1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV 60 }; 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 78 } 79 } 80 81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 82 switch (Opcode) { 83 default: llvm_unreachable("Unknown binary instruction!"); 84 case Instruction::Add: 85 case Instruction::FAdd: return bitc::BINOP_ADD; 86 case Instruction::Sub: 87 case Instruction::FSub: return bitc::BINOP_SUB; 88 case Instruction::Mul: 89 case Instruction::FMul: return bitc::BINOP_MUL; 90 case Instruction::UDiv: return bitc::BINOP_UDIV; 91 case Instruction::FDiv: 92 case Instruction::SDiv: return bitc::BINOP_SDIV; 93 case Instruction::URem: return bitc::BINOP_UREM; 94 case Instruction::FRem: 95 case Instruction::SRem: return bitc::BINOP_SREM; 96 case Instruction::Shl: return bitc::BINOP_SHL; 97 case Instruction::LShr: return bitc::BINOP_LSHR; 98 case Instruction::AShr: return bitc::BINOP_ASHR; 99 case Instruction::And: return bitc::BINOP_AND; 100 case Instruction::Or: return bitc::BINOP_OR; 101 case Instruction::Xor: return bitc::BINOP_XOR; 102 } 103 } 104 105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 106 switch (Op) { 107 default: llvm_unreachable("Unknown RMW operation!"); 108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 109 case AtomicRMWInst::Add: return bitc::RMW_ADD; 110 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 111 case AtomicRMWInst::And: return bitc::RMW_AND; 112 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 113 case AtomicRMWInst::Or: return bitc::RMW_OR; 114 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 115 case AtomicRMWInst::Max: return bitc::RMW_MAX; 116 case AtomicRMWInst::Min: return bitc::RMW_MIN; 117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 119 } 120 } 121 122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 123 switch (Ordering) { 124 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 125 case Unordered: return bitc::ORDERING_UNORDERED; 126 case Monotonic: return bitc::ORDERING_MONOTONIC; 127 case Acquire: return bitc::ORDERING_ACQUIRE; 128 case Release: return bitc::ORDERING_RELEASE; 129 case AcquireRelease: return bitc::ORDERING_ACQREL; 130 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 131 } 132 llvm_unreachable("Invalid ordering"); 133 } 134 135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 136 switch (SynchScope) { 137 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 138 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 139 } 140 llvm_unreachable("Invalid synch scope"); 141 } 142 143 static void WriteStringRecord(unsigned Code, StringRef Str, 144 unsigned AbbrevToUse, BitstreamWriter &Stream) { 145 SmallVector<unsigned, 64> Vals; 146 147 // Code: [strchar x N] 148 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 150 AbbrevToUse = 0; 151 Vals.push_back(Str[i]); 152 } 153 154 // Emit the finished record. 155 Stream.EmitRecord(Code, Vals, AbbrevToUse); 156 } 157 158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 159 switch (Kind) { 160 case Attribute::Alignment: 161 return bitc::ATTR_KIND_ALIGNMENT; 162 case Attribute::AlwaysInline: 163 return bitc::ATTR_KIND_ALWAYS_INLINE; 164 case Attribute::Builtin: 165 return bitc::ATTR_KIND_BUILTIN; 166 case Attribute::ByVal: 167 return bitc::ATTR_KIND_BY_VAL; 168 case Attribute::InAlloca: 169 return bitc::ATTR_KIND_IN_ALLOCA; 170 case Attribute::Cold: 171 return bitc::ATTR_KIND_COLD; 172 case Attribute::InlineHint: 173 return bitc::ATTR_KIND_INLINE_HINT; 174 case Attribute::InReg: 175 return bitc::ATTR_KIND_IN_REG; 176 case Attribute::JumpTable: 177 return bitc::ATTR_KIND_JUMP_TABLE; 178 case Attribute::MinSize: 179 return bitc::ATTR_KIND_MIN_SIZE; 180 case Attribute::Naked: 181 return bitc::ATTR_KIND_NAKED; 182 case Attribute::Nest: 183 return bitc::ATTR_KIND_NEST; 184 case Attribute::NoAlias: 185 return bitc::ATTR_KIND_NO_ALIAS; 186 case Attribute::NoBuiltin: 187 return bitc::ATTR_KIND_NO_BUILTIN; 188 case Attribute::NoCapture: 189 return bitc::ATTR_KIND_NO_CAPTURE; 190 case Attribute::NoDuplicate: 191 return bitc::ATTR_KIND_NO_DUPLICATE; 192 case Attribute::NoImplicitFloat: 193 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 194 case Attribute::NoInline: 195 return bitc::ATTR_KIND_NO_INLINE; 196 case Attribute::NonLazyBind: 197 return bitc::ATTR_KIND_NON_LAZY_BIND; 198 case Attribute::NonNull: 199 return bitc::ATTR_KIND_NON_NULL; 200 case Attribute::Dereferenceable: 201 return bitc::ATTR_KIND_DEREFERENCEABLE; 202 case Attribute::NoRedZone: 203 return bitc::ATTR_KIND_NO_RED_ZONE; 204 case Attribute::NoReturn: 205 return bitc::ATTR_KIND_NO_RETURN; 206 case Attribute::NoUnwind: 207 return bitc::ATTR_KIND_NO_UNWIND; 208 case Attribute::OptimizeForSize: 209 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 210 case Attribute::OptimizeNone: 211 return bitc::ATTR_KIND_OPTIMIZE_NONE; 212 case Attribute::ReadNone: 213 return bitc::ATTR_KIND_READ_NONE; 214 case Attribute::ReadOnly: 215 return bitc::ATTR_KIND_READ_ONLY; 216 case Attribute::Returned: 217 return bitc::ATTR_KIND_RETURNED; 218 case Attribute::ReturnsTwice: 219 return bitc::ATTR_KIND_RETURNS_TWICE; 220 case Attribute::SExt: 221 return bitc::ATTR_KIND_S_EXT; 222 case Attribute::StackAlignment: 223 return bitc::ATTR_KIND_STACK_ALIGNMENT; 224 case Attribute::StackProtect: 225 return bitc::ATTR_KIND_STACK_PROTECT; 226 case Attribute::StackProtectReq: 227 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 228 case Attribute::StackProtectStrong: 229 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 230 case Attribute::StructRet: 231 return bitc::ATTR_KIND_STRUCT_RET; 232 case Attribute::SanitizeAddress: 233 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 234 case Attribute::SanitizeThread: 235 return bitc::ATTR_KIND_SANITIZE_THREAD; 236 case Attribute::SanitizeMemory: 237 return bitc::ATTR_KIND_SANITIZE_MEMORY; 238 case Attribute::UWTable: 239 return bitc::ATTR_KIND_UW_TABLE; 240 case Attribute::ZExt: 241 return bitc::ATTR_KIND_Z_EXT; 242 case Attribute::EndAttrKinds: 243 llvm_unreachable("Can not encode end-attribute kinds marker."); 244 case Attribute::None: 245 llvm_unreachable("Can not encode none-attribute."); 246 } 247 248 llvm_unreachable("Trying to encode unknown attribute"); 249 } 250 251 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 252 BitstreamWriter &Stream) { 253 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 254 if (AttrGrps.empty()) return; 255 256 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 257 258 SmallVector<uint64_t, 64> Record; 259 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 260 AttributeSet AS = AttrGrps[i]; 261 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 262 AttributeSet A = AS.getSlotAttributes(i); 263 264 Record.push_back(VE.getAttributeGroupID(A)); 265 Record.push_back(AS.getSlotIndex(i)); 266 267 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 268 I != E; ++I) { 269 Attribute Attr = *I; 270 if (Attr.isEnumAttribute()) { 271 Record.push_back(0); 272 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 273 } else if (Attr.isIntAttribute()) { 274 Record.push_back(1); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 Record.push_back(Attr.getValueAsInt()); 277 } else { 278 StringRef Kind = Attr.getKindAsString(); 279 StringRef Val = Attr.getValueAsString(); 280 281 Record.push_back(Val.empty() ? 3 : 4); 282 Record.append(Kind.begin(), Kind.end()); 283 Record.push_back(0); 284 if (!Val.empty()) { 285 Record.append(Val.begin(), Val.end()); 286 Record.push_back(0); 287 } 288 } 289 } 290 291 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 292 Record.clear(); 293 } 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static void WriteAttributeTable(const ValueEnumerator &VE, 300 BitstreamWriter &Stream) { 301 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 302 if (Attrs.empty()) return; 303 304 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 305 306 SmallVector<uint64_t, 64> Record; 307 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 308 const AttributeSet &A = Attrs[i]; 309 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 310 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 311 312 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 313 Record.clear(); 314 } 315 316 Stream.ExitBlock(); 317 } 318 319 /// WriteTypeTable - Write out the type table for a module. 320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 321 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 322 323 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 324 SmallVector<uint64_t, 64> TypeVals; 325 326 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 327 328 // Abbrev for TYPE_CODE_POINTER. 329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 330 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 332 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 333 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 334 335 // Abbrev for TYPE_CODE_FUNCTION. 336 Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 342 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_STRUCT_ANON. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_NAME. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 358 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAMED. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_ARRAY. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Emit an entry count so the reader can reserve space. 378 TypeVals.push_back(TypeList.size()); 379 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 380 TypeVals.clear(); 381 382 // Loop over all of the types, emitting each in turn. 383 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 384 Type *T = TypeList[i]; 385 int AbbrevToUse = 0; 386 unsigned Code = 0; 387 388 switch (T->getTypeID()) { 389 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 390 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 391 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 392 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 393 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 394 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 395 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 396 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 397 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 398 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 399 case Type::IntegerTyID: 400 // INTEGER: [width] 401 Code = bitc::TYPE_CODE_INTEGER; 402 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 403 break; 404 case Type::PointerTyID: { 405 PointerType *PTy = cast<PointerType>(T); 406 // POINTER: [pointee type, address space] 407 Code = bitc::TYPE_CODE_POINTER; 408 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 409 unsigned AddressSpace = PTy->getAddressSpace(); 410 TypeVals.push_back(AddressSpace); 411 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 412 break; 413 } 414 case Type::FunctionTyID: { 415 FunctionType *FT = cast<FunctionType>(T); 416 // FUNCTION: [isvararg, retty, paramty x N] 417 Code = bitc::TYPE_CODE_FUNCTION; 418 TypeVals.push_back(FT->isVarArg()); 419 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 421 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 422 AbbrevToUse = FunctionAbbrev; 423 break; 424 } 425 case Type::StructTyID: { 426 StructType *ST = cast<StructType>(T); 427 // STRUCT: [ispacked, eltty x N] 428 TypeVals.push_back(ST->isPacked()); 429 // Output all of the element types. 430 for (StructType::element_iterator I = ST->element_begin(), 431 E = ST->element_end(); I != E; ++I) 432 TypeVals.push_back(VE.getTypeID(*I)); 433 434 if (ST->isLiteral()) { 435 Code = bitc::TYPE_CODE_STRUCT_ANON; 436 AbbrevToUse = StructAnonAbbrev; 437 } else { 438 if (ST->isOpaque()) { 439 Code = bitc::TYPE_CODE_OPAQUE; 440 } else { 441 Code = bitc::TYPE_CODE_STRUCT_NAMED; 442 AbbrevToUse = StructNamedAbbrev; 443 } 444 445 // Emit the name if it is present. 446 if (!ST->getName().empty()) 447 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 448 StructNameAbbrev, Stream); 449 } 450 break; 451 } 452 case Type::ArrayTyID: { 453 ArrayType *AT = cast<ArrayType>(T); 454 // ARRAY: [numelts, eltty] 455 Code = bitc::TYPE_CODE_ARRAY; 456 TypeVals.push_back(AT->getNumElements()); 457 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 458 AbbrevToUse = ArrayAbbrev; 459 break; 460 } 461 case Type::VectorTyID: { 462 VectorType *VT = cast<VectorType>(T); 463 // VECTOR [numelts, eltty] 464 Code = bitc::TYPE_CODE_VECTOR; 465 TypeVals.push_back(VT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 467 break; 468 } 469 } 470 471 // Emit the finished record. 472 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 473 TypeVals.clear(); 474 } 475 476 Stream.ExitBlock(); 477 } 478 479 static unsigned getEncodedLinkage(const GlobalValue &GV) { 480 switch (GV.getLinkage()) { 481 case GlobalValue::ExternalLinkage: 482 return 0; 483 case GlobalValue::WeakAnyLinkage: 484 return 16; 485 case GlobalValue::AppendingLinkage: 486 return 2; 487 case GlobalValue::InternalLinkage: 488 return 3; 489 case GlobalValue::LinkOnceAnyLinkage: 490 return 18; 491 case GlobalValue::ExternalWeakLinkage: 492 return 7; 493 case GlobalValue::CommonLinkage: 494 return 8; 495 case GlobalValue::PrivateLinkage: 496 return 9; 497 case GlobalValue::WeakODRLinkage: 498 return 17; 499 case GlobalValue::LinkOnceODRLinkage: 500 return 19; 501 case GlobalValue::AvailableExternallyLinkage: 502 return 12; 503 } 504 llvm_unreachable("Invalid linkage"); 505 } 506 507 static unsigned getEncodedVisibility(const GlobalValue &GV) { 508 switch (GV.getVisibility()) { 509 case GlobalValue::DefaultVisibility: return 0; 510 case GlobalValue::HiddenVisibility: return 1; 511 case GlobalValue::ProtectedVisibility: return 2; 512 } 513 llvm_unreachable("Invalid visibility"); 514 } 515 516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 517 switch (GV.getDLLStorageClass()) { 518 case GlobalValue::DefaultStorageClass: return 0; 519 case GlobalValue::DLLImportStorageClass: return 1; 520 case GlobalValue::DLLExportStorageClass: return 2; 521 } 522 llvm_unreachable("Invalid DLL storage class"); 523 } 524 525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 526 switch (GV.getThreadLocalMode()) { 527 case GlobalVariable::NotThreadLocal: return 0; 528 case GlobalVariable::GeneralDynamicTLSModel: return 1; 529 case GlobalVariable::LocalDynamicTLSModel: return 2; 530 case GlobalVariable::InitialExecTLSModel: return 3; 531 case GlobalVariable::LocalExecTLSModel: return 4; 532 } 533 llvm_unreachable("Invalid TLS model"); 534 } 535 536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 537 switch (C.getSelectionKind()) { 538 case Comdat::Any: 539 return bitc::COMDAT_SELECTION_KIND_ANY; 540 case Comdat::ExactMatch: 541 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 542 case Comdat::Largest: 543 return bitc::COMDAT_SELECTION_KIND_LARGEST; 544 case Comdat::NoDuplicates: 545 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 546 case Comdat::SameSize: 547 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 548 } 549 llvm_unreachable("Invalid selection kind"); 550 } 551 552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 553 SmallVector<uint16_t, 64> Vals; 554 for (const Comdat *C : VE.getComdats()) { 555 // COMDAT: [selection_kind, name] 556 Vals.push_back(getEncodedComdatSelectionKind(*C)); 557 size_t Size = C->getName().size(); 558 assert(isUInt<16>(Size)); 559 Vals.push_back(Size); 560 for (char Chr : C->getName()) 561 Vals.push_back((unsigned char)Chr); 562 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 563 Vals.clear(); 564 } 565 } 566 567 // Emit top-level description of module, including target triple, inline asm, 568 // descriptors for global variables, and function prototype info. 569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 570 BitstreamWriter &Stream) { 571 // Emit various pieces of data attached to a module. 572 if (!M->getTargetTriple().empty()) 573 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 574 0/*TODO*/, Stream); 575 const std::string &DL = M->getDataLayoutStr(); 576 if (!DL.empty()) 577 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 578 if (!M->getModuleInlineAsm().empty()) 579 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 580 0/*TODO*/, Stream); 581 582 // Emit information about sections and GC, computing how many there are. Also 583 // compute the maximum alignment value. 584 std::map<std::string, unsigned> SectionMap; 585 std::map<std::string, unsigned> GCMap; 586 unsigned MaxAlignment = 0; 587 unsigned MaxGlobalType = 0; 588 for (const GlobalValue &GV : M->globals()) { 589 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 590 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 591 if (GV.hasSection()) { 592 // Give section names unique ID's. 593 unsigned &Entry = SectionMap[GV.getSection()]; 594 if (!Entry) { 595 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 596 0/*TODO*/, Stream); 597 Entry = SectionMap.size(); 598 } 599 } 600 } 601 for (const Function &F : *M) { 602 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 603 if (F.hasSection()) { 604 // Give section names unique ID's. 605 unsigned &Entry = SectionMap[F.getSection()]; 606 if (!Entry) { 607 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 608 0/*TODO*/, Stream); 609 Entry = SectionMap.size(); 610 } 611 } 612 if (F.hasGC()) { 613 // Same for GC names. 614 unsigned &Entry = GCMap[F.getGC()]; 615 if (!Entry) { 616 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 617 0/*TODO*/, Stream); 618 Entry = GCMap.size(); 619 } 620 } 621 } 622 623 // Emit abbrev for globals, now that we know # sections and max alignment. 624 unsigned SimpleGVarAbbrev = 0; 625 if (!M->global_empty()) { 626 // Add an abbrev for common globals with no visibility or thread localness. 627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 628 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 630 Log2_32_Ceil(MaxGlobalType+1))); 631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 634 if (MaxAlignment == 0) // Alignment. 635 Abbv->Add(BitCodeAbbrevOp(0)); 636 else { 637 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 639 Log2_32_Ceil(MaxEncAlignment+1))); 640 } 641 if (SectionMap.empty()) // Section. 642 Abbv->Add(BitCodeAbbrevOp(0)); 643 else 644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 645 Log2_32_Ceil(SectionMap.size()+1))); 646 // Don't bother emitting vis + thread local. 647 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 648 } 649 650 // Emit the global variable information. 651 SmallVector<unsigned, 64> Vals; 652 for (const GlobalVariable &GV : M->globals()) { 653 unsigned AbbrevToUse = 0; 654 655 // GLOBALVAR: [type, isconst, initid, 656 // linkage, alignment, section, visibility, threadlocal, 657 // unnamed_addr, externally_initialized, dllstorageclass, 658 // comdat] 659 Vals.push_back(VE.getTypeID(GV.getType())); 660 Vals.push_back(GV.isConstant()); 661 Vals.push_back(GV.isDeclaration() ? 0 : 662 (VE.getValueID(GV.getInitializer()) + 1)); 663 Vals.push_back(getEncodedLinkage(GV)); 664 Vals.push_back(Log2_32(GV.getAlignment())+1); 665 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 666 if (GV.isThreadLocal() || 667 GV.getVisibility() != GlobalValue::DefaultVisibility || 668 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 669 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 670 GV.hasComdat()) { 671 Vals.push_back(getEncodedVisibility(GV)); 672 Vals.push_back(getEncodedThreadLocalMode(GV)); 673 Vals.push_back(GV.hasUnnamedAddr()); 674 Vals.push_back(GV.isExternallyInitialized()); 675 Vals.push_back(getEncodedDLLStorageClass(GV)); 676 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 677 } else { 678 AbbrevToUse = SimpleGVarAbbrev; 679 } 680 681 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 682 Vals.clear(); 683 } 684 685 // Emit the function proto information. 686 for (const Function &F : *M) { 687 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 688 // section, visibility, gc, unnamed_addr, prologuedata, 689 // dllstorageclass, comdat, prefixdata] 690 Vals.push_back(VE.getTypeID(F.getType())); 691 Vals.push_back(F.getCallingConv()); 692 Vals.push_back(F.isDeclaration()); 693 Vals.push_back(getEncodedLinkage(F)); 694 Vals.push_back(VE.getAttributeID(F.getAttributes())); 695 Vals.push_back(Log2_32(F.getAlignment())+1); 696 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 697 Vals.push_back(getEncodedVisibility(F)); 698 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 699 Vals.push_back(F.hasUnnamedAddr()); 700 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 701 : 0); 702 Vals.push_back(getEncodedDLLStorageClass(F)); 703 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 704 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 705 : 0); 706 707 unsigned AbbrevToUse = 0; 708 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 709 Vals.clear(); 710 } 711 712 // Emit the alias information. 713 for (const GlobalAlias &A : M->aliases()) { 714 // ALIAS: [alias type, aliasee val#, linkage, visibility] 715 Vals.push_back(VE.getTypeID(A.getType())); 716 Vals.push_back(VE.getValueID(A.getAliasee())); 717 Vals.push_back(getEncodedLinkage(A)); 718 Vals.push_back(getEncodedVisibility(A)); 719 Vals.push_back(getEncodedDLLStorageClass(A)); 720 Vals.push_back(getEncodedThreadLocalMode(A)); 721 Vals.push_back(A.hasUnnamedAddr()); 722 unsigned AbbrevToUse = 0; 723 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 724 Vals.clear(); 725 } 726 } 727 728 static uint64_t GetOptimizationFlags(const Value *V) { 729 uint64_t Flags = 0; 730 731 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 732 if (OBO->hasNoSignedWrap()) 733 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 734 if (OBO->hasNoUnsignedWrap()) 735 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 736 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 737 if (PEO->isExact()) 738 Flags |= 1 << bitc::PEO_EXACT; 739 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 740 if (FPMO->hasUnsafeAlgebra()) 741 Flags |= FastMathFlags::UnsafeAlgebra; 742 if (FPMO->hasNoNaNs()) 743 Flags |= FastMathFlags::NoNaNs; 744 if (FPMO->hasNoInfs()) 745 Flags |= FastMathFlags::NoInfs; 746 if (FPMO->hasNoSignedZeros()) 747 Flags |= FastMathFlags::NoSignedZeros; 748 if (FPMO->hasAllowReciprocal()) 749 Flags |= FastMathFlags::AllowReciprocal; 750 } 751 752 return Flags; 753 } 754 755 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 756 const ValueEnumerator &VE, 757 BitstreamWriter &Stream, 758 SmallVectorImpl<uint64_t> &Record) { 759 // Mimic an MDNode with a value as one operand. 760 Value *V = MD->getValue(); 761 Record.push_back(VE.getTypeID(V->getType())); 762 Record.push_back(VE.getValueID(V)); 763 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 764 Record.clear(); 765 } 766 767 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 768 BitstreamWriter &Stream, 769 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 770 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 771 Metadata *MD = N->getOperand(i); 772 assert(!(MD && isa<LocalAsMetadata>(MD)) && 773 "Unexpected function-local metadata"); 774 Record.push_back(VE.getMetadataOrNullID(MD)); 775 } 776 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 777 : bitc::METADATA_NODE, 778 Record, Abbrev); 779 Record.clear(); 780 } 781 782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 783 BitstreamWriter &Stream, 784 SmallVectorImpl<uint64_t> &Record, 785 unsigned Abbrev) { 786 Record.push_back(N->isDistinct()); 787 Record.push_back(N->getLine()); 788 Record.push_back(N->getColumn()); 789 Record.push_back(VE.getMetadataID(N->getScope())); 790 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 791 792 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 793 Record.clear(); 794 } 795 796 static void WriteGenericDebugNode(const GenericDebugNode *N, 797 const ValueEnumerator &VE, 798 BitstreamWriter &Stream, 799 SmallVectorImpl<uint64_t> &Record, 800 unsigned Abbrev) { 801 Record.push_back(N->isDistinct()); 802 Record.push_back(N->getTag()); 803 Record.push_back(0); // Per-tag version field; unused for now. 804 805 for (auto &I : N->operands()) 806 Record.push_back(VE.getMetadataOrNullID(I)); 807 808 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 809 Record.clear(); 810 } 811 812 static uint64_t rotateSign(int64_t I) { 813 uint64_t U = I; 814 return I < 0 ? ~(U << 1) : U << 1; 815 } 816 817 static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &, 818 BitstreamWriter &Stream, 819 SmallVectorImpl<uint64_t> &Record, 820 unsigned Abbrev) { 821 Record.push_back(N->isDistinct()); 822 Record.push_back(N->getCount()); 823 Record.push_back(rotateSign(N->getLo())); 824 825 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 826 Record.clear(); 827 } 828 829 static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE, 830 BitstreamWriter &Stream, 831 SmallVectorImpl<uint64_t> &Record, 832 unsigned Abbrev) { 833 Record.push_back(N->isDistinct()); 834 Record.push_back(rotateSign(N->getValue())); 835 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 836 837 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 838 Record.clear(); 839 } 840 841 static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE, 842 BitstreamWriter &Stream, 843 SmallVectorImpl<uint64_t> &Record, 844 unsigned Abbrev) { 845 Record.push_back(N->isDistinct()); 846 Record.push_back(N->getTag()); 847 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 848 Record.push_back(N->getSizeInBits()); 849 Record.push_back(N->getAlignInBits()); 850 Record.push_back(N->getEncoding()); 851 852 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 853 Record.clear(); 854 } 855 856 static void WriteMDDerivedType(const MDDerivedType *N, 857 const ValueEnumerator &VE, 858 BitstreamWriter &Stream, 859 SmallVectorImpl<uint64_t> &Record, 860 unsigned Abbrev) { 861 Record.push_back(N->isDistinct()); 862 Record.push_back(N->getTag()); 863 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 864 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 865 Record.push_back(N->getLine()); 866 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 867 Record.push_back(VE.getMetadataID(N->getBaseType())); 868 Record.push_back(N->getSizeInBits()); 869 Record.push_back(N->getAlignInBits()); 870 Record.push_back(N->getOffsetInBits()); 871 Record.push_back(N->getFlags()); 872 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 873 874 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 875 Record.clear(); 876 } 877 878 static void WriteMDCompositeType(const MDCompositeType *N, 879 const ValueEnumerator &VE, 880 BitstreamWriter &Stream, 881 SmallVectorImpl<uint64_t> &Record, 882 unsigned Abbrev) { 883 Record.push_back(N->isDistinct()); 884 Record.push_back(N->getTag()); 885 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 886 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 887 Record.push_back(N->getLine()); 888 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 889 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 890 Record.push_back(N->getSizeInBits()); 891 Record.push_back(N->getAlignInBits()); 892 Record.push_back(N->getOffsetInBits()); 893 Record.push_back(N->getFlags()); 894 Record.push_back(VE.getMetadataOrNullID(N->getElements())); 895 Record.push_back(N->getRuntimeLang()); 896 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 897 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 898 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 899 900 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 901 Record.clear(); 902 } 903 904 static void WriteMDSubroutineType(const MDSubroutineType *N, 905 const ValueEnumerator &VE, 906 BitstreamWriter &Stream, 907 SmallVectorImpl<uint64_t> &Record, 908 unsigned Abbrev) { 909 Record.push_back(N->isDistinct()); 910 Record.push_back(N->getFlags()); 911 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray())); 912 913 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 914 Record.clear(); 915 } 916 917 static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE, 918 BitstreamWriter &Stream, 919 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 920 Record.push_back(N->isDistinct()); 921 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 922 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 923 924 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 925 Record.clear(); 926 } 927 928 static void WriteMDCompileUnit(const MDCompileUnit *N, 929 const ValueEnumerator &VE, 930 BitstreamWriter &Stream, 931 SmallVectorImpl<uint64_t> &Record, 932 unsigned Abbrev) { 933 Record.push_back(N->isDistinct()); 934 Record.push_back(N->getSourceLanguage()); 935 Record.push_back(VE.getMetadataID(N->getFile())); 936 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 937 Record.push_back(N->isOptimized()); 938 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 939 Record.push_back(N->getRuntimeVersion()); 940 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 941 Record.push_back(N->getEmissionKind()); 942 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes())); 943 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes())); 944 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms())); 945 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables())); 946 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities())); 947 948 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 949 Record.clear(); 950 } 951 952 static void WriteMDSubprogram(const MDSubprogram *N, 953 const ValueEnumerator &VE, 954 BitstreamWriter &Stream, 955 SmallVectorImpl<uint64_t> &Record, 956 unsigned Abbrev) { 957 Record.push_back(N->isDistinct()); 958 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 959 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 960 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 961 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 962 Record.push_back(N->getLine()); 963 Record.push_back(VE.getMetadataOrNullID(N->getType())); 964 Record.push_back(N->isLocalToUnit()); 965 Record.push_back(N->isDefinition()); 966 Record.push_back(N->getScopeLine()); 967 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 968 Record.push_back(N->getVirtuality()); 969 Record.push_back(N->getVirtualIndex()); 970 Record.push_back(N->getFlags()); 971 Record.push_back(N->isOptimized()); 972 Record.push_back(VE.getMetadataOrNullID(N->getFunction())); 973 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 974 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 975 Record.push_back(VE.getMetadataOrNullID(N->getVariables())); 976 977 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 978 Record.clear(); 979 } 980 981 static void WriteMDLexicalBlock(const MDLexicalBlock *N, 982 const ValueEnumerator &VE, 983 BitstreamWriter &Stream, 984 SmallVectorImpl<uint64_t> &Record, 985 unsigned Abbrev) { 986 Record.push_back(N->isDistinct()); 987 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 988 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 989 Record.push_back(N->getLine()); 990 Record.push_back(N->getColumn()); 991 992 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 993 Record.clear(); 994 } 995 996 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *N, 997 const ValueEnumerator &VE, 998 BitstreamWriter &Stream, 999 SmallVectorImpl<uint64_t> &Record, 1000 unsigned Abbrev) { 1001 Record.push_back(N->isDistinct()); 1002 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1003 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1004 Record.push_back(N->getDiscriminator()); 1005 1006 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1007 Record.clear(); 1008 } 1009 1010 static void WriteMDNamespace(const MDNamespace *, const ValueEnumerator &, 1011 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 1012 unsigned) { 1013 llvm_unreachable("write not implemented"); 1014 } 1015 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *, 1016 const ValueEnumerator &, 1017 BitstreamWriter &, 1018 SmallVectorImpl<uint64_t> &, 1019 unsigned) { 1020 llvm_unreachable("write not implemented"); 1021 } 1022 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *, 1023 const ValueEnumerator &, 1024 BitstreamWriter &, 1025 SmallVectorImpl<uint64_t> &, 1026 unsigned) { 1027 llvm_unreachable("write not implemented"); 1028 } 1029 static void WriteMDGlobalVariable(const MDGlobalVariable *, 1030 const ValueEnumerator &, BitstreamWriter &, 1031 SmallVectorImpl<uint64_t> &, unsigned) { 1032 llvm_unreachable("write not implemented"); 1033 } 1034 static void WriteMDLocalVariable(const MDLocalVariable *, 1035 const ValueEnumerator &, BitstreamWriter &, 1036 SmallVectorImpl<uint64_t> &, unsigned) { 1037 llvm_unreachable("write not implemented"); 1038 } 1039 static void WriteMDExpression(const MDExpression *, const ValueEnumerator &, 1040 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 1041 unsigned) { 1042 llvm_unreachable("write not implemented"); 1043 } 1044 static void WriteMDObjCProperty(const MDObjCProperty *, const ValueEnumerator &, 1045 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 1046 unsigned) { 1047 llvm_unreachable("write not implemented"); 1048 } 1049 static void WriteMDImportedEntity(const MDImportedEntity *, 1050 const ValueEnumerator &, BitstreamWriter &, 1051 SmallVectorImpl<uint64_t> &, unsigned) { 1052 llvm_unreachable("write not implemented"); 1053 } 1054 1055 static void WriteModuleMetadata(const Module *M, 1056 const ValueEnumerator &VE, 1057 BitstreamWriter &Stream) { 1058 const auto &MDs = VE.getMDs(); 1059 if (MDs.empty() && M->named_metadata_empty()) 1060 return; 1061 1062 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1063 1064 unsigned MDSAbbrev = 0; 1065 if (VE.hasMDString()) { 1066 // Abbrev for METADATA_STRING. 1067 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1068 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1071 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1072 } 1073 1074 // Initialize MDNode abbreviations. 1075 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1076 #include "llvm/IR/Metadata.def" 1077 1078 if (VE.hasMDLocation()) { 1079 // Abbrev for METADATA_LOCATION. 1080 // 1081 // Assume the column is usually under 128, and always output the inlined-at 1082 // location (it's never more expensive than building an array size 1). 1083 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1084 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1090 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 1091 } 1092 1093 if (VE.hasGenericDebugNode()) { 1094 // Abbrev for METADATA_GENERIC_DEBUG. 1095 // 1096 // Assume the column is usually under 128, and always output the inlined-at 1097 // location (it's never more expensive than building an array size 1). 1098 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1099 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1106 GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv); 1107 } 1108 1109 unsigned NameAbbrev = 0; 1110 if (!M->named_metadata_empty()) { 1111 // Abbrev for METADATA_NAME. 1112 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1113 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1116 NameAbbrev = Stream.EmitAbbrev(Abbv); 1117 } 1118 1119 SmallVector<uint64_t, 64> Record; 1120 for (const Metadata *MD : MDs) { 1121 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1122 switch (N->getMetadataID()) { 1123 default: 1124 llvm_unreachable("Invalid MDNode subclass"); 1125 #define HANDLE_MDNODE_LEAF(CLASS) \ 1126 case Metadata::CLASS##Kind: \ 1127 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1128 continue; 1129 #include "llvm/IR/Metadata.def" 1130 } 1131 } 1132 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1133 WriteValueAsMetadata(MDC, VE, Stream, Record); 1134 continue; 1135 } 1136 const MDString *MDS = cast<MDString>(MD); 1137 // Code: [strchar x N] 1138 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1139 1140 // Emit the finished record. 1141 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1142 Record.clear(); 1143 } 1144 1145 // Write named metadata. 1146 for (const NamedMDNode &NMD : M->named_metadata()) { 1147 // Write name. 1148 StringRef Str = NMD.getName(); 1149 Record.append(Str.bytes_begin(), Str.bytes_end()); 1150 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1151 Record.clear(); 1152 1153 // Write named metadata operands. 1154 for (const MDNode *N : NMD.operands()) 1155 Record.push_back(VE.getMetadataID(N)); 1156 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1157 Record.clear(); 1158 } 1159 1160 Stream.ExitBlock(); 1161 } 1162 1163 static void WriteFunctionLocalMetadata(const Function &F, 1164 const ValueEnumerator &VE, 1165 BitstreamWriter &Stream) { 1166 bool StartedMetadataBlock = false; 1167 SmallVector<uint64_t, 64> Record; 1168 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1169 VE.getFunctionLocalMDs(); 1170 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1171 assert(MDs[i] && "Expected valid function-local metadata"); 1172 if (!StartedMetadataBlock) { 1173 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1174 StartedMetadataBlock = true; 1175 } 1176 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1177 } 1178 1179 if (StartedMetadataBlock) 1180 Stream.ExitBlock(); 1181 } 1182 1183 static void WriteMetadataAttachment(const Function &F, 1184 const ValueEnumerator &VE, 1185 BitstreamWriter &Stream) { 1186 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1187 1188 SmallVector<uint64_t, 64> Record; 1189 1190 // Write metadata attachments 1191 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1192 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1193 1194 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1195 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1196 I != E; ++I) { 1197 MDs.clear(); 1198 I->getAllMetadataOtherThanDebugLoc(MDs); 1199 1200 // If no metadata, ignore instruction. 1201 if (MDs.empty()) continue; 1202 1203 Record.push_back(VE.getInstructionID(I)); 1204 1205 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1206 Record.push_back(MDs[i].first); 1207 Record.push_back(VE.getMetadataID(MDs[i].second)); 1208 } 1209 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1210 Record.clear(); 1211 } 1212 1213 Stream.ExitBlock(); 1214 } 1215 1216 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1217 SmallVector<uint64_t, 64> Record; 1218 1219 // Write metadata kinds 1220 // METADATA_KIND - [n x [id, name]] 1221 SmallVector<StringRef, 8> Names; 1222 M->getMDKindNames(Names); 1223 1224 if (Names.empty()) return; 1225 1226 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1227 1228 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1229 Record.push_back(MDKindID); 1230 StringRef KName = Names[MDKindID]; 1231 Record.append(KName.begin(), KName.end()); 1232 1233 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1234 Record.clear(); 1235 } 1236 1237 Stream.ExitBlock(); 1238 } 1239 1240 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1241 if ((int64_t)V >= 0) 1242 Vals.push_back(V << 1); 1243 else 1244 Vals.push_back((-V << 1) | 1); 1245 } 1246 1247 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1248 const ValueEnumerator &VE, 1249 BitstreamWriter &Stream, bool isGlobal) { 1250 if (FirstVal == LastVal) return; 1251 1252 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1253 1254 unsigned AggregateAbbrev = 0; 1255 unsigned String8Abbrev = 0; 1256 unsigned CString7Abbrev = 0; 1257 unsigned CString6Abbrev = 0; 1258 // If this is a constant pool for the module, emit module-specific abbrevs. 1259 if (isGlobal) { 1260 // Abbrev for CST_CODE_AGGREGATE. 1261 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1262 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1265 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1266 1267 // Abbrev for CST_CODE_STRING. 1268 Abbv = new BitCodeAbbrev(); 1269 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1272 String8Abbrev = Stream.EmitAbbrev(Abbv); 1273 // Abbrev for CST_CODE_CSTRING. 1274 Abbv = new BitCodeAbbrev(); 1275 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1278 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1279 // Abbrev for CST_CODE_CSTRING. 1280 Abbv = new BitCodeAbbrev(); 1281 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1284 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1285 } 1286 1287 SmallVector<uint64_t, 64> Record; 1288 1289 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1290 Type *LastTy = nullptr; 1291 for (unsigned i = FirstVal; i != LastVal; ++i) { 1292 const Value *V = Vals[i].first; 1293 // If we need to switch types, do so now. 1294 if (V->getType() != LastTy) { 1295 LastTy = V->getType(); 1296 Record.push_back(VE.getTypeID(LastTy)); 1297 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1298 CONSTANTS_SETTYPE_ABBREV); 1299 Record.clear(); 1300 } 1301 1302 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1303 Record.push_back(unsigned(IA->hasSideEffects()) | 1304 unsigned(IA->isAlignStack()) << 1 | 1305 unsigned(IA->getDialect()&1) << 2); 1306 1307 // Add the asm string. 1308 const std::string &AsmStr = IA->getAsmString(); 1309 Record.push_back(AsmStr.size()); 1310 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 1311 Record.push_back(AsmStr[i]); 1312 1313 // Add the constraint string. 1314 const std::string &ConstraintStr = IA->getConstraintString(); 1315 Record.push_back(ConstraintStr.size()); 1316 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1317 Record.push_back(ConstraintStr[i]); 1318 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1319 Record.clear(); 1320 continue; 1321 } 1322 const Constant *C = cast<Constant>(V); 1323 unsigned Code = -1U; 1324 unsigned AbbrevToUse = 0; 1325 if (C->isNullValue()) { 1326 Code = bitc::CST_CODE_NULL; 1327 } else if (isa<UndefValue>(C)) { 1328 Code = bitc::CST_CODE_UNDEF; 1329 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1330 if (IV->getBitWidth() <= 64) { 1331 uint64_t V = IV->getSExtValue(); 1332 emitSignedInt64(Record, V); 1333 Code = bitc::CST_CODE_INTEGER; 1334 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1335 } else { // Wide integers, > 64 bits in size. 1336 // We have an arbitrary precision integer value to write whose 1337 // bit width is > 64. However, in canonical unsigned integer 1338 // format it is likely that the high bits are going to be zero. 1339 // So, we only write the number of active words. 1340 unsigned NWords = IV->getValue().getActiveWords(); 1341 const uint64_t *RawWords = IV->getValue().getRawData(); 1342 for (unsigned i = 0; i != NWords; ++i) { 1343 emitSignedInt64(Record, RawWords[i]); 1344 } 1345 Code = bitc::CST_CODE_WIDE_INTEGER; 1346 } 1347 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1348 Code = bitc::CST_CODE_FLOAT; 1349 Type *Ty = CFP->getType(); 1350 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1351 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1352 } else if (Ty->isX86_FP80Ty()) { 1353 // api needed to prevent premature destruction 1354 // bits are not in the same order as a normal i80 APInt, compensate. 1355 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1356 const uint64_t *p = api.getRawData(); 1357 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1358 Record.push_back(p[0] & 0xffffLL); 1359 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1360 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1361 const uint64_t *p = api.getRawData(); 1362 Record.push_back(p[0]); 1363 Record.push_back(p[1]); 1364 } else { 1365 assert (0 && "Unknown FP type!"); 1366 } 1367 } else if (isa<ConstantDataSequential>(C) && 1368 cast<ConstantDataSequential>(C)->isString()) { 1369 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1370 // Emit constant strings specially. 1371 unsigned NumElts = Str->getNumElements(); 1372 // If this is a null-terminated string, use the denser CSTRING encoding. 1373 if (Str->isCString()) { 1374 Code = bitc::CST_CODE_CSTRING; 1375 --NumElts; // Don't encode the null, which isn't allowed by char6. 1376 } else { 1377 Code = bitc::CST_CODE_STRING; 1378 AbbrevToUse = String8Abbrev; 1379 } 1380 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1381 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1382 for (unsigned i = 0; i != NumElts; ++i) { 1383 unsigned char V = Str->getElementAsInteger(i); 1384 Record.push_back(V); 1385 isCStr7 &= (V & 128) == 0; 1386 if (isCStrChar6) 1387 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1388 } 1389 1390 if (isCStrChar6) 1391 AbbrevToUse = CString6Abbrev; 1392 else if (isCStr7) 1393 AbbrevToUse = CString7Abbrev; 1394 } else if (const ConstantDataSequential *CDS = 1395 dyn_cast<ConstantDataSequential>(C)) { 1396 Code = bitc::CST_CODE_DATA; 1397 Type *EltTy = CDS->getType()->getElementType(); 1398 if (isa<IntegerType>(EltTy)) { 1399 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1400 Record.push_back(CDS->getElementAsInteger(i)); 1401 } else if (EltTy->isFloatTy()) { 1402 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1403 union { float F; uint32_t I; }; 1404 F = CDS->getElementAsFloat(i); 1405 Record.push_back(I); 1406 } 1407 } else { 1408 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1409 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1410 union { double F; uint64_t I; }; 1411 F = CDS->getElementAsDouble(i); 1412 Record.push_back(I); 1413 } 1414 } 1415 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1416 isa<ConstantVector>(C)) { 1417 Code = bitc::CST_CODE_AGGREGATE; 1418 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1419 Record.push_back(VE.getValueID(C->getOperand(i))); 1420 AbbrevToUse = AggregateAbbrev; 1421 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1422 switch (CE->getOpcode()) { 1423 default: 1424 if (Instruction::isCast(CE->getOpcode())) { 1425 Code = bitc::CST_CODE_CE_CAST; 1426 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1427 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1428 Record.push_back(VE.getValueID(C->getOperand(0))); 1429 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1430 } else { 1431 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1432 Code = bitc::CST_CODE_CE_BINOP; 1433 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1434 Record.push_back(VE.getValueID(C->getOperand(0))); 1435 Record.push_back(VE.getValueID(C->getOperand(1))); 1436 uint64_t Flags = GetOptimizationFlags(CE); 1437 if (Flags != 0) 1438 Record.push_back(Flags); 1439 } 1440 break; 1441 case Instruction::GetElementPtr: 1442 Code = bitc::CST_CODE_CE_GEP; 1443 if (cast<GEPOperator>(C)->isInBounds()) 1444 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1445 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1446 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1447 Record.push_back(VE.getValueID(C->getOperand(i))); 1448 } 1449 break; 1450 case Instruction::Select: 1451 Code = bitc::CST_CODE_CE_SELECT; 1452 Record.push_back(VE.getValueID(C->getOperand(0))); 1453 Record.push_back(VE.getValueID(C->getOperand(1))); 1454 Record.push_back(VE.getValueID(C->getOperand(2))); 1455 break; 1456 case Instruction::ExtractElement: 1457 Code = bitc::CST_CODE_CE_EXTRACTELT; 1458 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1459 Record.push_back(VE.getValueID(C->getOperand(0))); 1460 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1461 Record.push_back(VE.getValueID(C->getOperand(1))); 1462 break; 1463 case Instruction::InsertElement: 1464 Code = bitc::CST_CODE_CE_INSERTELT; 1465 Record.push_back(VE.getValueID(C->getOperand(0))); 1466 Record.push_back(VE.getValueID(C->getOperand(1))); 1467 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1468 Record.push_back(VE.getValueID(C->getOperand(2))); 1469 break; 1470 case Instruction::ShuffleVector: 1471 // If the return type and argument types are the same, this is a 1472 // standard shufflevector instruction. If the types are different, 1473 // then the shuffle is widening or truncating the input vectors, and 1474 // the argument type must also be encoded. 1475 if (C->getType() == C->getOperand(0)->getType()) { 1476 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1477 } else { 1478 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1479 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1480 } 1481 Record.push_back(VE.getValueID(C->getOperand(0))); 1482 Record.push_back(VE.getValueID(C->getOperand(1))); 1483 Record.push_back(VE.getValueID(C->getOperand(2))); 1484 break; 1485 case Instruction::ICmp: 1486 case Instruction::FCmp: 1487 Code = bitc::CST_CODE_CE_CMP; 1488 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1489 Record.push_back(VE.getValueID(C->getOperand(0))); 1490 Record.push_back(VE.getValueID(C->getOperand(1))); 1491 Record.push_back(CE->getPredicate()); 1492 break; 1493 } 1494 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1495 Code = bitc::CST_CODE_BLOCKADDRESS; 1496 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1497 Record.push_back(VE.getValueID(BA->getFunction())); 1498 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1499 } else { 1500 #ifndef NDEBUG 1501 C->dump(); 1502 #endif 1503 llvm_unreachable("Unknown constant!"); 1504 } 1505 Stream.EmitRecord(Code, Record, AbbrevToUse); 1506 Record.clear(); 1507 } 1508 1509 Stream.ExitBlock(); 1510 } 1511 1512 static void WriteModuleConstants(const ValueEnumerator &VE, 1513 BitstreamWriter &Stream) { 1514 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1515 1516 // Find the first constant to emit, which is the first non-globalvalue value. 1517 // We know globalvalues have been emitted by WriteModuleInfo. 1518 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1519 if (!isa<GlobalValue>(Vals[i].first)) { 1520 WriteConstants(i, Vals.size(), VE, Stream, true); 1521 return; 1522 } 1523 } 1524 } 1525 1526 /// PushValueAndType - The file has to encode both the value and type id for 1527 /// many values, because we need to know what type to create for forward 1528 /// references. However, most operands are not forward references, so this type 1529 /// field is not needed. 1530 /// 1531 /// This function adds V's value ID to Vals. If the value ID is higher than the 1532 /// instruction ID, then it is a forward reference, and it also includes the 1533 /// type ID. The value ID that is written is encoded relative to the InstID. 1534 static bool PushValueAndType(const Value *V, unsigned InstID, 1535 SmallVectorImpl<unsigned> &Vals, 1536 ValueEnumerator &VE) { 1537 unsigned ValID = VE.getValueID(V); 1538 // Make encoding relative to the InstID. 1539 Vals.push_back(InstID - ValID); 1540 if (ValID >= InstID) { 1541 Vals.push_back(VE.getTypeID(V->getType())); 1542 return true; 1543 } 1544 return false; 1545 } 1546 1547 /// pushValue - Like PushValueAndType, but where the type of the value is 1548 /// omitted (perhaps it was already encoded in an earlier operand). 1549 static void pushValue(const Value *V, unsigned InstID, 1550 SmallVectorImpl<unsigned> &Vals, 1551 ValueEnumerator &VE) { 1552 unsigned ValID = VE.getValueID(V); 1553 Vals.push_back(InstID - ValID); 1554 } 1555 1556 static void pushValueSigned(const Value *V, unsigned InstID, 1557 SmallVectorImpl<uint64_t> &Vals, 1558 ValueEnumerator &VE) { 1559 unsigned ValID = VE.getValueID(V); 1560 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1561 emitSignedInt64(Vals, diff); 1562 } 1563 1564 /// WriteInstruction - Emit an instruction to the specified stream. 1565 static void WriteInstruction(const Instruction &I, unsigned InstID, 1566 ValueEnumerator &VE, BitstreamWriter &Stream, 1567 SmallVectorImpl<unsigned> &Vals) { 1568 unsigned Code = 0; 1569 unsigned AbbrevToUse = 0; 1570 VE.setInstructionID(&I); 1571 switch (I.getOpcode()) { 1572 default: 1573 if (Instruction::isCast(I.getOpcode())) { 1574 Code = bitc::FUNC_CODE_INST_CAST; 1575 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1576 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1577 Vals.push_back(VE.getTypeID(I.getType())); 1578 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1579 } else { 1580 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1581 Code = bitc::FUNC_CODE_INST_BINOP; 1582 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1583 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1584 pushValue(I.getOperand(1), InstID, Vals, VE); 1585 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1586 uint64_t Flags = GetOptimizationFlags(&I); 1587 if (Flags != 0) { 1588 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1589 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1590 Vals.push_back(Flags); 1591 } 1592 } 1593 break; 1594 1595 case Instruction::GetElementPtr: 1596 Code = bitc::FUNC_CODE_INST_GEP; 1597 if (cast<GEPOperator>(&I)->isInBounds()) 1598 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1599 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1600 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1601 break; 1602 case Instruction::ExtractValue: { 1603 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1604 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1605 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1606 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1607 Vals.push_back(*i); 1608 break; 1609 } 1610 case Instruction::InsertValue: { 1611 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1612 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1613 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1614 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1615 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1616 Vals.push_back(*i); 1617 break; 1618 } 1619 case Instruction::Select: 1620 Code = bitc::FUNC_CODE_INST_VSELECT; 1621 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1622 pushValue(I.getOperand(2), InstID, Vals, VE); 1623 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1624 break; 1625 case Instruction::ExtractElement: 1626 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1627 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1628 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1629 break; 1630 case Instruction::InsertElement: 1631 Code = bitc::FUNC_CODE_INST_INSERTELT; 1632 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1633 pushValue(I.getOperand(1), InstID, Vals, VE); 1634 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1635 break; 1636 case Instruction::ShuffleVector: 1637 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1638 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1639 pushValue(I.getOperand(1), InstID, Vals, VE); 1640 pushValue(I.getOperand(2), InstID, Vals, VE); 1641 break; 1642 case Instruction::ICmp: 1643 case Instruction::FCmp: 1644 // compare returning Int1Ty or vector of Int1Ty 1645 Code = bitc::FUNC_CODE_INST_CMP2; 1646 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1647 pushValue(I.getOperand(1), InstID, Vals, VE); 1648 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1649 break; 1650 1651 case Instruction::Ret: 1652 { 1653 Code = bitc::FUNC_CODE_INST_RET; 1654 unsigned NumOperands = I.getNumOperands(); 1655 if (NumOperands == 0) 1656 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1657 else if (NumOperands == 1) { 1658 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1659 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1660 } else { 1661 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1662 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1663 } 1664 } 1665 break; 1666 case Instruction::Br: 1667 { 1668 Code = bitc::FUNC_CODE_INST_BR; 1669 const BranchInst &II = cast<BranchInst>(I); 1670 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1671 if (II.isConditional()) { 1672 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1673 pushValue(II.getCondition(), InstID, Vals, VE); 1674 } 1675 } 1676 break; 1677 case Instruction::Switch: 1678 { 1679 Code = bitc::FUNC_CODE_INST_SWITCH; 1680 const SwitchInst &SI = cast<SwitchInst>(I); 1681 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1682 pushValue(SI.getCondition(), InstID, Vals, VE); 1683 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1684 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1685 i != e; ++i) { 1686 Vals.push_back(VE.getValueID(i.getCaseValue())); 1687 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1688 } 1689 } 1690 break; 1691 case Instruction::IndirectBr: 1692 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1693 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1694 // Encode the address operand as relative, but not the basic blocks. 1695 pushValue(I.getOperand(0), InstID, Vals, VE); 1696 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1697 Vals.push_back(VE.getValueID(I.getOperand(i))); 1698 break; 1699 1700 case Instruction::Invoke: { 1701 const InvokeInst *II = cast<InvokeInst>(&I); 1702 const Value *Callee(II->getCalledValue()); 1703 PointerType *PTy = cast<PointerType>(Callee->getType()); 1704 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1705 Code = bitc::FUNC_CODE_INST_INVOKE; 1706 1707 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1708 Vals.push_back(II->getCallingConv()); 1709 Vals.push_back(VE.getValueID(II->getNormalDest())); 1710 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1711 PushValueAndType(Callee, InstID, Vals, VE); 1712 1713 // Emit value #'s for the fixed parameters. 1714 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1715 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1716 1717 // Emit type/value pairs for varargs params. 1718 if (FTy->isVarArg()) { 1719 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1720 i != e; ++i) 1721 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1722 } 1723 break; 1724 } 1725 case Instruction::Resume: 1726 Code = bitc::FUNC_CODE_INST_RESUME; 1727 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1728 break; 1729 case Instruction::Unreachable: 1730 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1731 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1732 break; 1733 1734 case Instruction::PHI: { 1735 const PHINode &PN = cast<PHINode>(I); 1736 Code = bitc::FUNC_CODE_INST_PHI; 1737 // With the newer instruction encoding, forward references could give 1738 // negative valued IDs. This is most common for PHIs, so we use 1739 // signed VBRs. 1740 SmallVector<uint64_t, 128> Vals64; 1741 Vals64.push_back(VE.getTypeID(PN.getType())); 1742 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1743 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1744 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1745 } 1746 // Emit a Vals64 vector and exit. 1747 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1748 Vals64.clear(); 1749 return; 1750 } 1751 1752 case Instruction::LandingPad: { 1753 const LandingPadInst &LP = cast<LandingPadInst>(I); 1754 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1755 Vals.push_back(VE.getTypeID(LP.getType())); 1756 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1757 Vals.push_back(LP.isCleanup()); 1758 Vals.push_back(LP.getNumClauses()); 1759 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1760 if (LP.isCatch(I)) 1761 Vals.push_back(LandingPadInst::Catch); 1762 else 1763 Vals.push_back(LandingPadInst::Filter); 1764 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1765 } 1766 break; 1767 } 1768 1769 case Instruction::Alloca: { 1770 Code = bitc::FUNC_CODE_INST_ALLOCA; 1771 Vals.push_back(VE.getTypeID(I.getType())); 1772 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1773 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1774 const AllocaInst &AI = cast<AllocaInst>(I); 1775 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1776 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1777 "not enough bits for maximum alignment"); 1778 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1779 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1780 Vals.push_back(AlignRecord); 1781 break; 1782 } 1783 1784 case Instruction::Load: 1785 if (cast<LoadInst>(I).isAtomic()) { 1786 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1787 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1788 } else { 1789 Code = bitc::FUNC_CODE_INST_LOAD; 1790 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1791 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1792 } 1793 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1794 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1795 if (cast<LoadInst>(I).isAtomic()) { 1796 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1797 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1798 } 1799 break; 1800 case Instruction::Store: 1801 if (cast<StoreInst>(I).isAtomic()) 1802 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1803 else 1804 Code = bitc::FUNC_CODE_INST_STORE; 1805 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1806 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1807 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1808 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1809 if (cast<StoreInst>(I).isAtomic()) { 1810 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1811 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1812 } 1813 break; 1814 case Instruction::AtomicCmpXchg: 1815 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1816 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1817 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1818 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1819 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1820 Vals.push_back(GetEncodedOrdering( 1821 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1822 Vals.push_back(GetEncodedSynchScope( 1823 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1824 Vals.push_back(GetEncodedOrdering( 1825 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1826 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1827 break; 1828 case Instruction::AtomicRMW: 1829 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1830 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1831 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1832 Vals.push_back(GetEncodedRMWOperation( 1833 cast<AtomicRMWInst>(I).getOperation())); 1834 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1835 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1836 Vals.push_back(GetEncodedSynchScope( 1837 cast<AtomicRMWInst>(I).getSynchScope())); 1838 break; 1839 case Instruction::Fence: 1840 Code = bitc::FUNC_CODE_INST_FENCE; 1841 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1842 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1843 break; 1844 case Instruction::Call: { 1845 const CallInst &CI = cast<CallInst>(I); 1846 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1847 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1848 1849 Code = bitc::FUNC_CODE_INST_CALL; 1850 1851 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1852 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1853 unsigned(CI.isMustTailCall()) << 14); 1854 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1855 1856 // Emit value #'s for the fixed parameters. 1857 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1858 // Check for labels (can happen with asm labels). 1859 if (FTy->getParamType(i)->isLabelTy()) 1860 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1861 else 1862 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1863 } 1864 1865 // Emit type/value pairs for varargs params. 1866 if (FTy->isVarArg()) { 1867 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1868 i != e; ++i) 1869 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1870 } 1871 break; 1872 } 1873 case Instruction::VAArg: 1874 Code = bitc::FUNC_CODE_INST_VAARG; 1875 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1876 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1877 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1878 break; 1879 } 1880 1881 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1882 Vals.clear(); 1883 } 1884 1885 // Emit names for globals/functions etc. 1886 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1887 const ValueEnumerator &VE, 1888 BitstreamWriter &Stream) { 1889 if (VST.empty()) return; 1890 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1891 1892 // FIXME: Set up the abbrev, we know how many values there are! 1893 // FIXME: We know if the type names can use 7-bit ascii. 1894 SmallVector<unsigned, 64> NameVals; 1895 1896 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1897 SI != SE; ++SI) { 1898 1899 const ValueName &Name = *SI; 1900 1901 // Figure out the encoding to use for the name. 1902 bool is7Bit = true; 1903 bool isChar6 = true; 1904 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1905 C != E; ++C) { 1906 if (isChar6) 1907 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1908 if ((unsigned char)*C & 128) { 1909 is7Bit = false; 1910 break; // don't bother scanning the rest. 1911 } 1912 } 1913 1914 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1915 1916 // VST_ENTRY: [valueid, namechar x N] 1917 // VST_BBENTRY: [bbid, namechar x N] 1918 unsigned Code; 1919 if (isa<BasicBlock>(SI->getValue())) { 1920 Code = bitc::VST_CODE_BBENTRY; 1921 if (isChar6) 1922 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1923 } else { 1924 Code = bitc::VST_CODE_ENTRY; 1925 if (isChar6) 1926 AbbrevToUse = VST_ENTRY_6_ABBREV; 1927 else if (is7Bit) 1928 AbbrevToUse = VST_ENTRY_7_ABBREV; 1929 } 1930 1931 NameVals.push_back(VE.getValueID(SI->getValue())); 1932 for (const char *P = Name.getKeyData(), 1933 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1934 NameVals.push_back((unsigned char)*P); 1935 1936 // Emit the finished record. 1937 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1938 NameVals.clear(); 1939 } 1940 Stream.ExitBlock(); 1941 } 1942 1943 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1944 BitstreamWriter &Stream) { 1945 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1946 unsigned Code; 1947 if (isa<BasicBlock>(Order.V)) 1948 Code = bitc::USELIST_CODE_BB; 1949 else 1950 Code = bitc::USELIST_CODE_DEFAULT; 1951 1952 SmallVector<uint64_t, 64> Record; 1953 for (unsigned I : Order.Shuffle) 1954 Record.push_back(I); 1955 Record.push_back(VE.getValueID(Order.V)); 1956 Stream.EmitRecord(Code, Record); 1957 } 1958 1959 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1960 BitstreamWriter &Stream) { 1961 auto hasMore = [&]() { 1962 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1963 }; 1964 if (!hasMore()) 1965 // Nothing to do. 1966 return; 1967 1968 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1969 while (hasMore()) { 1970 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1971 VE.UseListOrders.pop_back(); 1972 } 1973 Stream.ExitBlock(); 1974 } 1975 1976 /// WriteFunction - Emit a function body to the module stream. 1977 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1978 BitstreamWriter &Stream) { 1979 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1980 VE.incorporateFunction(F); 1981 1982 SmallVector<unsigned, 64> Vals; 1983 1984 // Emit the number of basic blocks, so the reader can create them ahead of 1985 // time. 1986 Vals.push_back(VE.getBasicBlocks().size()); 1987 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1988 Vals.clear(); 1989 1990 // If there are function-local constants, emit them now. 1991 unsigned CstStart, CstEnd; 1992 VE.getFunctionConstantRange(CstStart, CstEnd); 1993 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1994 1995 // If there is function-local metadata, emit it now. 1996 WriteFunctionLocalMetadata(F, VE, Stream); 1997 1998 // Keep a running idea of what the instruction ID is. 1999 unsigned InstID = CstEnd; 2000 2001 bool NeedsMetadataAttachment = false; 2002 2003 DebugLoc LastDL; 2004 2005 // Finally, emit all the instructions, in order. 2006 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2007 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2008 I != E; ++I) { 2009 WriteInstruction(*I, InstID, VE, Stream, Vals); 2010 2011 if (!I->getType()->isVoidTy()) 2012 ++InstID; 2013 2014 // If the instruction has metadata, write a metadata attachment later. 2015 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2016 2017 // If the instruction has a debug location, emit it. 2018 DebugLoc DL = I->getDebugLoc(); 2019 if (DL.isUnknown()) { 2020 // nothing todo. 2021 } else if (DL == LastDL) { 2022 // Just repeat the same debug loc as last time. 2023 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2024 } else { 2025 MDNode *Scope, *IA; 2026 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 2027 assert(Scope && "Expected valid scope"); 2028 2029 Vals.push_back(DL.getLine()); 2030 Vals.push_back(DL.getCol()); 2031 Vals.push_back(VE.getMetadataOrNullID(Scope)); 2032 Vals.push_back(VE.getMetadataOrNullID(IA)); 2033 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2034 Vals.clear(); 2035 2036 LastDL = DL; 2037 } 2038 } 2039 2040 // Emit names for all the instructions etc. 2041 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2042 2043 if (NeedsMetadataAttachment) 2044 WriteMetadataAttachment(F, VE, Stream); 2045 if (shouldPreserveBitcodeUseListOrder()) 2046 WriteUseListBlock(&F, VE, Stream); 2047 VE.purgeFunction(); 2048 Stream.ExitBlock(); 2049 } 2050 2051 // Emit blockinfo, which defines the standard abbreviations etc. 2052 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2053 // We only want to emit block info records for blocks that have multiple 2054 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2055 // Other blocks can define their abbrevs inline. 2056 Stream.EnterBlockInfoBlock(2); 2057 2058 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2059 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2064 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2065 Abbv) != VST_ENTRY_8_ABBREV) 2066 llvm_unreachable("Unexpected abbrev ordering!"); 2067 } 2068 2069 { // 7-bit fixed width VST_ENTRY strings. 2070 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2071 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2075 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2076 Abbv) != VST_ENTRY_7_ABBREV) 2077 llvm_unreachable("Unexpected abbrev ordering!"); 2078 } 2079 { // 6-bit char6 VST_ENTRY strings. 2080 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2081 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2085 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2086 Abbv) != VST_ENTRY_6_ABBREV) 2087 llvm_unreachable("Unexpected abbrev ordering!"); 2088 } 2089 { // 6-bit char6 VST_BBENTRY strings. 2090 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2091 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2095 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2096 Abbv) != VST_BBENTRY_6_ABBREV) 2097 llvm_unreachable("Unexpected abbrev ordering!"); 2098 } 2099 2100 2101 2102 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2103 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2104 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2106 Log2_32_Ceil(VE.getTypes().size()+1))); 2107 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2108 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2109 llvm_unreachable("Unexpected abbrev ordering!"); 2110 } 2111 2112 { // INTEGER abbrev for CONSTANTS_BLOCK. 2113 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2114 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2116 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2117 Abbv) != CONSTANTS_INTEGER_ABBREV) 2118 llvm_unreachable("Unexpected abbrev ordering!"); 2119 } 2120 2121 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2122 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2123 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2126 Log2_32_Ceil(VE.getTypes().size()+1))); 2127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2128 2129 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2130 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2131 llvm_unreachable("Unexpected abbrev ordering!"); 2132 } 2133 { // NULL abbrev for CONSTANTS_BLOCK. 2134 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2135 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2136 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2137 Abbv) != CONSTANTS_NULL_Abbrev) 2138 llvm_unreachable("Unexpected abbrev ordering!"); 2139 } 2140 2141 // FIXME: This should only use space for first class types! 2142 2143 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2144 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2145 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2149 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2150 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2151 llvm_unreachable("Unexpected abbrev ordering!"); 2152 } 2153 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2154 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2155 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2159 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2160 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2161 llvm_unreachable("Unexpected abbrev ordering!"); 2162 } 2163 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2164 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2165 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2170 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2171 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2172 llvm_unreachable("Unexpected abbrev ordering!"); 2173 } 2174 { // INST_CAST abbrev for FUNCTION_BLOCK. 2175 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2176 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2179 Log2_32_Ceil(VE.getTypes().size()+1))); 2180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2181 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2182 Abbv) != FUNCTION_INST_CAST_ABBREV) 2183 llvm_unreachable("Unexpected abbrev ordering!"); 2184 } 2185 2186 { // INST_RET abbrev for FUNCTION_BLOCK. 2187 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2188 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2189 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2190 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2191 llvm_unreachable("Unexpected abbrev ordering!"); 2192 } 2193 { // INST_RET abbrev for FUNCTION_BLOCK. 2194 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2195 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2197 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2198 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2199 llvm_unreachable("Unexpected abbrev ordering!"); 2200 } 2201 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2202 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2203 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2204 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2205 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2206 llvm_unreachable("Unexpected abbrev ordering!"); 2207 } 2208 2209 Stream.ExitBlock(); 2210 } 2211 2212 /// WriteModule - Emit the specified module to the bitstream. 2213 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 2214 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2215 2216 SmallVector<unsigned, 1> Vals; 2217 unsigned CurVersion = 1; 2218 Vals.push_back(CurVersion); 2219 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2220 2221 // Analyze the module, enumerating globals, functions, etc. 2222 ValueEnumerator VE(*M); 2223 2224 // Emit blockinfo, which defines the standard abbreviations etc. 2225 WriteBlockInfo(VE, Stream); 2226 2227 // Emit information about attribute groups. 2228 WriteAttributeGroupTable(VE, Stream); 2229 2230 // Emit information about parameter attributes. 2231 WriteAttributeTable(VE, Stream); 2232 2233 // Emit information describing all of the types in the module. 2234 WriteTypeTable(VE, Stream); 2235 2236 writeComdats(VE, Stream); 2237 2238 // Emit top-level description of module, including target triple, inline asm, 2239 // descriptors for global variables, and function prototype info. 2240 WriteModuleInfo(M, VE, Stream); 2241 2242 // Emit constants. 2243 WriteModuleConstants(VE, Stream); 2244 2245 // Emit metadata. 2246 WriteModuleMetadata(M, VE, Stream); 2247 2248 // Emit metadata. 2249 WriteModuleMetadataStore(M, Stream); 2250 2251 // Emit names for globals/functions etc. 2252 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2253 2254 // Emit module-level use-lists. 2255 if (shouldPreserveBitcodeUseListOrder()) 2256 WriteUseListBlock(nullptr, VE, Stream); 2257 2258 // Emit function bodies. 2259 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2260 if (!F->isDeclaration()) 2261 WriteFunction(*F, VE, Stream); 2262 2263 Stream.ExitBlock(); 2264 } 2265 2266 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2267 /// header and trailer to make it compatible with the system archiver. To do 2268 /// this we emit the following header, and then emit a trailer that pads the 2269 /// file out to be a multiple of 16 bytes. 2270 /// 2271 /// struct bc_header { 2272 /// uint32_t Magic; // 0x0B17C0DE 2273 /// uint32_t Version; // Version, currently always 0. 2274 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2275 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2276 /// uint32_t CPUType; // CPU specifier. 2277 /// ... potentially more later ... 2278 /// }; 2279 enum { 2280 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2281 DarwinBCHeaderSize = 5*4 2282 }; 2283 2284 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2285 uint32_t &Position) { 2286 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2287 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2288 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2289 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2290 Position += 4; 2291 } 2292 2293 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2294 const Triple &TT) { 2295 unsigned CPUType = ~0U; 2296 2297 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2298 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2299 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2300 // specific constants here because they are implicitly part of the Darwin ABI. 2301 enum { 2302 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2303 DARWIN_CPU_TYPE_X86 = 7, 2304 DARWIN_CPU_TYPE_ARM = 12, 2305 DARWIN_CPU_TYPE_POWERPC = 18 2306 }; 2307 2308 Triple::ArchType Arch = TT.getArch(); 2309 if (Arch == Triple::x86_64) 2310 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2311 else if (Arch == Triple::x86) 2312 CPUType = DARWIN_CPU_TYPE_X86; 2313 else if (Arch == Triple::ppc) 2314 CPUType = DARWIN_CPU_TYPE_POWERPC; 2315 else if (Arch == Triple::ppc64) 2316 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2317 else if (Arch == Triple::arm || Arch == Triple::thumb) 2318 CPUType = DARWIN_CPU_TYPE_ARM; 2319 2320 // Traditional Bitcode starts after header. 2321 assert(Buffer.size() >= DarwinBCHeaderSize && 2322 "Expected header size to be reserved"); 2323 unsigned BCOffset = DarwinBCHeaderSize; 2324 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2325 2326 // Write the magic and version. 2327 unsigned Position = 0; 2328 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2329 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2330 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2331 WriteInt32ToBuffer(BCSize , Buffer, Position); 2332 WriteInt32ToBuffer(CPUType , Buffer, Position); 2333 2334 // If the file is not a multiple of 16 bytes, insert dummy padding. 2335 while (Buffer.size() & 15) 2336 Buffer.push_back(0); 2337 } 2338 2339 /// WriteBitcodeToFile - Write the specified module to the specified output 2340 /// stream. 2341 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2342 SmallVector<char, 0> Buffer; 2343 Buffer.reserve(256*1024); 2344 2345 // If this is darwin or another generic macho target, reserve space for the 2346 // header. 2347 Triple TT(M->getTargetTriple()); 2348 if (TT.isOSDarwin()) 2349 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2350 2351 // Emit the module into the buffer. 2352 { 2353 BitstreamWriter Stream(Buffer); 2354 2355 // Emit the file header. 2356 Stream.Emit((unsigned)'B', 8); 2357 Stream.Emit((unsigned)'C', 8); 2358 Stream.Emit(0x0, 4); 2359 Stream.Emit(0xC, 4); 2360 Stream.Emit(0xE, 4); 2361 Stream.Emit(0xD, 4); 2362 2363 // Emit the module. 2364 WriteModule(M, Stream); 2365 } 2366 2367 if (TT.isOSDarwin()) 2368 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2369 2370 // Write the generated bitstream to "Out". 2371 Out.write((char*)&Buffer.front(), Buffer.size()); 2372 } 2373