NameVals, 2897 unsigned FSModRefsAbbrev, 2898 BitstreamWriter &Stream) { 2899 // Only interested in recording variable defs in the summary. 2900 if (V.isDeclaration()) 2901 return; 2902 DenseSet<unsigned> RefEdges; 2903 SmallPtrSet<const User *, 8> Visited; 2904 findRefEdges(&V, VE, RefEdges, Visited); 2905 NameVals.push_back(VE.getValueID(&V)); 2906 NameVals.push_back(getEncodedLinkage(V.getLinkage())); 2907 for (auto RefId : RefEdges) { 2908 NameVals.push_back(RefId); 2909 } 2910 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 2911 FSModRefsAbbrev); 2912 NameVals.clear(); 2913 } 2914 2915 /// Emit the per-module summary section alongside the rest of 2916 /// the module's bitcode. 2917 static void WritePerModuleGlobalValueSummary( 2918 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex, 2919 const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) { 2920 if (M->empty()) 2921 return; 2922 2923 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 2924 2925 // Abbrev for FS_PERMODULE. 2926 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2927 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 2928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2932 // numrefs x valueid, n x (valueid, callsitecount) 2933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2935 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 2936 2937 // Abbrev for FS_PERMODULE_PROFILE. 2938 Abbv = new BitCodeAbbrev(); 2939 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 2940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2944 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 2945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2947 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 2948 2949 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 2950 Abbv = new BitCodeAbbrev(); 2951 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 2952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 2955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2956 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 2957 2958 SmallVector<uint64_t, 64> NameVals; 2959 // Iterate over the list of functions instead of the FunctionIndex map to 2960 // ensure the ordering is stable. 2961 for (const Function &F : *M) { 2962 if (F.isDeclaration()) 2963 continue; 2964 // Skip anonymous functions. We will emit a function summary for 2965 // any aliases below. 2966 if (!F.hasName()) 2967 continue; 2968 2969 assert(FunctionIndex.count(&F) == 1); 2970 2971 WritePerModuleFunctionSummaryRecord( 2972 NameVals, cast<FunctionSummary>(FunctionIndex[&F]->summary()), 2973 VE.getValueID(M->getValueSymbolTable().lookup(F.getName())), 2974 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, F); 2975 } 2976 2977 for (const GlobalAlias &A : M->aliases()) { 2978 if (!A.getBaseObject()) 2979 continue; 2980 const Function *F = dyn_cast<Function>(A.getBaseObject()); 2981 if (!F || F->isDeclaration()) 2982 continue; 2983 2984 assert(FunctionIndex.count(F) == 1); 2985 FunctionSummary *FS = 2986 cast<FunctionSummary>(FunctionIndex[F]->summary()); 2987 // Add the alias to the reference list of aliasee function. 2988 FS->addRefEdge( 2989 VE.getValueID(M->getValueSymbolTable().lookup(A.getName()))); 2990 WritePerModuleFunctionSummaryRecord( 2991 NameVals, FS, 2992 VE.getValueID(M->getValueSymbolTable().lookup(A.getName())), 2993 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, *F); 2994 } 2995 2996 // Capture references from GlobalVariable initializers, which are outside 2997 // of a function scope. 2998 for (const GlobalVariable &G : M->globals()) 2999 WriteModuleLevelReferences(G, VE, NameVals, FSModRefsAbbrev, Stream); 3000 for (const GlobalAlias &A : M->aliases()) 3001 if (auto *GV = dyn_cast<GlobalVariable>(A.getBaseObject())) 3002 WriteModuleLevelReferences(*GV, VE, NameVals, FSModRefsAbbrev, Stream); 3003 3004 Stream.ExitBlock(); 3005 } 3006 3007 /// Emit the combined summary section into the combined index file. 3008 static void WriteCombinedGlobalValueSummary( 3009 const ModuleSummaryIndex &I, BitstreamWriter &Stream, 3010 std::map<uint64_t, unsigned> &GUIDToValueIdMap, unsigned GlobalValueId) { 3011 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3012 3013 // Abbrev for FS_COMBINED. 3014 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3015 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3020 // numrefs x valueid, n x (valueid, callsitecount) 3021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3023 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3024 3025 // Abbrev for FS_COMBINED_PROFILE. 3026 Abbv = new BitCodeAbbrev(); 3027 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3032 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3035 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3036 3037 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3038 Abbv = new BitCodeAbbrev(); 3039 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3044 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3045 3046 SmallVector<uint64_t, 64> NameVals; 3047 for (const auto &FII : I) { 3048 for (auto &FI : FII.second) { 3049 GlobalValueSummary *S = FI->summary(); 3050 assert(S); 3051 3052 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3053 NameVals.push_back(I.getModuleId(VS->modulePath())); 3054 NameVals.push_back(getEncodedLinkage(VS->linkage())); 3055 for (auto &RI : VS->refs()) { 3056 const auto &VMI = GUIDToValueIdMap.find(RI); 3057 unsigned RefId; 3058 // If this GUID doesn't have an entry, assign one. 3059 if (VMI == GUIDToValueIdMap.end()) { 3060 GUIDToValueIdMap[RI] = ++GlobalValueId; 3061 RefId = GlobalValueId; 3062 } else { 3063 RefId = VMI->second; 3064 } 3065 NameVals.push_back(RefId); 3066 } 3067 3068 // Record the starting offset of this summary entry for use 3069 // in the VST entry. Add the current code size since the 3070 // reader will invoke readRecord after the abbrev id read. 3071 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + 3072 Stream.GetAbbrevIDWidth()); 3073 3074 // Emit the finished record. 3075 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3076 FSModRefsAbbrev); 3077 NameVals.clear(); 3078 continue; 3079 } 3080 3081 auto *FS = cast<FunctionSummary>(S); 3082 NameVals.push_back(I.getModuleId(FS->modulePath())); 3083 NameVals.push_back(getEncodedLinkage(FS->linkage())); 3084 NameVals.push_back(FS->instCount()); 3085 NameVals.push_back(FS->refs().size()); 3086 3087 for (auto &RI : FS->refs()) { 3088 const auto &VMI = GUIDToValueIdMap.find(RI); 3089 unsigned RefId; 3090 // If this GUID doesn't have an entry, assign one. 3091 if (VMI == GUIDToValueIdMap.end()) { 3092 GUIDToValueIdMap[RI] = ++GlobalValueId; 3093 RefId = GlobalValueId; 3094 } else { 3095 RefId = VMI->second; 3096 } 3097 NameVals.push_back(RefId); 3098 } 3099 3100 bool HasProfileData = false; 3101 for (auto &EI : FS->edges()) { 3102 HasProfileData |= EI.second.ProfileCount != 0; 3103 if (HasProfileData) 3104 break; 3105 } 3106 3107 for (auto &EI : FS->edges()) { 3108 const auto &VMI = GUIDToValueIdMap.find(EI.first); 3109 // If this GUID doesn't have an entry, it doesn't have a function 3110 // summary and we don't need to record any calls to it. 3111 if (VMI == GUIDToValueIdMap.end()) 3112 continue; 3113 NameVals.push_back(VMI->second); 3114 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3115 NameVals.push_back(EI.second.CallsiteCount); 3116 if (HasProfileData) 3117 NameVals.push_back(EI.second.ProfileCount); 3118 } 3119 3120 // Record the starting offset of this summary entry for use 3121 // in the VST entry. Add the current code size since the 3122 // reader will invoke readRecord after the abbrev id read. 3123 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth()); 3124 3125 unsigned FSAbbrev = 3126 (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3127 unsigned Code = 3128 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3129 3130 // Emit the finished record. 3131 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3132 NameVals.clear(); 3133 } 3134 } 3135 3136 Stream.ExitBlock(); 3137 } 3138 3139 // Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3140 // current llvm version, and a record for the epoch number. 3141 static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) { 3142 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3143 3144 // Write the "user readable" string identifying the bitcode producer 3145 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3146 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3149 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3150 WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING, 3151 "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream); 3152 3153 // Write the epoch version 3154 Abbv = new BitCodeAbbrev(); 3155 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3157 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3158 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3159 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3160 Stream.ExitBlock(); 3161 } 3162 3163 /// WriteModule - Emit the specified module to the bitstream. 3164 static void WriteModule(const Module *M, BitstreamWriter &Stream, 3165 bool ShouldPreserveUseListOrder, 3166 uint64_t BitcodeStartBit, bool EmitSummaryIndex) { 3167 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3168 3169 SmallVector<unsigned, 1> Vals; 3170 unsigned CurVersion = 1; 3171 Vals.push_back(CurVersion); 3172 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3173 3174 // Analyze the module, enumerating globals, functions, etc. 3175 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 3176 3177 // Emit blockinfo, which defines the standard abbreviations etc. 3178 WriteBlockInfo(VE, Stream); 3179 3180 // Emit information about attribute groups. 3181 WriteAttributeGroupTable(VE, Stream); 3182 3183 // Emit information about parameter attributes. 3184 WriteAttributeTable(VE, Stream); 3185 3186 // Emit information describing all of the types in the module. 3187 WriteTypeTable(VE, Stream); 3188 3189 writeComdats(VE, Stream); 3190 3191 // Emit top-level description of module, including target triple, inline asm, 3192 // descriptors for global variables, and function prototype info. 3193 uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream); 3194 3195 // Emit constants. 3196 WriteModuleConstants(VE, Stream); 3197 3198 // Emit metadata. 3199 WriteModuleMetadata(M, VE, Stream); 3200 3201 // Emit metadata. 3202 WriteModuleMetadataStore(M, Stream); 3203 3204 // Emit module-level use-lists. 3205 if (VE.shouldPreserveUseListOrder()) 3206 WriteUseListBlock(nullptr, VE, Stream); 3207 3208 WriteOperandBundleTags(M, Stream); 3209 3210 // Emit function bodies. 3211 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> FunctionIndex; 3212 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 3213 if (!F->isDeclaration()) 3214 WriteFunction(*F, M, VE, Stream, FunctionIndex, EmitSummaryIndex); 3215 3216 // Need to write after the above call to WriteFunction which populates 3217 // the summary information in the index. 3218 if (EmitSummaryIndex) 3219 WritePerModuleGlobalValueSummary(FunctionIndex, M, VE, Stream); 3220 3221 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream, 3222 VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex); 3223 3224 Stream.ExitBlock(); 3225 } 3226 3227 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 3228 /// header and trailer to make it compatible with the system archiver. To do 3229 /// this we emit the following header, and then emit a trailer that pads the 3230 /// file out to be a multiple of 16 bytes. 3231 /// 3232 /// struct bc_header { 3233 /// uint32_t Magic; // 0x0B17C0DE 3234 /// uint32_t Version; // Version, currently always 0. 3235 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3236 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3237 /// uint32_t CPUType; // CPU specifier. 3238 /// ... potentially more later ... 3239 /// }; 3240 3241 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3242 uint32_t &Position) { 3243 support::endian::write32le(&Buffer[Position], Value); 3244 Position += 4; 3245 } 3246 3247 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3248 const Triple &TT) { 3249 unsigned CPUType = ~0U; 3250 3251 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3252 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3253 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3254 // specific constants here because they are implicitly part of the Darwin ABI. 3255 enum { 3256 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3257 DARWIN_CPU_TYPE_X86 = 7, 3258 DARWIN_CPU_TYPE_ARM = 12, 3259 DARWIN_CPU_TYPE_POWERPC = 18 3260 }; 3261 3262 Triple::ArchType Arch = TT.getArch(); 3263 if (Arch == Triple::x86_64) 3264 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3265 else if (Arch == Triple::x86) 3266 CPUType = DARWIN_CPU_TYPE_X86; 3267 else if (Arch == Triple::ppc) 3268 CPUType = DARWIN_CPU_TYPE_POWERPC; 3269 else if (Arch == Triple::ppc64) 3270 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3271 else if (Arch == Triple::arm || Arch == Triple::thumb) 3272 CPUType = DARWIN_CPU_TYPE_ARM; 3273 3274 // Traditional Bitcode starts after header. 3275 assert(Buffer.size() >= BWH_HeaderSize && 3276 "Expected header size to be reserved"); 3277 unsigned BCOffset = BWH_HeaderSize; 3278 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3279 3280 // Write the magic and version. 3281 unsigned Position = 0; 3282 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 3283 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 3284 WriteInt32ToBuffer(BCOffset , Buffer, Position); 3285 WriteInt32ToBuffer(BCSize , Buffer, Position); 3286 WriteInt32ToBuffer(CPUType , Buffer, Position); 3287 3288 // If the file is not a multiple of 16 bytes, insert dummy padding. 3289 while (Buffer.size() & 15) 3290 Buffer.push_back(0); 3291 } 3292 3293 /// Helper to write the header common to all bitcode files. 3294 static void WriteBitcodeHeader(BitstreamWriter &Stream) { 3295 // Emit the file header. 3296 Stream.Emit((unsigned)'B', 8); 3297 Stream.Emit((unsigned)'C', 8); 3298 Stream.Emit(0x0, 4); 3299 Stream.Emit(0xC, 4); 3300 Stream.Emit(0xE, 4); 3301 Stream.Emit(0xD, 4); 3302 } 3303 3304 /// WriteBitcodeToFile - Write the specified module to the specified output 3305 /// stream. 3306 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3307 bool ShouldPreserveUseListOrder, 3308 bool EmitSummaryIndex) { 3309 SmallVector<char, 0> Buffer; 3310 Buffer.reserve(256*1024); 3311 3312 // If this is darwin or another generic macho target, reserve space for the 3313 // header. 3314 Triple TT(M->getTargetTriple()); 3315 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3316 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3317 3318 // Emit the module into the buffer. 3319 { 3320 BitstreamWriter Stream(Buffer); 3321 // Save the start bit of the actual bitcode, in case there is space 3322 // saved at the start for the darwin header above. The reader stream 3323 // will start at the bitcode, and we need the offset of the VST 3324 // to line up. 3325 uint64_t BitcodeStartBit = Stream.GetCurrentBitNo(); 3326 3327 // Emit the file header. 3328 WriteBitcodeHeader(Stream); 3329 3330 WriteIdentificationBlock(M, Stream); 3331 3332 // Emit the module. 3333 WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit, 3334 EmitSummaryIndex); 3335 } 3336 3337 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3338 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 3339 3340 // Write the generated bitstream to "Out". 3341 Out.write((char*)&Buffer.front(), Buffer.size()); 3342 } 3343 3344 // Write the specified module summary index to the given raw output stream, 3345 // where it will be written in a new bitcode block. This is used when 3346 // writing the combined index file for ThinLTO. 3347 void llvm::WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out) { 3348 SmallVector<char, 0> Buffer; 3349 Buffer.reserve(256 * 1024); 3350 3351 BitstreamWriter Stream(Buffer); 3352 3353 // Emit the bitcode header. 3354 WriteBitcodeHeader(Stream); 3355 3356 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3357 3358 SmallVector<unsigned, 1> Vals; 3359 unsigned CurVersion = 1; 3360 Vals.push_back(CurVersion); 3361 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3362 3363 // If we have a VST, write the VSTOFFSET record placeholder and record 3364 // its offset. 3365 uint64_t VSTOffsetPlaceholder = WriteValueSymbolTableForwardDecl(Stream); 3366 3367 // Write the module paths in the combined index. 3368 WriteModStrings(Index, Stream); 3369 3370 // Assign unique value ids to all functions in the index for use 3371 // in writing out the call graph edges. Save the mapping from GUID 3372 // to the new global value id to use when writing those edges, which 3373 // are currently saved in the index in terms of GUID. 3374 std::map<uint64_t, unsigned> GUIDToValueIdMap; 3375 unsigned GlobalValueId = 0; 3376 for (auto &II : Index) 3377 GUIDToValueIdMap[II.first] = ++GlobalValueId; 3378 3379 // Write the summary combined index records. 3380 WriteCombinedGlobalValueSummary(Index, Stream, GUIDToValueIdMap, 3381 GlobalValueId); 3382 3383 // Need a special VST writer for the combined index (we don't have a 3384 // real VST and real values when this is invoked). 3385 WriteCombinedValueSymbolTable(Index, Stream, GUIDToValueIdMap, 3386 VSTOffsetPlaceholder); 3387 3388 Stream.ExitBlock(); 3389 3390 Out.write((char *)&Buffer.front(), Buffer.size()); 3391 } 3392