xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 0ebd69614c320fb5857c29aca09e546c584cd66b)
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/MDNode.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/ValueSymbolTable.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Streams.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/System/Program.h"
32 using namespace llvm;
33 
34 /// These are manifest constants used by the bitcode writer. They do not need to
35 /// be kept in sync with the reader, but need to be consistent within this file.
36 enum {
37   CurVersion = 0,
38 
39   // VALUE_SYMTAB_BLOCK abbrev id's.
40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   VST_ENTRY_7_ABBREV,
42   VST_ENTRY_6_ABBREV,
43   VST_BBENTRY_6_ABBREV,
44 
45   // CONSTANTS_BLOCK abbrev id's.
46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   CONSTANTS_INTEGER_ABBREV,
48   CONSTANTS_CE_CAST_Abbrev,
49   CONSTANTS_NULL_Abbrev,
50 
51   // FUNCTION_BLOCK abbrev id's.
52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53   FUNCTION_INST_BINOP_ABBREV,
54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
55   FUNCTION_INST_CAST_ABBREV,
56   FUNCTION_INST_RET_VOID_ABBREV,
57   FUNCTION_INST_RET_VAL_ABBREV,
58   FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60 
61 
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   }
78 }
79 
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81   switch (Opcode) {
82   default: llvm_unreachable("Unknown binary instruction!");
83   case Instruction::Add:
84   case Instruction::FAdd: return bitc::BINOP_ADD;
85   case Instruction::Sub:
86   case Instruction::FSub: return bitc::BINOP_SUB;
87   case Instruction::Mul:
88   case Instruction::FMul: return bitc::BINOP_MUL;
89   case Instruction::UDiv: return bitc::BINOP_UDIV;
90   case Instruction::FDiv:
91   case Instruction::SDiv: return bitc::BINOP_SDIV;
92   case Instruction::URem: return bitc::BINOP_UREM;
93   case Instruction::FRem:
94   case Instruction::SRem: return bitc::BINOP_SREM;
95   case Instruction::Shl:  return bitc::BINOP_SHL;
96   case Instruction::LShr: return bitc::BINOP_LSHR;
97   case Instruction::AShr: return bitc::BINOP_ASHR;
98   case Instruction::And:  return bitc::BINOP_AND;
99   case Instruction::Or:   return bitc::BINOP_OR;
100   case Instruction::Xor:  return bitc::BINOP_XOR;
101   }
102 }
103 
104 
105 
106 static void WriteStringRecord(unsigned Code, const std::string &Str,
107                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
108   SmallVector<unsigned, 64> Vals;
109 
110   // Code: [strchar x N]
111   for (unsigned i = 0, e = Str.size(); i != e; ++i)
112     Vals.push_back(Str[i]);
113 
114   // Emit the finished record.
115   Stream.EmitRecord(Code, Vals, AbbrevToUse);
116 }
117 
118 // Emit information about parameter attributes.
119 static void WriteAttributeTable(const ValueEnumerator &VE,
120                                 BitstreamWriter &Stream) {
121   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
122   if (Attrs.empty()) return;
123 
124   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
125 
126   SmallVector<uint64_t, 64> Record;
127   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
128     const AttrListPtr &A = Attrs[i];
129     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
130       const AttributeWithIndex &PAWI = A.getSlot(i);
131       Record.push_back(PAWI.Index);
132 
133       // FIXME: remove in LLVM 3.0
134       // Store the alignment in the bitcode as a 16-bit raw value instead of a
135       // 5-bit log2 encoded value. Shift the bits above the alignment up by
136       // 11 bits.
137       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
138       if (PAWI.Attrs & Attribute::Alignment)
139         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
140       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
141 
142       Record.push_back(FauxAttr);
143     }
144 
145     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
146     Record.clear();
147   }
148 
149   Stream.ExitBlock();
150 }
151 
152 /// WriteTypeTable - Write out the type table for a module.
153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
154   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
155 
156   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
157   SmallVector<uint64_t, 64> TypeVals;
158 
159   // Abbrev for TYPE_CODE_POINTER.
160   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
161   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                             Log2_32_Ceil(VE.getTypes().size()+1)));
164   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
165   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
166 
167   // Abbrev for TYPE_CODE_FUNCTION.
168   Abbv = new BitCodeAbbrev();
169   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
171   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
174                             Log2_32_Ceil(VE.getTypes().size()+1)));
175   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
176 
177   // Abbrev for TYPE_CODE_STRUCT.
178   Abbv = new BitCodeAbbrev();
179   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
181   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
183                             Log2_32_Ceil(VE.getTypes().size()+1)));
184   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
185 
186   // Abbrev for TYPE_CODE_ARRAY.
187   Abbv = new BitCodeAbbrev();
188   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
189   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
190   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
191                             Log2_32_Ceil(VE.getTypes().size()+1)));
192   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
193 
194   // Emit an entry count so the reader can reserve space.
195   TypeVals.push_back(TypeList.size());
196   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
197   TypeVals.clear();
198 
199   // Loop over all of the types, emitting each in turn.
200   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
201     const Type *T = TypeList[i].first;
202     int AbbrevToUse = 0;
203     unsigned Code = 0;
204 
205     switch (T->getTypeID()) {
206     default: llvm_unreachable("Unknown type!");
207     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
208     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
209     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
210     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
211     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
212     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
213     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
214     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
215     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
216     case Type::IntegerTyID:
217       // INTEGER: [width]
218       Code = bitc::TYPE_CODE_INTEGER;
219       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
220       break;
221     case Type::PointerTyID: {
222       const PointerType *PTy = cast<PointerType>(T);
223       // POINTER: [pointee type, address space]
224       Code = bitc::TYPE_CODE_POINTER;
225       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
226       unsigned AddressSpace = PTy->getAddressSpace();
227       TypeVals.push_back(AddressSpace);
228       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
229       break;
230     }
231     case Type::FunctionTyID: {
232       const FunctionType *FT = cast<FunctionType>(T);
233       // FUNCTION: [isvararg, attrid, retty, paramty x N]
234       Code = bitc::TYPE_CODE_FUNCTION;
235       TypeVals.push_back(FT->isVarArg());
236       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
237       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
238       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
239         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
240       AbbrevToUse = FunctionAbbrev;
241       break;
242     }
243     case Type::StructTyID: {
244       const StructType *ST = cast<StructType>(T);
245       // STRUCT: [ispacked, eltty x N]
246       Code = bitc::TYPE_CODE_STRUCT;
247       TypeVals.push_back(ST->isPacked());
248       // Output all of the element types.
249       for (StructType::element_iterator I = ST->element_begin(),
250            E = ST->element_end(); I != E; ++I)
251         TypeVals.push_back(VE.getTypeID(*I));
252       AbbrevToUse = StructAbbrev;
253       break;
254     }
255     case Type::ArrayTyID: {
256       const ArrayType *AT = cast<ArrayType>(T);
257       // ARRAY: [numelts, eltty]
258       Code = bitc::TYPE_CODE_ARRAY;
259       TypeVals.push_back(AT->getNumElements());
260       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
261       AbbrevToUse = ArrayAbbrev;
262       break;
263     }
264     case Type::VectorTyID: {
265       const VectorType *VT = cast<VectorType>(T);
266       // VECTOR [numelts, eltty]
267       Code = bitc::TYPE_CODE_VECTOR;
268       TypeVals.push_back(VT->getNumElements());
269       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
270       break;
271     }
272     }
273 
274     // Emit the finished record.
275     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
276     TypeVals.clear();
277   }
278 
279   Stream.ExitBlock();
280 }
281 
282 static unsigned getEncodedLinkage(const GlobalValue *GV) {
283   switch (GV->getLinkage()) {
284   default: llvm_unreachable("Invalid linkage!");
285   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
286   case GlobalValue::ExternalLinkage:            return 0;
287   case GlobalValue::WeakAnyLinkage:             return 1;
288   case GlobalValue::AppendingLinkage:           return 2;
289   case GlobalValue::InternalLinkage:            return 3;
290   case GlobalValue::LinkOnceAnyLinkage:         return 4;
291   case GlobalValue::DLLImportLinkage:           return 5;
292   case GlobalValue::DLLExportLinkage:           return 6;
293   case GlobalValue::ExternalWeakLinkage:        return 7;
294   case GlobalValue::CommonLinkage:              return 8;
295   case GlobalValue::PrivateLinkage:             return 9;
296   case GlobalValue::WeakODRLinkage:             return 10;
297   case GlobalValue::LinkOnceODRLinkage:         return 11;
298   case GlobalValue::AvailableExternallyLinkage: return 12;
299   case GlobalValue::LinkerPrivateLinkage:       return 13;
300   }
301 }
302 
303 static unsigned getEncodedVisibility(const GlobalValue *GV) {
304   switch (GV->getVisibility()) {
305   default: llvm_unreachable("Invalid visibility!");
306   case GlobalValue::DefaultVisibility:   return 0;
307   case GlobalValue::HiddenVisibility:    return 1;
308   case GlobalValue::ProtectedVisibility: return 2;
309   }
310 }
311 
312 // Emit top-level description of module, including target triple, inline asm,
313 // descriptors for global variables, and function prototype info.
314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
315                             BitstreamWriter &Stream) {
316   // Emit the list of dependent libraries for the Module.
317   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
318     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
319 
320   // Emit various pieces of data attached to a module.
321   if (!M->getTargetTriple().empty())
322     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
323                       0/*TODO*/, Stream);
324   if (!M->getDataLayout().empty())
325     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
326                       0/*TODO*/, Stream);
327   if (!M->getModuleInlineAsm().empty())
328     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
329                       0/*TODO*/, Stream);
330 
331   // Emit information about sections and GC, computing how many there are. Also
332   // compute the maximum alignment value.
333   std::map<std::string, unsigned> SectionMap;
334   std::map<std::string, unsigned> GCMap;
335   unsigned MaxAlignment = 0;
336   unsigned MaxGlobalType = 0;
337   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
338        GV != E; ++GV) {
339     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
340     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
341 
342     if (!GV->hasSection()) continue;
343     // Give section names unique ID's.
344     unsigned &Entry = SectionMap[GV->getSection()];
345     if (Entry != 0) continue;
346     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
347                       0/*TODO*/, Stream);
348     Entry = SectionMap.size();
349   }
350   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
351     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
352     if (F->hasSection()) {
353       // Give section names unique ID's.
354       unsigned &Entry = SectionMap[F->getSection()];
355       if (!Entry) {
356         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
357                           0/*TODO*/, Stream);
358         Entry = SectionMap.size();
359       }
360     }
361     if (F->hasGC()) {
362       // Same for GC names.
363       unsigned &Entry = GCMap[F->getGC()];
364       if (!Entry) {
365         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
366                           0/*TODO*/, Stream);
367         Entry = GCMap.size();
368       }
369     }
370   }
371 
372   // Emit abbrev for globals, now that we know # sections and max alignment.
373   unsigned SimpleGVarAbbrev = 0;
374   if (!M->global_empty()) {
375     // Add an abbrev for common globals with no visibility or thread localness.
376     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
377     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
379                               Log2_32_Ceil(MaxGlobalType+1)));
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
383     if (MaxAlignment == 0)                                      // Alignment.
384       Abbv->Add(BitCodeAbbrevOp(0));
385     else {
386       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
387       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
388                                Log2_32_Ceil(MaxEncAlignment+1)));
389     }
390     if (SectionMap.empty())                                    // Section.
391       Abbv->Add(BitCodeAbbrevOp(0));
392     else
393       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
394                                Log2_32_Ceil(SectionMap.size()+1)));
395     // Don't bother emitting vis + thread local.
396     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
397   }
398 
399   // Emit the global variable information.
400   SmallVector<unsigned, 64> Vals;
401   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
402        GV != E; ++GV) {
403     unsigned AbbrevToUse = 0;
404 
405     // GLOBALVAR: [type, isconst, initid,
406     //             linkage, alignment, section, visibility, threadlocal]
407     Vals.push_back(VE.getTypeID(GV->getType()));
408     Vals.push_back(GV->isConstant());
409     Vals.push_back(GV->isDeclaration() ? 0 :
410                    (VE.getValueID(GV->getInitializer()) + 1));
411     Vals.push_back(getEncodedLinkage(GV));
412     Vals.push_back(Log2_32(GV->getAlignment())+1);
413     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
414     if (GV->isThreadLocal() ||
415         GV->getVisibility() != GlobalValue::DefaultVisibility) {
416       Vals.push_back(getEncodedVisibility(GV));
417       Vals.push_back(GV->isThreadLocal());
418     } else {
419       AbbrevToUse = SimpleGVarAbbrev;
420     }
421 
422     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
423     Vals.clear();
424   }
425 
426   // Emit the function proto information.
427   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
428     // FUNCTION:  [type, callingconv, isproto, paramattr,
429     //             linkage, alignment, section, visibility, gc]
430     Vals.push_back(VE.getTypeID(F->getType()));
431     Vals.push_back(F->getCallingConv());
432     Vals.push_back(F->isDeclaration());
433     Vals.push_back(getEncodedLinkage(F));
434     Vals.push_back(VE.getAttributeID(F->getAttributes()));
435     Vals.push_back(Log2_32(F->getAlignment())+1);
436     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
437     Vals.push_back(getEncodedVisibility(F));
438     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
439 
440     unsigned AbbrevToUse = 0;
441     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
442     Vals.clear();
443   }
444 
445 
446   // Emit the alias information.
447   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
448        AI != E; ++AI) {
449     Vals.push_back(VE.getTypeID(AI->getType()));
450     Vals.push_back(VE.getValueID(AI->getAliasee()));
451     Vals.push_back(getEncodedLinkage(AI));
452     Vals.push_back(getEncodedVisibility(AI));
453     unsigned AbbrevToUse = 0;
454     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
455     Vals.clear();
456   }
457 }
458 
459 static uint64_t GetOptimizationFlags(const Value *V) {
460   uint64_t Flags = 0;
461 
462   if (const OverflowingBinaryOperator *OBO =
463         dyn_cast<OverflowingBinaryOperator>(V)) {
464     if (OBO->hasNoSignedOverflow())
465       Flags |= 1 << bitc::OBO_NO_SIGNED_OVERFLOW;
466     if (OBO->hasNoUnsignedOverflow())
467       Flags |= 1 << bitc::OBO_NO_UNSIGNED_OVERFLOW;
468   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
469     if (Div->isExact())
470       Flags |= 1 << bitc::SDIV_EXACT;
471   }
472 
473   return Flags;
474 }
475 
476 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
477                            const ValueEnumerator &VE,
478                            BitstreamWriter &Stream, bool isGlobal) {
479   if (FirstVal == LastVal) return;
480 
481   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
482 
483   unsigned AggregateAbbrev = 0;
484   unsigned String8Abbrev = 0;
485   unsigned CString7Abbrev = 0;
486   unsigned CString6Abbrev = 0;
487   unsigned MDString8Abbrev = 0;
488   unsigned MDString6Abbrev = 0;
489   // If this is a constant pool for the module, emit module-specific abbrevs.
490   if (isGlobal) {
491     // Abbrev for CST_CODE_AGGREGATE.
492     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
493     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
494     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
495     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
496     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
497 
498     // Abbrev for CST_CODE_STRING.
499     Abbv = new BitCodeAbbrev();
500     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
501     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
502     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
503     String8Abbrev = Stream.EmitAbbrev(Abbv);
504     // Abbrev for CST_CODE_CSTRING.
505     Abbv = new BitCodeAbbrev();
506     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
507     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
508     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
509     CString7Abbrev = Stream.EmitAbbrev(Abbv);
510     // Abbrev for CST_CODE_CSTRING.
511     Abbv = new BitCodeAbbrev();
512     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
513     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
514     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
515     CString6Abbrev = Stream.EmitAbbrev(Abbv);
516 
517     // Abbrev for CST_CODE_MDSTRING.
518     Abbv = new BitCodeAbbrev();
519     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
520     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
521     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
522     MDString8Abbrev = Stream.EmitAbbrev(Abbv);
523     // Abbrev for CST_CODE_MDSTRING.
524     Abbv = new BitCodeAbbrev();
525     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
526     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
527     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
528     MDString6Abbrev = Stream.EmitAbbrev(Abbv);
529   }
530 
531   SmallVector<uint64_t, 64> Record;
532 
533   const ValueEnumerator::ValueList &Vals = VE.getValues();
534   const Type *LastTy = 0;
535   for (unsigned i = FirstVal; i != LastVal; ++i) {
536     const Value *V = Vals[i].first;
537     // If we need to switch types, do so now.
538     if (V->getType() != LastTy) {
539       LastTy = V->getType();
540       Record.push_back(VE.getTypeID(LastTy));
541       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
542                         CONSTANTS_SETTYPE_ABBREV);
543       Record.clear();
544     }
545 
546     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
547       Record.push_back(unsigned(IA->hasSideEffects()));
548 
549       // Add the asm string.
550       const std::string &AsmStr = IA->getAsmString();
551       Record.push_back(AsmStr.size());
552       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
553         Record.push_back(AsmStr[i]);
554 
555       // Add the constraint string.
556       const std::string &ConstraintStr = IA->getConstraintString();
557       Record.push_back(ConstraintStr.size());
558       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
559         Record.push_back(ConstraintStr[i]);
560       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
561       Record.clear();
562       continue;
563     }
564     const Constant *C = cast<Constant>(V);
565     unsigned Code = -1U;
566     unsigned AbbrevToUse = 0;
567     if (C->isNullValue()) {
568       Code = bitc::CST_CODE_NULL;
569     } else if (isa<UndefValue>(C)) {
570       Code = bitc::CST_CODE_UNDEF;
571     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
572       if (IV->getBitWidth() <= 64) {
573         int64_t V = IV->getSExtValue();
574         if (V >= 0)
575           Record.push_back(V << 1);
576         else
577           Record.push_back((-V << 1) | 1);
578         Code = bitc::CST_CODE_INTEGER;
579         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
580       } else {                             // Wide integers, > 64 bits in size.
581         // We have an arbitrary precision integer value to write whose
582         // bit width is > 64. However, in canonical unsigned integer
583         // format it is likely that the high bits are going to be zero.
584         // So, we only write the number of active words.
585         unsigned NWords = IV->getValue().getActiveWords();
586         const uint64_t *RawWords = IV->getValue().getRawData();
587         for (unsigned i = 0; i != NWords; ++i) {
588           int64_t V = RawWords[i];
589           if (V >= 0)
590             Record.push_back(V << 1);
591           else
592             Record.push_back((-V << 1) | 1);
593         }
594         Code = bitc::CST_CODE_WIDE_INTEGER;
595       }
596     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
597       Code = bitc::CST_CODE_FLOAT;
598       const Type *Ty = CFP->getType();
599       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
600         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
601       } else if (Ty == Type::X86_FP80Ty) {
602         // api needed to prevent premature destruction
603         // bits are not in the same order as a normal i80 APInt, compensate.
604         APInt api = CFP->getValueAPF().bitcastToAPInt();
605         const uint64_t *p = api.getRawData();
606         Record.push_back((p[1] << 48) | (p[0] >> 16));
607         Record.push_back(p[0] & 0xffffLL);
608       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
609         APInt api = CFP->getValueAPF().bitcastToAPInt();
610         const uint64_t *p = api.getRawData();
611         Record.push_back(p[0]);
612         Record.push_back(p[1]);
613       } else {
614         assert (0 && "Unknown FP type!");
615       }
616     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
617       // Emit constant strings specially.
618       unsigned NumOps = C->getNumOperands();
619       // If this is a null-terminated string, use the denser CSTRING encoding.
620       if (C->getOperand(NumOps-1)->isNullValue()) {
621         Code = bitc::CST_CODE_CSTRING;
622         --NumOps;  // Don't encode the null, which isn't allowed by char6.
623       } else {
624         Code = bitc::CST_CODE_STRING;
625         AbbrevToUse = String8Abbrev;
626       }
627       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
628       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
629       for (unsigned i = 0; i != NumOps; ++i) {
630         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
631         Record.push_back(V);
632         isCStr7 &= (V & 128) == 0;
633         if (isCStrChar6)
634           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
635       }
636 
637       if (isCStrChar6)
638         AbbrevToUse = CString6Abbrev;
639       else if (isCStr7)
640         AbbrevToUse = CString7Abbrev;
641     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
642                isa<ConstantVector>(V)) {
643       Code = bitc::CST_CODE_AGGREGATE;
644       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
645         Record.push_back(VE.getValueID(C->getOperand(i)));
646       AbbrevToUse = AggregateAbbrev;
647     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
648       switch (CE->getOpcode()) {
649       default:
650         if (Instruction::isCast(CE->getOpcode())) {
651           Code = bitc::CST_CODE_CE_CAST;
652           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
653           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
654           Record.push_back(VE.getValueID(C->getOperand(0)));
655           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
656         } else {
657           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
658           Code = bitc::CST_CODE_CE_BINOP;
659           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
660           Record.push_back(VE.getValueID(C->getOperand(0)));
661           Record.push_back(VE.getValueID(C->getOperand(1)));
662           uint64_t Flags = GetOptimizationFlags(CE);
663           if (Flags != 0)
664             Record.push_back(Flags);
665         }
666         break;
667       case Instruction::GetElementPtr:
668         Code = bitc::CST_CODE_CE_GEP;
669         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
670           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
671           Record.push_back(VE.getValueID(C->getOperand(i)));
672         }
673         break;
674       case Instruction::Select:
675         Code = bitc::CST_CODE_CE_SELECT;
676         Record.push_back(VE.getValueID(C->getOperand(0)));
677         Record.push_back(VE.getValueID(C->getOperand(1)));
678         Record.push_back(VE.getValueID(C->getOperand(2)));
679         break;
680       case Instruction::ExtractElement:
681         Code = bitc::CST_CODE_CE_EXTRACTELT;
682         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
683         Record.push_back(VE.getValueID(C->getOperand(0)));
684         Record.push_back(VE.getValueID(C->getOperand(1)));
685         break;
686       case Instruction::InsertElement:
687         Code = bitc::CST_CODE_CE_INSERTELT;
688         Record.push_back(VE.getValueID(C->getOperand(0)));
689         Record.push_back(VE.getValueID(C->getOperand(1)));
690         Record.push_back(VE.getValueID(C->getOperand(2)));
691         break;
692       case Instruction::ShuffleVector:
693         // If the return type and argument types are the same, this is a
694         // standard shufflevector instruction.  If the types are different,
695         // then the shuffle is widening or truncating the input vectors, and
696         // the argument type must also be encoded.
697         if (C->getType() == C->getOperand(0)->getType()) {
698           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
699         } else {
700           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
701           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
702         }
703         Record.push_back(VE.getValueID(C->getOperand(0)));
704         Record.push_back(VE.getValueID(C->getOperand(1)));
705         Record.push_back(VE.getValueID(C->getOperand(2)));
706         break;
707       case Instruction::ICmp:
708       case Instruction::FCmp:
709         Code = bitc::CST_CODE_CE_CMP;
710         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
711         Record.push_back(VE.getValueID(C->getOperand(0)));
712         Record.push_back(VE.getValueID(C->getOperand(1)));
713         Record.push_back(CE->getPredicate());
714         break;
715       }
716     } else if (const MDString *S = dyn_cast<MDString>(C)) {
717       Code = bitc::CST_CODE_MDSTRING;
718       AbbrevToUse = MDString6Abbrev;
719       for (unsigned i = 0, e = S->size(); i != e; ++i) {
720         char V = S->begin()[i];
721         Record.push_back(V);
722 
723         if (!BitCodeAbbrevOp::isChar6(V))
724           AbbrevToUse = MDString8Abbrev;
725       }
726     } else if (const MDNode *N = dyn_cast<MDNode>(C)) {
727       Code = bitc::CST_CODE_MDNODE;
728       for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
729         if (N->getElement(i)) {
730           Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
731           Record.push_back(VE.getValueID(N->getElement(i)));
732         } else {
733           Record.push_back(VE.getTypeID(Type::VoidTy));
734           Record.push_back(0);
735         }
736       }
737     } else {
738       llvm_unreachable("Unknown constant!");
739     }
740     Stream.EmitRecord(Code, Record, AbbrevToUse);
741     Record.clear();
742   }
743 
744   Stream.ExitBlock();
745 }
746 
747 static void WriteModuleConstants(const ValueEnumerator &VE,
748                                  BitstreamWriter &Stream) {
749   const ValueEnumerator::ValueList &Vals = VE.getValues();
750 
751   // Find the first constant to emit, which is the first non-globalvalue value.
752   // We know globalvalues have been emitted by WriteModuleInfo.
753   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
754     if (!isa<GlobalValue>(Vals[i].first)) {
755       WriteConstants(i, Vals.size(), VE, Stream, true);
756       return;
757     }
758   }
759 }
760 
761 /// PushValueAndType - The file has to encode both the value and type id for
762 /// many values, because we need to know what type to create for forward
763 /// references.  However, most operands are not forward references, so this type
764 /// field is not needed.
765 ///
766 /// This function adds V's value ID to Vals.  If the value ID is higher than the
767 /// instruction ID, then it is a forward reference, and it also includes the
768 /// type ID.
769 static bool PushValueAndType(const Value *V, unsigned InstID,
770                              SmallVector<unsigned, 64> &Vals,
771                              ValueEnumerator &VE) {
772   unsigned ValID = VE.getValueID(V);
773   Vals.push_back(ValID);
774   if (ValID >= InstID) {
775     Vals.push_back(VE.getTypeID(V->getType()));
776     return true;
777   }
778   return false;
779 }
780 
781 /// WriteInstruction - Emit an instruction to the specified stream.
782 static void WriteInstruction(const Instruction &I, unsigned InstID,
783                              ValueEnumerator &VE, BitstreamWriter &Stream,
784                              SmallVector<unsigned, 64> &Vals) {
785   unsigned Code = 0;
786   unsigned AbbrevToUse = 0;
787   switch (I.getOpcode()) {
788   default:
789     if (Instruction::isCast(I.getOpcode())) {
790       Code = bitc::FUNC_CODE_INST_CAST;
791       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
792         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
793       Vals.push_back(VE.getTypeID(I.getType()));
794       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
795     } else {
796       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
797       Code = bitc::FUNC_CODE_INST_BINOP;
798       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
799         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
800       Vals.push_back(VE.getValueID(I.getOperand(1)));
801       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
802       uint64_t Flags = GetOptimizationFlags(&I);
803       if (Flags != 0) {
804         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
805           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
806         Vals.push_back(Flags);
807       }
808     }
809     break;
810 
811   case Instruction::GetElementPtr:
812     Code = bitc::FUNC_CODE_INST_GEP;
813     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
814       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
815     break;
816   case Instruction::ExtractValue: {
817     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
818     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
819     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
820     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
821       Vals.push_back(*i);
822     break;
823   }
824   case Instruction::InsertValue: {
825     Code = bitc::FUNC_CODE_INST_INSERTVAL;
826     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
827     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
828     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
829     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
830       Vals.push_back(*i);
831     break;
832   }
833   case Instruction::Select:
834     Code = bitc::FUNC_CODE_INST_VSELECT;
835     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
836     Vals.push_back(VE.getValueID(I.getOperand(2)));
837     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
838     break;
839   case Instruction::ExtractElement:
840     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
841     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
842     Vals.push_back(VE.getValueID(I.getOperand(1)));
843     break;
844   case Instruction::InsertElement:
845     Code = bitc::FUNC_CODE_INST_INSERTELT;
846     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
847     Vals.push_back(VE.getValueID(I.getOperand(1)));
848     Vals.push_back(VE.getValueID(I.getOperand(2)));
849     break;
850   case Instruction::ShuffleVector:
851     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
852     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
853     Vals.push_back(VE.getValueID(I.getOperand(1)));
854     Vals.push_back(VE.getValueID(I.getOperand(2)));
855     break;
856   case Instruction::ICmp:
857   case Instruction::FCmp:
858     // compare returning Int1Ty or vector of Int1Ty
859     Code = bitc::FUNC_CODE_INST_CMP2;
860     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
861     Vals.push_back(VE.getValueID(I.getOperand(1)));
862     Vals.push_back(cast<CmpInst>(I).getPredicate());
863     break;
864 
865   case Instruction::Ret:
866     {
867       Code = bitc::FUNC_CODE_INST_RET;
868       unsigned NumOperands = I.getNumOperands();
869       if (NumOperands == 0)
870         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
871       else if (NumOperands == 1) {
872         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
873           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
874       } else {
875         for (unsigned i = 0, e = NumOperands; i != e; ++i)
876           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
877       }
878     }
879     break;
880   case Instruction::Br:
881     {
882       Code = bitc::FUNC_CODE_INST_BR;
883       BranchInst &II(cast<BranchInst>(I));
884       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
885       if (II.isConditional()) {
886         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
887         Vals.push_back(VE.getValueID(II.getCondition()));
888       }
889     }
890     break;
891   case Instruction::Switch:
892     Code = bitc::FUNC_CODE_INST_SWITCH;
893     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
894     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
895       Vals.push_back(VE.getValueID(I.getOperand(i)));
896     break;
897   case Instruction::Invoke: {
898     const InvokeInst *II = cast<InvokeInst>(&I);
899     const Value *Callee(II->getCalledValue());
900     const PointerType *PTy = cast<PointerType>(Callee->getType());
901     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
902     Code = bitc::FUNC_CODE_INST_INVOKE;
903 
904     Vals.push_back(VE.getAttributeID(II->getAttributes()));
905     Vals.push_back(II->getCallingConv());
906     Vals.push_back(VE.getValueID(II->getNormalDest()));
907     Vals.push_back(VE.getValueID(II->getUnwindDest()));
908     PushValueAndType(Callee, InstID, Vals, VE);
909 
910     // Emit value #'s for the fixed parameters.
911     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
912       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
913 
914     // Emit type/value pairs for varargs params.
915     if (FTy->isVarArg()) {
916       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
917            i != e; ++i)
918         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
919     }
920     break;
921   }
922   case Instruction::Unwind:
923     Code = bitc::FUNC_CODE_INST_UNWIND;
924     break;
925   case Instruction::Unreachable:
926     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
927     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
928     break;
929 
930   case Instruction::PHI:
931     Code = bitc::FUNC_CODE_INST_PHI;
932     Vals.push_back(VE.getTypeID(I.getType()));
933     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
934       Vals.push_back(VE.getValueID(I.getOperand(i)));
935     break;
936 
937   case Instruction::Malloc:
938     Code = bitc::FUNC_CODE_INST_MALLOC;
939     Vals.push_back(VE.getTypeID(I.getType()));
940     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
941     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
942     break;
943 
944   case Instruction::Free:
945     Code = bitc::FUNC_CODE_INST_FREE;
946     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
947     break;
948 
949   case Instruction::Alloca:
950     Code = bitc::FUNC_CODE_INST_ALLOCA;
951     Vals.push_back(VE.getTypeID(I.getType()));
952     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
953     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
954     break;
955 
956   case Instruction::Load:
957     Code = bitc::FUNC_CODE_INST_LOAD;
958     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
959       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
960 
961     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
962     Vals.push_back(cast<LoadInst>(I).isVolatile());
963     break;
964   case Instruction::Store:
965     Code = bitc::FUNC_CODE_INST_STORE2;
966     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
967     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
968     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
969     Vals.push_back(cast<StoreInst>(I).isVolatile());
970     break;
971   case Instruction::Call: {
972     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
973     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
974 
975     Code = bitc::FUNC_CODE_INST_CALL;
976 
977     const CallInst *CI = cast<CallInst>(&I);
978     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
979     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
980     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
981 
982     // Emit value #'s for the fixed parameters.
983     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
984       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
985 
986     // Emit type/value pairs for varargs params.
987     if (FTy->isVarArg()) {
988       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
989       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
990            i != e; ++i)
991         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
992     }
993     break;
994   }
995   case Instruction::VAArg:
996     Code = bitc::FUNC_CODE_INST_VAARG;
997     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
998     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
999     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1000     break;
1001   }
1002 
1003   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1004   Vals.clear();
1005 }
1006 
1007 // Emit names for globals/functions etc.
1008 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1009                                   const ValueEnumerator &VE,
1010                                   BitstreamWriter &Stream) {
1011   if (VST.empty()) return;
1012   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1013 
1014   // FIXME: Set up the abbrev, we know how many values there are!
1015   // FIXME: We know if the type names can use 7-bit ascii.
1016   SmallVector<unsigned, 64> NameVals;
1017 
1018   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1019        SI != SE; ++SI) {
1020 
1021     const ValueName &Name = *SI;
1022 
1023     // Figure out the encoding to use for the name.
1024     bool is7Bit = true;
1025     bool isChar6 = true;
1026     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1027          C != E; ++C) {
1028       if (isChar6)
1029         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1030       if ((unsigned char)*C & 128) {
1031         is7Bit = false;
1032         break;  // don't bother scanning the rest.
1033       }
1034     }
1035 
1036     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1037 
1038     // VST_ENTRY:   [valueid, namechar x N]
1039     // VST_BBENTRY: [bbid, namechar x N]
1040     unsigned Code;
1041     if (isa<BasicBlock>(SI->getValue())) {
1042       Code = bitc::VST_CODE_BBENTRY;
1043       if (isChar6)
1044         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1045     } else {
1046       Code = bitc::VST_CODE_ENTRY;
1047       if (isChar6)
1048         AbbrevToUse = VST_ENTRY_6_ABBREV;
1049       else if (is7Bit)
1050         AbbrevToUse = VST_ENTRY_7_ABBREV;
1051     }
1052 
1053     NameVals.push_back(VE.getValueID(SI->getValue()));
1054     for (const char *P = Name.getKeyData(),
1055          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1056       NameVals.push_back((unsigned char)*P);
1057 
1058     // Emit the finished record.
1059     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1060     NameVals.clear();
1061   }
1062   Stream.ExitBlock();
1063 }
1064 
1065 /// WriteFunction - Emit a function body to the module stream.
1066 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1067                           BitstreamWriter &Stream) {
1068   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1069   VE.incorporateFunction(F);
1070 
1071   SmallVector<unsigned, 64> Vals;
1072 
1073   // Emit the number of basic blocks, so the reader can create them ahead of
1074   // time.
1075   Vals.push_back(VE.getBasicBlocks().size());
1076   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1077   Vals.clear();
1078 
1079   // If there are function-local constants, emit them now.
1080   unsigned CstStart, CstEnd;
1081   VE.getFunctionConstantRange(CstStart, CstEnd);
1082   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1083 
1084   // Keep a running idea of what the instruction ID is.
1085   unsigned InstID = CstEnd;
1086 
1087   // Finally, emit all the instructions, in order.
1088   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1089     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1090          I != E; ++I) {
1091       WriteInstruction(*I, InstID, VE, Stream, Vals);
1092       if (I->getType() != Type::VoidTy)
1093         ++InstID;
1094     }
1095 
1096   // Emit names for all the instructions etc.
1097   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1098 
1099   VE.purgeFunction();
1100   Stream.ExitBlock();
1101 }
1102 
1103 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1104 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1105                                  const ValueEnumerator &VE,
1106                                  BitstreamWriter &Stream) {
1107   if (TST.empty()) return;
1108 
1109   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1110 
1111   // 7-bit fixed width VST_CODE_ENTRY strings.
1112   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1113   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1114   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1115                             Log2_32_Ceil(VE.getTypes().size()+1)));
1116   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1117   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1118   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1119 
1120   SmallVector<unsigned, 64> NameVals;
1121 
1122   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1123        TI != TE; ++TI) {
1124     // TST_ENTRY: [typeid, namechar x N]
1125     NameVals.push_back(VE.getTypeID(TI->second));
1126 
1127     const std::string &Str = TI->first;
1128     bool is7Bit = true;
1129     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1130       NameVals.push_back((unsigned char)Str[i]);
1131       if (Str[i] & 128)
1132         is7Bit = false;
1133     }
1134 
1135     // Emit the finished record.
1136     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1137     NameVals.clear();
1138   }
1139 
1140   Stream.ExitBlock();
1141 }
1142 
1143 // Emit blockinfo, which defines the standard abbreviations etc.
1144 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1145   // We only want to emit block info records for blocks that have multiple
1146   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1147   // blocks can defined their abbrevs inline.
1148   Stream.EnterBlockInfoBlock(2);
1149 
1150   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1151     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1152     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1153     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1154     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1155     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1156     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1157                                    Abbv) != VST_ENTRY_8_ABBREV)
1158       llvm_unreachable("Unexpected abbrev ordering!");
1159   }
1160 
1161   { // 7-bit fixed width VST_ENTRY strings.
1162     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1163     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1164     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1165     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1166     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1167     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1168                                    Abbv) != VST_ENTRY_7_ABBREV)
1169       llvm_unreachable("Unexpected abbrev ordering!");
1170   }
1171   { // 6-bit char6 VST_ENTRY strings.
1172     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1173     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1174     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1176     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1177     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1178                                    Abbv) != VST_ENTRY_6_ABBREV)
1179       llvm_unreachable("Unexpected abbrev ordering!");
1180   }
1181   { // 6-bit char6 VST_BBENTRY strings.
1182     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1183     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1184     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1185     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1186     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1187     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1188                                    Abbv) != VST_BBENTRY_6_ABBREV)
1189       llvm_unreachable("Unexpected abbrev ordering!");
1190   }
1191 
1192 
1193 
1194   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1195     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1196     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1197     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1198                               Log2_32_Ceil(VE.getTypes().size()+1)));
1199     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1200                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1201       llvm_unreachable("Unexpected abbrev ordering!");
1202   }
1203 
1204   { // INTEGER abbrev for CONSTANTS_BLOCK.
1205     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1206     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1207     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1208     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1209                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1210       llvm_unreachable("Unexpected abbrev ordering!");
1211   }
1212 
1213   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1214     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1215     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1216     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1217     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1218                               Log2_32_Ceil(VE.getTypes().size()+1)));
1219     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1220 
1221     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1222                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1223       llvm_unreachable("Unexpected abbrev ordering!");
1224   }
1225   { // NULL abbrev for CONSTANTS_BLOCK.
1226     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1227     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1228     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1229                                    Abbv) != CONSTANTS_NULL_Abbrev)
1230       llvm_unreachable("Unexpected abbrev ordering!");
1231   }
1232 
1233   // FIXME: This should only use space for first class types!
1234 
1235   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1236     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1237     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1238     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1239     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1240     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1241     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1242                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1243       llvm_unreachable("Unexpected abbrev ordering!");
1244   }
1245   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1246     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1247     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1248     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1249     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1250     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1251     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1252                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1253       llvm_unreachable("Unexpected abbrev ordering!");
1254   }
1255   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1256     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1257     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1258     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1259     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1260     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1261     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1262     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1263                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1264       llvm_unreachable("Unexpected abbrev ordering!");
1265   }
1266   { // INST_CAST abbrev for FUNCTION_BLOCK.
1267     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1268     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1269     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1270     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1271                               Log2_32_Ceil(VE.getTypes().size()+1)));
1272     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1273     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1274                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1275       llvm_unreachable("Unexpected abbrev ordering!");
1276   }
1277 
1278   { // INST_RET abbrev for FUNCTION_BLOCK.
1279     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1280     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1281     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1282                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1283       llvm_unreachable("Unexpected abbrev ordering!");
1284   }
1285   { // INST_RET abbrev for FUNCTION_BLOCK.
1286     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1287     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1288     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1289     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1290                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1291       llvm_unreachable("Unexpected abbrev ordering!");
1292   }
1293   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1294     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1295     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1296     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1297                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1298       llvm_unreachable("Unexpected abbrev ordering!");
1299   }
1300 
1301   Stream.ExitBlock();
1302 }
1303 
1304 
1305 /// WriteModule - Emit the specified module to the bitstream.
1306 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1307   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1308 
1309   // Emit the version number if it is non-zero.
1310   if (CurVersion) {
1311     SmallVector<unsigned, 1> Vals;
1312     Vals.push_back(CurVersion);
1313     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1314   }
1315 
1316   // Analyze the module, enumerating globals, functions, etc.
1317   ValueEnumerator VE(M);
1318 
1319   // Emit blockinfo, which defines the standard abbreviations etc.
1320   WriteBlockInfo(VE, Stream);
1321 
1322   // Emit information about parameter attributes.
1323   WriteAttributeTable(VE, Stream);
1324 
1325   // Emit information describing all of the types in the module.
1326   WriteTypeTable(VE, Stream);
1327 
1328   // Emit top-level description of module, including target triple, inline asm,
1329   // descriptors for global variables, and function prototype info.
1330   WriteModuleInfo(M, VE, Stream);
1331 
1332   // Emit constants.
1333   WriteModuleConstants(VE, Stream);
1334 
1335   // Emit function bodies.
1336   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1337     if (!I->isDeclaration())
1338       WriteFunction(*I, VE, Stream);
1339 
1340   // Emit the type symbol table information.
1341   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1342 
1343   // Emit names for globals/functions etc.
1344   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1345 
1346   Stream.ExitBlock();
1347 }
1348 
1349 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1350 /// header and trailer to make it compatible with the system archiver.  To do
1351 /// this we emit the following header, and then emit a trailer that pads the
1352 /// file out to be a multiple of 16 bytes.
1353 ///
1354 /// struct bc_header {
1355 ///   uint32_t Magic;         // 0x0B17C0DE
1356 ///   uint32_t Version;       // Version, currently always 0.
1357 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1358 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1359 ///   uint32_t CPUType;       // CPU specifier.
1360 ///   ... potentially more later ...
1361 /// };
1362 enum {
1363   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1364   DarwinBCHeaderSize = 5*4
1365 };
1366 
1367 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1368                                const std::string &TT) {
1369   unsigned CPUType = ~0U;
1370 
1371   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1372   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1373   // specific constants here because they are implicitly part of the Darwin ABI.
1374   enum {
1375     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1376     DARWIN_CPU_TYPE_X86        = 7,
1377     DARWIN_CPU_TYPE_POWERPC    = 18
1378   };
1379 
1380   if (TT.find("x86_64-") == 0)
1381     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1382   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1383            TT[4] == '-' && TT[1] - '3' < 6)
1384     CPUType = DARWIN_CPU_TYPE_X86;
1385   else if (TT.find("powerpc-") == 0)
1386     CPUType = DARWIN_CPU_TYPE_POWERPC;
1387   else if (TT.find("powerpc64-") == 0)
1388     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1389 
1390   // Traditional Bitcode starts after header.
1391   unsigned BCOffset = DarwinBCHeaderSize;
1392 
1393   Stream.Emit(0x0B17C0DE, 32);
1394   Stream.Emit(0         , 32);  // Version.
1395   Stream.Emit(BCOffset  , 32);
1396   Stream.Emit(0         , 32);  // Filled in later.
1397   Stream.Emit(CPUType   , 32);
1398 }
1399 
1400 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1401 /// finalize the header.
1402 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1403   // Update the size field in the header.
1404   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1405 
1406   // If the file is not a multiple of 16 bytes, insert dummy padding.
1407   while (BufferSize & 15) {
1408     Stream.Emit(0, 8);
1409     ++BufferSize;
1410   }
1411 }
1412 
1413 
1414 /// WriteBitcodeToFile - Write the specified module to the specified output
1415 /// stream.
1416 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1417   raw_os_ostream RawOut(Out);
1418   // If writing to stdout, set binary mode.
1419   if (llvm::cout == Out)
1420     sys::Program::ChangeStdoutToBinary();
1421   WriteBitcodeToFile(M, RawOut);
1422 }
1423 
1424 /// WriteBitcodeToFile - Write the specified module to the specified output
1425 /// stream.
1426 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1427   std::vector<unsigned char> Buffer;
1428   BitstreamWriter Stream(Buffer);
1429 
1430   Buffer.reserve(256*1024);
1431 
1432   WriteBitcodeToStream( M, Stream );
1433 
1434   // If writing to stdout, set binary mode.
1435   if (&llvm::outs() == &Out)
1436     sys::Program::ChangeStdoutToBinary();
1437 
1438   // Write the generated bitstream to "Out".
1439   Out.write((char*)&Buffer.front(), Buffer.size());
1440 
1441   // Make sure it hits disk now.
1442   Out.flush();
1443 }
1444 
1445 /// WriteBitcodeToStream - Write the specified module to the specified output
1446 /// stream.
1447 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1448   // If this is darwin, emit a file header and trailer if needed.
1449   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1450   if (isDarwin)
1451     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1452 
1453   // Emit the file header.
1454   Stream.Emit((unsigned)'B', 8);
1455   Stream.Emit((unsigned)'C', 8);
1456   Stream.Emit(0x0, 4);
1457   Stream.Emit(0xC, 4);
1458   Stream.Emit(0xE, 4);
1459   Stream.Emit(0xD, 4);
1460 
1461   // Emit the module.
1462   WriteModule(M, Stream);
1463 
1464   if (isDarwin)
1465     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1466 }
1467