1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/MDNode.h" 23 #include "llvm/Module.h" 24 #include "llvm/Operator.h" 25 #include "llvm/TypeSymbolTable.h" 26 #include "llvm/ValueSymbolTable.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Streams.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/System/Program.h" 32 using namespace llvm; 33 34 /// These are manifest constants used by the bitcode writer. They do not need to 35 /// be kept in sync with the reader, but need to be consistent within this file. 36 enum { 37 CurVersion = 0, 38 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 } 78 } 79 80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 81 switch (Opcode) { 82 default: llvm_unreachable("Unknown binary instruction!"); 83 case Instruction::Add: 84 case Instruction::FAdd: return bitc::BINOP_ADD; 85 case Instruction::Sub: 86 case Instruction::FSub: return bitc::BINOP_SUB; 87 case Instruction::Mul: 88 case Instruction::FMul: return bitc::BINOP_MUL; 89 case Instruction::UDiv: return bitc::BINOP_UDIV; 90 case Instruction::FDiv: 91 case Instruction::SDiv: return bitc::BINOP_SDIV; 92 case Instruction::URem: return bitc::BINOP_UREM; 93 case Instruction::FRem: 94 case Instruction::SRem: return bitc::BINOP_SREM; 95 case Instruction::Shl: return bitc::BINOP_SHL; 96 case Instruction::LShr: return bitc::BINOP_LSHR; 97 case Instruction::AShr: return bitc::BINOP_ASHR; 98 case Instruction::And: return bitc::BINOP_AND; 99 case Instruction::Or: return bitc::BINOP_OR; 100 case Instruction::Xor: return bitc::BINOP_XOR; 101 } 102 } 103 104 105 106 static void WriteStringRecord(unsigned Code, const std::string &Str, 107 unsigned AbbrevToUse, BitstreamWriter &Stream) { 108 SmallVector<unsigned, 64> Vals; 109 110 // Code: [strchar x N] 111 for (unsigned i = 0, e = Str.size(); i != e; ++i) 112 Vals.push_back(Str[i]); 113 114 // Emit the finished record. 115 Stream.EmitRecord(Code, Vals, AbbrevToUse); 116 } 117 118 // Emit information about parameter attributes. 119 static void WriteAttributeTable(const ValueEnumerator &VE, 120 BitstreamWriter &Stream) { 121 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 122 if (Attrs.empty()) return; 123 124 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 125 126 SmallVector<uint64_t, 64> Record; 127 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 128 const AttrListPtr &A = Attrs[i]; 129 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 130 const AttributeWithIndex &PAWI = A.getSlot(i); 131 Record.push_back(PAWI.Index); 132 133 // FIXME: remove in LLVM 3.0 134 // Store the alignment in the bitcode as a 16-bit raw value instead of a 135 // 5-bit log2 encoded value. Shift the bits above the alignment up by 136 // 11 bits. 137 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 138 if (PAWI.Attrs & Attribute::Alignment) 139 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 140 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 141 142 Record.push_back(FauxAttr); 143 } 144 145 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 146 Record.clear(); 147 } 148 149 Stream.ExitBlock(); 150 } 151 152 /// WriteTypeTable - Write out the type table for a module. 153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 154 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 155 156 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 157 SmallVector<uint64_t, 64> TypeVals; 158 159 // Abbrev for TYPE_CODE_POINTER. 160 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 161 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 163 Log2_32_Ceil(VE.getTypes().size()+1))); 164 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 165 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 166 167 // Abbrev for TYPE_CODE_FUNCTION. 168 Abbv = new BitCodeAbbrev(); 169 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 171 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 174 Log2_32_Ceil(VE.getTypes().size()+1))); 175 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 176 177 // Abbrev for TYPE_CODE_STRUCT. 178 Abbv = new BitCodeAbbrev(); 179 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 183 Log2_32_Ceil(VE.getTypes().size()+1))); 184 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 185 186 // Abbrev for TYPE_CODE_ARRAY. 187 Abbv = new BitCodeAbbrev(); 188 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 191 Log2_32_Ceil(VE.getTypes().size()+1))); 192 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 193 194 // Emit an entry count so the reader can reserve space. 195 TypeVals.push_back(TypeList.size()); 196 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 197 TypeVals.clear(); 198 199 // Loop over all of the types, emitting each in turn. 200 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 201 const Type *T = TypeList[i].first; 202 int AbbrevToUse = 0; 203 unsigned Code = 0; 204 205 switch (T->getTypeID()) { 206 default: llvm_unreachable("Unknown type!"); 207 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 208 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 209 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 210 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 211 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 212 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 213 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 214 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 215 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 216 case Type::IntegerTyID: 217 // INTEGER: [width] 218 Code = bitc::TYPE_CODE_INTEGER; 219 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 220 break; 221 case Type::PointerTyID: { 222 const PointerType *PTy = cast<PointerType>(T); 223 // POINTER: [pointee type, address space] 224 Code = bitc::TYPE_CODE_POINTER; 225 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 226 unsigned AddressSpace = PTy->getAddressSpace(); 227 TypeVals.push_back(AddressSpace); 228 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 229 break; 230 } 231 case Type::FunctionTyID: { 232 const FunctionType *FT = cast<FunctionType>(T); 233 // FUNCTION: [isvararg, attrid, retty, paramty x N] 234 Code = bitc::TYPE_CODE_FUNCTION; 235 TypeVals.push_back(FT->isVarArg()); 236 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 237 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 238 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 239 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 240 AbbrevToUse = FunctionAbbrev; 241 break; 242 } 243 case Type::StructTyID: { 244 const StructType *ST = cast<StructType>(T); 245 // STRUCT: [ispacked, eltty x N] 246 Code = bitc::TYPE_CODE_STRUCT; 247 TypeVals.push_back(ST->isPacked()); 248 // Output all of the element types. 249 for (StructType::element_iterator I = ST->element_begin(), 250 E = ST->element_end(); I != E; ++I) 251 TypeVals.push_back(VE.getTypeID(*I)); 252 AbbrevToUse = StructAbbrev; 253 break; 254 } 255 case Type::ArrayTyID: { 256 const ArrayType *AT = cast<ArrayType>(T); 257 // ARRAY: [numelts, eltty] 258 Code = bitc::TYPE_CODE_ARRAY; 259 TypeVals.push_back(AT->getNumElements()); 260 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 261 AbbrevToUse = ArrayAbbrev; 262 break; 263 } 264 case Type::VectorTyID: { 265 const VectorType *VT = cast<VectorType>(T); 266 // VECTOR [numelts, eltty] 267 Code = bitc::TYPE_CODE_VECTOR; 268 TypeVals.push_back(VT->getNumElements()); 269 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 270 break; 271 } 272 } 273 274 // Emit the finished record. 275 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 276 TypeVals.clear(); 277 } 278 279 Stream.ExitBlock(); 280 } 281 282 static unsigned getEncodedLinkage(const GlobalValue *GV) { 283 switch (GV->getLinkage()) { 284 default: llvm_unreachable("Invalid linkage!"); 285 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 286 case GlobalValue::ExternalLinkage: return 0; 287 case GlobalValue::WeakAnyLinkage: return 1; 288 case GlobalValue::AppendingLinkage: return 2; 289 case GlobalValue::InternalLinkage: return 3; 290 case GlobalValue::LinkOnceAnyLinkage: return 4; 291 case GlobalValue::DLLImportLinkage: return 5; 292 case GlobalValue::DLLExportLinkage: return 6; 293 case GlobalValue::ExternalWeakLinkage: return 7; 294 case GlobalValue::CommonLinkage: return 8; 295 case GlobalValue::PrivateLinkage: return 9; 296 case GlobalValue::WeakODRLinkage: return 10; 297 case GlobalValue::LinkOnceODRLinkage: return 11; 298 case GlobalValue::AvailableExternallyLinkage: return 12; 299 case GlobalValue::LinkerPrivateLinkage: return 13; 300 } 301 } 302 303 static unsigned getEncodedVisibility(const GlobalValue *GV) { 304 switch (GV->getVisibility()) { 305 default: llvm_unreachable("Invalid visibility!"); 306 case GlobalValue::DefaultVisibility: return 0; 307 case GlobalValue::HiddenVisibility: return 1; 308 case GlobalValue::ProtectedVisibility: return 2; 309 } 310 } 311 312 // Emit top-level description of module, including target triple, inline asm, 313 // descriptors for global variables, and function prototype info. 314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 315 BitstreamWriter &Stream) { 316 // Emit the list of dependent libraries for the Module. 317 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 318 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 319 320 // Emit various pieces of data attached to a module. 321 if (!M->getTargetTriple().empty()) 322 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 323 0/*TODO*/, Stream); 324 if (!M->getDataLayout().empty()) 325 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 326 0/*TODO*/, Stream); 327 if (!M->getModuleInlineAsm().empty()) 328 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 329 0/*TODO*/, Stream); 330 331 // Emit information about sections and GC, computing how many there are. Also 332 // compute the maximum alignment value. 333 std::map<std::string, unsigned> SectionMap; 334 std::map<std::string, unsigned> GCMap; 335 unsigned MaxAlignment = 0; 336 unsigned MaxGlobalType = 0; 337 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 338 GV != E; ++GV) { 339 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 340 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 341 342 if (!GV->hasSection()) continue; 343 // Give section names unique ID's. 344 unsigned &Entry = SectionMap[GV->getSection()]; 345 if (Entry != 0) continue; 346 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 347 0/*TODO*/, Stream); 348 Entry = SectionMap.size(); 349 } 350 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 351 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 352 if (F->hasSection()) { 353 // Give section names unique ID's. 354 unsigned &Entry = SectionMap[F->getSection()]; 355 if (!Entry) { 356 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 357 0/*TODO*/, Stream); 358 Entry = SectionMap.size(); 359 } 360 } 361 if (F->hasGC()) { 362 // Same for GC names. 363 unsigned &Entry = GCMap[F->getGC()]; 364 if (!Entry) { 365 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 366 0/*TODO*/, Stream); 367 Entry = GCMap.size(); 368 } 369 } 370 } 371 372 // Emit abbrev for globals, now that we know # sections and max alignment. 373 unsigned SimpleGVarAbbrev = 0; 374 if (!M->global_empty()) { 375 // Add an abbrev for common globals with no visibility or thread localness. 376 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 377 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 379 Log2_32_Ceil(MaxGlobalType+1))); 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 383 if (MaxAlignment == 0) // Alignment. 384 Abbv->Add(BitCodeAbbrevOp(0)); 385 else { 386 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 388 Log2_32_Ceil(MaxEncAlignment+1))); 389 } 390 if (SectionMap.empty()) // Section. 391 Abbv->Add(BitCodeAbbrevOp(0)); 392 else 393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 394 Log2_32_Ceil(SectionMap.size()+1))); 395 // Don't bother emitting vis + thread local. 396 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 397 } 398 399 // Emit the global variable information. 400 SmallVector<unsigned, 64> Vals; 401 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 402 GV != E; ++GV) { 403 unsigned AbbrevToUse = 0; 404 405 // GLOBALVAR: [type, isconst, initid, 406 // linkage, alignment, section, visibility, threadlocal] 407 Vals.push_back(VE.getTypeID(GV->getType())); 408 Vals.push_back(GV->isConstant()); 409 Vals.push_back(GV->isDeclaration() ? 0 : 410 (VE.getValueID(GV->getInitializer()) + 1)); 411 Vals.push_back(getEncodedLinkage(GV)); 412 Vals.push_back(Log2_32(GV->getAlignment())+1); 413 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 414 if (GV->isThreadLocal() || 415 GV->getVisibility() != GlobalValue::DefaultVisibility) { 416 Vals.push_back(getEncodedVisibility(GV)); 417 Vals.push_back(GV->isThreadLocal()); 418 } else { 419 AbbrevToUse = SimpleGVarAbbrev; 420 } 421 422 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 423 Vals.clear(); 424 } 425 426 // Emit the function proto information. 427 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 428 // FUNCTION: [type, callingconv, isproto, paramattr, 429 // linkage, alignment, section, visibility, gc] 430 Vals.push_back(VE.getTypeID(F->getType())); 431 Vals.push_back(F->getCallingConv()); 432 Vals.push_back(F->isDeclaration()); 433 Vals.push_back(getEncodedLinkage(F)); 434 Vals.push_back(VE.getAttributeID(F->getAttributes())); 435 Vals.push_back(Log2_32(F->getAlignment())+1); 436 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 437 Vals.push_back(getEncodedVisibility(F)); 438 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 439 440 unsigned AbbrevToUse = 0; 441 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 442 Vals.clear(); 443 } 444 445 446 // Emit the alias information. 447 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 448 AI != E; ++AI) { 449 Vals.push_back(VE.getTypeID(AI->getType())); 450 Vals.push_back(VE.getValueID(AI->getAliasee())); 451 Vals.push_back(getEncodedLinkage(AI)); 452 Vals.push_back(getEncodedVisibility(AI)); 453 unsigned AbbrevToUse = 0; 454 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 455 Vals.clear(); 456 } 457 } 458 459 static uint64_t GetOptimizationFlags(const Value *V) { 460 uint64_t Flags = 0; 461 462 if (const OverflowingBinaryOperator *OBO = 463 dyn_cast<OverflowingBinaryOperator>(V)) { 464 if (OBO->hasNoSignedOverflow()) 465 Flags |= 1 << bitc::OBO_NO_SIGNED_OVERFLOW; 466 if (OBO->hasNoUnsignedOverflow()) 467 Flags |= 1 << bitc::OBO_NO_UNSIGNED_OVERFLOW; 468 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 469 if (Div->isExact()) 470 Flags |= 1 << bitc::SDIV_EXACT; 471 } 472 473 return Flags; 474 } 475 476 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 477 const ValueEnumerator &VE, 478 BitstreamWriter &Stream, bool isGlobal) { 479 if (FirstVal == LastVal) return; 480 481 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 482 483 unsigned AggregateAbbrev = 0; 484 unsigned String8Abbrev = 0; 485 unsigned CString7Abbrev = 0; 486 unsigned CString6Abbrev = 0; 487 unsigned MDString8Abbrev = 0; 488 unsigned MDString6Abbrev = 0; 489 // If this is a constant pool for the module, emit module-specific abbrevs. 490 if (isGlobal) { 491 // Abbrev for CST_CODE_AGGREGATE. 492 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 493 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 496 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 497 498 // Abbrev for CST_CODE_STRING. 499 Abbv = new BitCodeAbbrev(); 500 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 503 String8Abbrev = Stream.EmitAbbrev(Abbv); 504 // Abbrev for CST_CODE_CSTRING. 505 Abbv = new BitCodeAbbrev(); 506 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 509 CString7Abbrev = Stream.EmitAbbrev(Abbv); 510 // Abbrev for CST_CODE_CSTRING. 511 Abbv = new BitCodeAbbrev(); 512 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 515 CString6Abbrev = Stream.EmitAbbrev(Abbv); 516 517 // Abbrev for CST_CODE_MDSTRING. 518 Abbv = new BitCodeAbbrev(); 519 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING)); 520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 522 MDString8Abbrev = Stream.EmitAbbrev(Abbv); 523 // Abbrev for CST_CODE_MDSTRING. 524 Abbv = new BitCodeAbbrev(); 525 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING)); 526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 528 MDString6Abbrev = Stream.EmitAbbrev(Abbv); 529 } 530 531 SmallVector<uint64_t, 64> Record; 532 533 const ValueEnumerator::ValueList &Vals = VE.getValues(); 534 const Type *LastTy = 0; 535 for (unsigned i = FirstVal; i != LastVal; ++i) { 536 const Value *V = Vals[i].first; 537 // If we need to switch types, do so now. 538 if (V->getType() != LastTy) { 539 LastTy = V->getType(); 540 Record.push_back(VE.getTypeID(LastTy)); 541 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 542 CONSTANTS_SETTYPE_ABBREV); 543 Record.clear(); 544 } 545 546 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 547 Record.push_back(unsigned(IA->hasSideEffects())); 548 549 // Add the asm string. 550 const std::string &AsmStr = IA->getAsmString(); 551 Record.push_back(AsmStr.size()); 552 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 553 Record.push_back(AsmStr[i]); 554 555 // Add the constraint string. 556 const std::string &ConstraintStr = IA->getConstraintString(); 557 Record.push_back(ConstraintStr.size()); 558 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 559 Record.push_back(ConstraintStr[i]); 560 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 561 Record.clear(); 562 continue; 563 } 564 const Constant *C = cast<Constant>(V); 565 unsigned Code = -1U; 566 unsigned AbbrevToUse = 0; 567 if (C->isNullValue()) { 568 Code = bitc::CST_CODE_NULL; 569 } else if (isa<UndefValue>(C)) { 570 Code = bitc::CST_CODE_UNDEF; 571 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 572 if (IV->getBitWidth() <= 64) { 573 int64_t V = IV->getSExtValue(); 574 if (V >= 0) 575 Record.push_back(V << 1); 576 else 577 Record.push_back((-V << 1) | 1); 578 Code = bitc::CST_CODE_INTEGER; 579 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 580 } else { // Wide integers, > 64 bits in size. 581 // We have an arbitrary precision integer value to write whose 582 // bit width is > 64. However, in canonical unsigned integer 583 // format it is likely that the high bits are going to be zero. 584 // So, we only write the number of active words. 585 unsigned NWords = IV->getValue().getActiveWords(); 586 const uint64_t *RawWords = IV->getValue().getRawData(); 587 for (unsigned i = 0; i != NWords; ++i) { 588 int64_t V = RawWords[i]; 589 if (V >= 0) 590 Record.push_back(V << 1); 591 else 592 Record.push_back((-V << 1) | 1); 593 } 594 Code = bitc::CST_CODE_WIDE_INTEGER; 595 } 596 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 597 Code = bitc::CST_CODE_FLOAT; 598 const Type *Ty = CFP->getType(); 599 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 600 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 601 } else if (Ty == Type::X86_FP80Ty) { 602 // api needed to prevent premature destruction 603 // bits are not in the same order as a normal i80 APInt, compensate. 604 APInt api = CFP->getValueAPF().bitcastToAPInt(); 605 const uint64_t *p = api.getRawData(); 606 Record.push_back((p[1] << 48) | (p[0] >> 16)); 607 Record.push_back(p[0] & 0xffffLL); 608 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 609 APInt api = CFP->getValueAPF().bitcastToAPInt(); 610 const uint64_t *p = api.getRawData(); 611 Record.push_back(p[0]); 612 Record.push_back(p[1]); 613 } else { 614 assert (0 && "Unknown FP type!"); 615 } 616 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 617 // Emit constant strings specially. 618 unsigned NumOps = C->getNumOperands(); 619 // If this is a null-terminated string, use the denser CSTRING encoding. 620 if (C->getOperand(NumOps-1)->isNullValue()) { 621 Code = bitc::CST_CODE_CSTRING; 622 --NumOps; // Don't encode the null, which isn't allowed by char6. 623 } else { 624 Code = bitc::CST_CODE_STRING; 625 AbbrevToUse = String8Abbrev; 626 } 627 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 628 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 629 for (unsigned i = 0; i != NumOps; ++i) { 630 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 631 Record.push_back(V); 632 isCStr7 &= (V & 128) == 0; 633 if (isCStrChar6) 634 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 635 } 636 637 if (isCStrChar6) 638 AbbrevToUse = CString6Abbrev; 639 else if (isCStr7) 640 AbbrevToUse = CString7Abbrev; 641 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 642 isa<ConstantVector>(V)) { 643 Code = bitc::CST_CODE_AGGREGATE; 644 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 645 Record.push_back(VE.getValueID(C->getOperand(i))); 646 AbbrevToUse = AggregateAbbrev; 647 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 648 switch (CE->getOpcode()) { 649 default: 650 if (Instruction::isCast(CE->getOpcode())) { 651 Code = bitc::CST_CODE_CE_CAST; 652 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 653 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 654 Record.push_back(VE.getValueID(C->getOperand(0))); 655 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 656 } else { 657 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 658 Code = bitc::CST_CODE_CE_BINOP; 659 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 660 Record.push_back(VE.getValueID(C->getOperand(0))); 661 Record.push_back(VE.getValueID(C->getOperand(1))); 662 uint64_t Flags = GetOptimizationFlags(CE); 663 if (Flags != 0) 664 Record.push_back(Flags); 665 } 666 break; 667 case Instruction::GetElementPtr: 668 Code = bitc::CST_CODE_CE_GEP; 669 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 670 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 671 Record.push_back(VE.getValueID(C->getOperand(i))); 672 } 673 break; 674 case Instruction::Select: 675 Code = bitc::CST_CODE_CE_SELECT; 676 Record.push_back(VE.getValueID(C->getOperand(0))); 677 Record.push_back(VE.getValueID(C->getOperand(1))); 678 Record.push_back(VE.getValueID(C->getOperand(2))); 679 break; 680 case Instruction::ExtractElement: 681 Code = bitc::CST_CODE_CE_EXTRACTELT; 682 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 683 Record.push_back(VE.getValueID(C->getOperand(0))); 684 Record.push_back(VE.getValueID(C->getOperand(1))); 685 break; 686 case Instruction::InsertElement: 687 Code = bitc::CST_CODE_CE_INSERTELT; 688 Record.push_back(VE.getValueID(C->getOperand(0))); 689 Record.push_back(VE.getValueID(C->getOperand(1))); 690 Record.push_back(VE.getValueID(C->getOperand(2))); 691 break; 692 case Instruction::ShuffleVector: 693 // If the return type and argument types are the same, this is a 694 // standard shufflevector instruction. If the types are different, 695 // then the shuffle is widening or truncating the input vectors, and 696 // the argument type must also be encoded. 697 if (C->getType() == C->getOperand(0)->getType()) { 698 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 699 } else { 700 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 701 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 702 } 703 Record.push_back(VE.getValueID(C->getOperand(0))); 704 Record.push_back(VE.getValueID(C->getOperand(1))); 705 Record.push_back(VE.getValueID(C->getOperand(2))); 706 break; 707 case Instruction::ICmp: 708 case Instruction::FCmp: 709 Code = bitc::CST_CODE_CE_CMP; 710 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 711 Record.push_back(VE.getValueID(C->getOperand(0))); 712 Record.push_back(VE.getValueID(C->getOperand(1))); 713 Record.push_back(CE->getPredicate()); 714 break; 715 } 716 } else if (const MDString *S = dyn_cast<MDString>(C)) { 717 Code = bitc::CST_CODE_MDSTRING; 718 AbbrevToUse = MDString6Abbrev; 719 for (unsigned i = 0, e = S->size(); i != e; ++i) { 720 char V = S->begin()[i]; 721 Record.push_back(V); 722 723 if (!BitCodeAbbrevOp::isChar6(V)) 724 AbbrevToUse = MDString8Abbrev; 725 } 726 } else if (const MDNode *N = dyn_cast<MDNode>(C)) { 727 Code = bitc::CST_CODE_MDNODE; 728 for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) { 729 if (N->getElement(i)) { 730 Record.push_back(VE.getTypeID(N->getElement(i)->getType())); 731 Record.push_back(VE.getValueID(N->getElement(i))); 732 } else { 733 Record.push_back(VE.getTypeID(Type::VoidTy)); 734 Record.push_back(0); 735 } 736 } 737 } else { 738 llvm_unreachable("Unknown constant!"); 739 } 740 Stream.EmitRecord(Code, Record, AbbrevToUse); 741 Record.clear(); 742 } 743 744 Stream.ExitBlock(); 745 } 746 747 static void WriteModuleConstants(const ValueEnumerator &VE, 748 BitstreamWriter &Stream) { 749 const ValueEnumerator::ValueList &Vals = VE.getValues(); 750 751 // Find the first constant to emit, which is the first non-globalvalue value. 752 // We know globalvalues have been emitted by WriteModuleInfo. 753 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 754 if (!isa<GlobalValue>(Vals[i].first)) { 755 WriteConstants(i, Vals.size(), VE, Stream, true); 756 return; 757 } 758 } 759 } 760 761 /// PushValueAndType - The file has to encode both the value and type id for 762 /// many values, because we need to know what type to create for forward 763 /// references. However, most operands are not forward references, so this type 764 /// field is not needed. 765 /// 766 /// This function adds V's value ID to Vals. If the value ID is higher than the 767 /// instruction ID, then it is a forward reference, and it also includes the 768 /// type ID. 769 static bool PushValueAndType(const Value *V, unsigned InstID, 770 SmallVector<unsigned, 64> &Vals, 771 ValueEnumerator &VE) { 772 unsigned ValID = VE.getValueID(V); 773 Vals.push_back(ValID); 774 if (ValID >= InstID) { 775 Vals.push_back(VE.getTypeID(V->getType())); 776 return true; 777 } 778 return false; 779 } 780 781 /// WriteInstruction - Emit an instruction to the specified stream. 782 static void WriteInstruction(const Instruction &I, unsigned InstID, 783 ValueEnumerator &VE, BitstreamWriter &Stream, 784 SmallVector<unsigned, 64> &Vals) { 785 unsigned Code = 0; 786 unsigned AbbrevToUse = 0; 787 switch (I.getOpcode()) { 788 default: 789 if (Instruction::isCast(I.getOpcode())) { 790 Code = bitc::FUNC_CODE_INST_CAST; 791 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 792 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 793 Vals.push_back(VE.getTypeID(I.getType())); 794 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 795 } else { 796 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 797 Code = bitc::FUNC_CODE_INST_BINOP; 798 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 799 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 800 Vals.push_back(VE.getValueID(I.getOperand(1))); 801 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 802 uint64_t Flags = GetOptimizationFlags(&I); 803 if (Flags != 0) { 804 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 805 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 806 Vals.push_back(Flags); 807 } 808 } 809 break; 810 811 case Instruction::GetElementPtr: 812 Code = bitc::FUNC_CODE_INST_GEP; 813 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 814 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 815 break; 816 case Instruction::ExtractValue: { 817 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 818 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 819 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 820 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 821 Vals.push_back(*i); 822 break; 823 } 824 case Instruction::InsertValue: { 825 Code = bitc::FUNC_CODE_INST_INSERTVAL; 826 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 827 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 828 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 829 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 830 Vals.push_back(*i); 831 break; 832 } 833 case Instruction::Select: 834 Code = bitc::FUNC_CODE_INST_VSELECT; 835 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 836 Vals.push_back(VE.getValueID(I.getOperand(2))); 837 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 838 break; 839 case Instruction::ExtractElement: 840 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 841 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 842 Vals.push_back(VE.getValueID(I.getOperand(1))); 843 break; 844 case Instruction::InsertElement: 845 Code = bitc::FUNC_CODE_INST_INSERTELT; 846 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 847 Vals.push_back(VE.getValueID(I.getOperand(1))); 848 Vals.push_back(VE.getValueID(I.getOperand(2))); 849 break; 850 case Instruction::ShuffleVector: 851 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 852 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 853 Vals.push_back(VE.getValueID(I.getOperand(1))); 854 Vals.push_back(VE.getValueID(I.getOperand(2))); 855 break; 856 case Instruction::ICmp: 857 case Instruction::FCmp: 858 // compare returning Int1Ty or vector of Int1Ty 859 Code = bitc::FUNC_CODE_INST_CMP2; 860 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 861 Vals.push_back(VE.getValueID(I.getOperand(1))); 862 Vals.push_back(cast<CmpInst>(I).getPredicate()); 863 break; 864 865 case Instruction::Ret: 866 { 867 Code = bitc::FUNC_CODE_INST_RET; 868 unsigned NumOperands = I.getNumOperands(); 869 if (NumOperands == 0) 870 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 871 else if (NumOperands == 1) { 872 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 873 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 874 } else { 875 for (unsigned i = 0, e = NumOperands; i != e; ++i) 876 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 877 } 878 } 879 break; 880 case Instruction::Br: 881 { 882 Code = bitc::FUNC_CODE_INST_BR; 883 BranchInst &II(cast<BranchInst>(I)); 884 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 885 if (II.isConditional()) { 886 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 887 Vals.push_back(VE.getValueID(II.getCondition())); 888 } 889 } 890 break; 891 case Instruction::Switch: 892 Code = bitc::FUNC_CODE_INST_SWITCH; 893 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 894 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 895 Vals.push_back(VE.getValueID(I.getOperand(i))); 896 break; 897 case Instruction::Invoke: { 898 const InvokeInst *II = cast<InvokeInst>(&I); 899 const Value *Callee(II->getCalledValue()); 900 const PointerType *PTy = cast<PointerType>(Callee->getType()); 901 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 902 Code = bitc::FUNC_CODE_INST_INVOKE; 903 904 Vals.push_back(VE.getAttributeID(II->getAttributes())); 905 Vals.push_back(II->getCallingConv()); 906 Vals.push_back(VE.getValueID(II->getNormalDest())); 907 Vals.push_back(VE.getValueID(II->getUnwindDest())); 908 PushValueAndType(Callee, InstID, Vals, VE); 909 910 // Emit value #'s for the fixed parameters. 911 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 912 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 913 914 // Emit type/value pairs for varargs params. 915 if (FTy->isVarArg()) { 916 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 917 i != e; ++i) 918 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 919 } 920 break; 921 } 922 case Instruction::Unwind: 923 Code = bitc::FUNC_CODE_INST_UNWIND; 924 break; 925 case Instruction::Unreachable: 926 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 927 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 928 break; 929 930 case Instruction::PHI: 931 Code = bitc::FUNC_CODE_INST_PHI; 932 Vals.push_back(VE.getTypeID(I.getType())); 933 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 934 Vals.push_back(VE.getValueID(I.getOperand(i))); 935 break; 936 937 case Instruction::Malloc: 938 Code = bitc::FUNC_CODE_INST_MALLOC; 939 Vals.push_back(VE.getTypeID(I.getType())); 940 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 941 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 942 break; 943 944 case Instruction::Free: 945 Code = bitc::FUNC_CODE_INST_FREE; 946 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 947 break; 948 949 case Instruction::Alloca: 950 Code = bitc::FUNC_CODE_INST_ALLOCA; 951 Vals.push_back(VE.getTypeID(I.getType())); 952 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 953 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 954 break; 955 956 case Instruction::Load: 957 Code = bitc::FUNC_CODE_INST_LOAD; 958 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 959 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 960 961 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 962 Vals.push_back(cast<LoadInst>(I).isVolatile()); 963 break; 964 case Instruction::Store: 965 Code = bitc::FUNC_CODE_INST_STORE2; 966 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 967 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 968 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 969 Vals.push_back(cast<StoreInst>(I).isVolatile()); 970 break; 971 case Instruction::Call: { 972 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 973 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 974 975 Code = bitc::FUNC_CODE_INST_CALL; 976 977 const CallInst *CI = cast<CallInst>(&I); 978 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 979 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 980 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 981 982 // Emit value #'s for the fixed parameters. 983 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 984 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 985 986 // Emit type/value pairs for varargs params. 987 if (FTy->isVarArg()) { 988 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 989 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 990 i != e; ++i) 991 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 992 } 993 break; 994 } 995 case Instruction::VAArg: 996 Code = bitc::FUNC_CODE_INST_VAARG; 997 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 998 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 999 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1000 break; 1001 } 1002 1003 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1004 Vals.clear(); 1005 } 1006 1007 // Emit names for globals/functions etc. 1008 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1009 const ValueEnumerator &VE, 1010 BitstreamWriter &Stream) { 1011 if (VST.empty()) return; 1012 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1013 1014 // FIXME: Set up the abbrev, we know how many values there are! 1015 // FIXME: We know if the type names can use 7-bit ascii. 1016 SmallVector<unsigned, 64> NameVals; 1017 1018 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1019 SI != SE; ++SI) { 1020 1021 const ValueName &Name = *SI; 1022 1023 // Figure out the encoding to use for the name. 1024 bool is7Bit = true; 1025 bool isChar6 = true; 1026 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1027 C != E; ++C) { 1028 if (isChar6) 1029 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1030 if ((unsigned char)*C & 128) { 1031 is7Bit = false; 1032 break; // don't bother scanning the rest. 1033 } 1034 } 1035 1036 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1037 1038 // VST_ENTRY: [valueid, namechar x N] 1039 // VST_BBENTRY: [bbid, namechar x N] 1040 unsigned Code; 1041 if (isa<BasicBlock>(SI->getValue())) { 1042 Code = bitc::VST_CODE_BBENTRY; 1043 if (isChar6) 1044 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1045 } else { 1046 Code = bitc::VST_CODE_ENTRY; 1047 if (isChar6) 1048 AbbrevToUse = VST_ENTRY_6_ABBREV; 1049 else if (is7Bit) 1050 AbbrevToUse = VST_ENTRY_7_ABBREV; 1051 } 1052 1053 NameVals.push_back(VE.getValueID(SI->getValue())); 1054 for (const char *P = Name.getKeyData(), 1055 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1056 NameVals.push_back((unsigned char)*P); 1057 1058 // Emit the finished record. 1059 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1060 NameVals.clear(); 1061 } 1062 Stream.ExitBlock(); 1063 } 1064 1065 /// WriteFunction - Emit a function body to the module stream. 1066 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1067 BitstreamWriter &Stream) { 1068 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1069 VE.incorporateFunction(F); 1070 1071 SmallVector<unsigned, 64> Vals; 1072 1073 // Emit the number of basic blocks, so the reader can create them ahead of 1074 // time. 1075 Vals.push_back(VE.getBasicBlocks().size()); 1076 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1077 Vals.clear(); 1078 1079 // If there are function-local constants, emit them now. 1080 unsigned CstStart, CstEnd; 1081 VE.getFunctionConstantRange(CstStart, CstEnd); 1082 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1083 1084 // Keep a running idea of what the instruction ID is. 1085 unsigned InstID = CstEnd; 1086 1087 // Finally, emit all the instructions, in order. 1088 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1089 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1090 I != E; ++I) { 1091 WriteInstruction(*I, InstID, VE, Stream, Vals); 1092 if (I->getType() != Type::VoidTy) 1093 ++InstID; 1094 } 1095 1096 // Emit names for all the instructions etc. 1097 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1098 1099 VE.purgeFunction(); 1100 Stream.ExitBlock(); 1101 } 1102 1103 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1104 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1105 const ValueEnumerator &VE, 1106 BitstreamWriter &Stream) { 1107 if (TST.empty()) return; 1108 1109 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1110 1111 // 7-bit fixed width VST_CODE_ENTRY strings. 1112 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1113 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1115 Log2_32_Ceil(VE.getTypes().size()+1))); 1116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1118 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1119 1120 SmallVector<unsigned, 64> NameVals; 1121 1122 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1123 TI != TE; ++TI) { 1124 // TST_ENTRY: [typeid, namechar x N] 1125 NameVals.push_back(VE.getTypeID(TI->second)); 1126 1127 const std::string &Str = TI->first; 1128 bool is7Bit = true; 1129 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1130 NameVals.push_back((unsigned char)Str[i]); 1131 if (Str[i] & 128) 1132 is7Bit = false; 1133 } 1134 1135 // Emit the finished record. 1136 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1137 NameVals.clear(); 1138 } 1139 1140 Stream.ExitBlock(); 1141 } 1142 1143 // Emit blockinfo, which defines the standard abbreviations etc. 1144 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1145 // We only want to emit block info records for blocks that have multiple 1146 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1147 // blocks can defined their abbrevs inline. 1148 Stream.EnterBlockInfoBlock(2); 1149 1150 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1151 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1156 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1157 Abbv) != VST_ENTRY_8_ABBREV) 1158 llvm_unreachable("Unexpected abbrev ordering!"); 1159 } 1160 1161 { // 7-bit fixed width VST_ENTRY strings. 1162 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1163 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1167 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1168 Abbv) != VST_ENTRY_7_ABBREV) 1169 llvm_unreachable("Unexpected abbrev ordering!"); 1170 } 1171 { // 6-bit char6 VST_ENTRY strings. 1172 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1173 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1177 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1178 Abbv) != VST_ENTRY_6_ABBREV) 1179 llvm_unreachable("Unexpected abbrev ordering!"); 1180 } 1181 { // 6-bit char6 VST_BBENTRY strings. 1182 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1183 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1187 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1188 Abbv) != VST_BBENTRY_6_ABBREV) 1189 llvm_unreachable("Unexpected abbrev ordering!"); 1190 } 1191 1192 1193 1194 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1195 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1196 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1198 Log2_32_Ceil(VE.getTypes().size()+1))); 1199 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1200 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1201 llvm_unreachable("Unexpected abbrev ordering!"); 1202 } 1203 1204 { // INTEGER abbrev for CONSTANTS_BLOCK. 1205 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1206 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1208 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1209 Abbv) != CONSTANTS_INTEGER_ABBREV) 1210 llvm_unreachable("Unexpected abbrev ordering!"); 1211 } 1212 1213 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1214 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1215 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1218 Log2_32_Ceil(VE.getTypes().size()+1))); 1219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1220 1221 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1222 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1223 llvm_unreachable("Unexpected abbrev ordering!"); 1224 } 1225 { // NULL abbrev for CONSTANTS_BLOCK. 1226 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1227 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1228 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1229 Abbv) != CONSTANTS_NULL_Abbrev) 1230 llvm_unreachable("Unexpected abbrev ordering!"); 1231 } 1232 1233 // FIXME: This should only use space for first class types! 1234 1235 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1236 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1237 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1241 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1242 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1243 llvm_unreachable("Unexpected abbrev ordering!"); 1244 } 1245 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1246 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1247 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1251 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1252 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1253 llvm_unreachable("Unexpected abbrev ordering!"); 1254 } 1255 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1256 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1257 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1262 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1263 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1264 llvm_unreachable("Unexpected abbrev ordering!"); 1265 } 1266 { // INST_CAST abbrev for FUNCTION_BLOCK. 1267 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1268 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1271 Log2_32_Ceil(VE.getTypes().size()+1))); 1272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1273 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1274 Abbv) != FUNCTION_INST_CAST_ABBREV) 1275 llvm_unreachable("Unexpected abbrev ordering!"); 1276 } 1277 1278 { // INST_RET abbrev for FUNCTION_BLOCK. 1279 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1280 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1281 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1282 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1283 llvm_unreachable("Unexpected abbrev ordering!"); 1284 } 1285 { // INST_RET abbrev for FUNCTION_BLOCK. 1286 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1287 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1289 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1290 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1291 llvm_unreachable("Unexpected abbrev ordering!"); 1292 } 1293 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1294 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1295 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1296 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1297 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1298 llvm_unreachable("Unexpected abbrev ordering!"); 1299 } 1300 1301 Stream.ExitBlock(); 1302 } 1303 1304 1305 /// WriteModule - Emit the specified module to the bitstream. 1306 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1307 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1308 1309 // Emit the version number if it is non-zero. 1310 if (CurVersion) { 1311 SmallVector<unsigned, 1> Vals; 1312 Vals.push_back(CurVersion); 1313 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1314 } 1315 1316 // Analyze the module, enumerating globals, functions, etc. 1317 ValueEnumerator VE(M); 1318 1319 // Emit blockinfo, which defines the standard abbreviations etc. 1320 WriteBlockInfo(VE, Stream); 1321 1322 // Emit information about parameter attributes. 1323 WriteAttributeTable(VE, Stream); 1324 1325 // Emit information describing all of the types in the module. 1326 WriteTypeTable(VE, Stream); 1327 1328 // Emit top-level description of module, including target triple, inline asm, 1329 // descriptors for global variables, and function prototype info. 1330 WriteModuleInfo(M, VE, Stream); 1331 1332 // Emit constants. 1333 WriteModuleConstants(VE, Stream); 1334 1335 // Emit function bodies. 1336 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1337 if (!I->isDeclaration()) 1338 WriteFunction(*I, VE, Stream); 1339 1340 // Emit the type symbol table information. 1341 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1342 1343 // Emit names for globals/functions etc. 1344 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1345 1346 Stream.ExitBlock(); 1347 } 1348 1349 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1350 /// header and trailer to make it compatible with the system archiver. To do 1351 /// this we emit the following header, and then emit a trailer that pads the 1352 /// file out to be a multiple of 16 bytes. 1353 /// 1354 /// struct bc_header { 1355 /// uint32_t Magic; // 0x0B17C0DE 1356 /// uint32_t Version; // Version, currently always 0. 1357 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1358 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1359 /// uint32_t CPUType; // CPU specifier. 1360 /// ... potentially more later ... 1361 /// }; 1362 enum { 1363 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1364 DarwinBCHeaderSize = 5*4 1365 }; 1366 1367 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1368 const std::string &TT) { 1369 unsigned CPUType = ~0U; 1370 1371 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1372 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1373 // specific constants here because they are implicitly part of the Darwin ABI. 1374 enum { 1375 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1376 DARWIN_CPU_TYPE_X86 = 7, 1377 DARWIN_CPU_TYPE_POWERPC = 18 1378 }; 1379 1380 if (TT.find("x86_64-") == 0) 1381 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1382 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1383 TT[4] == '-' && TT[1] - '3' < 6) 1384 CPUType = DARWIN_CPU_TYPE_X86; 1385 else if (TT.find("powerpc-") == 0) 1386 CPUType = DARWIN_CPU_TYPE_POWERPC; 1387 else if (TT.find("powerpc64-") == 0) 1388 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1389 1390 // Traditional Bitcode starts after header. 1391 unsigned BCOffset = DarwinBCHeaderSize; 1392 1393 Stream.Emit(0x0B17C0DE, 32); 1394 Stream.Emit(0 , 32); // Version. 1395 Stream.Emit(BCOffset , 32); 1396 Stream.Emit(0 , 32); // Filled in later. 1397 Stream.Emit(CPUType , 32); 1398 } 1399 1400 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1401 /// finalize the header. 1402 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1403 // Update the size field in the header. 1404 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1405 1406 // If the file is not a multiple of 16 bytes, insert dummy padding. 1407 while (BufferSize & 15) { 1408 Stream.Emit(0, 8); 1409 ++BufferSize; 1410 } 1411 } 1412 1413 1414 /// WriteBitcodeToFile - Write the specified module to the specified output 1415 /// stream. 1416 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1417 raw_os_ostream RawOut(Out); 1418 // If writing to stdout, set binary mode. 1419 if (llvm::cout == Out) 1420 sys::Program::ChangeStdoutToBinary(); 1421 WriteBitcodeToFile(M, RawOut); 1422 } 1423 1424 /// WriteBitcodeToFile - Write the specified module to the specified output 1425 /// stream. 1426 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1427 std::vector<unsigned char> Buffer; 1428 BitstreamWriter Stream(Buffer); 1429 1430 Buffer.reserve(256*1024); 1431 1432 WriteBitcodeToStream( M, Stream ); 1433 1434 // If writing to stdout, set binary mode. 1435 if (&llvm::outs() == &Out) 1436 sys::Program::ChangeStdoutToBinary(); 1437 1438 // Write the generated bitstream to "Out". 1439 Out.write((char*)&Buffer.front(), Buffer.size()); 1440 1441 // Make sure it hits disk now. 1442 Out.flush(); 1443 } 1444 1445 /// WriteBitcodeToStream - Write the specified module to the specified output 1446 /// stream. 1447 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1448 // If this is darwin, emit a file header and trailer if needed. 1449 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1450 if (isDarwin) 1451 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1452 1453 // Emit the file header. 1454 Stream.Emit((unsigned)'B', 8); 1455 Stream.Emit((unsigned)'C', 8); 1456 Stream.Emit(0x0, 4); 1457 Stream.Emit(0xC, 4); 1458 Stream.Emit(0xE, 4); 1459 Stream.Emit(0xD, 4); 1460 1461 // Emit the module. 1462 WriteModule(M, Stream); 1463 1464 if (isDarwin) 1465 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1466 } 1467