1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Support/Program.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 CurVersion = 0, 45 46 // VALUE_SYMTAB_BLOCK abbrev id's. 47 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 VST_ENTRY_7_ABBREV, 49 VST_ENTRY_6_ABBREV, 50 VST_BBENTRY_6_ABBREV, 51 52 // CONSTANTS_BLOCK abbrev id's. 53 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 CONSTANTS_INTEGER_ABBREV, 55 CONSTANTS_CE_CAST_Abbrev, 56 CONSTANTS_NULL_Abbrev, 57 58 // FUNCTION_BLOCK abbrev id's. 59 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 60 FUNCTION_INST_BINOP_ABBREV, 61 FUNCTION_INST_BINOP_FLAGS_ABBREV, 62 FUNCTION_INST_CAST_ABBREV, 63 FUNCTION_INST_RET_VOID_ABBREV, 64 FUNCTION_INST_RET_VAL_ABBREV, 65 FUNCTION_INST_UNREACHABLE_ABBREV, 66 67 // SwitchInst Magic 68 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 69 }; 70 71 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 72 switch (Opcode) { 73 default: llvm_unreachable("Unknown cast instruction!"); 74 case Instruction::Trunc : return bitc::CAST_TRUNC; 75 case Instruction::ZExt : return bitc::CAST_ZEXT; 76 case Instruction::SExt : return bitc::CAST_SEXT; 77 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 78 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 79 case Instruction::UIToFP : return bitc::CAST_UITOFP; 80 case Instruction::SIToFP : return bitc::CAST_SITOFP; 81 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 82 case Instruction::FPExt : return bitc::CAST_FPEXT; 83 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 84 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 85 case Instruction::BitCast : return bitc::CAST_BITCAST; 86 } 87 } 88 89 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 90 switch (Opcode) { 91 default: llvm_unreachable("Unknown binary instruction!"); 92 case Instruction::Add: 93 case Instruction::FAdd: return bitc::BINOP_ADD; 94 case Instruction::Sub: 95 case Instruction::FSub: return bitc::BINOP_SUB; 96 case Instruction::Mul: 97 case Instruction::FMul: return bitc::BINOP_MUL; 98 case Instruction::UDiv: return bitc::BINOP_UDIV; 99 case Instruction::FDiv: 100 case Instruction::SDiv: return bitc::BINOP_SDIV; 101 case Instruction::URem: return bitc::BINOP_UREM; 102 case Instruction::FRem: 103 case Instruction::SRem: return bitc::BINOP_SREM; 104 case Instruction::Shl: return bitc::BINOP_SHL; 105 case Instruction::LShr: return bitc::BINOP_LSHR; 106 case Instruction::AShr: return bitc::BINOP_ASHR; 107 case Instruction::And: return bitc::BINOP_AND; 108 case Instruction::Or: return bitc::BINOP_OR; 109 case Instruction::Xor: return bitc::BINOP_XOR; 110 } 111 } 112 113 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 114 switch (Op) { 115 default: llvm_unreachable("Unknown RMW operation!"); 116 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 117 case AtomicRMWInst::Add: return bitc::RMW_ADD; 118 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 119 case AtomicRMWInst::And: return bitc::RMW_AND; 120 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 121 case AtomicRMWInst::Or: return bitc::RMW_OR; 122 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 123 case AtomicRMWInst::Max: return bitc::RMW_MAX; 124 case AtomicRMWInst::Min: return bitc::RMW_MIN; 125 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 126 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 127 } 128 } 129 130 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 131 switch (Ordering) { 132 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 133 case Unordered: return bitc::ORDERING_UNORDERED; 134 case Monotonic: return bitc::ORDERING_MONOTONIC; 135 case Acquire: return bitc::ORDERING_ACQUIRE; 136 case Release: return bitc::ORDERING_RELEASE; 137 case AcquireRelease: return bitc::ORDERING_ACQREL; 138 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 139 } 140 llvm_unreachable("Invalid ordering"); 141 } 142 143 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 144 switch (SynchScope) { 145 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 146 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 147 } 148 llvm_unreachable("Invalid synch scope"); 149 } 150 151 static void WriteStringRecord(unsigned Code, StringRef Str, 152 unsigned AbbrevToUse, BitstreamWriter &Stream) { 153 SmallVector<unsigned, 64> Vals; 154 155 // Code: [strchar x N] 156 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 157 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 158 AbbrevToUse = 0; 159 Vals.push_back(Str[i]); 160 } 161 162 // Emit the finished record. 163 Stream.EmitRecord(Code, Vals, AbbrevToUse); 164 } 165 166 // Emit information about parameter attributes. 167 static void WriteAttributeTable(const ValueEnumerator &VE, 168 BitstreamWriter &Stream) { 169 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 170 if (Attrs.empty()) return; 171 172 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 173 174 SmallVector<uint64_t, 64> Record; 175 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 176 const AttrListPtr &A = Attrs[i]; 177 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 178 const AttributeWithIndex &PAWI = A.getSlot(i); 179 Record.push_back(PAWI.Index); 180 181 // FIXME: remove in LLVM 3.0 182 // Store the alignment in the bitcode as a 16-bit raw value instead of a 183 // 5-bit log2 encoded value. Shift the bits above the alignment up by 184 // 11 bits. 185 uint64_t FauxAttr = PAWI.Attrs.Raw() & 0xffff; 186 if (PAWI.Attrs & Attribute::Alignment) 187 FauxAttr |= (1ull<<16)<< 188 (((PAWI.Attrs & Attribute::Alignment).Raw()-1) >> 16); 189 FauxAttr |= (PAWI.Attrs.Raw() & (0x3FFull << 21)) << 11; 190 191 Record.push_back(FauxAttr); 192 } 193 194 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 195 Record.clear(); 196 } 197 198 Stream.ExitBlock(); 199 } 200 201 /// WriteTypeTable - Write out the type table for a module. 202 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 203 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 204 205 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 206 SmallVector<uint64_t, 64> TypeVals; 207 208 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 209 210 // Abbrev for TYPE_CODE_POINTER. 211 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 212 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 214 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 215 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 216 217 // Abbrev for TYPE_CODE_FUNCTION. 218 Abbv = new BitCodeAbbrev(); 219 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 223 224 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 225 226 // Abbrev for TYPE_CODE_STRUCT_ANON. 227 Abbv = new BitCodeAbbrev(); 228 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 232 233 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 234 235 // Abbrev for TYPE_CODE_STRUCT_NAME. 236 Abbv = new BitCodeAbbrev(); 237 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 240 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 241 242 // Abbrev for TYPE_CODE_STRUCT_NAMED. 243 Abbv = new BitCodeAbbrev(); 244 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 248 249 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 250 251 // Abbrev for TYPE_CODE_ARRAY. 252 Abbv = new BitCodeAbbrev(); 253 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 256 257 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 258 259 // Emit an entry count so the reader can reserve space. 260 TypeVals.push_back(TypeList.size()); 261 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 262 TypeVals.clear(); 263 264 // Loop over all of the types, emitting each in turn. 265 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 266 Type *T = TypeList[i]; 267 int AbbrevToUse = 0; 268 unsigned Code = 0; 269 270 switch (T->getTypeID()) { 271 default: llvm_unreachable("Unknown type!"); 272 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 273 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 274 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 275 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 276 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 277 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 278 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 279 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 280 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 281 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 282 case Type::IntegerTyID: 283 // INTEGER: [width] 284 Code = bitc::TYPE_CODE_INTEGER; 285 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 286 break; 287 case Type::PointerTyID: { 288 PointerType *PTy = cast<PointerType>(T); 289 // POINTER: [pointee type, address space] 290 Code = bitc::TYPE_CODE_POINTER; 291 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 292 unsigned AddressSpace = PTy->getAddressSpace(); 293 TypeVals.push_back(AddressSpace); 294 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 295 break; 296 } 297 case Type::FunctionTyID: { 298 FunctionType *FT = cast<FunctionType>(T); 299 // FUNCTION: [isvararg, retty, paramty x N] 300 Code = bitc::TYPE_CODE_FUNCTION; 301 TypeVals.push_back(FT->isVarArg()); 302 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 303 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 304 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 305 AbbrevToUse = FunctionAbbrev; 306 break; 307 } 308 case Type::StructTyID: { 309 StructType *ST = cast<StructType>(T); 310 // STRUCT: [ispacked, eltty x N] 311 TypeVals.push_back(ST->isPacked()); 312 // Output all of the element types. 313 for (StructType::element_iterator I = ST->element_begin(), 314 E = ST->element_end(); I != E; ++I) 315 TypeVals.push_back(VE.getTypeID(*I)); 316 317 if (ST->isLiteral()) { 318 Code = bitc::TYPE_CODE_STRUCT_ANON; 319 AbbrevToUse = StructAnonAbbrev; 320 } else { 321 if (ST->isOpaque()) { 322 Code = bitc::TYPE_CODE_OPAQUE; 323 } else { 324 Code = bitc::TYPE_CODE_STRUCT_NAMED; 325 AbbrevToUse = StructNamedAbbrev; 326 } 327 328 // Emit the name if it is present. 329 if (!ST->getName().empty()) 330 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 331 StructNameAbbrev, Stream); 332 } 333 break; 334 } 335 case Type::ArrayTyID: { 336 ArrayType *AT = cast<ArrayType>(T); 337 // ARRAY: [numelts, eltty] 338 Code = bitc::TYPE_CODE_ARRAY; 339 TypeVals.push_back(AT->getNumElements()); 340 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 341 AbbrevToUse = ArrayAbbrev; 342 break; 343 } 344 case Type::VectorTyID: { 345 VectorType *VT = cast<VectorType>(T); 346 // VECTOR [numelts, eltty] 347 Code = bitc::TYPE_CODE_VECTOR; 348 TypeVals.push_back(VT->getNumElements()); 349 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 350 break; 351 } 352 } 353 354 // Emit the finished record. 355 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 356 TypeVals.clear(); 357 } 358 359 Stream.ExitBlock(); 360 } 361 362 static unsigned getEncodedLinkage(const GlobalValue *GV) { 363 switch (GV->getLinkage()) { 364 case GlobalValue::ExternalLinkage: return 0; 365 case GlobalValue::WeakAnyLinkage: return 1; 366 case GlobalValue::AppendingLinkage: return 2; 367 case GlobalValue::InternalLinkage: return 3; 368 case GlobalValue::LinkOnceAnyLinkage: return 4; 369 case GlobalValue::DLLImportLinkage: return 5; 370 case GlobalValue::DLLExportLinkage: return 6; 371 case GlobalValue::ExternalWeakLinkage: return 7; 372 case GlobalValue::CommonLinkage: return 8; 373 case GlobalValue::PrivateLinkage: return 9; 374 case GlobalValue::WeakODRLinkage: return 10; 375 case GlobalValue::LinkOnceODRLinkage: return 11; 376 case GlobalValue::AvailableExternallyLinkage: return 12; 377 case GlobalValue::LinkerPrivateLinkage: return 13; 378 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 379 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; 380 } 381 llvm_unreachable("Invalid linkage"); 382 } 383 384 static unsigned getEncodedVisibility(const GlobalValue *GV) { 385 switch (GV->getVisibility()) { 386 case GlobalValue::DefaultVisibility: return 0; 387 case GlobalValue::HiddenVisibility: return 1; 388 case GlobalValue::ProtectedVisibility: return 2; 389 } 390 llvm_unreachable("Invalid visibility"); 391 } 392 393 // Emit top-level description of module, including target triple, inline asm, 394 // descriptors for global variables, and function prototype info. 395 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 396 BitstreamWriter &Stream) { 397 // Emit the list of dependent libraries for the Module. 398 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 399 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 400 401 // Emit various pieces of data attached to a module. 402 if (!M->getTargetTriple().empty()) 403 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 404 0/*TODO*/, Stream); 405 if (!M->getDataLayout().empty()) 406 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 407 0/*TODO*/, Stream); 408 if (!M->getModuleInlineAsm().empty()) 409 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 410 0/*TODO*/, Stream); 411 412 // Emit information about sections and GC, computing how many there are. Also 413 // compute the maximum alignment value. 414 std::map<std::string, unsigned> SectionMap; 415 std::map<std::string, unsigned> GCMap; 416 unsigned MaxAlignment = 0; 417 unsigned MaxGlobalType = 0; 418 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 419 GV != E; ++GV) { 420 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 421 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 422 if (GV->hasSection()) { 423 // Give section names unique ID's. 424 unsigned &Entry = SectionMap[GV->getSection()]; 425 if (!Entry) { 426 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 427 0/*TODO*/, Stream); 428 Entry = SectionMap.size(); 429 } 430 } 431 } 432 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 433 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 434 if (F->hasSection()) { 435 // Give section names unique ID's. 436 unsigned &Entry = SectionMap[F->getSection()]; 437 if (!Entry) { 438 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 439 0/*TODO*/, Stream); 440 Entry = SectionMap.size(); 441 } 442 } 443 if (F->hasGC()) { 444 // Same for GC names. 445 unsigned &Entry = GCMap[F->getGC()]; 446 if (!Entry) { 447 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 448 0/*TODO*/, Stream); 449 Entry = GCMap.size(); 450 } 451 } 452 } 453 454 // Emit abbrev for globals, now that we know # sections and max alignment. 455 unsigned SimpleGVarAbbrev = 0; 456 if (!M->global_empty()) { 457 // Add an abbrev for common globals with no visibility or thread localness. 458 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 459 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 461 Log2_32_Ceil(MaxGlobalType+1))); 462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 465 if (MaxAlignment == 0) // Alignment. 466 Abbv->Add(BitCodeAbbrevOp(0)); 467 else { 468 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 470 Log2_32_Ceil(MaxEncAlignment+1))); 471 } 472 if (SectionMap.empty()) // Section. 473 Abbv->Add(BitCodeAbbrevOp(0)); 474 else 475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 476 Log2_32_Ceil(SectionMap.size()+1))); 477 // Don't bother emitting vis + thread local. 478 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 479 } 480 481 // Emit the global variable information. 482 SmallVector<unsigned, 64> Vals; 483 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 484 GV != E; ++GV) { 485 unsigned AbbrevToUse = 0; 486 487 // GLOBALVAR: [type, isconst, initid, 488 // linkage, alignment, section, visibility, threadlocal, 489 // unnamed_addr] 490 Vals.push_back(VE.getTypeID(GV->getType())); 491 Vals.push_back(GV->isConstant()); 492 Vals.push_back(GV->isDeclaration() ? 0 : 493 (VE.getValueID(GV->getInitializer()) + 1)); 494 Vals.push_back(getEncodedLinkage(GV)); 495 Vals.push_back(Log2_32(GV->getAlignment())+1); 496 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 497 if (GV->isThreadLocal() || 498 GV->getVisibility() != GlobalValue::DefaultVisibility || 499 GV->hasUnnamedAddr()) { 500 Vals.push_back(getEncodedVisibility(GV)); 501 Vals.push_back(GV->isThreadLocal()); 502 Vals.push_back(GV->hasUnnamedAddr()); 503 } else { 504 AbbrevToUse = SimpleGVarAbbrev; 505 } 506 507 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 508 Vals.clear(); 509 } 510 511 // Emit the function proto information. 512 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 513 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 514 // section, visibility, gc, unnamed_addr] 515 Vals.push_back(VE.getTypeID(F->getType())); 516 Vals.push_back(F->getCallingConv()); 517 Vals.push_back(F->isDeclaration()); 518 Vals.push_back(getEncodedLinkage(F)); 519 Vals.push_back(VE.getAttributeID(F->getAttributes())); 520 Vals.push_back(Log2_32(F->getAlignment())+1); 521 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 522 Vals.push_back(getEncodedVisibility(F)); 523 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 524 Vals.push_back(F->hasUnnamedAddr()); 525 526 unsigned AbbrevToUse = 0; 527 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 528 Vals.clear(); 529 } 530 531 // Emit the alias information. 532 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 533 AI != E; ++AI) { 534 // ALIAS: [alias type, aliasee val#, linkage, visibility] 535 Vals.push_back(VE.getTypeID(AI->getType())); 536 Vals.push_back(VE.getValueID(AI->getAliasee())); 537 Vals.push_back(getEncodedLinkage(AI)); 538 Vals.push_back(getEncodedVisibility(AI)); 539 unsigned AbbrevToUse = 0; 540 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 541 Vals.clear(); 542 } 543 } 544 545 static uint64_t GetOptimizationFlags(const Value *V) { 546 uint64_t Flags = 0; 547 548 if (const OverflowingBinaryOperator *OBO = 549 dyn_cast<OverflowingBinaryOperator>(V)) { 550 if (OBO->hasNoSignedWrap()) 551 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 552 if (OBO->hasNoUnsignedWrap()) 553 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 554 } else if (const PossiblyExactOperator *PEO = 555 dyn_cast<PossiblyExactOperator>(V)) { 556 if (PEO->isExact()) 557 Flags |= 1 << bitc::PEO_EXACT; 558 } 559 560 return Flags; 561 } 562 563 static void WriteMDNode(const MDNode *N, 564 const ValueEnumerator &VE, 565 BitstreamWriter &Stream, 566 SmallVector<uint64_t, 64> &Record) { 567 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 568 if (N->getOperand(i)) { 569 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 570 Record.push_back(VE.getValueID(N->getOperand(i))); 571 } else { 572 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 573 Record.push_back(0); 574 } 575 } 576 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 577 bitc::METADATA_NODE; 578 Stream.EmitRecord(MDCode, Record, 0); 579 Record.clear(); 580 } 581 582 static void WriteModuleMetadata(const Module *M, 583 const ValueEnumerator &VE, 584 BitstreamWriter &Stream) { 585 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 586 bool StartedMetadataBlock = false; 587 unsigned MDSAbbrev = 0; 588 SmallVector<uint64_t, 64> Record; 589 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 590 591 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 592 if (!N->isFunctionLocal() || !N->getFunction()) { 593 if (!StartedMetadataBlock) { 594 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 595 StartedMetadataBlock = true; 596 } 597 WriteMDNode(N, VE, Stream, Record); 598 } 599 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 600 if (!StartedMetadataBlock) { 601 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 602 603 // Abbrev for METADATA_STRING. 604 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 605 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 608 MDSAbbrev = Stream.EmitAbbrev(Abbv); 609 StartedMetadataBlock = true; 610 } 611 612 // Code: [strchar x N] 613 Record.append(MDS->begin(), MDS->end()); 614 615 // Emit the finished record. 616 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 617 Record.clear(); 618 } 619 } 620 621 // Write named metadata. 622 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 623 E = M->named_metadata_end(); I != E; ++I) { 624 const NamedMDNode *NMD = I; 625 if (!StartedMetadataBlock) { 626 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 627 StartedMetadataBlock = true; 628 } 629 630 // Write name. 631 StringRef Str = NMD->getName(); 632 for (unsigned i = 0, e = Str.size(); i != e; ++i) 633 Record.push_back(Str[i]); 634 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 635 Record.clear(); 636 637 // Write named metadata operands. 638 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 639 Record.push_back(VE.getValueID(NMD->getOperand(i))); 640 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 641 Record.clear(); 642 } 643 644 if (StartedMetadataBlock) 645 Stream.ExitBlock(); 646 } 647 648 static void WriteFunctionLocalMetadata(const Function &F, 649 const ValueEnumerator &VE, 650 BitstreamWriter &Stream) { 651 bool StartedMetadataBlock = false; 652 SmallVector<uint64_t, 64> Record; 653 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 654 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 655 if (const MDNode *N = Vals[i]) 656 if (N->isFunctionLocal() && N->getFunction() == &F) { 657 if (!StartedMetadataBlock) { 658 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 659 StartedMetadataBlock = true; 660 } 661 WriteMDNode(N, VE, Stream, Record); 662 } 663 664 if (StartedMetadataBlock) 665 Stream.ExitBlock(); 666 } 667 668 static void WriteMetadataAttachment(const Function &F, 669 const ValueEnumerator &VE, 670 BitstreamWriter &Stream) { 671 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 672 673 SmallVector<uint64_t, 64> Record; 674 675 // Write metadata attachments 676 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 677 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 678 679 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 680 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 681 I != E; ++I) { 682 MDs.clear(); 683 I->getAllMetadataOtherThanDebugLoc(MDs); 684 685 // If no metadata, ignore instruction. 686 if (MDs.empty()) continue; 687 688 Record.push_back(VE.getInstructionID(I)); 689 690 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 691 Record.push_back(MDs[i].first); 692 Record.push_back(VE.getValueID(MDs[i].second)); 693 } 694 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 695 Record.clear(); 696 } 697 698 Stream.ExitBlock(); 699 } 700 701 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 702 SmallVector<uint64_t, 64> Record; 703 704 // Write metadata kinds 705 // METADATA_KIND - [n x [id, name]] 706 SmallVector<StringRef, 4> Names; 707 M->getMDKindNames(Names); 708 709 if (Names.empty()) return; 710 711 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 712 713 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 714 Record.push_back(MDKindID); 715 StringRef KName = Names[MDKindID]; 716 Record.append(KName.begin(), KName.end()); 717 718 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 719 Record.clear(); 720 } 721 722 Stream.ExitBlock(); 723 } 724 725 static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals, 726 unsigned &Code, unsigned &AbbrevToUse, const APInt &Val, 727 bool EmitSizeForWideNumbers = false 728 ) { 729 if (Val.getBitWidth() <= 64) { 730 uint64_t V = Val.getSExtValue(); 731 if ((int64_t)V >= 0) 732 Vals.push_back(V << 1); 733 else 734 Vals.push_back((-V << 1) | 1); 735 Code = bitc::CST_CODE_INTEGER; 736 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 737 } else { 738 // Wide integers, > 64 bits in size. 739 // We have an arbitrary precision integer value to write whose 740 // bit width is > 64. However, in canonical unsigned integer 741 // format it is likely that the high bits are going to be zero. 742 // So, we only write the number of active words. 743 unsigned NWords = Val.getActiveWords(); 744 745 if (EmitSizeForWideNumbers) 746 Vals.push_back(NWords); 747 748 const uint64_t *RawWords = Val.getRawData(); 749 for (unsigned i = 0; i != NWords; ++i) { 750 int64_t V = RawWords[i]; 751 if (V >= 0) 752 Vals.push_back(V << 1); 753 else 754 Vals.push_back((-V << 1) | 1); 755 } 756 Code = bitc::CST_CODE_WIDE_INTEGER; 757 } 758 } 759 760 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 761 const ValueEnumerator &VE, 762 BitstreamWriter &Stream, bool isGlobal) { 763 if (FirstVal == LastVal) return; 764 765 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 766 767 unsigned AggregateAbbrev = 0; 768 unsigned String8Abbrev = 0; 769 unsigned CString7Abbrev = 0; 770 unsigned CString6Abbrev = 0; 771 // If this is a constant pool for the module, emit module-specific abbrevs. 772 if (isGlobal) { 773 // Abbrev for CST_CODE_AGGREGATE. 774 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 775 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 778 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 779 780 // Abbrev for CST_CODE_STRING. 781 Abbv = new BitCodeAbbrev(); 782 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 785 String8Abbrev = Stream.EmitAbbrev(Abbv); 786 // Abbrev for CST_CODE_CSTRING. 787 Abbv = new BitCodeAbbrev(); 788 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 791 CString7Abbrev = Stream.EmitAbbrev(Abbv); 792 // Abbrev for CST_CODE_CSTRING. 793 Abbv = new BitCodeAbbrev(); 794 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 797 CString6Abbrev = Stream.EmitAbbrev(Abbv); 798 } 799 800 SmallVector<uint64_t, 64> Record; 801 802 const ValueEnumerator::ValueList &Vals = VE.getValues(); 803 Type *LastTy = 0; 804 for (unsigned i = FirstVal; i != LastVal; ++i) { 805 const Value *V = Vals[i].first; 806 // If we need to switch types, do so now. 807 if (V->getType() != LastTy) { 808 LastTy = V->getType(); 809 Record.push_back(VE.getTypeID(LastTy)); 810 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 811 CONSTANTS_SETTYPE_ABBREV); 812 Record.clear(); 813 } 814 815 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 816 Record.push_back(unsigned(IA->hasSideEffects()) | 817 unsigned(IA->isAlignStack()) << 1); 818 819 // Add the asm string. 820 const std::string &AsmStr = IA->getAsmString(); 821 Record.push_back(AsmStr.size()); 822 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 823 Record.push_back(AsmStr[i]); 824 825 // Add the constraint string. 826 const std::string &ConstraintStr = IA->getConstraintString(); 827 Record.push_back(ConstraintStr.size()); 828 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 829 Record.push_back(ConstraintStr[i]); 830 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 831 Record.clear(); 832 continue; 833 } 834 const Constant *C = cast<Constant>(V); 835 unsigned Code = -1U; 836 unsigned AbbrevToUse = 0; 837 if (C->isNullValue()) { 838 Code = bitc::CST_CODE_NULL; 839 } else if (isa<UndefValue>(C)) { 840 Code = bitc::CST_CODE_UNDEF; 841 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 842 EmitAPInt(Record, Code, AbbrevToUse, IV->getValue()); 843 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 844 Code = bitc::CST_CODE_FLOAT; 845 Type *Ty = CFP->getType(); 846 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 847 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 848 } else if (Ty->isX86_FP80Ty()) { 849 // api needed to prevent premature destruction 850 // bits are not in the same order as a normal i80 APInt, compensate. 851 APInt api = CFP->getValueAPF().bitcastToAPInt(); 852 const uint64_t *p = api.getRawData(); 853 Record.push_back((p[1] << 48) | (p[0] >> 16)); 854 Record.push_back(p[0] & 0xffffLL); 855 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 856 APInt api = CFP->getValueAPF().bitcastToAPInt(); 857 const uint64_t *p = api.getRawData(); 858 Record.push_back(p[0]); 859 Record.push_back(p[1]); 860 } else { 861 assert (0 && "Unknown FP type!"); 862 } 863 } else if (isa<ConstantDataSequential>(C) && 864 cast<ConstantDataSequential>(C)->isString()) { 865 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 866 // Emit constant strings specially. 867 unsigned NumElts = Str->getNumElements(); 868 // If this is a null-terminated string, use the denser CSTRING encoding. 869 if (Str->isCString()) { 870 Code = bitc::CST_CODE_CSTRING; 871 --NumElts; // Don't encode the null, which isn't allowed by char6. 872 } else { 873 Code = bitc::CST_CODE_STRING; 874 AbbrevToUse = String8Abbrev; 875 } 876 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 877 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 878 for (unsigned i = 0; i != NumElts; ++i) { 879 unsigned char V = Str->getElementAsInteger(i); 880 Record.push_back(V); 881 isCStr7 &= (V & 128) == 0; 882 if (isCStrChar6) 883 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 884 } 885 886 if (isCStrChar6) 887 AbbrevToUse = CString6Abbrev; 888 else if (isCStr7) 889 AbbrevToUse = CString7Abbrev; 890 } else if (const ConstantDataSequential *CDS = 891 dyn_cast<ConstantDataSequential>(C)) { 892 Code = bitc::CST_CODE_DATA; 893 Type *EltTy = CDS->getType()->getElementType(); 894 if (isa<IntegerType>(EltTy)) { 895 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 896 Record.push_back(CDS->getElementAsInteger(i)); 897 } else if (EltTy->isFloatTy()) { 898 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 899 union { float F; uint32_t I; }; 900 F = CDS->getElementAsFloat(i); 901 Record.push_back(I); 902 } 903 } else { 904 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 905 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 906 union { double F; uint64_t I; }; 907 F = CDS->getElementAsDouble(i); 908 Record.push_back(I); 909 } 910 } 911 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 912 isa<ConstantVector>(C)) { 913 Code = bitc::CST_CODE_AGGREGATE; 914 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 915 Record.push_back(VE.getValueID(C->getOperand(i))); 916 AbbrevToUse = AggregateAbbrev; 917 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 918 switch (CE->getOpcode()) { 919 default: 920 if (Instruction::isCast(CE->getOpcode())) { 921 Code = bitc::CST_CODE_CE_CAST; 922 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 923 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 924 Record.push_back(VE.getValueID(C->getOperand(0))); 925 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 926 } else { 927 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 928 Code = bitc::CST_CODE_CE_BINOP; 929 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 930 Record.push_back(VE.getValueID(C->getOperand(0))); 931 Record.push_back(VE.getValueID(C->getOperand(1))); 932 uint64_t Flags = GetOptimizationFlags(CE); 933 if (Flags != 0) 934 Record.push_back(Flags); 935 } 936 break; 937 case Instruction::GetElementPtr: 938 Code = bitc::CST_CODE_CE_GEP; 939 if (cast<GEPOperator>(C)->isInBounds()) 940 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 941 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 942 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 943 Record.push_back(VE.getValueID(C->getOperand(i))); 944 } 945 break; 946 case Instruction::Select: 947 Code = bitc::CST_CODE_CE_SELECT; 948 Record.push_back(VE.getValueID(C->getOperand(0))); 949 Record.push_back(VE.getValueID(C->getOperand(1))); 950 Record.push_back(VE.getValueID(C->getOperand(2))); 951 break; 952 case Instruction::ExtractElement: 953 Code = bitc::CST_CODE_CE_EXTRACTELT; 954 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 955 Record.push_back(VE.getValueID(C->getOperand(0))); 956 Record.push_back(VE.getValueID(C->getOperand(1))); 957 break; 958 case Instruction::InsertElement: 959 Code = bitc::CST_CODE_CE_INSERTELT; 960 Record.push_back(VE.getValueID(C->getOperand(0))); 961 Record.push_back(VE.getValueID(C->getOperand(1))); 962 Record.push_back(VE.getValueID(C->getOperand(2))); 963 break; 964 case Instruction::ShuffleVector: 965 // If the return type and argument types are the same, this is a 966 // standard shufflevector instruction. If the types are different, 967 // then the shuffle is widening or truncating the input vectors, and 968 // the argument type must also be encoded. 969 if (C->getType() == C->getOperand(0)->getType()) { 970 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 971 } else { 972 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 973 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 974 } 975 Record.push_back(VE.getValueID(C->getOperand(0))); 976 Record.push_back(VE.getValueID(C->getOperand(1))); 977 Record.push_back(VE.getValueID(C->getOperand(2))); 978 break; 979 case Instruction::ICmp: 980 case Instruction::FCmp: 981 Code = bitc::CST_CODE_CE_CMP; 982 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 983 Record.push_back(VE.getValueID(C->getOperand(0))); 984 Record.push_back(VE.getValueID(C->getOperand(1))); 985 Record.push_back(CE->getPredicate()); 986 break; 987 } 988 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 989 Code = bitc::CST_CODE_BLOCKADDRESS; 990 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 991 Record.push_back(VE.getValueID(BA->getFunction())); 992 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 993 } else { 994 #ifndef NDEBUG 995 C->dump(); 996 #endif 997 llvm_unreachable("Unknown constant!"); 998 } 999 Stream.EmitRecord(Code, Record, AbbrevToUse); 1000 Record.clear(); 1001 } 1002 1003 Stream.ExitBlock(); 1004 } 1005 1006 static void WriteModuleConstants(const ValueEnumerator &VE, 1007 BitstreamWriter &Stream) { 1008 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1009 1010 // Find the first constant to emit, which is the first non-globalvalue value. 1011 // We know globalvalues have been emitted by WriteModuleInfo. 1012 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1013 if (!isa<GlobalValue>(Vals[i].first)) { 1014 WriteConstants(i, Vals.size(), VE, Stream, true); 1015 return; 1016 } 1017 } 1018 } 1019 1020 /// PushValueAndType - The file has to encode both the value and type id for 1021 /// many values, because we need to know what type to create for forward 1022 /// references. However, most operands are not forward references, so this type 1023 /// field is not needed. 1024 /// 1025 /// This function adds V's value ID to Vals. If the value ID is higher than the 1026 /// instruction ID, then it is a forward reference, and it also includes the 1027 /// type ID. 1028 static bool PushValueAndType(const Value *V, unsigned InstID, 1029 SmallVector<unsigned, 64> &Vals, 1030 ValueEnumerator &VE) { 1031 unsigned ValID = VE.getValueID(V); 1032 Vals.push_back(ValID); 1033 if (ValID >= InstID) { 1034 Vals.push_back(VE.getTypeID(V->getType())); 1035 return true; 1036 } 1037 return false; 1038 } 1039 1040 /// WriteInstruction - Emit an instruction to the specified stream. 1041 static void WriteInstruction(const Instruction &I, unsigned InstID, 1042 ValueEnumerator &VE, BitstreamWriter &Stream, 1043 SmallVector<unsigned, 64> &Vals) { 1044 unsigned Code = 0; 1045 unsigned AbbrevToUse = 0; 1046 VE.setInstructionID(&I); 1047 switch (I.getOpcode()) { 1048 default: 1049 if (Instruction::isCast(I.getOpcode())) { 1050 Code = bitc::FUNC_CODE_INST_CAST; 1051 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1052 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1053 Vals.push_back(VE.getTypeID(I.getType())); 1054 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1055 } else { 1056 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1057 Code = bitc::FUNC_CODE_INST_BINOP; 1058 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1059 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1060 Vals.push_back(VE.getValueID(I.getOperand(1))); 1061 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1062 uint64_t Flags = GetOptimizationFlags(&I); 1063 if (Flags != 0) { 1064 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1065 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1066 Vals.push_back(Flags); 1067 } 1068 } 1069 break; 1070 1071 case Instruction::GetElementPtr: 1072 Code = bitc::FUNC_CODE_INST_GEP; 1073 if (cast<GEPOperator>(&I)->isInBounds()) 1074 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1075 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1076 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1077 break; 1078 case Instruction::ExtractValue: { 1079 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1080 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1081 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1082 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1083 Vals.push_back(*i); 1084 break; 1085 } 1086 case Instruction::InsertValue: { 1087 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1088 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1089 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1090 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1091 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1092 Vals.push_back(*i); 1093 break; 1094 } 1095 case Instruction::Select: 1096 Code = bitc::FUNC_CODE_INST_VSELECT; 1097 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1098 Vals.push_back(VE.getValueID(I.getOperand(2))); 1099 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1100 break; 1101 case Instruction::ExtractElement: 1102 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1103 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1104 Vals.push_back(VE.getValueID(I.getOperand(1))); 1105 break; 1106 case Instruction::InsertElement: 1107 Code = bitc::FUNC_CODE_INST_INSERTELT; 1108 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1109 Vals.push_back(VE.getValueID(I.getOperand(1))); 1110 Vals.push_back(VE.getValueID(I.getOperand(2))); 1111 break; 1112 case Instruction::ShuffleVector: 1113 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1114 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1115 Vals.push_back(VE.getValueID(I.getOperand(1))); 1116 Vals.push_back(VE.getValueID(I.getOperand(2))); 1117 break; 1118 case Instruction::ICmp: 1119 case Instruction::FCmp: 1120 // compare returning Int1Ty or vector of Int1Ty 1121 Code = bitc::FUNC_CODE_INST_CMP2; 1122 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1123 Vals.push_back(VE.getValueID(I.getOperand(1))); 1124 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1125 break; 1126 1127 case Instruction::Ret: 1128 { 1129 Code = bitc::FUNC_CODE_INST_RET; 1130 unsigned NumOperands = I.getNumOperands(); 1131 if (NumOperands == 0) 1132 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1133 else if (NumOperands == 1) { 1134 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1135 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1136 } else { 1137 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1138 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1139 } 1140 } 1141 break; 1142 case Instruction::Br: 1143 { 1144 Code = bitc::FUNC_CODE_INST_BR; 1145 BranchInst &II = cast<BranchInst>(I); 1146 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1147 if (II.isConditional()) { 1148 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1149 Vals.push_back(VE.getValueID(II.getCondition())); 1150 } 1151 } 1152 break; 1153 case Instruction::Switch: 1154 { 1155 // Redefine Vals, since here we need to use 64 bit values 1156 // explicitly to store large APInt numbers. 1157 SmallVector<uint64_t, 128> Vals64; 1158 1159 Code = bitc::FUNC_CODE_INST_SWITCH; 1160 SwitchInst &SI = cast<SwitchInst>(I); 1161 1162 uint32_t SwitchRecordHeader = SI.Hash() | (SWITCH_INST_MAGIC << 16); 1163 Vals64.push_back(SwitchRecordHeader); 1164 1165 Vals64.push_back(VE.getTypeID(SI.getCondition()->getType())); 1166 Vals64.push_back(VE.getValueID(SI.getCondition())); 1167 Vals64.push_back(VE.getValueID(SI.getDefaultDest())); 1168 Vals64.push_back(SI.getNumCases()); 1169 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); 1170 i != e; ++i) { 1171 ConstantRangesSet CRS = i.getCaseValueEx(); 1172 Vals64.push_back(CRS.getNumItems()); 1173 for (unsigned ri = 0, rn = CRS.getNumItems(); ri != rn; ++ri) { 1174 ConstantRangesSet::Range r = CRS.getItem(ri); 1175 1176 Vals64.push_back(CRS.isSingleNumber(ri)); 1177 1178 const APInt &Low = r.Low->getValue(); 1179 const APInt &High = r.High->getValue(); 1180 unsigned Code, Abbrev; // will unused. 1181 1182 EmitAPInt(Vals64, Code, Abbrev, Low, true); 1183 if (r.Low != r.High) 1184 EmitAPInt(Vals64, Code, Abbrev, High, true); 1185 } 1186 Vals64.push_back(VE.getValueID(i.getCaseSuccessor())); 1187 } 1188 1189 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1190 1191 // Also do expected action - clear external Vals collection: 1192 Vals.clear(); 1193 return; 1194 } 1195 break; 1196 case Instruction::IndirectBr: 1197 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1198 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1199 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1200 Vals.push_back(VE.getValueID(I.getOperand(i))); 1201 break; 1202 1203 case Instruction::Invoke: { 1204 const InvokeInst *II = cast<InvokeInst>(&I); 1205 const Value *Callee(II->getCalledValue()); 1206 PointerType *PTy = cast<PointerType>(Callee->getType()); 1207 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1208 Code = bitc::FUNC_CODE_INST_INVOKE; 1209 1210 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1211 Vals.push_back(II->getCallingConv()); 1212 Vals.push_back(VE.getValueID(II->getNormalDest())); 1213 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1214 PushValueAndType(Callee, InstID, Vals, VE); 1215 1216 // Emit value #'s for the fixed parameters. 1217 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1218 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1219 1220 // Emit type/value pairs for varargs params. 1221 if (FTy->isVarArg()) { 1222 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1223 i != e; ++i) 1224 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1225 } 1226 break; 1227 } 1228 case Instruction::Resume: 1229 Code = bitc::FUNC_CODE_INST_RESUME; 1230 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1231 break; 1232 case Instruction::Unreachable: 1233 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1234 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1235 break; 1236 1237 case Instruction::PHI: { 1238 const PHINode &PN = cast<PHINode>(I); 1239 Code = bitc::FUNC_CODE_INST_PHI; 1240 Vals.push_back(VE.getTypeID(PN.getType())); 1241 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1242 Vals.push_back(VE.getValueID(PN.getIncomingValue(i))); 1243 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1244 } 1245 break; 1246 } 1247 1248 case Instruction::LandingPad: { 1249 const LandingPadInst &LP = cast<LandingPadInst>(I); 1250 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1251 Vals.push_back(VE.getTypeID(LP.getType())); 1252 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1253 Vals.push_back(LP.isCleanup()); 1254 Vals.push_back(LP.getNumClauses()); 1255 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1256 if (LP.isCatch(I)) 1257 Vals.push_back(LandingPadInst::Catch); 1258 else 1259 Vals.push_back(LandingPadInst::Filter); 1260 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1261 } 1262 break; 1263 } 1264 1265 case Instruction::Alloca: 1266 Code = bitc::FUNC_CODE_INST_ALLOCA; 1267 Vals.push_back(VE.getTypeID(I.getType())); 1268 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1269 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1270 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1271 break; 1272 1273 case Instruction::Load: 1274 if (cast<LoadInst>(I).isAtomic()) { 1275 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1276 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1277 } else { 1278 Code = bitc::FUNC_CODE_INST_LOAD; 1279 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1280 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1281 } 1282 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1283 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1284 if (cast<LoadInst>(I).isAtomic()) { 1285 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1286 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1287 } 1288 break; 1289 case Instruction::Store: 1290 if (cast<StoreInst>(I).isAtomic()) 1291 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1292 else 1293 Code = bitc::FUNC_CODE_INST_STORE; 1294 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1295 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1296 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1297 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1298 if (cast<StoreInst>(I).isAtomic()) { 1299 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1300 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1301 } 1302 break; 1303 case Instruction::AtomicCmpXchg: 1304 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1305 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1306 Vals.push_back(VE.getValueID(I.getOperand(1))); // cmp. 1307 Vals.push_back(VE.getValueID(I.getOperand(2))); // newval. 1308 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1309 Vals.push_back(GetEncodedOrdering( 1310 cast<AtomicCmpXchgInst>(I).getOrdering())); 1311 Vals.push_back(GetEncodedSynchScope( 1312 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1313 break; 1314 case Instruction::AtomicRMW: 1315 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1316 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1317 Vals.push_back(VE.getValueID(I.getOperand(1))); // val. 1318 Vals.push_back(GetEncodedRMWOperation( 1319 cast<AtomicRMWInst>(I).getOperation())); 1320 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1321 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1322 Vals.push_back(GetEncodedSynchScope( 1323 cast<AtomicRMWInst>(I).getSynchScope())); 1324 break; 1325 case Instruction::Fence: 1326 Code = bitc::FUNC_CODE_INST_FENCE; 1327 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1328 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1329 break; 1330 case Instruction::Call: { 1331 const CallInst &CI = cast<CallInst>(I); 1332 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1333 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1334 1335 Code = bitc::FUNC_CODE_INST_CALL; 1336 1337 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1338 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1339 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1340 1341 // Emit value #'s for the fixed parameters. 1342 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1343 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1344 1345 // Emit type/value pairs for varargs params. 1346 if (FTy->isVarArg()) { 1347 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1348 i != e; ++i) 1349 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1350 } 1351 break; 1352 } 1353 case Instruction::VAArg: 1354 Code = bitc::FUNC_CODE_INST_VAARG; 1355 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1356 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1357 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1358 break; 1359 } 1360 1361 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1362 Vals.clear(); 1363 } 1364 1365 // Emit names for globals/functions etc. 1366 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1367 const ValueEnumerator &VE, 1368 BitstreamWriter &Stream) { 1369 if (VST.empty()) return; 1370 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1371 1372 // FIXME: Set up the abbrev, we know how many values there are! 1373 // FIXME: We know if the type names can use 7-bit ascii. 1374 SmallVector<unsigned, 64> NameVals; 1375 1376 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1377 SI != SE; ++SI) { 1378 1379 const ValueName &Name = *SI; 1380 1381 // Figure out the encoding to use for the name. 1382 bool is7Bit = true; 1383 bool isChar6 = true; 1384 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1385 C != E; ++C) { 1386 if (isChar6) 1387 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1388 if ((unsigned char)*C & 128) { 1389 is7Bit = false; 1390 break; // don't bother scanning the rest. 1391 } 1392 } 1393 1394 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1395 1396 // VST_ENTRY: [valueid, namechar x N] 1397 // VST_BBENTRY: [bbid, namechar x N] 1398 unsigned Code; 1399 if (isa<BasicBlock>(SI->getValue())) { 1400 Code = bitc::VST_CODE_BBENTRY; 1401 if (isChar6) 1402 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1403 } else { 1404 Code = bitc::VST_CODE_ENTRY; 1405 if (isChar6) 1406 AbbrevToUse = VST_ENTRY_6_ABBREV; 1407 else if (is7Bit) 1408 AbbrevToUse = VST_ENTRY_7_ABBREV; 1409 } 1410 1411 NameVals.push_back(VE.getValueID(SI->getValue())); 1412 for (const char *P = Name.getKeyData(), 1413 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1414 NameVals.push_back((unsigned char)*P); 1415 1416 // Emit the finished record. 1417 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1418 NameVals.clear(); 1419 } 1420 Stream.ExitBlock(); 1421 } 1422 1423 /// WriteFunction - Emit a function body to the module stream. 1424 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1425 BitstreamWriter &Stream) { 1426 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1427 VE.incorporateFunction(F); 1428 1429 SmallVector<unsigned, 64> Vals; 1430 1431 // Emit the number of basic blocks, so the reader can create them ahead of 1432 // time. 1433 Vals.push_back(VE.getBasicBlocks().size()); 1434 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1435 Vals.clear(); 1436 1437 // If there are function-local constants, emit them now. 1438 unsigned CstStart, CstEnd; 1439 VE.getFunctionConstantRange(CstStart, CstEnd); 1440 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1441 1442 // If there is function-local metadata, emit it now. 1443 WriteFunctionLocalMetadata(F, VE, Stream); 1444 1445 // Keep a running idea of what the instruction ID is. 1446 unsigned InstID = CstEnd; 1447 1448 bool NeedsMetadataAttachment = false; 1449 1450 DebugLoc LastDL; 1451 1452 // Finally, emit all the instructions, in order. 1453 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1454 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1455 I != E; ++I) { 1456 WriteInstruction(*I, InstID, VE, Stream, Vals); 1457 1458 if (!I->getType()->isVoidTy()) 1459 ++InstID; 1460 1461 // If the instruction has metadata, write a metadata attachment later. 1462 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1463 1464 // If the instruction has a debug location, emit it. 1465 DebugLoc DL = I->getDebugLoc(); 1466 if (DL.isUnknown()) { 1467 // nothing todo. 1468 } else if (DL == LastDL) { 1469 // Just repeat the same debug loc as last time. 1470 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1471 } else { 1472 MDNode *Scope, *IA; 1473 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1474 1475 Vals.push_back(DL.getLine()); 1476 Vals.push_back(DL.getCol()); 1477 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1478 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1479 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1480 Vals.clear(); 1481 1482 LastDL = DL; 1483 } 1484 } 1485 1486 // Emit names for all the instructions etc. 1487 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1488 1489 if (NeedsMetadataAttachment) 1490 WriteMetadataAttachment(F, VE, Stream); 1491 VE.purgeFunction(); 1492 Stream.ExitBlock(); 1493 } 1494 1495 // Emit blockinfo, which defines the standard abbreviations etc. 1496 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1497 // We only want to emit block info records for blocks that have multiple 1498 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1499 // blocks can defined their abbrevs inline. 1500 Stream.EnterBlockInfoBlock(2); 1501 1502 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1503 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1508 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1509 Abbv) != VST_ENTRY_8_ABBREV) 1510 llvm_unreachable("Unexpected abbrev ordering!"); 1511 } 1512 1513 { // 7-bit fixed width VST_ENTRY strings. 1514 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1515 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1519 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1520 Abbv) != VST_ENTRY_7_ABBREV) 1521 llvm_unreachable("Unexpected abbrev ordering!"); 1522 } 1523 { // 6-bit char6 VST_ENTRY strings. 1524 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1525 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1529 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1530 Abbv) != VST_ENTRY_6_ABBREV) 1531 llvm_unreachable("Unexpected abbrev ordering!"); 1532 } 1533 { // 6-bit char6 VST_BBENTRY strings. 1534 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1535 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1539 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1540 Abbv) != VST_BBENTRY_6_ABBREV) 1541 llvm_unreachable("Unexpected abbrev ordering!"); 1542 } 1543 1544 1545 1546 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1547 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1548 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1550 Log2_32_Ceil(VE.getTypes().size()+1))); 1551 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1552 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1553 llvm_unreachable("Unexpected abbrev ordering!"); 1554 } 1555 1556 { // INTEGER abbrev for CONSTANTS_BLOCK. 1557 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1558 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1560 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1561 Abbv) != CONSTANTS_INTEGER_ABBREV) 1562 llvm_unreachable("Unexpected abbrev ordering!"); 1563 } 1564 1565 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1566 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1567 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1570 Log2_32_Ceil(VE.getTypes().size()+1))); 1571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1572 1573 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1574 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1575 llvm_unreachable("Unexpected abbrev ordering!"); 1576 } 1577 { // NULL abbrev for CONSTANTS_BLOCK. 1578 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1579 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1580 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1581 Abbv) != CONSTANTS_NULL_Abbrev) 1582 llvm_unreachable("Unexpected abbrev ordering!"); 1583 } 1584 1585 // FIXME: This should only use space for first class types! 1586 1587 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1588 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1589 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1593 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1594 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1595 llvm_unreachable("Unexpected abbrev ordering!"); 1596 } 1597 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1598 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1599 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1603 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1604 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1605 llvm_unreachable("Unexpected abbrev ordering!"); 1606 } 1607 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1608 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1609 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1614 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1615 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1616 llvm_unreachable("Unexpected abbrev ordering!"); 1617 } 1618 { // INST_CAST abbrev for FUNCTION_BLOCK. 1619 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1620 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1623 Log2_32_Ceil(VE.getTypes().size()+1))); 1624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1625 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1626 Abbv) != FUNCTION_INST_CAST_ABBREV) 1627 llvm_unreachable("Unexpected abbrev ordering!"); 1628 } 1629 1630 { // INST_RET abbrev for FUNCTION_BLOCK. 1631 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1632 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1633 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1634 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1635 llvm_unreachable("Unexpected abbrev ordering!"); 1636 } 1637 { // INST_RET abbrev for FUNCTION_BLOCK. 1638 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1639 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1641 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1642 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1643 llvm_unreachable("Unexpected abbrev ordering!"); 1644 } 1645 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1646 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1647 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1648 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1649 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1650 llvm_unreachable("Unexpected abbrev ordering!"); 1651 } 1652 1653 Stream.ExitBlock(); 1654 } 1655 1656 // Sort the Users based on the order in which the reader parses the bitcode 1657 // file. 1658 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1659 // TODO: Implement. 1660 return true; 1661 } 1662 1663 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1664 BitstreamWriter &Stream) { 1665 1666 // One or zero uses can't get out of order. 1667 if (V->use_empty() || V->hasNUses(1)) 1668 return; 1669 1670 // Make a copy of the in-memory use-list for sorting. 1671 unsigned UseListSize = std::distance(V->use_begin(), V->use_end()); 1672 SmallVector<const User*, 8> UseList; 1673 UseList.reserve(UseListSize); 1674 for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); 1675 I != E; ++I) { 1676 const User *U = *I; 1677 UseList.push_back(U); 1678 } 1679 1680 // Sort the copy based on the order read by the BitcodeReader. 1681 std::sort(UseList.begin(), UseList.end(), bitcodereader_order); 1682 1683 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1684 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1685 1686 // TODO: Emit the USELIST_CODE_ENTRYs. 1687 } 1688 1689 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1690 BitstreamWriter &Stream) { 1691 VE.incorporateFunction(*F); 1692 1693 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1694 AI != AE; ++AI) 1695 WriteUseList(AI, VE, Stream); 1696 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1697 ++BB) { 1698 WriteUseList(BB, VE, Stream); 1699 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1700 ++II) { 1701 WriteUseList(II, VE, Stream); 1702 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1703 OI != E; ++OI) { 1704 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1705 isa<InlineAsm>(*OI)) 1706 WriteUseList(*OI, VE, Stream); 1707 } 1708 } 1709 } 1710 VE.purgeFunction(); 1711 } 1712 1713 // Emit use-lists. 1714 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1715 BitstreamWriter &Stream) { 1716 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1717 1718 // XXX: this modifies the module, but in a way that should never change the 1719 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1720 // contain entries in the use_list that do not exist in the Module and are 1721 // not stored in the .bc file. 1722 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1723 I != E; ++I) 1724 I->removeDeadConstantUsers(); 1725 1726 // Write the global variables. 1727 for (Module::const_global_iterator GI = M->global_begin(), 1728 GE = M->global_end(); GI != GE; ++GI) { 1729 WriteUseList(GI, VE, Stream); 1730 1731 // Write the global variable initializers. 1732 if (GI->hasInitializer()) 1733 WriteUseList(GI->getInitializer(), VE, Stream); 1734 } 1735 1736 // Write the functions. 1737 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1738 WriteUseList(FI, VE, Stream); 1739 if (!FI->isDeclaration()) 1740 WriteFunctionUseList(FI, VE, Stream); 1741 } 1742 1743 // Write the aliases. 1744 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1745 AI != AE; ++AI) { 1746 WriteUseList(AI, VE, Stream); 1747 WriteUseList(AI->getAliasee(), VE, Stream); 1748 } 1749 1750 Stream.ExitBlock(); 1751 } 1752 1753 /// WriteModule - Emit the specified module to the bitstream. 1754 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1755 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1756 1757 // Emit the version number if it is non-zero. 1758 if (CurVersion) { 1759 SmallVector<unsigned, 1> Vals; 1760 Vals.push_back(CurVersion); 1761 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1762 } 1763 1764 // Analyze the module, enumerating globals, functions, etc. 1765 ValueEnumerator VE(M); 1766 1767 // Emit blockinfo, which defines the standard abbreviations etc. 1768 WriteBlockInfo(VE, Stream); 1769 1770 // Emit information about parameter attributes. 1771 WriteAttributeTable(VE, Stream); 1772 1773 // Emit information describing all of the types in the module. 1774 WriteTypeTable(VE, Stream); 1775 1776 // Emit top-level description of module, including target triple, inline asm, 1777 // descriptors for global variables, and function prototype info. 1778 WriteModuleInfo(M, VE, Stream); 1779 1780 // Emit constants. 1781 WriteModuleConstants(VE, Stream); 1782 1783 // Emit metadata. 1784 WriteModuleMetadata(M, VE, Stream); 1785 1786 // Emit metadata. 1787 WriteModuleMetadataStore(M, Stream); 1788 1789 // Emit names for globals/functions etc. 1790 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1791 1792 // Emit use-lists. 1793 if (EnablePreserveUseListOrdering) 1794 WriteModuleUseLists(M, VE, Stream); 1795 1796 // Emit function bodies. 1797 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1798 if (!F->isDeclaration()) 1799 WriteFunction(*F, VE, Stream); 1800 1801 Stream.ExitBlock(); 1802 } 1803 1804 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1805 /// header and trailer to make it compatible with the system archiver. To do 1806 /// this we emit the following header, and then emit a trailer that pads the 1807 /// file out to be a multiple of 16 bytes. 1808 /// 1809 /// struct bc_header { 1810 /// uint32_t Magic; // 0x0B17C0DE 1811 /// uint32_t Version; // Version, currently always 0. 1812 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1813 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1814 /// uint32_t CPUType; // CPU specifier. 1815 /// ... potentially more later ... 1816 /// }; 1817 enum { 1818 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1819 DarwinBCHeaderSize = 5*4 1820 }; 1821 1822 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1823 uint32_t &Position) { 1824 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1825 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1826 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1827 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1828 Position += 4; 1829 } 1830 1831 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1832 const Triple &TT) { 1833 unsigned CPUType = ~0U; 1834 1835 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1836 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1837 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1838 // specific constants here because they are implicitly part of the Darwin ABI. 1839 enum { 1840 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1841 DARWIN_CPU_TYPE_X86 = 7, 1842 DARWIN_CPU_TYPE_ARM = 12, 1843 DARWIN_CPU_TYPE_POWERPC = 18 1844 }; 1845 1846 Triple::ArchType Arch = TT.getArch(); 1847 if (Arch == Triple::x86_64) 1848 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1849 else if (Arch == Triple::x86) 1850 CPUType = DARWIN_CPU_TYPE_X86; 1851 else if (Arch == Triple::ppc) 1852 CPUType = DARWIN_CPU_TYPE_POWERPC; 1853 else if (Arch == Triple::ppc64) 1854 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1855 else if (Arch == Triple::arm || Arch == Triple::thumb) 1856 CPUType = DARWIN_CPU_TYPE_ARM; 1857 1858 // Traditional Bitcode starts after header. 1859 assert(Buffer.size() >= DarwinBCHeaderSize && 1860 "Expected header size to be reserved"); 1861 unsigned BCOffset = DarwinBCHeaderSize; 1862 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 1863 1864 // Write the magic and version. 1865 unsigned Position = 0; 1866 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 1867 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 1868 WriteInt32ToBuffer(BCOffset , Buffer, Position); 1869 WriteInt32ToBuffer(BCSize , Buffer, Position); 1870 WriteInt32ToBuffer(CPUType , Buffer, Position); 1871 1872 // If the file is not a multiple of 16 bytes, insert dummy padding. 1873 while (Buffer.size() & 15) 1874 Buffer.push_back(0); 1875 } 1876 1877 /// WriteBitcodeToFile - Write the specified module to the specified output 1878 /// stream. 1879 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1880 SmallVector<char, 1024> Buffer; 1881 Buffer.reserve(256*1024); 1882 1883 // If this is darwin or another generic macho target, reserve space for the 1884 // header. 1885 Triple TT(M->getTargetTriple()); 1886 if (TT.isOSDarwin()) 1887 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 1888 1889 // Emit the module into the buffer. 1890 { 1891 BitstreamWriter Stream(Buffer); 1892 1893 // Emit the file header. 1894 Stream.Emit((unsigned)'B', 8); 1895 Stream.Emit((unsigned)'C', 8); 1896 Stream.Emit(0x0, 4); 1897 Stream.Emit(0xC, 4); 1898 Stream.Emit(0xE, 4); 1899 Stream.Emit(0xD, 4); 1900 1901 // Emit the module. 1902 WriteModule(M, Stream); 1903 } 1904 1905 if (TT.isOSDarwin()) 1906 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 1907 1908 // Write the generated bitstream to "Out". 1909 Out.write((char*)&Buffer.front(), Buffer.size()); 1910 } 1911