1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV 60 }; 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 78 } 79 } 80 81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 82 switch (Opcode) { 83 default: llvm_unreachable("Unknown binary instruction!"); 84 case Instruction::Add: 85 case Instruction::FAdd: return bitc::BINOP_ADD; 86 case Instruction::Sub: 87 case Instruction::FSub: return bitc::BINOP_SUB; 88 case Instruction::Mul: 89 case Instruction::FMul: return bitc::BINOP_MUL; 90 case Instruction::UDiv: return bitc::BINOP_UDIV; 91 case Instruction::FDiv: 92 case Instruction::SDiv: return bitc::BINOP_SDIV; 93 case Instruction::URem: return bitc::BINOP_UREM; 94 case Instruction::FRem: 95 case Instruction::SRem: return bitc::BINOP_SREM; 96 case Instruction::Shl: return bitc::BINOP_SHL; 97 case Instruction::LShr: return bitc::BINOP_LSHR; 98 case Instruction::AShr: return bitc::BINOP_ASHR; 99 case Instruction::And: return bitc::BINOP_AND; 100 case Instruction::Or: return bitc::BINOP_OR; 101 case Instruction::Xor: return bitc::BINOP_XOR; 102 } 103 } 104 105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 106 switch (Op) { 107 default: llvm_unreachable("Unknown RMW operation!"); 108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 109 case AtomicRMWInst::Add: return bitc::RMW_ADD; 110 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 111 case AtomicRMWInst::And: return bitc::RMW_AND; 112 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 113 case AtomicRMWInst::Or: return bitc::RMW_OR; 114 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 115 case AtomicRMWInst::Max: return bitc::RMW_MAX; 116 case AtomicRMWInst::Min: return bitc::RMW_MIN; 117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 119 } 120 } 121 122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 123 switch (Ordering) { 124 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 125 case Unordered: return bitc::ORDERING_UNORDERED; 126 case Monotonic: return bitc::ORDERING_MONOTONIC; 127 case Acquire: return bitc::ORDERING_ACQUIRE; 128 case Release: return bitc::ORDERING_RELEASE; 129 case AcquireRelease: return bitc::ORDERING_ACQREL; 130 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 131 } 132 llvm_unreachable("Invalid ordering"); 133 } 134 135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 136 switch (SynchScope) { 137 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 138 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 139 } 140 llvm_unreachable("Invalid synch scope"); 141 } 142 143 static void WriteStringRecord(unsigned Code, StringRef Str, 144 unsigned AbbrevToUse, BitstreamWriter &Stream) { 145 SmallVector<unsigned, 64> Vals; 146 147 // Code: [strchar x N] 148 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 150 AbbrevToUse = 0; 151 Vals.push_back(Str[i]); 152 } 153 154 // Emit the finished record. 155 Stream.EmitRecord(Code, Vals, AbbrevToUse); 156 } 157 158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 159 switch (Kind) { 160 case Attribute::Alignment: 161 return bitc::ATTR_KIND_ALIGNMENT; 162 case Attribute::AlwaysInline: 163 return bitc::ATTR_KIND_ALWAYS_INLINE; 164 case Attribute::Builtin: 165 return bitc::ATTR_KIND_BUILTIN; 166 case Attribute::ByVal: 167 return bitc::ATTR_KIND_BY_VAL; 168 case Attribute::InAlloca: 169 return bitc::ATTR_KIND_IN_ALLOCA; 170 case Attribute::Cold: 171 return bitc::ATTR_KIND_COLD; 172 case Attribute::InlineHint: 173 return bitc::ATTR_KIND_INLINE_HINT; 174 case Attribute::InReg: 175 return bitc::ATTR_KIND_IN_REG; 176 case Attribute::JumpTable: 177 return bitc::ATTR_KIND_JUMP_TABLE; 178 case Attribute::MinSize: 179 return bitc::ATTR_KIND_MIN_SIZE; 180 case Attribute::Naked: 181 return bitc::ATTR_KIND_NAKED; 182 case Attribute::Nest: 183 return bitc::ATTR_KIND_NEST; 184 case Attribute::NoAlias: 185 return bitc::ATTR_KIND_NO_ALIAS; 186 case Attribute::NoBuiltin: 187 return bitc::ATTR_KIND_NO_BUILTIN; 188 case Attribute::NoCapture: 189 return bitc::ATTR_KIND_NO_CAPTURE; 190 case Attribute::NoDuplicate: 191 return bitc::ATTR_KIND_NO_DUPLICATE; 192 case Attribute::NoImplicitFloat: 193 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 194 case Attribute::NoInline: 195 return bitc::ATTR_KIND_NO_INLINE; 196 case Attribute::NonLazyBind: 197 return bitc::ATTR_KIND_NON_LAZY_BIND; 198 case Attribute::NonNull: 199 return bitc::ATTR_KIND_NON_NULL; 200 case Attribute::Dereferenceable: 201 return bitc::ATTR_KIND_DEREFERENCEABLE; 202 case Attribute::NoRedZone: 203 return bitc::ATTR_KIND_NO_RED_ZONE; 204 case Attribute::NoReturn: 205 return bitc::ATTR_KIND_NO_RETURN; 206 case Attribute::NoUnwind: 207 return bitc::ATTR_KIND_NO_UNWIND; 208 case Attribute::OptimizeForSize: 209 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 210 case Attribute::OptimizeNone: 211 return bitc::ATTR_KIND_OPTIMIZE_NONE; 212 case Attribute::ReadNone: 213 return bitc::ATTR_KIND_READ_NONE; 214 case Attribute::ReadOnly: 215 return bitc::ATTR_KIND_READ_ONLY; 216 case Attribute::Returned: 217 return bitc::ATTR_KIND_RETURNED; 218 case Attribute::ReturnsTwice: 219 return bitc::ATTR_KIND_RETURNS_TWICE; 220 case Attribute::SExt: 221 return bitc::ATTR_KIND_S_EXT; 222 case Attribute::StackAlignment: 223 return bitc::ATTR_KIND_STACK_ALIGNMENT; 224 case Attribute::StackProtect: 225 return bitc::ATTR_KIND_STACK_PROTECT; 226 case Attribute::StackProtectReq: 227 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 228 case Attribute::StackProtectStrong: 229 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 230 case Attribute::StructRet: 231 return bitc::ATTR_KIND_STRUCT_RET; 232 case Attribute::SanitizeAddress: 233 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 234 case Attribute::SanitizeThread: 235 return bitc::ATTR_KIND_SANITIZE_THREAD; 236 case Attribute::SanitizeMemory: 237 return bitc::ATTR_KIND_SANITIZE_MEMORY; 238 case Attribute::UWTable: 239 return bitc::ATTR_KIND_UW_TABLE; 240 case Attribute::ZExt: 241 return bitc::ATTR_KIND_Z_EXT; 242 case Attribute::EndAttrKinds: 243 llvm_unreachable("Can not encode end-attribute kinds marker."); 244 case Attribute::None: 245 llvm_unreachable("Can not encode none-attribute."); 246 } 247 248 llvm_unreachable("Trying to encode unknown attribute"); 249 } 250 251 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 252 BitstreamWriter &Stream) { 253 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 254 if (AttrGrps.empty()) return; 255 256 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 257 258 SmallVector<uint64_t, 64> Record; 259 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 260 AttributeSet AS = AttrGrps[i]; 261 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 262 AttributeSet A = AS.getSlotAttributes(i); 263 264 Record.push_back(VE.getAttributeGroupID(A)); 265 Record.push_back(AS.getSlotIndex(i)); 266 267 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 268 I != E; ++I) { 269 Attribute Attr = *I; 270 if (Attr.isEnumAttribute()) { 271 Record.push_back(0); 272 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 273 } else if (Attr.isIntAttribute()) { 274 Record.push_back(1); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 Record.push_back(Attr.getValueAsInt()); 277 } else { 278 StringRef Kind = Attr.getKindAsString(); 279 StringRef Val = Attr.getValueAsString(); 280 281 Record.push_back(Val.empty() ? 3 : 4); 282 Record.append(Kind.begin(), Kind.end()); 283 Record.push_back(0); 284 if (!Val.empty()) { 285 Record.append(Val.begin(), Val.end()); 286 Record.push_back(0); 287 } 288 } 289 } 290 291 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 292 Record.clear(); 293 } 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static void WriteAttributeTable(const ValueEnumerator &VE, 300 BitstreamWriter &Stream) { 301 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 302 if (Attrs.empty()) return; 303 304 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 305 306 SmallVector<uint64_t, 64> Record; 307 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 308 const AttributeSet &A = Attrs[i]; 309 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 310 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 311 312 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 313 Record.clear(); 314 } 315 316 Stream.ExitBlock(); 317 } 318 319 /// WriteTypeTable - Write out the type table for a module. 320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 321 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 322 323 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 324 SmallVector<uint64_t, 64> TypeVals; 325 326 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 327 328 // Abbrev for TYPE_CODE_POINTER. 329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 330 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 332 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 333 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 334 335 // Abbrev for TYPE_CODE_FUNCTION. 336 Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 342 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_STRUCT_ANON. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_NAME. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 358 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAMED. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_ARRAY. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Emit an entry count so the reader can reserve space. 378 TypeVals.push_back(TypeList.size()); 379 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 380 TypeVals.clear(); 381 382 // Loop over all of the types, emitting each in turn. 383 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 384 Type *T = TypeList[i]; 385 int AbbrevToUse = 0; 386 unsigned Code = 0; 387 388 switch (T->getTypeID()) { 389 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 390 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 391 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 392 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 393 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 394 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 395 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 396 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 397 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 398 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 399 case Type::IntegerTyID: 400 // INTEGER: [width] 401 Code = bitc::TYPE_CODE_INTEGER; 402 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 403 break; 404 case Type::PointerTyID: { 405 PointerType *PTy = cast<PointerType>(T); 406 // POINTER: [pointee type, address space] 407 Code = bitc::TYPE_CODE_POINTER; 408 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 409 unsigned AddressSpace = PTy->getAddressSpace(); 410 TypeVals.push_back(AddressSpace); 411 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 412 break; 413 } 414 case Type::FunctionTyID: { 415 FunctionType *FT = cast<FunctionType>(T); 416 // FUNCTION: [isvararg, retty, paramty x N] 417 Code = bitc::TYPE_CODE_FUNCTION; 418 TypeVals.push_back(FT->isVarArg()); 419 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 421 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 422 AbbrevToUse = FunctionAbbrev; 423 break; 424 } 425 case Type::StructTyID: { 426 StructType *ST = cast<StructType>(T); 427 // STRUCT: [ispacked, eltty x N] 428 TypeVals.push_back(ST->isPacked()); 429 // Output all of the element types. 430 for (StructType::element_iterator I = ST->element_begin(), 431 E = ST->element_end(); I != E; ++I) 432 TypeVals.push_back(VE.getTypeID(*I)); 433 434 if (ST->isLiteral()) { 435 Code = bitc::TYPE_CODE_STRUCT_ANON; 436 AbbrevToUse = StructAnonAbbrev; 437 } else { 438 if (ST->isOpaque()) { 439 Code = bitc::TYPE_CODE_OPAQUE; 440 } else { 441 Code = bitc::TYPE_CODE_STRUCT_NAMED; 442 AbbrevToUse = StructNamedAbbrev; 443 } 444 445 // Emit the name if it is present. 446 if (!ST->getName().empty()) 447 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 448 StructNameAbbrev, Stream); 449 } 450 break; 451 } 452 case Type::ArrayTyID: { 453 ArrayType *AT = cast<ArrayType>(T); 454 // ARRAY: [numelts, eltty] 455 Code = bitc::TYPE_CODE_ARRAY; 456 TypeVals.push_back(AT->getNumElements()); 457 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 458 AbbrevToUse = ArrayAbbrev; 459 break; 460 } 461 case Type::VectorTyID: { 462 VectorType *VT = cast<VectorType>(T); 463 // VECTOR [numelts, eltty] 464 Code = bitc::TYPE_CODE_VECTOR; 465 TypeVals.push_back(VT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 467 break; 468 } 469 } 470 471 // Emit the finished record. 472 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 473 TypeVals.clear(); 474 } 475 476 Stream.ExitBlock(); 477 } 478 479 static unsigned getEncodedLinkage(const GlobalValue &GV) { 480 switch (GV.getLinkage()) { 481 case GlobalValue::ExternalLinkage: 482 return 0; 483 case GlobalValue::WeakAnyLinkage: 484 return 16; 485 case GlobalValue::AppendingLinkage: 486 return 2; 487 case GlobalValue::InternalLinkage: 488 return 3; 489 case GlobalValue::LinkOnceAnyLinkage: 490 return 18; 491 case GlobalValue::ExternalWeakLinkage: 492 return 7; 493 case GlobalValue::CommonLinkage: 494 return 8; 495 case GlobalValue::PrivateLinkage: 496 return 9; 497 case GlobalValue::WeakODRLinkage: 498 return 17; 499 case GlobalValue::LinkOnceODRLinkage: 500 return 19; 501 case GlobalValue::AvailableExternallyLinkage: 502 return 12; 503 } 504 llvm_unreachable("Invalid linkage"); 505 } 506 507 static unsigned getEncodedVisibility(const GlobalValue &GV) { 508 switch (GV.getVisibility()) { 509 case GlobalValue::DefaultVisibility: return 0; 510 case GlobalValue::HiddenVisibility: return 1; 511 case GlobalValue::ProtectedVisibility: return 2; 512 } 513 llvm_unreachable("Invalid visibility"); 514 } 515 516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 517 switch (GV.getDLLStorageClass()) { 518 case GlobalValue::DefaultStorageClass: return 0; 519 case GlobalValue::DLLImportStorageClass: return 1; 520 case GlobalValue::DLLExportStorageClass: return 2; 521 } 522 llvm_unreachable("Invalid DLL storage class"); 523 } 524 525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 526 switch (GV.getThreadLocalMode()) { 527 case GlobalVariable::NotThreadLocal: return 0; 528 case GlobalVariable::GeneralDynamicTLSModel: return 1; 529 case GlobalVariable::LocalDynamicTLSModel: return 2; 530 case GlobalVariable::InitialExecTLSModel: return 3; 531 case GlobalVariable::LocalExecTLSModel: return 4; 532 } 533 llvm_unreachable("Invalid TLS model"); 534 } 535 536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 537 switch (C.getSelectionKind()) { 538 case Comdat::Any: 539 return bitc::COMDAT_SELECTION_KIND_ANY; 540 case Comdat::ExactMatch: 541 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 542 case Comdat::Largest: 543 return bitc::COMDAT_SELECTION_KIND_LARGEST; 544 case Comdat::NoDuplicates: 545 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 546 case Comdat::SameSize: 547 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 548 } 549 llvm_unreachable("Invalid selection kind"); 550 } 551 552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 553 SmallVector<uint16_t, 64> Vals; 554 for (const Comdat *C : VE.getComdats()) { 555 // COMDAT: [selection_kind, name] 556 Vals.push_back(getEncodedComdatSelectionKind(*C)); 557 size_t Size = C->getName().size(); 558 assert(isUInt<16>(Size)); 559 Vals.push_back(Size); 560 for (char Chr : C->getName()) 561 Vals.push_back((unsigned char)Chr); 562 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 563 Vals.clear(); 564 } 565 } 566 567 // Emit top-level description of module, including target triple, inline asm, 568 // descriptors for global variables, and function prototype info. 569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 570 BitstreamWriter &Stream) { 571 // Emit various pieces of data attached to a module. 572 if (!M->getTargetTriple().empty()) 573 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 574 0/*TODO*/, Stream); 575 const std::string &DL = M->getDataLayoutStr(); 576 if (!DL.empty()) 577 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 578 if (!M->getModuleInlineAsm().empty()) 579 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 580 0/*TODO*/, Stream); 581 582 // Emit information about sections and GC, computing how many there are. Also 583 // compute the maximum alignment value. 584 std::map<std::string, unsigned> SectionMap; 585 std::map<std::string, unsigned> GCMap; 586 unsigned MaxAlignment = 0; 587 unsigned MaxGlobalType = 0; 588 for (const GlobalValue &GV : M->globals()) { 589 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 590 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 591 if (GV.hasSection()) { 592 // Give section names unique ID's. 593 unsigned &Entry = SectionMap[GV.getSection()]; 594 if (!Entry) { 595 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 596 0/*TODO*/, Stream); 597 Entry = SectionMap.size(); 598 } 599 } 600 } 601 for (const Function &F : *M) { 602 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 603 if (F.hasSection()) { 604 // Give section names unique ID's. 605 unsigned &Entry = SectionMap[F.getSection()]; 606 if (!Entry) { 607 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 608 0/*TODO*/, Stream); 609 Entry = SectionMap.size(); 610 } 611 } 612 if (F.hasGC()) { 613 // Same for GC names. 614 unsigned &Entry = GCMap[F.getGC()]; 615 if (!Entry) { 616 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 617 0/*TODO*/, Stream); 618 Entry = GCMap.size(); 619 } 620 } 621 } 622 623 // Emit abbrev for globals, now that we know # sections and max alignment. 624 unsigned SimpleGVarAbbrev = 0; 625 if (!M->global_empty()) { 626 // Add an abbrev for common globals with no visibility or thread localness. 627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 628 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 630 Log2_32_Ceil(MaxGlobalType+1))); 631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 634 if (MaxAlignment == 0) // Alignment. 635 Abbv->Add(BitCodeAbbrevOp(0)); 636 else { 637 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 639 Log2_32_Ceil(MaxEncAlignment+1))); 640 } 641 if (SectionMap.empty()) // Section. 642 Abbv->Add(BitCodeAbbrevOp(0)); 643 else 644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 645 Log2_32_Ceil(SectionMap.size()+1))); 646 // Don't bother emitting vis + thread local. 647 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 648 } 649 650 // Emit the global variable information. 651 SmallVector<unsigned, 64> Vals; 652 for (const GlobalVariable &GV : M->globals()) { 653 unsigned AbbrevToUse = 0; 654 655 // GLOBALVAR: [type, isconst, initid, 656 // linkage, alignment, section, visibility, threadlocal, 657 // unnamed_addr, externally_initialized, dllstorageclass, 658 // comdat] 659 Vals.push_back(VE.getTypeID(GV.getType())); 660 Vals.push_back(GV.isConstant()); 661 Vals.push_back(GV.isDeclaration() ? 0 : 662 (VE.getValueID(GV.getInitializer()) + 1)); 663 Vals.push_back(getEncodedLinkage(GV)); 664 Vals.push_back(Log2_32(GV.getAlignment())+1); 665 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 666 if (GV.isThreadLocal() || 667 GV.getVisibility() != GlobalValue::DefaultVisibility || 668 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 669 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 670 GV.hasComdat()) { 671 Vals.push_back(getEncodedVisibility(GV)); 672 Vals.push_back(getEncodedThreadLocalMode(GV)); 673 Vals.push_back(GV.hasUnnamedAddr()); 674 Vals.push_back(GV.isExternallyInitialized()); 675 Vals.push_back(getEncodedDLLStorageClass(GV)); 676 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 677 } else { 678 AbbrevToUse = SimpleGVarAbbrev; 679 } 680 681 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 682 Vals.clear(); 683 } 684 685 // Emit the function proto information. 686 for (const Function &F : *M) { 687 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 688 // section, visibility, gc, unnamed_addr, prologuedata, 689 // dllstorageclass, comdat, prefixdata] 690 Vals.push_back(VE.getTypeID(F.getType())); 691 Vals.push_back(F.getCallingConv()); 692 Vals.push_back(F.isDeclaration()); 693 Vals.push_back(getEncodedLinkage(F)); 694 Vals.push_back(VE.getAttributeID(F.getAttributes())); 695 Vals.push_back(Log2_32(F.getAlignment())+1); 696 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 697 Vals.push_back(getEncodedVisibility(F)); 698 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 699 Vals.push_back(F.hasUnnamedAddr()); 700 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 701 : 0); 702 Vals.push_back(getEncodedDLLStorageClass(F)); 703 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 704 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 705 : 0); 706 707 unsigned AbbrevToUse = 0; 708 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 709 Vals.clear(); 710 } 711 712 // Emit the alias information. 713 for (const GlobalAlias &A : M->aliases()) { 714 // ALIAS: [alias type, aliasee val#, linkage, visibility] 715 Vals.push_back(VE.getTypeID(A.getType())); 716 Vals.push_back(VE.getValueID(A.getAliasee())); 717 Vals.push_back(getEncodedLinkage(A)); 718 Vals.push_back(getEncodedVisibility(A)); 719 Vals.push_back(getEncodedDLLStorageClass(A)); 720 Vals.push_back(getEncodedThreadLocalMode(A)); 721 Vals.push_back(A.hasUnnamedAddr()); 722 unsigned AbbrevToUse = 0; 723 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 724 Vals.clear(); 725 } 726 } 727 728 static uint64_t GetOptimizationFlags(const Value *V) { 729 uint64_t Flags = 0; 730 731 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 732 if (OBO->hasNoSignedWrap()) 733 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 734 if (OBO->hasNoUnsignedWrap()) 735 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 736 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 737 if (PEO->isExact()) 738 Flags |= 1 << bitc::PEO_EXACT; 739 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 740 if (FPMO->hasUnsafeAlgebra()) 741 Flags |= FastMathFlags::UnsafeAlgebra; 742 if (FPMO->hasNoNaNs()) 743 Flags |= FastMathFlags::NoNaNs; 744 if (FPMO->hasNoInfs()) 745 Flags |= FastMathFlags::NoInfs; 746 if (FPMO->hasNoSignedZeros()) 747 Flags |= FastMathFlags::NoSignedZeros; 748 if (FPMO->hasAllowReciprocal()) 749 Flags |= FastMathFlags::AllowReciprocal; 750 } 751 752 return Flags; 753 } 754 755 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 756 const ValueEnumerator &VE, 757 BitstreamWriter &Stream, 758 SmallVectorImpl<uint64_t> &Record) { 759 // Mimic an MDNode with a value as one operand. 760 Value *V = MD->getValue(); 761 Record.push_back(VE.getTypeID(V->getType())); 762 Record.push_back(VE.getValueID(V)); 763 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 764 Record.clear(); 765 } 766 767 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 768 BitstreamWriter &Stream, 769 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 770 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 771 Metadata *MD = N->getOperand(i); 772 assert(!(MD && isa<LocalAsMetadata>(MD)) && 773 "Unexpected function-local metadata"); 774 Record.push_back(VE.getMetadataOrNullID(MD)); 775 } 776 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 777 : bitc::METADATA_NODE, 778 Record, Abbrev); 779 Record.clear(); 780 } 781 782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 783 BitstreamWriter &Stream, 784 SmallVectorImpl<uint64_t> &Record, 785 unsigned Abbrev) { 786 Record.push_back(N->isDistinct()); 787 Record.push_back(N->getLine()); 788 Record.push_back(N->getColumn()); 789 Record.push_back(VE.getMetadataID(N->getScope())); 790 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 791 792 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 793 Record.clear(); 794 } 795 796 static void WriteGenericDebugNode(const GenericDebugNode *N, 797 const ValueEnumerator &VE, 798 BitstreamWriter &Stream, 799 SmallVectorImpl<uint64_t> &Record, 800 unsigned Abbrev) { 801 Record.push_back(N->isDistinct()); 802 Record.push_back(N->getTag()); 803 Record.push_back(0); // Per-tag version field; unused for now. 804 805 for (auto &I : N->operands()) 806 Record.push_back(VE.getMetadataOrNullID(I)); 807 808 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 809 Record.clear(); 810 } 811 812 static uint64_t rotateSign(int64_t I) { 813 uint64_t U = I; 814 return I < 0 ? ~(U << 1) : U << 1; 815 } 816 817 static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &, 818 BitstreamWriter &Stream, 819 SmallVectorImpl<uint64_t> &Record, 820 unsigned Abbrev) { 821 Record.push_back(N->isDistinct()); 822 Record.push_back(N->getCount()); 823 Record.push_back(rotateSign(N->getLo())); 824 825 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 826 Record.clear(); 827 } 828 829 static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE, 830 BitstreamWriter &Stream, 831 SmallVectorImpl<uint64_t> &Record, 832 unsigned Abbrev) { 833 Record.push_back(N->isDistinct()); 834 Record.push_back(rotateSign(N->getValue())); 835 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 836 837 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 838 Record.clear(); 839 } 840 841 static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE, 842 BitstreamWriter &Stream, 843 SmallVectorImpl<uint64_t> &Record, 844 unsigned Abbrev) { 845 Record.push_back(N->isDistinct()); 846 Record.push_back(N->getTag()); 847 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 848 Record.push_back(N->getSizeInBits()); 849 Record.push_back(N->getAlignInBits()); 850 Record.push_back(N->getEncoding()); 851 852 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 853 Record.clear(); 854 } 855 856 static void WriteMDDerivedType(const MDDerivedType *, const ValueEnumerator &, 857 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 858 unsigned) { 859 llvm_unreachable("write not implemented"); 860 } 861 static void WriteMDCompositeType(const MDCompositeType *, 862 const ValueEnumerator &, BitstreamWriter &, 863 SmallVectorImpl<uint64_t> &, unsigned) { 864 llvm_unreachable("write not implemented"); 865 } 866 static void WriteMDSubroutineType(const MDSubroutineType *, 867 const ValueEnumerator &, BitstreamWriter &, 868 SmallVectorImpl<uint64_t> &, unsigned) { 869 llvm_unreachable("write not implemented"); 870 } 871 static void WriteMDFile(const MDFile *, const ValueEnumerator &, 872 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 873 unsigned) { 874 llvm_unreachable("write not implemented"); 875 } 876 static void WriteMDCompileUnit(const MDCompileUnit *, const ValueEnumerator &, 877 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 878 unsigned) { 879 llvm_unreachable("write not implemented"); 880 } 881 static void WriteMDSubprogram(const MDSubprogram *, const ValueEnumerator &, 882 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 883 unsigned) { 884 llvm_unreachable("write not implemented"); 885 } 886 static void WriteMDLexicalBlock(const MDLexicalBlock *, const ValueEnumerator &, 887 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 888 unsigned) { 889 llvm_unreachable("write not implemented"); 890 } 891 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *, 892 const ValueEnumerator &, BitstreamWriter &, 893 SmallVectorImpl<uint64_t> &, unsigned) { 894 llvm_unreachable("write not implemented"); 895 } 896 static void WriteMDNamespace(const MDNamespace *, const ValueEnumerator &, 897 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 898 unsigned) { 899 llvm_unreachable("write not implemented"); 900 } 901 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *, 902 const ValueEnumerator &, 903 BitstreamWriter &, 904 SmallVectorImpl<uint64_t> &, 905 unsigned) { 906 llvm_unreachable("write not implemented"); 907 } 908 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *, 909 const ValueEnumerator &, 910 BitstreamWriter &, 911 SmallVectorImpl<uint64_t> &, 912 unsigned) { 913 llvm_unreachable("write not implemented"); 914 } 915 static void WriteMDGlobalVariable(const MDGlobalVariable *, 916 const ValueEnumerator &, BitstreamWriter &, 917 SmallVectorImpl<uint64_t> &, unsigned) { 918 llvm_unreachable("write not implemented"); 919 } 920 static void WriteMDLocalVariable(const MDLocalVariable *, 921 const ValueEnumerator &, BitstreamWriter &, 922 SmallVectorImpl<uint64_t> &, unsigned) { 923 llvm_unreachable("write not implemented"); 924 } 925 static void WriteMDExpression(const MDExpression *, const ValueEnumerator &, 926 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 927 unsigned) { 928 llvm_unreachable("write not implemented"); 929 } 930 static void WriteMDObjCProperty(const MDObjCProperty *, const ValueEnumerator &, 931 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 932 unsigned) { 933 llvm_unreachable("write not implemented"); 934 } 935 static void WriteMDImportedEntity(const MDImportedEntity *, 936 const ValueEnumerator &, BitstreamWriter &, 937 SmallVectorImpl<uint64_t> &, unsigned) { 938 llvm_unreachable("write not implemented"); 939 } 940 941 static void WriteModuleMetadata(const Module *M, 942 const ValueEnumerator &VE, 943 BitstreamWriter &Stream) { 944 const auto &MDs = VE.getMDs(); 945 if (MDs.empty() && M->named_metadata_empty()) 946 return; 947 948 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 949 950 unsigned MDSAbbrev = 0; 951 if (VE.hasMDString()) { 952 // Abbrev for METADATA_STRING. 953 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 954 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 957 MDSAbbrev = Stream.EmitAbbrev(Abbv); 958 } 959 960 // Initialize MDNode abbreviations. 961 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 962 #include "llvm/IR/Metadata.def" 963 964 if (VE.hasMDLocation()) { 965 // Abbrev for METADATA_LOCATION. 966 // 967 // Assume the column is usually under 128, and always output the inlined-at 968 // location (it's never more expensive than building an array size 1). 969 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 970 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 976 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 977 } 978 979 if (VE.hasGenericDebugNode()) { 980 // Abbrev for METADATA_GENERIC_DEBUG. 981 // 982 // Assume the column is usually under 128, and always output the inlined-at 983 // location (it's never more expensive than building an array size 1). 984 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 985 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 992 GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv); 993 } 994 995 unsigned NameAbbrev = 0; 996 if (!M->named_metadata_empty()) { 997 // Abbrev for METADATA_NAME. 998 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 999 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1002 NameAbbrev = Stream.EmitAbbrev(Abbv); 1003 } 1004 1005 SmallVector<uint64_t, 64> Record; 1006 for (const Metadata *MD : MDs) { 1007 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1008 switch (N->getMetadataID()) { 1009 default: 1010 llvm_unreachable("Invalid MDNode subclass"); 1011 #define HANDLE_MDNODE_LEAF(CLASS) \ 1012 case Metadata::CLASS##Kind: \ 1013 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1014 continue; 1015 #include "llvm/IR/Metadata.def" 1016 } 1017 } 1018 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1019 WriteValueAsMetadata(MDC, VE, Stream, Record); 1020 continue; 1021 } 1022 const MDString *MDS = cast<MDString>(MD); 1023 // Code: [strchar x N] 1024 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1025 1026 // Emit the finished record. 1027 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1028 Record.clear(); 1029 } 1030 1031 // Write named metadata. 1032 for (const NamedMDNode &NMD : M->named_metadata()) { 1033 // Write name. 1034 StringRef Str = NMD.getName(); 1035 Record.append(Str.bytes_begin(), Str.bytes_end()); 1036 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1037 Record.clear(); 1038 1039 // Write named metadata operands. 1040 for (const MDNode *N : NMD.operands()) 1041 Record.push_back(VE.getMetadataID(N)); 1042 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1043 Record.clear(); 1044 } 1045 1046 Stream.ExitBlock(); 1047 } 1048 1049 static void WriteFunctionLocalMetadata(const Function &F, 1050 const ValueEnumerator &VE, 1051 BitstreamWriter &Stream) { 1052 bool StartedMetadataBlock = false; 1053 SmallVector<uint64_t, 64> Record; 1054 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1055 VE.getFunctionLocalMDs(); 1056 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1057 assert(MDs[i] && "Expected valid function-local metadata"); 1058 if (!StartedMetadataBlock) { 1059 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1060 StartedMetadataBlock = true; 1061 } 1062 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1063 } 1064 1065 if (StartedMetadataBlock) 1066 Stream.ExitBlock(); 1067 } 1068 1069 static void WriteMetadataAttachment(const Function &F, 1070 const ValueEnumerator &VE, 1071 BitstreamWriter &Stream) { 1072 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1073 1074 SmallVector<uint64_t, 64> Record; 1075 1076 // Write metadata attachments 1077 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1078 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1079 1080 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1081 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1082 I != E; ++I) { 1083 MDs.clear(); 1084 I->getAllMetadataOtherThanDebugLoc(MDs); 1085 1086 // If no metadata, ignore instruction. 1087 if (MDs.empty()) continue; 1088 1089 Record.push_back(VE.getInstructionID(I)); 1090 1091 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1092 Record.push_back(MDs[i].first); 1093 Record.push_back(VE.getMetadataID(MDs[i].second)); 1094 } 1095 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1096 Record.clear(); 1097 } 1098 1099 Stream.ExitBlock(); 1100 } 1101 1102 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1103 SmallVector<uint64_t, 64> Record; 1104 1105 // Write metadata kinds 1106 // METADATA_KIND - [n x [id, name]] 1107 SmallVector<StringRef, 8> Names; 1108 M->getMDKindNames(Names); 1109 1110 if (Names.empty()) return; 1111 1112 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1113 1114 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1115 Record.push_back(MDKindID); 1116 StringRef KName = Names[MDKindID]; 1117 Record.append(KName.begin(), KName.end()); 1118 1119 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1120 Record.clear(); 1121 } 1122 1123 Stream.ExitBlock(); 1124 } 1125 1126 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1127 if ((int64_t)V >= 0) 1128 Vals.push_back(V << 1); 1129 else 1130 Vals.push_back((-V << 1) | 1); 1131 } 1132 1133 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1134 const ValueEnumerator &VE, 1135 BitstreamWriter &Stream, bool isGlobal) { 1136 if (FirstVal == LastVal) return; 1137 1138 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1139 1140 unsigned AggregateAbbrev = 0; 1141 unsigned String8Abbrev = 0; 1142 unsigned CString7Abbrev = 0; 1143 unsigned CString6Abbrev = 0; 1144 // If this is a constant pool for the module, emit module-specific abbrevs. 1145 if (isGlobal) { 1146 // Abbrev for CST_CODE_AGGREGATE. 1147 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1148 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1151 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1152 1153 // Abbrev for CST_CODE_STRING. 1154 Abbv = new BitCodeAbbrev(); 1155 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1158 String8Abbrev = Stream.EmitAbbrev(Abbv); 1159 // Abbrev for CST_CODE_CSTRING. 1160 Abbv = new BitCodeAbbrev(); 1161 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1164 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1165 // Abbrev for CST_CODE_CSTRING. 1166 Abbv = new BitCodeAbbrev(); 1167 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1170 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1171 } 1172 1173 SmallVector<uint64_t, 64> Record; 1174 1175 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1176 Type *LastTy = nullptr; 1177 for (unsigned i = FirstVal; i != LastVal; ++i) { 1178 const Value *V = Vals[i].first; 1179 // If we need to switch types, do so now. 1180 if (V->getType() != LastTy) { 1181 LastTy = V->getType(); 1182 Record.push_back(VE.getTypeID(LastTy)); 1183 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1184 CONSTANTS_SETTYPE_ABBREV); 1185 Record.clear(); 1186 } 1187 1188 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1189 Record.push_back(unsigned(IA->hasSideEffects()) | 1190 unsigned(IA->isAlignStack()) << 1 | 1191 unsigned(IA->getDialect()&1) << 2); 1192 1193 // Add the asm string. 1194 const std::string &AsmStr = IA->getAsmString(); 1195 Record.push_back(AsmStr.size()); 1196 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 1197 Record.push_back(AsmStr[i]); 1198 1199 // Add the constraint string. 1200 const std::string &ConstraintStr = IA->getConstraintString(); 1201 Record.push_back(ConstraintStr.size()); 1202 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1203 Record.push_back(ConstraintStr[i]); 1204 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1205 Record.clear(); 1206 continue; 1207 } 1208 const Constant *C = cast<Constant>(V); 1209 unsigned Code = -1U; 1210 unsigned AbbrevToUse = 0; 1211 if (C->isNullValue()) { 1212 Code = bitc::CST_CODE_NULL; 1213 } else if (isa<UndefValue>(C)) { 1214 Code = bitc::CST_CODE_UNDEF; 1215 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1216 if (IV->getBitWidth() <= 64) { 1217 uint64_t V = IV->getSExtValue(); 1218 emitSignedInt64(Record, V); 1219 Code = bitc::CST_CODE_INTEGER; 1220 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1221 } else { // Wide integers, > 64 bits in size. 1222 // We have an arbitrary precision integer value to write whose 1223 // bit width is > 64. However, in canonical unsigned integer 1224 // format it is likely that the high bits are going to be zero. 1225 // So, we only write the number of active words. 1226 unsigned NWords = IV->getValue().getActiveWords(); 1227 const uint64_t *RawWords = IV->getValue().getRawData(); 1228 for (unsigned i = 0; i != NWords; ++i) { 1229 emitSignedInt64(Record, RawWords[i]); 1230 } 1231 Code = bitc::CST_CODE_WIDE_INTEGER; 1232 } 1233 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1234 Code = bitc::CST_CODE_FLOAT; 1235 Type *Ty = CFP->getType(); 1236 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1237 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1238 } else if (Ty->isX86_FP80Ty()) { 1239 // api needed to prevent premature destruction 1240 // bits are not in the same order as a normal i80 APInt, compensate. 1241 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1242 const uint64_t *p = api.getRawData(); 1243 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1244 Record.push_back(p[0] & 0xffffLL); 1245 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1246 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1247 const uint64_t *p = api.getRawData(); 1248 Record.push_back(p[0]); 1249 Record.push_back(p[1]); 1250 } else { 1251 assert (0 && "Unknown FP type!"); 1252 } 1253 } else if (isa<ConstantDataSequential>(C) && 1254 cast<ConstantDataSequential>(C)->isString()) { 1255 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1256 // Emit constant strings specially. 1257 unsigned NumElts = Str->getNumElements(); 1258 // If this is a null-terminated string, use the denser CSTRING encoding. 1259 if (Str->isCString()) { 1260 Code = bitc::CST_CODE_CSTRING; 1261 --NumElts; // Don't encode the null, which isn't allowed by char6. 1262 } else { 1263 Code = bitc::CST_CODE_STRING; 1264 AbbrevToUse = String8Abbrev; 1265 } 1266 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1267 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1268 for (unsigned i = 0; i != NumElts; ++i) { 1269 unsigned char V = Str->getElementAsInteger(i); 1270 Record.push_back(V); 1271 isCStr7 &= (V & 128) == 0; 1272 if (isCStrChar6) 1273 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1274 } 1275 1276 if (isCStrChar6) 1277 AbbrevToUse = CString6Abbrev; 1278 else if (isCStr7) 1279 AbbrevToUse = CString7Abbrev; 1280 } else if (const ConstantDataSequential *CDS = 1281 dyn_cast<ConstantDataSequential>(C)) { 1282 Code = bitc::CST_CODE_DATA; 1283 Type *EltTy = CDS->getType()->getElementType(); 1284 if (isa<IntegerType>(EltTy)) { 1285 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1286 Record.push_back(CDS->getElementAsInteger(i)); 1287 } else if (EltTy->isFloatTy()) { 1288 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1289 union { float F; uint32_t I; }; 1290 F = CDS->getElementAsFloat(i); 1291 Record.push_back(I); 1292 } 1293 } else { 1294 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1295 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1296 union { double F; uint64_t I; }; 1297 F = CDS->getElementAsDouble(i); 1298 Record.push_back(I); 1299 } 1300 } 1301 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1302 isa<ConstantVector>(C)) { 1303 Code = bitc::CST_CODE_AGGREGATE; 1304 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1305 Record.push_back(VE.getValueID(C->getOperand(i))); 1306 AbbrevToUse = AggregateAbbrev; 1307 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1308 switch (CE->getOpcode()) { 1309 default: 1310 if (Instruction::isCast(CE->getOpcode())) { 1311 Code = bitc::CST_CODE_CE_CAST; 1312 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1313 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1314 Record.push_back(VE.getValueID(C->getOperand(0))); 1315 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1316 } else { 1317 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1318 Code = bitc::CST_CODE_CE_BINOP; 1319 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1320 Record.push_back(VE.getValueID(C->getOperand(0))); 1321 Record.push_back(VE.getValueID(C->getOperand(1))); 1322 uint64_t Flags = GetOptimizationFlags(CE); 1323 if (Flags != 0) 1324 Record.push_back(Flags); 1325 } 1326 break; 1327 case Instruction::GetElementPtr: 1328 Code = bitc::CST_CODE_CE_GEP; 1329 if (cast<GEPOperator>(C)->isInBounds()) 1330 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1331 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1332 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1333 Record.push_back(VE.getValueID(C->getOperand(i))); 1334 } 1335 break; 1336 case Instruction::Select: 1337 Code = bitc::CST_CODE_CE_SELECT; 1338 Record.push_back(VE.getValueID(C->getOperand(0))); 1339 Record.push_back(VE.getValueID(C->getOperand(1))); 1340 Record.push_back(VE.getValueID(C->getOperand(2))); 1341 break; 1342 case Instruction::ExtractElement: 1343 Code = bitc::CST_CODE_CE_EXTRACTELT; 1344 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1345 Record.push_back(VE.getValueID(C->getOperand(0))); 1346 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1347 Record.push_back(VE.getValueID(C->getOperand(1))); 1348 break; 1349 case Instruction::InsertElement: 1350 Code = bitc::CST_CODE_CE_INSERTELT; 1351 Record.push_back(VE.getValueID(C->getOperand(0))); 1352 Record.push_back(VE.getValueID(C->getOperand(1))); 1353 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1354 Record.push_back(VE.getValueID(C->getOperand(2))); 1355 break; 1356 case Instruction::ShuffleVector: 1357 // If the return type and argument types are the same, this is a 1358 // standard shufflevector instruction. If the types are different, 1359 // then the shuffle is widening or truncating the input vectors, and 1360 // the argument type must also be encoded. 1361 if (C->getType() == C->getOperand(0)->getType()) { 1362 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1363 } else { 1364 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1365 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1366 } 1367 Record.push_back(VE.getValueID(C->getOperand(0))); 1368 Record.push_back(VE.getValueID(C->getOperand(1))); 1369 Record.push_back(VE.getValueID(C->getOperand(2))); 1370 break; 1371 case Instruction::ICmp: 1372 case Instruction::FCmp: 1373 Code = bitc::CST_CODE_CE_CMP; 1374 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1375 Record.push_back(VE.getValueID(C->getOperand(0))); 1376 Record.push_back(VE.getValueID(C->getOperand(1))); 1377 Record.push_back(CE->getPredicate()); 1378 break; 1379 } 1380 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1381 Code = bitc::CST_CODE_BLOCKADDRESS; 1382 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1383 Record.push_back(VE.getValueID(BA->getFunction())); 1384 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1385 } else { 1386 #ifndef NDEBUG 1387 C->dump(); 1388 #endif 1389 llvm_unreachable("Unknown constant!"); 1390 } 1391 Stream.EmitRecord(Code, Record, AbbrevToUse); 1392 Record.clear(); 1393 } 1394 1395 Stream.ExitBlock(); 1396 } 1397 1398 static void WriteModuleConstants(const ValueEnumerator &VE, 1399 BitstreamWriter &Stream) { 1400 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1401 1402 // Find the first constant to emit, which is the first non-globalvalue value. 1403 // We know globalvalues have been emitted by WriteModuleInfo. 1404 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1405 if (!isa<GlobalValue>(Vals[i].first)) { 1406 WriteConstants(i, Vals.size(), VE, Stream, true); 1407 return; 1408 } 1409 } 1410 } 1411 1412 /// PushValueAndType - The file has to encode both the value and type id for 1413 /// many values, because we need to know what type to create for forward 1414 /// references. However, most operands are not forward references, so this type 1415 /// field is not needed. 1416 /// 1417 /// This function adds V's value ID to Vals. If the value ID is higher than the 1418 /// instruction ID, then it is a forward reference, and it also includes the 1419 /// type ID. The value ID that is written is encoded relative to the InstID. 1420 static bool PushValueAndType(const Value *V, unsigned InstID, 1421 SmallVectorImpl<unsigned> &Vals, 1422 ValueEnumerator &VE) { 1423 unsigned ValID = VE.getValueID(V); 1424 // Make encoding relative to the InstID. 1425 Vals.push_back(InstID - ValID); 1426 if (ValID >= InstID) { 1427 Vals.push_back(VE.getTypeID(V->getType())); 1428 return true; 1429 } 1430 return false; 1431 } 1432 1433 /// pushValue - Like PushValueAndType, but where the type of the value is 1434 /// omitted (perhaps it was already encoded in an earlier operand). 1435 static void pushValue(const Value *V, unsigned InstID, 1436 SmallVectorImpl<unsigned> &Vals, 1437 ValueEnumerator &VE) { 1438 unsigned ValID = VE.getValueID(V); 1439 Vals.push_back(InstID - ValID); 1440 } 1441 1442 static void pushValueSigned(const Value *V, unsigned InstID, 1443 SmallVectorImpl<uint64_t> &Vals, 1444 ValueEnumerator &VE) { 1445 unsigned ValID = VE.getValueID(V); 1446 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1447 emitSignedInt64(Vals, diff); 1448 } 1449 1450 /// WriteInstruction - Emit an instruction to the specified stream. 1451 static void WriteInstruction(const Instruction &I, unsigned InstID, 1452 ValueEnumerator &VE, BitstreamWriter &Stream, 1453 SmallVectorImpl<unsigned> &Vals) { 1454 unsigned Code = 0; 1455 unsigned AbbrevToUse = 0; 1456 VE.setInstructionID(&I); 1457 switch (I.getOpcode()) { 1458 default: 1459 if (Instruction::isCast(I.getOpcode())) { 1460 Code = bitc::FUNC_CODE_INST_CAST; 1461 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1462 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1463 Vals.push_back(VE.getTypeID(I.getType())); 1464 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1465 } else { 1466 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1467 Code = bitc::FUNC_CODE_INST_BINOP; 1468 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1469 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1470 pushValue(I.getOperand(1), InstID, Vals, VE); 1471 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1472 uint64_t Flags = GetOptimizationFlags(&I); 1473 if (Flags != 0) { 1474 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1475 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1476 Vals.push_back(Flags); 1477 } 1478 } 1479 break; 1480 1481 case Instruction::GetElementPtr: 1482 Code = bitc::FUNC_CODE_INST_GEP; 1483 if (cast<GEPOperator>(&I)->isInBounds()) 1484 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1485 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1486 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1487 break; 1488 case Instruction::ExtractValue: { 1489 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1490 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1491 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1492 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1493 Vals.push_back(*i); 1494 break; 1495 } 1496 case Instruction::InsertValue: { 1497 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1498 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1499 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1500 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1501 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1502 Vals.push_back(*i); 1503 break; 1504 } 1505 case Instruction::Select: 1506 Code = bitc::FUNC_CODE_INST_VSELECT; 1507 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1508 pushValue(I.getOperand(2), InstID, Vals, VE); 1509 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1510 break; 1511 case Instruction::ExtractElement: 1512 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1513 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1514 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1515 break; 1516 case Instruction::InsertElement: 1517 Code = bitc::FUNC_CODE_INST_INSERTELT; 1518 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1519 pushValue(I.getOperand(1), InstID, Vals, VE); 1520 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1521 break; 1522 case Instruction::ShuffleVector: 1523 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1524 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1525 pushValue(I.getOperand(1), InstID, Vals, VE); 1526 pushValue(I.getOperand(2), InstID, Vals, VE); 1527 break; 1528 case Instruction::ICmp: 1529 case Instruction::FCmp: 1530 // compare returning Int1Ty or vector of Int1Ty 1531 Code = bitc::FUNC_CODE_INST_CMP2; 1532 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1533 pushValue(I.getOperand(1), InstID, Vals, VE); 1534 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1535 break; 1536 1537 case Instruction::Ret: 1538 { 1539 Code = bitc::FUNC_CODE_INST_RET; 1540 unsigned NumOperands = I.getNumOperands(); 1541 if (NumOperands == 0) 1542 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1543 else if (NumOperands == 1) { 1544 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1545 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1546 } else { 1547 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1548 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1549 } 1550 } 1551 break; 1552 case Instruction::Br: 1553 { 1554 Code = bitc::FUNC_CODE_INST_BR; 1555 const BranchInst &II = cast<BranchInst>(I); 1556 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1557 if (II.isConditional()) { 1558 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1559 pushValue(II.getCondition(), InstID, Vals, VE); 1560 } 1561 } 1562 break; 1563 case Instruction::Switch: 1564 { 1565 Code = bitc::FUNC_CODE_INST_SWITCH; 1566 const SwitchInst &SI = cast<SwitchInst>(I); 1567 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1568 pushValue(SI.getCondition(), InstID, Vals, VE); 1569 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1570 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1571 i != e; ++i) { 1572 Vals.push_back(VE.getValueID(i.getCaseValue())); 1573 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1574 } 1575 } 1576 break; 1577 case Instruction::IndirectBr: 1578 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1579 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1580 // Encode the address operand as relative, but not the basic blocks. 1581 pushValue(I.getOperand(0), InstID, Vals, VE); 1582 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1583 Vals.push_back(VE.getValueID(I.getOperand(i))); 1584 break; 1585 1586 case Instruction::Invoke: { 1587 const InvokeInst *II = cast<InvokeInst>(&I); 1588 const Value *Callee(II->getCalledValue()); 1589 PointerType *PTy = cast<PointerType>(Callee->getType()); 1590 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1591 Code = bitc::FUNC_CODE_INST_INVOKE; 1592 1593 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1594 Vals.push_back(II->getCallingConv()); 1595 Vals.push_back(VE.getValueID(II->getNormalDest())); 1596 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1597 PushValueAndType(Callee, InstID, Vals, VE); 1598 1599 // Emit value #'s for the fixed parameters. 1600 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1601 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1602 1603 // Emit type/value pairs for varargs params. 1604 if (FTy->isVarArg()) { 1605 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1606 i != e; ++i) 1607 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1608 } 1609 break; 1610 } 1611 case Instruction::Resume: 1612 Code = bitc::FUNC_CODE_INST_RESUME; 1613 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1614 break; 1615 case Instruction::Unreachable: 1616 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1617 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1618 break; 1619 1620 case Instruction::PHI: { 1621 const PHINode &PN = cast<PHINode>(I); 1622 Code = bitc::FUNC_CODE_INST_PHI; 1623 // With the newer instruction encoding, forward references could give 1624 // negative valued IDs. This is most common for PHIs, so we use 1625 // signed VBRs. 1626 SmallVector<uint64_t, 128> Vals64; 1627 Vals64.push_back(VE.getTypeID(PN.getType())); 1628 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1629 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1630 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1631 } 1632 // Emit a Vals64 vector and exit. 1633 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1634 Vals64.clear(); 1635 return; 1636 } 1637 1638 case Instruction::LandingPad: { 1639 const LandingPadInst &LP = cast<LandingPadInst>(I); 1640 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1641 Vals.push_back(VE.getTypeID(LP.getType())); 1642 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1643 Vals.push_back(LP.isCleanup()); 1644 Vals.push_back(LP.getNumClauses()); 1645 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1646 if (LP.isCatch(I)) 1647 Vals.push_back(LandingPadInst::Catch); 1648 else 1649 Vals.push_back(LandingPadInst::Filter); 1650 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1651 } 1652 break; 1653 } 1654 1655 case Instruction::Alloca: { 1656 Code = bitc::FUNC_CODE_INST_ALLOCA; 1657 Vals.push_back(VE.getTypeID(I.getType())); 1658 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1659 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1660 const AllocaInst &AI = cast<AllocaInst>(I); 1661 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1662 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1663 "not enough bits for maximum alignment"); 1664 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1665 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1666 Vals.push_back(AlignRecord); 1667 break; 1668 } 1669 1670 case Instruction::Load: 1671 if (cast<LoadInst>(I).isAtomic()) { 1672 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1673 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1674 } else { 1675 Code = bitc::FUNC_CODE_INST_LOAD; 1676 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1677 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1678 } 1679 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1680 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1681 if (cast<LoadInst>(I).isAtomic()) { 1682 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1683 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1684 } 1685 break; 1686 case Instruction::Store: 1687 if (cast<StoreInst>(I).isAtomic()) 1688 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1689 else 1690 Code = bitc::FUNC_CODE_INST_STORE; 1691 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1692 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1693 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1694 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1695 if (cast<StoreInst>(I).isAtomic()) { 1696 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1697 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1698 } 1699 break; 1700 case Instruction::AtomicCmpXchg: 1701 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1702 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1703 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1704 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1705 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1706 Vals.push_back(GetEncodedOrdering( 1707 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1708 Vals.push_back(GetEncodedSynchScope( 1709 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1710 Vals.push_back(GetEncodedOrdering( 1711 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1712 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1713 break; 1714 case Instruction::AtomicRMW: 1715 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1716 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1717 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1718 Vals.push_back(GetEncodedRMWOperation( 1719 cast<AtomicRMWInst>(I).getOperation())); 1720 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1721 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1722 Vals.push_back(GetEncodedSynchScope( 1723 cast<AtomicRMWInst>(I).getSynchScope())); 1724 break; 1725 case Instruction::Fence: 1726 Code = bitc::FUNC_CODE_INST_FENCE; 1727 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1728 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1729 break; 1730 case Instruction::Call: { 1731 const CallInst &CI = cast<CallInst>(I); 1732 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1733 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1734 1735 Code = bitc::FUNC_CODE_INST_CALL; 1736 1737 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1738 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1739 unsigned(CI.isMustTailCall()) << 14); 1740 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1741 1742 // Emit value #'s for the fixed parameters. 1743 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1744 // Check for labels (can happen with asm labels). 1745 if (FTy->getParamType(i)->isLabelTy()) 1746 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1747 else 1748 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1749 } 1750 1751 // Emit type/value pairs for varargs params. 1752 if (FTy->isVarArg()) { 1753 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1754 i != e; ++i) 1755 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1756 } 1757 break; 1758 } 1759 case Instruction::VAArg: 1760 Code = bitc::FUNC_CODE_INST_VAARG; 1761 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1762 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1763 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1764 break; 1765 } 1766 1767 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1768 Vals.clear(); 1769 } 1770 1771 // Emit names for globals/functions etc. 1772 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1773 const ValueEnumerator &VE, 1774 BitstreamWriter &Stream) { 1775 if (VST.empty()) return; 1776 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1777 1778 // FIXME: Set up the abbrev, we know how many values there are! 1779 // FIXME: We know if the type names can use 7-bit ascii. 1780 SmallVector<unsigned, 64> NameVals; 1781 1782 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1783 SI != SE; ++SI) { 1784 1785 const ValueName &Name = *SI; 1786 1787 // Figure out the encoding to use for the name. 1788 bool is7Bit = true; 1789 bool isChar6 = true; 1790 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1791 C != E; ++C) { 1792 if (isChar6) 1793 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1794 if ((unsigned char)*C & 128) { 1795 is7Bit = false; 1796 break; // don't bother scanning the rest. 1797 } 1798 } 1799 1800 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1801 1802 // VST_ENTRY: [valueid, namechar x N] 1803 // VST_BBENTRY: [bbid, namechar x N] 1804 unsigned Code; 1805 if (isa<BasicBlock>(SI->getValue())) { 1806 Code = bitc::VST_CODE_BBENTRY; 1807 if (isChar6) 1808 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1809 } else { 1810 Code = bitc::VST_CODE_ENTRY; 1811 if (isChar6) 1812 AbbrevToUse = VST_ENTRY_6_ABBREV; 1813 else if (is7Bit) 1814 AbbrevToUse = VST_ENTRY_7_ABBREV; 1815 } 1816 1817 NameVals.push_back(VE.getValueID(SI->getValue())); 1818 for (const char *P = Name.getKeyData(), 1819 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1820 NameVals.push_back((unsigned char)*P); 1821 1822 // Emit the finished record. 1823 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1824 NameVals.clear(); 1825 } 1826 Stream.ExitBlock(); 1827 } 1828 1829 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1830 BitstreamWriter &Stream) { 1831 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1832 unsigned Code; 1833 if (isa<BasicBlock>(Order.V)) 1834 Code = bitc::USELIST_CODE_BB; 1835 else 1836 Code = bitc::USELIST_CODE_DEFAULT; 1837 1838 SmallVector<uint64_t, 64> Record; 1839 for (unsigned I : Order.Shuffle) 1840 Record.push_back(I); 1841 Record.push_back(VE.getValueID(Order.V)); 1842 Stream.EmitRecord(Code, Record); 1843 } 1844 1845 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1846 BitstreamWriter &Stream) { 1847 auto hasMore = [&]() { 1848 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1849 }; 1850 if (!hasMore()) 1851 // Nothing to do. 1852 return; 1853 1854 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1855 while (hasMore()) { 1856 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1857 VE.UseListOrders.pop_back(); 1858 } 1859 Stream.ExitBlock(); 1860 } 1861 1862 /// WriteFunction - Emit a function body to the module stream. 1863 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1864 BitstreamWriter &Stream) { 1865 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1866 VE.incorporateFunction(F); 1867 1868 SmallVector<unsigned, 64> Vals; 1869 1870 // Emit the number of basic blocks, so the reader can create them ahead of 1871 // time. 1872 Vals.push_back(VE.getBasicBlocks().size()); 1873 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1874 Vals.clear(); 1875 1876 // If there are function-local constants, emit them now. 1877 unsigned CstStart, CstEnd; 1878 VE.getFunctionConstantRange(CstStart, CstEnd); 1879 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1880 1881 // If there is function-local metadata, emit it now. 1882 WriteFunctionLocalMetadata(F, VE, Stream); 1883 1884 // Keep a running idea of what the instruction ID is. 1885 unsigned InstID = CstEnd; 1886 1887 bool NeedsMetadataAttachment = false; 1888 1889 DebugLoc LastDL; 1890 1891 // Finally, emit all the instructions, in order. 1892 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1893 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1894 I != E; ++I) { 1895 WriteInstruction(*I, InstID, VE, Stream, Vals); 1896 1897 if (!I->getType()->isVoidTy()) 1898 ++InstID; 1899 1900 // If the instruction has metadata, write a metadata attachment later. 1901 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1902 1903 // If the instruction has a debug location, emit it. 1904 DebugLoc DL = I->getDebugLoc(); 1905 if (DL.isUnknown()) { 1906 // nothing todo. 1907 } else if (DL == LastDL) { 1908 // Just repeat the same debug loc as last time. 1909 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1910 } else { 1911 MDNode *Scope, *IA; 1912 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1913 assert(Scope && "Expected valid scope"); 1914 1915 Vals.push_back(DL.getLine()); 1916 Vals.push_back(DL.getCol()); 1917 Vals.push_back(VE.getMetadataOrNullID(Scope)); 1918 Vals.push_back(VE.getMetadataOrNullID(IA)); 1919 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1920 Vals.clear(); 1921 1922 LastDL = DL; 1923 } 1924 } 1925 1926 // Emit names for all the instructions etc. 1927 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1928 1929 if (NeedsMetadataAttachment) 1930 WriteMetadataAttachment(F, VE, Stream); 1931 if (shouldPreserveBitcodeUseListOrder()) 1932 WriteUseListBlock(&F, VE, Stream); 1933 VE.purgeFunction(); 1934 Stream.ExitBlock(); 1935 } 1936 1937 // Emit blockinfo, which defines the standard abbreviations etc. 1938 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1939 // We only want to emit block info records for blocks that have multiple 1940 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1941 // Other blocks can define their abbrevs inline. 1942 Stream.EnterBlockInfoBlock(2); 1943 1944 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1945 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1950 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1951 Abbv) != VST_ENTRY_8_ABBREV) 1952 llvm_unreachable("Unexpected abbrev ordering!"); 1953 } 1954 1955 { // 7-bit fixed width VST_ENTRY strings. 1956 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1957 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1961 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1962 Abbv) != VST_ENTRY_7_ABBREV) 1963 llvm_unreachable("Unexpected abbrev ordering!"); 1964 } 1965 { // 6-bit char6 VST_ENTRY strings. 1966 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1967 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1971 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1972 Abbv) != VST_ENTRY_6_ABBREV) 1973 llvm_unreachable("Unexpected abbrev ordering!"); 1974 } 1975 { // 6-bit char6 VST_BBENTRY strings. 1976 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1977 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1981 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1982 Abbv) != VST_BBENTRY_6_ABBREV) 1983 llvm_unreachable("Unexpected abbrev ordering!"); 1984 } 1985 1986 1987 1988 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1989 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1990 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1992 Log2_32_Ceil(VE.getTypes().size()+1))); 1993 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1994 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1995 llvm_unreachable("Unexpected abbrev ordering!"); 1996 } 1997 1998 { // INTEGER abbrev for CONSTANTS_BLOCK. 1999 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2000 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2002 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2003 Abbv) != CONSTANTS_INTEGER_ABBREV) 2004 llvm_unreachable("Unexpected abbrev ordering!"); 2005 } 2006 2007 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2008 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2009 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2012 Log2_32_Ceil(VE.getTypes().size()+1))); 2013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2014 2015 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2016 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2017 llvm_unreachable("Unexpected abbrev ordering!"); 2018 } 2019 { // NULL abbrev for CONSTANTS_BLOCK. 2020 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2021 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2022 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2023 Abbv) != CONSTANTS_NULL_Abbrev) 2024 llvm_unreachable("Unexpected abbrev ordering!"); 2025 } 2026 2027 // FIXME: This should only use space for first class types! 2028 2029 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2030 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2031 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2035 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2036 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2037 llvm_unreachable("Unexpected abbrev ordering!"); 2038 } 2039 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2040 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2041 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2045 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2046 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2047 llvm_unreachable("Unexpected abbrev ordering!"); 2048 } 2049 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2050 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2051 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2056 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2057 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2058 llvm_unreachable("Unexpected abbrev ordering!"); 2059 } 2060 { // INST_CAST abbrev for FUNCTION_BLOCK. 2061 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2062 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2065 Log2_32_Ceil(VE.getTypes().size()+1))); 2066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2067 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2068 Abbv) != FUNCTION_INST_CAST_ABBREV) 2069 llvm_unreachable("Unexpected abbrev ordering!"); 2070 } 2071 2072 { // INST_RET abbrev for FUNCTION_BLOCK. 2073 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2074 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2075 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2076 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2077 llvm_unreachable("Unexpected abbrev ordering!"); 2078 } 2079 { // INST_RET abbrev for FUNCTION_BLOCK. 2080 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2081 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2083 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2084 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2085 llvm_unreachable("Unexpected abbrev ordering!"); 2086 } 2087 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2088 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2089 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2090 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2091 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2092 llvm_unreachable("Unexpected abbrev ordering!"); 2093 } 2094 2095 Stream.ExitBlock(); 2096 } 2097 2098 /// WriteModule - Emit the specified module to the bitstream. 2099 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 2100 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2101 2102 SmallVector<unsigned, 1> Vals; 2103 unsigned CurVersion = 1; 2104 Vals.push_back(CurVersion); 2105 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2106 2107 // Analyze the module, enumerating globals, functions, etc. 2108 ValueEnumerator VE(*M); 2109 2110 // Emit blockinfo, which defines the standard abbreviations etc. 2111 WriteBlockInfo(VE, Stream); 2112 2113 // Emit information about attribute groups. 2114 WriteAttributeGroupTable(VE, Stream); 2115 2116 // Emit information about parameter attributes. 2117 WriteAttributeTable(VE, Stream); 2118 2119 // Emit information describing all of the types in the module. 2120 WriteTypeTable(VE, Stream); 2121 2122 writeComdats(VE, Stream); 2123 2124 // Emit top-level description of module, including target triple, inline asm, 2125 // descriptors for global variables, and function prototype info. 2126 WriteModuleInfo(M, VE, Stream); 2127 2128 // Emit constants. 2129 WriteModuleConstants(VE, Stream); 2130 2131 // Emit metadata. 2132 WriteModuleMetadata(M, VE, Stream); 2133 2134 // Emit metadata. 2135 WriteModuleMetadataStore(M, Stream); 2136 2137 // Emit names for globals/functions etc. 2138 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2139 2140 // Emit module-level use-lists. 2141 if (shouldPreserveBitcodeUseListOrder()) 2142 WriteUseListBlock(nullptr, VE, Stream); 2143 2144 // Emit function bodies. 2145 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2146 if (!F->isDeclaration()) 2147 WriteFunction(*F, VE, Stream); 2148 2149 Stream.ExitBlock(); 2150 } 2151 2152 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2153 /// header and trailer to make it compatible with the system archiver. To do 2154 /// this we emit the following header, and then emit a trailer that pads the 2155 /// file out to be a multiple of 16 bytes. 2156 /// 2157 /// struct bc_header { 2158 /// uint32_t Magic; // 0x0B17C0DE 2159 /// uint32_t Version; // Version, currently always 0. 2160 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2161 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2162 /// uint32_t CPUType; // CPU specifier. 2163 /// ... potentially more later ... 2164 /// }; 2165 enum { 2166 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2167 DarwinBCHeaderSize = 5*4 2168 }; 2169 2170 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2171 uint32_t &Position) { 2172 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2173 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2174 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2175 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2176 Position += 4; 2177 } 2178 2179 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2180 const Triple &TT) { 2181 unsigned CPUType = ~0U; 2182 2183 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2184 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2185 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2186 // specific constants here because they are implicitly part of the Darwin ABI. 2187 enum { 2188 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2189 DARWIN_CPU_TYPE_X86 = 7, 2190 DARWIN_CPU_TYPE_ARM = 12, 2191 DARWIN_CPU_TYPE_POWERPC = 18 2192 }; 2193 2194 Triple::ArchType Arch = TT.getArch(); 2195 if (Arch == Triple::x86_64) 2196 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2197 else if (Arch == Triple::x86) 2198 CPUType = DARWIN_CPU_TYPE_X86; 2199 else if (Arch == Triple::ppc) 2200 CPUType = DARWIN_CPU_TYPE_POWERPC; 2201 else if (Arch == Triple::ppc64) 2202 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2203 else if (Arch == Triple::arm || Arch == Triple::thumb) 2204 CPUType = DARWIN_CPU_TYPE_ARM; 2205 2206 // Traditional Bitcode starts after header. 2207 assert(Buffer.size() >= DarwinBCHeaderSize && 2208 "Expected header size to be reserved"); 2209 unsigned BCOffset = DarwinBCHeaderSize; 2210 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2211 2212 // Write the magic and version. 2213 unsigned Position = 0; 2214 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2215 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2216 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2217 WriteInt32ToBuffer(BCSize , Buffer, Position); 2218 WriteInt32ToBuffer(CPUType , Buffer, Position); 2219 2220 // If the file is not a multiple of 16 bytes, insert dummy padding. 2221 while (Buffer.size() & 15) 2222 Buffer.push_back(0); 2223 } 2224 2225 /// WriteBitcodeToFile - Write the specified module to the specified output 2226 /// stream. 2227 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2228 SmallVector<char, 0> Buffer; 2229 Buffer.reserve(256*1024); 2230 2231 // If this is darwin or another generic macho target, reserve space for the 2232 // header. 2233 Triple TT(M->getTargetTriple()); 2234 if (TT.isOSDarwin()) 2235 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2236 2237 // Emit the module into the buffer. 2238 { 2239 BitstreamWriter Stream(Buffer); 2240 2241 // Emit the file header. 2242 Stream.Emit((unsigned)'B', 8); 2243 Stream.Emit((unsigned)'C', 8); 2244 Stream.Emit(0x0, 4); 2245 Stream.Emit(0xC, 4); 2246 Stream.Emit(0xE, 4); 2247 Stream.Emit(0xD, 4); 2248 2249 // Emit the module. 2250 WriteModule(M, Stream); 2251 } 2252 2253 if (TT.isOSDarwin()) 2254 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2255 2256 // Write the generated bitstream to "Out". 2257 Out.write((char*)&Buffer.front(), Buffer.size()); 2258 } 2259