1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Metadata.h" 23 #include "llvm/Module.h" 24 #include "llvm/Operator.h" 25 #include "llvm/TypeSymbolTable.h" 26 #include "llvm/ValueSymbolTable.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/System/Program.h" 31 using namespace llvm; 32 33 /// These are manifest constants used by the bitcode writer. They do not need to 34 /// be kept in sync with the reader, but need to be consistent within this file. 35 enum { 36 CurVersion = 0, 37 38 // VALUE_SYMTAB_BLOCK abbrev id's. 39 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 40 VST_ENTRY_7_ABBREV, 41 VST_ENTRY_6_ABBREV, 42 VST_BBENTRY_6_ABBREV, 43 44 // CONSTANTS_BLOCK abbrev id's. 45 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 CONSTANTS_INTEGER_ABBREV, 47 CONSTANTS_CE_CAST_Abbrev, 48 CONSTANTS_NULL_Abbrev, 49 50 // FUNCTION_BLOCK abbrev id's. 51 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 FUNCTION_INST_BINOP_ABBREV, 53 FUNCTION_INST_BINOP_FLAGS_ABBREV, 54 FUNCTION_INST_CAST_ABBREV, 55 FUNCTION_INST_RET_VOID_ABBREV, 56 FUNCTION_INST_RET_VAL_ABBREV, 57 FUNCTION_INST_UNREACHABLE_ABBREV 58 }; 59 60 61 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 62 switch (Opcode) { 63 default: llvm_unreachable("Unknown cast instruction!"); 64 case Instruction::Trunc : return bitc::CAST_TRUNC; 65 case Instruction::ZExt : return bitc::CAST_ZEXT; 66 case Instruction::SExt : return bitc::CAST_SEXT; 67 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 68 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 69 case Instruction::UIToFP : return bitc::CAST_UITOFP; 70 case Instruction::SIToFP : return bitc::CAST_SITOFP; 71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 72 case Instruction::FPExt : return bitc::CAST_FPEXT; 73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 75 case Instruction::BitCast : return bitc::CAST_BITCAST; 76 } 77 } 78 79 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 80 switch (Opcode) { 81 default: llvm_unreachable("Unknown binary instruction!"); 82 case Instruction::Add: 83 case Instruction::FAdd: return bitc::BINOP_ADD; 84 case Instruction::Sub: 85 case Instruction::FSub: return bitc::BINOP_SUB; 86 case Instruction::Mul: 87 case Instruction::FMul: return bitc::BINOP_MUL; 88 case Instruction::UDiv: return bitc::BINOP_UDIV; 89 case Instruction::FDiv: 90 case Instruction::SDiv: return bitc::BINOP_SDIV; 91 case Instruction::URem: return bitc::BINOP_UREM; 92 case Instruction::FRem: 93 case Instruction::SRem: return bitc::BINOP_SREM; 94 case Instruction::Shl: return bitc::BINOP_SHL; 95 case Instruction::LShr: return bitc::BINOP_LSHR; 96 case Instruction::AShr: return bitc::BINOP_ASHR; 97 case Instruction::And: return bitc::BINOP_AND; 98 case Instruction::Or: return bitc::BINOP_OR; 99 case Instruction::Xor: return bitc::BINOP_XOR; 100 } 101 } 102 103 104 105 static void WriteStringRecord(unsigned Code, const std::string &Str, 106 unsigned AbbrevToUse, BitstreamWriter &Stream) { 107 SmallVector<unsigned, 64> Vals; 108 109 // Code: [strchar x N] 110 for (unsigned i = 0, e = Str.size(); i != e; ++i) 111 Vals.push_back(Str[i]); 112 113 // Emit the finished record. 114 Stream.EmitRecord(Code, Vals, AbbrevToUse); 115 } 116 117 // Emit information about parameter attributes. 118 static void WriteAttributeTable(const ValueEnumerator &VE, 119 BitstreamWriter &Stream) { 120 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 121 if (Attrs.empty()) return; 122 123 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 124 125 SmallVector<uint64_t, 64> Record; 126 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 127 const AttrListPtr &A = Attrs[i]; 128 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 129 const AttributeWithIndex &PAWI = A.getSlot(i); 130 Record.push_back(PAWI.Index); 131 132 // FIXME: remove in LLVM 3.0 133 // Store the alignment in the bitcode as a 16-bit raw value instead of a 134 // 5-bit log2 encoded value. Shift the bits above the alignment up by 135 // 11 bits. 136 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 137 if (PAWI.Attrs & Attribute::Alignment) 138 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 139 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 140 141 Record.push_back(FauxAttr); 142 } 143 144 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 145 Record.clear(); 146 } 147 148 Stream.ExitBlock(); 149 } 150 151 /// WriteTypeTable - Write out the type table for a module. 152 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 153 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 154 155 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 156 SmallVector<uint64_t, 64> TypeVals; 157 158 // Abbrev for TYPE_CODE_POINTER. 159 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 160 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 162 Log2_32_Ceil(VE.getTypes().size()+1))); 163 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 164 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 165 166 // Abbrev for TYPE_CODE_FUNCTION. 167 Abbv = new BitCodeAbbrev(); 168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 170 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 173 Log2_32_Ceil(VE.getTypes().size()+1))); 174 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 175 176 // Abbrev for TYPE_CODE_STRUCT. 177 Abbv = new BitCodeAbbrev(); 178 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 182 Log2_32_Ceil(VE.getTypes().size()+1))); 183 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 184 185 // Abbrev for TYPE_CODE_ARRAY. 186 Abbv = new BitCodeAbbrev(); 187 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 190 Log2_32_Ceil(VE.getTypes().size()+1))); 191 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 192 193 // Emit an entry count so the reader can reserve space. 194 TypeVals.push_back(TypeList.size()); 195 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 196 TypeVals.clear(); 197 198 // Loop over all of the types, emitting each in turn. 199 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 200 const Type *T = TypeList[i].first; 201 int AbbrevToUse = 0; 202 unsigned Code = 0; 203 204 switch (T->getTypeID()) { 205 default: llvm_unreachable("Unknown type!"); 206 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 207 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 208 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 209 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 210 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 211 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 212 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 213 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 214 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 215 case Type::IntegerTyID: 216 // INTEGER: [width] 217 Code = bitc::TYPE_CODE_INTEGER; 218 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 219 break; 220 case Type::PointerTyID: { 221 const PointerType *PTy = cast<PointerType>(T); 222 // POINTER: [pointee type, address space] 223 Code = bitc::TYPE_CODE_POINTER; 224 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 225 unsigned AddressSpace = PTy->getAddressSpace(); 226 TypeVals.push_back(AddressSpace); 227 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 228 break; 229 } 230 case Type::FunctionTyID: { 231 const FunctionType *FT = cast<FunctionType>(T); 232 // FUNCTION: [isvararg, attrid, retty, paramty x N] 233 Code = bitc::TYPE_CODE_FUNCTION; 234 TypeVals.push_back(FT->isVarArg()); 235 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 236 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 237 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 238 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 239 AbbrevToUse = FunctionAbbrev; 240 break; 241 } 242 case Type::StructTyID: { 243 const StructType *ST = cast<StructType>(T); 244 // STRUCT: [ispacked, eltty x N] 245 Code = bitc::TYPE_CODE_STRUCT; 246 TypeVals.push_back(ST->isPacked()); 247 // Output all of the element types. 248 for (StructType::element_iterator I = ST->element_begin(), 249 E = ST->element_end(); I != E; ++I) 250 TypeVals.push_back(VE.getTypeID(*I)); 251 AbbrevToUse = StructAbbrev; 252 break; 253 } 254 case Type::ArrayTyID: { 255 const ArrayType *AT = cast<ArrayType>(T); 256 // ARRAY: [numelts, eltty] 257 Code = bitc::TYPE_CODE_ARRAY; 258 TypeVals.push_back(AT->getNumElements()); 259 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 260 AbbrevToUse = ArrayAbbrev; 261 break; 262 } 263 case Type::VectorTyID: { 264 const VectorType *VT = cast<VectorType>(T); 265 // VECTOR [numelts, eltty] 266 Code = bitc::TYPE_CODE_VECTOR; 267 TypeVals.push_back(VT->getNumElements()); 268 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 269 break; 270 } 271 } 272 273 // Emit the finished record. 274 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 275 TypeVals.clear(); 276 } 277 278 Stream.ExitBlock(); 279 } 280 281 static unsigned getEncodedLinkage(const GlobalValue *GV) { 282 switch (GV->getLinkage()) { 283 default: llvm_unreachable("Invalid linkage!"); 284 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 285 case GlobalValue::ExternalLinkage: return 0; 286 case GlobalValue::WeakAnyLinkage: return 1; 287 case GlobalValue::AppendingLinkage: return 2; 288 case GlobalValue::InternalLinkage: return 3; 289 case GlobalValue::LinkOnceAnyLinkage: return 4; 290 case GlobalValue::DLLImportLinkage: return 5; 291 case GlobalValue::DLLExportLinkage: return 6; 292 case GlobalValue::ExternalWeakLinkage: return 7; 293 case GlobalValue::CommonLinkage: return 8; 294 case GlobalValue::PrivateLinkage: return 9; 295 case GlobalValue::WeakODRLinkage: return 10; 296 case GlobalValue::LinkOnceODRLinkage: return 11; 297 case GlobalValue::AvailableExternallyLinkage: return 12; 298 case GlobalValue::LinkerPrivateLinkage: return 13; 299 } 300 } 301 302 static unsigned getEncodedVisibility(const GlobalValue *GV) { 303 switch (GV->getVisibility()) { 304 default: llvm_unreachable("Invalid visibility!"); 305 case GlobalValue::DefaultVisibility: return 0; 306 case GlobalValue::HiddenVisibility: return 1; 307 case GlobalValue::ProtectedVisibility: return 2; 308 } 309 } 310 311 // Emit top-level description of module, including target triple, inline asm, 312 // descriptors for global variables, and function prototype info. 313 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 314 BitstreamWriter &Stream) { 315 // Emit the list of dependent libraries for the Module. 316 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 317 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 318 319 // Emit various pieces of data attached to a module. 320 if (!M->getTargetTriple().empty()) 321 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 322 0/*TODO*/, Stream); 323 if (!M->getDataLayout().empty()) 324 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 325 0/*TODO*/, Stream); 326 if (!M->getModuleInlineAsm().empty()) 327 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 328 0/*TODO*/, Stream); 329 330 // Emit information about sections and GC, computing how many there are. Also 331 // compute the maximum alignment value. 332 std::map<std::string, unsigned> SectionMap; 333 std::map<std::string, unsigned> GCMap; 334 unsigned MaxAlignment = 0; 335 unsigned MaxGlobalType = 0; 336 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 337 GV != E; ++GV) { 338 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 339 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 340 341 if (!GV->hasSection()) continue; 342 // Give section names unique ID's. 343 unsigned &Entry = SectionMap[GV->getSection()]; 344 if (Entry != 0) continue; 345 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 346 0/*TODO*/, Stream); 347 Entry = SectionMap.size(); 348 } 349 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 350 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 351 if (F->hasSection()) { 352 // Give section names unique ID's. 353 unsigned &Entry = SectionMap[F->getSection()]; 354 if (!Entry) { 355 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 356 0/*TODO*/, Stream); 357 Entry = SectionMap.size(); 358 } 359 } 360 if (F->hasGC()) { 361 // Same for GC names. 362 unsigned &Entry = GCMap[F->getGC()]; 363 if (!Entry) { 364 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 365 0/*TODO*/, Stream); 366 Entry = GCMap.size(); 367 } 368 } 369 } 370 371 // Emit abbrev for globals, now that we know # sections and max alignment. 372 unsigned SimpleGVarAbbrev = 0; 373 if (!M->global_empty()) { 374 // Add an abbrev for common globals with no visibility or thread localness. 375 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 376 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 378 Log2_32_Ceil(MaxGlobalType+1))); 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 382 if (MaxAlignment == 0) // Alignment. 383 Abbv->Add(BitCodeAbbrevOp(0)); 384 else { 385 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 387 Log2_32_Ceil(MaxEncAlignment+1))); 388 } 389 if (SectionMap.empty()) // Section. 390 Abbv->Add(BitCodeAbbrevOp(0)); 391 else 392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 393 Log2_32_Ceil(SectionMap.size()+1))); 394 // Don't bother emitting vis + thread local. 395 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 396 } 397 398 // Emit the global variable information. 399 SmallVector<unsigned, 64> Vals; 400 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 401 GV != E; ++GV) { 402 unsigned AbbrevToUse = 0; 403 404 // GLOBALVAR: [type, isconst, initid, 405 // linkage, alignment, section, visibility, threadlocal] 406 Vals.push_back(VE.getTypeID(GV->getType())); 407 Vals.push_back(GV->isConstant()); 408 Vals.push_back(GV->isDeclaration() ? 0 : 409 (VE.getValueID(GV->getInitializer()) + 1)); 410 Vals.push_back(getEncodedLinkage(GV)); 411 Vals.push_back(Log2_32(GV->getAlignment())+1); 412 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 413 if (GV->isThreadLocal() || 414 GV->getVisibility() != GlobalValue::DefaultVisibility) { 415 Vals.push_back(getEncodedVisibility(GV)); 416 Vals.push_back(GV->isThreadLocal()); 417 } else { 418 AbbrevToUse = SimpleGVarAbbrev; 419 } 420 421 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 422 Vals.clear(); 423 } 424 425 // Emit the function proto information. 426 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 427 // FUNCTION: [type, callingconv, isproto, paramattr, 428 // linkage, alignment, section, visibility, gc] 429 Vals.push_back(VE.getTypeID(F->getType())); 430 Vals.push_back(F->getCallingConv()); 431 Vals.push_back(F->isDeclaration()); 432 Vals.push_back(getEncodedLinkage(F)); 433 Vals.push_back(VE.getAttributeID(F->getAttributes())); 434 Vals.push_back(Log2_32(F->getAlignment())+1); 435 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 436 Vals.push_back(getEncodedVisibility(F)); 437 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 438 439 unsigned AbbrevToUse = 0; 440 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 441 Vals.clear(); 442 } 443 444 445 // Emit the alias information. 446 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 447 AI != E; ++AI) { 448 Vals.push_back(VE.getTypeID(AI->getType())); 449 Vals.push_back(VE.getValueID(AI->getAliasee())); 450 Vals.push_back(getEncodedLinkage(AI)); 451 Vals.push_back(getEncodedVisibility(AI)); 452 unsigned AbbrevToUse = 0; 453 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 454 Vals.clear(); 455 } 456 } 457 458 static uint64_t GetOptimizationFlags(const Value *V) { 459 uint64_t Flags = 0; 460 461 if (const OverflowingBinaryOperator *OBO = 462 dyn_cast<OverflowingBinaryOperator>(V)) { 463 if (OBO->hasNoSignedWrap()) 464 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 465 if (OBO->hasNoUnsignedWrap()) 466 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 467 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 468 if (Div->isExact()) 469 Flags |= 1 << bitc::SDIV_EXACT; 470 } 471 472 return Flags; 473 } 474 475 static void WriteMDNode(const MDNode *N, 476 const ValueEnumerator &VE, 477 BitstreamWriter &Stream, 478 SmallVector<uint64_t, 64> &Record) { 479 for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) { 480 if (N->getElement(i)) { 481 Record.push_back(VE.getTypeID(N->getElement(i)->getType())); 482 Record.push_back(VE.getValueID(N->getElement(i))); 483 } else { 484 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 485 Record.push_back(0); 486 } 487 } 488 Stream.EmitRecord(bitc::METADATA_NODE, Record, 0); 489 Record.clear(); 490 } 491 492 static void WriteModuleMetadata(const ValueEnumerator &VE, 493 BitstreamWriter &Stream) { 494 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 495 bool StartedMetadataBlock = false; 496 unsigned MDSAbbrev = 0; 497 SmallVector<uint64_t, 64> Record; 498 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 499 500 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 501 if (!StartedMetadataBlock) { 502 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 503 StartedMetadataBlock = true; 504 } 505 WriteMDNode(N, VE, Stream, Record); 506 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 507 if (!StartedMetadataBlock) { 508 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 509 510 // Abbrev for METADATA_STRING. 511 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 512 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 515 MDSAbbrev = Stream.EmitAbbrev(Abbv); 516 StartedMetadataBlock = true; 517 } 518 519 // Code: [strchar x N] 520 Record.append(MDS->begin(), MDS->end()); 521 522 // Emit the finished record. 523 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 524 Record.clear(); 525 } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) { 526 if (!StartedMetadataBlock) { 527 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 528 StartedMetadataBlock = true; 529 } 530 531 // Write name. 532 std::string Str = NMD->getNameStr(); 533 const char *StrBegin = Str.c_str(); 534 for (unsigned i = 0, e = Str.length(); i != e; ++i) 535 Record.push_back(StrBegin[i]); 536 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 537 Record.clear(); 538 539 // Write named metadata elements. 540 for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) { 541 if (NMD->getElement(i)) 542 Record.push_back(VE.getValueID(NMD->getElement(i))); 543 else 544 Record.push_back(0); 545 } 546 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 547 Record.clear(); 548 } 549 } 550 551 if (StartedMetadataBlock) 552 Stream.ExitBlock(); 553 } 554 555 static void WriteMetadataAttachment(const Function &F, 556 const ValueEnumerator &VE, 557 BitstreamWriter &Stream) { 558 bool StartedMetadataBlock = false; 559 SmallVector<uint64_t, 64> Record; 560 561 // Write metadata attachments 562 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 563 MetadataContext &TheMetadata = F.getContext().getMetadata(); 564 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 565 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 566 I != E; ++I) { 567 const MetadataContext::MDMapTy *P = TheMetadata.getMDs(I); 568 if (!P) continue; 569 bool RecordedInstruction = false; 570 for (MetadataContext::MDMapTy::const_iterator PI = P->begin(), 571 PE = P->end(); PI != PE; ++PI) { 572 if (RecordedInstruction == false) { 573 Record.push_back(VE.getInstructionID(I)); 574 RecordedInstruction = true; 575 } 576 Record.push_back(PI->first); 577 Record.push_back(VE.getValueID(PI->second)); 578 } 579 if (!Record.empty()) { 580 if (!StartedMetadataBlock) { 581 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 582 StartedMetadataBlock = true; 583 } 584 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 585 Record.clear(); 586 } 587 } 588 589 if (StartedMetadataBlock) 590 Stream.ExitBlock(); 591 } 592 593 static void WriteModuleMetadataStore(const Module *M, 594 const ValueEnumerator &VE, 595 BitstreamWriter &Stream) { 596 597 bool StartedMetadataBlock = false; 598 SmallVector<uint64_t, 64> Record; 599 600 // Write metadata kinds 601 // METADATA_KIND - [n x [id, name]] 602 MetadataContext &TheMetadata = M->getContext().getMetadata(); 603 SmallVector<std::pair<unsigned, StringRef>, 4> Names; 604 TheMetadata.getHandlerNames(Names); 605 for (SmallVector<std::pair<unsigned, StringRef>, 4>::iterator 606 I = Names.begin(), 607 E = Names.end(); I != E; ++I) { 608 Record.push_back(I->first); 609 StringRef KName = I->second; 610 for (unsigned i = 0, e = KName.size(); i != e; ++i) 611 Record.push_back(KName[i]); 612 if (!StartedMetadataBlock) { 613 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 614 StartedMetadataBlock = true; 615 } 616 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 617 Record.clear(); 618 } 619 620 if (StartedMetadataBlock) 621 Stream.ExitBlock(); 622 } 623 624 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 625 const ValueEnumerator &VE, 626 BitstreamWriter &Stream, bool isGlobal) { 627 if (FirstVal == LastVal) return; 628 629 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 630 631 unsigned AggregateAbbrev = 0; 632 unsigned String8Abbrev = 0; 633 unsigned CString7Abbrev = 0; 634 unsigned CString6Abbrev = 0; 635 // If this is a constant pool for the module, emit module-specific abbrevs. 636 if (isGlobal) { 637 // Abbrev for CST_CODE_AGGREGATE. 638 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 639 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 642 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 643 644 // Abbrev for CST_CODE_STRING. 645 Abbv = new BitCodeAbbrev(); 646 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 649 String8Abbrev = Stream.EmitAbbrev(Abbv); 650 // Abbrev for CST_CODE_CSTRING. 651 Abbv = new BitCodeAbbrev(); 652 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 655 CString7Abbrev = Stream.EmitAbbrev(Abbv); 656 // Abbrev for CST_CODE_CSTRING. 657 Abbv = new BitCodeAbbrev(); 658 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 661 CString6Abbrev = Stream.EmitAbbrev(Abbv); 662 } 663 664 SmallVector<uint64_t, 64> Record; 665 666 const ValueEnumerator::ValueList &Vals = VE.getValues(); 667 const Type *LastTy = 0; 668 for (unsigned i = FirstVal; i != LastVal; ++i) { 669 const Value *V = Vals[i].first; 670 // If we need to switch types, do so now. 671 if (V->getType() != LastTy) { 672 LastTy = V->getType(); 673 Record.push_back(VE.getTypeID(LastTy)); 674 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 675 CONSTANTS_SETTYPE_ABBREV); 676 Record.clear(); 677 } 678 679 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 680 Record.push_back(unsigned(IA->hasSideEffects()) | 681 unsigned(IA->isAlignStack()) << 1); 682 683 // Add the asm string. 684 const std::string &AsmStr = IA->getAsmString(); 685 Record.push_back(AsmStr.size()); 686 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 687 Record.push_back(AsmStr[i]); 688 689 // Add the constraint string. 690 const std::string &ConstraintStr = IA->getConstraintString(); 691 Record.push_back(ConstraintStr.size()); 692 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 693 Record.push_back(ConstraintStr[i]); 694 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 695 Record.clear(); 696 continue; 697 } 698 const Constant *C = cast<Constant>(V); 699 unsigned Code = -1U; 700 unsigned AbbrevToUse = 0; 701 if (C->isNullValue()) { 702 Code = bitc::CST_CODE_NULL; 703 } else if (isa<UndefValue>(C)) { 704 Code = bitc::CST_CODE_UNDEF; 705 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 706 if (IV->getBitWidth() <= 64) { 707 int64_t V = IV->getSExtValue(); 708 if (V >= 0) 709 Record.push_back(V << 1); 710 else 711 Record.push_back((-V << 1) | 1); 712 Code = bitc::CST_CODE_INTEGER; 713 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 714 } else { // Wide integers, > 64 bits in size. 715 // We have an arbitrary precision integer value to write whose 716 // bit width is > 64. However, in canonical unsigned integer 717 // format it is likely that the high bits are going to be zero. 718 // So, we only write the number of active words. 719 unsigned NWords = IV->getValue().getActiveWords(); 720 const uint64_t *RawWords = IV->getValue().getRawData(); 721 for (unsigned i = 0; i != NWords; ++i) { 722 int64_t V = RawWords[i]; 723 if (V >= 0) 724 Record.push_back(V << 1); 725 else 726 Record.push_back((-V << 1) | 1); 727 } 728 Code = bitc::CST_CODE_WIDE_INTEGER; 729 } 730 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 731 Code = bitc::CST_CODE_FLOAT; 732 const Type *Ty = CFP->getType(); 733 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 734 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 735 } else if (Ty->isX86_FP80Ty()) { 736 // api needed to prevent premature destruction 737 // bits are not in the same order as a normal i80 APInt, compensate. 738 APInt api = CFP->getValueAPF().bitcastToAPInt(); 739 const uint64_t *p = api.getRawData(); 740 Record.push_back((p[1] << 48) | (p[0] >> 16)); 741 Record.push_back(p[0] & 0xffffLL); 742 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 743 APInt api = CFP->getValueAPF().bitcastToAPInt(); 744 const uint64_t *p = api.getRawData(); 745 Record.push_back(p[0]); 746 Record.push_back(p[1]); 747 } else { 748 assert (0 && "Unknown FP type!"); 749 } 750 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 751 // Emit constant strings specially. 752 unsigned NumOps = C->getNumOperands(); 753 // If this is a null-terminated string, use the denser CSTRING encoding. 754 if (C->getOperand(NumOps-1)->isNullValue()) { 755 Code = bitc::CST_CODE_CSTRING; 756 --NumOps; // Don't encode the null, which isn't allowed by char6. 757 } else { 758 Code = bitc::CST_CODE_STRING; 759 AbbrevToUse = String8Abbrev; 760 } 761 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 762 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 763 for (unsigned i = 0; i != NumOps; ++i) { 764 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 765 Record.push_back(V); 766 isCStr7 &= (V & 128) == 0; 767 if (isCStrChar6) 768 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 769 } 770 771 if (isCStrChar6) 772 AbbrevToUse = CString6Abbrev; 773 else if (isCStr7) 774 AbbrevToUse = CString7Abbrev; 775 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 776 isa<ConstantVector>(V)) { 777 Code = bitc::CST_CODE_AGGREGATE; 778 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 779 Record.push_back(VE.getValueID(C->getOperand(i))); 780 AbbrevToUse = AggregateAbbrev; 781 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 782 switch (CE->getOpcode()) { 783 default: 784 if (Instruction::isCast(CE->getOpcode())) { 785 Code = bitc::CST_CODE_CE_CAST; 786 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 787 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 788 Record.push_back(VE.getValueID(C->getOperand(0))); 789 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 790 } else { 791 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 792 Code = bitc::CST_CODE_CE_BINOP; 793 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 794 Record.push_back(VE.getValueID(C->getOperand(0))); 795 Record.push_back(VE.getValueID(C->getOperand(1))); 796 uint64_t Flags = GetOptimizationFlags(CE); 797 if (Flags != 0) 798 Record.push_back(Flags); 799 } 800 break; 801 case Instruction::GetElementPtr: 802 Code = bitc::CST_CODE_CE_GEP; 803 if (cast<GEPOperator>(C)->isInBounds()) 804 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 805 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 806 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 807 Record.push_back(VE.getValueID(C->getOperand(i))); 808 } 809 break; 810 case Instruction::Select: 811 Code = bitc::CST_CODE_CE_SELECT; 812 Record.push_back(VE.getValueID(C->getOperand(0))); 813 Record.push_back(VE.getValueID(C->getOperand(1))); 814 Record.push_back(VE.getValueID(C->getOperand(2))); 815 break; 816 case Instruction::ExtractElement: 817 Code = bitc::CST_CODE_CE_EXTRACTELT; 818 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 819 Record.push_back(VE.getValueID(C->getOperand(0))); 820 Record.push_back(VE.getValueID(C->getOperand(1))); 821 break; 822 case Instruction::InsertElement: 823 Code = bitc::CST_CODE_CE_INSERTELT; 824 Record.push_back(VE.getValueID(C->getOperand(0))); 825 Record.push_back(VE.getValueID(C->getOperand(1))); 826 Record.push_back(VE.getValueID(C->getOperand(2))); 827 break; 828 case Instruction::ShuffleVector: 829 // If the return type and argument types are the same, this is a 830 // standard shufflevector instruction. If the types are different, 831 // then the shuffle is widening or truncating the input vectors, and 832 // the argument type must also be encoded. 833 if (C->getType() == C->getOperand(0)->getType()) { 834 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 835 } else { 836 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 837 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 838 } 839 Record.push_back(VE.getValueID(C->getOperand(0))); 840 Record.push_back(VE.getValueID(C->getOperand(1))); 841 Record.push_back(VE.getValueID(C->getOperand(2))); 842 break; 843 case Instruction::ICmp: 844 case Instruction::FCmp: 845 Code = bitc::CST_CODE_CE_CMP; 846 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 847 Record.push_back(VE.getValueID(C->getOperand(0))); 848 Record.push_back(VE.getValueID(C->getOperand(1))); 849 Record.push_back(CE->getPredicate()); 850 break; 851 } 852 } else { 853 llvm_unreachable("Unknown constant!"); 854 } 855 Stream.EmitRecord(Code, Record, AbbrevToUse); 856 Record.clear(); 857 } 858 859 Stream.ExitBlock(); 860 } 861 862 static void WriteModuleConstants(const ValueEnumerator &VE, 863 BitstreamWriter &Stream) { 864 const ValueEnumerator::ValueList &Vals = VE.getValues(); 865 866 // Find the first constant to emit, which is the first non-globalvalue value. 867 // We know globalvalues have been emitted by WriteModuleInfo. 868 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 869 if (!isa<GlobalValue>(Vals[i].first)) { 870 WriteConstants(i, Vals.size(), VE, Stream, true); 871 return; 872 } 873 } 874 } 875 876 /// PushValueAndType - The file has to encode both the value and type id for 877 /// many values, because we need to know what type to create for forward 878 /// references. However, most operands are not forward references, so this type 879 /// field is not needed. 880 /// 881 /// This function adds V's value ID to Vals. If the value ID is higher than the 882 /// instruction ID, then it is a forward reference, and it also includes the 883 /// type ID. 884 static bool PushValueAndType(const Value *V, unsigned InstID, 885 SmallVector<unsigned, 64> &Vals, 886 ValueEnumerator &VE) { 887 unsigned ValID = VE.getValueID(V); 888 Vals.push_back(ValID); 889 if (ValID >= InstID) { 890 Vals.push_back(VE.getTypeID(V->getType())); 891 return true; 892 } 893 return false; 894 } 895 896 /// WriteInstruction - Emit an instruction to the specified stream. 897 static void WriteInstruction(const Instruction &I, unsigned InstID, 898 ValueEnumerator &VE, BitstreamWriter &Stream, 899 SmallVector<unsigned, 64> &Vals) { 900 unsigned Code = 0; 901 unsigned AbbrevToUse = 0; 902 VE.setInstructionID(&I); 903 switch (I.getOpcode()) { 904 default: 905 if (Instruction::isCast(I.getOpcode())) { 906 Code = bitc::FUNC_CODE_INST_CAST; 907 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 908 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 909 Vals.push_back(VE.getTypeID(I.getType())); 910 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 911 } else { 912 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 913 Code = bitc::FUNC_CODE_INST_BINOP; 914 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 915 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 916 Vals.push_back(VE.getValueID(I.getOperand(1))); 917 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 918 uint64_t Flags = GetOptimizationFlags(&I); 919 if (Flags != 0) { 920 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 921 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 922 Vals.push_back(Flags); 923 } 924 } 925 break; 926 927 case Instruction::GetElementPtr: 928 Code = bitc::FUNC_CODE_INST_GEP; 929 if (cast<GEPOperator>(&I)->isInBounds()) 930 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 931 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 932 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 933 break; 934 case Instruction::ExtractValue: { 935 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 936 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 937 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 938 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 939 Vals.push_back(*i); 940 break; 941 } 942 case Instruction::InsertValue: { 943 Code = bitc::FUNC_CODE_INST_INSERTVAL; 944 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 945 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 946 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 947 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 948 Vals.push_back(*i); 949 break; 950 } 951 case Instruction::Select: 952 Code = bitc::FUNC_CODE_INST_VSELECT; 953 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 954 Vals.push_back(VE.getValueID(I.getOperand(2))); 955 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 956 break; 957 case Instruction::ExtractElement: 958 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 959 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 960 Vals.push_back(VE.getValueID(I.getOperand(1))); 961 break; 962 case Instruction::InsertElement: 963 Code = bitc::FUNC_CODE_INST_INSERTELT; 964 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 965 Vals.push_back(VE.getValueID(I.getOperand(1))); 966 Vals.push_back(VE.getValueID(I.getOperand(2))); 967 break; 968 case Instruction::ShuffleVector: 969 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 970 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 971 Vals.push_back(VE.getValueID(I.getOperand(1))); 972 Vals.push_back(VE.getValueID(I.getOperand(2))); 973 break; 974 case Instruction::ICmp: 975 case Instruction::FCmp: 976 // compare returning Int1Ty or vector of Int1Ty 977 Code = bitc::FUNC_CODE_INST_CMP2; 978 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 979 Vals.push_back(VE.getValueID(I.getOperand(1))); 980 Vals.push_back(cast<CmpInst>(I).getPredicate()); 981 break; 982 983 case Instruction::Ret: 984 { 985 Code = bitc::FUNC_CODE_INST_RET; 986 unsigned NumOperands = I.getNumOperands(); 987 if (NumOperands == 0) 988 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 989 else if (NumOperands == 1) { 990 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 991 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 992 } else { 993 for (unsigned i = 0, e = NumOperands; i != e; ++i) 994 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 995 } 996 } 997 break; 998 case Instruction::Br: 999 { 1000 Code = bitc::FUNC_CODE_INST_BR; 1001 BranchInst &II(cast<BranchInst>(I)); 1002 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1003 if (II.isConditional()) { 1004 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1005 Vals.push_back(VE.getValueID(II.getCondition())); 1006 } 1007 } 1008 break; 1009 case Instruction::Switch: 1010 Code = bitc::FUNC_CODE_INST_SWITCH; 1011 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1012 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1013 Vals.push_back(VE.getValueID(I.getOperand(i))); 1014 break; 1015 case Instruction::Invoke: { 1016 const InvokeInst *II = cast<InvokeInst>(&I); 1017 const Value *Callee(II->getCalledValue()); 1018 const PointerType *PTy = cast<PointerType>(Callee->getType()); 1019 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1020 Code = bitc::FUNC_CODE_INST_INVOKE; 1021 1022 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1023 Vals.push_back(II->getCallingConv()); 1024 Vals.push_back(VE.getValueID(II->getNormalDest())); 1025 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1026 PushValueAndType(Callee, InstID, Vals, VE); 1027 1028 // Emit value #'s for the fixed parameters. 1029 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1030 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 1031 1032 // Emit type/value pairs for varargs params. 1033 if (FTy->isVarArg()) { 1034 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 1035 i != e; ++i) 1036 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1037 } 1038 break; 1039 } 1040 case Instruction::Unwind: 1041 Code = bitc::FUNC_CODE_INST_UNWIND; 1042 break; 1043 case Instruction::Unreachable: 1044 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1045 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1046 break; 1047 1048 case Instruction::PHI: 1049 Code = bitc::FUNC_CODE_INST_PHI; 1050 Vals.push_back(VE.getTypeID(I.getType())); 1051 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1052 Vals.push_back(VE.getValueID(I.getOperand(i))); 1053 break; 1054 1055 case Instruction::Free: 1056 Code = bitc::FUNC_CODE_INST_FREE; 1057 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1058 break; 1059 1060 case Instruction::Alloca: 1061 Code = bitc::FUNC_CODE_INST_ALLOCA; 1062 Vals.push_back(VE.getTypeID(I.getType())); 1063 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1064 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1065 break; 1066 1067 case Instruction::Load: 1068 Code = bitc::FUNC_CODE_INST_LOAD; 1069 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1070 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1071 1072 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1073 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1074 break; 1075 case Instruction::Store: 1076 Code = bitc::FUNC_CODE_INST_STORE2; 1077 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1078 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1079 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1080 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1081 break; 1082 case Instruction::Call: { 1083 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 1084 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1085 1086 Code = bitc::FUNC_CODE_INST_CALL; 1087 1088 const CallInst *CI = cast<CallInst>(&I); 1089 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 1090 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 1091 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 1092 1093 // Emit value #'s for the fixed parameters. 1094 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1095 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 1096 1097 // Emit type/value pairs for varargs params. 1098 if (FTy->isVarArg()) { 1099 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 1100 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 1101 i != e; ++i) 1102 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 1103 } 1104 break; 1105 } 1106 case Instruction::VAArg: 1107 Code = bitc::FUNC_CODE_INST_VAARG; 1108 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1109 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1110 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1111 break; 1112 } 1113 1114 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1115 Vals.clear(); 1116 } 1117 1118 // Emit names for globals/functions etc. 1119 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1120 const ValueEnumerator &VE, 1121 BitstreamWriter &Stream) { 1122 if (VST.empty()) return; 1123 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1124 1125 // FIXME: Set up the abbrev, we know how many values there are! 1126 // FIXME: We know if the type names can use 7-bit ascii. 1127 SmallVector<unsigned, 64> NameVals; 1128 1129 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1130 SI != SE; ++SI) { 1131 1132 const ValueName &Name = *SI; 1133 1134 // Figure out the encoding to use for the name. 1135 bool is7Bit = true; 1136 bool isChar6 = true; 1137 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1138 C != E; ++C) { 1139 if (isChar6) 1140 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1141 if ((unsigned char)*C & 128) { 1142 is7Bit = false; 1143 break; // don't bother scanning the rest. 1144 } 1145 } 1146 1147 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1148 1149 // VST_ENTRY: [valueid, namechar x N] 1150 // VST_BBENTRY: [bbid, namechar x N] 1151 unsigned Code; 1152 if (isa<BasicBlock>(SI->getValue())) { 1153 Code = bitc::VST_CODE_BBENTRY; 1154 if (isChar6) 1155 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1156 } else { 1157 Code = bitc::VST_CODE_ENTRY; 1158 if (isChar6) 1159 AbbrevToUse = VST_ENTRY_6_ABBREV; 1160 else if (is7Bit) 1161 AbbrevToUse = VST_ENTRY_7_ABBREV; 1162 } 1163 1164 NameVals.push_back(VE.getValueID(SI->getValue())); 1165 for (const char *P = Name.getKeyData(), 1166 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1167 NameVals.push_back((unsigned char)*P); 1168 1169 // Emit the finished record. 1170 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1171 NameVals.clear(); 1172 } 1173 Stream.ExitBlock(); 1174 } 1175 1176 /// WriteFunction - Emit a function body to the module stream. 1177 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1178 BitstreamWriter &Stream) { 1179 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1180 VE.incorporateFunction(F); 1181 1182 SmallVector<unsigned, 64> Vals; 1183 1184 // Emit the number of basic blocks, so the reader can create them ahead of 1185 // time. 1186 Vals.push_back(VE.getBasicBlocks().size()); 1187 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1188 Vals.clear(); 1189 1190 // If there are function-local constants, emit them now. 1191 unsigned CstStart, CstEnd; 1192 VE.getFunctionConstantRange(CstStart, CstEnd); 1193 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1194 1195 // Keep a running idea of what the instruction ID is. 1196 unsigned InstID = CstEnd; 1197 1198 // Finally, emit all the instructions, in order. 1199 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1200 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1201 I != E; ++I) { 1202 WriteInstruction(*I, InstID, VE, Stream, Vals); 1203 if (I->getType() != Type::getVoidTy(F.getContext())) 1204 ++InstID; 1205 } 1206 1207 // Emit names for all the instructions etc. 1208 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1209 1210 WriteMetadataAttachment(F, VE, Stream); 1211 VE.purgeFunction(); 1212 Stream.ExitBlock(); 1213 } 1214 1215 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1216 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1217 const ValueEnumerator &VE, 1218 BitstreamWriter &Stream) { 1219 if (TST.empty()) return; 1220 1221 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1222 1223 // 7-bit fixed width VST_CODE_ENTRY strings. 1224 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1225 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1227 Log2_32_Ceil(VE.getTypes().size()+1))); 1228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1230 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1231 1232 SmallVector<unsigned, 64> NameVals; 1233 1234 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1235 TI != TE; ++TI) { 1236 // TST_ENTRY: [typeid, namechar x N] 1237 NameVals.push_back(VE.getTypeID(TI->second)); 1238 1239 const std::string &Str = TI->first; 1240 bool is7Bit = true; 1241 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1242 NameVals.push_back((unsigned char)Str[i]); 1243 if (Str[i] & 128) 1244 is7Bit = false; 1245 } 1246 1247 // Emit the finished record. 1248 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1249 NameVals.clear(); 1250 } 1251 1252 Stream.ExitBlock(); 1253 } 1254 1255 // Emit blockinfo, which defines the standard abbreviations etc. 1256 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1257 // We only want to emit block info records for blocks that have multiple 1258 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1259 // blocks can defined their abbrevs inline. 1260 Stream.EnterBlockInfoBlock(2); 1261 1262 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1263 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1268 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1269 Abbv) != VST_ENTRY_8_ABBREV) 1270 llvm_unreachable("Unexpected abbrev ordering!"); 1271 } 1272 1273 { // 7-bit fixed width VST_ENTRY strings. 1274 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1275 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1279 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1280 Abbv) != VST_ENTRY_7_ABBREV) 1281 llvm_unreachable("Unexpected abbrev ordering!"); 1282 } 1283 { // 6-bit char6 VST_ENTRY strings. 1284 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1285 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1289 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1290 Abbv) != VST_ENTRY_6_ABBREV) 1291 llvm_unreachable("Unexpected abbrev ordering!"); 1292 } 1293 { // 6-bit char6 VST_BBENTRY strings. 1294 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1295 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1299 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1300 Abbv) != VST_BBENTRY_6_ABBREV) 1301 llvm_unreachable("Unexpected abbrev ordering!"); 1302 } 1303 1304 1305 1306 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1307 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1308 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1310 Log2_32_Ceil(VE.getTypes().size()+1))); 1311 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1312 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1313 llvm_unreachable("Unexpected abbrev ordering!"); 1314 } 1315 1316 { // INTEGER abbrev for CONSTANTS_BLOCK. 1317 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1318 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1320 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1321 Abbv) != CONSTANTS_INTEGER_ABBREV) 1322 llvm_unreachable("Unexpected abbrev ordering!"); 1323 } 1324 1325 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1326 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1327 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1330 Log2_32_Ceil(VE.getTypes().size()+1))); 1331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1332 1333 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1334 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1335 llvm_unreachable("Unexpected abbrev ordering!"); 1336 } 1337 { // NULL abbrev for CONSTANTS_BLOCK. 1338 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1339 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1340 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1341 Abbv) != CONSTANTS_NULL_Abbrev) 1342 llvm_unreachable("Unexpected abbrev ordering!"); 1343 } 1344 1345 // FIXME: This should only use space for first class types! 1346 1347 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1348 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1349 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1353 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1354 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1355 llvm_unreachable("Unexpected abbrev ordering!"); 1356 } 1357 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1358 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1359 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1363 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1364 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1365 llvm_unreachable("Unexpected abbrev ordering!"); 1366 } 1367 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1368 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1369 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1374 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1375 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1376 llvm_unreachable("Unexpected abbrev ordering!"); 1377 } 1378 { // INST_CAST abbrev for FUNCTION_BLOCK. 1379 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1380 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1383 Log2_32_Ceil(VE.getTypes().size()+1))); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1385 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1386 Abbv) != FUNCTION_INST_CAST_ABBREV) 1387 llvm_unreachable("Unexpected abbrev ordering!"); 1388 } 1389 1390 { // INST_RET abbrev for FUNCTION_BLOCK. 1391 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1392 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1393 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1394 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1395 llvm_unreachable("Unexpected abbrev ordering!"); 1396 } 1397 { // INST_RET abbrev for FUNCTION_BLOCK. 1398 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1399 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1401 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1402 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1403 llvm_unreachable("Unexpected abbrev ordering!"); 1404 } 1405 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1406 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1407 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1408 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1409 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1410 llvm_unreachable("Unexpected abbrev ordering!"); 1411 } 1412 1413 Stream.ExitBlock(); 1414 } 1415 1416 1417 /// WriteModule - Emit the specified module to the bitstream. 1418 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1419 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1420 1421 // Emit the version number if it is non-zero. 1422 if (CurVersion) { 1423 SmallVector<unsigned, 1> Vals; 1424 Vals.push_back(CurVersion); 1425 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1426 } 1427 1428 // Analyze the module, enumerating globals, functions, etc. 1429 ValueEnumerator VE(M); 1430 1431 // Emit blockinfo, which defines the standard abbreviations etc. 1432 WriteBlockInfo(VE, Stream); 1433 1434 // Emit information about parameter attributes. 1435 WriteAttributeTable(VE, Stream); 1436 1437 // Emit information describing all of the types in the module. 1438 WriteTypeTable(VE, Stream); 1439 1440 // Emit top-level description of module, including target triple, inline asm, 1441 // descriptors for global variables, and function prototype info. 1442 WriteModuleInfo(M, VE, Stream); 1443 1444 // Emit constants. 1445 WriteModuleConstants(VE, Stream); 1446 1447 // Emit metadata. 1448 WriteModuleMetadata(VE, Stream); 1449 1450 // Emit function bodies. 1451 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1452 if (!I->isDeclaration()) 1453 WriteFunction(*I, VE, Stream); 1454 1455 // Emit metadata. 1456 WriteModuleMetadataStore(M, VE, Stream); 1457 1458 // Emit the type symbol table information. 1459 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1460 1461 // Emit names for globals/functions etc. 1462 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1463 1464 Stream.ExitBlock(); 1465 } 1466 1467 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1468 /// header and trailer to make it compatible with the system archiver. To do 1469 /// this we emit the following header, and then emit a trailer that pads the 1470 /// file out to be a multiple of 16 bytes. 1471 /// 1472 /// struct bc_header { 1473 /// uint32_t Magic; // 0x0B17C0DE 1474 /// uint32_t Version; // Version, currently always 0. 1475 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1476 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1477 /// uint32_t CPUType; // CPU specifier. 1478 /// ... potentially more later ... 1479 /// }; 1480 enum { 1481 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1482 DarwinBCHeaderSize = 5*4 1483 }; 1484 1485 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1486 const std::string &TT) { 1487 unsigned CPUType = ~0U; 1488 1489 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1490 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1491 // specific constants here because they are implicitly part of the Darwin ABI. 1492 enum { 1493 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1494 DARWIN_CPU_TYPE_X86 = 7, 1495 DARWIN_CPU_TYPE_POWERPC = 18 1496 }; 1497 1498 if (TT.find("x86_64-") == 0) 1499 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1500 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1501 TT[4] == '-' && TT[1] - '3' < 6) 1502 CPUType = DARWIN_CPU_TYPE_X86; 1503 else if (TT.find("powerpc-") == 0) 1504 CPUType = DARWIN_CPU_TYPE_POWERPC; 1505 else if (TT.find("powerpc64-") == 0) 1506 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1507 1508 // Traditional Bitcode starts after header. 1509 unsigned BCOffset = DarwinBCHeaderSize; 1510 1511 Stream.Emit(0x0B17C0DE, 32); 1512 Stream.Emit(0 , 32); // Version. 1513 Stream.Emit(BCOffset , 32); 1514 Stream.Emit(0 , 32); // Filled in later. 1515 Stream.Emit(CPUType , 32); 1516 } 1517 1518 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1519 /// finalize the header. 1520 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1521 // Update the size field in the header. 1522 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1523 1524 // If the file is not a multiple of 16 bytes, insert dummy padding. 1525 while (BufferSize & 15) { 1526 Stream.Emit(0, 8); 1527 ++BufferSize; 1528 } 1529 } 1530 1531 1532 /// WriteBitcodeToFile - Write the specified module to the specified output 1533 /// stream. 1534 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1535 std::vector<unsigned char> Buffer; 1536 BitstreamWriter Stream(Buffer); 1537 1538 Buffer.reserve(256*1024); 1539 1540 WriteBitcodeToStream( M, Stream ); 1541 1542 // If writing to stdout, set binary mode. 1543 if (&llvm::outs() == &Out) 1544 sys::Program::ChangeStdoutToBinary(); 1545 1546 // Write the generated bitstream to "Out". 1547 Out.write((char*)&Buffer.front(), Buffer.size()); 1548 1549 // Make sure it hits disk now. 1550 Out.flush(); 1551 } 1552 1553 /// WriteBitcodeToStream - Write the specified module to the specified output 1554 /// stream. 1555 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1556 // If this is darwin, emit a file header and trailer if needed. 1557 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1558 if (isDarwin) 1559 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1560 1561 // Emit the file header. 1562 Stream.Emit((unsigned)'B', 8); 1563 Stream.Emit((unsigned)'C', 8); 1564 Stream.Emit(0x0, 4); 1565 Stream.Emit(0xC, 4); 1566 Stream.Emit(0xE, 4); 1567 Stream.Emit(0xD, 4); 1568 1569 // Emit the module. 1570 WriteModule(M, Stream); 1571 1572 if (isDarwin) 1573 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1574 } 1575