1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRangeList.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <memory> 80 #include <optional> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 namespace llvm { 100 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 101 } 102 103 extern bool WriteNewDbgInfoFormatToBitcode; 104 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 105 106 namespace { 107 108 /// These are manifest constants used by the bitcode writer. They do not need to 109 /// be kept in sync with the reader, but need to be consistent within this file. 110 enum { 111 // VALUE_SYMTAB_BLOCK abbrev id's. 112 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 113 VST_ENTRY_7_ABBREV, 114 VST_ENTRY_6_ABBREV, 115 VST_BBENTRY_6_ABBREV, 116 117 // CONSTANTS_BLOCK abbrev id's. 118 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 119 CONSTANTS_INTEGER_ABBREV, 120 CONSTANTS_CE_CAST_Abbrev, 121 CONSTANTS_NULL_Abbrev, 122 123 // FUNCTION_BLOCK abbrev id's. 124 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 125 FUNCTION_INST_UNOP_ABBREV, 126 FUNCTION_INST_UNOP_FLAGS_ABBREV, 127 FUNCTION_INST_BINOP_ABBREV, 128 FUNCTION_INST_BINOP_FLAGS_ABBREV, 129 FUNCTION_INST_CAST_ABBREV, 130 FUNCTION_INST_CAST_FLAGS_ABBREV, 131 FUNCTION_INST_RET_VOID_ABBREV, 132 FUNCTION_INST_RET_VAL_ABBREV, 133 FUNCTION_INST_UNREACHABLE_ABBREV, 134 FUNCTION_INST_GEP_ABBREV, 135 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 136 }; 137 138 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 139 /// file type. 140 class BitcodeWriterBase { 141 protected: 142 /// The stream created and owned by the client. 143 BitstreamWriter &Stream; 144 145 StringTableBuilder &StrtabBuilder; 146 147 public: 148 /// Constructs a BitcodeWriterBase object that writes to the provided 149 /// \p Stream. 150 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 151 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 152 153 protected: 154 void writeModuleVersion(); 155 }; 156 157 void BitcodeWriterBase::writeModuleVersion() { 158 // VERSION: [version#] 159 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 160 } 161 162 /// Base class to manage the module bitcode writing, currently subclassed for 163 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 164 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 165 protected: 166 /// The Module to write to bitcode. 167 const Module &M; 168 169 /// Enumerates ids for all values in the module. 170 ValueEnumerator VE; 171 172 /// Optional per-module index to write for ThinLTO. 173 const ModuleSummaryIndex *Index; 174 175 /// Map that holds the correspondence between GUIDs in the summary index, 176 /// that came from indirect call profiles, and a value id generated by this 177 /// class to use in the VST and summary block records. 178 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 179 180 /// Tracks the last value id recorded in the GUIDToValueMap. 181 unsigned GlobalValueId; 182 183 /// Saves the offset of the VSTOffset record that must eventually be 184 /// backpatched with the offset of the actual VST. 185 uint64_t VSTOffsetPlaceholder = 0; 186 187 public: 188 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 189 /// writing to the provided \p Buffer. 190 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 191 BitstreamWriter &Stream, 192 bool ShouldPreserveUseListOrder, 193 const ModuleSummaryIndex *Index) 194 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 195 VE(M, ShouldPreserveUseListOrder), Index(Index) { 196 // Assign ValueIds to any callee values in the index that came from 197 // indirect call profiles and were recorded as a GUID not a Value* 198 // (which would have been assigned an ID by the ValueEnumerator). 199 // The starting ValueId is just after the number of values in the 200 // ValueEnumerator, so that they can be emitted in the VST. 201 GlobalValueId = VE.getValues().size(); 202 if (!Index) 203 return; 204 for (const auto &GUIDSummaryLists : *Index) 205 // Examine all summaries for this GUID. 206 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 207 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) { 208 // For each call in the function summary, see if the call 209 // is to a GUID (which means it is for an indirect call, 210 // otherwise we would have a Value for it). If so, synthesize 211 // a value id. 212 for (auto &CallEdge : FS->calls()) 213 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 214 assignValueId(CallEdge.first.getGUID()); 215 216 // For each referenced variables in the function summary, see if the 217 // variable is represented by a GUID (as opposed to a symbol to 218 // declarations or definitions in the module). If so, synthesize a 219 // value id. 220 for (auto &RefEdge : FS->refs()) 221 if (!RefEdge.haveGVs() || !RefEdge.getValue()) 222 assignValueId(RefEdge.getGUID()); 223 } 224 } 225 226 protected: 227 void writePerModuleGlobalValueSummary(); 228 229 private: 230 void writePerModuleFunctionSummaryRecord( 231 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 232 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 233 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 234 void writeModuleLevelReferences(const GlobalVariable &V, 235 SmallVector<uint64_t, 64> &NameVals, 236 unsigned FSModRefsAbbrev, 237 unsigned FSModVTableRefsAbbrev); 238 239 void assignValueId(GlobalValue::GUID ValGUID) { 240 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 241 } 242 243 unsigned getValueId(GlobalValue::GUID ValGUID) { 244 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 245 // Expect that any GUID value had a value Id assigned by an 246 // earlier call to assignValueId. 247 assert(VMI != GUIDToValueIdMap.end() && 248 "GUID does not have assigned value Id"); 249 return VMI->second; 250 } 251 252 // Helper to get the valueId for the type of value recorded in VI. 253 unsigned getValueId(ValueInfo VI) { 254 if (!VI.haveGVs() || !VI.getValue()) 255 return getValueId(VI.getGUID()); 256 return VE.getValueID(VI.getValue()); 257 } 258 259 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 260 }; 261 262 /// Class to manage the bitcode writing for a module. 263 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 264 /// True if a module hash record should be written. 265 bool GenerateHash; 266 267 /// If non-null, when GenerateHash is true, the resulting hash is written 268 /// into ModHash. 269 ModuleHash *ModHash; 270 271 SHA1 Hasher; 272 273 /// The start bit of the identification block. 274 uint64_t BitcodeStartBit; 275 276 public: 277 /// Constructs a ModuleBitcodeWriter object for the given Module, 278 /// writing to the provided \p Buffer. 279 ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 280 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 281 const ModuleSummaryIndex *Index, bool GenerateHash, 282 ModuleHash *ModHash = nullptr) 283 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 284 ShouldPreserveUseListOrder, Index), 285 GenerateHash(GenerateHash), ModHash(ModHash), 286 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 287 288 /// Emit the current module to the bitstream. 289 void write(); 290 291 private: 292 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 293 294 size_t addToStrtab(StringRef Str); 295 296 void writeAttributeGroupTable(); 297 void writeAttributeTable(); 298 void writeTypeTable(); 299 void writeComdats(); 300 void writeValueSymbolTableForwardDecl(); 301 void writeModuleInfo(); 302 void writeValueAsMetadata(const ValueAsMetadata *MD, 303 SmallVectorImpl<uint64_t> &Record); 304 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 unsigned createDILocationAbbrev(); 307 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned &Abbrev); 309 unsigned createGenericDINodeAbbrev(); 310 void writeGenericDINode(const GenericDINode *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 312 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 313 unsigned Abbrev); 314 void writeDIGenericSubrange(const DIGenericSubrange *N, 315 SmallVectorImpl<uint64_t> &Record, 316 unsigned Abbrev); 317 void writeDIEnumerator(const DIEnumerator *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIStringType(const DIStringType *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDIDerivedType(const DIDerivedType *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDICompositeType(const DICompositeType *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDISubroutineType(const DISubroutineType *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDICompileUnit(const DICompileUnit *N, 333 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 334 void writeDISubprogram(const DISubprogram *N, 335 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 336 void writeDILexicalBlock(const DILexicalBlock *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDICommonBlock(const DICommonBlock *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 350 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 355 SmallVectorImpl<uint64_t> &Record, 356 unsigned Abbrev); 357 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIGlobalVariable(const DIGlobalVariable *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 void writeDILocalVariable(const DILocalVariable *N, 364 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 365 void writeDILabel(const DILabel *N, 366 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 367 void writeDIExpression(const DIExpression *N, 368 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 369 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 370 SmallVectorImpl<uint64_t> &Record, 371 unsigned Abbrev); 372 void writeDIObjCProperty(const DIObjCProperty *N, 373 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 374 void writeDIImportedEntity(const DIImportedEntity *N, 375 SmallVectorImpl<uint64_t> &Record, 376 unsigned Abbrev); 377 unsigned createNamedMetadataAbbrev(); 378 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 379 unsigned createMetadataStringsAbbrev(); 380 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 381 SmallVectorImpl<uint64_t> &Record); 382 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 383 SmallVectorImpl<uint64_t> &Record, 384 std::vector<unsigned> *MDAbbrevs = nullptr, 385 std::vector<uint64_t> *IndexPos = nullptr); 386 void writeModuleMetadata(); 387 void writeFunctionMetadata(const Function &F); 388 void writeFunctionMetadataAttachment(const Function &F); 389 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 390 const GlobalObject &GO); 391 void writeModuleMetadataKinds(); 392 void writeOperandBundleTags(); 393 void writeSyncScopeNames(); 394 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 395 void writeModuleConstants(); 396 bool pushValueAndType(const Value *V, unsigned InstID, 397 SmallVectorImpl<unsigned> &Vals); 398 void writeOperandBundles(const CallBase &CB, unsigned InstID); 399 void pushValue(const Value *V, unsigned InstID, 400 SmallVectorImpl<unsigned> &Vals); 401 void pushValueSigned(const Value *V, unsigned InstID, 402 SmallVectorImpl<uint64_t> &Vals); 403 void writeInstruction(const Instruction &I, unsigned InstID, 404 SmallVectorImpl<unsigned> &Vals); 405 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 406 void writeGlobalValueSymbolTable( 407 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 408 void writeUseList(UseListOrder &&Order); 409 void writeUseListBlock(const Function *F); 410 void 411 writeFunction(const Function &F, 412 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 413 void writeBlockInfo(); 414 void writeModuleHash(StringRef View); 415 416 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 417 return unsigned(SSID); 418 } 419 420 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 421 }; 422 423 /// Class to manage the bitcode writing for a combined index. 424 class IndexBitcodeWriter : public BitcodeWriterBase { 425 /// The combined index to write to bitcode. 426 const ModuleSummaryIndex &Index; 427 428 /// When writing combined summaries, provides the set of global value 429 /// summaries for which the value (function, function alias, etc) should be 430 /// imported as a declaration. 431 const GVSummaryPtrSet *DecSummaries = nullptr; 432 433 /// When writing a subset of the index for distributed backends, client 434 /// provides a map of modules to the corresponding GUIDs/summaries to write. 435 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex; 436 437 /// Map that holds the correspondence between the GUID used in the combined 438 /// index and a value id generated by this class to use in references. 439 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 440 441 // The stack ids used by this index, which will be a subset of those in 442 // the full index in the case of distributed indexes. 443 std::vector<uint64_t> StackIds; 444 445 // Keep a map of the stack id indices used by records being written for this 446 // index to the index of the corresponding stack id in the above StackIds 447 // vector. Ensures we write each referenced stack id once. 448 DenseMap<unsigned, unsigned> StackIdIndicesToIndex; 449 450 /// Tracks the last value id recorded in the GUIDToValueMap. 451 unsigned GlobalValueId = 0; 452 453 /// Tracks the assignment of module paths in the module path string table to 454 /// an id assigned for use in summary references to the module path. 455 DenseMap<StringRef, uint64_t> ModuleIdMap; 456 457 public: 458 /// Constructs a IndexBitcodeWriter object for the given combined index, 459 /// writing to the provided \p Buffer. When writing a subset of the index 460 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 461 /// If provided, \p DecSummaries specifies the set of summaries for which 462 /// the corresponding functions or aliased functions should be imported as a 463 /// declaration (but not definition) for each module. 464 IndexBitcodeWriter( 465 BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 466 const ModuleSummaryIndex &Index, 467 const GVSummaryPtrSet *DecSummaries = nullptr, 468 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr) 469 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 470 DecSummaries(DecSummaries), 471 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 472 473 // See if the StackIdIndex was already added to the StackId map and 474 // vector. If not, record it. 475 auto RecordStackIdReference = [&](unsigned StackIdIndex) { 476 // If the StackIdIndex is not yet in the map, the below insert ensures 477 // that it will point to the new StackIds vector entry we push to just 478 // below. 479 auto Inserted = 480 StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()}); 481 if (Inserted.second) 482 StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex)); 483 }; 484 485 // Assign unique value ids to all summaries to be written, for use 486 // in writing out the call graph edges. Save the mapping from GUID 487 // to the new global value id to use when writing those edges, which 488 // are currently saved in the index in terms of GUID. 489 forEachSummary([&](GVInfo I, bool IsAliasee) { 490 GUIDToValueIdMap[I.first] = ++GlobalValueId; 491 if (IsAliasee) 492 return; 493 auto *FS = dyn_cast<FunctionSummary>(I.second); 494 if (!FS) 495 return; 496 // Record all stack id indices actually used in the summary entries being 497 // written, so that we can compact them in the case of distributed ThinLTO 498 // indexes. 499 for (auto &CI : FS->callsites()) { 500 // If the stack id list is empty, this callsite info was synthesized for 501 // a missing tail call frame. Ensure that the callee's GUID gets a value 502 // id. Normally we only generate these for defined summaries, which in 503 // the case of distributed ThinLTO is only the functions already defined 504 // in the module or that we want to import. We don't bother to include 505 // all the callee symbols as they aren't normally needed in the backend. 506 // However, for the synthesized callsite infos we do need the callee 507 // GUID in the backend so that we can correlate the identified callee 508 // with this callsite info (which for non-tail calls is done by the 509 // ordering of the callsite infos and verified via stack ids). 510 if (CI.StackIdIndices.empty()) { 511 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 512 continue; 513 } 514 for (auto Idx : CI.StackIdIndices) 515 RecordStackIdReference(Idx); 516 } 517 for (auto &AI : FS->allocs()) 518 for (auto &MIB : AI.MIBs) 519 for (auto Idx : MIB.StackIdIndices) 520 RecordStackIdReference(Idx); 521 }); 522 } 523 524 /// The below iterator returns the GUID and associated summary. 525 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 526 527 /// Calls the callback for each value GUID and summary to be written to 528 /// bitcode. This hides the details of whether they are being pulled from the 529 /// entire index or just those in a provided ModuleToSummariesForIndex map. 530 template<typename Functor> 531 void forEachSummary(Functor Callback) { 532 if (ModuleToSummariesForIndex) { 533 for (auto &M : *ModuleToSummariesForIndex) 534 for (auto &Summary : M.second) { 535 Callback(Summary, false); 536 // Ensure aliasee is handled, e.g. for assigning a valueId, 537 // even if we are not importing the aliasee directly (the 538 // imported alias will contain a copy of aliasee). 539 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 540 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 541 } 542 } else { 543 for (auto &Summaries : Index) 544 for (auto &Summary : Summaries.second.SummaryList) 545 Callback({Summaries.first, Summary.get()}, false); 546 } 547 } 548 549 /// Calls the callback for each entry in the modulePaths StringMap that 550 /// should be written to the module path string table. This hides the details 551 /// of whether they are being pulled from the entire index or just those in a 552 /// provided ModuleToSummariesForIndex map. 553 template <typename Functor> void forEachModule(Functor Callback) { 554 if (ModuleToSummariesForIndex) { 555 for (const auto &M : *ModuleToSummariesForIndex) { 556 const auto &MPI = Index.modulePaths().find(M.first); 557 if (MPI == Index.modulePaths().end()) { 558 // This should only happen if the bitcode file was empty, in which 559 // case we shouldn't be importing (the ModuleToSummariesForIndex 560 // would only include the module we are writing and index for). 561 assert(ModuleToSummariesForIndex->size() == 1); 562 continue; 563 } 564 Callback(*MPI); 565 } 566 } else { 567 // Since StringMap iteration order isn't guaranteed, order by path string 568 // first. 569 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 570 // map lookup. 571 std::vector<StringRef> ModulePaths; 572 for (auto &[ModPath, _] : Index.modulePaths()) 573 ModulePaths.push_back(ModPath); 574 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 575 for (auto &ModPath : ModulePaths) 576 Callback(*Index.modulePaths().find(ModPath)); 577 } 578 } 579 580 /// Main entry point for writing a combined index to bitcode. 581 void write(); 582 583 private: 584 void writeModStrings(); 585 void writeCombinedGlobalValueSummary(); 586 587 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 588 auto VMI = GUIDToValueIdMap.find(ValGUID); 589 if (VMI == GUIDToValueIdMap.end()) 590 return std::nullopt; 591 return VMI->second; 592 } 593 594 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 595 }; 596 597 } // end anonymous namespace 598 599 static unsigned getEncodedCastOpcode(unsigned Opcode) { 600 switch (Opcode) { 601 default: llvm_unreachable("Unknown cast instruction!"); 602 case Instruction::Trunc : return bitc::CAST_TRUNC; 603 case Instruction::ZExt : return bitc::CAST_ZEXT; 604 case Instruction::SExt : return bitc::CAST_SEXT; 605 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 606 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 607 case Instruction::UIToFP : return bitc::CAST_UITOFP; 608 case Instruction::SIToFP : return bitc::CAST_SITOFP; 609 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 610 case Instruction::FPExt : return bitc::CAST_FPEXT; 611 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 612 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 613 case Instruction::BitCast : return bitc::CAST_BITCAST; 614 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 615 } 616 } 617 618 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 619 switch (Opcode) { 620 default: llvm_unreachable("Unknown binary instruction!"); 621 case Instruction::FNeg: return bitc::UNOP_FNEG; 622 } 623 } 624 625 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 626 switch (Opcode) { 627 default: llvm_unreachable("Unknown binary instruction!"); 628 case Instruction::Add: 629 case Instruction::FAdd: return bitc::BINOP_ADD; 630 case Instruction::Sub: 631 case Instruction::FSub: return bitc::BINOP_SUB; 632 case Instruction::Mul: 633 case Instruction::FMul: return bitc::BINOP_MUL; 634 case Instruction::UDiv: return bitc::BINOP_UDIV; 635 case Instruction::FDiv: 636 case Instruction::SDiv: return bitc::BINOP_SDIV; 637 case Instruction::URem: return bitc::BINOP_UREM; 638 case Instruction::FRem: 639 case Instruction::SRem: return bitc::BINOP_SREM; 640 case Instruction::Shl: return bitc::BINOP_SHL; 641 case Instruction::LShr: return bitc::BINOP_LSHR; 642 case Instruction::AShr: return bitc::BINOP_ASHR; 643 case Instruction::And: return bitc::BINOP_AND; 644 case Instruction::Or: return bitc::BINOP_OR; 645 case Instruction::Xor: return bitc::BINOP_XOR; 646 } 647 } 648 649 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 650 switch (Op) { 651 default: llvm_unreachable("Unknown RMW operation!"); 652 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 653 case AtomicRMWInst::Add: return bitc::RMW_ADD; 654 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 655 case AtomicRMWInst::And: return bitc::RMW_AND; 656 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 657 case AtomicRMWInst::Or: return bitc::RMW_OR; 658 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 659 case AtomicRMWInst::Max: return bitc::RMW_MAX; 660 case AtomicRMWInst::Min: return bitc::RMW_MIN; 661 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 662 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 663 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 664 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 665 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 666 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 667 case AtomicRMWInst::UIncWrap: 668 return bitc::RMW_UINC_WRAP; 669 case AtomicRMWInst::UDecWrap: 670 return bitc::RMW_UDEC_WRAP; 671 case AtomicRMWInst::USubCond: 672 return bitc::RMW_USUB_COND; 673 case AtomicRMWInst::USubSat: 674 return bitc::RMW_USUB_SAT; 675 } 676 } 677 678 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 679 switch (Ordering) { 680 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 681 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 682 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 683 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 684 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 685 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 686 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 687 } 688 llvm_unreachable("Invalid ordering"); 689 } 690 691 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 692 StringRef Str, unsigned AbbrevToUse) { 693 SmallVector<unsigned, 64> Vals; 694 695 // Code: [strchar x N] 696 for (char C : Str) { 697 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 698 AbbrevToUse = 0; 699 Vals.push_back(C); 700 } 701 702 // Emit the finished record. 703 Stream.EmitRecord(Code, Vals, AbbrevToUse); 704 } 705 706 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 707 switch (Kind) { 708 case Attribute::Alignment: 709 return bitc::ATTR_KIND_ALIGNMENT; 710 case Attribute::AllocAlign: 711 return bitc::ATTR_KIND_ALLOC_ALIGN; 712 case Attribute::AllocSize: 713 return bitc::ATTR_KIND_ALLOC_SIZE; 714 case Attribute::AlwaysInline: 715 return bitc::ATTR_KIND_ALWAYS_INLINE; 716 case Attribute::Builtin: 717 return bitc::ATTR_KIND_BUILTIN; 718 case Attribute::ByVal: 719 return bitc::ATTR_KIND_BY_VAL; 720 case Attribute::Convergent: 721 return bitc::ATTR_KIND_CONVERGENT; 722 case Attribute::InAlloca: 723 return bitc::ATTR_KIND_IN_ALLOCA; 724 case Attribute::Cold: 725 return bitc::ATTR_KIND_COLD; 726 case Attribute::DisableSanitizerInstrumentation: 727 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 728 case Attribute::FnRetThunkExtern: 729 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 730 case Attribute::Hot: 731 return bitc::ATTR_KIND_HOT; 732 case Attribute::ElementType: 733 return bitc::ATTR_KIND_ELEMENTTYPE; 734 case Attribute::HybridPatchable: 735 return bitc::ATTR_KIND_HYBRID_PATCHABLE; 736 case Attribute::InlineHint: 737 return bitc::ATTR_KIND_INLINE_HINT; 738 case Attribute::InReg: 739 return bitc::ATTR_KIND_IN_REG; 740 case Attribute::JumpTable: 741 return bitc::ATTR_KIND_JUMP_TABLE; 742 case Attribute::MinSize: 743 return bitc::ATTR_KIND_MIN_SIZE; 744 case Attribute::AllocatedPointer: 745 return bitc::ATTR_KIND_ALLOCATED_POINTER; 746 case Attribute::AllocKind: 747 return bitc::ATTR_KIND_ALLOC_KIND; 748 case Attribute::Memory: 749 return bitc::ATTR_KIND_MEMORY; 750 case Attribute::NoFPClass: 751 return bitc::ATTR_KIND_NOFPCLASS; 752 case Attribute::Naked: 753 return bitc::ATTR_KIND_NAKED; 754 case Attribute::Nest: 755 return bitc::ATTR_KIND_NEST; 756 case Attribute::NoAlias: 757 return bitc::ATTR_KIND_NO_ALIAS; 758 case Attribute::NoBuiltin: 759 return bitc::ATTR_KIND_NO_BUILTIN; 760 case Attribute::NoCallback: 761 return bitc::ATTR_KIND_NO_CALLBACK; 762 case Attribute::NoCapture: 763 return bitc::ATTR_KIND_NO_CAPTURE; 764 case Attribute::NoDuplicate: 765 return bitc::ATTR_KIND_NO_DUPLICATE; 766 case Attribute::NoFree: 767 return bitc::ATTR_KIND_NOFREE; 768 case Attribute::NoImplicitFloat: 769 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 770 case Attribute::NoInline: 771 return bitc::ATTR_KIND_NO_INLINE; 772 case Attribute::NoRecurse: 773 return bitc::ATTR_KIND_NO_RECURSE; 774 case Attribute::NoMerge: 775 return bitc::ATTR_KIND_NO_MERGE; 776 case Attribute::NonLazyBind: 777 return bitc::ATTR_KIND_NON_LAZY_BIND; 778 case Attribute::NonNull: 779 return bitc::ATTR_KIND_NON_NULL; 780 case Attribute::Dereferenceable: 781 return bitc::ATTR_KIND_DEREFERENCEABLE; 782 case Attribute::DereferenceableOrNull: 783 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 784 case Attribute::NoRedZone: 785 return bitc::ATTR_KIND_NO_RED_ZONE; 786 case Attribute::NoReturn: 787 return bitc::ATTR_KIND_NO_RETURN; 788 case Attribute::NoSync: 789 return bitc::ATTR_KIND_NOSYNC; 790 case Attribute::NoCfCheck: 791 return bitc::ATTR_KIND_NOCF_CHECK; 792 case Attribute::NoProfile: 793 return bitc::ATTR_KIND_NO_PROFILE; 794 case Attribute::SkipProfile: 795 return bitc::ATTR_KIND_SKIP_PROFILE; 796 case Attribute::NoUnwind: 797 return bitc::ATTR_KIND_NO_UNWIND; 798 case Attribute::NoSanitizeBounds: 799 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 800 case Attribute::NoSanitizeCoverage: 801 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 802 case Attribute::NullPointerIsValid: 803 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 804 case Attribute::OptimizeForDebugging: 805 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 806 case Attribute::OptForFuzzing: 807 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 808 case Attribute::OptimizeForSize: 809 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 810 case Attribute::OptimizeNone: 811 return bitc::ATTR_KIND_OPTIMIZE_NONE; 812 case Attribute::ReadNone: 813 return bitc::ATTR_KIND_READ_NONE; 814 case Attribute::ReadOnly: 815 return bitc::ATTR_KIND_READ_ONLY; 816 case Attribute::Returned: 817 return bitc::ATTR_KIND_RETURNED; 818 case Attribute::ReturnsTwice: 819 return bitc::ATTR_KIND_RETURNS_TWICE; 820 case Attribute::SExt: 821 return bitc::ATTR_KIND_S_EXT; 822 case Attribute::Speculatable: 823 return bitc::ATTR_KIND_SPECULATABLE; 824 case Attribute::StackAlignment: 825 return bitc::ATTR_KIND_STACK_ALIGNMENT; 826 case Attribute::StackProtect: 827 return bitc::ATTR_KIND_STACK_PROTECT; 828 case Attribute::StackProtectReq: 829 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 830 case Attribute::StackProtectStrong: 831 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 832 case Attribute::SafeStack: 833 return bitc::ATTR_KIND_SAFESTACK; 834 case Attribute::ShadowCallStack: 835 return bitc::ATTR_KIND_SHADOWCALLSTACK; 836 case Attribute::StrictFP: 837 return bitc::ATTR_KIND_STRICT_FP; 838 case Attribute::StructRet: 839 return bitc::ATTR_KIND_STRUCT_RET; 840 case Attribute::SanitizeAddress: 841 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 842 case Attribute::SanitizeHWAddress: 843 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 844 case Attribute::SanitizeThread: 845 return bitc::ATTR_KIND_SANITIZE_THREAD; 846 case Attribute::SanitizeMemory: 847 return bitc::ATTR_KIND_SANITIZE_MEMORY; 848 case Attribute::SanitizeNumericalStability: 849 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY; 850 case Attribute::SanitizeRealtime: 851 return bitc::ATTR_KIND_SANITIZE_REALTIME; 852 case Attribute::SanitizeRealtimeUnsafe: 853 return bitc::ATTR_KIND_SANITIZE_REALTIME_UNSAFE; 854 case Attribute::SpeculativeLoadHardening: 855 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 856 case Attribute::SwiftError: 857 return bitc::ATTR_KIND_SWIFT_ERROR; 858 case Attribute::SwiftSelf: 859 return bitc::ATTR_KIND_SWIFT_SELF; 860 case Attribute::SwiftAsync: 861 return bitc::ATTR_KIND_SWIFT_ASYNC; 862 case Attribute::UWTable: 863 return bitc::ATTR_KIND_UW_TABLE; 864 case Attribute::VScaleRange: 865 return bitc::ATTR_KIND_VSCALE_RANGE; 866 case Attribute::WillReturn: 867 return bitc::ATTR_KIND_WILLRETURN; 868 case Attribute::WriteOnly: 869 return bitc::ATTR_KIND_WRITEONLY; 870 case Attribute::ZExt: 871 return bitc::ATTR_KIND_Z_EXT; 872 case Attribute::ImmArg: 873 return bitc::ATTR_KIND_IMMARG; 874 case Attribute::SanitizeMemTag: 875 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 876 case Attribute::Preallocated: 877 return bitc::ATTR_KIND_PREALLOCATED; 878 case Attribute::NoUndef: 879 return bitc::ATTR_KIND_NOUNDEF; 880 case Attribute::ByRef: 881 return bitc::ATTR_KIND_BYREF; 882 case Attribute::MustProgress: 883 return bitc::ATTR_KIND_MUSTPROGRESS; 884 case Attribute::PresplitCoroutine: 885 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 886 case Attribute::Writable: 887 return bitc::ATTR_KIND_WRITABLE; 888 case Attribute::CoroDestroyOnlyWhenComplete: 889 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 890 case Attribute::CoroElideSafe: 891 return bitc::ATTR_KIND_CORO_ELIDE_SAFE; 892 case Attribute::DeadOnUnwind: 893 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 894 case Attribute::Range: 895 return bitc::ATTR_KIND_RANGE; 896 case Attribute::Initializes: 897 return bitc::ATTR_KIND_INITIALIZES; 898 case Attribute::NoExt: 899 return bitc::ATTR_KIND_NO_EXT; 900 case Attribute::EndAttrKinds: 901 llvm_unreachable("Can not encode end-attribute kinds marker."); 902 case Attribute::None: 903 llvm_unreachable("Can not encode none-attribute."); 904 case Attribute::EmptyKey: 905 case Attribute::TombstoneKey: 906 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 907 } 908 909 llvm_unreachable("Trying to encode unknown attribute"); 910 } 911 912 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 913 if ((int64_t)V >= 0) 914 Vals.push_back(V << 1); 915 else 916 Vals.push_back((-V << 1) | 1); 917 } 918 919 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 920 // We have an arbitrary precision integer value to write whose 921 // bit width is > 64. However, in canonical unsigned integer 922 // format it is likely that the high bits are going to be zero. 923 // So, we only write the number of active words. 924 unsigned NumWords = A.getActiveWords(); 925 const uint64_t *RawData = A.getRawData(); 926 for (unsigned i = 0; i < NumWords; i++) 927 emitSignedInt64(Vals, RawData[i]); 928 } 929 930 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 931 const ConstantRange &CR, bool EmitBitWidth) { 932 unsigned BitWidth = CR.getBitWidth(); 933 if (EmitBitWidth) 934 Record.push_back(BitWidth); 935 if (BitWidth > 64) { 936 Record.push_back(CR.getLower().getActiveWords() | 937 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 938 emitWideAPInt(Record, CR.getLower()); 939 emitWideAPInt(Record, CR.getUpper()); 940 } else { 941 emitSignedInt64(Record, CR.getLower().getSExtValue()); 942 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 943 } 944 } 945 946 void ModuleBitcodeWriter::writeAttributeGroupTable() { 947 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 948 VE.getAttributeGroups(); 949 if (AttrGrps.empty()) return; 950 951 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 952 953 SmallVector<uint64_t, 64> Record; 954 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 955 unsigned AttrListIndex = Pair.first; 956 AttributeSet AS = Pair.second; 957 Record.push_back(VE.getAttributeGroupID(Pair)); 958 Record.push_back(AttrListIndex); 959 960 for (Attribute Attr : AS) { 961 if (Attr.isEnumAttribute()) { 962 Record.push_back(0); 963 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 964 } else if (Attr.isIntAttribute()) { 965 Record.push_back(1); 966 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 967 Record.push_back(Attr.getValueAsInt()); 968 } else if (Attr.isStringAttribute()) { 969 StringRef Kind = Attr.getKindAsString(); 970 StringRef Val = Attr.getValueAsString(); 971 972 Record.push_back(Val.empty() ? 3 : 4); 973 Record.append(Kind.begin(), Kind.end()); 974 Record.push_back(0); 975 if (!Val.empty()) { 976 Record.append(Val.begin(), Val.end()); 977 Record.push_back(0); 978 } 979 } else if (Attr.isTypeAttribute()) { 980 Type *Ty = Attr.getValueAsType(); 981 Record.push_back(Ty ? 6 : 5); 982 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 983 if (Ty) 984 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 985 } else if (Attr.isConstantRangeAttribute()) { 986 Record.push_back(7); 987 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 988 emitConstantRange(Record, Attr.getValueAsConstantRange(), 989 /*EmitBitWidth=*/true); 990 } else { 991 assert(Attr.isConstantRangeListAttribute()); 992 Record.push_back(8); 993 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 994 ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList(); 995 Record.push_back(Val.size()); 996 Record.push_back(Val[0].getBitWidth()); 997 for (auto &CR : Val) 998 emitConstantRange(Record, CR, /*EmitBitWidth=*/false); 999 } 1000 } 1001 1002 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 1003 Record.clear(); 1004 } 1005 1006 Stream.ExitBlock(); 1007 } 1008 1009 void ModuleBitcodeWriter::writeAttributeTable() { 1010 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 1011 if (Attrs.empty()) return; 1012 1013 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 1014 1015 SmallVector<uint64_t, 64> Record; 1016 for (const AttributeList &AL : Attrs) { 1017 for (unsigned i : AL.indexes()) { 1018 AttributeSet AS = AL.getAttributes(i); 1019 if (AS.hasAttributes()) 1020 Record.push_back(VE.getAttributeGroupID({i, AS})); 1021 } 1022 1023 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 1024 Record.clear(); 1025 } 1026 1027 Stream.ExitBlock(); 1028 } 1029 1030 /// WriteTypeTable - Write out the type table for a module. 1031 void ModuleBitcodeWriter::writeTypeTable() { 1032 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 1033 1034 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 1035 SmallVector<uint64_t, 64> TypeVals; 1036 1037 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 1038 1039 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 1040 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1041 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 1042 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 1043 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1044 1045 // Abbrev for TYPE_CODE_FUNCTION. 1046 Abbv = std::make_shared<BitCodeAbbrev>(); 1047 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1051 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1052 1053 // Abbrev for TYPE_CODE_STRUCT_ANON. 1054 Abbv = std::make_shared<BitCodeAbbrev>(); 1055 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1059 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1060 1061 // Abbrev for TYPE_CODE_STRUCT_NAME. 1062 Abbv = std::make_shared<BitCodeAbbrev>(); 1063 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1066 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1067 1068 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1069 Abbv = std::make_shared<BitCodeAbbrev>(); 1070 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1074 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1075 1076 // Abbrev for TYPE_CODE_ARRAY. 1077 Abbv = std::make_shared<BitCodeAbbrev>(); 1078 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1081 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1082 1083 // Emit an entry count so the reader can reserve space. 1084 TypeVals.push_back(TypeList.size()); 1085 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1086 TypeVals.clear(); 1087 1088 // Loop over all of the types, emitting each in turn. 1089 for (Type *T : TypeList) { 1090 int AbbrevToUse = 0; 1091 unsigned Code = 0; 1092 1093 switch (T->getTypeID()) { 1094 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1095 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1096 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1097 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1098 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1099 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1100 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1101 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1102 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1103 case Type::MetadataTyID: 1104 Code = bitc::TYPE_CODE_METADATA; 1105 break; 1106 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1107 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1108 case Type::IntegerTyID: 1109 // INTEGER: [width] 1110 Code = bitc::TYPE_CODE_INTEGER; 1111 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1112 break; 1113 case Type::PointerTyID: { 1114 PointerType *PTy = cast<PointerType>(T); 1115 unsigned AddressSpace = PTy->getAddressSpace(); 1116 // OPAQUE_POINTER: [address space] 1117 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1118 TypeVals.push_back(AddressSpace); 1119 if (AddressSpace == 0) 1120 AbbrevToUse = OpaquePtrAbbrev; 1121 break; 1122 } 1123 case Type::FunctionTyID: { 1124 FunctionType *FT = cast<FunctionType>(T); 1125 // FUNCTION: [isvararg, retty, paramty x N] 1126 Code = bitc::TYPE_CODE_FUNCTION; 1127 TypeVals.push_back(FT->isVarArg()); 1128 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1129 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1130 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1131 AbbrevToUse = FunctionAbbrev; 1132 break; 1133 } 1134 case Type::StructTyID: { 1135 StructType *ST = cast<StructType>(T); 1136 // STRUCT: [ispacked, eltty x N] 1137 TypeVals.push_back(ST->isPacked()); 1138 // Output all of the element types. 1139 for (Type *ET : ST->elements()) 1140 TypeVals.push_back(VE.getTypeID(ET)); 1141 1142 if (ST->isLiteral()) { 1143 Code = bitc::TYPE_CODE_STRUCT_ANON; 1144 AbbrevToUse = StructAnonAbbrev; 1145 } else { 1146 if (ST->isOpaque()) { 1147 Code = bitc::TYPE_CODE_OPAQUE; 1148 } else { 1149 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1150 AbbrevToUse = StructNamedAbbrev; 1151 } 1152 1153 // Emit the name if it is present. 1154 if (!ST->getName().empty()) 1155 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1156 StructNameAbbrev); 1157 } 1158 break; 1159 } 1160 case Type::ArrayTyID: { 1161 ArrayType *AT = cast<ArrayType>(T); 1162 // ARRAY: [numelts, eltty] 1163 Code = bitc::TYPE_CODE_ARRAY; 1164 TypeVals.push_back(AT->getNumElements()); 1165 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1166 AbbrevToUse = ArrayAbbrev; 1167 break; 1168 } 1169 case Type::FixedVectorTyID: 1170 case Type::ScalableVectorTyID: { 1171 VectorType *VT = cast<VectorType>(T); 1172 // VECTOR [numelts, eltty] or 1173 // [numelts, eltty, scalable] 1174 Code = bitc::TYPE_CODE_VECTOR; 1175 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1176 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1177 if (isa<ScalableVectorType>(VT)) 1178 TypeVals.push_back(true); 1179 break; 1180 } 1181 case Type::TargetExtTyID: { 1182 TargetExtType *TET = cast<TargetExtType>(T); 1183 Code = bitc::TYPE_CODE_TARGET_TYPE; 1184 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1185 StructNameAbbrev); 1186 TypeVals.push_back(TET->getNumTypeParameters()); 1187 for (Type *InnerTy : TET->type_params()) 1188 TypeVals.push_back(VE.getTypeID(InnerTy)); 1189 for (unsigned IntParam : TET->int_params()) 1190 TypeVals.push_back(IntParam); 1191 break; 1192 } 1193 case Type::TypedPointerTyID: 1194 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1195 } 1196 1197 // Emit the finished record. 1198 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1199 TypeVals.clear(); 1200 } 1201 1202 Stream.ExitBlock(); 1203 } 1204 1205 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1206 switch (Linkage) { 1207 case GlobalValue::ExternalLinkage: 1208 return 0; 1209 case GlobalValue::WeakAnyLinkage: 1210 return 16; 1211 case GlobalValue::AppendingLinkage: 1212 return 2; 1213 case GlobalValue::InternalLinkage: 1214 return 3; 1215 case GlobalValue::LinkOnceAnyLinkage: 1216 return 18; 1217 case GlobalValue::ExternalWeakLinkage: 1218 return 7; 1219 case GlobalValue::CommonLinkage: 1220 return 8; 1221 case GlobalValue::PrivateLinkage: 1222 return 9; 1223 case GlobalValue::WeakODRLinkage: 1224 return 17; 1225 case GlobalValue::LinkOnceODRLinkage: 1226 return 19; 1227 case GlobalValue::AvailableExternallyLinkage: 1228 return 12; 1229 } 1230 llvm_unreachable("Invalid linkage"); 1231 } 1232 1233 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1234 return getEncodedLinkage(GV.getLinkage()); 1235 } 1236 1237 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1238 uint64_t RawFlags = 0; 1239 RawFlags |= Flags.ReadNone; 1240 RawFlags |= (Flags.ReadOnly << 1); 1241 RawFlags |= (Flags.NoRecurse << 2); 1242 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1243 RawFlags |= (Flags.NoInline << 4); 1244 RawFlags |= (Flags.AlwaysInline << 5); 1245 RawFlags |= (Flags.NoUnwind << 6); 1246 RawFlags |= (Flags.MayThrow << 7); 1247 RawFlags |= (Flags.HasUnknownCall << 8); 1248 RawFlags |= (Flags.MustBeUnreachable << 9); 1249 return RawFlags; 1250 } 1251 1252 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1253 // in BitcodeReader.cpp. 1254 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags, 1255 bool ImportAsDecl = false) { 1256 uint64_t RawFlags = 0; 1257 1258 RawFlags |= Flags.NotEligibleToImport; // bool 1259 RawFlags |= (Flags.Live << 1); 1260 RawFlags |= (Flags.DSOLocal << 2); 1261 RawFlags |= (Flags.CanAutoHide << 3); 1262 1263 // Linkage don't need to be remapped at that time for the summary. Any future 1264 // change to the getEncodedLinkage() function will need to be taken into 1265 // account here as well. 1266 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1267 1268 RawFlags |= (Flags.Visibility << 8); // 2 bits 1269 1270 unsigned ImportType = Flags.ImportType | ImportAsDecl; 1271 RawFlags |= (ImportType << 10); // 1 bit 1272 1273 return RawFlags; 1274 } 1275 1276 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1277 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1278 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1279 return RawFlags; 1280 } 1281 1282 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1283 uint64_t RawFlags = 0; 1284 1285 RawFlags |= CI.Hotness; // 3 bits 1286 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1287 1288 return RawFlags; 1289 } 1290 1291 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1292 uint64_t RawFlags = 0; 1293 1294 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1295 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1296 1297 return RawFlags; 1298 } 1299 1300 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1301 switch (GV.getVisibility()) { 1302 case GlobalValue::DefaultVisibility: return 0; 1303 case GlobalValue::HiddenVisibility: return 1; 1304 case GlobalValue::ProtectedVisibility: return 2; 1305 } 1306 llvm_unreachable("Invalid visibility"); 1307 } 1308 1309 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1310 switch (GV.getDLLStorageClass()) { 1311 case GlobalValue::DefaultStorageClass: return 0; 1312 case GlobalValue::DLLImportStorageClass: return 1; 1313 case GlobalValue::DLLExportStorageClass: return 2; 1314 } 1315 llvm_unreachable("Invalid DLL storage class"); 1316 } 1317 1318 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1319 switch (GV.getThreadLocalMode()) { 1320 case GlobalVariable::NotThreadLocal: return 0; 1321 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1322 case GlobalVariable::LocalDynamicTLSModel: return 2; 1323 case GlobalVariable::InitialExecTLSModel: return 3; 1324 case GlobalVariable::LocalExecTLSModel: return 4; 1325 } 1326 llvm_unreachable("Invalid TLS model"); 1327 } 1328 1329 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1330 switch (C.getSelectionKind()) { 1331 case Comdat::Any: 1332 return bitc::COMDAT_SELECTION_KIND_ANY; 1333 case Comdat::ExactMatch: 1334 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1335 case Comdat::Largest: 1336 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1337 case Comdat::NoDeduplicate: 1338 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1339 case Comdat::SameSize: 1340 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1341 } 1342 llvm_unreachable("Invalid selection kind"); 1343 } 1344 1345 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1346 switch (GV.getUnnamedAddr()) { 1347 case GlobalValue::UnnamedAddr::None: return 0; 1348 case GlobalValue::UnnamedAddr::Local: return 2; 1349 case GlobalValue::UnnamedAddr::Global: return 1; 1350 } 1351 llvm_unreachable("Invalid unnamed_addr"); 1352 } 1353 1354 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1355 if (GenerateHash) 1356 Hasher.update(Str); 1357 return StrtabBuilder.add(Str); 1358 } 1359 1360 void ModuleBitcodeWriter::writeComdats() { 1361 SmallVector<unsigned, 64> Vals; 1362 for (const Comdat *C : VE.getComdats()) { 1363 // COMDAT: [strtab offset, strtab size, selection_kind] 1364 Vals.push_back(addToStrtab(C->getName())); 1365 Vals.push_back(C->getName().size()); 1366 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1367 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1368 Vals.clear(); 1369 } 1370 } 1371 1372 /// Write a record that will eventually hold the word offset of the 1373 /// module-level VST. For now the offset is 0, which will be backpatched 1374 /// after the real VST is written. Saves the bit offset to backpatch. 1375 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1376 // Write a placeholder value in for the offset of the real VST, 1377 // which is written after the function blocks so that it can include 1378 // the offset of each function. The placeholder offset will be 1379 // updated when the real VST is written. 1380 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1381 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1382 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1383 // hold the real VST offset. Must use fixed instead of VBR as we don't 1384 // know how many VBR chunks to reserve ahead of time. 1385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1386 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1387 1388 // Emit the placeholder 1389 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1390 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1391 1392 // Compute and save the bit offset to the placeholder, which will be 1393 // patched when the real VST is written. We can simply subtract the 32-bit 1394 // fixed size from the current bit number to get the location to backpatch. 1395 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1396 } 1397 1398 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1399 1400 /// Determine the encoding to use for the given string name and length. 1401 static StringEncoding getStringEncoding(StringRef Str) { 1402 bool isChar6 = true; 1403 for (char C : Str) { 1404 if (isChar6) 1405 isChar6 = BitCodeAbbrevOp::isChar6(C); 1406 if ((unsigned char)C & 128) 1407 // don't bother scanning the rest. 1408 return SE_Fixed8; 1409 } 1410 if (isChar6) 1411 return SE_Char6; 1412 return SE_Fixed7; 1413 } 1414 1415 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1416 "Sanitizer Metadata is too large for naive serialization."); 1417 static unsigned 1418 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1419 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1420 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1421 } 1422 1423 /// Emit top-level description of module, including target triple, inline asm, 1424 /// descriptors for global variables, and function prototype info. 1425 /// Returns the bit offset to backpatch with the location of the real VST. 1426 void ModuleBitcodeWriter::writeModuleInfo() { 1427 // Emit various pieces of data attached to a module. 1428 if (!M.getTargetTriple().empty()) 1429 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1430 0 /*TODO*/); 1431 const std::string &DL = M.getDataLayoutStr(); 1432 if (!DL.empty()) 1433 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1434 if (!M.getModuleInlineAsm().empty()) 1435 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1436 0 /*TODO*/); 1437 1438 // Emit information about sections and GC, computing how many there are. Also 1439 // compute the maximum alignment value. 1440 std::map<std::string, unsigned> SectionMap; 1441 std::map<std::string, unsigned> GCMap; 1442 MaybeAlign MaxAlignment; 1443 unsigned MaxGlobalType = 0; 1444 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1445 if (A) 1446 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1447 }; 1448 for (const GlobalVariable &GV : M.globals()) { 1449 UpdateMaxAlignment(GV.getAlign()); 1450 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1451 if (GV.hasSection()) { 1452 // Give section names unique ID's. 1453 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1454 if (!Entry) { 1455 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1456 0 /*TODO*/); 1457 Entry = SectionMap.size(); 1458 } 1459 } 1460 } 1461 for (const Function &F : M) { 1462 UpdateMaxAlignment(F.getAlign()); 1463 if (F.hasSection()) { 1464 // Give section names unique ID's. 1465 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1466 if (!Entry) { 1467 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1468 0 /*TODO*/); 1469 Entry = SectionMap.size(); 1470 } 1471 } 1472 if (F.hasGC()) { 1473 // Same for GC names. 1474 unsigned &Entry = GCMap[F.getGC()]; 1475 if (!Entry) { 1476 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1477 0 /*TODO*/); 1478 Entry = GCMap.size(); 1479 } 1480 } 1481 } 1482 1483 // Emit abbrev for globals, now that we know # sections and max alignment. 1484 unsigned SimpleGVarAbbrev = 0; 1485 if (!M.global_empty()) { 1486 // Add an abbrev for common globals with no visibility or thread localness. 1487 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1488 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1492 Log2_32_Ceil(MaxGlobalType+1))); 1493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1494 //| explicitType << 1 1495 //| constant 1496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1498 if (!MaxAlignment) // Alignment. 1499 Abbv->Add(BitCodeAbbrevOp(0)); 1500 else { 1501 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1503 Log2_32_Ceil(MaxEncAlignment+1))); 1504 } 1505 if (SectionMap.empty()) // Section. 1506 Abbv->Add(BitCodeAbbrevOp(0)); 1507 else 1508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1509 Log2_32_Ceil(SectionMap.size()+1))); 1510 // Don't bother emitting vis + thread local. 1511 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1512 } 1513 1514 SmallVector<unsigned, 64> Vals; 1515 // Emit the module's source file name. 1516 { 1517 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1518 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1519 if (Bits == SE_Char6) 1520 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1521 else if (Bits == SE_Fixed7) 1522 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1523 1524 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1525 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1526 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1528 Abbv->Add(AbbrevOpToUse); 1529 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1530 1531 for (const auto P : M.getSourceFileName()) 1532 Vals.push_back((unsigned char)P); 1533 1534 // Emit the finished record. 1535 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1536 Vals.clear(); 1537 } 1538 1539 // Emit the global variable information. 1540 for (const GlobalVariable &GV : M.globals()) { 1541 unsigned AbbrevToUse = 0; 1542 1543 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1544 // linkage, alignment, section, visibility, threadlocal, 1545 // unnamed_addr, externally_initialized, dllstorageclass, 1546 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1547 Vals.push_back(addToStrtab(GV.getName())); 1548 Vals.push_back(GV.getName().size()); 1549 Vals.push_back(VE.getTypeID(GV.getValueType())); 1550 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1551 Vals.push_back(GV.isDeclaration() ? 0 : 1552 (VE.getValueID(GV.getInitializer()) + 1)); 1553 Vals.push_back(getEncodedLinkage(GV)); 1554 Vals.push_back(getEncodedAlign(GV.getAlign())); 1555 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1556 : 0); 1557 if (GV.isThreadLocal() || 1558 GV.getVisibility() != GlobalValue::DefaultVisibility || 1559 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1560 GV.isExternallyInitialized() || 1561 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1562 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1563 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1564 Vals.push_back(getEncodedVisibility(GV)); 1565 Vals.push_back(getEncodedThreadLocalMode(GV)); 1566 Vals.push_back(getEncodedUnnamedAddr(GV)); 1567 Vals.push_back(GV.isExternallyInitialized()); 1568 Vals.push_back(getEncodedDLLStorageClass(GV)); 1569 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1570 1571 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1572 Vals.push_back(VE.getAttributeListID(AL)); 1573 1574 Vals.push_back(GV.isDSOLocal()); 1575 Vals.push_back(addToStrtab(GV.getPartition())); 1576 Vals.push_back(GV.getPartition().size()); 1577 1578 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1579 GV.getSanitizerMetadata()) 1580 : 0)); 1581 Vals.push_back(GV.getCodeModelRaw()); 1582 } else { 1583 AbbrevToUse = SimpleGVarAbbrev; 1584 } 1585 1586 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1587 Vals.clear(); 1588 } 1589 1590 // Emit the function proto information. 1591 for (const Function &F : M) { 1592 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1593 // linkage, paramattrs, alignment, section, visibility, gc, 1594 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1595 // prefixdata, personalityfn, DSO_Local, addrspace] 1596 Vals.push_back(addToStrtab(F.getName())); 1597 Vals.push_back(F.getName().size()); 1598 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1599 Vals.push_back(F.getCallingConv()); 1600 Vals.push_back(F.isDeclaration()); 1601 Vals.push_back(getEncodedLinkage(F)); 1602 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1603 Vals.push_back(getEncodedAlign(F.getAlign())); 1604 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1605 : 0); 1606 Vals.push_back(getEncodedVisibility(F)); 1607 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1608 Vals.push_back(getEncodedUnnamedAddr(F)); 1609 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1610 : 0); 1611 Vals.push_back(getEncodedDLLStorageClass(F)); 1612 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1613 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1614 : 0); 1615 Vals.push_back( 1616 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1617 1618 Vals.push_back(F.isDSOLocal()); 1619 Vals.push_back(F.getAddressSpace()); 1620 Vals.push_back(addToStrtab(F.getPartition())); 1621 Vals.push_back(F.getPartition().size()); 1622 1623 unsigned AbbrevToUse = 0; 1624 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1625 Vals.clear(); 1626 } 1627 1628 // Emit the alias information. 1629 for (const GlobalAlias &A : M.aliases()) { 1630 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1631 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1632 // DSO_Local] 1633 Vals.push_back(addToStrtab(A.getName())); 1634 Vals.push_back(A.getName().size()); 1635 Vals.push_back(VE.getTypeID(A.getValueType())); 1636 Vals.push_back(A.getType()->getAddressSpace()); 1637 Vals.push_back(VE.getValueID(A.getAliasee())); 1638 Vals.push_back(getEncodedLinkage(A)); 1639 Vals.push_back(getEncodedVisibility(A)); 1640 Vals.push_back(getEncodedDLLStorageClass(A)); 1641 Vals.push_back(getEncodedThreadLocalMode(A)); 1642 Vals.push_back(getEncodedUnnamedAddr(A)); 1643 Vals.push_back(A.isDSOLocal()); 1644 Vals.push_back(addToStrtab(A.getPartition())); 1645 Vals.push_back(A.getPartition().size()); 1646 1647 unsigned AbbrevToUse = 0; 1648 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1649 Vals.clear(); 1650 } 1651 1652 // Emit the ifunc information. 1653 for (const GlobalIFunc &I : M.ifuncs()) { 1654 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1655 // val#, linkage, visibility, DSO_Local] 1656 Vals.push_back(addToStrtab(I.getName())); 1657 Vals.push_back(I.getName().size()); 1658 Vals.push_back(VE.getTypeID(I.getValueType())); 1659 Vals.push_back(I.getType()->getAddressSpace()); 1660 Vals.push_back(VE.getValueID(I.getResolver())); 1661 Vals.push_back(getEncodedLinkage(I)); 1662 Vals.push_back(getEncodedVisibility(I)); 1663 Vals.push_back(I.isDSOLocal()); 1664 Vals.push_back(addToStrtab(I.getPartition())); 1665 Vals.push_back(I.getPartition().size()); 1666 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1667 Vals.clear(); 1668 } 1669 1670 writeValueSymbolTableForwardDecl(); 1671 } 1672 1673 static uint64_t getOptimizationFlags(const Value *V) { 1674 uint64_t Flags = 0; 1675 1676 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1677 if (OBO->hasNoSignedWrap()) 1678 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1679 if (OBO->hasNoUnsignedWrap()) 1680 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1681 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1682 if (PEO->isExact()) 1683 Flags |= 1 << bitc::PEO_EXACT; 1684 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1685 if (PDI->isDisjoint()) 1686 Flags |= 1 << bitc::PDI_DISJOINT; 1687 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1688 if (FPMO->hasAllowReassoc()) 1689 Flags |= bitc::AllowReassoc; 1690 if (FPMO->hasNoNaNs()) 1691 Flags |= bitc::NoNaNs; 1692 if (FPMO->hasNoInfs()) 1693 Flags |= bitc::NoInfs; 1694 if (FPMO->hasNoSignedZeros()) 1695 Flags |= bitc::NoSignedZeros; 1696 if (FPMO->hasAllowReciprocal()) 1697 Flags |= bitc::AllowReciprocal; 1698 if (FPMO->hasAllowContract()) 1699 Flags |= bitc::AllowContract; 1700 if (FPMO->hasApproxFunc()) 1701 Flags |= bitc::ApproxFunc; 1702 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1703 if (NNI->hasNonNeg()) 1704 Flags |= 1 << bitc::PNNI_NON_NEG; 1705 } else if (const auto *TI = dyn_cast<TruncInst>(V)) { 1706 if (TI->hasNoSignedWrap()) 1707 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; 1708 if (TI->hasNoUnsignedWrap()) 1709 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; 1710 } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) { 1711 if (GEP->isInBounds()) 1712 Flags |= 1 << bitc::GEP_INBOUNDS; 1713 if (GEP->hasNoUnsignedSignedWrap()) 1714 Flags |= 1 << bitc::GEP_NUSW; 1715 if (GEP->hasNoUnsignedWrap()) 1716 Flags |= 1 << bitc::GEP_NUW; 1717 } 1718 1719 return Flags; 1720 } 1721 1722 void ModuleBitcodeWriter::writeValueAsMetadata( 1723 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1724 // Mimic an MDNode with a value as one operand. 1725 Value *V = MD->getValue(); 1726 Record.push_back(VE.getTypeID(V->getType())); 1727 Record.push_back(VE.getValueID(V)); 1728 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1729 Record.clear(); 1730 } 1731 1732 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1733 SmallVectorImpl<uint64_t> &Record, 1734 unsigned Abbrev) { 1735 for (const MDOperand &MDO : N->operands()) { 1736 Metadata *MD = MDO; 1737 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1738 "Unexpected function-local metadata"); 1739 Record.push_back(VE.getMetadataOrNullID(MD)); 1740 } 1741 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1742 : bitc::METADATA_NODE, 1743 Record, Abbrev); 1744 Record.clear(); 1745 } 1746 1747 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1748 // Assume the column is usually under 128, and always output the inlined-at 1749 // location (it's never more expensive than building an array size 1). 1750 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1751 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1758 return Stream.EmitAbbrev(std::move(Abbv)); 1759 } 1760 1761 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1762 SmallVectorImpl<uint64_t> &Record, 1763 unsigned &Abbrev) { 1764 if (!Abbrev) 1765 Abbrev = createDILocationAbbrev(); 1766 1767 Record.push_back(N->isDistinct()); 1768 Record.push_back(N->getLine()); 1769 Record.push_back(N->getColumn()); 1770 Record.push_back(VE.getMetadataID(N->getScope())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1772 Record.push_back(N->isImplicitCode()); 1773 1774 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1775 Record.clear(); 1776 } 1777 1778 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1779 // Assume the column is usually under 128, and always output the inlined-at 1780 // location (it's never more expensive than building an array size 1). 1781 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1782 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1789 return Stream.EmitAbbrev(std::move(Abbv)); 1790 } 1791 1792 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1793 SmallVectorImpl<uint64_t> &Record, 1794 unsigned &Abbrev) { 1795 if (!Abbrev) 1796 Abbrev = createGenericDINodeAbbrev(); 1797 1798 Record.push_back(N->isDistinct()); 1799 Record.push_back(N->getTag()); 1800 Record.push_back(0); // Per-tag version field; unused for now. 1801 1802 for (auto &I : N->operands()) 1803 Record.push_back(VE.getMetadataOrNullID(I)); 1804 1805 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1806 Record.clear(); 1807 } 1808 1809 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1810 SmallVectorImpl<uint64_t> &Record, 1811 unsigned Abbrev) { 1812 const uint64_t Version = 2 << 1; 1813 Record.push_back((uint64_t)N->isDistinct() | Version); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1817 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1818 1819 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1820 Record.clear(); 1821 } 1822 1823 void ModuleBitcodeWriter::writeDIGenericSubrange( 1824 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1825 unsigned Abbrev) { 1826 Record.push_back((uint64_t)N->isDistinct()); 1827 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1828 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1829 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1830 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1831 1832 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1833 Record.clear(); 1834 } 1835 1836 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1837 SmallVectorImpl<uint64_t> &Record, 1838 unsigned Abbrev) { 1839 const uint64_t IsBigInt = 1 << 2; 1840 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1841 Record.push_back(N->getValue().getBitWidth()); 1842 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1843 emitWideAPInt(Record, N->getValue()); 1844 1845 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1846 Record.clear(); 1847 } 1848 1849 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1850 SmallVectorImpl<uint64_t> &Record, 1851 unsigned Abbrev) { 1852 Record.push_back(N->isDistinct()); 1853 Record.push_back(N->getTag()); 1854 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1855 Record.push_back(N->getSizeInBits()); 1856 Record.push_back(N->getAlignInBits()); 1857 Record.push_back(N->getEncoding()); 1858 Record.push_back(N->getFlags()); 1859 1860 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1861 Record.clear(); 1862 } 1863 1864 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1865 SmallVectorImpl<uint64_t> &Record, 1866 unsigned Abbrev) { 1867 Record.push_back(N->isDistinct()); 1868 Record.push_back(N->getTag()); 1869 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1870 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1871 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1872 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1873 Record.push_back(N->getSizeInBits()); 1874 Record.push_back(N->getAlignInBits()); 1875 Record.push_back(N->getEncoding()); 1876 1877 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1878 Record.clear(); 1879 } 1880 1881 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1882 SmallVectorImpl<uint64_t> &Record, 1883 unsigned Abbrev) { 1884 Record.push_back(N->isDistinct()); 1885 Record.push_back(N->getTag()); 1886 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1887 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1888 Record.push_back(N->getLine()); 1889 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1891 Record.push_back(N->getSizeInBits()); 1892 Record.push_back(N->getAlignInBits()); 1893 Record.push_back(N->getOffsetInBits()); 1894 Record.push_back(N->getFlags()); 1895 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1896 1897 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1898 // that there is no DWARF address space associated with DIDerivedType. 1899 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1900 Record.push_back(*DWARFAddressSpace + 1); 1901 else 1902 Record.push_back(0); 1903 1904 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1905 1906 if (auto PtrAuthData = N->getPtrAuthData()) 1907 Record.push_back(PtrAuthData->RawData); 1908 else 1909 Record.push_back(0); 1910 1911 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1912 Record.clear(); 1913 } 1914 1915 void ModuleBitcodeWriter::writeDICompositeType( 1916 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1917 unsigned Abbrev) { 1918 const unsigned IsNotUsedInOldTypeRef = 0x2; 1919 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1920 Record.push_back(N->getTag()); 1921 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1922 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1923 Record.push_back(N->getLine()); 1924 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1925 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1926 Record.push_back(N->getSizeInBits()); 1927 Record.push_back(N->getAlignInBits()); 1928 Record.push_back(N->getOffsetInBits()); 1929 Record.push_back(N->getFlags()); 1930 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1931 Record.push_back(N->getRuntimeLang()); 1932 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1933 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1934 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1935 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1936 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1937 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1938 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1939 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1940 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1941 1942 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1943 Record.clear(); 1944 } 1945 1946 void ModuleBitcodeWriter::writeDISubroutineType( 1947 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1948 unsigned Abbrev) { 1949 const unsigned HasNoOldTypeRefs = 0x2; 1950 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1951 Record.push_back(N->getFlags()); 1952 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1953 Record.push_back(N->getCC()); 1954 1955 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1956 Record.clear(); 1957 } 1958 1959 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1960 SmallVectorImpl<uint64_t> &Record, 1961 unsigned Abbrev) { 1962 Record.push_back(N->isDistinct()); 1963 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1964 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1965 if (N->getRawChecksum()) { 1966 Record.push_back(N->getRawChecksum()->Kind); 1967 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1968 } else { 1969 // Maintain backwards compatibility with the old internal representation of 1970 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1971 Record.push_back(0); 1972 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1973 } 1974 auto Source = N->getRawSource(); 1975 if (Source) 1976 Record.push_back(VE.getMetadataOrNullID(Source)); 1977 1978 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1979 Record.clear(); 1980 } 1981 1982 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1983 SmallVectorImpl<uint64_t> &Record, 1984 unsigned Abbrev) { 1985 assert(N->isDistinct() && "Expected distinct compile units"); 1986 Record.push_back(/* IsDistinct */ true); 1987 Record.push_back(N->getSourceLanguage()); 1988 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1989 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1990 Record.push_back(N->isOptimized()); 1991 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1992 Record.push_back(N->getRuntimeVersion()); 1993 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1994 Record.push_back(N->getEmissionKind()); 1995 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1996 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1997 Record.push_back(/* subprograms */ 0); 1998 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1999 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 2000 Record.push_back(N->getDWOId()); 2001 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 2002 Record.push_back(N->getSplitDebugInlining()); 2003 Record.push_back(N->getDebugInfoForProfiling()); 2004 Record.push_back((unsigned)N->getNameTableKind()); 2005 Record.push_back(N->getRangesBaseAddress()); 2006 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 2007 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 2008 2009 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 2010 Record.clear(); 2011 } 2012 2013 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 2014 SmallVectorImpl<uint64_t> &Record, 2015 unsigned Abbrev) { 2016 const uint64_t HasUnitFlag = 1 << 1; 2017 const uint64_t HasSPFlagsFlag = 1 << 2; 2018 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 2019 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2020 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2021 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2022 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2023 Record.push_back(N->getLine()); 2024 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2025 Record.push_back(N->getScopeLine()); 2026 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 2027 Record.push_back(N->getSPFlags()); 2028 Record.push_back(N->getVirtualIndex()); 2029 Record.push_back(N->getFlags()); 2030 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 2031 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 2032 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 2033 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 2034 Record.push_back(N->getThisAdjustment()); 2035 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 2036 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2037 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 2038 2039 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 2040 Record.clear(); 2041 } 2042 2043 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 2044 SmallVectorImpl<uint64_t> &Record, 2045 unsigned Abbrev) { 2046 Record.push_back(N->isDistinct()); 2047 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2048 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2049 Record.push_back(N->getLine()); 2050 Record.push_back(N->getColumn()); 2051 2052 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 2053 Record.clear(); 2054 } 2055 2056 void ModuleBitcodeWriter::writeDILexicalBlockFile( 2057 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 2058 unsigned Abbrev) { 2059 Record.push_back(N->isDistinct()); 2060 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2061 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2062 Record.push_back(N->getDiscriminator()); 2063 2064 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 2065 Record.clear(); 2066 } 2067 2068 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 2069 SmallVectorImpl<uint64_t> &Record, 2070 unsigned Abbrev) { 2071 Record.push_back(N->isDistinct()); 2072 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2073 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2074 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2075 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2076 Record.push_back(N->getLineNo()); 2077 2078 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2079 Record.clear(); 2080 } 2081 2082 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2083 SmallVectorImpl<uint64_t> &Record, 2084 unsigned Abbrev) { 2085 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2086 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2087 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2088 2089 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2090 Record.clear(); 2091 } 2092 2093 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2094 SmallVectorImpl<uint64_t> &Record, 2095 unsigned Abbrev) { 2096 Record.push_back(N->isDistinct()); 2097 Record.push_back(N->getMacinfoType()); 2098 Record.push_back(N->getLine()); 2099 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2100 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2101 2102 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2103 Record.clear(); 2104 } 2105 2106 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2107 SmallVectorImpl<uint64_t> &Record, 2108 unsigned Abbrev) { 2109 Record.push_back(N->isDistinct()); 2110 Record.push_back(N->getMacinfoType()); 2111 Record.push_back(N->getLine()); 2112 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2113 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2114 2115 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2116 Record.clear(); 2117 } 2118 2119 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2120 SmallVectorImpl<uint64_t> &Record) { 2121 Record.reserve(N->getArgs().size()); 2122 for (ValueAsMetadata *MD : N->getArgs()) 2123 Record.push_back(VE.getMetadataID(MD)); 2124 2125 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2126 Record.clear(); 2127 } 2128 2129 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2130 SmallVectorImpl<uint64_t> &Record, 2131 unsigned Abbrev) { 2132 Record.push_back(N->isDistinct()); 2133 for (auto &I : N->operands()) 2134 Record.push_back(VE.getMetadataOrNullID(I)); 2135 Record.push_back(N->getLineNo()); 2136 Record.push_back(N->getIsDecl()); 2137 2138 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2139 Record.clear(); 2140 } 2141 2142 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2143 SmallVectorImpl<uint64_t> &Record, 2144 unsigned Abbrev) { 2145 // There are no arguments for this metadata type. 2146 Record.push_back(N->isDistinct()); 2147 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2148 Record.clear(); 2149 } 2150 2151 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2152 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2153 unsigned Abbrev) { 2154 Record.push_back(N->isDistinct()); 2155 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2156 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2157 Record.push_back(N->isDefault()); 2158 2159 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2160 Record.clear(); 2161 } 2162 2163 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2164 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2165 unsigned Abbrev) { 2166 Record.push_back(N->isDistinct()); 2167 Record.push_back(N->getTag()); 2168 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2169 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2170 Record.push_back(N->isDefault()); 2171 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2172 2173 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2174 Record.clear(); 2175 } 2176 2177 void ModuleBitcodeWriter::writeDIGlobalVariable( 2178 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2179 unsigned Abbrev) { 2180 const uint64_t Version = 2 << 1; 2181 Record.push_back((uint64_t)N->isDistinct() | Version); 2182 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2183 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2184 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2185 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2186 Record.push_back(N->getLine()); 2187 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2188 Record.push_back(N->isLocalToUnit()); 2189 Record.push_back(N->isDefinition()); 2190 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2191 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2192 Record.push_back(N->getAlignInBits()); 2193 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2194 2195 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2196 Record.clear(); 2197 } 2198 2199 void ModuleBitcodeWriter::writeDILocalVariable( 2200 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2201 unsigned Abbrev) { 2202 // In order to support all possible bitcode formats in BitcodeReader we need 2203 // to distinguish the following cases: 2204 // 1) Record has no artificial tag (Record[1]), 2205 // has no obsolete inlinedAt field (Record[9]). 2206 // In this case Record size will be 8, HasAlignment flag is false. 2207 // 2) Record has artificial tag (Record[1]), 2208 // has no obsolete inlignedAt field (Record[9]). 2209 // In this case Record size will be 9, HasAlignment flag is false. 2210 // 3) Record has both artificial tag (Record[1]) and 2211 // obsolete inlignedAt field (Record[9]). 2212 // In this case Record size will be 10, HasAlignment flag is false. 2213 // 4) Record has neither artificial tag, nor inlignedAt field, but 2214 // HasAlignment flag is true and Record[8] contains alignment value. 2215 const uint64_t HasAlignmentFlag = 1 << 1; 2216 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2217 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2218 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2219 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2220 Record.push_back(N->getLine()); 2221 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2222 Record.push_back(N->getArg()); 2223 Record.push_back(N->getFlags()); 2224 Record.push_back(N->getAlignInBits()); 2225 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2226 2227 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2228 Record.clear(); 2229 } 2230 2231 void ModuleBitcodeWriter::writeDILabel( 2232 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2233 unsigned Abbrev) { 2234 Record.push_back((uint64_t)N->isDistinct()); 2235 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2236 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2237 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2238 Record.push_back(N->getLine()); 2239 2240 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2241 Record.clear(); 2242 } 2243 2244 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2245 SmallVectorImpl<uint64_t> &Record, 2246 unsigned Abbrev) { 2247 Record.reserve(N->getElements().size() + 1); 2248 const uint64_t Version = 3 << 1; 2249 Record.push_back((uint64_t)N->isDistinct() | Version); 2250 Record.append(N->elements_begin(), N->elements_end()); 2251 2252 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2253 Record.clear(); 2254 } 2255 2256 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2257 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2258 unsigned Abbrev) { 2259 Record.push_back(N->isDistinct()); 2260 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2261 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2262 2263 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2264 Record.clear(); 2265 } 2266 2267 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2268 SmallVectorImpl<uint64_t> &Record, 2269 unsigned Abbrev) { 2270 Record.push_back(N->isDistinct()); 2271 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2272 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2273 Record.push_back(N->getLine()); 2274 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2275 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2276 Record.push_back(N->getAttributes()); 2277 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2278 2279 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2280 Record.clear(); 2281 } 2282 2283 void ModuleBitcodeWriter::writeDIImportedEntity( 2284 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2285 unsigned Abbrev) { 2286 Record.push_back(N->isDistinct()); 2287 Record.push_back(N->getTag()); 2288 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2289 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2290 Record.push_back(N->getLine()); 2291 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2292 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2293 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2294 2295 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2296 Record.clear(); 2297 } 2298 2299 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2300 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2301 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2304 return Stream.EmitAbbrev(std::move(Abbv)); 2305 } 2306 2307 void ModuleBitcodeWriter::writeNamedMetadata( 2308 SmallVectorImpl<uint64_t> &Record) { 2309 if (M.named_metadata_empty()) 2310 return; 2311 2312 unsigned Abbrev = createNamedMetadataAbbrev(); 2313 for (const NamedMDNode &NMD : M.named_metadata()) { 2314 // Write name. 2315 StringRef Str = NMD.getName(); 2316 Record.append(Str.bytes_begin(), Str.bytes_end()); 2317 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2318 Record.clear(); 2319 2320 // Write named metadata operands. 2321 for (const MDNode *N : NMD.operands()) 2322 Record.push_back(VE.getMetadataID(N)); 2323 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2324 Record.clear(); 2325 } 2326 } 2327 2328 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2329 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2330 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2334 return Stream.EmitAbbrev(std::move(Abbv)); 2335 } 2336 2337 /// Write out a record for MDString. 2338 /// 2339 /// All the metadata strings in a metadata block are emitted in a single 2340 /// record. The sizes and strings themselves are shoved into a blob. 2341 void ModuleBitcodeWriter::writeMetadataStrings( 2342 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2343 if (Strings.empty()) 2344 return; 2345 2346 // Start the record with the number of strings. 2347 Record.push_back(bitc::METADATA_STRINGS); 2348 Record.push_back(Strings.size()); 2349 2350 // Emit the sizes of the strings in the blob. 2351 SmallString<256> Blob; 2352 { 2353 BitstreamWriter W(Blob); 2354 for (const Metadata *MD : Strings) 2355 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2356 W.FlushToWord(); 2357 } 2358 2359 // Add the offset to the strings to the record. 2360 Record.push_back(Blob.size()); 2361 2362 // Add the strings to the blob. 2363 for (const Metadata *MD : Strings) 2364 Blob.append(cast<MDString>(MD)->getString()); 2365 2366 // Emit the final record. 2367 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2368 Record.clear(); 2369 } 2370 2371 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2372 enum MetadataAbbrev : unsigned { 2373 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2374 #include "llvm/IR/Metadata.def" 2375 LastPlusOne 2376 }; 2377 2378 void ModuleBitcodeWriter::writeMetadataRecords( 2379 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2380 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2381 if (MDs.empty()) 2382 return; 2383 2384 // Initialize MDNode abbreviations. 2385 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2386 #include "llvm/IR/Metadata.def" 2387 2388 for (const Metadata *MD : MDs) { 2389 if (IndexPos) 2390 IndexPos->push_back(Stream.GetCurrentBitNo()); 2391 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2392 assert(N->isResolved() && "Expected forward references to be resolved"); 2393 2394 switch (N->getMetadataID()) { 2395 default: 2396 llvm_unreachable("Invalid MDNode subclass"); 2397 #define HANDLE_MDNODE_LEAF(CLASS) \ 2398 case Metadata::CLASS##Kind: \ 2399 if (MDAbbrevs) \ 2400 write##CLASS(cast<CLASS>(N), Record, \ 2401 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2402 else \ 2403 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2404 continue; 2405 #include "llvm/IR/Metadata.def" 2406 } 2407 } 2408 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2409 writeDIArgList(AL, Record); 2410 continue; 2411 } 2412 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2413 } 2414 } 2415 2416 void ModuleBitcodeWriter::writeModuleMetadata() { 2417 if (!VE.hasMDs() && M.named_metadata_empty()) 2418 return; 2419 2420 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2421 SmallVector<uint64_t, 64> Record; 2422 2423 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2424 // block and load any metadata. 2425 std::vector<unsigned> MDAbbrevs; 2426 2427 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2428 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2429 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2430 createGenericDINodeAbbrev(); 2431 2432 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2433 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2436 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2437 2438 Abbv = std::make_shared<BitCodeAbbrev>(); 2439 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2442 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2443 2444 // Emit MDStrings together upfront. 2445 writeMetadataStrings(VE.getMDStrings(), Record); 2446 2447 // We only emit an index for the metadata record if we have more than a given 2448 // (naive) threshold of metadatas, otherwise it is not worth it. 2449 if (VE.getNonMDStrings().size() > IndexThreshold) { 2450 // Write a placeholder value in for the offset of the metadata index, 2451 // which is written after the records, so that it can include 2452 // the offset of each entry. The placeholder offset will be 2453 // updated after all records are emitted. 2454 uint64_t Vals[] = {0, 0}; 2455 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2456 } 2457 2458 // Compute and save the bit offset to the current position, which will be 2459 // patched when we emit the index later. We can simply subtract the 64-bit 2460 // fixed size from the current bit number to get the location to backpatch. 2461 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2462 2463 // This index will contain the bitpos for each individual record. 2464 std::vector<uint64_t> IndexPos; 2465 IndexPos.reserve(VE.getNonMDStrings().size()); 2466 2467 // Write all the records 2468 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2469 2470 if (VE.getNonMDStrings().size() > IndexThreshold) { 2471 // Now that we have emitted all the records we will emit the index. But 2472 // first 2473 // backpatch the forward reference so that the reader can skip the records 2474 // efficiently. 2475 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2476 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2477 2478 // Delta encode the index. 2479 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2480 for (auto &Elt : IndexPos) { 2481 auto EltDelta = Elt - PreviousValue; 2482 PreviousValue = Elt; 2483 Elt = EltDelta; 2484 } 2485 // Emit the index record. 2486 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2487 IndexPos.clear(); 2488 } 2489 2490 // Write the named metadata now. 2491 writeNamedMetadata(Record); 2492 2493 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2494 SmallVector<uint64_t, 4> Record; 2495 Record.push_back(VE.getValueID(&GO)); 2496 pushGlobalMetadataAttachment(Record, GO); 2497 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2498 }; 2499 for (const Function &F : M) 2500 if (F.isDeclaration() && F.hasMetadata()) 2501 AddDeclAttachedMetadata(F); 2502 // FIXME: Only store metadata for declarations here, and move data for global 2503 // variable definitions to a separate block (PR28134). 2504 for (const GlobalVariable &GV : M.globals()) 2505 if (GV.hasMetadata()) 2506 AddDeclAttachedMetadata(GV); 2507 2508 Stream.ExitBlock(); 2509 } 2510 2511 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2512 if (!VE.hasMDs()) 2513 return; 2514 2515 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2516 SmallVector<uint64_t, 64> Record; 2517 writeMetadataStrings(VE.getMDStrings(), Record); 2518 writeMetadataRecords(VE.getNonMDStrings(), Record); 2519 Stream.ExitBlock(); 2520 } 2521 2522 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2523 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2524 // [n x [id, mdnode]] 2525 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2526 GO.getAllMetadata(MDs); 2527 for (const auto &I : MDs) { 2528 Record.push_back(I.first); 2529 Record.push_back(VE.getMetadataID(I.second)); 2530 } 2531 } 2532 2533 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2534 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2535 2536 SmallVector<uint64_t, 64> Record; 2537 2538 if (F.hasMetadata()) { 2539 pushGlobalMetadataAttachment(Record, F); 2540 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2541 Record.clear(); 2542 } 2543 2544 // Write metadata attachments 2545 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2546 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2547 for (const BasicBlock &BB : F) 2548 for (const Instruction &I : BB) { 2549 MDs.clear(); 2550 I.getAllMetadataOtherThanDebugLoc(MDs); 2551 2552 // If no metadata, ignore instruction. 2553 if (MDs.empty()) continue; 2554 2555 Record.push_back(VE.getInstructionID(&I)); 2556 2557 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2558 Record.push_back(MDs[i].first); 2559 Record.push_back(VE.getMetadataID(MDs[i].second)); 2560 } 2561 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2562 Record.clear(); 2563 } 2564 2565 Stream.ExitBlock(); 2566 } 2567 2568 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2569 SmallVector<uint64_t, 64> Record; 2570 2571 // Write metadata kinds 2572 // METADATA_KIND - [n x [id, name]] 2573 SmallVector<StringRef, 8> Names; 2574 M.getMDKindNames(Names); 2575 2576 if (Names.empty()) return; 2577 2578 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2579 2580 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2581 Record.push_back(MDKindID); 2582 StringRef KName = Names[MDKindID]; 2583 Record.append(KName.begin(), KName.end()); 2584 2585 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2586 Record.clear(); 2587 } 2588 2589 Stream.ExitBlock(); 2590 } 2591 2592 void ModuleBitcodeWriter::writeOperandBundleTags() { 2593 // Write metadata kinds 2594 // 2595 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2596 // 2597 // OPERAND_BUNDLE_TAG - [strchr x N] 2598 2599 SmallVector<StringRef, 8> Tags; 2600 M.getOperandBundleTags(Tags); 2601 2602 if (Tags.empty()) 2603 return; 2604 2605 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2606 2607 SmallVector<uint64_t, 64> Record; 2608 2609 for (auto Tag : Tags) { 2610 Record.append(Tag.begin(), Tag.end()); 2611 2612 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2613 Record.clear(); 2614 } 2615 2616 Stream.ExitBlock(); 2617 } 2618 2619 void ModuleBitcodeWriter::writeSyncScopeNames() { 2620 SmallVector<StringRef, 8> SSNs; 2621 M.getContext().getSyncScopeNames(SSNs); 2622 if (SSNs.empty()) 2623 return; 2624 2625 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2626 2627 SmallVector<uint64_t, 64> Record; 2628 for (auto SSN : SSNs) { 2629 Record.append(SSN.begin(), SSN.end()); 2630 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2631 Record.clear(); 2632 } 2633 2634 Stream.ExitBlock(); 2635 } 2636 2637 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2638 bool isGlobal) { 2639 if (FirstVal == LastVal) return; 2640 2641 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2642 2643 unsigned AggregateAbbrev = 0; 2644 unsigned String8Abbrev = 0; 2645 unsigned CString7Abbrev = 0; 2646 unsigned CString6Abbrev = 0; 2647 // If this is a constant pool for the module, emit module-specific abbrevs. 2648 if (isGlobal) { 2649 // Abbrev for CST_CODE_AGGREGATE. 2650 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2651 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2654 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2655 2656 // Abbrev for CST_CODE_STRING. 2657 Abbv = std::make_shared<BitCodeAbbrev>(); 2658 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2661 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2662 // Abbrev for CST_CODE_CSTRING. 2663 Abbv = std::make_shared<BitCodeAbbrev>(); 2664 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2667 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2668 // Abbrev for CST_CODE_CSTRING. 2669 Abbv = std::make_shared<BitCodeAbbrev>(); 2670 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2673 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2674 } 2675 2676 SmallVector<uint64_t, 64> Record; 2677 2678 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2679 Type *LastTy = nullptr; 2680 for (unsigned i = FirstVal; i != LastVal; ++i) { 2681 const Value *V = Vals[i].first; 2682 // If we need to switch types, do so now. 2683 if (V->getType() != LastTy) { 2684 LastTy = V->getType(); 2685 Record.push_back(VE.getTypeID(LastTy)); 2686 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2687 CONSTANTS_SETTYPE_ABBREV); 2688 Record.clear(); 2689 } 2690 2691 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2692 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2693 Record.push_back( 2694 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2695 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2696 2697 // Add the asm string. 2698 const std::string &AsmStr = IA->getAsmString(); 2699 Record.push_back(AsmStr.size()); 2700 Record.append(AsmStr.begin(), AsmStr.end()); 2701 2702 // Add the constraint string. 2703 const std::string &ConstraintStr = IA->getConstraintString(); 2704 Record.push_back(ConstraintStr.size()); 2705 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2706 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2707 Record.clear(); 2708 continue; 2709 } 2710 const Constant *C = cast<Constant>(V); 2711 unsigned Code = -1U; 2712 unsigned AbbrevToUse = 0; 2713 if (C->isNullValue()) { 2714 Code = bitc::CST_CODE_NULL; 2715 } else if (isa<PoisonValue>(C)) { 2716 Code = bitc::CST_CODE_POISON; 2717 } else if (isa<UndefValue>(C)) { 2718 Code = bitc::CST_CODE_UNDEF; 2719 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2720 if (IV->getBitWidth() <= 64) { 2721 uint64_t V = IV->getSExtValue(); 2722 emitSignedInt64(Record, V); 2723 Code = bitc::CST_CODE_INTEGER; 2724 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2725 } else { // Wide integers, > 64 bits in size. 2726 emitWideAPInt(Record, IV->getValue()); 2727 Code = bitc::CST_CODE_WIDE_INTEGER; 2728 } 2729 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2730 Code = bitc::CST_CODE_FLOAT; 2731 Type *Ty = CFP->getType()->getScalarType(); 2732 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2733 Ty->isDoubleTy()) { 2734 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2735 } else if (Ty->isX86_FP80Ty()) { 2736 // api needed to prevent premature destruction 2737 // bits are not in the same order as a normal i80 APInt, compensate. 2738 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2739 const uint64_t *p = api.getRawData(); 2740 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2741 Record.push_back(p[0] & 0xffffLL); 2742 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2743 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2744 const uint64_t *p = api.getRawData(); 2745 Record.push_back(p[0]); 2746 Record.push_back(p[1]); 2747 } else { 2748 assert(0 && "Unknown FP type!"); 2749 } 2750 } else if (isa<ConstantDataSequential>(C) && 2751 cast<ConstantDataSequential>(C)->isString()) { 2752 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2753 // Emit constant strings specially. 2754 unsigned NumElts = Str->getNumElements(); 2755 // If this is a null-terminated string, use the denser CSTRING encoding. 2756 if (Str->isCString()) { 2757 Code = bitc::CST_CODE_CSTRING; 2758 --NumElts; // Don't encode the null, which isn't allowed by char6. 2759 } else { 2760 Code = bitc::CST_CODE_STRING; 2761 AbbrevToUse = String8Abbrev; 2762 } 2763 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2764 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2765 for (unsigned i = 0; i != NumElts; ++i) { 2766 unsigned char V = Str->getElementAsInteger(i); 2767 Record.push_back(V); 2768 isCStr7 &= (V & 128) == 0; 2769 if (isCStrChar6) 2770 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2771 } 2772 2773 if (isCStrChar6) 2774 AbbrevToUse = CString6Abbrev; 2775 else if (isCStr7) 2776 AbbrevToUse = CString7Abbrev; 2777 } else if (const ConstantDataSequential *CDS = 2778 dyn_cast<ConstantDataSequential>(C)) { 2779 Code = bitc::CST_CODE_DATA; 2780 Type *EltTy = CDS->getElementType(); 2781 if (isa<IntegerType>(EltTy)) { 2782 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2783 Record.push_back(CDS->getElementAsInteger(i)); 2784 } else { 2785 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2786 Record.push_back( 2787 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2788 } 2789 } else if (isa<ConstantAggregate>(C)) { 2790 Code = bitc::CST_CODE_AGGREGATE; 2791 for (const Value *Op : C->operands()) 2792 Record.push_back(VE.getValueID(Op)); 2793 AbbrevToUse = AggregateAbbrev; 2794 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2795 switch (CE->getOpcode()) { 2796 default: 2797 if (Instruction::isCast(CE->getOpcode())) { 2798 Code = bitc::CST_CODE_CE_CAST; 2799 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2800 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2801 Record.push_back(VE.getValueID(C->getOperand(0))); 2802 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2803 } else { 2804 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2805 Code = bitc::CST_CODE_CE_BINOP; 2806 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2807 Record.push_back(VE.getValueID(C->getOperand(0))); 2808 Record.push_back(VE.getValueID(C->getOperand(1))); 2809 uint64_t Flags = getOptimizationFlags(CE); 2810 if (Flags != 0) 2811 Record.push_back(Flags); 2812 } 2813 break; 2814 case Instruction::FNeg: { 2815 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2816 Code = bitc::CST_CODE_CE_UNOP; 2817 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2818 Record.push_back(VE.getValueID(C->getOperand(0))); 2819 uint64_t Flags = getOptimizationFlags(CE); 2820 if (Flags != 0) 2821 Record.push_back(Flags); 2822 break; 2823 } 2824 case Instruction::GetElementPtr: { 2825 Code = bitc::CST_CODE_CE_GEP; 2826 const auto *GO = cast<GEPOperator>(C); 2827 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2828 Record.push_back(getOptimizationFlags(GO)); 2829 if (std::optional<ConstantRange> Range = GO->getInRange()) { 2830 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; 2831 emitConstantRange(Record, *Range, /*EmitBitWidth=*/true); 2832 } 2833 for (const Value *Op : CE->operands()) { 2834 Record.push_back(VE.getTypeID(Op->getType())); 2835 Record.push_back(VE.getValueID(Op)); 2836 } 2837 break; 2838 } 2839 case Instruction::ExtractElement: 2840 Code = bitc::CST_CODE_CE_EXTRACTELT; 2841 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2842 Record.push_back(VE.getValueID(C->getOperand(0))); 2843 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2844 Record.push_back(VE.getValueID(C->getOperand(1))); 2845 break; 2846 case Instruction::InsertElement: 2847 Code = bitc::CST_CODE_CE_INSERTELT; 2848 Record.push_back(VE.getValueID(C->getOperand(0))); 2849 Record.push_back(VE.getValueID(C->getOperand(1))); 2850 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2851 Record.push_back(VE.getValueID(C->getOperand(2))); 2852 break; 2853 case Instruction::ShuffleVector: 2854 // If the return type and argument types are the same, this is a 2855 // standard shufflevector instruction. If the types are different, 2856 // then the shuffle is widening or truncating the input vectors, and 2857 // the argument type must also be encoded. 2858 if (C->getType() == C->getOperand(0)->getType()) { 2859 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2860 } else { 2861 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2862 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2863 } 2864 Record.push_back(VE.getValueID(C->getOperand(0))); 2865 Record.push_back(VE.getValueID(C->getOperand(1))); 2866 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2867 break; 2868 } 2869 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2870 Code = bitc::CST_CODE_BLOCKADDRESS; 2871 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2872 Record.push_back(VE.getValueID(BA->getFunction())); 2873 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2874 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2875 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2876 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2877 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2878 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2879 Code = bitc::CST_CODE_NO_CFI_VALUE; 2880 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2881 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2882 } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) { 2883 Code = bitc::CST_CODE_PTRAUTH; 2884 Record.push_back(VE.getValueID(CPA->getPointer())); 2885 Record.push_back(VE.getValueID(CPA->getKey())); 2886 Record.push_back(VE.getValueID(CPA->getDiscriminator())); 2887 Record.push_back(VE.getValueID(CPA->getAddrDiscriminator())); 2888 } else { 2889 #ifndef NDEBUG 2890 C->dump(); 2891 #endif 2892 llvm_unreachable("Unknown constant!"); 2893 } 2894 Stream.EmitRecord(Code, Record, AbbrevToUse); 2895 Record.clear(); 2896 } 2897 2898 Stream.ExitBlock(); 2899 } 2900 2901 void ModuleBitcodeWriter::writeModuleConstants() { 2902 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2903 2904 // Find the first constant to emit, which is the first non-globalvalue value. 2905 // We know globalvalues have been emitted by WriteModuleInfo. 2906 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2907 if (!isa<GlobalValue>(Vals[i].first)) { 2908 writeConstants(i, Vals.size(), true); 2909 return; 2910 } 2911 } 2912 } 2913 2914 /// pushValueAndType - The file has to encode both the value and type id for 2915 /// many values, because we need to know what type to create for forward 2916 /// references. However, most operands are not forward references, so this type 2917 /// field is not needed. 2918 /// 2919 /// This function adds V's value ID to Vals. If the value ID is higher than the 2920 /// instruction ID, then it is a forward reference, and it also includes the 2921 /// type ID. The value ID that is written is encoded relative to the InstID. 2922 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2923 SmallVectorImpl<unsigned> &Vals) { 2924 unsigned ValID = VE.getValueID(V); 2925 // Make encoding relative to the InstID. 2926 Vals.push_back(InstID - ValID); 2927 if (ValID >= InstID) { 2928 Vals.push_back(VE.getTypeID(V->getType())); 2929 return true; 2930 } 2931 return false; 2932 } 2933 2934 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2935 unsigned InstID) { 2936 SmallVector<unsigned, 64> Record; 2937 LLVMContext &C = CS.getContext(); 2938 2939 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2940 const auto &Bundle = CS.getOperandBundleAt(i); 2941 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2942 2943 for (auto &Input : Bundle.Inputs) 2944 pushValueAndType(Input, InstID, Record); 2945 2946 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2947 Record.clear(); 2948 } 2949 } 2950 2951 /// pushValue - Like pushValueAndType, but where the type of the value is 2952 /// omitted (perhaps it was already encoded in an earlier operand). 2953 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2954 SmallVectorImpl<unsigned> &Vals) { 2955 unsigned ValID = VE.getValueID(V); 2956 Vals.push_back(InstID - ValID); 2957 } 2958 2959 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2960 SmallVectorImpl<uint64_t> &Vals) { 2961 unsigned ValID = VE.getValueID(V); 2962 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2963 emitSignedInt64(Vals, diff); 2964 } 2965 2966 /// WriteInstruction - Emit an instruction to the specified stream. 2967 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2968 unsigned InstID, 2969 SmallVectorImpl<unsigned> &Vals) { 2970 unsigned Code = 0; 2971 unsigned AbbrevToUse = 0; 2972 VE.setInstructionID(&I); 2973 switch (I.getOpcode()) { 2974 default: 2975 if (Instruction::isCast(I.getOpcode())) { 2976 Code = bitc::FUNC_CODE_INST_CAST; 2977 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2978 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2979 Vals.push_back(VE.getTypeID(I.getType())); 2980 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2981 uint64_t Flags = getOptimizationFlags(&I); 2982 if (Flags != 0) { 2983 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2984 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2985 Vals.push_back(Flags); 2986 } 2987 } else { 2988 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2989 Code = bitc::FUNC_CODE_INST_BINOP; 2990 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2991 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2992 pushValue(I.getOperand(1), InstID, Vals); 2993 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2994 uint64_t Flags = getOptimizationFlags(&I); 2995 if (Flags != 0) { 2996 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2997 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2998 Vals.push_back(Flags); 2999 } 3000 } 3001 break; 3002 case Instruction::FNeg: { 3003 Code = bitc::FUNC_CODE_INST_UNOP; 3004 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3005 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 3006 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 3007 uint64_t Flags = getOptimizationFlags(&I); 3008 if (Flags != 0) { 3009 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 3010 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 3011 Vals.push_back(Flags); 3012 } 3013 break; 3014 } 3015 case Instruction::GetElementPtr: { 3016 Code = bitc::FUNC_CODE_INST_GEP; 3017 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 3018 auto &GEPInst = cast<GetElementPtrInst>(I); 3019 Vals.push_back(getOptimizationFlags(&I)); 3020 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 3021 for (const Value *Op : I.operands()) 3022 pushValueAndType(Op, InstID, Vals); 3023 break; 3024 } 3025 case Instruction::ExtractValue: { 3026 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 3027 pushValueAndType(I.getOperand(0), InstID, Vals); 3028 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 3029 Vals.append(EVI->idx_begin(), EVI->idx_end()); 3030 break; 3031 } 3032 case Instruction::InsertValue: { 3033 Code = bitc::FUNC_CODE_INST_INSERTVAL; 3034 pushValueAndType(I.getOperand(0), InstID, Vals); 3035 pushValueAndType(I.getOperand(1), InstID, Vals); 3036 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 3037 Vals.append(IVI->idx_begin(), IVI->idx_end()); 3038 break; 3039 } 3040 case Instruction::Select: { 3041 Code = bitc::FUNC_CODE_INST_VSELECT; 3042 pushValueAndType(I.getOperand(1), InstID, Vals); 3043 pushValue(I.getOperand(2), InstID, Vals); 3044 pushValueAndType(I.getOperand(0), InstID, Vals); 3045 uint64_t Flags = getOptimizationFlags(&I); 3046 if (Flags != 0) 3047 Vals.push_back(Flags); 3048 break; 3049 } 3050 case Instruction::ExtractElement: 3051 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 3052 pushValueAndType(I.getOperand(0), InstID, Vals); 3053 pushValueAndType(I.getOperand(1), InstID, Vals); 3054 break; 3055 case Instruction::InsertElement: 3056 Code = bitc::FUNC_CODE_INST_INSERTELT; 3057 pushValueAndType(I.getOperand(0), InstID, Vals); 3058 pushValue(I.getOperand(1), InstID, Vals); 3059 pushValueAndType(I.getOperand(2), InstID, Vals); 3060 break; 3061 case Instruction::ShuffleVector: 3062 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 3063 pushValueAndType(I.getOperand(0), InstID, Vals); 3064 pushValue(I.getOperand(1), InstID, Vals); 3065 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 3066 Vals); 3067 break; 3068 case Instruction::ICmp: 3069 case Instruction::FCmp: { 3070 // compare returning Int1Ty or vector of Int1Ty 3071 Code = bitc::FUNC_CODE_INST_CMP2; 3072 pushValueAndType(I.getOperand(0), InstID, Vals); 3073 pushValue(I.getOperand(1), InstID, Vals); 3074 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3075 uint64_t Flags = getOptimizationFlags(&I); 3076 if (Flags != 0) 3077 Vals.push_back(Flags); 3078 break; 3079 } 3080 3081 case Instruction::Ret: 3082 { 3083 Code = bitc::FUNC_CODE_INST_RET; 3084 unsigned NumOperands = I.getNumOperands(); 3085 if (NumOperands == 0) 3086 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3087 else if (NumOperands == 1) { 3088 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3089 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3090 } else { 3091 for (const Value *Op : I.operands()) 3092 pushValueAndType(Op, InstID, Vals); 3093 } 3094 } 3095 break; 3096 case Instruction::Br: 3097 { 3098 Code = bitc::FUNC_CODE_INST_BR; 3099 const BranchInst &II = cast<BranchInst>(I); 3100 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3101 if (II.isConditional()) { 3102 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3103 pushValue(II.getCondition(), InstID, Vals); 3104 } 3105 } 3106 break; 3107 case Instruction::Switch: 3108 { 3109 Code = bitc::FUNC_CODE_INST_SWITCH; 3110 const SwitchInst &SI = cast<SwitchInst>(I); 3111 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3112 pushValue(SI.getCondition(), InstID, Vals); 3113 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3114 for (auto Case : SI.cases()) { 3115 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3116 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3117 } 3118 } 3119 break; 3120 case Instruction::IndirectBr: 3121 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3122 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3123 // Encode the address operand as relative, but not the basic blocks. 3124 pushValue(I.getOperand(0), InstID, Vals); 3125 for (const Value *Op : drop_begin(I.operands())) 3126 Vals.push_back(VE.getValueID(Op)); 3127 break; 3128 3129 case Instruction::Invoke: { 3130 const InvokeInst *II = cast<InvokeInst>(&I); 3131 const Value *Callee = II->getCalledOperand(); 3132 FunctionType *FTy = II->getFunctionType(); 3133 3134 if (II->hasOperandBundles()) 3135 writeOperandBundles(*II, InstID); 3136 3137 Code = bitc::FUNC_CODE_INST_INVOKE; 3138 3139 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3140 Vals.push_back(II->getCallingConv() | 1 << 13); 3141 Vals.push_back(VE.getValueID(II->getNormalDest())); 3142 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3143 Vals.push_back(VE.getTypeID(FTy)); 3144 pushValueAndType(Callee, InstID, Vals); 3145 3146 // Emit value #'s for the fixed parameters. 3147 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3148 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3149 3150 // Emit type/value pairs for varargs params. 3151 if (FTy->isVarArg()) { 3152 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3153 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3154 } 3155 break; 3156 } 3157 case Instruction::Resume: 3158 Code = bitc::FUNC_CODE_INST_RESUME; 3159 pushValueAndType(I.getOperand(0), InstID, Vals); 3160 break; 3161 case Instruction::CleanupRet: { 3162 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3163 const auto &CRI = cast<CleanupReturnInst>(I); 3164 pushValue(CRI.getCleanupPad(), InstID, Vals); 3165 if (CRI.hasUnwindDest()) 3166 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3167 break; 3168 } 3169 case Instruction::CatchRet: { 3170 Code = bitc::FUNC_CODE_INST_CATCHRET; 3171 const auto &CRI = cast<CatchReturnInst>(I); 3172 pushValue(CRI.getCatchPad(), InstID, Vals); 3173 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3174 break; 3175 } 3176 case Instruction::CleanupPad: 3177 case Instruction::CatchPad: { 3178 const auto &FuncletPad = cast<FuncletPadInst>(I); 3179 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3180 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3181 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3182 3183 unsigned NumArgOperands = FuncletPad.arg_size(); 3184 Vals.push_back(NumArgOperands); 3185 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3186 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3187 break; 3188 } 3189 case Instruction::CatchSwitch: { 3190 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3191 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3192 3193 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3194 3195 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3196 Vals.push_back(NumHandlers); 3197 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3198 Vals.push_back(VE.getValueID(CatchPadBB)); 3199 3200 if (CatchSwitch.hasUnwindDest()) 3201 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3202 break; 3203 } 3204 case Instruction::CallBr: { 3205 const CallBrInst *CBI = cast<CallBrInst>(&I); 3206 const Value *Callee = CBI->getCalledOperand(); 3207 FunctionType *FTy = CBI->getFunctionType(); 3208 3209 if (CBI->hasOperandBundles()) 3210 writeOperandBundles(*CBI, InstID); 3211 3212 Code = bitc::FUNC_CODE_INST_CALLBR; 3213 3214 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3215 3216 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3217 1 << bitc::CALL_EXPLICIT_TYPE); 3218 3219 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3220 Vals.push_back(CBI->getNumIndirectDests()); 3221 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3222 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3223 3224 Vals.push_back(VE.getTypeID(FTy)); 3225 pushValueAndType(Callee, InstID, Vals); 3226 3227 // Emit value #'s for the fixed parameters. 3228 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3229 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3230 3231 // Emit type/value pairs for varargs params. 3232 if (FTy->isVarArg()) { 3233 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3234 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3235 } 3236 break; 3237 } 3238 case Instruction::Unreachable: 3239 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3240 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3241 break; 3242 3243 case Instruction::PHI: { 3244 const PHINode &PN = cast<PHINode>(I); 3245 Code = bitc::FUNC_CODE_INST_PHI; 3246 // With the newer instruction encoding, forward references could give 3247 // negative valued IDs. This is most common for PHIs, so we use 3248 // signed VBRs. 3249 SmallVector<uint64_t, 128> Vals64; 3250 Vals64.push_back(VE.getTypeID(PN.getType())); 3251 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3252 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3253 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3254 } 3255 3256 uint64_t Flags = getOptimizationFlags(&I); 3257 if (Flags != 0) 3258 Vals64.push_back(Flags); 3259 3260 // Emit a Vals64 vector and exit. 3261 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3262 Vals64.clear(); 3263 return; 3264 } 3265 3266 case Instruction::LandingPad: { 3267 const LandingPadInst &LP = cast<LandingPadInst>(I); 3268 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3269 Vals.push_back(VE.getTypeID(LP.getType())); 3270 Vals.push_back(LP.isCleanup()); 3271 Vals.push_back(LP.getNumClauses()); 3272 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3273 if (LP.isCatch(I)) 3274 Vals.push_back(LandingPadInst::Catch); 3275 else 3276 Vals.push_back(LandingPadInst::Filter); 3277 pushValueAndType(LP.getClause(I), InstID, Vals); 3278 } 3279 break; 3280 } 3281 3282 case Instruction::Alloca: { 3283 Code = bitc::FUNC_CODE_INST_ALLOCA; 3284 const AllocaInst &AI = cast<AllocaInst>(I); 3285 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3286 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3287 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3288 using APV = AllocaPackedValues; 3289 unsigned Record = 0; 3290 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3291 Bitfield::set<APV::AlignLower>( 3292 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3293 Bitfield::set<APV::AlignUpper>(Record, 3294 EncodedAlign >> APV::AlignLower::Bits); 3295 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3296 Bitfield::set<APV::ExplicitType>(Record, true); 3297 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3298 Vals.push_back(Record); 3299 3300 unsigned AS = AI.getAddressSpace(); 3301 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3302 Vals.push_back(AS); 3303 break; 3304 } 3305 3306 case Instruction::Load: 3307 if (cast<LoadInst>(I).isAtomic()) { 3308 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3309 pushValueAndType(I.getOperand(0), InstID, Vals); 3310 } else { 3311 Code = bitc::FUNC_CODE_INST_LOAD; 3312 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3313 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3314 } 3315 Vals.push_back(VE.getTypeID(I.getType())); 3316 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3317 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3318 if (cast<LoadInst>(I).isAtomic()) { 3319 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3320 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3321 } 3322 break; 3323 case Instruction::Store: 3324 if (cast<StoreInst>(I).isAtomic()) 3325 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3326 else 3327 Code = bitc::FUNC_CODE_INST_STORE; 3328 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3329 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3330 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3331 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3332 if (cast<StoreInst>(I).isAtomic()) { 3333 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3334 Vals.push_back( 3335 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3336 } 3337 break; 3338 case Instruction::AtomicCmpXchg: 3339 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3340 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3341 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3342 pushValue(I.getOperand(2), InstID, Vals); // newval. 3343 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3344 Vals.push_back( 3345 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3346 Vals.push_back( 3347 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3348 Vals.push_back( 3349 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3350 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3351 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3352 break; 3353 case Instruction::AtomicRMW: 3354 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3355 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3356 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3357 Vals.push_back( 3358 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3359 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3360 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3361 Vals.push_back( 3362 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3363 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3364 break; 3365 case Instruction::Fence: 3366 Code = bitc::FUNC_CODE_INST_FENCE; 3367 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3368 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3369 break; 3370 case Instruction::Call: { 3371 const CallInst &CI = cast<CallInst>(I); 3372 FunctionType *FTy = CI.getFunctionType(); 3373 3374 if (CI.hasOperandBundles()) 3375 writeOperandBundles(CI, InstID); 3376 3377 Code = bitc::FUNC_CODE_INST_CALL; 3378 3379 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3380 3381 unsigned Flags = getOptimizationFlags(&I); 3382 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3383 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3384 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3385 1 << bitc::CALL_EXPLICIT_TYPE | 3386 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3387 unsigned(Flags != 0) << bitc::CALL_FMF); 3388 if (Flags != 0) 3389 Vals.push_back(Flags); 3390 3391 Vals.push_back(VE.getTypeID(FTy)); 3392 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3393 3394 // Emit value #'s for the fixed parameters. 3395 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3396 // Check for labels (can happen with asm labels). 3397 if (FTy->getParamType(i)->isLabelTy()) 3398 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3399 else 3400 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3401 } 3402 3403 // Emit type/value pairs for varargs params. 3404 if (FTy->isVarArg()) { 3405 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3406 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3407 } 3408 break; 3409 } 3410 case Instruction::VAArg: 3411 Code = bitc::FUNC_CODE_INST_VAARG; 3412 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3413 pushValue(I.getOperand(0), InstID, Vals); // valist. 3414 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3415 break; 3416 case Instruction::Freeze: 3417 Code = bitc::FUNC_CODE_INST_FREEZE; 3418 pushValueAndType(I.getOperand(0), InstID, Vals); 3419 break; 3420 } 3421 3422 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3423 Vals.clear(); 3424 } 3425 3426 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3427 /// to allow clients to efficiently find the function body. 3428 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3429 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3430 // Get the offset of the VST we are writing, and backpatch it into 3431 // the VST forward declaration record. 3432 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3433 // The BitcodeStartBit was the stream offset of the identification block. 3434 VSTOffset -= bitcodeStartBit(); 3435 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3436 // Note that we add 1 here because the offset is relative to one word 3437 // before the start of the identification block, which was historically 3438 // always the start of the regular bitcode header. 3439 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3440 3441 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3442 3443 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3444 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3447 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3448 3449 for (const Function &F : M) { 3450 uint64_t Record[2]; 3451 3452 if (F.isDeclaration()) 3453 continue; 3454 3455 Record[0] = VE.getValueID(&F); 3456 3457 // Save the word offset of the function (from the start of the 3458 // actual bitcode written to the stream). 3459 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3460 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3461 // Note that we add 1 here because the offset is relative to one word 3462 // before the start of the identification block, which was historically 3463 // always the start of the regular bitcode header. 3464 Record[1] = BitcodeIndex / 32 + 1; 3465 3466 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3467 } 3468 3469 Stream.ExitBlock(); 3470 } 3471 3472 /// Emit names for arguments, instructions and basic blocks in a function. 3473 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3474 const ValueSymbolTable &VST) { 3475 if (VST.empty()) 3476 return; 3477 3478 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3479 3480 // FIXME: Set up the abbrev, we know how many values there are! 3481 // FIXME: We know if the type names can use 7-bit ascii. 3482 SmallVector<uint64_t, 64> NameVals; 3483 3484 for (const ValueName &Name : VST) { 3485 // Figure out the encoding to use for the name. 3486 StringEncoding Bits = getStringEncoding(Name.getKey()); 3487 3488 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3489 NameVals.push_back(VE.getValueID(Name.getValue())); 3490 3491 // VST_CODE_ENTRY: [valueid, namechar x N] 3492 // VST_CODE_BBENTRY: [bbid, namechar x N] 3493 unsigned Code; 3494 if (isa<BasicBlock>(Name.getValue())) { 3495 Code = bitc::VST_CODE_BBENTRY; 3496 if (Bits == SE_Char6) 3497 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3498 } else { 3499 Code = bitc::VST_CODE_ENTRY; 3500 if (Bits == SE_Char6) 3501 AbbrevToUse = VST_ENTRY_6_ABBREV; 3502 else if (Bits == SE_Fixed7) 3503 AbbrevToUse = VST_ENTRY_7_ABBREV; 3504 } 3505 3506 for (const auto P : Name.getKey()) 3507 NameVals.push_back((unsigned char)P); 3508 3509 // Emit the finished record. 3510 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3511 NameVals.clear(); 3512 } 3513 3514 Stream.ExitBlock(); 3515 } 3516 3517 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3518 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3519 unsigned Code; 3520 if (isa<BasicBlock>(Order.V)) 3521 Code = bitc::USELIST_CODE_BB; 3522 else 3523 Code = bitc::USELIST_CODE_DEFAULT; 3524 3525 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3526 Record.push_back(VE.getValueID(Order.V)); 3527 Stream.EmitRecord(Code, Record); 3528 } 3529 3530 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3531 assert(VE.shouldPreserveUseListOrder() && 3532 "Expected to be preserving use-list order"); 3533 3534 auto hasMore = [&]() { 3535 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3536 }; 3537 if (!hasMore()) 3538 // Nothing to do. 3539 return; 3540 3541 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3542 while (hasMore()) { 3543 writeUseList(std::move(VE.UseListOrders.back())); 3544 VE.UseListOrders.pop_back(); 3545 } 3546 Stream.ExitBlock(); 3547 } 3548 3549 /// Emit a function body to the module stream. 3550 void ModuleBitcodeWriter::writeFunction( 3551 const Function &F, 3552 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3553 // Save the bitcode index of the start of this function block for recording 3554 // in the VST. 3555 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3556 3557 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3558 VE.incorporateFunction(F); 3559 3560 SmallVector<unsigned, 64> Vals; 3561 3562 // Emit the number of basic blocks, so the reader can create them ahead of 3563 // time. 3564 Vals.push_back(VE.getBasicBlocks().size()); 3565 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3566 Vals.clear(); 3567 3568 // If there are function-local constants, emit them now. 3569 unsigned CstStart, CstEnd; 3570 VE.getFunctionConstantRange(CstStart, CstEnd); 3571 writeConstants(CstStart, CstEnd, false); 3572 3573 // If there is function-local metadata, emit it now. 3574 writeFunctionMetadata(F); 3575 3576 // Keep a running idea of what the instruction ID is. 3577 unsigned InstID = CstEnd; 3578 3579 bool NeedsMetadataAttachment = F.hasMetadata(); 3580 3581 DILocation *LastDL = nullptr; 3582 SmallSetVector<Function *, 4> BlockAddressUsers; 3583 3584 // Finally, emit all the instructions, in order. 3585 for (const BasicBlock &BB : F) { 3586 for (const Instruction &I : BB) { 3587 writeInstruction(I, InstID, Vals); 3588 3589 if (!I.getType()->isVoidTy()) 3590 ++InstID; 3591 3592 // If the instruction has metadata, write a metadata attachment later. 3593 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3594 3595 // If the instruction has a debug location, emit it. 3596 if (DILocation *DL = I.getDebugLoc()) { 3597 if (DL == LastDL) { 3598 // Just repeat the same debug loc as last time. 3599 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3600 } else { 3601 Vals.push_back(DL->getLine()); 3602 Vals.push_back(DL->getColumn()); 3603 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3604 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3605 Vals.push_back(DL->isImplicitCode()); 3606 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3607 Vals.clear(); 3608 LastDL = DL; 3609 } 3610 } 3611 3612 // If the instruction has DbgRecords attached to it, emit them. Note that 3613 // they come after the instruction so that it's easy to attach them again 3614 // when reading the bitcode, even though conceptually the debug locations 3615 // start "before" the instruction. 3616 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3617 /// Try to push the value only (unwrapped), otherwise push the 3618 /// metadata wrapped value. Returns true if the value was pushed 3619 /// without the ValueAsMetadata wrapper. 3620 auto PushValueOrMetadata = [&Vals, InstID, 3621 this](Metadata *RawLocation) { 3622 assert(RawLocation && 3623 "RawLocation unexpectedly null in DbgVariableRecord"); 3624 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3625 SmallVector<unsigned, 2> ValAndType; 3626 // If the value is a fwd-ref the type is also pushed. We don't 3627 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3628 // returns false if the value is pushed without type). 3629 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3630 Vals.push_back(ValAndType[0]); 3631 return true; 3632 } 3633 } 3634 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3635 // fwd-ref. Push the metadata ID. 3636 Vals.push_back(VE.getMetadataID(RawLocation)); 3637 return false; 3638 }; 3639 3640 // Write out non-instruction debug information attached to this 3641 // instruction. Write it after the instruction so that it's easy to 3642 // re-attach to the instruction reading the records in. 3643 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { 3644 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3645 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); 3646 Vals.push_back(VE.getMetadataID(DLR->getLabel())); 3647 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3648 Vals.clear(); 3649 continue; 3650 } 3651 3652 // First 3 fields are common to all kinds: 3653 // DILocation, DILocalVariable, DIExpression 3654 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3655 // ..., LocationMetadata 3656 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3657 // ..., Value 3658 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3659 // ..., LocationMetadata 3660 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3661 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3662 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3663 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3664 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3665 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3666 if (DVR.isDbgValue()) { 3667 if (PushValueOrMetadata(DVR.getRawLocation())) 3668 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3669 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3670 else 3671 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3672 } else if (DVR.isDbgDeclare()) { 3673 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3674 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3675 } else { 3676 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3677 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3678 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3679 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3680 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3681 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3682 } 3683 Vals.clear(); 3684 } 3685 } 3686 } 3687 3688 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3689 SmallVector<Value *> Worklist{BA}; 3690 SmallPtrSet<Value *, 8> Visited{BA}; 3691 while (!Worklist.empty()) { 3692 Value *V = Worklist.pop_back_val(); 3693 for (User *U : V->users()) { 3694 if (auto *I = dyn_cast<Instruction>(U)) { 3695 Function *P = I->getFunction(); 3696 if (P != &F) 3697 BlockAddressUsers.insert(P); 3698 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3699 Visited.insert(U).second) 3700 Worklist.push_back(U); 3701 } 3702 } 3703 } 3704 } 3705 3706 if (!BlockAddressUsers.empty()) { 3707 Vals.resize(BlockAddressUsers.size()); 3708 for (auto I : llvm::enumerate(BlockAddressUsers)) 3709 Vals[I.index()] = VE.getValueID(I.value()); 3710 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3711 Vals.clear(); 3712 } 3713 3714 // Emit names for all the instructions etc. 3715 if (auto *Symtab = F.getValueSymbolTable()) 3716 writeFunctionLevelValueSymbolTable(*Symtab); 3717 3718 if (NeedsMetadataAttachment) 3719 writeFunctionMetadataAttachment(F); 3720 if (VE.shouldPreserveUseListOrder()) 3721 writeUseListBlock(&F); 3722 VE.purgeFunction(); 3723 Stream.ExitBlock(); 3724 } 3725 3726 // Emit blockinfo, which defines the standard abbreviations etc. 3727 void ModuleBitcodeWriter::writeBlockInfo() { 3728 // We only want to emit block info records for blocks that have multiple 3729 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3730 // Other blocks can define their abbrevs inline. 3731 Stream.EnterBlockInfoBlock(); 3732 3733 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3734 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3739 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3740 VST_ENTRY_8_ABBREV) 3741 llvm_unreachable("Unexpected abbrev ordering!"); 3742 } 3743 3744 { // 7-bit fixed width VST_CODE_ENTRY strings. 3745 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3746 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3750 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3751 VST_ENTRY_7_ABBREV) 3752 llvm_unreachable("Unexpected abbrev ordering!"); 3753 } 3754 { // 6-bit char6 VST_CODE_ENTRY strings. 3755 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3756 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3760 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3761 VST_ENTRY_6_ABBREV) 3762 llvm_unreachable("Unexpected abbrev ordering!"); 3763 } 3764 { // 6-bit char6 VST_CODE_BBENTRY strings. 3765 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3766 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3770 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3771 VST_BBENTRY_6_ABBREV) 3772 llvm_unreachable("Unexpected abbrev ordering!"); 3773 } 3774 3775 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3776 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3777 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3779 VE.computeBitsRequiredForTypeIndices())); 3780 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3781 CONSTANTS_SETTYPE_ABBREV) 3782 llvm_unreachable("Unexpected abbrev ordering!"); 3783 } 3784 3785 { // INTEGER abbrev for CONSTANTS_BLOCK. 3786 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3787 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3789 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3790 CONSTANTS_INTEGER_ABBREV) 3791 llvm_unreachable("Unexpected abbrev ordering!"); 3792 } 3793 3794 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3795 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3796 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3799 VE.computeBitsRequiredForTypeIndices())); 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3801 3802 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3803 CONSTANTS_CE_CAST_Abbrev) 3804 llvm_unreachable("Unexpected abbrev ordering!"); 3805 } 3806 { // NULL abbrev for CONSTANTS_BLOCK. 3807 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3808 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3809 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3810 CONSTANTS_NULL_Abbrev) 3811 llvm_unreachable("Unexpected abbrev ordering!"); 3812 } 3813 3814 // FIXME: This should only use space for first class types! 3815 3816 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3817 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3818 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3821 VE.computeBitsRequiredForTypeIndices())); 3822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3824 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3825 FUNCTION_INST_LOAD_ABBREV) 3826 llvm_unreachable("Unexpected abbrev ordering!"); 3827 } 3828 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3829 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3830 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3833 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3834 FUNCTION_INST_UNOP_ABBREV) 3835 llvm_unreachable("Unexpected abbrev ordering!"); 3836 } 3837 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3838 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3839 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3843 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3844 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3845 llvm_unreachable("Unexpected abbrev ordering!"); 3846 } 3847 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3848 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3849 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3853 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3854 FUNCTION_INST_BINOP_ABBREV) 3855 llvm_unreachable("Unexpected abbrev ordering!"); 3856 } 3857 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3858 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3859 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3864 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3865 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3866 llvm_unreachable("Unexpected abbrev ordering!"); 3867 } 3868 { // INST_CAST abbrev for FUNCTION_BLOCK. 3869 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3870 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3873 VE.computeBitsRequiredForTypeIndices())); 3874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3875 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3876 FUNCTION_INST_CAST_ABBREV) 3877 llvm_unreachable("Unexpected abbrev ordering!"); 3878 } 3879 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3880 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3881 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3884 VE.computeBitsRequiredForTypeIndices())); 3885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3887 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3888 FUNCTION_INST_CAST_FLAGS_ABBREV) 3889 llvm_unreachable("Unexpected abbrev ordering!"); 3890 } 3891 3892 { // INST_RET abbrev for FUNCTION_BLOCK. 3893 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3894 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3895 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3896 FUNCTION_INST_RET_VOID_ABBREV) 3897 llvm_unreachable("Unexpected abbrev ordering!"); 3898 } 3899 { // INST_RET abbrev for FUNCTION_BLOCK. 3900 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3901 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3903 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3904 FUNCTION_INST_RET_VAL_ABBREV) 3905 llvm_unreachable("Unexpected abbrev ordering!"); 3906 } 3907 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3908 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3909 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3910 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3911 FUNCTION_INST_UNREACHABLE_ABBREV) 3912 llvm_unreachable("Unexpected abbrev ordering!"); 3913 } 3914 { 3915 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3916 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3919 Log2_32_Ceil(VE.getTypes().size() + 1))); 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3922 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3923 FUNCTION_INST_GEP_ABBREV) 3924 llvm_unreachable("Unexpected abbrev ordering!"); 3925 } 3926 { 3927 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3928 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3933 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3934 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3935 llvm_unreachable("Unexpected abbrev ordering! 1"); 3936 } 3937 Stream.ExitBlock(); 3938 } 3939 3940 /// Write the module path strings, currently only used when generating 3941 /// a combined index file. 3942 void IndexBitcodeWriter::writeModStrings() { 3943 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3944 3945 // TODO: See which abbrev sizes we actually need to emit 3946 3947 // 8-bit fixed-width MST_ENTRY strings. 3948 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3949 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3953 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3954 3955 // 7-bit fixed width MST_ENTRY strings. 3956 Abbv = std::make_shared<BitCodeAbbrev>(); 3957 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3961 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3962 3963 // 6-bit char6 MST_ENTRY strings. 3964 Abbv = std::make_shared<BitCodeAbbrev>(); 3965 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3969 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3970 3971 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3972 Abbv = std::make_shared<BitCodeAbbrev>(); 3973 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3979 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3980 3981 SmallVector<unsigned, 64> Vals; 3982 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3983 StringRef Key = MPSE.getKey(); 3984 const auto &Hash = MPSE.getValue(); 3985 StringEncoding Bits = getStringEncoding(Key); 3986 unsigned AbbrevToUse = Abbrev8Bit; 3987 if (Bits == SE_Char6) 3988 AbbrevToUse = Abbrev6Bit; 3989 else if (Bits == SE_Fixed7) 3990 AbbrevToUse = Abbrev7Bit; 3991 3992 auto ModuleId = ModuleIdMap.size(); 3993 ModuleIdMap[Key] = ModuleId; 3994 Vals.push_back(ModuleId); 3995 Vals.append(Key.begin(), Key.end()); 3996 3997 // Emit the finished record. 3998 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3999 4000 // Emit an optional hash for the module now 4001 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 4002 Vals.assign(Hash.begin(), Hash.end()); 4003 // Emit the hash record. 4004 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 4005 } 4006 4007 Vals.clear(); 4008 }); 4009 Stream.ExitBlock(); 4010 } 4011 4012 /// Write the function type metadata related records that need to appear before 4013 /// a function summary entry (whether per-module or combined). 4014 template <typename Fn> 4015 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 4016 FunctionSummary *FS, 4017 Fn GetValueID) { 4018 if (!FS->type_tests().empty()) 4019 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 4020 4021 SmallVector<uint64_t, 64> Record; 4022 4023 auto WriteVFuncIdVec = [&](uint64_t Ty, 4024 ArrayRef<FunctionSummary::VFuncId> VFs) { 4025 if (VFs.empty()) 4026 return; 4027 Record.clear(); 4028 for (auto &VF : VFs) { 4029 Record.push_back(VF.GUID); 4030 Record.push_back(VF.Offset); 4031 } 4032 Stream.EmitRecord(Ty, Record); 4033 }; 4034 4035 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 4036 FS->type_test_assume_vcalls()); 4037 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 4038 FS->type_checked_load_vcalls()); 4039 4040 auto WriteConstVCallVec = [&](uint64_t Ty, 4041 ArrayRef<FunctionSummary::ConstVCall> VCs) { 4042 for (auto &VC : VCs) { 4043 Record.clear(); 4044 Record.push_back(VC.VFunc.GUID); 4045 Record.push_back(VC.VFunc.Offset); 4046 llvm::append_range(Record, VC.Args); 4047 Stream.EmitRecord(Ty, Record); 4048 } 4049 }; 4050 4051 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 4052 FS->type_test_assume_const_vcalls()); 4053 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 4054 FS->type_checked_load_const_vcalls()); 4055 4056 auto WriteRange = [&](ConstantRange Range) { 4057 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 4058 assert(Range.getLower().getNumWords() == 1); 4059 assert(Range.getUpper().getNumWords() == 1); 4060 emitSignedInt64(Record, *Range.getLower().getRawData()); 4061 emitSignedInt64(Record, *Range.getUpper().getRawData()); 4062 }; 4063 4064 if (!FS->paramAccesses().empty()) { 4065 Record.clear(); 4066 for (auto &Arg : FS->paramAccesses()) { 4067 size_t UndoSize = Record.size(); 4068 Record.push_back(Arg.ParamNo); 4069 WriteRange(Arg.Use); 4070 Record.push_back(Arg.Calls.size()); 4071 for (auto &Call : Arg.Calls) { 4072 Record.push_back(Call.ParamNo); 4073 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4074 if (!ValueID) { 4075 // If ValueID is unknown we can't drop just this call, we must drop 4076 // entire parameter. 4077 Record.resize(UndoSize); 4078 break; 4079 } 4080 Record.push_back(*ValueID); 4081 WriteRange(Call.Offsets); 4082 } 4083 } 4084 if (!Record.empty()) 4085 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4086 } 4087 } 4088 4089 /// Collect type IDs from type tests used by function. 4090 static void 4091 getReferencedTypeIds(FunctionSummary *FS, 4092 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4093 if (!FS->type_tests().empty()) 4094 for (auto &TT : FS->type_tests()) 4095 ReferencedTypeIds.insert(TT); 4096 4097 auto GetReferencedTypesFromVFuncIdVec = 4098 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4099 for (auto &VF : VFs) 4100 ReferencedTypeIds.insert(VF.GUID); 4101 }; 4102 4103 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4104 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4105 4106 auto GetReferencedTypesFromConstVCallVec = 4107 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4108 for (auto &VC : VCs) 4109 ReferencedTypeIds.insert(VC.VFunc.GUID); 4110 }; 4111 4112 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4113 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4114 } 4115 4116 static void writeWholeProgramDevirtResolutionByArg( 4117 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4118 const WholeProgramDevirtResolution::ByArg &ByArg) { 4119 NameVals.push_back(args.size()); 4120 llvm::append_range(NameVals, args); 4121 4122 NameVals.push_back(ByArg.TheKind); 4123 NameVals.push_back(ByArg.Info); 4124 NameVals.push_back(ByArg.Byte); 4125 NameVals.push_back(ByArg.Bit); 4126 } 4127 4128 static void writeWholeProgramDevirtResolution( 4129 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4130 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4131 NameVals.push_back(Id); 4132 4133 NameVals.push_back(Wpd.TheKind); 4134 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4135 NameVals.push_back(Wpd.SingleImplName.size()); 4136 4137 NameVals.push_back(Wpd.ResByArg.size()); 4138 for (auto &A : Wpd.ResByArg) 4139 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4140 } 4141 4142 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4143 StringTableBuilder &StrtabBuilder, 4144 const std::string &Id, 4145 const TypeIdSummary &Summary) { 4146 NameVals.push_back(StrtabBuilder.add(Id)); 4147 NameVals.push_back(Id.size()); 4148 4149 NameVals.push_back(Summary.TTRes.TheKind); 4150 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4151 NameVals.push_back(Summary.TTRes.AlignLog2); 4152 NameVals.push_back(Summary.TTRes.SizeM1); 4153 NameVals.push_back(Summary.TTRes.BitMask); 4154 NameVals.push_back(Summary.TTRes.InlineBits); 4155 4156 for (auto &W : Summary.WPDRes) 4157 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4158 W.second); 4159 } 4160 4161 static void writeTypeIdCompatibleVtableSummaryRecord( 4162 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4163 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 4164 ValueEnumerator &VE) { 4165 NameVals.push_back(StrtabBuilder.add(Id)); 4166 NameVals.push_back(Id.size()); 4167 4168 for (auto &P : Summary) { 4169 NameVals.push_back(P.AddressPointOffset); 4170 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4171 } 4172 } 4173 4174 static void writeFunctionHeapProfileRecords( 4175 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4176 unsigned AllocAbbrev, bool PerModule, 4177 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4178 std::function<unsigned(unsigned)> GetStackIndex) { 4179 SmallVector<uint64_t> Record; 4180 4181 for (auto &CI : FS->callsites()) { 4182 Record.clear(); 4183 // Per module callsite clones should always have a single entry of 4184 // value 0. 4185 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4186 Record.push_back(GetValueID(CI.Callee)); 4187 if (!PerModule) { 4188 Record.push_back(CI.StackIdIndices.size()); 4189 Record.push_back(CI.Clones.size()); 4190 } 4191 for (auto Id : CI.StackIdIndices) 4192 Record.push_back(GetStackIndex(Id)); 4193 if (!PerModule) { 4194 for (auto V : CI.Clones) 4195 Record.push_back(V); 4196 } 4197 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4198 : bitc::FS_COMBINED_CALLSITE_INFO, 4199 Record, CallsiteAbbrev); 4200 } 4201 4202 for (auto &AI : FS->allocs()) { 4203 Record.clear(); 4204 // Per module alloc versions should always have a single entry of 4205 // value 0. 4206 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4207 Record.push_back(AI.MIBs.size()); 4208 if (!PerModule) 4209 Record.push_back(AI.Versions.size()); 4210 for (auto &MIB : AI.MIBs) { 4211 Record.push_back((uint8_t)MIB.AllocType); 4212 Record.push_back(MIB.StackIdIndices.size()); 4213 for (auto Id : MIB.StackIdIndices) 4214 Record.push_back(GetStackIndex(Id)); 4215 } 4216 if (!PerModule) { 4217 for (auto V : AI.Versions) 4218 Record.push_back(V); 4219 } 4220 assert(AI.TotalSizes.empty() || AI.TotalSizes.size() == AI.MIBs.size()); 4221 if (!AI.TotalSizes.empty()) { 4222 for (auto Size : AI.TotalSizes) 4223 Record.push_back(Size); 4224 } 4225 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4226 : bitc::FS_COMBINED_ALLOC_INFO, 4227 Record, AllocAbbrev); 4228 } 4229 } 4230 4231 // Helper to emit a single function summary record. 4232 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4233 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4234 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4235 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4236 unsigned AllocAbbrev, const Function &F) { 4237 NameVals.push_back(ValueID); 4238 4239 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4240 4241 writeFunctionTypeMetadataRecords( 4242 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4243 return {VE.getValueID(VI.getValue())}; 4244 }); 4245 4246 writeFunctionHeapProfileRecords( 4247 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4248 /*PerModule*/ true, 4249 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4250 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4251 4252 auto SpecialRefCnts = FS->specialRefCounts(); 4253 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4254 NameVals.push_back(FS->instCount()); 4255 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4256 NameVals.push_back(FS->refs().size()); 4257 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4258 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4259 4260 for (auto &RI : FS->refs()) 4261 NameVals.push_back(getValueId(RI)); 4262 4263 const bool UseRelBFRecord = 4264 WriteRelBFToSummary && !F.hasProfileData() && 4265 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4266 for (auto &ECI : FS->calls()) { 4267 NameVals.push_back(getValueId(ECI.first)); 4268 if (UseRelBFRecord) 4269 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4270 else 4271 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4272 } 4273 4274 unsigned FSAbbrev = 4275 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4276 unsigned Code = 4277 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4278 4279 // Emit the finished record. 4280 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4281 NameVals.clear(); 4282 } 4283 4284 // Collect the global value references in the given variable's initializer, 4285 // and emit them in a summary record. 4286 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4287 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4288 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4289 auto VI = Index->getValueInfo(V.getGUID()); 4290 if (!VI || VI.getSummaryList().empty()) { 4291 // Only declarations should not have a summary (a declaration might however 4292 // have a summary if the def was in module level asm). 4293 assert(V.isDeclaration()); 4294 return; 4295 } 4296 auto *Summary = VI.getSummaryList()[0].get(); 4297 NameVals.push_back(VE.getValueID(&V)); 4298 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4299 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4300 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4301 4302 auto VTableFuncs = VS->vTableFuncs(); 4303 if (!VTableFuncs.empty()) 4304 NameVals.push_back(VS->refs().size()); 4305 4306 unsigned SizeBeforeRefs = NameVals.size(); 4307 for (auto &RI : VS->refs()) 4308 NameVals.push_back(VE.getValueID(RI.getValue())); 4309 // Sort the refs for determinism output, the vector returned by FS->refs() has 4310 // been initialized from a DenseSet. 4311 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4312 4313 if (VTableFuncs.empty()) 4314 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4315 FSModRefsAbbrev); 4316 else { 4317 // VTableFuncs pairs should already be sorted by offset. 4318 for (auto &P : VTableFuncs) { 4319 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4320 NameVals.push_back(P.VTableOffset); 4321 } 4322 4323 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4324 FSModVTableRefsAbbrev); 4325 } 4326 NameVals.clear(); 4327 } 4328 4329 /// Emit the per-module summary section alongside the rest of 4330 /// the module's bitcode. 4331 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4332 // By default we compile with ThinLTO if the module has a summary, but the 4333 // client can request full LTO with a module flag. 4334 bool IsThinLTO = true; 4335 if (auto *MD = 4336 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4337 IsThinLTO = MD->getZExtValue(); 4338 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4339 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4340 4); 4341 4342 Stream.EmitRecord( 4343 bitc::FS_VERSION, 4344 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4345 4346 // Write the index flags. 4347 uint64_t Flags = 0; 4348 // Bits 1-3 are set only in the combined index, skip them. 4349 if (Index->enableSplitLTOUnit()) 4350 Flags |= 0x8; 4351 if (Index->hasUnifiedLTO()) 4352 Flags |= 0x200; 4353 4354 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4355 4356 if (Index->begin() == Index->end()) { 4357 Stream.ExitBlock(); 4358 return; 4359 } 4360 4361 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4362 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4364 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4367 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4368 4369 for (const auto &GVI : valueIds()) { 4370 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4371 ArrayRef<uint32_t>{GVI.second, 4372 static_cast<uint32_t>(GVI.first >> 32), 4373 static_cast<uint32_t>(GVI.first)}, 4374 ValueGuidAbbrev); 4375 } 4376 4377 if (!Index->stackIds().empty()) { 4378 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4379 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4380 // numids x stackid 4381 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4382 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4383 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4384 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4385 } 4386 4387 // Abbrev for FS_PERMODULE_PROFILE. 4388 Abbv = std::make_shared<BitCodeAbbrev>(); 4389 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4397 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4400 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4401 4402 // Abbrev for FS_PERMODULE_RELBF. 4403 Abbv = std::make_shared<BitCodeAbbrev>(); 4404 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4412 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4415 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4416 4417 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4418 Abbv = std::make_shared<BitCodeAbbrev>(); 4419 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4424 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4425 4426 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4427 Abbv = std::make_shared<BitCodeAbbrev>(); 4428 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4432 // numrefs x valueid, n x (valueid , offset) 4433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4435 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4436 4437 // Abbrev for FS_ALIAS. 4438 Abbv = std::make_shared<BitCodeAbbrev>(); 4439 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4443 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4444 4445 // Abbrev for FS_TYPE_ID_METADATA 4446 Abbv = std::make_shared<BitCodeAbbrev>(); 4447 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4450 // n x (valueid , offset) 4451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4453 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4454 4455 Abbv = std::make_shared<BitCodeAbbrev>(); 4456 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4458 // n x stackidindex 4459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4461 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4462 4463 Abbv = std::make_shared<BitCodeAbbrev>(); 4464 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4466 // n x (alloc type, numstackids, numstackids x stackidindex) 4467 // optional: nummib x total size 4468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4470 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4471 4472 SmallVector<uint64_t, 64> NameVals; 4473 // Iterate over the list of functions instead of the Index to 4474 // ensure the ordering is stable. 4475 for (const Function &F : M) { 4476 // Summary emission does not support anonymous functions, they have to 4477 // renamed using the anonymous function renaming pass. 4478 if (!F.hasName()) 4479 report_fatal_error("Unexpected anonymous function when writing summary"); 4480 4481 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4482 if (!VI || VI.getSummaryList().empty()) { 4483 // Only declarations should not have a summary (a declaration might 4484 // however have a summary if the def was in module level asm). 4485 assert(F.isDeclaration()); 4486 continue; 4487 } 4488 auto *Summary = VI.getSummaryList()[0].get(); 4489 writePerModuleFunctionSummaryRecord( 4490 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4491 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); 4492 } 4493 4494 // Capture references from GlobalVariable initializers, which are outside 4495 // of a function scope. 4496 for (const GlobalVariable &G : M.globals()) 4497 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4498 FSModVTableRefsAbbrev); 4499 4500 for (const GlobalAlias &A : M.aliases()) { 4501 auto *Aliasee = A.getAliaseeObject(); 4502 // Skip ifunc and nameless functions which don't have an entry in the 4503 // summary. 4504 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4505 continue; 4506 auto AliasId = VE.getValueID(&A); 4507 auto AliaseeId = VE.getValueID(Aliasee); 4508 NameVals.push_back(AliasId); 4509 auto *Summary = Index->getGlobalValueSummary(A); 4510 AliasSummary *AS = cast<AliasSummary>(Summary); 4511 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4512 NameVals.push_back(AliaseeId); 4513 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4514 NameVals.clear(); 4515 } 4516 4517 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4518 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4519 S.second, VE); 4520 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4521 TypeIdCompatibleVtableAbbrev); 4522 NameVals.clear(); 4523 } 4524 4525 if (Index->getBlockCount()) 4526 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4527 ArrayRef<uint64_t>{Index->getBlockCount()}); 4528 4529 Stream.ExitBlock(); 4530 } 4531 4532 /// Emit the combined summary section into the combined index file. 4533 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4534 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4535 Stream.EmitRecord( 4536 bitc::FS_VERSION, 4537 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4538 4539 // Write the index flags. 4540 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4541 4542 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4543 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4545 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4548 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4549 4550 for (const auto &GVI : valueIds()) { 4551 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4552 ArrayRef<uint32_t>{GVI.second, 4553 static_cast<uint32_t>(GVI.first >> 32), 4554 static_cast<uint32_t>(GVI.first)}, 4555 ValueGuidAbbrev); 4556 } 4557 4558 // Write the stack ids used by this index, which will be a subset of those in 4559 // the full index in the case of distributed indexes. 4560 if (!StackIds.empty()) { 4561 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4562 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4563 // numids x stackid 4564 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4565 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4566 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4567 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4568 } 4569 4570 // Abbrev for FS_COMBINED_PROFILE. 4571 Abbv = std::make_shared<BitCodeAbbrev>(); 4572 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4582 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4585 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4586 4587 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4588 Abbv = std::make_shared<BitCodeAbbrev>(); 4589 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4595 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4596 4597 // Abbrev for FS_COMBINED_ALIAS. 4598 Abbv = std::make_shared<BitCodeAbbrev>(); 4599 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4604 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4605 4606 Abbv = std::make_shared<BitCodeAbbrev>(); 4607 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4611 // numstackindices x stackidindex, numver x version 4612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4614 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4615 4616 Abbv = std::make_shared<BitCodeAbbrev>(); 4617 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4620 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4621 // numver x version 4622 // optional: nummib x total size 4623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4625 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4626 4627 auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool { 4628 if (DecSummaries == nullptr) 4629 return false; 4630 return DecSummaries->count(GVS); 4631 }; 4632 4633 // The aliases are emitted as a post-pass, and will point to the value 4634 // id of the aliasee. Save them in a vector for post-processing. 4635 SmallVector<AliasSummary *, 64> Aliases; 4636 4637 // Save the value id for each summary for alias emission. 4638 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4639 4640 SmallVector<uint64_t, 64> NameVals; 4641 4642 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4643 // with the type ids referenced by this index file. 4644 std::set<GlobalValue::GUID> ReferencedTypeIds; 4645 4646 // For local linkage, we also emit the original name separately 4647 // immediately after the record. 4648 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4649 // We don't need to emit the original name if we are writing the index for 4650 // distributed backends (in which case ModuleToSummariesForIndex is 4651 // non-null). The original name is only needed during the thin link, since 4652 // for SamplePGO the indirect call targets for local functions have 4653 // have the original name annotated in profile. 4654 // Continue to emit it when writing out the entire combined index, which is 4655 // used in testing the thin link via llvm-lto. 4656 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4657 return; 4658 NameVals.push_back(S.getOriginalName()); 4659 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4660 NameVals.clear(); 4661 }; 4662 4663 DenseSet<GlobalValue::GUID> DefOrUseGUIDs; 4664 forEachSummary([&](GVInfo I, bool IsAliasee) { 4665 GlobalValueSummary *S = I.second; 4666 assert(S); 4667 DefOrUseGUIDs.insert(I.first); 4668 for (const ValueInfo &VI : S->refs()) 4669 DefOrUseGUIDs.insert(VI.getGUID()); 4670 4671 auto ValueId = getValueId(I.first); 4672 assert(ValueId); 4673 SummaryToValueIdMap[S] = *ValueId; 4674 4675 // If this is invoked for an aliasee, we want to record the above 4676 // mapping, but then not emit a summary entry (if the aliasee is 4677 // to be imported, we will invoke this separately with IsAliasee=false). 4678 if (IsAliasee) 4679 return; 4680 4681 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4682 // Will process aliases as a post-pass because the reader wants all 4683 // global to be loaded first. 4684 Aliases.push_back(AS); 4685 return; 4686 } 4687 4688 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4689 NameVals.push_back(*ValueId); 4690 assert(ModuleIdMap.count(VS->modulePath())); 4691 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4692 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4693 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4694 for (auto &RI : VS->refs()) { 4695 auto RefValueId = getValueId(RI.getGUID()); 4696 if (!RefValueId) 4697 continue; 4698 NameVals.push_back(*RefValueId); 4699 } 4700 4701 // Emit the finished record. 4702 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4703 FSModRefsAbbrev); 4704 NameVals.clear(); 4705 MaybeEmitOriginalName(*S); 4706 return; 4707 } 4708 4709 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4710 if (!VI) 4711 return std::nullopt; 4712 return getValueId(VI.getGUID()); 4713 }; 4714 4715 auto *FS = cast<FunctionSummary>(S); 4716 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4717 getReferencedTypeIds(FS, ReferencedTypeIds); 4718 4719 writeFunctionHeapProfileRecords( 4720 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4721 /*PerModule*/ false, 4722 /*GetValueId*/ 4723 [&](const ValueInfo &VI) -> unsigned { 4724 std::optional<unsigned> ValueID = GetValueId(VI); 4725 // This can happen in shared index files for distributed ThinLTO if 4726 // the callee function summary is not included. Record 0 which we 4727 // will have to deal with conservatively when doing any kind of 4728 // validation in the ThinLTO backends. 4729 if (!ValueID) 4730 return 0; 4731 return *ValueID; 4732 }, 4733 /*GetStackIndex*/ 4734 [&](unsigned I) { 4735 // Get the corresponding index into the list of StackIds actually 4736 // being written for this combined index (which may be a subset in 4737 // the case of distributed indexes). 4738 assert(StackIdIndicesToIndex.contains(I)); 4739 return StackIdIndicesToIndex[I]; 4740 }); 4741 4742 NameVals.push_back(*ValueId); 4743 assert(ModuleIdMap.count(FS->modulePath())); 4744 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4745 NameVals.push_back( 4746 getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS))); 4747 NameVals.push_back(FS->instCount()); 4748 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4749 // TODO: Stop writing entry count and bump bitcode version. 4750 NameVals.push_back(0 /* EntryCount */); 4751 4752 // Fill in below 4753 NameVals.push_back(0); // numrefs 4754 NameVals.push_back(0); // rorefcnt 4755 NameVals.push_back(0); // worefcnt 4756 4757 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4758 for (auto &RI : FS->refs()) { 4759 auto RefValueId = getValueId(RI.getGUID()); 4760 if (!RefValueId) 4761 continue; 4762 NameVals.push_back(*RefValueId); 4763 if (RI.isReadOnly()) 4764 RORefCnt++; 4765 else if (RI.isWriteOnly()) 4766 WORefCnt++; 4767 Count++; 4768 } 4769 NameVals[6] = Count; 4770 NameVals[7] = RORefCnt; 4771 NameVals[8] = WORefCnt; 4772 4773 for (auto &EI : FS->calls()) { 4774 // If this GUID doesn't have a value id, it doesn't have a function 4775 // summary and we don't need to record any calls to it. 4776 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4777 if (!CallValueId) 4778 continue; 4779 NameVals.push_back(*CallValueId); 4780 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4781 } 4782 4783 // Emit the finished record. 4784 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4785 FSCallsProfileAbbrev); 4786 NameVals.clear(); 4787 MaybeEmitOriginalName(*S); 4788 }); 4789 4790 for (auto *AS : Aliases) { 4791 auto AliasValueId = SummaryToValueIdMap[AS]; 4792 assert(AliasValueId); 4793 NameVals.push_back(AliasValueId); 4794 assert(ModuleIdMap.count(AS->modulePath())); 4795 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4796 NameVals.push_back( 4797 getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS))); 4798 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4799 assert(AliaseeValueId); 4800 NameVals.push_back(AliaseeValueId); 4801 4802 // Emit the finished record. 4803 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4804 NameVals.clear(); 4805 MaybeEmitOriginalName(*AS); 4806 4807 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4808 getReferencedTypeIds(FS, ReferencedTypeIds); 4809 } 4810 4811 if (!Index.cfiFunctionDefs().empty()) { 4812 for (auto &S : Index.cfiFunctionDefs()) { 4813 if (DefOrUseGUIDs.contains( 4814 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4815 NameVals.push_back(StrtabBuilder.add(S)); 4816 NameVals.push_back(S.size()); 4817 } 4818 } 4819 if (!NameVals.empty()) { 4820 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4821 NameVals.clear(); 4822 } 4823 } 4824 4825 if (!Index.cfiFunctionDecls().empty()) { 4826 for (auto &S : Index.cfiFunctionDecls()) { 4827 if (DefOrUseGUIDs.contains( 4828 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4829 NameVals.push_back(StrtabBuilder.add(S)); 4830 NameVals.push_back(S.size()); 4831 } 4832 } 4833 if (!NameVals.empty()) { 4834 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4835 NameVals.clear(); 4836 } 4837 } 4838 4839 // Walk the GUIDs that were referenced, and write the 4840 // corresponding type id records. 4841 for (auto &T : ReferencedTypeIds) { 4842 auto TidIter = Index.typeIds().equal_range(T); 4843 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) { 4844 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, TypeIdPair.first, 4845 TypeIdPair.second); 4846 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4847 NameVals.clear(); 4848 } 4849 } 4850 4851 if (Index.getBlockCount()) 4852 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4853 ArrayRef<uint64_t>{Index.getBlockCount()}); 4854 4855 Stream.ExitBlock(); 4856 } 4857 4858 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4859 /// current llvm version, and a record for the epoch number. 4860 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4861 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4862 4863 // Write the "user readable" string identifying the bitcode producer 4864 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4865 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4868 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4869 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4870 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4871 4872 // Write the epoch version 4873 Abbv = std::make_shared<BitCodeAbbrev>(); 4874 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4876 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4877 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4878 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4879 Stream.ExitBlock(); 4880 } 4881 4882 void ModuleBitcodeWriter::writeModuleHash(StringRef View) { 4883 // Emit the module's hash. 4884 // MODULE_CODE_HASH: [5*i32] 4885 if (GenerateHash) { 4886 uint32_t Vals[5]; 4887 Hasher.update(ArrayRef<uint8_t>( 4888 reinterpret_cast<const uint8_t *>(View.data()), View.size())); 4889 std::array<uint8_t, 20> Hash = Hasher.result(); 4890 for (int Pos = 0; Pos < 20; Pos += 4) { 4891 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4892 } 4893 4894 // Emit the finished record. 4895 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4896 4897 if (ModHash) 4898 // Save the written hash value. 4899 llvm::copy(Vals, std::begin(*ModHash)); 4900 } 4901 } 4902 4903 void ModuleBitcodeWriter::write() { 4904 writeIdentificationBlock(Stream); 4905 4906 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4907 // We will want to write the module hash at this point. Block any flushing so 4908 // we can have access to the whole underlying data later. 4909 Stream.markAndBlockFlushing(); 4910 4911 writeModuleVersion(); 4912 4913 // Emit blockinfo, which defines the standard abbreviations etc. 4914 writeBlockInfo(); 4915 4916 // Emit information describing all of the types in the module. 4917 writeTypeTable(); 4918 4919 // Emit information about attribute groups. 4920 writeAttributeGroupTable(); 4921 4922 // Emit information about parameter attributes. 4923 writeAttributeTable(); 4924 4925 writeComdats(); 4926 4927 // Emit top-level description of module, including target triple, inline asm, 4928 // descriptors for global variables, and function prototype info. 4929 writeModuleInfo(); 4930 4931 // Emit constants. 4932 writeModuleConstants(); 4933 4934 // Emit metadata kind names. 4935 writeModuleMetadataKinds(); 4936 4937 // Emit metadata. 4938 writeModuleMetadata(); 4939 4940 // Emit module-level use-lists. 4941 if (VE.shouldPreserveUseListOrder()) 4942 writeUseListBlock(nullptr); 4943 4944 writeOperandBundleTags(); 4945 writeSyncScopeNames(); 4946 4947 // Emit function bodies. 4948 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4949 for (const Function &F : M) 4950 if (!F.isDeclaration()) 4951 writeFunction(F, FunctionToBitcodeIndex); 4952 4953 // Need to write after the above call to WriteFunction which populates 4954 // the summary information in the index. 4955 if (Index) 4956 writePerModuleGlobalValueSummary(); 4957 4958 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4959 4960 writeModuleHash(Stream.getMarkedBufferAndResumeFlushing()); 4961 4962 Stream.ExitBlock(); 4963 } 4964 4965 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4966 uint32_t &Position) { 4967 support::endian::write32le(&Buffer[Position], Value); 4968 Position += 4; 4969 } 4970 4971 /// If generating a bc file on darwin, we have to emit a 4972 /// header and trailer to make it compatible with the system archiver. To do 4973 /// this we emit the following header, and then emit a trailer that pads the 4974 /// file out to be a multiple of 16 bytes. 4975 /// 4976 /// struct bc_header { 4977 /// uint32_t Magic; // 0x0B17C0DE 4978 /// uint32_t Version; // Version, currently always 0. 4979 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4980 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4981 /// uint32_t CPUType; // CPU specifier. 4982 /// ... potentially more later ... 4983 /// }; 4984 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4985 const Triple &TT) { 4986 unsigned CPUType = ~0U; 4987 4988 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4989 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4990 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4991 // specific constants here because they are implicitly part of the Darwin ABI. 4992 enum { 4993 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4994 DARWIN_CPU_TYPE_X86 = 7, 4995 DARWIN_CPU_TYPE_ARM = 12, 4996 DARWIN_CPU_TYPE_POWERPC = 18 4997 }; 4998 4999 Triple::ArchType Arch = TT.getArch(); 5000 if (Arch == Triple::x86_64) 5001 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 5002 else if (Arch == Triple::x86) 5003 CPUType = DARWIN_CPU_TYPE_X86; 5004 else if (Arch == Triple::ppc) 5005 CPUType = DARWIN_CPU_TYPE_POWERPC; 5006 else if (Arch == Triple::ppc64) 5007 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 5008 else if (Arch == Triple::arm || Arch == Triple::thumb) 5009 CPUType = DARWIN_CPU_TYPE_ARM; 5010 5011 // Traditional Bitcode starts after header. 5012 assert(Buffer.size() >= BWH_HeaderSize && 5013 "Expected header size to be reserved"); 5014 unsigned BCOffset = BWH_HeaderSize; 5015 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 5016 5017 // Write the magic and version. 5018 unsigned Position = 0; 5019 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 5020 writeInt32ToBuffer(0, Buffer, Position); // Version. 5021 writeInt32ToBuffer(BCOffset, Buffer, Position); 5022 writeInt32ToBuffer(BCSize, Buffer, Position); 5023 writeInt32ToBuffer(CPUType, Buffer, Position); 5024 5025 // If the file is not a multiple of 16 bytes, insert dummy padding. 5026 while (Buffer.size() & 15) 5027 Buffer.push_back(0); 5028 } 5029 5030 /// Helper to write the header common to all bitcode files. 5031 static void writeBitcodeHeader(BitstreamWriter &Stream) { 5032 // Emit the file header. 5033 Stream.Emit((unsigned)'B', 8); 5034 Stream.Emit((unsigned)'C', 8); 5035 Stream.Emit(0x0, 4); 5036 Stream.Emit(0xC, 4); 5037 Stream.Emit(0xE, 4); 5038 Stream.Emit(0xD, 4); 5039 } 5040 5041 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 5042 : Stream(new BitstreamWriter(Buffer)) { 5043 writeBitcodeHeader(*Stream); 5044 } 5045 5046 BitcodeWriter::BitcodeWriter(raw_ostream &FS) 5047 : Stream(new BitstreamWriter(FS, FlushThreshold)) { 5048 writeBitcodeHeader(*Stream); 5049 } 5050 5051 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 5052 5053 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 5054 Stream->EnterSubblock(Block, 3); 5055 5056 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5057 Abbv->Add(BitCodeAbbrevOp(Record)); 5058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 5059 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 5060 5061 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 5062 5063 Stream->ExitBlock(); 5064 } 5065 5066 void BitcodeWriter::writeSymtab() { 5067 assert(!WroteStrtab && !WroteSymtab); 5068 5069 // If any module has module-level inline asm, we will require a registered asm 5070 // parser for the target so that we can create an accurate symbol table for 5071 // the module. 5072 for (Module *M : Mods) { 5073 if (M->getModuleInlineAsm().empty()) 5074 continue; 5075 5076 std::string Err; 5077 const Triple TT(M->getTargetTriple()); 5078 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 5079 if (!T || !T->hasMCAsmParser()) 5080 return; 5081 } 5082 5083 WroteSymtab = true; 5084 SmallVector<char, 0> Symtab; 5085 // The irsymtab::build function may be unable to create a symbol table if the 5086 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 5087 // table is not required for correctness, but we still want to be able to 5088 // write malformed modules to bitcode files, so swallow the error. 5089 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 5090 consumeError(std::move(E)); 5091 return; 5092 } 5093 5094 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 5095 {Symtab.data(), Symtab.size()}); 5096 } 5097 5098 void BitcodeWriter::writeStrtab() { 5099 assert(!WroteStrtab); 5100 5101 std::vector<char> Strtab; 5102 StrtabBuilder.finalizeInOrder(); 5103 Strtab.resize(StrtabBuilder.getSize()); 5104 StrtabBuilder.write((uint8_t *)Strtab.data()); 5105 5106 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 5107 {Strtab.data(), Strtab.size()}); 5108 5109 WroteStrtab = true; 5110 } 5111 5112 void BitcodeWriter::copyStrtab(StringRef Strtab) { 5113 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 5114 WroteStrtab = true; 5115 } 5116 5117 void BitcodeWriter::writeModule(const Module &M, 5118 bool ShouldPreserveUseListOrder, 5119 const ModuleSummaryIndex *Index, 5120 bool GenerateHash, ModuleHash *ModHash) { 5121 assert(!WroteStrtab); 5122 5123 // The Mods vector is used by irsymtab::build, which requires non-const 5124 // Modules in case it needs to materialize metadata. But the bitcode writer 5125 // requires that the module is materialized, so we can cast to non-const here, 5126 // after checking that it is in fact materialized. 5127 assert(M.isMaterialized()); 5128 Mods.push_back(const_cast<Module *>(&M)); 5129 5130 ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream, 5131 ShouldPreserveUseListOrder, Index, 5132 GenerateHash, ModHash); 5133 ModuleWriter.write(); 5134 } 5135 5136 void BitcodeWriter::writeIndex( 5137 const ModuleSummaryIndex *Index, 5138 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5139 const GVSummaryPtrSet *DecSummaries) { 5140 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries, 5141 ModuleToSummariesForIndex); 5142 IndexWriter.write(); 5143 } 5144 5145 /// Write the specified module to the specified output stream. 5146 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5147 bool ShouldPreserveUseListOrder, 5148 const ModuleSummaryIndex *Index, 5149 bool GenerateHash, ModuleHash *ModHash) { 5150 auto Write = [&](BitcodeWriter &Writer) { 5151 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5152 ModHash); 5153 Writer.writeSymtab(); 5154 Writer.writeStrtab(); 5155 }; 5156 Triple TT(M.getTargetTriple()); 5157 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) { 5158 // If this is darwin or another generic macho target, reserve space for the 5159 // header. Note that the header is computed *after* the output is known, so 5160 // we currently explicitly use a buffer, write to it, and then subsequently 5161 // flush to Out. 5162 SmallVector<char, 0> Buffer; 5163 Buffer.reserve(256 * 1024); 5164 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5165 BitcodeWriter Writer(Buffer); 5166 Write(Writer); 5167 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5168 Out.write(Buffer.data(), Buffer.size()); 5169 } else { 5170 BitcodeWriter Writer(Out); 5171 Write(Writer); 5172 } 5173 } 5174 5175 void IndexBitcodeWriter::write() { 5176 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5177 5178 writeModuleVersion(); 5179 5180 // Write the module paths in the combined index. 5181 writeModStrings(); 5182 5183 // Write the summary combined index records. 5184 writeCombinedGlobalValueSummary(); 5185 5186 Stream.ExitBlock(); 5187 } 5188 5189 // Write the specified module summary index to the given raw output stream, 5190 // where it will be written in a new bitcode block. This is used when 5191 // writing the combined index file for ThinLTO. When writing a subset of the 5192 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5193 void llvm::writeIndexToFile( 5194 const ModuleSummaryIndex &Index, raw_ostream &Out, 5195 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5196 const GVSummaryPtrSet *DecSummaries) { 5197 SmallVector<char, 0> Buffer; 5198 Buffer.reserve(256 * 1024); 5199 5200 BitcodeWriter Writer(Buffer); 5201 Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries); 5202 Writer.writeStrtab(); 5203 5204 Out.write((char *)&Buffer.front(), Buffer.size()); 5205 } 5206 5207 namespace { 5208 5209 /// Class to manage the bitcode writing for a thin link bitcode file. 5210 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5211 /// ModHash is for use in ThinLTO incremental build, generated while writing 5212 /// the module bitcode file. 5213 const ModuleHash *ModHash; 5214 5215 public: 5216 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5217 BitstreamWriter &Stream, 5218 const ModuleSummaryIndex &Index, 5219 const ModuleHash &ModHash) 5220 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5221 /*ShouldPreserveUseListOrder=*/false, &Index), 5222 ModHash(&ModHash) {} 5223 5224 void write(); 5225 5226 private: 5227 void writeSimplifiedModuleInfo(); 5228 }; 5229 5230 } // end anonymous namespace 5231 5232 // This function writes a simpilified module info for thin link bitcode file. 5233 // It only contains the source file name along with the name(the offset and 5234 // size in strtab) and linkage for global values. For the global value info 5235 // entry, in order to keep linkage at offset 5, there are three zeros used 5236 // as padding. 5237 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5238 SmallVector<unsigned, 64> Vals; 5239 // Emit the module's source file name. 5240 { 5241 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5242 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5243 if (Bits == SE_Char6) 5244 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5245 else if (Bits == SE_Fixed7) 5246 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5247 5248 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5249 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5250 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5252 Abbv->Add(AbbrevOpToUse); 5253 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5254 5255 for (const auto P : M.getSourceFileName()) 5256 Vals.push_back((unsigned char)P); 5257 5258 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5259 Vals.clear(); 5260 } 5261 5262 // Emit the global variable information. 5263 for (const GlobalVariable &GV : M.globals()) { 5264 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5265 Vals.push_back(StrtabBuilder.add(GV.getName())); 5266 Vals.push_back(GV.getName().size()); 5267 Vals.push_back(0); 5268 Vals.push_back(0); 5269 Vals.push_back(0); 5270 Vals.push_back(getEncodedLinkage(GV)); 5271 5272 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5273 Vals.clear(); 5274 } 5275 5276 // Emit the function proto information. 5277 for (const Function &F : M) { 5278 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5279 Vals.push_back(StrtabBuilder.add(F.getName())); 5280 Vals.push_back(F.getName().size()); 5281 Vals.push_back(0); 5282 Vals.push_back(0); 5283 Vals.push_back(0); 5284 Vals.push_back(getEncodedLinkage(F)); 5285 5286 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5287 Vals.clear(); 5288 } 5289 5290 // Emit the alias information. 5291 for (const GlobalAlias &A : M.aliases()) { 5292 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5293 Vals.push_back(StrtabBuilder.add(A.getName())); 5294 Vals.push_back(A.getName().size()); 5295 Vals.push_back(0); 5296 Vals.push_back(0); 5297 Vals.push_back(0); 5298 Vals.push_back(getEncodedLinkage(A)); 5299 5300 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5301 Vals.clear(); 5302 } 5303 5304 // Emit the ifunc information. 5305 for (const GlobalIFunc &I : M.ifuncs()) { 5306 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5307 Vals.push_back(StrtabBuilder.add(I.getName())); 5308 Vals.push_back(I.getName().size()); 5309 Vals.push_back(0); 5310 Vals.push_back(0); 5311 Vals.push_back(0); 5312 Vals.push_back(getEncodedLinkage(I)); 5313 5314 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5315 Vals.clear(); 5316 } 5317 } 5318 5319 void ThinLinkBitcodeWriter::write() { 5320 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5321 5322 writeModuleVersion(); 5323 5324 writeSimplifiedModuleInfo(); 5325 5326 writePerModuleGlobalValueSummary(); 5327 5328 // Write module hash. 5329 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5330 5331 Stream.ExitBlock(); 5332 } 5333 5334 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5335 const ModuleSummaryIndex &Index, 5336 const ModuleHash &ModHash) { 5337 assert(!WroteStrtab); 5338 5339 // The Mods vector is used by irsymtab::build, which requires non-const 5340 // Modules in case it needs to materialize metadata. But the bitcode writer 5341 // requires that the module is materialized, so we can cast to non-const here, 5342 // after checking that it is in fact materialized. 5343 assert(M.isMaterialized()); 5344 Mods.push_back(const_cast<Module *>(&M)); 5345 5346 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5347 ModHash); 5348 ThinLinkWriter.write(); 5349 } 5350 5351 // Write the specified thin link bitcode file to the given raw output stream, 5352 // where it will be written in a new bitcode block. This is used when 5353 // writing the per-module index file for ThinLTO. 5354 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5355 const ModuleSummaryIndex &Index, 5356 const ModuleHash &ModHash) { 5357 SmallVector<char, 0> Buffer; 5358 Buffer.reserve(256 * 1024); 5359 5360 BitcodeWriter Writer(Buffer); 5361 Writer.writeThinLinkBitcode(M, Index, ModHash); 5362 Writer.writeSymtab(); 5363 Writer.writeStrtab(); 5364 5365 Out.write((char *)&Buffer.front(), Buffer.size()); 5366 } 5367 5368 static const char *getSectionNameForBitcode(const Triple &T) { 5369 switch (T.getObjectFormat()) { 5370 case Triple::MachO: 5371 return "__LLVM,__bitcode"; 5372 case Triple::COFF: 5373 case Triple::ELF: 5374 case Triple::Wasm: 5375 case Triple::UnknownObjectFormat: 5376 return ".llvmbc"; 5377 case Triple::GOFF: 5378 llvm_unreachable("GOFF is not yet implemented"); 5379 break; 5380 case Triple::SPIRV: 5381 if (T.getVendor() == Triple::AMD) 5382 return ".llvmbc"; 5383 llvm_unreachable("SPIRV is not yet implemented"); 5384 break; 5385 case Triple::XCOFF: 5386 llvm_unreachable("XCOFF is not yet implemented"); 5387 break; 5388 case Triple::DXContainer: 5389 llvm_unreachable("DXContainer is not yet implemented"); 5390 break; 5391 } 5392 llvm_unreachable("Unimplemented ObjectFormatType"); 5393 } 5394 5395 static const char *getSectionNameForCommandline(const Triple &T) { 5396 switch (T.getObjectFormat()) { 5397 case Triple::MachO: 5398 return "__LLVM,__cmdline"; 5399 case Triple::COFF: 5400 case Triple::ELF: 5401 case Triple::Wasm: 5402 case Triple::UnknownObjectFormat: 5403 return ".llvmcmd"; 5404 case Triple::GOFF: 5405 llvm_unreachable("GOFF is not yet implemented"); 5406 break; 5407 case Triple::SPIRV: 5408 if (T.getVendor() == Triple::AMD) 5409 return ".llvmcmd"; 5410 llvm_unreachable("SPIRV is not yet implemented"); 5411 break; 5412 case Triple::XCOFF: 5413 llvm_unreachable("XCOFF is not yet implemented"); 5414 break; 5415 case Triple::DXContainer: 5416 llvm_unreachable("DXC is not yet implemented"); 5417 break; 5418 } 5419 llvm_unreachable("Unimplemented ObjectFormatType"); 5420 } 5421 5422 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5423 bool EmbedBitcode, bool EmbedCmdline, 5424 const std::vector<uint8_t> &CmdArgs) { 5425 // Save llvm.compiler.used and remove it. 5426 SmallVector<Constant *, 2> UsedArray; 5427 SmallVector<GlobalValue *, 4> UsedGlobals; 5428 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5429 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5430 for (auto *GV : UsedGlobals) { 5431 if (GV->getName() != "llvm.embedded.module" && 5432 GV->getName() != "llvm.cmdline") 5433 UsedArray.push_back( 5434 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5435 } 5436 if (Used) 5437 Used->eraseFromParent(); 5438 5439 // Embed the bitcode for the llvm module. 5440 std::string Data; 5441 ArrayRef<uint8_t> ModuleData; 5442 Triple T(M.getTargetTriple()); 5443 5444 if (EmbedBitcode) { 5445 if (Buf.getBufferSize() == 0 || 5446 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5447 (const unsigned char *)Buf.getBufferEnd())) { 5448 // If the input is LLVM Assembly, bitcode is produced by serializing 5449 // the module. Use-lists order need to be preserved in this case. 5450 llvm::raw_string_ostream OS(Data); 5451 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5452 ModuleData = 5453 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5454 } else 5455 // If the input is LLVM bitcode, write the input byte stream directly. 5456 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5457 Buf.getBufferSize()); 5458 } 5459 llvm::Constant *ModuleConstant = 5460 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5461 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5462 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5463 ModuleConstant); 5464 GV->setSection(getSectionNameForBitcode(T)); 5465 // Set alignment to 1 to prevent padding between two contributions from input 5466 // sections after linking. 5467 GV->setAlignment(Align(1)); 5468 UsedArray.push_back( 5469 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5470 if (llvm::GlobalVariable *Old = 5471 M.getGlobalVariable("llvm.embedded.module", true)) { 5472 assert(Old->hasZeroLiveUses() && 5473 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5474 GV->takeName(Old); 5475 Old->eraseFromParent(); 5476 } else { 5477 GV->setName("llvm.embedded.module"); 5478 } 5479 5480 // Skip if only bitcode needs to be embedded. 5481 if (EmbedCmdline) { 5482 // Embed command-line options. 5483 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5484 CmdArgs.size()); 5485 llvm::Constant *CmdConstant = 5486 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5487 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5488 llvm::GlobalValue::PrivateLinkage, 5489 CmdConstant); 5490 GV->setSection(getSectionNameForCommandline(T)); 5491 GV->setAlignment(Align(1)); 5492 UsedArray.push_back( 5493 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5494 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5495 assert(Old->hasZeroLiveUses() && 5496 "llvm.cmdline can only be used once in llvm.compiler.used"); 5497 GV->takeName(Old); 5498 Old->eraseFromParent(); 5499 } else { 5500 GV->setName("llvm.cmdline"); 5501 } 5502 } 5503 5504 if (UsedArray.empty()) 5505 return; 5506 5507 // Recreate llvm.compiler.used. 5508 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5509 auto *NewUsed = new GlobalVariable( 5510 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5511 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5512 NewUsed->setSection("llvm.metadata"); 5513 } 5514