1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/Program.h" 34 #include "llvm/Support/SHA1.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cctype> 37 #include <map> 38 using namespace llvm; 39 40 namespace { 41 42 cl::opt<unsigned> 43 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 44 cl::desc("Number of metadatas above which we emit an index " 45 "to enable lazy-loading")); 46 /// These are manifest constants used by the bitcode writer. They do not need to 47 /// be kept in sync with the reader, but need to be consistent within this file. 48 enum { 49 // VALUE_SYMTAB_BLOCK abbrev id's. 50 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 VST_ENTRY_7_ABBREV, 52 VST_ENTRY_6_ABBREV, 53 VST_BBENTRY_6_ABBREV, 54 55 // CONSTANTS_BLOCK abbrev id's. 56 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 57 CONSTANTS_INTEGER_ABBREV, 58 CONSTANTS_CE_CAST_Abbrev, 59 CONSTANTS_NULL_Abbrev, 60 61 // FUNCTION_BLOCK abbrev id's. 62 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 63 FUNCTION_INST_BINOP_ABBREV, 64 FUNCTION_INST_BINOP_FLAGS_ABBREV, 65 FUNCTION_INST_CAST_ABBREV, 66 FUNCTION_INST_RET_VOID_ABBREV, 67 FUNCTION_INST_RET_VAL_ABBREV, 68 FUNCTION_INST_UNREACHABLE_ABBREV, 69 FUNCTION_INST_GEP_ABBREV, 70 }; 71 72 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 73 /// file type. 74 class BitcodeWriterBase { 75 protected: 76 /// The stream created and owned by the client. 77 BitstreamWriter &Stream; 78 79 /// Saves the offset of the VSTOffset record that must eventually be 80 /// backpatched with the offset of the actual VST. 81 uint64_t VSTOffsetPlaceholder = 0; 82 83 public: 84 /// Constructs a BitcodeWriterBase object that writes to the provided 85 /// \p Stream. 86 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 87 88 protected: 89 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; } 90 void writeValueSymbolTableForwardDecl(); 91 void writeBitcodeHeader(); 92 }; 93 94 /// Class to manage the bitcode writing for a module. 95 class ModuleBitcodeWriter : public BitcodeWriterBase { 96 /// Pointer to the buffer allocated by caller for bitcode writing. 97 const SmallVectorImpl<char> &Buffer; 98 99 /// The Module to write to bitcode. 100 const Module &M; 101 102 /// Enumerates ids for all values in the module. 103 ValueEnumerator VE; 104 105 /// Optional per-module index to write for ThinLTO. 106 const ModuleSummaryIndex *Index; 107 108 /// True if a module hash record should be written. 109 bool GenerateHash; 110 111 /// If non-null, when GenerateHash is true, the resulting hash is written 112 /// into ModHash. When GenerateHash is false, that specified value 113 /// is used as the hash instead of computing from the generated bitcode. 114 /// Can be used to produce the same module hash for a minimized bitcode 115 /// used just for the thin link as in the regular full bitcode that will 116 /// be used in the backend. 117 ModuleHash *ModHash; 118 119 /// The start bit of the identification block. 120 uint64_t BitcodeStartBit; 121 122 /// Map that holds the correspondence between GUIDs in the summary index, 123 /// that came from indirect call profiles, and a value id generated by this 124 /// class to use in the VST and summary block records. 125 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 126 127 /// Tracks the last value id recorded in the GUIDToValueMap. 128 unsigned GlobalValueId; 129 130 public: 131 /// Constructs a ModuleBitcodeWriter object for the given Module, 132 /// writing to the provided \p Buffer. 133 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 134 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 135 const ModuleSummaryIndex *Index, bool GenerateHash, 136 ModuleHash *ModHash = nullptr) 137 : BitcodeWriterBase(Stream), Buffer(Buffer), M(*M), 138 VE(*M, ShouldPreserveUseListOrder), Index(Index), 139 GenerateHash(GenerateHash), ModHash(ModHash), 140 BitcodeStartBit(Stream.GetCurrentBitNo()) { 141 // Assign ValueIds to any callee values in the index that came from 142 // indirect call profiles and were recorded as a GUID not a Value* 143 // (which would have been assigned an ID by the ValueEnumerator). 144 // The starting ValueId is just after the number of values in the 145 // ValueEnumerator, so that they can be emitted in the VST. 146 GlobalValueId = VE.getValues().size(); 147 if (!Index) 148 return; 149 for (const auto &GUIDSummaryLists : *Index) 150 // Examine all summaries for this GUID. 151 for (auto &Summary : GUIDSummaryLists.second) 152 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 153 // For each call in the function summary, see if the call 154 // is to a GUID (which means it is for an indirect call, 155 // otherwise we would have a Value for it). If so, synthesize 156 // a value id. 157 for (auto &CallEdge : FS->calls()) 158 if (CallEdge.first.isGUID()) 159 assignValueId(CallEdge.first.getGUID()); 160 } 161 162 /// Emit the current module to the bitstream. 163 void write(); 164 165 private: 166 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 167 168 void writeAttributeGroupTable(); 169 void writeAttributeTable(); 170 void writeTypeTable(); 171 void writeComdats(); 172 void writeModuleInfo(); 173 void writeValueAsMetadata(const ValueAsMetadata *MD, 174 SmallVectorImpl<uint64_t> &Record); 175 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 176 unsigned Abbrev); 177 unsigned createDILocationAbbrev(); 178 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 179 unsigned &Abbrev); 180 unsigned createGenericDINodeAbbrev(); 181 void writeGenericDINode(const GenericDINode *N, 182 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 183 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 184 unsigned Abbrev); 185 void writeDIEnumerator(const DIEnumerator *N, 186 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 187 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned Abbrev); 189 void writeDIDerivedType(const DIDerivedType *N, 190 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 191 void writeDICompositeType(const DICompositeType *N, 192 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 193 void writeDISubroutineType(const DISubroutineType *N, 194 SmallVectorImpl<uint64_t> &Record, 195 unsigned Abbrev); 196 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDICompileUnit(const DICompileUnit *N, 199 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 200 void writeDISubprogram(const DISubprogram *N, 201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 202 void writeDILexicalBlock(const DILexicalBlock *N, 203 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 204 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 205 SmallVectorImpl<uint64_t> &Record, 206 unsigned Abbrev); 207 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 208 unsigned Abbrev); 209 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 210 unsigned Abbrev); 211 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 212 unsigned Abbrev); 213 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 214 unsigned Abbrev); 215 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 216 SmallVectorImpl<uint64_t> &Record, 217 unsigned Abbrev); 218 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 219 SmallVectorImpl<uint64_t> &Record, 220 unsigned Abbrev); 221 void writeDIGlobalVariable(const DIGlobalVariable *N, 222 SmallVectorImpl<uint64_t> &Record, 223 unsigned Abbrev); 224 void writeDILocalVariable(const DILocalVariable *N, 225 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 226 void writeDIExpression(const DIExpression *N, 227 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 228 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 229 SmallVectorImpl<uint64_t> &Record, 230 unsigned Abbrev); 231 void writeDIObjCProperty(const DIObjCProperty *N, 232 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 233 void writeDIImportedEntity(const DIImportedEntity *N, 234 SmallVectorImpl<uint64_t> &Record, 235 unsigned Abbrev); 236 unsigned createNamedMetadataAbbrev(); 237 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 238 unsigned createMetadataStringsAbbrev(); 239 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 240 SmallVectorImpl<uint64_t> &Record); 241 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 242 SmallVectorImpl<uint64_t> &Record, 243 std::vector<unsigned> *MDAbbrevs = nullptr, 244 std::vector<uint64_t> *IndexPos = nullptr); 245 void writeModuleMetadata(); 246 void writeFunctionMetadata(const Function &F); 247 void writeFunctionMetadataAttachment(const Function &F); 248 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 249 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 250 const GlobalObject &GO); 251 void writeModuleMetadataKinds(); 252 void writeOperandBundleTags(); 253 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 254 void writeModuleConstants(); 255 bool pushValueAndType(const Value *V, unsigned InstID, 256 SmallVectorImpl<unsigned> &Vals); 257 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 258 void pushValue(const Value *V, unsigned InstID, 259 SmallVectorImpl<unsigned> &Vals); 260 void pushValueSigned(const Value *V, unsigned InstID, 261 SmallVectorImpl<uint64_t> &Vals); 262 void writeInstruction(const Instruction &I, unsigned InstID, 263 SmallVectorImpl<unsigned> &Vals); 264 void writeValueSymbolTable( 265 const ValueSymbolTable &VST, bool IsModuleLevel = false, 266 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr); 267 void writeUseList(UseListOrder &&Order); 268 void writeUseListBlock(const Function *F); 269 void 270 writeFunction(const Function &F, 271 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 272 void writeBlockInfo(); 273 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 274 GlobalValueSummary *Summary, 275 unsigned ValueID, 276 unsigned FSCallsAbbrev, 277 unsigned FSCallsProfileAbbrev, 278 const Function &F); 279 void writeModuleLevelReferences(const GlobalVariable &V, 280 SmallVector<uint64_t, 64> &NameVals, 281 unsigned FSModRefsAbbrev); 282 void writePerModuleGlobalValueSummary(); 283 void writeModuleHash(size_t BlockStartPos); 284 285 void assignValueId(GlobalValue::GUID ValGUID) { 286 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 287 } 288 unsigned getValueId(GlobalValue::GUID ValGUID) { 289 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 290 // Expect that any GUID value had a value Id assigned by an 291 // earlier call to assignValueId. 292 assert(VMI != GUIDToValueIdMap.end() && 293 "GUID does not have assigned value Id"); 294 return VMI->second; 295 } 296 // Helper to get the valueId for the type of value recorded in VI. 297 unsigned getValueId(ValueInfo VI) { 298 if (VI.isGUID()) 299 return getValueId(VI.getGUID()); 300 return VE.getValueID(VI.getValue()); 301 } 302 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 303 }; 304 305 /// Class to manage the bitcode writing for a combined index. 306 class IndexBitcodeWriter : public BitcodeWriterBase { 307 /// The combined index to write to bitcode. 308 const ModuleSummaryIndex &Index; 309 310 /// When writing a subset of the index for distributed backends, client 311 /// provides a map of modules to the corresponding GUIDs/summaries to write. 312 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 313 314 /// Map that holds the correspondence between the GUID used in the combined 315 /// index and a value id generated by this class to use in references. 316 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 317 318 /// Tracks the last value id recorded in the GUIDToValueMap. 319 unsigned GlobalValueId = 0; 320 321 public: 322 /// Constructs a IndexBitcodeWriter object for the given combined index, 323 /// writing to the provided \p Buffer. When writing a subset of the index 324 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 325 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 326 const std::map<std::string, GVSummaryMapTy> 327 *ModuleToSummariesForIndex = nullptr) 328 : BitcodeWriterBase(Stream), Index(Index), 329 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 330 // Assign unique value ids to all summaries to be written, for use 331 // in writing out the call graph edges. Save the mapping from GUID 332 // to the new global value id to use when writing those edges, which 333 // are currently saved in the index in terms of GUID. 334 for (const auto &I : *this) 335 GUIDToValueIdMap[I.first] = ++GlobalValueId; 336 } 337 338 /// The below iterator returns the GUID and associated summary. 339 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 340 341 /// Iterator over the value GUID and summaries to be written to bitcode, 342 /// hides the details of whether they are being pulled from the entire 343 /// index or just those in a provided ModuleToSummariesForIndex map. 344 class iterator 345 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 346 GVInfo> { 347 /// Enables access to parent class. 348 const IndexBitcodeWriter &Writer; 349 350 // Iterators used when writing only those summaries in a provided 351 // ModuleToSummariesForIndex map: 352 353 /// Points to the last element in outer ModuleToSummariesForIndex map. 354 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack; 355 /// Iterator on outer ModuleToSummariesForIndex map. 356 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter; 357 /// Iterator on an inner global variable summary map. 358 GVSummaryMapTy::const_iterator ModuleGVSummariesIter; 359 360 // Iterators used when writing all summaries in the index: 361 362 /// Points to the last element in the Index outer GlobalValueMap. 363 const_gvsummary_iterator IndexSummariesBack; 364 /// Iterator on outer GlobalValueMap. 365 const_gvsummary_iterator IndexSummariesIter; 366 /// Iterator on an inner GlobalValueSummaryList. 367 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 368 369 public: 370 /// Construct iterator from parent \p Writer and indicate if we are 371 /// constructing the end iterator. 372 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 373 // Set up the appropriate set of iterators given whether we are writing 374 // the full index or just a subset. 375 // Can't setup the Back or inner iterators if the corresponding map 376 // is empty. This will be handled specially in operator== as well. 377 if (Writer.ModuleToSummariesForIndex && 378 !Writer.ModuleToSummariesForIndex->empty()) { 379 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 380 std::next(ModuleSummariesBack) != 381 Writer.ModuleToSummariesForIndex->end(); 382 ModuleSummariesBack++) 383 ; 384 ModuleSummariesIter = !IsAtEnd 385 ? Writer.ModuleToSummariesForIndex->begin() 386 : ModuleSummariesBack; 387 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 388 : ModuleSummariesBack->second.end(); 389 } else if (!Writer.ModuleToSummariesForIndex && 390 Writer.Index.begin() != Writer.Index.end()) { 391 for (IndexSummariesBack = Writer.Index.begin(); 392 std::next(IndexSummariesBack) != Writer.Index.end(); 393 IndexSummariesBack++) 394 ; 395 IndexSummariesIter = 396 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 397 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 398 : IndexSummariesBack->second.end(); 399 } 400 } 401 402 /// Increment the appropriate set of iterators. 403 iterator &operator++() { 404 // First the inner iterator is incremented, then if it is at the end 405 // and there are more outer iterations to go, the inner is reset to 406 // the start of the next inner list. 407 if (Writer.ModuleToSummariesForIndex) { 408 ++ModuleGVSummariesIter; 409 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 410 ModuleSummariesIter != ModuleSummariesBack) { 411 ++ModuleSummariesIter; 412 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 413 } 414 } else { 415 ++IndexGVSummariesIter; 416 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 417 IndexSummariesIter != IndexSummariesBack) { 418 ++IndexSummariesIter; 419 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 420 } 421 } 422 return *this; 423 } 424 425 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 426 /// outer and inner iterator positions. 427 GVInfo operator*() { 428 if (Writer.ModuleToSummariesForIndex) 429 return std::make_pair(ModuleGVSummariesIter->first, 430 ModuleGVSummariesIter->second); 431 return std::make_pair(IndexSummariesIter->first, 432 IndexGVSummariesIter->get()); 433 } 434 435 /// Checks if the iterators are equal, with special handling for empty 436 /// indexes. 437 bool operator==(const iterator &RHS) const { 438 if (Writer.ModuleToSummariesForIndex) { 439 // First ensure that both are writing the same subset. 440 if (Writer.ModuleToSummariesForIndex != 441 RHS.Writer.ModuleToSummariesForIndex) 442 return false; 443 // Already determined above that maps are the same, so if one is 444 // empty, they both are. 445 if (Writer.ModuleToSummariesForIndex->empty()) 446 return true; 447 // Ensure the ModuleGVSummariesIter are iterating over the same 448 // container before checking them below. 449 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 450 return false; 451 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 452 } 453 // First ensure RHS also writing the full index, and that both are 454 // writing the same full index. 455 if (RHS.Writer.ModuleToSummariesForIndex || 456 &Writer.Index != &RHS.Writer.Index) 457 return false; 458 // Already determined above that maps are the same, so if one is 459 // empty, they both are. 460 if (Writer.Index.begin() == Writer.Index.end()) 461 return true; 462 // Ensure the IndexGVSummariesIter are iterating over the same 463 // container before checking them below. 464 if (IndexSummariesIter != RHS.IndexSummariesIter) 465 return false; 466 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 467 } 468 }; 469 470 /// Obtain the start iterator over the summaries to be written. 471 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 472 /// Obtain the end iterator over the summaries to be written. 473 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 474 475 /// Main entry point for writing a combined index to bitcode. 476 void write(); 477 478 private: 479 void writeIndex(); 480 void writeModStrings(); 481 void writeCombinedValueSymbolTable(); 482 void writeCombinedGlobalValueSummary(); 483 484 /// Indicates whether the provided \p ModulePath should be written into 485 /// the module string table, e.g. if full index written or if it is in 486 /// the provided subset. 487 bool doIncludeModule(StringRef ModulePath) { 488 return !ModuleToSummariesForIndex || 489 ModuleToSummariesForIndex->count(ModulePath); 490 } 491 492 bool hasValueId(GlobalValue::GUID ValGUID) { 493 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 494 return VMI != GUIDToValueIdMap.end(); 495 } 496 unsigned getValueId(GlobalValue::GUID ValGUID) { 497 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 498 // If this GUID doesn't have an entry, assign one. 499 if (VMI == GUIDToValueIdMap.end()) { 500 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 501 return GlobalValueId; 502 } else { 503 return VMI->second; 504 } 505 } 506 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 507 }; 508 } // end anonymous namespace 509 510 static unsigned getEncodedCastOpcode(unsigned Opcode) { 511 switch (Opcode) { 512 default: llvm_unreachable("Unknown cast instruction!"); 513 case Instruction::Trunc : return bitc::CAST_TRUNC; 514 case Instruction::ZExt : return bitc::CAST_ZEXT; 515 case Instruction::SExt : return bitc::CAST_SEXT; 516 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 517 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 518 case Instruction::UIToFP : return bitc::CAST_UITOFP; 519 case Instruction::SIToFP : return bitc::CAST_SITOFP; 520 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 521 case Instruction::FPExt : return bitc::CAST_FPEXT; 522 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 523 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 524 case Instruction::BitCast : return bitc::CAST_BITCAST; 525 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 526 } 527 } 528 529 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 530 switch (Opcode) { 531 default: llvm_unreachable("Unknown binary instruction!"); 532 case Instruction::Add: 533 case Instruction::FAdd: return bitc::BINOP_ADD; 534 case Instruction::Sub: 535 case Instruction::FSub: return bitc::BINOP_SUB; 536 case Instruction::Mul: 537 case Instruction::FMul: return bitc::BINOP_MUL; 538 case Instruction::UDiv: return bitc::BINOP_UDIV; 539 case Instruction::FDiv: 540 case Instruction::SDiv: return bitc::BINOP_SDIV; 541 case Instruction::URem: return bitc::BINOP_UREM; 542 case Instruction::FRem: 543 case Instruction::SRem: return bitc::BINOP_SREM; 544 case Instruction::Shl: return bitc::BINOP_SHL; 545 case Instruction::LShr: return bitc::BINOP_LSHR; 546 case Instruction::AShr: return bitc::BINOP_ASHR; 547 case Instruction::And: return bitc::BINOP_AND; 548 case Instruction::Or: return bitc::BINOP_OR; 549 case Instruction::Xor: return bitc::BINOP_XOR; 550 } 551 } 552 553 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 554 switch (Op) { 555 default: llvm_unreachable("Unknown RMW operation!"); 556 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 557 case AtomicRMWInst::Add: return bitc::RMW_ADD; 558 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 559 case AtomicRMWInst::And: return bitc::RMW_AND; 560 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 561 case AtomicRMWInst::Or: return bitc::RMW_OR; 562 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 563 case AtomicRMWInst::Max: return bitc::RMW_MAX; 564 case AtomicRMWInst::Min: return bitc::RMW_MIN; 565 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 566 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 567 } 568 } 569 570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 571 switch (Ordering) { 572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 579 } 580 llvm_unreachable("Invalid ordering"); 581 } 582 583 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 584 switch (SynchScope) { 585 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 586 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 587 } 588 llvm_unreachable("Invalid synch scope"); 589 } 590 591 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 592 StringRef Str, unsigned AbbrevToUse) { 593 SmallVector<unsigned, 64> Vals; 594 595 // Code: [strchar x N] 596 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 597 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 598 AbbrevToUse = 0; 599 Vals.push_back(Str[i]); 600 } 601 602 // Emit the finished record. 603 Stream.EmitRecord(Code, Vals, AbbrevToUse); 604 } 605 606 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 607 switch (Kind) { 608 case Attribute::Alignment: 609 return bitc::ATTR_KIND_ALIGNMENT; 610 case Attribute::AllocSize: 611 return bitc::ATTR_KIND_ALLOC_SIZE; 612 case Attribute::AlwaysInline: 613 return bitc::ATTR_KIND_ALWAYS_INLINE; 614 case Attribute::ArgMemOnly: 615 return bitc::ATTR_KIND_ARGMEMONLY; 616 case Attribute::Builtin: 617 return bitc::ATTR_KIND_BUILTIN; 618 case Attribute::ByVal: 619 return bitc::ATTR_KIND_BY_VAL; 620 case Attribute::Convergent: 621 return bitc::ATTR_KIND_CONVERGENT; 622 case Attribute::InAlloca: 623 return bitc::ATTR_KIND_IN_ALLOCA; 624 case Attribute::Cold: 625 return bitc::ATTR_KIND_COLD; 626 case Attribute::InaccessibleMemOnly: 627 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 628 case Attribute::InaccessibleMemOrArgMemOnly: 629 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 630 case Attribute::InlineHint: 631 return bitc::ATTR_KIND_INLINE_HINT; 632 case Attribute::InReg: 633 return bitc::ATTR_KIND_IN_REG; 634 case Attribute::JumpTable: 635 return bitc::ATTR_KIND_JUMP_TABLE; 636 case Attribute::MinSize: 637 return bitc::ATTR_KIND_MIN_SIZE; 638 case Attribute::Naked: 639 return bitc::ATTR_KIND_NAKED; 640 case Attribute::Nest: 641 return bitc::ATTR_KIND_NEST; 642 case Attribute::NoAlias: 643 return bitc::ATTR_KIND_NO_ALIAS; 644 case Attribute::NoBuiltin: 645 return bitc::ATTR_KIND_NO_BUILTIN; 646 case Attribute::NoCapture: 647 return bitc::ATTR_KIND_NO_CAPTURE; 648 case Attribute::NoDuplicate: 649 return bitc::ATTR_KIND_NO_DUPLICATE; 650 case Attribute::NoImplicitFloat: 651 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 652 case Attribute::NoInline: 653 return bitc::ATTR_KIND_NO_INLINE; 654 case Attribute::NoRecurse: 655 return bitc::ATTR_KIND_NO_RECURSE; 656 case Attribute::NonLazyBind: 657 return bitc::ATTR_KIND_NON_LAZY_BIND; 658 case Attribute::NonNull: 659 return bitc::ATTR_KIND_NON_NULL; 660 case Attribute::Dereferenceable: 661 return bitc::ATTR_KIND_DEREFERENCEABLE; 662 case Attribute::DereferenceableOrNull: 663 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 664 case Attribute::NoRedZone: 665 return bitc::ATTR_KIND_NO_RED_ZONE; 666 case Attribute::NoReturn: 667 return bitc::ATTR_KIND_NO_RETURN; 668 case Attribute::NoUnwind: 669 return bitc::ATTR_KIND_NO_UNWIND; 670 case Attribute::OptimizeForSize: 671 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 672 case Attribute::OptimizeNone: 673 return bitc::ATTR_KIND_OPTIMIZE_NONE; 674 case Attribute::ReadNone: 675 return bitc::ATTR_KIND_READ_NONE; 676 case Attribute::ReadOnly: 677 return bitc::ATTR_KIND_READ_ONLY; 678 case Attribute::Returned: 679 return bitc::ATTR_KIND_RETURNED; 680 case Attribute::ReturnsTwice: 681 return bitc::ATTR_KIND_RETURNS_TWICE; 682 case Attribute::SExt: 683 return bitc::ATTR_KIND_S_EXT; 684 case Attribute::StackAlignment: 685 return bitc::ATTR_KIND_STACK_ALIGNMENT; 686 case Attribute::StackProtect: 687 return bitc::ATTR_KIND_STACK_PROTECT; 688 case Attribute::StackProtectReq: 689 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 690 case Attribute::StackProtectStrong: 691 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 692 case Attribute::SafeStack: 693 return bitc::ATTR_KIND_SAFESTACK; 694 case Attribute::StructRet: 695 return bitc::ATTR_KIND_STRUCT_RET; 696 case Attribute::SanitizeAddress: 697 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 698 case Attribute::SanitizeThread: 699 return bitc::ATTR_KIND_SANITIZE_THREAD; 700 case Attribute::SanitizeMemory: 701 return bitc::ATTR_KIND_SANITIZE_MEMORY; 702 case Attribute::SwiftError: 703 return bitc::ATTR_KIND_SWIFT_ERROR; 704 case Attribute::SwiftSelf: 705 return bitc::ATTR_KIND_SWIFT_SELF; 706 case Attribute::UWTable: 707 return bitc::ATTR_KIND_UW_TABLE; 708 case Attribute::WriteOnly: 709 return bitc::ATTR_KIND_WRITEONLY; 710 case Attribute::ZExt: 711 return bitc::ATTR_KIND_Z_EXT; 712 case Attribute::EndAttrKinds: 713 llvm_unreachable("Can not encode end-attribute kinds marker."); 714 case Attribute::None: 715 llvm_unreachable("Can not encode none-attribute."); 716 } 717 718 llvm_unreachable("Trying to encode unknown attribute"); 719 } 720 721 void ModuleBitcodeWriter::writeAttributeGroupTable() { 722 const std::vector<AttributeList> &AttrGrps = VE.getAttributeGroups(); 723 if (AttrGrps.empty()) return; 724 725 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 726 727 SmallVector<uint64_t, 64> Record; 728 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 729 AttributeList AS = AttrGrps[i]; 730 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 731 AttributeList A = AS.getSlotAttributes(i); 732 733 Record.push_back(VE.getAttributeGroupID(A)); 734 Record.push_back(AS.getSlotIndex(i)); 735 736 for (AttributeList::iterator I = AS.begin(0), E = AS.end(0); I != E; 737 ++I) { 738 Attribute Attr = *I; 739 if (Attr.isEnumAttribute()) { 740 Record.push_back(0); 741 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 742 } else if (Attr.isIntAttribute()) { 743 Record.push_back(1); 744 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 745 Record.push_back(Attr.getValueAsInt()); 746 } else { 747 StringRef Kind = Attr.getKindAsString(); 748 StringRef Val = Attr.getValueAsString(); 749 750 Record.push_back(Val.empty() ? 3 : 4); 751 Record.append(Kind.begin(), Kind.end()); 752 Record.push_back(0); 753 if (!Val.empty()) { 754 Record.append(Val.begin(), Val.end()); 755 Record.push_back(0); 756 } 757 } 758 } 759 760 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 761 Record.clear(); 762 } 763 } 764 765 Stream.ExitBlock(); 766 } 767 768 void ModuleBitcodeWriter::writeAttributeTable() { 769 const std::vector<AttributeList> &Attrs = VE.getAttributes(); 770 if (Attrs.empty()) return; 771 772 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 773 774 SmallVector<uint64_t, 64> Record; 775 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 776 const AttributeList &A = Attrs[i]; 777 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 778 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 779 780 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 781 Record.clear(); 782 } 783 784 Stream.ExitBlock(); 785 } 786 787 /// WriteTypeTable - Write out the type table for a module. 788 void ModuleBitcodeWriter::writeTypeTable() { 789 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 790 791 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 792 SmallVector<uint64_t, 64> TypeVals; 793 794 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 795 796 // Abbrev for TYPE_CODE_POINTER. 797 auto Abbv = std::make_shared<BitCodeAbbrev>(); 798 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 800 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 801 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 802 803 // Abbrev for TYPE_CODE_FUNCTION. 804 Abbv = std::make_shared<BitCodeAbbrev>(); 805 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 809 810 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 811 812 // Abbrev for TYPE_CODE_STRUCT_ANON. 813 Abbv = std::make_shared<BitCodeAbbrev>(); 814 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 818 819 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 820 821 // Abbrev for TYPE_CODE_STRUCT_NAME. 822 Abbv = std::make_shared<BitCodeAbbrev>(); 823 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 826 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 827 828 // Abbrev for TYPE_CODE_STRUCT_NAMED. 829 Abbv = std::make_shared<BitCodeAbbrev>(); 830 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 834 835 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 836 837 // Abbrev for TYPE_CODE_ARRAY. 838 Abbv = std::make_shared<BitCodeAbbrev>(); 839 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 842 843 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 844 845 // Emit an entry count so the reader can reserve space. 846 TypeVals.push_back(TypeList.size()); 847 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 848 TypeVals.clear(); 849 850 // Loop over all of the types, emitting each in turn. 851 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 852 Type *T = TypeList[i]; 853 int AbbrevToUse = 0; 854 unsigned Code = 0; 855 856 switch (T->getTypeID()) { 857 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 858 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 859 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 860 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 861 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 862 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 863 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 864 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 865 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 866 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 867 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 868 case Type::IntegerTyID: 869 // INTEGER: [width] 870 Code = bitc::TYPE_CODE_INTEGER; 871 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 872 break; 873 case Type::PointerTyID: { 874 PointerType *PTy = cast<PointerType>(T); 875 // POINTER: [pointee type, address space] 876 Code = bitc::TYPE_CODE_POINTER; 877 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 878 unsigned AddressSpace = PTy->getAddressSpace(); 879 TypeVals.push_back(AddressSpace); 880 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 881 break; 882 } 883 case Type::FunctionTyID: { 884 FunctionType *FT = cast<FunctionType>(T); 885 // FUNCTION: [isvararg, retty, paramty x N] 886 Code = bitc::TYPE_CODE_FUNCTION; 887 TypeVals.push_back(FT->isVarArg()); 888 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 889 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 890 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 891 AbbrevToUse = FunctionAbbrev; 892 break; 893 } 894 case Type::StructTyID: { 895 StructType *ST = cast<StructType>(T); 896 // STRUCT: [ispacked, eltty x N] 897 TypeVals.push_back(ST->isPacked()); 898 // Output all of the element types. 899 for (StructType::element_iterator I = ST->element_begin(), 900 E = ST->element_end(); I != E; ++I) 901 TypeVals.push_back(VE.getTypeID(*I)); 902 903 if (ST->isLiteral()) { 904 Code = bitc::TYPE_CODE_STRUCT_ANON; 905 AbbrevToUse = StructAnonAbbrev; 906 } else { 907 if (ST->isOpaque()) { 908 Code = bitc::TYPE_CODE_OPAQUE; 909 } else { 910 Code = bitc::TYPE_CODE_STRUCT_NAMED; 911 AbbrevToUse = StructNamedAbbrev; 912 } 913 914 // Emit the name if it is present. 915 if (!ST->getName().empty()) 916 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 917 StructNameAbbrev); 918 } 919 break; 920 } 921 case Type::ArrayTyID: { 922 ArrayType *AT = cast<ArrayType>(T); 923 // ARRAY: [numelts, eltty] 924 Code = bitc::TYPE_CODE_ARRAY; 925 TypeVals.push_back(AT->getNumElements()); 926 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 927 AbbrevToUse = ArrayAbbrev; 928 break; 929 } 930 case Type::VectorTyID: { 931 VectorType *VT = cast<VectorType>(T); 932 // VECTOR [numelts, eltty] 933 Code = bitc::TYPE_CODE_VECTOR; 934 TypeVals.push_back(VT->getNumElements()); 935 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 936 break; 937 } 938 } 939 940 // Emit the finished record. 941 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 942 TypeVals.clear(); 943 } 944 945 Stream.ExitBlock(); 946 } 947 948 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 949 switch (Linkage) { 950 case GlobalValue::ExternalLinkage: 951 return 0; 952 case GlobalValue::WeakAnyLinkage: 953 return 16; 954 case GlobalValue::AppendingLinkage: 955 return 2; 956 case GlobalValue::InternalLinkage: 957 return 3; 958 case GlobalValue::LinkOnceAnyLinkage: 959 return 18; 960 case GlobalValue::ExternalWeakLinkage: 961 return 7; 962 case GlobalValue::CommonLinkage: 963 return 8; 964 case GlobalValue::PrivateLinkage: 965 return 9; 966 case GlobalValue::WeakODRLinkage: 967 return 17; 968 case GlobalValue::LinkOnceODRLinkage: 969 return 19; 970 case GlobalValue::AvailableExternallyLinkage: 971 return 12; 972 } 973 llvm_unreachable("Invalid linkage"); 974 } 975 976 static unsigned getEncodedLinkage(const GlobalValue &GV) { 977 return getEncodedLinkage(GV.getLinkage()); 978 } 979 980 // Decode the flags for GlobalValue in the summary 981 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 982 uint64_t RawFlags = 0; 983 984 RawFlags |= Flags.NotEligibleToImport; // bool 985 RawFlags |= (Flags.LiveRoot << 1); 986 // Linkage don't need to be remapped at that time for the summary. Any future 987 // change to the getEncodedLinkage() function will need to be taken into 988 // account here as well. 989 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 990 991 return RawFlags; 992 } 993 994 static unsigned getEncodedVisibility(const GlobalValue &GV) { 995 switch (GV.getVisibility()) { 996 case GlobalValue::DefaultVisibility: return 0; 997 case GlobalValue::HiddenVisibility: return 1; 998 case GlobalValue::ProtectedVisibility: return 2; 999 } 1000 llvm_unreachable("Invalid visibility"); 1001 } 1002 1003 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1004 switch (GV.getDLLStorageClass()) { 1005 case GlobalValue::DefaultStorageClass: return 0; 1006 case GlobalValue::DLLImportStorageClass: return 1; 1007 case GlobalValue::DLLExportStorageClass: return 2; 1008 } 1009 llvm_unreachable("Invalid DLL storage class"); 1010 } 1011 1012 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1013 switch (GV.getThreadLocalMode()) { 1014 case GlobalVariable::NotThreadLocal: return 0; 1015 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1016 case GlobalVariable::LocalDynamicTLSModel: return 2; 1017 case GlobalVariable::InitialExecTLSModel: return 3; 1018 case GlobalVariable::LocalExecTLSModel: return 4; 1019 } 1020 llvm_unreachable("Invalid TLS model"); 1021 } 1022 1023 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1024 switch (C.getSelectionKind()) { 1025 case Comdat::Any: 1026 return bitc::COMDAT_SELECTION_KIND_ANY; 1027 case Comdat::ExactMatch: 1028 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1029 case Comdat::Largest: 1030 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1031 case Comdat::NoDuplicates: 1032 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1033 case Comdat::SameSize: 1034 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1035 } 1036 llvm_unreachable("Invalid selection kind"); 1037 } 1038 1039 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1040 switch (GV.getUnnamedAddr()) { 1041 case GlobalValue::UnnamedAddr::None: return 0; 1042 case GlobalValue::UnnamedAddr::Local: return 2; 1043 case GlobalValue::UnnamedAddr::Global: return 1; 1044 } 1045 llvm_unreachable("Invalid unnamed_addr"); 1046 } 1047 1048 void ModuleBitcodeWriter::writeComdats() { 1049 SmallVector<unsigned, 64> Vals; 1050 for (const Comdat *C : VE.getComdats()) { 1051 // COMDAT: [selection_kind, name] 1052 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1053 size_t Size = C->getName().size(); 1054 assert(isUInt<32>(Size)); 1055 Vals.push_back(Size); 1056 for (char Chr : C->getName()) 1057 Vals.push_back((unsigned char)Chr); 1058 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1059 Vals.clear(); 1060 } 1061 } 1062 1063 /// Write a record that will eventually hold the word offset of the 1064 /// module-level VST. For now the offset is 0, which will be backpatched 1065 /// after the real VST is written. Saves the bit offset to backpatch. 1066 void BitcodeWriterBase::writeValueSymbolTableForwardDecl() { 1067 // Write a placeholder value in for the offset of the real VST, 1068 // which is written after the function blocks so that it can include 1069 // the offset of each function. The placeholder offset will be 1070 // updated when the real VST is written. 1071 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1072 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1073 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1074 // hold the real VST offset. Must use fixed instead of VBR as we don't 1075 // know how many VBR chunks to reserve ahead of time. 1076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1077 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1078 1079 // Emit the placeholder 1080 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1081 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1082 1083 // Compute and save the bit offset to the placeholder, which will be 1084 // patched when the real VST is written. We can simply subtract the 32-bit 1085 // fixed size from the current bit number to get the location to backpatch. 1086 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1087 } 1088 1089 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1090 1091 /// Determine the encoding to use for the given string name and length. 1092 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1093 bool isChar6 = true; 1094 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1095 if (isChar6) 1096 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1097 if ((unsigned char)*C & 128) 1098 // don't bother scanning the rest. 1099 return SE_Fixed8; 1100 } 1101 if (isChar6) 1102 return SE_Char6; 1103 else 1104 return SE_Fixed7; 1105 } 1106 1107 /// Emit top-level description of module, including target triple, inline asm, 1108 /// descriptors for global variables, and function prototype info. 1109 /// Returns the bit offset to backpatch with the location of the real VST. 1110 void ModuleBitcodeWriter::writeModuleInfo() { 1111 // Emit various pieces of data attached to a module. 1112 if (!M.getTargetTriple().empty()) 1113 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1114 0 /*TODO*/); 1115 const std::string &DL = M.getDataLayoutStr(); 1116 if (!DL.empty()) 1117 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1118 if (!M.getModuleInlineAsm().empty()) 1119 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1120 0 /*TODO*/); 1121 1122 // Emit information about sections and GC, computing how many there are. Also 1123 // compute the maximum alignment value. 1124 std::map<std::string, unsigned> SectionMap; 1125 std::map<std::string, unsigned> GCMap; 1126 unsigned MaxAlignment = 0; 1127 unsigned MaxGlobalType = 0; 1128 for (const GlobalValue &GV : M.globals()) { 1129 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1130 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1131 if (GV.hasSection()) { 1132 // Give section names unique ID's. 1133 unsigned &Entry = SectionMap[GV.getSection()]; 1134 if (!Entry) { 1135 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1136 0 /*TODO*/); 1137 Entry = SectionMap.size(); 1138 } 1139 } 1140 } 1141 for (const Function &F : M) { 1142 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1143 if (F.hasSection()) { 1144 // Give section names unique ID's. 1145 unsigned &Entry = SectionMap[F.getSection()]; 1146 if (!Entry) { 1147 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1148 0 /*TODO*/); 1149 Entry = SectionMap.size(); 1150 } 1151 } 1152 if (F.hasGC()) { 1153 // Same for GC names. 1154 unsigned &Entry = GCMap[F.getGC()]; 1155 if (!Entry) { 1156 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1157 0 /*TODO*/); 1158 Entry = GCMap.size(); 1159 } 1160 } 1161 } 1162 1163 // Emit abbrev for globals, now that we know # sections and max alignment. 1164 unsigned SimpleGVarAbbrev = 0; 1165 if (!M.global_empty()) { 1166 // Add an abbrev for common globals with no visibility or thread localness. 1167 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1168 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1170 Log2_32_Ceil(MaxGlobalType+1))); 1171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1172 //| explicitType << 1 1173 //| constant 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1176 if (MaxAlignment == 0) // Alignment. 1177 Abbv->Add(BitCodeAbbrevOp(0)); 1178 else { 1179 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1181 Log2_32_Ceil(MaxEncAlignment+1))); 1182 } 1183 if (SectionMap.empty()) // Section. 1184 Abbv->Add(BitCodeAbbrevOp(0)); 1185 else 1186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1187 Log2_32_Ceil(SectionMap.size()+1))); 1188 // Don't bother emitting vis + thread local. 1189 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1190 } 1191 1192 // Emit the global variable information. 1193 SmallVector<unsigned, 64> Vals; 1194 for (const GlobalVariable &GV : M.globals()) { 1195 unsigned AbbrevToUse = 0; 1196 1197 // GLOBALVAR: [type, isconst, initid, 1198 // linkage, alignment, section, visibility, threadlocal, 1199 // unnamed_addr, externally_initialized, dllstorageclass, 1200 // comdat] 1201 Vals.push_back(VE.getTypeID(GV.getValueType())); 1202 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1203 Vals.push_back(GV.isDeclaration() ? 0 : 1204 (VE.getValueID(GV.getInitializer()) + 1)); 1205 Vals.push_back(getEncodedLinkage(GV)); 1206 Vals.push_back(Log2_32(GV.getAlignment())+1); 1207 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1208 if (GV.isThreadLocal() || 1209 GV.getVisibility() != GlobalValue::DefaultVisibility || 1210 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1211 GV.isExternallyInitialized() || 1212 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1213 GV.hasComdat()) { 1214 Vals.push_back(getEncodedVisibility(GV)); 1215 Vals.push_back(getEncodedThreadLocalMode(GV)); 1216 Vals.push_back(getEncodedUnnamedAddr(GV)); 1217 Vals.push_back(GV.isExternallyInitialized()); 1218 Vals.push_back(getEncodedDLLStorageClass(GV)); 1219 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1220 } else { 1221 AbbrevToUse = SimpleGVarAbbrev; 1222 } 1223 1224 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1225 Vals.clear(); 1226 } 1227 1228 // Emit the function proto information. 1229 for (const Function &F : M) { 1230 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1231 // section, visibility, gc, unnamed_addr, prologuedata, 1232 // dllstorageclass, comdat, prefixdata, personalityfn] 1233 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1234 Vals.push_back(F.getCallingConv()); 1235 Vals.push_back(F.isDeclaration()); 1236 Vals.push_back(getEncodedLinkage(F)); 1237 Vals.push_back(VE.getAttributeID(F.getAttributes())); 1238 Vals.push_back(Log2_32(F.getAlignment())+1); 1239 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1240 Vals.push_back(getEncodedVisibility(F)); 1241 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1242 Vals.push_back(getEncodedUnnamedAddr(F)); 1243 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1244 : 0); 1245 Vals.push_back(getEncodedDLLStorageClass(F)); 1246 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1247 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1248 : 0); 1249 Vals.push_back( 1250 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1251 1252 unsigned AbbrevToUse = 0; 1253 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1254 Vals.clear(); 1255 } 1256 1257 // Emit the alias information. 1258 for (const GlobalAlias &A : M.aliases()) { 1259 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass, 1260 // threadlocal, unnamed_addr] 1261 Vals.push_back(VE.getTypeID(A.getValueType())); 1262 Vals.push_back(A.getType()->getAddressSpace()); 1263 Vals.push_back(VE.getValueID(A.getAliasee())); 1264 Vals.push_back(getEncodedLinkage(A)); 1265 Vals.push_back(getEncodedVisibility(A)); 1266 Vals.push_back(getEncodedDLLStorageClass(A)); 1267 Vals.push_back(getEncodedThreadLocalMode(A)); 1268 Vals.push_back(getEncodedUnnamedAddr(A)); 1269 unsigned AbbrevToUse = 0; 1270 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1271 Vals.clear(); 1272 } 1273 1274 // Emit the ifunc information. 1275 for (const GlobalIFunc &I : M.ifuncs()) { 1276 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 1277 Vals.push_back(VE.getTypeID(I.getValueType())); 1278 Vals.push_back(I.getType()->getAddressSpace()); 1279 Vals.push_back(VE.getValueID(I.getResolver())); 1280 Vals.push_back(getEncodedLinkage(I)); 1281 Vals.push_back(getEncodedVisibility(I)); 1282 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1283 Vals.clear(); 1284 } 1285 1286 // Emit the module's source file name. 1287 { 1288 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1289 M.getSourceFileName().size()); 1290 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1291 if (Bits == SE_Char6) 1292 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1293 else if (Bits == SE_Fixed7) 1294 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1295 1296 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1297 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1298 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1300 Abbv->Add(AbbrevOpToUse); 1301 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1302 1303 for (const auto P : M.getSourceFileName()) 1304 Vals.push_back((unsigned char)P); 1305 1306 // Emit the finished record. 1307 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1308 Vals.clear(); 1309 } 1310 1311 // If we have a VST, write the VSTOFFSET record placeholder. 1312 if (M.getValueSymbolTable().empty()) 1313 return; 1314 writeValueSymbolTableForwardDecl(); 1315 } 1316 1317 static uint64_t getOptimizationFlags(const Value *V) { 1318 uint64_t Flags = 0; 1319 1320 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1321 if (OBO->hasNoSignedWrap()) 1322 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1323 if (OBO->hasNoUnsignedWrap()) 1324 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1325 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1326 if (PEO->isExact()) 1327 Flags |= 1 << bitc::PEO_EXACT; 1328 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1329 if (FPMO->hasUnsafeAlgebra()) 1330 Flags |= FastMathFlags::UnsafeAlgebra; 1331 if (FPMO->hasNoNaNs()) 1332 Flags |= FastMathFlags::NoNaNs; 1333 if (FPMO->hasNoInfs()) 1334 Flags |= FastMathFlags::NoInfs; 1335 if (FPMO->hasNoSignedZeros()) 1336 Flags |= FastMathFlags::NoSignedZeros; 1337 if (FPMO->hasAllowReciprocal()) 1338 Flags |= FastMathFlags::AllowReciprocal; 1339 } 1340 1341 return Flags; 1342 } 1343 1344 void ModuleBitcodeWriter::writeValueAsMetadata( 1345 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1346 // Mimic an MDNode with a value as one operand. 1347 Value *V = MD->getValue(); 1348 Record.push_back(VE.getTypeID(V->getType())); 1349 Record.push_back(VE.getValueID(V)); 1350 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1351 Record.clear(); 1352 } 1353 1354 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1355 SmallVectorImpl<uint64_t> &Record, 1356 unsigned Abbrev) { 1357 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1358 Metadata *MD = N->getOperand(i); 1359 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1360 "Unexpected function-local metadata"); 1361 Record.push_back(VE.getMetadataOrNullID(MD)); 1362 } 1363 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1364 : bitc::METADATA_NODE, 1365 Record, Abbrev); 1366 Record.clear(); 1367 } 1368 1369 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1370 // Assume the column is usually under 128, and always output the inlined-at 1371 // location (it's never more expensive than building an array size 1). 1372 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1373 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1379 return Stream.EmitAbbrev(std::move(Abbv)); 1380 } 1381 1382 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1383 SmallVectorImpl<uint64_t> &Record, 1384 unsigned &Abbrev) { 1385 if (!Abbrev) 1386 Abbrev = createDILocationAbbrev(); 1387 1388 Record.push_back(N->isDistinct()); 1389 Record.push_back(N->getLine()); 1390 Record.push_back(N->getColumn()); 1391 Record.push_back(VE.getMetadataID(N->getScope())); 1392 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1393 1394 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1395 Record.clear(); 1396 } 1397 1398 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1399 // Assume the column is usually under 128, and always output the inlined-at 1400 // location (it's never more expensive than building an array size 1). 1401 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1402 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1409 return Stream.EmitAbbrev(std::move(Abbv)); 1410 } 1411 1412 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1413 SmallVectorImpl<uint64_t> &Record, 1414 unsigned &Abbrev) { 1415 if (!Abbrev) 1416 Abbrev = createGenericDINodeAbbrev(); 1417 1418 Record.push_back(N->isDistinct()); 1419 Record.push_back(N->getTag()); 1420 Record.push_back(0); // Per-tag version field; unused for now. 1421 1422 for (auto &I : N->operands()) 1423 Record.push_back(VE.getMetadataOrNullID(I)); 1424 1425 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1426 Record.clear(); 1427 } 1428 1429 static uint64_t rotateSign(int64_t I) { 1430 uint64_t U = I; 1431 return I < 0 ? ~(U << 1) : U << 1; 1432 } 1433 1434 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1435 SmallVectorImpl<uint64_t> &Record, 1436 unsigned Abbrev) { 1437 Record.push_back(N->isDistinct()); 1438 Record.push_back(N->getCount()); 1439 Record.push_back(rotateSign(N->getLowerBound())); 1440 1441 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1442 Record.clear(); 1443 } 1444 1445 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1446 SmallVectorImpl<uint64_t> &Record, 1447 unsigned Abbrev) { 1448 Record.push_back(N->isDistinct()); 1449 Record.push_back(rotateSign(N->getValue())); 1450 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1451 1452 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1453 Record.clear(); 1454 } 1455 1456 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1457 SmallVectorImpl<uint64_t> &Record, 1458 unsigned Abbrev) { 1459 Record.push_back(N->isDistinct()); 1460 Record.push_back(N->getTag()); 1461 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1462 Record.push_back(N->getSizeInBits()); 1463 Record.push_back(N->getAlignInBits()); 1464 Record.push_back(N->getEncoding()); 1465 1466 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1467 Record.clear(); 1468 } 1469 1470 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1471 SmallVectorImpl<uint64_t> &Record, 1472 unsigned Abbrev) { 1473 Record.push_back(N->isDistinct()); 1474 Record.push_back(N->getTag()); 1475 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1476 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1477 Record.push_back(N->getLine()); 1478 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1479 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1480 Record.push_back(N->getSizeInBits()); 1481 Record.push_back(N->getAlignInBits()); 1482 Record.push_back(N->getOffsetInBits()); 1483 Record.push_back(N->getFlags()); 1484 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1485 1486 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1487 // that there is no DWARF address space associated with DIDerivedType. 1488 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1489 Record.push_back(*DWARFAddressSpace + 1); 1490 else 1491 Record.push_back(0); 1492 1493 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1494 Record.clear(); 1495 } 1496 1497 void ModuleBitcodeWriter::writeDICompositeType( 1498 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1499 unsigned Abbrev) { 1500 const unsigned IsNotUsedInOldTypeRef = 0x2; 1501 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1502 Record.push_back(N->getTag()); 1503 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1504 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1505 Record.push_back(N->getLine()); 1506 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1507 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1508 Record.push_back(N->getSizeInBits()); 1509 Record.push_back(N->getAlignInBits()); 1510 Record.push_back(N->getOffsetInBits()); 1511 Record.push_back(N->getFlags()); 1512 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1513 Record.push_back(N->getRuntimeLang()); 1514 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1515 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1516 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1517 1518 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1519 Record.clear(); 1520 } 1521 1522 void ModuleBitcodeWriter::writeDISubroutineType( 1523 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1524 unsigned Abbrev) { 1525 const unsigned HasNoOldTypeRefs = 0x2; 1526 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1527 Record.push_back(N->getFlags()); 1528 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1529 Record.push_back(N->getCC()); 1530 1531 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1532 Record.clear(); 1533 } 1534 1535 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1536 SmallVectorImpl<uint64_t> &Record, 1537 unsigned Abbrev) { 1538 Record.push_back(N->isDistinct()); 1539 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1540 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1541 Record.push_back(N->getChecksumKind()); 1542 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1543 1544 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1545 Record.clear(); 1546 } 1547 1548 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1549 SmallVectorImpl<uint64_t> &Record, 1550 unsigned Abbrev) { 1551 assert(N->isDistinct() && "Expected distinct compile units"); 1552 Record.push_back(/* IsDistinct */ true); 1553 Record.push_back(N->getSourceLanguage()); 1554 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1555 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1556 Record.push_back(N->isOptimized()); 1557 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1558 Record.push_back(N->getRuntimeVersion()); 1559 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1560 Record.push_back(N->getEmissionKind()); 1561 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1562 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1563 Record.push_back(/* subprograms */ 0); 1564 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1565 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1566 Record.push_back(N->getDWOId()); 1567 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1568 Record.push_back(N->getSplitDebugInlining()); 1569 Record.push_back(N->getDebugInfoForProfiling()); 1570 1571 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1572 Record.clear(); 1573 } 1574 1575 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1576 SmallVectorImpl<uint64_t> &Record, 1577 unsigned Abbrev) { 1578 uint64_t HasUnitFlag = 1 << 1; 1579 Record.push_back(N->isDistinct() | HasUnitFlag); 1580 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1581 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1582 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1583 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1584 Record.push_back(N->getLine()); 1585 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1586 Record.push_back(N->isLocalToUnit()); 1587 Record.push_back(N->isDefinition()); 1588 Record.push_back(N->getScopeLine()); 1589 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1590 Record.push_back(N->getVirtuality()); 1591 Record.push_back(N->getVirtualIndex()); 1592 Record.push_back(N->getFlags()); 1593 Record.push_back(N->isOptimized()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1596 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1598 Record.push_back(N->getThisAdjustment()); 1599 1600 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1601 Record.clear(); 1602 } 1603 1604 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1605 SmallVectorImpl<uint64_t> &Record, 1606 unsigned Abbrev) { 1607 Record.push_back(N->isDistinct()); 1608 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1609 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1610 Record.push_back(N->getLine()); 1611 Record.push_back(N->getColumn()); 1612 1613 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1614 Record.clear(); 1615 } 1616 1617 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1618 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1619 unsigned Abbrev) { 1620 Record.push_back(N->isDistinct()); 1621 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1622 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1623 Record.push_back(N->getDiscriminator()); 1624 1625 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1626 Record.clear(); 1627 } 1628 1629 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1630 SmallVectorImpl<uint64_t> &Record, 1631 unsigned Abbrev) { 1632 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1633 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1634 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1635 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1636 Record.push_back(N->getLine()); 1637 1638 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1639 Record.clear(); 1640 } 1641 1642 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1643 SmallVectorImpl<uint64_t> &Record, 1644 unsigned Abbrev) { 1645 Record.push_back(N->isDistinct()); 1646 Record.push_back(N->getMacinfoType()); 1647 Record.push_back(N->getLine()); 1648 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1649 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1650 1651 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1652 Record.clear(); 1653 } 1654 1655 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1656 SmallVectorImpl<uint64_t> &Record, 1657 unsigned Abbrev) { 1658 Record.push_back(N->isDistinct()); 1659 Record.push_back(N->getMacinfoType()); 1660 Record.push_back(N->getLine()); 1661 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1662 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1663 1664 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1665 Record.clear(); 1666 } 1667 1668 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1669 SmallVectorImpl<uint64_t> &Record, 1670 unsigned Abbrev) { 1671 Record.push_back(N->isDistinct()); 1672 for (auto &I : N->operands()) 1673 Record.push_back(VE.getMetadataOrNullID(I)); 1674 1675 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1676 Record.clear(); 1677 } 1678 1679 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1680 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1681 unsigned Abbrev) { 1682 Record.push_back(N->isDistinct()); 1683 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1684 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1685 1686 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1687 Record.clear(); 1688 } 1689 1690 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1691 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1692 unsigned Abbrev) { 1693 Record.push_back(N->isDistinct()); 1694 Record.push_back(N->getTag()); 1695 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1696 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1698 1699 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1700 Record.clear(); 1701 } 1702 1703 void ModuleBitcodeWriter::writeDIGlobalVariable( 1704 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1705 unsigned Abbrev) { 1706 const uint64_t Version = 1 << 1; 1707 Record.push_back((uint64_t)N->isDistinct() | Version); 1708 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1712 Record.push_back(N->getLine()); 1713 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1714 Record.push_back(N->isLocalToUnit()); 1715 Record.push_back(N->isDefinition()); 1716 Record.push_back(/* expr */ 0); 1717 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1718 Record.push_back(N->getAlignInBits()); 1719 1720 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1721 Record.clear(); 1722 } 1723 1724 void ModuleBitcodeWriter::writeDILocalVariable( 1725 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1726 unsigned Abbrev) { 1727 // In order to support all possible bitcode formats in BitcodeReader we need 1728 // to distinguish the following cases: 1729 // 1) Record has no artificial tag (Record[1]), 1730 // has no obsolete inlinedAt field (Record[9]). 1731 // In this case Record size will be 8, HasAlignment flag is false. 1732 // 2) Record has artificial tag (Record[1]), 1733 // has no obsolete inlignedAt field (Record[9]). 1734 // In this case Record size will be 9, HasAlignment flag is false. 1735 // 3) Record has both artificial tag (Record[1]) and 1736 // obsolete inlignedAt field (Record[9]). 1737 // In this case Record size will be 10, HasAlignment flag is false. 1738 // 4) Record has neither artificial tag, nor inlignedAt field, but 1739 // HasAlignment flag is true and Record[8] contains alignment value. 1740 const uint64_t HasAlignmentFlag = 1 << 1; 1741 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1742 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1743 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1744 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1745 Record.push_back(N->getLine()); 1746 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1747 Record.push_back(N->getArg()); 1748 Record.push_back(N->getFlags()); 1749 Record.push_back(N->getAlignInBits()); 1750 1751 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1752 Record.clear(); 1753 } 1754 1755 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1756 SmallVectorImpl<uint64_t> &Record, 1757 unsigned Abbrev) { 1758 Record.reserve(N->getElements().size() + 1); 1759 1760 const uint64_t HasOpFragmentFlag = 1 << 1; 1761 Record.push_back((uint64_t)N->isDistinct() | HasOpFragmentFlag); 1762 Record.append(N->elements_begin(), N->elements_end()); 1763 1764 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1765 Record.clear(); 1766 } 1767 1768 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1769 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1770 unsigned Abbrev) { 1771 Record.push_back(N->isDistinct()); 1772 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1773 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1774 1775 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1776 Record.clear(); 1777 } 1778 1779 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1780 SmallVectorImpl<uint64_t> &Record, 1781 unsigned Abbrev) { 1782 Record.push_back(N->isDistinct()); 1783 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1785 Record.push_back(N->getLine()); 1786 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1787 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1788 Record.push_back(N->getAttributes()); 1789 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1790 1791 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1792 Record.clear(); 1793 } 1794 1795 void ModuleBitcodeWriter::writeDIImportedEntity( 1796 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1797 unsigned Abbrev) { 1798 Record.push_back(N->isDistinct()); 1799 Record.push_back(N->getTag()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1802 Record.push_back(N->getLine()); 1803 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1804 1805 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1806 Record.clear(); 1807 } 1808 1809 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1810 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1811 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1814 return Stream.EmitAbbrev(std::move(Abbv)); 1815 } 1816 1817 void ModuleBitcodeWriter::writeNamedMetadata( 1818 SmallVectorImpl<uint64_t> &Record) { 1819 if (M.named_metadata_empty()) 1820 return; 1821 1822 unsigned Abbrev = createNamedMetadataAbbrev(); 1823 for (const NamedMDNode &NMD : M.named_metadata()) { 1824 // Write name. 1825 StringRef Str = NMD.getName(); 1826 Record.append(Str.bytes_begin(), Str.bytes_end()); 1827 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1828 Record.clear(); 1829 1830 // Write named metadata operands. 1831 for (const MDNode *N : NMD.operands()) 1832 Record.push_back(VE.getMetadataID(N)); 1833 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1834 Record.clear(); 1835 } 1836 } 1837 1838 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1839 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1840 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1844 return Stream.EmitAbbrev(std::move(Abbv)); 1845 } 1846 1847 /// Write out a record for MDString. 1848 /// 1849 /// All the metadata strings in a metadata block are emitted in a single 1850 /// record. The sizes and strings themselves are shoved into a blob. 1851 void ModuleBitcodeWriter::writeMetadataStrings( 1852 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1853 if (Strings.empty()) 1854 return; 1855 1856 // Start the record with the number of strings. 1857 Record.push_back(bitc::METADATA_STRINGS); 1858 Record.push_back(Strings.size()); 1859 1860 // Emit the sizes of the strings in the blob. 1861 SmallString<256> Blob; 1862 { 1863 BitstreamWriter W(Blob); 1864 for (const Metadata *MD : Strings) 1865 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1866 W.FlushToWord(); 1867 } 1868 1869 // Add the offset to the strings to the record. 1870 Record.push_back(Blob.size()); 1871 1872 // Add the strings to the blob. 1873 for (const Metadata *MD : Strings) 1874 Blob.append(cast<MDString>(MD)->getString()); 1875 1876 // Emit the final record. 1877 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1878 Record.clear(); 1879 } 1880 1881 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1882 enum MetadataAbbrev : unsigned { 1883 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1884 #include "llvm/IR/Metadata.def" 1885 LastPlusOne 1886 }; 1887 1888 void ModuleBitcodeWriter::writeMetadataRecords( 1889 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1890 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1891 if (MDs.empty()) 1892 return; 1893 1894 // Initialize MDNode abbreviations. 1895 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1896 #include "llvm/IR/Metadata.def" 1897 1898 for (const Metadata *MD : MDs) { 1899 if (IndexPos) 1900 IndexPos->push_back(Stream.GetCurrentBitNo()); 1901 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1902 assert(N->isResolved() && "Expected forward references to be resolved"); 1903 1904 switch (N->getMetadataID()) { 1905 default: 1906 llvm_unreachable("Invalid MDNode subclass"); 1907 #define HANDLE_MDNODE_LEAF(CLASS) \ 1908 case Metadata::CLASS##Kind: \ 1909 if (MDAbbrevs) \ 1910 write##CLASS(cast<CLASS>(N), Record, \ 1911 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1912 else \ 1913 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1914 continue; 1915 #include "llvm/IR/Metadata.def" 1916 } 1917 } 1918 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1919 } 1920 } 1921 1922 void ModuleBitcodeWriter::writeModuleMetadata() { 1923 if (!VE.hasMDs() && M.named_metadata_empty()) 1924 return; 1925 1926 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1927 SmallVector<uint64_t, 64> Record; 1928 1929 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1930 // block and load any metadata. 1931 std::vector<unsigned> MDAbbrevs; 1932 1933 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1934 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1935 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1936 createGenericDINodeAbbrev(); 1937 1938 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1939 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1942 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1943 1944 Abbv = std::make_shared<BitCodeAbbrev>(); 1945 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1948 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1949 1950 // Emit MDStrings together upfront. 1951 writeMetadataStrings(VE.getMDStrings(), Record); 1952 1953 // We only emit an index for the metadata record if we have more than a given 1954 // (naive) threshold of metadatas, otherwise it is not worth it. 1955 if (VE.getNonMDStrings().size() > IndexThreshold) { 1956 // Write a placeholder value in for the offset of the metadata index, 1957 // which is written after the records, so that it can include 1958 // the offset of each entry. The placeholder offset will be 1959 // updated after all records are emitted. 1960 uint64_t Vals[] = {0, 0}; 1961 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1962 } 1963 1964 // Compute and save the bit offset to the current position, which will be 1965 // patched when we emit the index later. We can simply subtract the 64-bit 1966 // fixed size from the current bit number to get the location to backpatch. 1967 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1968 1969 // This index will contain the bitpos for each individual record. 1970 std::vector<uint64_t> IndexPos; 1971 IndexPos.reserve(VE.getNonMDStrings().size()); 1972 1973 // Write all the records 1974 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1975 1976 if (VE.getNonMDStrings().size() > IndexThreshold) { 1977 // Now that we have emitted all the records we will emit the index. But 1978 // first 1979 // backpatch the forward reference so that the reader can skip the records 1980 // efficiently. 1981 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1982 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1983 1984 // Delta encode the index. 1985 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1986 for (auto &Elt : IndexPos) { 1987 auto EltDelta = Elt - PreviousValue; 1988 PreviousValue = Elt; 1989 Elt = EltDelta; 1990 } 1991 // Emit the index record. 1992 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1993 IndexPos.clear(); 1994 } 1995 1996 // Write the named metadata now. 1997 writeNamedMetadata(Record); 1998 1999 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2000 SmallVector<uint64_t, 4> Record; 2001 Record.push_back(VE.getValueID(&GO)); 2002 pushGlobalMetadataAttachment(Record, GO); 2003 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2004 }; 2005 for (const Function &F : M) 2006 if (F.isDeclaration() && F.hasMetadata()) 2007 AddDeclAttachedMetadata(F); 2008 // FIXME: Only store metadata for declarations here, and move data for global 2009 // variable definitions to a separate block (PR28134). 2010 for (const GlobalVariable &GV : M.globals()) 2011 if (GV.hasMetadata()) 2012 AddDeclAttachedMetadata(GV); 2013 2014 Stream.ExitBlock(); 2015 } 2016 2017 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2018 if (!VE.hasMDs()) 2019 return; 2020 2021 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2022 SmallVector<uint64_t, 64> Record; 2023 writeMetadataStrings(VE.getMDStrings(), Record); 2024 writeMetadataRecords(VE.getNonMDStrings(), Record); 2025 Stream.ExitBlock(); 2026 } 2027 2028 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2029 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2030 // [n x [id, mdnode]] 2031 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2032 GO.getAllMetadata(MDs); 2033 for (const auto &I : MDs) { 2034 Record.push_back(I.first); 2035 Record.push_back(VE.getMetadataID(I.second)); 2036 } 2037 } 2038 2039 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2040 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2041 2042 SmallVector<uint64_t, 64> Record; 2043 2044 if (F.hasMetadata()) { 2045 pushGlobalMetadataAttachment(Record, F); 2046 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2047 Record.clear(); 2048 } 2049 2050 // Write metadata attachments 2051 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2052 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2053 for (const BasicBlock &BB : F) 2054 for (const Instruction &I : BB) { 2055 MDs.clear(); 2056 I.getAllMetadataOtherThanDebugLoc(MDs); 2057 2058 // If no metadata, ignore instruction. 2059 if (MDs.empty()) continue; 2060 2061 Record.push_back(VE.getInstructionID(&I)); 2062 2063 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2064 Record.push_back(MDs[i].first); 2065 Record.push_back(VE.getMetadataID(MDs[i].second)); 2066 } 2067 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2068 Record.clear(); 2069 } 2070 2071 Stream.ExitBlock(); 2072 } 2073 2074 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2075 SmallVector<uint64_t, 64> Record; 2076 2077 // Write metadata kinds 2078 // METADATA_KIND - [n x [id, name]] 2079 SmallVector<StringRef, 8> Names; 2080 M.getMDKindNames(Names); 2081 2082 if (Names.empty()) return; 2083 2084 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2085 2086 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2087 Record.push_back(MDKindID); 2088 StringRef KName = Names[MDKindID]; 2089 Record.append(KName.begin(), KName.end()); 2090 2091 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2092 Record.clear(); 2093 } 2094 2095 Stream.ExitBlock(); 2096 } 2097 2098 void ModuleBitcodeWriter::writeOperandBundleTags() { 2099 // Write metadata kinds 2100 // 2101 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2102 // 2103 // OPERAND_BUNDLE_TAG - [strchr x N] 2104 2105 SmallVector<StringRef, 8> Tags; 2106 M.getOperandBundleTags(Tags); 2107 2108 if (Tags.empty()) 2109 return; 2110 2111 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2112 2113 SmallVector<uint64_t, 64> Record; 2114 2115 for (auto Tag : Tags) { 2116 Record.append(Tag.begin(), Tag.end()); 2117 2118 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2119 Record.clear(); 2120 } 2121 2122 Stream.ExitBlock(); 2123 } 2124 2125 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2126 if ((int64_t)V >= 0) 2127 Vals.push_back(V << 1); 2128 else 2129 Vals.push_back((-V << 1) | 1); 2130 } 2131 2132 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2133 bool isGlobal) { 2134 if (FirstVal == LastVal) return; 2135 2136 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2137 2138 unsigned AggregateAbbrev = 0; 2139 unsigned String8Abbrev = 0; 2140 unsigned CString7Abbrev = 0; 2141 unsigned CString6Abbrev = 0; 2142 // If this is a constant pool for the module, emit module-specific abbrevs. 2143 if (isGlobal) { 2144 // Abbrev for CST_CODE_AGGREGATE. 2145 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2146 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2149 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2150 2151 // Abbrev for CST_CODE_STRING. 2152 Abbv = std::make_shared<BitCodeAbbrev>(); 2153 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2156 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2157 // Abbrev for CST_CODE_CSTRING. 2158 Abbv = std::make_shared<BitCodeAbbrev>(); 2159 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2162 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2163 // Abbrev for CST_CODE_CSTRING. 2164 Abbv = std::make_shared<BitCodeAbbrev>(); 2165 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2168 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2169 } 2170 2171 SmallVector<uint64_t, 64> Record; 2172 2173 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2174 Type *LastTy = nullptr; 2175 for (unsigned i = FirstVal; i != LastVal; ++i) { 2176 const Value *V = Vals[i].first; 2177 // If we need to switch types, do so now. 2178 if (V->getType() != LastTy) { 2179 LastTy = V->getType(); 2180 Record.push_back(VE.getTypeID(LastTy)); 2181 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2182 CONSTANTS_SETTYPE_ABBREV); 2183 Record.clear(); 2184 } 2185 2186 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2187 Record.push_back(unsigned(IA->hasSideEffects()) | 2188 unsigned(IA->isAlignStack()) << 1 | 2189 unsigned(IA->getDialect()&1) << 2); 2190 2191 // Add the asm string. 2192 const std::string &AsmStr = IA->getAsmString(); 2193 Record.push_back(AsmStr.size()); 2194 Record.append(AsmStr.begin(), AsmStr.end()); 2195 2196 // Add the constraint string. 2197 const std::string &ConstraintStr = IA->getConstraintString(); 2198 Record.push_back(ConstraintStr.size()); 2199 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2200 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2201 Record.clear(); 2202 continue; 2203 } 2204 const Constant *C = cast<Constant>(V); 2205 unsigned Code = -1U; 2206 unsigned AbbrevToUse = 0; 2207 if (C->isNullValue()) { 2208 Code = bitc::CST_CODE_NULL; 2209 } else if (isa<UndefValue>(C)) { 2210 Code = bitc::CST_CODE_UNDEF; 2211 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2212 if (IV->getBitWidth() <= 64) { 2213 uint64_t V = IV->getSExtValue(); 2214 emitSignedInt64(Record, V); 2215 Code = bitc::CST_CODE_INTEGER; 2216 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2217 } else { // Wide integers, > 64 bits in size. 2218 // We have an arbitrary precision integer value to write whose 2219 // bit width is > 64. However, in canonical unsigned integer 2220 // format it is likely that the high bits are going to be zero. 2221 // So, we only write the number of active words. 2222 unsigned NWords = IV->getValue().getActiveWords(); 2223 const uint64_t *RawWords = IV->getValue().getRawData(); 2224 for (unsigned i = 0; i != NWords; ++i) { 2225 emitSignedInt64(Record, RawWords[i]); 2226 } 2227 Code = bitc::CST_CODE_WIDE_INTEGER; 2228 } 2229 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2230 Code = bitc::CST_CODE_FLOAT; 2231 Type *Ty = CFP->getType(); 2232 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2233 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2234 } else if (Ty->isX86_FP80Ty()) { 2235 // api needed to prevent premature destruction 2236 // bits are not in the same order as a normal i80 APInt, compensate. 2237 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2238 const uint64_t *p = api.getRawData(); 2239 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2240 Record.push_back(p[0] & 0xffffLL); 2241 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2242 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2243 const uint64_t *p = api.getRawData(); 2244 Record.push_back(p[0]); 2245 Record.push_back(p[1]); 2246 } else { 2247 assert (0 && "Unknown FP type!"); 2248 } 2249 } else if (isa<ConstantDataSequential>(C) && 2250 cast<ConstantDataSequential>(C)->isString()) { 2251 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2252 // Emit constant strings specially. 2253 unsigned NumElts = Str->getNumElements(); 2254 // If this is a null-terminated string, use the denser CSTRING encoding. 2255 if (Str->isCString()) { 2256 Code = bitc::CST_CODE_CSTRING; 2257 --NumElts; // Don't encode the null, which isn't allowed by char6. 2258 } else { 2259 Code = bitc::CST_CODE_STRING; 2260 AbbrevToUse = String8Abbrev; 2261 } 2262 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2263 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2264 for (unsigned i = 0; i != NumElts; ++i) { 2265 unsigned char V = Str->getElementAsInteger(i); 2266 Record.push_back(V); 2267 isCStr7 &= (V & 128) == 0; 2268 if (isCStrChar6) 2269 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2270 } 2271 2272 if (isCStrChar6) 2273 AbbrevToUse = CString6Abbrev; 2274 else if (isCStr7) 2275 AbbrevToUse = CString7Abbrev; 2276 } else if (const ConstantDataSequential *CDS = 2277 dyn_cast<ConstantDataSequential>(C)) { 2278 Code = bitc::CST_CODE_DATA; 2279 Type *EltTy = CDS->getType()->getElementType(); 2280 if (isa<IntegerType>(EltTy)) { 2281 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2282 Record.push_back(CDS->getElementAsInteger(i)); 2283 } else { 2284 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2285 Record.push_back( 2286 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2287 } 2288 } else if (isa<ConstantAggregate>(C)) { 2289 Code = bitc::CST_CODE_AGGREGATE; 2290 for (const Value *Op : C->operands()) 2291 Record.push_back(VE.getValueID(Op)); 2292 AbbrevToUse = AggregateAbbrev; 2293 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2294 switch (CE->getOpcode()) { 2295 default: 2296 if (Instruction::isCast(CE->getOpcode())) { 2297 Code = bitc::CST_CODE_CE_CAST; 2298 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2299 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2300 Record.push_back(VE.getValueID(C->getOperand(0))); 2301 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2302 } else { 2303 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2304 Code = bitc::CST_CODE_CE_BINOP; 2305 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2306 Record.push_back(VE.getValueID(C->getOperand(0))); 2307 Record.push_back(VE.getValueID(C->getOperand(1))); 2308 uint64_t Flags = getOptimizationFlags(CE); 2309 if (Flags != 0) 2310 Record.push_back(Flags); 2311 } 2312 break; 2313 case Instruction::GetElementPtr: { 2314 Code = bitc::CST_CODE_CE_GEP; 2315 const auto *GO = cast<GEPOperator>(C); 2316 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2317 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2318 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2319 Record.push_back((*Idx << 1) | GO->isInBounds()); 2320 } else if (GO->isInBounds()) 2321 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2322 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2323 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2324 Record.push_back(VE.getValueID(C->getOperand(i))); 2325 } 2326 break; 2327 } 2328 case Instruction::Select: 2329 Code = bitc::CST_CODE_CE_SELECT; 2330 Record.push_back(VE.getValueID(C->getOperand(0))); 2331 Record.push_back(VE.getValueID(C->getOperand(1))); 2332 Record.push_back(VE.getValueID(C->getOperand(2))); 2333 break; 2334 case Instruction::ExtractElement: 2335 Code = bitc::CST_CODE_CE_EXTRACTELT; 2336 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2337 Record.push_back(VE.getValueID(C->getOperand(0))); 2338 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2339 Record.push_back(VE.getValueID(C->getOperand(1))); 2340 break; 2341 case Instruction::InsertElement: 2342 Code = bitc::CST_CODE_CE_INSERTELT; 2343 Record.push_back(VE.getValueID(C->getOperand(0))); 2344 Record.push_back(VE.getValueID(C->getOperand(1))); 2345 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2346 Record.push_back(VE.getValueID(C->getOperand(2))); 2347 break; 2348 case Instruction::ShuffleVector: 2349 // If the return type and argument types are the same, this is a 2350 // standard shufflevector instruction. If the types are different, 2351 // then the shuffle is widening or truncating the input vectors, and 2352 // the argument type must also be encoded. 2353 if (C->getType() == C->getOperand(0)->getType()) { 2354 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2355 } else { 2356 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2357 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2358 } 2359 Record.push_back(VE.getValueID(C->getOperand(0))); 2360 Record.push_back(VE.getValueID(C->getOperand(1))); 2361 Record.push_back(VE.getValueID(C->getOperand(2))); 2362 break; 2363 case Instruction::ICmp: 2364 case Instruction::FCmp: 2365 Code = bitc::CST_CODE_CE_CMP; 2366 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2367 Record.push_back(VE.getValueID(C->getOperand(0))); 2368 Record.push_back(VE.getValueID(C->getOperand(1))); 2369 Record.push_back(CE->getPredicate()); 2370 break; 2371 } 2372 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2373 Code = bitc::CST_CODE_BLOCKADDRESS; 2374 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2375 Record.push_back(VE.getValueID(BA->getFunction())); 2376 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2377 } else { 2378 #ifndef NDEBUG 2379 C->dump(); 2380 #endif 2381 llvm_unreachable("Unknown constant!"); 2382 } 2383 Stream.EmitRecord(Code, Record, AbbrevToUse); 2384 Record.clear(); 2385 } 2386 2387 Stream.ExitBlock(); 2388 } 2389 2390 void ModuleBitcodeWriter::writeModuleConstants() { 2391 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2392 2393 // Find the first constant to emit, which is the first non-globalvalue value. 2394 // We know globalvalues have been emitted by WriteModuleInfo. 2395 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2396 if (!isa<GlobalValue>(Vals[i].first)) { 2397 writeConstants(i, Vals.size(), true); 2398 return; 2399 } 2400 } 2401 } 2402 2403 /// pushValueAndType - The file has to encode both the value and type id for 2404 /// many values, because we need to know what type to create for forward 2405 /// references. However, most operands are not forward references, so this type 2406 /// field is not needed. 2407 /// 2408 /// This function adds V's value ID to Vals. If the value ID is higher than the 2409 /// instruction ID, then it is a forward reference, and it also includes the 2410 /// type ID. The value ID that is written is encoded relative to the InstID. 2411 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2412 SmallVectorImpl<unsigned> &Vals) { 2413 unsigned ValID = VE.getValueID(V); 2414 // Make encoding relative to the InstID. 2415 Vals.push_back(InstID - ValID); 2416 if (ValID >= InstID) { 2417 Vals.push_back(VE.getTypeID(V->getType())); 2418 return true; 2419 } 2420 return false; 2421 } 2422 2423 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2424 unsigned InstID) { 2425 SmallVector<unsigned, 64> Record; 2426 LLVMContext &C = CS.getInstruction()->getContext(); 2427 2428 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2429 const auto &Bundle = CS.getOperandBundleAt(i); 2430 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2431 2432 for (auto &Input : Bundle.Inputs) 2433 pushValueAndType(Input, InstID, Record); 2434 2435 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2436 Record.clear(); 2437 } 2438 } 2439 2440 /// pushValue - Like pushValueAndType, but where the type of the value is 2441 /// omitted (perhaps it was already encoded in an earlier operand). 2442 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2443 SmallVectorImpl<unsigned> &Vals) { 2444 unsigned ValID = VE.getValueID(V); 2445 Vals.push_back(InstID - ValID); 2446 } 2447 2448 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2449 SmallVectorImpl<uint64_t> &Vals) { 2450 unsigned ValID = VE.getValueID(V); 2451 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2452 emitSignedInt64(Vals, diff); 2453 } 2454 2455 /// WriteInstruction - Emit an instruction to the specified stream. 2456 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2457 unsigned InstID, 2458 SmallVectorImpl<unsigned> &Vals) { 2459 unsigned Code = 0; 2460 unsigned AbbrevToUse = 0; 2461 VE.setInstructionID(&I); 2462 switch (I.getOpcode()) { 2463 default: 2464 if (Instruction::isCast(I.getOpcode())) { 2465 Code = bitc::FUNC_CODE_INST_CAST; 2466 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2467 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2468 Vals.push_back(VE.getTypeID(I.getType())); 2469 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2470 } else { 2471 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2472 Code = bitc::FUNC_CODE_INST_BINOP; 2473 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2474 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2475 pushValue(I.getOperand(1), InstID, Vals); 2476 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2477 uint64_t Flags = getOptimizationFlags(&I); 2478 if (Flags != 0) { 2479 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2480 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2481 Vals.push_back(Flags); 2482 } 2483 } 2484 break; 2485 2486 case Instruction::GetElementPtr: { 2487 Code = bitc::FUNC_CODE_INST_GEP; 2488 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2489 auto &GEPInst = cast<GetElementPtrInst>(I); 2490 Vals.push_back(GEPInst.isInBounds()); 2491 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2492 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2493 pushValueAndType(I.getOperand(i), InstID, Vals); 2494 break; 2495 } 2496 case Instruction::ExtractValue: { 2497 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2498 pushValueAndType(I.getOperand(0), InstID, Vals); 2499 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2500 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2501 break; 2502 } 2503 case Instruction::InsertValue: { 2504 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2505 pushValueAndType(I.getOperand(0), InstID, Vals); 2506 pushValueAndType(I.getOperand(1), InstID, Vals); 2507 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2508 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2509 break; 2510 } 2511 case Instruction::Select: 2512 Code = bitc::FUNC_CODE_INST_VSELECT; 2513 pushValueAndType(I.getOperand(1), InstID, Vals); 2514 pushValue(I.getOperand(2), InstID, Vals); 2515 pushValueAndType(I.getOperand(0), InstID, Vals); 2516 break; 2517 case Instruction::ExtractElement: 2518 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2519 pushValueAndType(I.getOperand(0), InstID, Vals); 2520 pushValueAndType(I.getOperand(1), InstID, Vals); 2521 break; 2522 case Instruction::InsertElement: 2523 Code = bitc::FUNC_CODE_INST_INSERTELT; 2524 pushValueAndType(I.getOperand(0), InstID, Vals); 2525 pushValue(I.getOperand(1), InstID, Vals); 2526 pushValueAndType(I.getOperand(2), InstID, Vals); 2527 break; 2528 case Instruction::ShuffleVector: 2529 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2530 pushValueAndType(I.getOperand(0), InstID, Vals); 2531 pushValue(I.getOperand(1), InstID, Vals); 2532 pushValue(I.getOperand(2), InstID, Vals); 2533 break; 2534 case Instruction::ICmp: 2535 case Instruction::FCmp: { 2536 // compare returning Int1Ty or vector of Int1Ty 2537 Code = bitc::FUNC_CODE_INST_CMP2; 2538 pushValueAndType(I.getOperand(0), InstID, Vals); 2539 pushValue(I.getOperand(1), InstID, Vals); 2540 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2541 uint64_t Flags = getOptimizationFlags(&I); 2542 if (Flags != 0) 2543 Vals.push_back(Flags); 2544 break; 2545 } 2546 2547 case Instruction::Ret: 2548 { 2549 Code = bitc::FUNC_CODE_INST_RET; 2550 unsigned NumOperands = I.getNumOperands(); 2551 if (NumOperands == 0) 2552 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2553 else if (NumOperands == 1) { 2554 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2555 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2556 } else { 2557 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2558 pushValueAndType(I.getOperand(i), InstID, Vals); 2559 } 2560 } 2561 break; 2562 case Instruction::Br: 2563 { 2564 Code = bitc::FUNC_CODE_INST_BR; 2565 const BranchInst &II = cast<BranchInst>(I); 2566 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2567 if (II.isConditional()) { 2568 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2569 pushValue(II.getCondition(), InstID, Vals); 2570 } 2571 } 2572 break; 2573 case Instruction::Switch: 2574 { 2575 Code = bitc::FUNC_CODE_INST_SWITCH; 2576 const SwitchInst &SI = cast<SwitchInst>(I); 2577 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2578 pushValue(SI.getCondition(), InstID, Vals); 2579 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2580 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2581 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2582 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2583 } 2584 } 2585 break; 2586 case Instruction::IndirectBr: 2587 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2588 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2589 // Encode the address operand as relative, but not the basic blocks. 2590 pushValue(I.getOperand(0), InstID, Vals); 2591 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2592 Vals.push_back(VE.getValueID(I.getOperand(i))); 2593 break; 2594 2595 case Instruction::Invoke: { 2596 const InvokeInst *II = cast<InvokeInst>(&I); 2597 const Value *Callee = II->getCalledValue(); 2598 FunctionType *FTy = II->getFunctionType(); 2599 2600 if (II->hasOperandBundles()) 2601 writeOperandBundles(II, InstID); 2602 2603 Code = bitc::FUNC_CODE_INST_INVOKE; 2604 2605 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2606 Vals.push_back(II->getCallingConv() | 1 << 13); 2607 Vals.push_back(VE.getValueID(II->getNormalDest())); 2608 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2609 Vals.push_back(VE.getTypeID(FTy)); 2610 pushValueAndType(Callee, InstID, Vals); 2611 2612 // Emit value #'s for the fixed parameters. 2613 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2614 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2615 2616 // Emit type/value pairs for varargs params. 2617 if (FTy->isVarArg()) { 2618 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2619 i != e; ++i) 2620 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2621 } 2622 break; 2623 } 2624 case Instruction::Resume: 2625 Code = bitc::FUNC_CODE_INST_RESUME; 2626 pushValueAndType(I.getOperand(0), InstID, Vals); 2627 break; 2628 case Instruction::CleanupRet: { 2629 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2630 const auto &CRI = cast<CleanupReturnInst>(I); 2631 pushValue(CRI.getCleanupPad(), InstID, Vals); 2632 if (CRI.hasUnwindDest()) 2633 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2634 break; 2635 } 2636 case Instruction::CatchRet: { 2637 Code = bitc::FUNC_CODE_INST_CATCHRET; 2638 const auto &CRI = cast<CatchReturnInst>(I); 2639 pushValue(CRI.getCatchPad(), InstID, Vals); 2640 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2641 break; 2642 } 2643 case Instruction::CleanupPad: 2644 case Instruction::CatchPad: { 2645 const auto &FuncletPad = cast<FuncletPadInst>(I); 2646 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2647 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2648 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2649 2650 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2651 Vals.push_back(NumArgOperands); 2652 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2653 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2654 break; 2655 } 2656 case Instruction::CatchSwitch: { 2657 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2658 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2659 2660 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2661 2662 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2663 Vals.push_back(NumHandlers); 2664 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2665 Vals.push_back(VE.getValueID(CatchPadBB)); 2666 2667 if (CatchSwitch.hasUnwindDest()) 2668 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2669 break; 2670 } 2671 case Instruction::Unreachable: 2672 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2673 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2674 break; 2675 2676 case Instruction::PHI: { 2677 const PHINode &PN = cast<PHINode>(I); 2678 Code = bitc::FUNC_CODE_INST_PHI; 2679 // With the newer instruction encoding, forward references could give 2680 // negative valued IDs. This is most common for PHIs, so we use 2681 // signed VBRs. 2682 SmallVector<uint64_t, 128> Vals64; 2683 Vals64.push_back(VE.getTypeID(PN.getType())); 2684 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2685 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2686 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2687 } 2688 // Emit a Vals64 vector and exit. 2689 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2690 Vals64.clear(); 2691 return; 2692 } 2693 2694 case Instruction::LandingPad: { 2695 const LandingPadInst &LP = cast<LandingPadInst>(I); 2696 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2697 Vals.push_back(VE.getTypeID(LP.getType())); 2698 Vals.push_back(LP.isCleanup()); 2699 Vals.push_back(LP.getNumClauses()); 2700 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2701 if (LP.isCatch(I)) 2702 Vals.push_back(LandingPadInst::Catch); 2703 else 2704 Vals.push_back(LandingPadInst::Filter); 2705 pushValueAndType(LP.getClause(I), InstID, Vals); 2706 } 2707 break; 2708 } 2709 2710 case Instruction::Alloca: { 2711 Code = bitc::FUNC_CODE_INST_ALLOCA; 2712 const AllocaInst &AI = cast<AllocaInst>(I); 2713 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2714 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2715 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2716 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2717 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2718 "not enough bits for maximum alignment"); 2719 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2720 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2721 AlignRecord |= 1 << 6; 2722 AlignRecord |= AI.isSwiftError() << 7; 2723 Vals.push_back(AlignRecord); 2724 break; 2725 } 2726 2727 case Instruction::Load: 2728 if (cast<LoadInst>(I).isAtomic()) { 2729 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2730 pushValueAndType(I.getOperand(0), InstID, Vals); 2731 } else { 2732 Code = bitc::FUNC_CODE_INST_LOAD; 2733 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2734 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2735 } 2736 Vals.push_back(VE.getTypeID(I.getType())); 2737 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2738 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2739 if (cast<LoadInst>(I).isAtomic()) { 2740 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2741 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2742 } 2743 break; 2744 case Instruction::Store: 2745 if (cast<StoreInst>(I).isAtomic()) 2746 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2747 else 2748 Code = bitc::FUNC_CODE_INST_STORE; 2749 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2750 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2751 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2752 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2753 if (cast<StoreInst>(I).isAtomic()) { 2754 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2755 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2756 } 2757 break; 2758 case Instruction::AtomicCmpXchg: 2759 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2760 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2761 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2762 pushValue(I.getOperand(2), InstID, Vals); // newval. 2763 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2764 Vals.push_back( 2765 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2766 Vals.push_back( 2767 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2768 Vals.push_back( 2769 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2770 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2771 break; 2772 case Instruction::AtomicRMW: 2773 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2774 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2775 pushValue(I.getOperand(1), InstID, Vals); // val. 2776 Vals.push_back( 2777 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2778 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2779 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2780 Vals.push_back( 2781 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2782 break; 2783 case Instruction::Fence: 2784 Code = bitc::FUNC_CODE_INST_FENCE; 2785 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2786 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2787 break; 2788 case Instruction::Call: { 2789 const CallInst &CI = cast<CallInst>(I); 2790 FunctionType *FTy = CI.getFunctionType(); 2791 2792 if (CI.hasOperandBundles()) 2793 writeOperandBundles(&CI, InstID); 2794 2795 Code = bitc::FUNC_CODE_INST_CALL; 2796 2797 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2798 2799 unsigned Flags = getOptimizationFlags(&I); 2800 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2801 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2802 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2803 1 << bitc::CALL_EXPLICIT_TYPE | 2804 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2805 unsigned(Flags != 0) << bitc::CALL_FMF); 2806 if (Flags != 0) 2807 Vals.push_back(Flags); 2808 2809 Vals.push_back(VE.getTypeID(FTy)); 2810 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2811 2812 // Emit value #'s for the fixed parameters. 2813 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2814 // Check for labels (can happen with asm labels). 2815 if (FTy->getParamType(i)->isLabelTy()) 2816 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2817 else 2818 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2819 } 2820 2821 // Emit type/value pairs for varargs params. 2822 if (FTy->isVarArg()) { 2823 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2824 i != e; ++i) 2825 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2826 } 2827 break; 2828 } 2829 case Instruction::VAArg: 2830 Code = bitc::FUNC_CODE_INST_VAARG; 2831 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2832 pushValue(I.getOperand(0), InstID, Vals); // valist. 2833 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2834 break; 2835 } 2836 2837 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2838 Vals.clear(); 2839 } 2840 2841 /// Emit names for globals/functions etc. \p IsModuleLevel is true when 2842 /// we are writing the module-level VST, where we are including a function 2843 /// bitcode index and need to backpatch the VST forward declaration record. 2844 void ModuleBitcodeWriter::writeValueSymbolTable( 2845 const ValueSymbolTable &VST, bool IsModuleLevel, 2846 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) { 2847 if (VST.empty()) { 2848 // writeValueSymbolTableForwardDecl should have returned early as 2849 // well. Ensure this handling remains in sync by asserting that 2850 // the placeholder offset is not set. 2851 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder()); 2852 return; 2853 } 2854 2855 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2856 // Get the offset of the VST we are writing, and backpatch it into 2857 // the VST forward declaration record. 2858 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2859 // The BitcodeStartBit was the stream offset of the identification block. 2860 VSTOffset -= bitcodeStartBit(); 2861 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2862 // Note that we add 1 here because the offset is relative to one word 2863 // before the start of the identification block, which was historically 2864 // always the start of the regular bitcode header. 2865 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2866 } 2867 2868 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2869 2870 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2871 // records, which are not used in the per-function VSTs. 2872 unsigned FnEntry8BitAbbrev; 2873 unsigned FnEntry7BitAbbrev; 2874 unsigned FnEntry6BitAbbrev; 2875 unsigned GUIDEntryAbbrev; 2876 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2877 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2878 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2879 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2884 FnEntry8BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2885 2886 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2887 Abbv = std::make_shared<BitCodeAbbrev>(); 2888 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2893 FnEntry7BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2894 2895 // 6-bit char6 VST_CODE_FNENTRY function strings. 2896 Abbv = std::make_shared<BitCodeAbbrev>(); 2897 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2902 FnEntry6BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2903 2904 // FIXME: Change the name of this record as it is now used by 2905 // the per-module index as well. 2906 Abbv = std::make_shared<BitCodeAbbrev>(); 2907 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2910 GUIDEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2911 } 2912 2913 // FIXME: Set up the abbrev, we know how many values there are! 2914 // FIXME: We know if the type names can use 7-bit ascii. 2915 SmallVector<uint64_t, 64> NameVals; 2916 2917 for (const ValueName &Name : VST) { 2918 // Figure out the encoding to use for the name. 2919 StringEncoding Bits = 2920 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2921 2922 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2923 NameVals.push_back(VE.getValueID(Name.getValue())); 2924 2925 Function *F = dyn_cast<Function>(Name.getValue()); 2926 if (!F) { 2927 // If value is an alias, need to get the aliased base object to 2928 // see if it is a function. 2929 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2930 if (GA && GA->getBaseObject()) 2931 F = dyn_cast<Function>(GA->getBaseObject()); 2932 } 2933 2934 // VST_CODE_ENTRY: [valueid, namechar x N] 2935 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2936 // VST_CODE_BBENTRY: [bbid, namechar x N] 2937 unsigned Code; 2938 if (isa<BasicBlock>(Name.getValue())) { 2939 Code = bitc::VST_CODE_BBENTRY; 2940 if (Bits == SE_Char6) 2941 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2942 } else if (F && !F->isDeclaration()) { 2943 // Must be the module-level VST, where we pass in the Index and 2944 // have a VSTOffsetPlaceholder. The function-level VST should not 2945 // contain any Function symbols. 2946 assert(FunctionToBitcodeIndex); 2947 assert(hasVSTOffsetPlaceholder()); 2948 2949 // Save the word offset of the function (from the start of the 2950 // actual bitcode written to the stream). 2951 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit(); 2952 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2953 // Note that we add 1 here because the offset is relative to one word 2954 // before the start of the identification block, which was historically 2955 // always the start of the regular bitcode header. 2956 NameVals.push_back(BitcodeIndex / 32 + 1); 2957 2958 Code = bitc::VST_CODE_FNENTRY; 2959 AbbrevToUse = FnEntry8BitAbbrev; 2960 if (Bits == SE_Char6) 2961 AbbrevToUse = FnEntry6BitAbbrev; 2962 else if (Bits == SE_Fixed7) 2963 AbbrevToUse = FnEntry7BitAbbrev; 2964 } else { 2965 Code = bitc::VST_CODE_ENTRY; 2966 if (Bits == SE_Char6) 2967 AbbrevToUse = VST_ENTRY_6_ABBREV; 2968 else if (Bits == SE_Fixed7) 2969 AbbrevToUse = VST_ENTRY_7_ABBREV; 2970 } 2971 2972 for (const auto P : Name.getKey()) 2973 NameVals.push_back((unsigned char)P); 2974 2975 // Emit the finished record. 2976 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2977 NameVals.clear(); 2978 } 2979 // Emit any GUID valueIDs created for indirect call edges into the 2980 // module-level VST. 2981 if (IsModuleLevel && hasVSTOffsetPlaceholder()) 2982 for (const auto &GI : valueIds()) { 2983 NameVals.push_back(GI.second); 2984 NameVals.push_back(GI.first); 2985 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, 2986 GUIDEntryAbbrev); 2987 NameVals.clear(); 2988 } 2989 Stream.ExitBlock(); 2990 } 2991 2992 /// Emit function names and summary offsets for the combined index 2993 /// used by ThinLTO. 2994 void IndexBitcodeWriter::writeCombinedValueSymbolTable() { 2995 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"); 2996 // Get the offset of the VST we are writing, and backpatch it into 2997 // the VST forward declaration record. 2998 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2999 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3000 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 3001 3002 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3003 3004 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3005 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 3006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 3008 unsigned EntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3009 3010 SmallVector<uint64_t, 64> NameVals; 3011 for (const auto &GVI : valueIds()) { 3012 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 3013 NameVals.push_back(GVI.second); 3014 NameVals.push_back(GVI.first); 3015 3016 // Emit the finished record. 3017 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 3018 NameVals.clear(); 3019 } 3020 Stream.ExitBlock(); 3021 } 3022 3023 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3024 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3025 unsigned Code; 3026 if (isa<BasicBlock>(Order.V)) 3027 Code = bitc::USELIST_CODE_BB; 3028 else 3029 Code = bitc::USELIST_CODE_DEFAULT; 3030 3031 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3032 Record.push_back(VE.getValueID(Order.V)); 3033 Stream.EmitRecord(Code, Record); 3034 } 3035 3036 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3037 assert(VE.shouldPreserveUseListOrder() && 3038 "Expected to be preserving use-list order"); 3039 3040 auto hasMore = [&]() { 3041 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3042 }; 3043 if (!hasMore()) 3044 // Nothing to do. 3045 return; 3046 3047 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3048 while (hasMore()) { 3049 writeUseList(std::move(VE.UseListOrders.back())); 3050 VE.UseListOrders.pop_back(); 3051 } 3052 Stream.ExitBlock(); 3053 } 3054 3055 /// Emit a function body to the module stream. 3056 void ModuleBitcodeWriter::writeFunction( 3057 const Function &F, 3058 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3059 // Save the bitcode index of the start of this function block for recording 3060 // in the VST. 3061 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3062 3063 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3064 VE.incorporateFunction(F); 3065 3066 SmallVector<unsigned, 64> Vals; 3067 3068 // Emit the number of basic blocks, so the reader can create them ahead of 3069 // time. 3070 Vals.push_back(VE.getBasicBlocks().size()); 3071 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3072 Vals.clear(); 3073 3074 // If there are function-local constants, emit them now. 3075 unsigned CstStart, CstEnd; 3076 VE.getFunctionConstantRange(CstStart, CstEnd); 3077 writeConstants(CstStart, CstEnd, false); 3078 3079 // If there is function-local metadata, emit it now. 3080 writeFunctionMetadata(F); 3081 3082 // Keep a running idea of what the instruction ID is. 3083 unsigned InstID = CstEnd; 3084 3085 bool NeedsMetadataAttachment = F.hasMetadata(); 3086 3087 DILocation *LastDL = nullptr; 3088 // Finally, emit all the instructions, in order. 3089 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3090 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3091 I != E; ++I) { 3092 writeInstruction(*I, InstID, Vals); 3093 3094 if (!I->getType()->isVoidTy()) 3095 ++InstID; 3096 3097 // If the instruction has metadata, write a metadata attachment later. 3098 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3099 3100 // If the instruction has a debug location, emit it. 3101 DILocation *DL = I->getDebugLoc(); 3102 if (!DL) 3103 continue; 3104 3105 if (DL == LastDL) { 3106 // Just repeat the same debug loc as last time. 3107 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3108 continue; 3109 } 3110 3111 Vals.push_back(DL->getLine()); 3112 Vals.push_back(DL->getColumn()); 3113 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3114 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3115 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3116 Vals.clear(); 3117 3118 LastDL = DL; 3119 } 3120 3121 // Emit names for all the instructions etc. 3122 if (auto *Symtab = F.getValueSymbolTable()) 3123 writeValueSymbolTable(*Symtab); 3124 3125 if (NeedsMetadataAttachment) 3126 writeFunctionMetadataAttachment(F); 3127 if (VE.shouldPreserveUseListOrder()) 3128 writeUseListBlock(&F); 3129 VE.purgeFunction(); 3130 Stream.ExitBlock(); 3131 } 3132 3133 // Emit blockinfo, which defines the standard abbreviations etc. 3134 void ModuleBitcodeWriter::writeBlockInfo() { 3135 // We only want to emit block info records for blocks that have multiple 3136 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3137 // Other blocks can define their abbrevs inline. 3138 Stream.EnterBlockInfoBlock(); 3139 3140 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3141 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3146 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3147 VST_ENTRY_8_ABBREV) 3148 llvm_unreachable("Unexpected abbrev ordering!"); 3149 } 3150 3151 { // 7-bit fixed width VST_CODE_ENTRY strings. 3152 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3153 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3157 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3158 VST_ENTRY_7_ABBREV) 3159 llvm_unreachable("Unexpected abbrev ordering!"); 3160 } 3161 { // 6-bit char6 VST_CODE_ENTRY strings. 3162 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3163 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3167 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3168 VST_ENTRY_6_ABBREV) 3169 llvm_unreachable("Unexpected abbrev ordering!"); 3170 } 3171 { // 6-bit char6 VST_CODE_BBENTRY strings. 3172 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3173 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3177 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3178 VST_BBENTRY_6_ABBREV) 3179 llvm_unreachable("Unexpected abbrev ordering!"); 3180 } 3181 3182 3183 3184 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3185 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3186 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3188 VE.computeBitsRequiredForTypeIndicies())); 3189 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3190 CONSTANTS_SETTYPE_ABBREV) 3191 llvm_unreachable("Unexpected abbrev ordering!"); 3192 } 3193 3194 { // INTEGER abbrev for CONSTANTS_BLOCK. 3195 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3196 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3198 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3199 CONSTANTS_INTEGER_ABBREV) 3200 llvm_unreachable("Unexpected abbrev ordering!"); 3201 } 3202 3203 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3204 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3205 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3208 VE.computeBitsRequiredForTypeIndicies())); 3209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3210 3211 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3212 CONSTANTS_CE_CAST_Abbrev) 3213 llvm_unreachable("Unexpected abbrev ordering!"); 3214 } 3215 { // NULL abbrev for CONSTANTS_BLOCK. 3216 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3217 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3218 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3219 CONSTANTS_NULL_Abbrev) 3220 llvm_unreachable("Unexpected abbrev ordering!"); 3221 } 3222 3223 // FIXME: This should only use space for first class types! 3224 3225 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3226 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3227 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3230 VE.computeBitsRequiredForTypeIndicies())); 3231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3233 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3234 FUNCTION_INST_LOAD_ABBREV) 3235 llvm_unreachable("Unexpected abbrev ordering!"); 3236 } 3237 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3238 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3239 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3243 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3244 FUNCTION_INST_BINOP_ABBREV) 3245 llvm_unreachable("Unexpected abbrev ordering!"); 3246 } 3247 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3248 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3249 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3254 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3255 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3256 llvm_unreachable("Unexpected abbrev ordering!"); 3257 } 3258 { // INST_CAST abbrev for FUNCTION_BLOCK. 3259 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3260 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3263 VE.computeBitsRequiredForTypeIndicies())); 3264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3265 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3266 FUNCTION_INST_CAST_ABBREV) 3267 llvm_unreachable("Unexpected abbrev ordering!"); 3268 } 3269 3270 { // INST_RET abbrev for FUNCTION_BLOCK. 3271 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3272 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3273 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3274 FUNCTION_INST_RET_VOID_ABBREV) 3275 llvm_unreachable("Unexpected abbrev ordering!"); 3276 } 3277 { // INST_RET abbrev for FUNCTION_BLOCK. 3278 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3279 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3281 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3282 FUNCTION_INST_RET_VAL_ABBREV) 3283 llvm_unreachable("Unexpected abbrev ordering!"); 3284 } 3285 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3286 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3287 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3288 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3289 FUNCTION_INST_UNREACHABLE_ABBREV) 3290 llvm_unreachable("Unexpected abbrev ordering!"); 3291 } 3292 { 3293 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3294 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3297 Log2_32_Ceil(VE.getTypes().size() + 1))); 3298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3300 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3301 FUNCTION_INST_GEP_ABBREV) 3302 llvm_unreachable("Unexpected abbrev ordering!"); 3303 } 3304 3305 Stream.ExitBlock(); 3306 } 3307 3308 /// Write the module path strings, currently only used when generating 3309 /// a combined index file. 3310 void IndexBitcodeWriter::writeModStrings() { 3311 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3312 3313 // TODO: See which abbrev sizes we actually need to emit 3314 3315 // 8-bit fixed-width MST_ENTRY strings. 3316 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3317 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3321 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3322 3323 // 7-bit fixed width MST_ENTRY strings. 3324 Abbv = std::make_shared<BitCodeAbbrev>(); 3325 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3329 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3330 3331 // 6-bit char6 MST_ENTRY strings. 3332 Abbv = std::make_shared<BitCodeAbbrev>(); 3333 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3337 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3338 3339 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3340 Abbv = std::make_shared<BitCodeAbbrev>(); 3341 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3347 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3348 3349 SmallVector<unsigned, 64> Vals; 3350 for (const auto &MPSE : Index.modulePaths()) { 3351 if (!doIncludeModule(MPSE.getKey())) 3352 continue; 3353 StringEncoding Bits = 3354 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3355 unsigned AbbrevToUse = Abbrev8Bit; 3356 if (Bits == SE_Char6) 3357 AbbrevToUse = Abbrev6Bit; 3358 else if (Bits == SE_Fixed7) 3359 AbbrevToUse = Abbrev7Bit; 3360 3361 Vals.push_back(MPSE.getValue().first); 3362 3363 for (const auto P : MPSE.getKey()) 3364 Vals.push_back((unsigned char)P); 3365 3366 // Emit the finished record. 3367 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3368 3369 Vals.clear(); 3370 // Emit an optional hash for the module now 3371 auto &Hash = MPSE.getValue().second; 3372 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3373 for (auto Val : Hash) { 3374 if (Val) 3375 AllZero = false; 3376 Vals.push_back(Val); 3377 } 3378 if (!AllZero) { 3379 // Emit the hash record. 3380 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3381 } 3382 3383 Vals.clear(); 3384 } 3385 Stream.ExitBlock(); 3386 } 3387 3388 /// Write the function type metadata related records that need to appear before 3389 /// a function summary entry (whether per-module or combined). 3390 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3391 FunctionSummary *FS) { 3392 if (!FS->type_tests().empty()) 3393 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3394 3395 SmallVector<uint64_t, 64> Record; 3396 3397 auto WriteVFuncIdVec = [&](uint64_t Ty, 3398 ArrayRef<FunctionSummary::VFuncId> VFs) { 3399 if (VFs.empty()) 3400 return; 3401 Record.clear(); 3402 for (auto &VF : VFs) { 3403 Record.push_back(VF.GUID); 3404 Record.push_back(VF.Offset); 3405 } 3406 Stream.EmitRecord(Ty, Record); 3407 }; 3408 3409 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3410 FS->type_test_assume_vcalls()); 3411 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3412 FS->type_checked_load_vcalls()); 3413 3414 auto WriteConstVCallVec = [&](uint64_t Ty, 3415 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3416 for (auto &VC : VCs) { 3417 Record.clear(); 3418 Record.push_back(VC.VFunc.GUID); 3419 Record.push_back(VC.VFunc.Offset); 3420 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3421 Stream.EmitRecord(Ty, Record); 3422 } 3423 }; 3424 3425 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3426 FS->type_test_assume_const_vcalls()); 3427 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3428 FS->type_checked_load_const_vcalls()); 3429 } 3430 3431 // Helper to emit a single function summary record. 3432 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3433 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3434 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3435 const Function &F) { 3436 NameVals.push_back(ValueID); 3437 3438 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3439 writeFunctionTypeMetadataRecords(Stream, FS); 3440 3441 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3442 NameVals.push_back(FS->instCount()); 3443 NameVals.push_back(FS->refs().size()); 3444 3445 for (auto &RI : FS->refs()) 3446 NameVals.push_back(VE.getValueID(RI.getValue())); 3447 3448 bool HasProfileData = F.getEntryCount().hasValue(); 3449 for (auto &ECI : FS->calls()) { 3450 NameVals.push_back(getValueId(ECI.first)); 3451 if (HasProfileData) 3452 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3453 } 3454 3455 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3456 unsigned Code = 3457 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3458 3459 // Emit the finished record. 3460 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3461 NameVals.clear(); 3462 } 3463 3464 // Collect the global value references in the given variable's initializer, 3465 // and emit them in a summary record. 3466 void ModuleBitcodeWriter::writeModuleLevelReferences( 3467 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3468 unsigned FSModRefsAbbrev) { 3469 auto Summaries = 3470 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName())); 3471 if (Summaries == Index->end()) { 3472 // Only declarations should not have a summary (a declaration might however 3473 // have a summary if the def was in module level asm). 3474 assert(V.isDeclaration()); 3475 return; 3476 } 3477 auto *Summary = Summaries->second.front().get(); 3478 NameVals.push_back(VE.getValueID(&V)); 3479 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3480 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3481 3482 unsigned SizeBeforeRefs = NameVals.size(); 3483 for (auto &RI : VS->refs()) 3484 NameVals.push_back(VE.getValueID(RI.getValue())); 3485 // Sort the refs for determinism output, the vector returned by FS->refs() has 3486 // been initialized from a DenseSet. 3487 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3488 3489 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3490 FSModRefsAbbrev); 3491 NameVals.clear(); 3492 } 3493 3494 // Current version for the summary. 3495 // This is bumped whenever we introduce changes in the way some record are 3496 // interpreted, like flags for instance. 3497 static const uint64_t INDEX_VERSION = 3; 3498 3499 /// Emit the per-module summary section alongside the rest of 3500 /// the module's bitcode. 3501 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3502 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3503 3504 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3505 3506 if (Index->begin() == Index->end()) { 3507 Stream.ExitBlock(); 3508 return; 3509 } 3510 3511 // Abbrev for FS_PERMODULE. 3512 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3513 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3518 // numrefs x valueid, n x (valueid) 3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3521 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3522 3523 // Abbrev for FS_PERMODULE_PROFILE. 3524 Abbv = std::make_shared<BitCodeAbbrev>(); 3525 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3530 // numrefs x valueid, n x (valueid, hotness) 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3533 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3534 3535 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3536 Abbv = std::make_shared<BitCodeAbbrev>(); 3537 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3542 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3543 3544 // Abbrev for FS_ALIAS. 3545 Abbv = std::make_shared<BitCodeAbbrev>(); 3546 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3550 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3551 3552 SmallVector<uint64_t, 64> NameVals; 3553 // Iterate over the list of functions instead of the Index to 3554 // ensure the ordering is stable. 3555 for (const Function &F : M) { 3556 // Summary emission does not support anonymous functions, they have to 3557 // renamed using the anonymous function renaming pass. 3558 if (!F.hasName()) 3559 report_fatal_error("Unexpected anonymous function when writing summary"); 3560 3561 auto Summaries = 3562 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName())); 3563 if (Summaries == Index->end()) { 3564 // Only declarations should not have a summary (a declaration might 3565 // however have a summary if the def was in module level asm). 3566 assert(F.isDeclaration()); 3567 continue; 3568 } 3569 auto *Summary = Summaries->second.front().get(); 3570 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3571 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3572 } 3573 3574 // Capture references from GlobalVariable initializers, which are outside 3575 // of a function scope. 3576 for (const GlobalVariable &G : M.globals()) 3577 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3578 3579 for (const GlobalAlias &A : M.aliases()) { 3580 auto *Aliasee = A.getBaseObject(); 3581 if (!Aliasee->hasName()) 3582 // Nameless function don't have an entry in the summary, skip it. 3583 continue; 3584 auto AliasId = VE.getValueID(&A); 3585 auto AliaseeId = VE.getValueID(Aliasee); 3586 NameVals.push_back(AliasId); 3587 auto *Summary = Index->getGlobalValueSummary(A); 3588 AliasSummary *AS = cast<AliasSummary>(Summary); 3589 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3590 NameVals.push_back(AliaseeId); 3591 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3592 NameVals.clear(); 3593 } 3594 3595 Stream.ExitBlock(); 3596 } 3597 3598 /// Emit the combined summary section into the combined index file. 3599 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3600 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3601 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3602 3603 // Abbrev for FS_COMBINED. 3604 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3605 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3611 // numrefs x valueid, n x (valueid) 3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3614 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3615 3616 // Abbrev for FS_COMBINED_PROFILE. 3617 Abbv = std::make_shared<BitCodeAbbrev>(); 3618 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3624 // numrefs x valueid, n x (valueid, hotness) 3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3627 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3628 3629 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3630 Abbv = std::make_shared<BitCodeAbbrev>(); 3631 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3637 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3638 3639 // Abbrev for FS_COMBINED_ALIAS. 3640 Abbv = std::make_shared<BitCodeAbbrev>(); 3641 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3646 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3647 3648 // The aliases are emitted as a post-pass, and will point to the value 3649 // id of the aliasee. Save them in a vector for post-processing. 3650 SmallVector<AliasSummary *, 64> Aliases; 3651 3652 // Save the value id for each summary for alias emission. 3653 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3654 3655 SmallVector<uint64_t, 64> NameVals; 3656 3657 // For local linkage, we also emit the original name separately 3658 // immediately after the record. 3659 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3660 if (!GlobalValue::isLocalLinkage(S.linkage())) 3661 return; 3662 NameVals.push_back(S.getOriginalName()); 3663 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3664 NameVals.clear(); 3665 }; 3666 3667 for (const auto &I : *this) { 3668 GlobalValueSummary *S = I.second; 3669 assert(S); 3670 3671 assert(hasValueId(I.first)); 3672 unsigned ValueId = getValueId(I.first); 3673 SummaryToValueIdMap[S] = ValueId; 3674 3675 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3676 // Will process aliases as a post-pass because the reader wants all 3677 // global to be loaded first. 3678 Aliases.push_back(AS); 3679 continue; 3680 } 3681 3682 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3683 NameVals.push_back(ValueId); 3684 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3685 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3686 for (auto &RI : VS->refs()) { 3687 NameVals.push_back(getValueId(RI.getGUID())); 3688 } 3689 3690 // Emit the finished record. 3691 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3692 FSModRefsAbbrev); 3693 NameVals.clear(); 3694 MaybeEmitOriginalName(*S); 3695 continue; 3696 } 3697 3698 auto *FS = cast<FunctionSummary>(S); 3699 writeFunctionTypeMetadataRecords(Stream, FS); 3700 3701 NameVals.push_back(ValueId); 3702 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3703 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3704 NameVals.push_back(FS->instCount()); 3705 NameVals.push_back(FS->refs().size()); 3706 3707 for (auto &RI : FS->refs()) { 3708 NameVals.push_back(getValueId(RI.getGUID())); 3709 } 3710 3711 bool HasProfileData = false; 3712 for (auto &EI : FS->calls()) { 3713 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3714 if (HasProfileData) 3715 break; 3716 } 3717 3718 for (auto &EI : FS->calls()) { 3719 // If this GUID doesn't have a value id, it doesn't have a function 3720 // summary and we don't need to record any calls to it. 3721 GlobalValue::GUID GUID = EI.first.getGUID(); 3722 if (!hasValueId(GUID)) { 3723 // For SamplePGO, the indirect call targets for local functions will 3724 // have its original name annotated in profile. We try to find the 3725 // corresponding PGOFuncName as the GUID. 3726 GUID = Index.getGUIDFromOriginalID(GUID); 3727 if (GUID == 0 || !hasValueId(GUID)) 3728 continue; 3729 } 3730 NameVals.push_back(getValueId(GUID)); 3731 if (HasProfileData) 3732 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3733 } 3734 3735 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3736 unsigned Code = 3737 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3738 3739 // Emit the finished record. 3740 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3741 NameVals.clear(); 3742 MaybeEmitOriginalName(*S); 3743 } 3744 3745 for (auto *AS : Aliases) { 3746 auto AliasValueId = SummaryToValueIdMap[AS]; 3747 assert(AliasValueId); 3748 NameVals.push_back(AliasValueId); 3749 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3750 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3751 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3752 assert(AliaseeValueId); 3753 NameVals.push_back(AliaseeValueId); 3754 3755 // Emit the finished record. 3756 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3757 NameVals.clear(); 3758 MaybeEmitOriginalName(*AS); 3759 } 3760 3761 Stream.ExitBlock(); 3762 } 3763 3764 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3765 /// current llvm version, and a record for the epoch number. 3766 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3767 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3768 3769 // Write the "user readable" string identifying the bitcode producer 3770 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3771 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3774 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3775 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3776 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3777 3778 // Write the epoch version 3779 Abbv = std::make_shared<BitCodeAbbrev>(); 3780 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3782 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3783 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3784 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3785 Stream.ExitBlock(); 3786 } 3787 3788 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3789 // Emit the module's hash. 3790 // MODULE_CODE_HASH: [5*i32] 3791 if (GenerateHash) { 3792 SHA1 Hasher; 3793 uint32_t Vals[5]; 3794 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3795 Buffer.size() - BlockStartPos)); 3796 StringRef Hash = Hasher.result(); 3797 for (int Pos = 0; Pos < 20; Pos += 4) { 3798 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3799 } 3800 3801 // Emit the finished record. 3802 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3803 3804 if (ModHash) 3805 // Save the written hash value. 3806 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3807 } else if (ModHash) 3808 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3809 } 3810 3811 void ModuleBitcodeWriter::write() { 3812 writeIdentificationBlock(Stream); 3813 3814 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3815 size_t BlockStartPos = Buffer.size(); 3816 3817 SmallVector<unsigned, 1> Vals; 3818 unsigned CurVersion = 1; 3819 Vals.push_back(CurVersion); 3820 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3821 3822 // Emit blockinfo, which defines the standard abbreviations etc. 3823 writeBlockInfo(); 3824 3825 // Emit information about attribute groups. 3826 writeAttributeGroupTable(); 3827 3828 // Emit information about parameter attributes. 3829 writeAttributeTable(); 3830 3831 // Emit information describing all of the types in the module. 3832 writeTypeTable(); 3833 3834 writeComdats(); 3835 3836 // Emit top-level description of module, including target triple, inline asm, 3837 // descriptors for global variables, and function prototype info. 3838 writeModuleInfo(); 3839 3840 // Emit constants. 3841 writeModuleConstants(); 3842 3843 // Emit metadata kind names. 3844 writeModuleMetadataKinds(); 3845 3846 // Emit metadata. 3847 writeModuleMetadata(); 3848 3849 // Emit module-level use-lists. 3850 if (VE.shouldPreserveUseListOrder()) 3851 writeUseListBlock(nullptr); 3852 3853 writeOperandBundleTags(); 3854 3855 // Emit function bodies. 3856 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3857 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3858 if (!F->isDeclaration()) 3859 writeFunction(*F, FunctionToBitcodeIndex); 3860 3861 // Need to write after the above call to WriteFunction which populates 3862 // the summary information in the index. 3863 if (Index) 3864 writePerModuleGlobalValueSummary(); 3865 3866 writeValueSymbolTable(M.getValueSymbolTable(), 3867 /* IsModuleLevel */ true, &FunctionToBitcodeIndex); 3868 3869 writeModuleHash(BlockStartPos); 3870 3871 Stream.ExitBlock(); 3872 } 3873 3874 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3875 uint32_t &Position) { 3876 support::endian::write32le(&Buffer[Position], Value); 3877 Position += 4; 3878 } 3879 3880 /// If generating a bc file on darwin, we have to emit a 3881 /// header and trailer to make it compatible with the system archiver. To do 3882 /// this we emit the following header, and then emit a trailer that pads the 3883 /// file out to be a multiple of 16 bytes. 3884 /// 3885 /// struct bc_header { 3886 /// uint32_t Magic; // 0x0B17C0DE 3887 /// uint32_t Version; // Version, currently always 0. 3888 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3889 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3890 /// uint32_t CPUType; // CPU specifier. 3891 /// ... potentially more later ... 3892 /// }; 3893 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3894 const Triple &TT) { 3895 unsigned CPUType = ~0U; 3896 3897 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3898 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3899 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3900 // specific constants here because they are implicitly part of the Darwin ABI. 3901 enum { 3902 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3903 DARWIN_CPU_TYPE_X86 = 7, 3904 DARWIN_CPU_TYPE_ARM = 12, 3905 DARWIN_CPU_TYPE_POWERPC = 18 3906 }; 3907 3908 Triple::ArchType Arch = TT.getArch(); 3909 if (Arch == Triple::x86_64) 3910 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3911 else if (Arch == Triple::x86) 3912 CPUType = DARWIN_CPU_TYPE_X86; 3913 else if (Arch == Triple::ppc) 3914 CPUType = DARWIN_CPU_TYPE_POWERPC; 3915 else if (Arch == Triple::ppc64) 3916 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3917 else if (Arch == Triple::arm || Arch == Triple::thumb) 3918 CPUType = DARWIN_CPU_TYPE_ARM; 3919 3920 // Traditional Bitcode starts after header. 3921 assert(Buffer.size() >= BWH_HeaderSize && 3922 "Expected header size to be reserved"); 3923 unsigned BCOffset = BWH_HeaderSize; 3924 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3925 3926 // Write the magic and version. 3927 unsigned Position = 0; 3928 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3929 writeInt32ToBuffer(0, Buffer, Position); // Version. 3930 writeInt32ToBuffer(BCOffset, Buffer, Position); 3931 writeInt32ToBuffer(BCSize, Buffer, Position); 3932 writeInt32ToBuffer(CPUType, Buffer, Position); 3933 3934 // If the file is not a multiple of 16 bytes, insert dummy padding. 3935 while (Buffer.size() & 15) 3936 Buffer.push_back(0); 3937 } 3938 3939 /// Helper to write the header common to all bitcode files. 3940 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3941 // Emit the file header. 3942 Stream.Emit((unsigned)'B', 8); 3943 Stream.Emit((unsigned)'C', 8); 3944 Stream.Emit(0x0, 4); 3945 Stream.Emit(0xC, 4); 3946 Stream.Emit(0xE, 4); 3947 Stream.Emit(0xD, 4); 3948 } 3949 3950 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3951 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3952 writeBitcodeHeader(*Stream); 3953 } 3954 3955 BitcodeWriter::~BitcodeWriter() = default; 3956 3957 void BitcodeWriter::writeModule(const Module *M, 3958 bool ShouldPreserveUseListOrder, 3959 const ModuleSummaryIndex *Index, 3960 bool GenerateHash, ModuleHash *ModHash) { 3961 ModuleBitcodeWriter ModuleWriter(M, Buffer, *Stream, 3962 ShouldPreserveUseListOrder, Index, 3963 GenerateHash, ModHash); 3964 ModuleWriter.write(); 3965 } 3966 3967 /// WriteBitcodeToFile - Write the specified module to the specified output 3968 /// stream. 3969 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3970 bool ShouldPreserveUseListOrder, 3971 const ModuleSummaryIndex *Index, 3972 bool GenerateHash, ModuleHash *ModHash) { 3973 SmallVector<char, 0> Buffer; 3974 Buffer.reserve(256*1024); 3975 3976 // If this is darwin or another generic macho target, reserve space for the 3977 // header. 3978 Triple TT(M->getTargetTriple()); 3979 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3980 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3981 3982 BitcodeWriter Writer(Buffer); 3983 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3984 ModHash); 3985 3986 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3987 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3988 3989 // Write the generated bitstream to "Out". 3990 Out.write((char*)&Buffer.front(), Buffer.size()); 3991 } 3992 3993 void IndexBitcodeWriter::write() { 3994 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3995 3996 SmallVector<unsigned, 1> Vals; 3997 unsigned CurVersion = 1; 3998 Vals.push_back(CurVersion); 3999 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 4000 4001 // If we have a VST, write the VSTOFFSET record placeholder. 4002 writeValueSymbolTableForwardDecl(); 4003 4004 // Write the module paths in the combined index. 4005 writeModStrings(); 4006 4007 // Write the summary combined index records. 4008 writeCombinedGlobalValueSummary(); 4009 4010 // Need a special VST writer for the combined index (we don't have a 4011 // real VST and real values when this is invoked). 4012 writeCombinedValueSymbolTable(); 4013 4014 Stream.ExitBlock(); 4015 } 4016 4017 // Write the specified module summary index to the given raw output stream, 4018 // where it will be written in a new bitcode block. This is used when 4019 // writing the combined index file for ThinLTO. When writing a subset of the 4020 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4021 void llvm::WriteIndexToFile( 4022 const ModuleSummaryIndex &Index, raw_ostream &Out, 4023 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4024 SmallVector<char, 0> Buffer; 4025 Buffer.reserve(256 * 1024); 4026 4027 BitstreamWriter Stream(Buffer); 4028 writeBitcodeHeader(Stream); 4029 4030 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 4031 IndexWriter.write(); 4032 4033 Out.write((char *)&Buffer.front(), Buffer.size()); 4034 } 4035