1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitstream/BitCodes.h" 28 #include "llvm/Bitstream/BitstreamWriter.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev, 218 unsigned FSModVTableRefsAbbrev); 219 220 void assignValueId(GlobalValue::GUID ValGUID) { 221 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 222 } 223 224 unsigned getValueId(GlobalValue::GUID ValGUID) { 225 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 226 // Expect that any GUID value had a value Id assigned by an 227 // earlier call to assignValueId. 228 assert(VMI != GUIDToValueIdMap.end() && 229 "GUID does not have assigned value Id"); 230 return VMI->second; 231 } 232 233 // Helper to get the valueId for the type of value recorded in VI. 234 unsigned getValueId(ValueInfo VI) { 235 if (!VI.haveGVs() || !VI.getValue()) 236 return getValueId(VI.getGUID()); 237 return VE.getValueID(VI.getValue()); 238 } 239 240 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 241 }; 242 243 /// Class to manage the bitcode writing for a module. 244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 245 /// Pointer to the buffer allocated by caller for bitcode writing. 246 const SmallVectorImpl<char> &Buffer; 247 248 /// True if a module hash record should be written. 249 bool GenerateHash; 250 251 /// If non-null, when GenerateHash is true, the resulting hash is written 252 /// into ModHash. 253 ModuleHash *ModHash; 254 255 SHA1 Hasher; 256 257 /// The start bit of the identification block. 258 uint64_t BitcodeStartBit; 259 260 public: 261 /// Constructs a ModuleBitcodeWriter object for the given Module, 262 /// writing to the provided \p Buffer. 263 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 264 StringTableBuilder &StrtabBuilder, 265 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 266 const ModuleSummaryIndex *Index, bool GenerateHash, 267 ModuleHash *ModHash = nullptr) 268 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 269 ShouldPreserveUseListOrder, Index), 270 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 271 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 272 273 /// Emit the current module to the bitstream. 274 void write(); 275 276 private: 277 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 278 279 size_t addToStrtab(StringRef Str); 280 281 void writeAttributeGroupTable(); 282 void writeAttributeTable(); 283 void writeTypeTable(); 284 void writeComdats(); 285 void writeValueSymbolTableForwardDecl(); 286 void writeModuleInfo(); 287 void writeValueAsMetadata(const ValueAsMetadata *MD, 288 SmallVectorImpl<uint64_t> &Record); 289 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 290 unsigned Abbrev); 291 unsigned createDILocationAbbrev(); 292 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned &Abbrev); 294 unsigned createGenericDINodeAbbrev(); 295 void writeGenericDINode(const GenericDINode *N, 296 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 297 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned Abbrev); 299 void writeDIEnumerator(const DIEnumerator *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 301 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIDerivedType(const DIDerivedType *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDICompositeType(const DICompositeType *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDISubroutineType(const DISubroutineType *N, 308 SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDICompileUnit(const DICompileUnit *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDISubprogram(const DISubprogram *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDILexicalBlock(const DILexicalBlock *N, 317 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 318 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICommonBlock(const DICommonBlock *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 335 SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIGlobalVariable(const DIGlobalVariable *N, 338 SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDILocalVariable(const DILocalVariable *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILabel(const DILabel *N, 343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 344 void writeDIExpression(const DIExpression *N, 345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIObjCProperty(const DIObjCProperty *N, 350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 351 void writeDIImportedEntity(const DIImportedEntity *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 unsigned createNamedMetadataAbbrev(); 355 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 356 unsigned createMetadataStringsAbbrev(); 357 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 358 SmallVectorImpl<uint64_t> &Record); 359 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 360 SmallVectorImpl<uint64_t> &Record, 361 std::vector<unsigned> *MDAbbrevs = nullptr, 362 std::vector<uint64_t> *IndexPos = nullptr); 363 void writeModuleMetadata(); 364 void writeFunctionMetadata(const Function &F); 365 void writeFunctionMetadataAttachment(const Function &F); 366 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 367 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 368 const GlobalObject &GO); 369 void writeModuleMetadataKinds(); 370 void writeOperandBundleTags(); 371 void writeSyncScopeNames(); 372 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 373 void writeModuleConstants(); 374 bool pushValueAndType(const Value *V, unsigned InstID, 375 SmallVectorImpl<unsigned> &Vals); 376 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 377 void pushValue(const Value *V, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void pushValueSigned(const Value *V, unsigned InstID, 380 SmallVectorImpl<uint64_t> &Vals); 381 void writeInstruction(const Instruction &I, unsigned InstID, 382 SmallVectorImpl<unsigned> &Vals); 383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 384 void writeGlobalValueSymbolTable( 385 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 386 void writeUseList(UseListOrder &&Order); 387 void writeUseListBlock(const Function *F); 388 void 389 writeFunction(const Function &F, 390 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 391 void writeBlockInfo(); 392 void writeModuleHash(size_t BlockStartPos); 393 394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 395 return unsigned(SSID); 396 } 397 }; 398 399 /// Class to manage the bitcode writing for a combined index. 400 class IndexBitcodeWriter : public BitcodeWriterBase { 401 /// The combined index to write to bitcode. 402 const ModuleSummaryIndex &Index; 403 404 /// When writing a subset of the index for distributed backends, client 405 /// provides a map of modules to the corresponding GUIDs/summaries to write. 406 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 407 408 /// Map that holds the correspondence between the GUID used in the combined 409 /// index and a value id generated by this class to use in references. 410 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 411 412 /// Tracks the last value id recorded in the GUIDToValueMap. 413 unsigned GlobalValueId = 0; 414 415 public: 416 /// Constructs a IndexBitcodeWriter object for the given combined index, 417 /// writing to the provided \p Buffer. When writing a subset of the index 418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 419 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 420 const ModuleSummaryIndex &Index, 421 const std::map<std::string, GVSummaryMapTy> 422 *ModuleToSummariesForIndex = nullptr) 423 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 424 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 425 // Assign unique value ids to all summaries to be written, for use 426 // in writing out the call graph edges. Save the mapping from GUID 427 // to the new global value id to use when writing those edges, which 428 // are currently saved in the index in terms of GUID. 429 forEachSummary([&](GVInfo I, bool) { 430 GUIDToValueIdMap[I.first] = ++GlobalValueId; 431 }); 432 } 433 434 /// The below iterator returns the GUID and associated summary. 435 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 436 437 /// Calls the callback for each value GUID and summary to be written to 438 /// bitcode. This hides the details of whether they are being pulled from the 439 /// entire index or just those in a provided ModuleToSummariesForIndex map. 440 template<typename Functor> 441 void forEachSummary(Functor Callback) { 442 if (ModuleToSummariesForIndex) { 443 for (auto &M : *ModuleToSummariesForIndex) 444 for (auto &Summary : M.second) { 445 Callback(Summary, false); 446 // Ensure aliasee is handled, e.g. for assigning a valueId, 447 // even if we are not importing the aliasee directly (the 448 // imported alias will contain a copy of aliasee). 449 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 450 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 451 } 452 } else { 453 for (auto &Summaries : Index) 454 for (auto &Summary : Summaries.second.SummaryList) 455 Callback({Summaries.first, Summary.get()}, false); 456 } 457 } 458 459 /// Calls the callback for each entry in the modulePaths StringMap that 460 /// should be written to the module path string table. This hides the details 461 /// of whether they are being pulled from the entire index or just those in a 462 /// provided ModuleToSummariesForIndex map. 463 template <typename Functor> void forEachModule(Functor Callback) { 464 if (ModuleToSummariesForIndex) { 465 for (const auto &M : *ModuleToSummariesForIndex) { 466 const auto &MPI = Index.modulePaths().find(M.first); 467 if (MPI == Index.modulePaths().end()) { 468 // This should only happen if the bitcode file was empty, in which 469 // case we shouldn't be importing (the ModuleToSummariesForIndex 470 // would only include the module we are writing and index for). 471 assert(ModuleToSummariesForIndex->size() == 1); 472 continue; 473 } 474 Callback(*MPI); 475 } 476 } else { 477 for (const auto &MPSE : Index.modulePaths()) 478 Callback(MPSE); 479 } 480 } 481 482 /// Main entry point for writing a combined index to bitcode. 483 void write(); 484 485 private: 486 void writeModStrings(); 487 void writeCombinedGlobalValueSummary(); 488 489 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 490 auto VMI = GUIDToValueIdMap.find(ValGUID); 491 if (VMI == GUIDToValueIdMap.end()) 492 return None; 493 return VMI->second; 494 } 495 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 499 } // end anonymous namespace 500 501 static unsigned getEncodedCastOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown cast instruction!"); 504 case Instruction::Trunc : return bitc::CAST_TRUNC; 505 case Instruction::ZExt : return bitc::CAST_ZEXT; 506 case Instruction::SExt : return bitc::CAST_SEXT; 507 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 508 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 509 case Instruction::UIToFP : return bitc::CAST_UITOFP; 510 case Instruction::SIToFP : return bitc::CAST_SITOFP; 511 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 512 case Instruction::FPExt : return bitc::CAST_FPEXT; 513 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 514 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 515 case Instruction::BitCast : return bitc::CAST_BITCAST; 516 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 517 } 518 } 519 520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 521 switch (Opcode) { 522 default: llvm_unreachable("Unknown binary instruction!"); 523 case Instruction::FNeg: return bitc::UNOP_NEG; 524 } 525 } 526 527 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 528 switch (Opcode) { 529 default: llvm_unreachable("Unknown binary instruction!"); 530 case Instruction::Add: 531 case Instruction::FAdd: return bitc::BINOP_ADD; 532 case Instruction::Sub: 533 case Instruction::FSub: return bitc::BINOP_SUB; 534 case Instruction::Mul: 535 case Instruction::FMul: return bitc::BINOP_MUL; 536 case Instruction::UDiv: return bitc::BINOP_UDIV; 537 case Instruction::FDiv: 538 case Instruction::SDiv: return bitc::BINOP_SDIV; 539 case Instruction::URem: return bitc::BINOP_UREM; 540 case Instruction::FRem: 541 case Instruction::SRem: return bitc::BINOP_SREM; 542 case Instruction::Shl: return bitc::BINOP_SHL; 543 case Instruction::LShr: return bitc::BINOP_LSHR; 544 case Instruction::AShr: return bitc::BINOP_ASHR; 545 case Instruction::And: return bitc::BINOP_AND; 546 case Instruction::Or: return bitc::BINOP_OR; 547 case Instruction::Xor: return bitc::BINOP_XOR; 548 } 549 } 550 551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 552 switch (Op) { 553 default: llvm_unreachable("Unknown RMW operation!"); 554 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 555 case AtomicRMWInst::Add: return bitc::RMW_ADD; 556 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 557 case AtomicRMWInst::And: return bitc::RMW_AND; 558 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 559 case AtomicRMWInst::Or: return bitc::RMW_OR; 560 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 561 case AtomicRMWInst::Max: return bitc::RMW_MAX; 562 case AtomicRMWInst::Min: return bitc::RMW_MIN; 563 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 564 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 565 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 566 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 567 } 568 } 569 570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 571 switch (Ordering) { 572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 579 } 580 llvm_unreachable("Invalid ordering"); 581 } 582 583 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 584 StringRef Str, unsigned AbbrevToUse) { 585 SmallVector<unsigned, 64> Vals; 586 587 // Code: [strchar x N] 588 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 589 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 590 AbbrevToUse = 0; 591 Vals.push_back(Str[i]); 592 } 593 594 // Emit the finished record. 595 Stream.EmitRecord(Code, Vals, AbbrevToUse); 596 } 597 598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 599 switch (Kind) { 600 case Attribute::Alignment: 601 return bitc::ATTR_KIND_ALIGNMENT; 602 case Attribute::AllocSize: 603 return bitc::ATTR_KIND_ALLOC_SIZE; 604 case Attribute::AlwaysInline: 605 return bitc::ATTR_KIND_ALWAYS_INLINE; 606 case Attribute::ArgMemOnly: 607 return bitc::ATTR_KIND_ARGMEMONLY; 608 case Attribute::Builtin: 609 return bitc::ATTR_KIND_BUILTIN; 610 case Attribute::ByVal: 611 return bitc::ATTR_KIND_BY_VAL; 612 case Attribute::Convergent: 613 return bitc::ATTR_KIND_CONVERGENT; 614 case Attribute::InAlloca: 615 return bitc::ATTR_KIND_IN_ALLOCA; 616 case Attribute::Cold: 617 return bitc::ATTR_KIND_COLD; 618 case Attribute::InaccessibleMemOnly: 619 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 620 case Attribute::InaccessibleMemOrArgMemOnly: 621 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 622 case Attribute::InlineHint: 623 return bitc::ATTR_KIND_INLINE_HINT; 624 case Attribute::InReg: 625 return bitc::ATTR_KIND_IN_REG; 626 case Attribute::JumpTable: 627 return bitc::ATTR_KIND_JUMP_TABLE; 628 case Attribute::MinSize: 629 return bitc::ATTR_KIND_MIN_SIZE; 630 case Attribute::Naked: 631 return bitc::ATTR_KIND_NAKED; 632 case Attribute::Nest: 633 return bitc::ATTR_KIND_NEST; 634 case Attribute::NoAlias: 635 return bitc::ATTR_KIND_NO_ALIAS; 636 case Attribute::NoBuiltin: 637 return bitc::ATTR_KIND_NO_BUILTIN; 638 case Attribute::NoCapture: 639 return bitc::ATTR_KIND_NO_CAPTURE; 640 case Attribute::NoDuplicate: 641 return bitc::ATTR_KIND_NO_DUPLICATE; 642 case Attribute::NoFree: 643 return bitc::ATTR_KIND_NOFREE; 644 case Attribute::NoImplicitFloat: 645 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 646 case Attribute::NoInline: 647 return bitc::ATTR_KIND_NO_INLINE; 648 case Attribute::NoRecurse: 649 return bitc::ATTR_KIND_NO_RECURSE; 650 case Attribute::NonLazyBind: 651 return bitc::ATTR_KIND_NON_LAZY_BIND; 652 case Attribute::NonNull: 653 return bitc::ATTR_KIND_NON_NULL; 654 case Attribute::Dereferenceable: 655 return bitc::ATTR_KIND_DEREFERENCEABLE; 656 case Attribute::DereferenceableOrNull: 657 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 658 case Attribute::NoRedZone: 659 return bitc::ATTR_KIND_NO_RED_ZONE; 660 case Attribute::NoReturn: 661 return bitc::ATTR_KIND_NO_RETURN; 662 case Attribute::NoSync: 663 return bitc::ATTR_KIND_NOSYNC; 664 case Attribute::NoCfCheck: 665 return bitc::ATTR_KIND_NOCF_CHECK; 666 case Attribute::NoUnwind: 667 return bitc::ATTR_KIND_NO_UNWIND; 668 case Attribute::OptForFuzzing: 669 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 670 case Attribute::OptimizeForSize: 671 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 672 case Attribute::OptimizeNone: 673 return bitc::ATTR_KIND_OPTIMIZE_NONE; 674 case Attribute::ReadNone: 675 return bitc::ATTR_KIND_READ_NONE; 676 case Attribute::ReadOnly: 677 return bitc::ATTR_KIND_READ_ONLY; 678 case Attribute::Returned: 679 return bitc::ATTR_KIND_RETURNED; 680 case Attribute::ReturnsTwice: 681 return bitc::ATTR_KIND_RETURNS_TWICE; 682 case Attribute::SExt: 683 return bitc::ATTR_KIND_S_EXT; 684 case Attribute::Speculatable: 685 return bitc::ATTR_KIND_SPECULATABLE; 686 case Attribute::StackAlignment: 687 return bitc::ATTR_KIND_STACK_ALIGNMENT; 688 case Attribute::StackProtect: 689 return bitc::ATTR_KIND_STACK_PROTECT; 690 case Attribute::StackProtectReq: 691 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 692 case Attribute::StackProtectStrong: 693 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 694 case Attribute::SafeStack: 695 return bitc::ATTR_KIND_SAFESTACK; 696 case Attribute::ShadowCallStack: 697 return bitc::ATTR_KIND_SHADOWCALLSTACK; 698 case Attribute::StrictFP: 699 return bitc::ATTR_KIND_STRICT_FP; 700 case Attribute::StructRet: 701 return bitc::ATTR_KIND_STRUCT_RET; 702 case Attribute::SanitizeAddress: 703 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 704 case Attribute::SanitizeHWAddress: 705 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 706 case Attribute::SanitizeThread: 707 return bitc::ATTR_KIND_SANITIZE_THREAD; 708 case Attribute::SanitizeMemory: 709 return bitc::ATTR_KIND_SANITIZE_MEMORY; 710 case Attribute::SpeculativeLoadHardening: 711 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 712 case Attribute::SwiftError: 713 return bitc::ATTR_KIND_SWIFT_ERROR; 714 case Attribute::SwiftSelf: 715 return bitc::ATTR_KIND_SWIFT_SELF; 716 case Attribute::UWTable: 717 return bitc::ATTR_KIND_UW_TABLE; 718 case Attribute::WillReturn: 719 return bitc::ATTR_KIND_WILLRETURN; 720 case Attribute::WriteOnly: 721 return bitc::ATTR_KIND_WRITEONLY; 722 case Attribute::ZExt: 723 return bitc::ATTR_KIND_Z_EXT; 724 case Attribute::ImmArg: 725 return bitc::ATTR_KIND_IMMARG; 726 case Attribute::EndAttrKinds: 727 llvm_unreachable("Can not encode end-attribute kinds marker."); 728 case Attribute::None: 729 llvm_unreachable("Can not encode none-attribute."); 730 } 731 732 llvm_unreachable("Trying to encode unknown attribute"); 733 } 734 735 void ModuleBitcodeWriter::writeAttributeGroupTable() { 736 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 737 VE.getAttributeGroups(); 738 if (AttrGrps.empty()) return; 739 740 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 741 742 SmallVector<uint64_t, 64> Record; 743 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 744 unsigned AttrListIndex = Pair.first; 745 AttributeSet AS = Pair.second; 746 Record.push_back(VE.getAttributeGroupID(Pair)); 747 Record.push_back(AttrListIndex); 748 749 for (Attribute Attr : AS) { 750 if (Attr.isEnumAttribute()) { 751 Record.push_back(0); 752 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 753 } else if (Attr.isIntAttribute()) { 754 Record.push_back(1); 755 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 756 Record.push_back(Attr.getValueAsInt()); 757 } else if (Attr.isStringAttribute()) { 758 StringRef Kind = Attr.getKindAsString(); 759 StringRef Val = Attr.getValueAsString(); 760 761 Record.push_back(Val.empty() ? 3 : 4); 762 Record.append(Kind.begin(), Kind.end()); 763 Record.push_back(0); 764 if (!Val.empty()) { 765 Record.append(Val.begin(), Val.end()); 766 Record.push_back(0); 767 } 768 } else { 769 assert(Attr.isTypeAttribute()); 770 Type *Ty = Attr.getValueAsType(); 771 Record.push_back(Ty ? 6 : 5); 772 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 773 if (Ty) 774 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 775 } 776 } 777 778 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 779 Record.clear(); 780 } 781 782 Stream.ExitBlock(); 783 } 784 785 void ModuleBitcodeWriter::writeAttributeTable() { 786 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 787 if (Attrs.empty()) return; 788 789 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 790 791 SmallVector<uint64_t, 64> Record; 792 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 793 AttributeList AL = Attrs[i]; 794 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 795 AttributeSet AS = AL.getAttributes(i); 796 if (AS.hasAttributes()) 797 Record.push_back(VE.getAttributeGroupID({i, AS})); 798 } 799 800 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 801 Record.clear(); 802 } 803 804 Stream.ExitBlock(); 805 } 806 807 /// WriteTypeTable - Write out the type table for a module. 808 void ModuleBitcodeWriter::writeTypeTable() { 809 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 810 811 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 812 SmallVector<uint64_t, 64> TypeVals; 813 814 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 815 816 // Abbrev for TYPE_CODE_POINTER. 817 auto Abbv = std::make_shared<BitCodeAbbrev>(); 818 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 820 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 821 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 822 823 // Abbrev for TYPE_CODE_FUNCTION. 824 Abbv = std::make_shared<BitCodeAbbrev>(); 825 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 829 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 830 831 // Abbrev for TYPE_CODE_STRUCT_ANON. 832 Abbv = std::make_shared<BitCodeAbbrev>(); 833 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 837 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 838 839 // Abbrev for TYPE_CODE_STRUCT_NAME. 840 Abbv = std::make_shared<BitCodeAbbrev>(); 841 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 844 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 845 846 // Abbrev for TYPE_CODE_STRUCT_NAMED. 847 Abbv = std::make_shared<BitCodeAbbrev>(); 848 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 852 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 853 854 // Abbrev for TYPE_CODE_ARRAY. 855 Abbv = std::make_shared<BitCodeAbbrev>(); 856 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 859 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 860 861 // Emit an entry count so the reader can reserve space. 862 TypeVals.push_back(TypeList.size()); 863 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 864 TypeVals.clear(); 865 866 // Loop over all of the types, emitting each in turn. 867 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 868 Type *T = TypeList[i]; 869 int AbbrevToUse = 0; 870 unsigned Code = 0; 871 872 switch (T->getTypeID()) { 873 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 874 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 875 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 876 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 877 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 878 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 879 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 880 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 881 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 882 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 883 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 884 case Type::IntegerTyID: 885 // INTEGER: [width] 886 Code = bitc::TYPE_CODE_INTEGER; 887 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 888 break; 889 case Type::PointerTyID: { 890 PointerType *PTy = cast<PointerType>(T); 891 // POINTER: [pointee type, address space] 892 Code = bitc::TYPE_CODE_POINTER; 893 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 894 unsigned AddressSpace = PTy->getAddressSpace(); 895 TypeVals.push_back(AddressSpace); 896 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 897 break; 898 } 899 case Type::FunctionTyID: { 900 FunctionType *FT = cast<FunctionType>(T); 901 // FUNCTION: [isvararg, retty, paramty x N] 902 Code = bitc::TYPE_CODE_FUNCTION; 903 TypeVals.push_back(FT->isVarArg()); 904 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 905 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 906 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 907 AbbrevToUse = FunctionAbbrev; 908 break; 909 } 910 case Type::StructTyID: { 911 StructType *ST = cast<StructType>(T); 912 // STRUCT: [ispacked, eltty x N] 913 TypeVals.push_back(ST->isPacked()); 914 // Output all of the element types. 915 for (StructType::element_iterator I = ST->element_begin(), 916 E = ST->element_end(); I != E; ++I) 917 TypeVals.push_back(VE.getTypeID(*I)); 918 919 if (ST->isLiteral()) { 920 Code = bitc::TYPE_CODE_STRUCT_ANON; 921 AbbrevToUse = StructAnonAbbrev; 922 } else { 923 if (ST->isOpaque()) { 924 Code = bitc::TYPE_CODE_OPAQUE; 925 } else { 926 Code = bitc::TYPE_CODE_STRUCT_NAMED; 927 AbbrevToUse = StructNamedAbbrev; 928 } 929 930 // Emit the name if it is present. 931 if (!ST->getName().empty()) 932 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 933 StructNameAbbrev); 934 } 935 break; 936 } 937 case Type::ArrayTyID: { 938 ArrayType *AT = cast<ArrayType>(T); 939 // ARRAY: [numelts, eltty] 940 Code = bitc::TYPE_CODE_ARRAY; 941 TypeVals.push_back(AT->getNumElements()); 942 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 943 AbbrevToUse = ArrayAbbrev; 944 break; 945 } 946 case Type::VectorTyID: { 947 VectorType *VT = cast<VectorType>(T); 948 // VECTOR [numelts, eltty] or 949 // [numelts, eltty, scalable] 950 Code = bitc::TYPE_CODE_VECTOR; 951 TypeVals.push_back(VT->getNumElements()); 952 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 953 if (VT->isScalable()) 954 TypeVals.push_back(VT->isScalable()); 955 break; 956 } 957 } 958 959 // Emit the finished record. 960 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 961 TypeVals.clear(); 962 } 963 964 Stream.ExitBlock(); 965 } 966 967 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 968 switch (Linkage) { 969 case GlobalValue::ExternalLinkage: 970 return 0; 971 case GlobalValue::WeakAnyLinkage: 972 return 16; 973 case GlobalValue::AppendingLinkage: 974 return 2; 975 case GlobalValue::InternalLinkage: 976 return 3; 977 case GlobalValue::LinkOnceAnyLinkage: 978 return 18; 979 case GlobalValue::ExternalWeakLinkage: 980 return 7; 981 case GlobalValue::CommonLinkage: 982 return 8; 983 case GlobalValue::PrivateLinkage: 984 return 9; 985 case GlobalValue::WeakODRLinkage: 986 return 17; 987 case GlobalValue::LinkOnceODRLinkage: 988 return 19; 989 case GlobalValue::AvailableExternallyLinkage: 990 return 12; 991 } 992 llvm_unreachable("Invalid linkage"); 993 } 994 995 static unsigned getEncodedLinkage(const GlobalValue &GV) { 996 return getEncodedLinkage(GV.getLinkage()); 997 } 998 999 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1000 uint64_t RawFlags = 0; 1001 RawFlags |= Flags.ReadNone; 1002 RawFlags |= (Flags.ReadOnly << 1); 1003 RawFlags |= (Flags.NoRecurse << 2); 1004 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1005 RawFlags |= (Flags.NoInline << 4); 1006 return RawFlags; 1007 } 1008 1009 // Decode the flags for GlobalValue in the summary 1010 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1011 uint64_t RawFlags = 0; 1012 1013 RawFlags |= Flags.NotEligibleToImport; // bool 1014 RawFlags |= (Flags.Live << 1); 1015 RawFlags |= (Flags.DSOLocal << 2); 1016 RawFlags |= (Flags.CanAutoHide << 3); 1017 1018 // Linkage don't need to be remapped at that time for the summary. Any future 1019 // change to the getEncodedLinkage() function will need to be taken into 1020 // account here as well. 1021 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1022 1023 return RawFlags; 1024 } 1025 1026 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1027 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1); 1028 return RawFlags; 1029 } 1030 1031 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1032 switch (GV.getVisibility()) { 1033 case GlobalValue::DefaultVisibility: return 0; 1034 case GlobalValue::HiddenVisibility: return 1; 1035 case GlobalValue::ProtectedVisibility: return 2; 1036 } 1037 llvm_unreachable("Invalid visibility"); 1038 } 1039 1040 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1041 switch (GV.getDLLStorageClass()) { 1042 case GlobalValue::DefaultStorageClass: return 0; 1043 case GlobalValue::DLLImportStorageClass: return 1; 1044 case GlobalValue::DLLExportStorageClass: return 2; 1045 } 1046 llvm_unreachable("Invalid DLL storage class"); 1047 } 1048 1049 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1050 switch (GV.getThreadLocalMode()) { 1051 case GlobalVariable::NotThreadLocal: return 0; 1052 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1053 case GlobalVariable::LocalDynamicTLSModel: return 2; 1054 case GlobalVariable::InitialExecTLSModel: return 3; 1055 case GlobalVariable::LocalExecTLSModel: return 4; 1056 } 1057 llvm_unreachable("Invalid TLS model"); 1058 } 1059 1060 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1061 switch (C.getSelectionKind()) { 1062 case Comdat::Any: 1063 return bitc::COMDAT_SELECTION_KIND_ANY; 1064 case Comdat::ExactMatch: 1065 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1066 case Comdat::Largest: 1067 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1068 case Comdat::NoDuplicates: 1069 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1070 case Comdat::SameSize: 1071 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1072 } 1073 llvm_unreachable("Invalid selection kind"); 1074 } 1075 1076 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1077 switch (GV.getUnnamedAddr()) { 1078 case GlobalValue::UnnamedAddr::None: return 0; 1079 case GlobalValue::UnnamedAddr::Local: return 2; 1080 case GlobalValue::UnnamedAddr::Global: return 1; 1081 } 1082 llvm_unreachable("Invalid unnamed_addr"); 1083 } 1084 1085 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1086 if (GenerateHash) 1087 Hasher.update(Str); 1088 return StrtabBuilder.add(Str); 1089 } 1090 1091 void ModuleBitcodeWriter::writeComdats() { 1092 SmallVector<unsigned, 64> Vals; 1093 for (const Comdat *C : VE.getComdats()) { 1094 // COMDAT: [strtab offset, strtab size, selection_kind] 1095 Vals.push_back(addToStrtab(C->getName())); 1096 Vals.push_back(C->getName().size()); 1097 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1098 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1099 Vals.clear(); 1100 } 1101 } 1102 1103 /// Write a record that will eventually hold the word offset of the 1104 /// module-level VST. For now the offset is 0, which will be backpatched 1105 /// after the real VST is written. Saves the bit offset to backpatch. 1106 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1107 // Write a placeholder value in for the offset of the real VST, 1108 // which is written after the function blocks so that it can include 1109 // the offset of each function. The placeholder offset will be 1110 // updated when the real VST is written. 1111 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1112 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1113 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1114 // hold the real VST offset. Must use fixed instead of VBR as we don't 1115 // know how many VBR chunks to reserve ahead of time. 1116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1117 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1118 1119 // Emit the placeholder 1120 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1121 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1122 1123 // Compute and save the bit offset to the placeholder, which will be 1124 // patched when the real VST is written. We can simply subtract the 32-bit 1125 // fixed size from the current bit number to get the location to backpatch. 1126 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1127 } 1128 1129 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1130 1131 /// Determine the encoding to use for the given string name and length. 1132 static StringEncoding getStringEncoding(StringRef Str) { 1133 bool isChar6 = true; 1134 for (char C : Str) { 1135 if (isChar6) 1136 isChar6 = BitCodeAbbrevOp::isChar6(C); 1137 if ((unsigned char)C & 128) 1138 // don't bother scanning the rest. 1139 return SE_Fixed8; 1140 } 1141 if (isChar6) 1142 return SE_Char6; 1143 return SE_Fixed7; 1144 } 1145 1146 /// Emit top-level description of module, including target triple, inline asm, 1147 /// descriptors for global variables, and function prototype info. 1148 /// Returns the bit offset to backpatch with the location of the real VST. 1149 void ModuleBitcodeWriter::writeModuleInfo() { 1150 // Emit various pieces of data attached to a module. 1151 if (!M.getTargetTriple().empty()) 1152 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1153 0 /*TODO*/); 1154 const std::string &DL = M.getDataLayoutStr(); 1155 if (!DL.empty()) 1156 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1157 if (!M.getModuleInlineAsm().empty()) 1158 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1159 0 /*TODO*/); 1160 1161 // Emit information about sections and GC, computing how many there are. Also 1162 // compute the maximum alignment value. 1163 std::map<std::string, unsigned> SectionMap; 1164 std::map<std::string, unsigned> GCMap; 1165 unsigned MaxAlignment = 0; 1166 unsigned MaxGlobalType = 0; 1167 for (const GlobalValue &GV : M.globals()) { 1168 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1169 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1170 if (GV.hasSection()) { 1171 // Give section names unique ID's. 1172 unsigned &Entry = SectionMap[GV.getSection()]; 1173 if (!Entry) { 1174 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1175 0 /*TODO*/); 1176 Entry = SectionMap.size(); 1177 } 1178 } 1179 } 1180 for (const Function &F : M) { 1181 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1182 if (F.hasSection()) { 1183 // Give section names unique ID's. 1184 unsigned &Entry = SectionMap[F.getSection()]; 1185 if (!Entry) { 1186 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1187 0 /*TODO*/); 1188 Entry = SectionMap.size(); 1189 } 1190 } 1191 if (F.hasGC()) { 1192 // Same for GC names. 1193 unsigned &Entry = GCMap[F.getGC()]; 1194 if (!Entry) { 1195 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1196 0 /*TODO*/); 1197 Entry = GCMap.size(); 1198 } 1199 } 1200 } 1201 1202 // Emit abbrev for globals, now that we know # sections and max alignment. 1203 unsigned SimpleGVarAbbrev = 0; 1204 if (!M.global_empty()) { 1205 // Add an abbrev for common globals with no visibility or thread localness. 1206 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1207 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1211 Log2_32_Ceil(MaxGlobalType+1))); 1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1213 //| explicitType << 1 1214 //| constant 1215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1217 if (MaxAlignment == 0) // Alignment. 1218 Abbv->Add(BitCodeAbbrevOp(0)); 1219 else { 1220 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1222 Log2_32_Ceil(MaxEncAlignment+1))); 1223 } 1224 if (SectionMap.empty()) // Section. 1225 Abbv->Add(BitCodeAbbrevOp(0)); 1226 else 1227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1228 Log2_32_Ceil(SectionMap.size()+1))); 1229 // Don't bother emitting vis + thread local. 1230 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1231 } 1232 1233 SmallVector<unsigned, 64> Vals; 1234 // Emit the module's source file name. 1235 { 1236 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1237 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1238 if (Bits == SE_Char6) 1239 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1240 else if (Bits == SE_Fixed7) 1241 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1242 1243 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1244 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1245 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1247 Abbv->Add(AbbrevOpToUse); 1248 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1249 1250 for (const auto P : M.getSourceFileName()) 1251 Vals.push_back((unsigned char)P); 1252 1253 // Emit the finished record. 1254 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1255 Vals.clear(); 1256 } 1257 1258 // Emit the global variable information. 1259 for (const GlobalVariable &GV : M.globals()) { 1260 unsigned AbbrevToUse = 0; 1261 1262 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1263 // linkage, alignment, section, visibility, threadlocal, 1264 // unnamed_addr, externally_initialized, dllstorageclass, 1265 // comdat, attributes, DSO_Local] 1266 Vals.push_back(addToStrtab(GV.getName())); 1267 Vals.push_back(GV.getName().size()); 1268 Vals.push_back(VE.getTypeID(GV.getValueType())); 1269 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1270 Vals.push_back(GV.isDeclaration() ? 0 : 1271 (VE.getValueID(GV.getInitializer()) + 1)); 1272 Vals.push_back(getEncodedLinkage(GV)); 1273 Vals.push_back(Log2_32(GV.getAlignment())+1); 1274 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1275 if (GV.isThreadLocal() || 1276 GV.getVisibility() != GlobalValue::DefaultVisibility || 1277 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1278 GV.isExternallyInitialized() || 1279 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1280 GV.hasComdat() || 1281 GV.hasAttributes() || 1282 GV.isDSOLocal() || 1283 GV.hasPartition()) { 1284 Vals.push_back(getEncodedVisibility(GV)); 1285 Vals.push_back(getEncodedThreadLocalMode(GV)); 1286 Vals.push_back(getEncodedUnnamedAddr(GV)); 1287 Vals.push_back(GV.isExternallyInitialized()); 1288 Vals.push_back(getEncodedDLLStorageClass(GV)); 1289 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1290 1291 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1292 Vals.push_back(VE.getAttributeListID(AL)); 1293 1294 Vals.push_back(GV.isDSOLocal()); 1295 Vals.push_back(addToStrtab(GV.getPartition())); 1296 Vals.push_back(GV.getPartition().size()); 1297 } else { 1298 AbbrevToUse = SimpleGVarAbbrev; 1299 } 1300 1301 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1302 Vals.clear(); 1303 } 1304 1305 // Emit the function proto information. 1306 for (const Function &F : M) { 1307 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1308 // linkage, paramattrs, alignment, section, visibility, gc, 1309 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1310 // prefixdata, personalityfn, DSO_Local, addrspace] 1311 Vals.push_back(addToStrtab(F.getName())); 1312 Vals.push_back(F.getName().size()); 1313 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1314 Vals.push_back(F.getCallingConv()); 1315 Vals.push_back(F.isDeclaration()); 1316 Vals.push_back(getEncodedLinkage(F)); 1317 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1318 Vals.push_back(Log2_32(F.getAlignment())+1); 1319 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1320 Vals.push_back(getEncodedVisibility(F)); 1321 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1322 Vals.push_back(getEncodedUnnamedAddr(F)); 1323 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1324 : 0); 1325 Vals.push_back(getEncodedDLLStorageClass(F)); 1326 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1327 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1328 : 0); 1329 Vals.push_back( 1330 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1331 1332 Vals.push_back(F.isDSOLocal()); 1333 Vals.push_back(F.getAddressSpace()); 1334 Vals.push_back(addToStrtab(F.getPartition())); 1335 Vals.push_back(F.getPartition().size()); 1336 1337 unsigned AbbrevToUse = 0; 1338 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1339 Vals.clear(); 1340 } 1341 1342 // Emit the alias information. 1343 for (const GlobalAlias &A : M.aliases()) { 1344 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1345 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1346 // DSO_Local] 1347 Vals.push_back(addToStrtab(A.getName())); 1348 Vals.push_back(A.getName().size()); 1349 Vals.push_back(VE.getTypeID(A.getValueType())); 1350 Vals.push_back(A.getType()->getAddressSpace()); 1351 Vals.push_back(VE.getValueID(A.getAliasee())); 1352 Vals.push_back(getEncodedLinkage(A)); 1353 Vals.push_back(getEncodedVisibility(A)); 1354 Vals.push_back(getEncodedDLLStorageClass(A)); 1355 Vals.push_back(getEncodedThreadLocalMode(A)); 1356 Vals.push_back(getEncodedUnnamedAddr(A)); 1357 Vals.push_back(A.isDSOLocal()); 1358 Vals.push_back(addToStrtab(A.getPartition())); 1359 Vals.push_back(A.getPartition().size()); 1360 1361 unsigned AbbrevToUse = 0; 1362 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1363 Vals.clear(); 1364 } 1365 1366 // Emit the ifunc information. 1367 for (const GlobalIFunc &I : M.ifuncs()) { 1368 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1369 // val#, linkage, visibility, DSO_Local] 1370 Vals.push_back(addToStrtab(I.getName())); 1371 Vals.push_back(I.getName().size()); 1372 Vals.push_back(VE.getTypeID(I.getValueType())); 1373 Vals.push_back(I.getType()->getAddressSpace()); 1374 Vals.push_back(VE.getValueID(I.getResolver())); 1375 Vals.push_back(getEncodedLinkage(I)); 1376 Vals.push_back(getEncodedVisibility(I)); 1377 Vals.push_back(I.isDSOLocal()); 1378 Vals.push_back(addToStrtab(I.getPartition())); 1379 Vals.push_back(I.getPartition().size()); 1380 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1381 Vals.clear(); 1382 } 1383 1384 writeValueSymbolTableForwardDecl(); 1385 } 1386 1387 static uint64_t getOptimizationFlags(const Value *V) { 1388 uint64_t Flags = 0; 1389 1390 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1391 if (OBO->hasNoSignedWrap()) 1392 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1393 if (OBO->hasNoUnsignedWrap()) 1394 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1395 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1396 if (PEO->isExact()) 1397 Flags |= 1 << bitc::PEO_EXACT; 1398 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1399 if (FPMO->hasAllowReassoc()) 1400 Flags |= bitc::AllowReassoc; 1401 if (FPMO->hasNoNaNs()) 1402 Flags |= bitc::NoNaNs; 1403 if (FPMO->hasNoInfs()) 1404 Flags |= bitc::NoInfs; 1405 if (FPMO->hasNoSignedZeros()) 1406 Flags |= bitc::NoSignedZeros; 1407 if (FPMO->hasAllowReciprocal()) 1408 Flags |= bitc::AllowReciprocal; 1409 if (FPMO->hasAllowContract()) 1410 Flags |= bitc::AllowContract; 1411 if (FPMO->hasApproxFunc()) 1412 Flags |= bitc::ApproxFunc; 1413 } 1414 1415 return Flags; 1416 } 1417 1418 void ModuleBitcodeWriter::writeValueAsMetadata( 1419 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1420 // Mimic an MDNode with a value as one operand. 1421 Value *V = MD->getValue(); 1422 Record.push_back(VE.getTypeID(V->getType())); 1423 Record.push_back(VE.getValueID(V)); 1424 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1425 Record.clear(); 1426 } 1427 1428 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1429 SmallVectorImpl<uint64_t> &Record, 1430 unsigned Abbrev) { 1431 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1432 Metadata *MD = N->getOperand(i); 1433 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1434 "Unexpected function-local metadata"); 1435 Record.push_back(VE.getMetadataOrNullID(MD)); 1436 } 1437 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1438 : bitc::METADATA_NODE, 1439 Record, Abbrev); 1440 Record.clear(); 1441 } 1442 1443 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1444 // Assume the column is usually under 128, and always output the inlined-at 1445 // location (it's never more expensive than building an array size 1). 1446 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1447 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1454 return Stream.EmitAbbrev(std::move(Abbv)); 1455 } 1456 1457 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1458 SmallVectorImpl<uint64_t> &Record, 1459 unsigned &Abbrev) { 1460 if (!Abbrev) 1461 Abbrev = createDILocationAbbrev(); 1462 1463 Record.push_back(N->isDistinct()); 1464 Record.push_back(N->getLine()); 1465 Record.push_back(N->getColumn()); 1466 Record.push_back(VE.getMetadataID(N->getScope())); 1467 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1468 Record.push_back(N->isImplicitCode()); 1469 1470 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1471 Record.clear(); 1472 } 1473 1474 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1475 // Assume the column is usually under 128, and always output the inlined-at 1476 // location (it's never more expensive than building an array size 1). 1477 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1478 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1485 return Stream.EmitAbbrev(std::move(Abbv)); 1486 } 1487 1488 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1489 SmallVectorImpl<uint64_t> &Record, 1490 unsigned &Abbrev) { 1491 if (!Abbrev) 1492 Abbrev = createGenericDINodeAbbrev(); 1493 1494 Record.push_back(N->isDistinct()); 1495 Record.push_back(N->getTag()); 1496 Record.push_back(0); // Per-tag version field; unused for now. 1497 1498 for (auto &I : N->operands()) 1499 Record.push_back(VE.getMetadataOrNullID(I)); 1500 1501 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1502 Record.clear(); 1503 } 1504 1505 static uint64_t rotateSign(int64_t I) { 1506 uint64_t U = I; 1507 return I < 0 ? ~(U << 1) : U << 1; 1508 } 1509 1510 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1511 SmallVectorImpl<uint64_t> &Record, 1512 unsigned Abbrev) { 1513 const uint64_t Version = 1 << 1; 1514 Record.push_back((uint64_t)N->isDistinct() | Version); 1515 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1516 Record.push_back(rotateSign(N->getLowerBound())); 1517 1518 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1519 Record.clear(); 1520 } 1521 1522 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1523 SmallVectorImpl<uint64_t> &Record, 1524 unsigned Abbrev) { 1525 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1526 Record.push_back(rotateSign(N->getValue())); 1527 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1528 1529 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1530 Record.clear(); 1531 } 1532 1533 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1534 SmallVectorImpl<uint64_t> &Record, 1535 unsigned Abbrev) { 1536 Record.push_back(N->isDistinct()); 1537 Record.push_back(N->getTag()); 1538 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1539 Record.push_back(N->getSizeInBits()); 1540 Record.push_back(N->getAlignInBits()); 1541 Record.push_back(N->getEncoding()); 1542 Record.push_back(N->getFlags()); 1543 1544 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1545 Record.clear(); 1546 } 1547 1548 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1549 SmallVectorImpl<uint64_t> &Record, 1550 unsigned Abbrev) { 1551 Record.push_back(N->isDistinct()); 1552 Record.push_back(N->getTag()); 1553 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1554 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1555 Record.push_back(N->getLine()); 1556 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1557 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1558 Record.push_back(N->getSizeInBits()); 1559 Record.push_back(N->getAlignInBits()); 1560 Record.push_back(N->getOffsetInBits()); 1561 Record.push_back(N->getFlags()); 1562 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1563 1564 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1565 // that there is no DWARF address space associated with DIDerivedType. 1566 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1567 Record.push_back(*DWARFAddressSpace + 1); 1568 else 1569 Record.push_back(0); 1570 1571 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1572 Record.clear(); 1573 } 1574 1575 void ModuleBitcodeWriter::writeDICompositeType( 1576 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1577 unsigned Abbrev) { 1578 const unsigned IsNotUsedInOldTypeRef = 0x2; 1579 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1580 Record.push_back(N->getTag()); 1581 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1582 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1583 Record.push_back(N->getLine()); 1584 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1586 Record.push_back(N->getSizeInBits()); 1587 Record.push_back(N->getAlignInBits()); 1588 Record.push_back(N->getOffsetInBits()); 1589 Record.push_back(N->getFlags()); 1590 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1591 Record.push_back(N->getRuntimeLang()); 1592 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1594 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1596 1597 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1598 Record.clear(); 1599 } 1600 1601 void ModuleBitcodeWriter::writeDISubroutineType( 1602 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1603 unsigned Abbrev) { 1604 const unsigned HasNoOldTypeRefs = 0x2; 1605 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1606 Record.push_back(N->getFlags()); 1607 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1608 Record.push_back(N->getCC()); 1609 1610 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1611 Record.clear(); 1612 } 1613 1614 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1615 SmallVectorImpl<uint64_t> &Record, 1616 unsigned Abbrev) { 1617 Record.push_back(N->isDistinct()); 1618 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1619 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1620 if (N->getRawChecksum()) { 1621 Record.push_back(N->getRawChecksum()->Kind); 1622 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1623 } else { 1624 // Maintain backwards compatibility with the old internal representation of 1625 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1626 Record.push_back(0); 1627 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1628 } 1629 auto Source = N->getRawSource(); 1630 if (Source) 1631 Record.push_back(VE.getMetadataOrNullID(*Source)); 1632 1633 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1634 Record.clear(); 1635 } 1636 1637 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1638 SmallVectorImpl<uint64_t> &Record, 1639 unsigned Abbrev) { 1640 assert(N->isDistinct() && "Expected distinct compile units"); 1641 Record.push_back(/* IsDistinct */ true); 1642 Record.push_back(N->getSourceLanguage()); 1643 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1644 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1645 Record.push_back(N->isOptimized()); 1646 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1647 Record.push_back(N->getRuntimeVersion()); 1648 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1649 Record.push_back(N->getEmissionKind()); 1650 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1651 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1652 Record.push_back(/* subprograms */ 0); 1653 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1654 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1655 Record.push_back(N->getDWOId()); 1656 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1657 Record.push_back(N->getSplitDebugInlining()); 1658 Record.push_back(N->getDebugInfoForProfiling()); 1659 Record.push_back((unsigned)N->getNameTableKind()); 1660 1661 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1662 Record.clear(); 1663 } 1664 1665 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1666 SmallVectorImpl<uint64_t> &Record, 1667 unsigned Abbrev) { 1668 const uint64_t HasUnitFlag = 1 << 1; 1669 const uint64_t HasSPFlagsFlag = 1 << 2; 1670 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1671 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1672 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1673 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1674 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1675 Record.push_back(N->getLine()); 1676 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1677 Record.push_back(N->getScopeLine()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1679 Record.push_back(N->getSPFlags()); 1680 Record.push_back(N->getVirtualIndex()); 1681 Record.push_back(N->getFlags()); 1682 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1684 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1686 Record.push_back(N->getThisAdjustment()); 1687 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1688 1689 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1690 Record.clear(); 1691 } 1692 1693 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1694 SmallVectorImpl<uint64_t> &Record, 1695 unsigned Abbrev) { 1696 Record.push_back(N->isDistinct()); 1697 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1698 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1699 Record.push_back(N->getLine()); 1700 Record.push_back(N->getColumn()); 1701 1702 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1703 Record.clear(); 1704 } 1705 1706 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1707 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1708 unsigned Abbrev) { 1709 Record.push_back(N->isDistinct()); 1710 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1712 Record.push_back(N->getDiscriminator()); 1713 1714 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1715 Record.clear(); 1716 } 1717 1718 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1719 SmallVectorImpl<uint64_t> &Record, 1720 unsigned Abbrev) { 1721 Record.push_back(N->isDistinct()); 1722 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1726 Record.push_back(N->getLineNo()); 1727 1728 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1729 Record.clear(); 1730 } 1731 1732 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1733 SmallVectorImpl<uint64_t> &Record, 1734 unsigned Abbrev) { 1735 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1736 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1737 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1738 1739 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1740 Record.clear(); 1741 } 1742 1743 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1744 SmallVectorImpl<uint64_t> &Record, 1745 unsigned Abbrev) { 1746 Record.push_back(N->isDistinct()); 1747 Record.push_back(N->getMacinfoType()); 1748 Record.push_back(N->getLine()); 1749 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1750 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1751 1752 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1753 Record.clear(); 1754 } 1755 1756 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1757 SmallVectorImpl<uint64_t> &Record, 1758 unsigned Abbrev) { 1759 Record.push_back(N->isDistinct()); 1760 Record.push_back(N->getMacinfoType()); 1761 Record.push_back(N->getLine()); 1762 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1763 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1764 1765 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1766 Record.clear(); 1767 } 1768 1769 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1770 SmallVectorImpl<uint64_t> &Record, 1771 unsigned Abbrev) { 1772 Record.push_back(N->isDistinct()); 1773 for (auto &I : N->operands()) 1774 Record.push_back(VE.getMetadataOrNullID(I)); 1775 1776 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1777 Record.clear(); 1778 } 1779 1780 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1781 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1782 unsigned Abbrev) { 1783 Record.push_back(N->isDistinct()); 1784 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1785 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1786 1787 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1788 Record.clear(); 1789 } 1790 1791 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1792 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1793 unsigned Abbrev) { 1794 Record.push_back(N->isDistinct()); 1795 Record.push_back(N->getTag()); 1796 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1797 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1799 1800 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1801 Record.clear(); 1802 } 1803 1804 void ModuleBitcodeWriter::writeDIGlobalVariable( 1805 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1806 unsigned Abbrev) { 1807 const uint64_t Version = 2 << 1; 1808 Record.push_back((uint64_t)N->isDistinct() | Version); 1809 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1810 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1811 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1813 Record.push_back(N->getLine()); 1814 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1815 Record.push_back(N->isLocalToUnit()); 1816 Record.push_back(N->isDefinition()); 1817 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1818 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1819 Record.push_back(N->getAlignInBits()); 1820 1821 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1822 Record.clear(); 1823 } 1824 1825 void ModuleBitcodeWriter::writeDILocalVariable( 1826 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1827 unsigned Abbrev) { 1828 // In order to support all possible bitcode formats in BitcodeReader we need 1829 // to distinguish the following cases: 1830 // 1) Record has no artificial tag (Record[1]), 1831 // has no obsolete inlinedAt field (Record[9]). 1832 // In this case Record size will be 8, HasAlignment flag is false. 1833 // 2) Record has artificial tag (Record[1]), 1834 // has no obsolete inlignedAt field (Record[9]). 1835 // In this case Record size will be 9, HasAlignment flag is false. 1836 // 3) Record has both artificial tag (Record[1]) and 1837 // obsolete inlignedAt field (Record[9]). 1838 // In this case Record size will be 10, HasAlignment flag is false. 1839 // 4) Record has neither artificial tag, nor inlignedAt field, but 1840 // HasAlignment flag is true and Record[8] contains alignment value. 1841 const uint64_t HasAlignmentFlag = 1 << 1; 1842 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1843 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1844 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1845 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1846 Record.push_back(N->getLine()); 1847 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1848 Record.push_back(N->getArg()); 1849 Record.push_back(N->getFlags()); 1850 Record.push_back(N->getAlignInBits()); 1851 1852 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1853 Record.clear(); 1854 } 1855 1856 void ModuleBitcodeWriter::writeDILabel( 1857 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1858 unsigned Abbrev) { 1859 Record.push_back((uint64_t)N->isDistinct()); 1860 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1861 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1862 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1863 Record.push_back(N->getLine()); 1864 1865 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1866 Record.clear(); 1867 } 1868 1869 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1870 SmallVectorImpl<uint64_t> &Record, 1871 unsigned Abbrev) { 1872 Record.reserve(N->getElements().size() + 1); 1873 const uint64_t Version = 3 << 1; 1874 Record.push_back((uint64_t)N->isDistinct() | Version); 1875 Record.append(N->elements_begin(), N->elements_end()); 1876 1877 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1878 Record.clear(); 1879 } 1880 1881 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1882 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1883 unsigned Abbrev) { 1884 Record.push_back(N->isDistinct()); 1885 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1886 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1887 1888 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1889 Record.clear(); 1890 } 1891 1892 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1893 SmallVectorImpl<uint64_t> &Record, 1894 unsigned Abbrev) { 1895 Record.push_back(N->isDistinct()); 1896 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1897 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1898 Record.push_back(N->getLine()); 1899 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1900 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1901 Record.push_back(N->getAttributes()); 1902 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1903 1904 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1905 Record.clear(); 1906 } 1907 1908 void ModuleBitcodeWriter::writeDIImportedEntity( 1909 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1910 unsigned Abbrev) { 1911 Record.push_back(N->isDistinct()); 1912 Record.push_back(N->getTag()); 1913 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1914 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1915 Record.push_back(N->getLine()); 1916 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1917 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1918 1919 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1920 Record.clear(); 1921 } 1922 1923 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1924 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1925 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1928 return Stream.EmitAbbrev(std::move(Abbv)); 1929 } 1930 1931 void ModuleBitcodeWriter::writeNamedMetadata( 1932 SmallVectorImpl<uint64_t> &Record) { 1933 if (M.named_metadata_empty()) 1934 return; 1935 1936 unsigned Abbrev = createNamedMetadataAbbrev(); 1937 for (const NamedMDNode &NMD : M.named_metadata()) { 1938 // Write name. 1939 StringRef Str = NMD.getName(); 1940 Record.append(Str.bytes_begin(), Str.bytes_end()); 1941 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1942 Record.clear(); 1943 1944 // Write named metadata operands. 1945 for (const MDNode *N : NMD.operands()) 1946 Record.push_back(VE.getMetadataID(N)); 1947 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1948 Record.clear(); 1949 } 1950 } 1951 1952 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1953 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1954 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1958 return Stream.EmitAbbrev(std::move(Abbv)); 1959 } 1960 1961 /// Write out a record for MDString. 1962 /// 1963 /// All the metadata strings in a metadata block are emitted in a single 1964 /// record. The sizes and strings themselves are shoved into a blob. 1965 void ModuleBitcodeWriter::writeMetadataStrings( 1966 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1967 if (Strings.empty()) 1968 return; 1969 1970 // Start the record with the number of strings. 1971 Record.push_back(bitc::METADATA_STRINGS); 1972 Record.push_back(Strings.size()); 1973 1974 // Emit the sizes of the strings in the blob. 1975 SmallString<256> Blob; 1976 { 1977 BitstreamWriter W(Blob); 1978 for (const Metadata *MD : Strings) 1979 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1980 W.FlushToWord(); 1981 } 1982 1983 // Add the offset to the strings to the record. 1984 Record.push_back(Blob.size()); 1985 1986 // Add the strings to the blob. 1987 for (const Metadata *MD : Strings) 1988 Blob.append(cast<MDString>(MD)->getString()); 1989 1990 // Emit the final record. 1991 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1992 Record.clear(); 1993 } 1994 1995 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1996 enum MetadataAbbrev : unsigned { 1997 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1998 #include "llvm/IR/Metadata.def" 1999 LastPlusOne 2000 }; 2001 2002 void ModuleBitcodeWriter::writeMetadataRecords( 2003 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2004 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2005 if (MDs.empty()) 2006 return; 2007 2008 // Initialize MDNode abbreviations. 2009 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2010 #include "llvm/IR/Metadata.def" 2011 2012 for (const Metadata *MD : MDs) { 2013 if (IndexPos) 2014 IndexPos->push_back(Stream.GetCurrentBitNo()); 2015 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2016 assert(N->isResolved() && "Expected forward references to be resolved"); 2017 2018 switch (N->getMetadataID()) { 2019 default: 2020 llvm_unreachable("Invalid MDNode subclass"); 2021 #define HANDLE_MDNODE_LEAF(CLASS) \ 2022 case Metadata::CLASS##Kind: \ 2023 if (MDAbbrevs) \ 2024 write##CLASS(cast<CLASS>(N), Record, \ 2025 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2026 else \ 2027 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2028 continue; 2029 #include "llvm/IR/Metadata.def" 2030 } 2031 } 2032 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2033 } 2034 } 2035 2036 void ModuleBitcodeWriter::writeModuleMetadata() { 2037 if (!VE.hasMDs() && M.named_metadata_empty()) 2038 return; 2039 2040 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2041 SmallVector<uint64_t, 64> Record; 2042 2043 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2044 // block and load any metadata. 2045 std::vector<unsigned> MDAbbrevs; 2046 2047 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2048 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2049 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2050 createGenericDINodeAbbrev(); 2051 2052 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2053 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2056 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2057 2058 Abbv = std::make_shared<BitCodeAbbrev>(); 2059 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2062 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2063 2064 // Emit MDStrings together upfront. 2065 writeMetadataStrings(VE.getMDStrings(), Record); 2066 2067 // We only emit an index for the metadata record if we have more than a given 2068 // (naive) threshold of metadatas, otherwise it is not worth it. 2069 if (VE.getNonMDStrings().size() > IndexThreshold) { 2070 // Write a placeholder value in for the offset of the metadata index, 2071 // which is written after the records, so that it can include 2072 // the offset of each entry. The placeholder offset will be 2073 // updated after all records are emitted. 2074 uint64_t Vals[] = {0, 0}; 2075 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2076 } 2077 2078 // Compute and save the bit offset to the current position, which will be 2079 // patched when we emit the index later. We can simply subtract the 64-bit 2080 // fixed size from the current bit number to get the location to backpatch. 2081 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2082 2083 // This index will contain the bitpos for each individual record. 2084 std::vector<uint64_t> IndexPos; 2085 IndexPos.reserve(VE.getNonMDStrings().size()); 2086 2087 // Write all the records 2088 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2089 2090 if (VE.getNonMDStrings().size() > IndexThreshold) { 2091 // Now that we have emitted all the records we will emit the index. But 2092 // first 2093 // backpatch the forward reference so that the reader can skip the records 2094 // efficiently. 2095 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2096 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2097 2098 // Delta encode the index. 2099 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2100 for (auto &Elt : IndexPos) { 2101 auto EltDelta = Elt - PreviousValue; 2102 PreviousValue = Elt; 2103 Elt = EltDelta; 2104 } 2105 // Emit the index record. 2106 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2107 IndexPos.clear(); 2108 } 2109 2110 // Write the named metadata now. 2111 writeNamedMetadata(Record); 2112 2113 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2114 SmallVector<uint64_t, 4> Record; 2115 Record.push_back(VE.getValueID(&GO)); 2116 pushGlobalMetadataAttachment(Record, GO); 2117 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2118 }; 2119 for (const Function &F : M) 2120 if (F.isDeclaration() && F.hasMetadata()) 2121 AddDeclAttachedMetadata(F); 2122 // FIXME: Only store metadata for declarations here, and move data for global 2123 // variable definitions to a separate block (PR28134). 2124 for (const GlobalVariable &GV : M.globals()) 2125 if (GV.hasMetadata()) 2126 AddDeclAttachedMetadata(GV); 2127 2128 Stream.ExitBlock(); 2129 } 2130 2131 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2132 if (!VE.hasMDs()) 2133 return; 2134 2135 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2136 SmallVector<uint64_t, 64> Record; 2137 writeMetadataStrings(VE.getMDStrings(), Record); 2138 writeMetadataRecords(VE.getNonMDStrings(), Record); 2139 Stream.ExitBlock(); 2140 } 2141 2142 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2143 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2144 // [n x [id, mdnode]] 2145 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2146 GO.getAllMetadata(MDs); 2147 for (const auto &I : MDs) { 2148 Record.push_back(I.first); 2149 Record.push_back(VE.getMetadataID(I.second)); 2150 } 2151 } 2152 2153 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2154 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2155 2156 SmallVector<uint64_t, 64> Record; 2157 2158 if (F.hasMetadata()) { 2159 pushGlobalMetadataAttachment(Record, F); 2160 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2161 Record.clear(); 2162 } 2163 2164 // Write metadata attachments 2165 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2166 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2167 for (const BasicBlock &BB : F) 2168 for (const Instruction &I : BB) { 2169 MDs.clear(); 2170 I.getAllMetadataOtherThanDebugLoc(MDs); 2171 2172 // If no metadata, ignore instruction. 2173 if (MDs.empty()) continue; 2174 2175 Record.push_back(VE.getInstructionID(&I)); 2176 2177 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2178 Record.push_back(MDs[i].first); 2179 Record.push_back(VE.getMetadataID(MDs[i].second)); 2180 } 2181 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2182 Record.clear(); 2183 } 2184 2185 Stream.ExitBlock(); 2186 } 2187 2188 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2189 SmallVector<uint64_t, 64> Record; 2190 2191 // Write metadata kinds 2192 // METADATA_KIND - [n x [id, name]] 2193 SmallVector<StringRef, 8> Names; 2194 M.getMDKindNames(Names); 2195 2196 if (Names.empty()) return; 2197 2198 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2199 2200 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2201 Record.push_back(MDKindID); 2202 StringRef KName = Names[MDKindID]; 2203 Record.append(KName.begin(), KName.end()); 2204 2205 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2206 Record.clear(); 2207 } 2208 2209 Stream.ExitBlock(); 2210 } 2211 2212 void ModuleBitcodeWriter::writeOperandBundleTags() { 2213 // Write metadata kinds 2214 // 2215 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2216 // 2217 // OPERAND_BUNDLE_TAG - [strchr x N] 2218 2219 SmallVector<StringRef, 8> Tags; 2220 M.getOperandBundleTags(Tags); 2221 2222 if (Tags.empty()) 2223 return; 2224 2225 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2226 2227 SmallVector<uint64_t, 64> Record; 2228 2229 for (auto Tag : Tags) { 2230 Record.append(Tag.begin(), Tag.end()); 2231 2232 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2233 Record.clear(); 2234 } 2235 2236 Stream.ExitBlock(); 2237 } 2238 2239 void ModuleBitcodeWriter::writeSyncScopeNames() { 2240 SmallVector<StringRef, 8> SSNs; 2241 M.getContext().getSyncScopeNames(SSNs); 2242 if (SSNs.empty()) 2243 return; 2244 2245 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2246 2247 SmallVector<uint64_t, 64> Record; 2248 for (auto SSN : SSNs) { 2249 Record.append(SSN.begin(), SSN.end()); 2250 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2251 Record.clear(); 2252 } 2253 2254 Stream.ExitBlock(); 2255 } 2256 2257 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2258 if ((int64_t)V >= 0) 2259 Vals.push_back(V << 1); 2260 else 2261 Vals.push_back((-V << 1) | 1); 2262 } 2263 2264 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2265 bool isGlobal) { 2266 if (FirstVal == LastVal) return; 2267 2268 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2269 2270 unsigned AggregateAbbrev = 0; 2271 unsigned String8Abbrev = 0; 2272 unsigned CString7Abbrev = 0; 2273 unsigned CString6Abbrev = 0; 2274 // If this is a constant pool for the module, emit module-specific abbrevs. 2275 if (isGlobal) { 2276 // Abbrev for CST_CODE_AGGREGATE. 2277 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2278 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2281 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2282 2283 // Abbrev for CST_CODE_STRING. 2284 Abbv = std::make_shared<BitCodeAbbrev>(); 2285 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2288 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2289 // Abbrev for CST_CODE_CSTRING. 2290 Abbv = std::make_shared<BitCodeAbbrev>(); 2291 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2294 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2295 // Abbrev for CST_CODE_CSTRING. 2296 Abbv = std::make_shared<BitCodeAbbrev>(); 2297 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2300 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2301 } 2302 2303 SmallVector<uint64_t, 64> Record; 2304 2305 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2306 Type *LastTy = nullptr; 2307 for (unsigned i = FirstVal; i != LastVal; ++i) { 2308 const Value *V = Vals[i].first; 2309 // If we need to switch types, do so now. 2310 if (V->getType() != LastTy) { 2311 LastTy = V->getType(); 2312 Record.push_back(VE.getTypeID(LastTy)); 2313 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2314 CONSTANTS_SETTYPE_ABBREV); 2315 Record.clear(); 2316 } 2317 2318 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2319 Record.push_back(unsigned(IA->hasSideEffects()) | 2320 unsigned(IA->isAlignStack()) << 1 | 2321 unsigned(IA->getDialect()&1) << 2); 2322 2323 // Add the asm string. 2324 const std::string &AsmStr = IA->getAsmString(); 2325 Record.push_back(AsmStr.size()); 2326 Record.append(AsmStr.begin(), AsmStr.end()); 2327 2328 // Add the constraint string. 2329 const std::string &ConstraintStr = IA->getConstraintString(); 2330 Record.push_back(ConstraintStr.size()); 2331 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2332 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2333 Record.clear(); 2334 continue; 2335 } 2336 const Constant *C = cast<Constant>(V); 2337 unsigned Code = -1U; 2338 unsigned AbbrevToUse = 0; 2339 if (C->isNullValue()) { 2340 Code = bitc::CST_CODE_NULL; 2341 } else if (isa<UndefValue>(C)) { 2342 Code = bitc::CST_CODE_UNDEF; 2343 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2344 if (IV->getBitWidth() <= 64) { 2345 uint64_t V = IV->getSExtValue(); 2346 emitSignedInt64(Record, V); 2347 Code = bitc::CST_CODE_INTEGER; 2348 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2349 } else { // Wide integers, > 64 bits in size. 2350 // We have an arbitrary precision integer value to write whose 2351 // bit width is > 64. However, in canonical unsigned integer 2352 // format it is likely that the high bits are going to be zero. 2353 // So, we only write the number of active words. 2354 unsigned NWords = IV->getValue().getActiveWords(); 2355 const uint64_t *RawWords = IV->getValue().getRawData(); 2356 for (unsigned i = 0; i != NWords; ++i) { 2357 emitSignedInt64(Record, RawWords[i]); 2358 } 2359 Code = bitc::CST_CODE_WIDE_INTEGER; 2360 } 2361 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2362 Code = bitc::CST_CODE_FLOAT; 2363 Type *Ty = CFP->getType(); 2364 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2365 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2366 } else if (Ty->isX86_FP80Ty()) { 2367 // api needed to prevent premature destruction 2368 // bits are not in the same order as a normal i80 APInt, compensate. 2369 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2370 const uint64_t *p = api.getRawData(); 2371 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2372 Record.push_back(p[0] & 0xffffLL); 2373 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2374 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2375 const uint64_t *p = api.getRawData(); 2376 Record.push_back(p[0]); 2377 Record.push_back(p[1]); 2378 } else { 2379 assert(0 && "Unknown FP type!"); 2380 } 2381 } else if (isa<ConstantDataSequential>(C) && 2382 cast<ConstantDataSequential>(C)->isString()) { 2383 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2384 // Emit constant strings specially. 2385 unsigned NumElts = Str->getNumElements(); 2386 // If this is a null-terminated string, use the denser CSTRING encoding. 2387 if (Str->isCString()) { 2388 Code = bitc::CST_CODE_CSTRING; 2389 --NumElts; // Don't encode the null, which isn't allowed by char6. 2390 } else { 2391 Code = bitc::CST_CODE_STRING; 2392 AbbrevToUse = String8Abbrev; 2393 } 2394 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2395 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2396 for (unsigned i = 0; i != NumElts; ++i) { 2397 unsigned char V = Str->getElementAsInteger(i); 2398 Record.push_back(V); 2399 isCStr7 &= (V & 128) == 0; 2400 if (isCStrChar6) 2401 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2402 } 2403 2404 if (isCStrChar6) 2405 AbbrevToUse = CString6Abbrev; 2406 else if (isCStr7) 2407 AbbrevToUse = CString7Abbrev; 2408 } else if (const ConstantDataSequential *CDS = 2409 dyn_cast<ConstantDataSequential>(C)) { 2410 Code = bitc::CST_CODE_DATA; 2411 Type *EltTy = CDS->getType()->getElementType(); 2412 if (isa<IntegerType>(EltTy)) { 2413 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2414 Record.push_back(CDS->getElementAsInteger(i)); 2415 } else { 2416 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2417 Record.push_back( 2418 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2419 } 2420 } else if (isa<ConstantAggregate>(C)) { 2421 Code = bitc::CST_CODE_AGGREGATE; 2422 for (const Value *Op : C->operands()) 2423 Record.push_back(VE.getValueID(Op)); 2424 AbbrevToUse = AggregateAbbrev; 2425 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2426 switch (CE->getOpcode()) { 2427 default: 2428 if (Instruction::isCast(CE->getOpcode())) { 2429 Code = bitc::CST_CODE_CE_CAST; 2430 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2431 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2432 Record.push_back(VE.getValueID(C->getOperand(0))); 2433 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2434 } else { 2435 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2436 Code = bitc::CST_CODE_CE_BINOP; 2437 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2438 Record.push_back(VE.getValueID(C->getOperand(0))); 2439 Record.push_back(VE.getValueID(C->getOperand(1))); 2440 uint64_t Flags = getOptimizationFlags(CE); 2441 if (Flags != 0) 2442 Record.push_back(Flags); 2443 } 2444 break; 2445 case Instruction::FNeg: { 2446 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2447 Code = bitc::CST_CODE_CE_UNOP; 2448 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2449 Record.push_back(VE.getValueID(C->getOperand(0))); 2450 uint64_t Flags = getOptimizationFlags(CE); 2451 if (Flags != 0) 2452 Record.push_back(Flags); 2453 break; 2454 } 2455 case Instruction::GetElementPtr: { 2456 Code = bitc::CST_CODE_CE_GEP; 2457 const auto *GO = cast<GEPOperator>(C); 2458 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2459 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2460 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2461 Record.push_back((*Idx << 1) | GO->isInBounds()); 2462 } else if (GO->isInBounds()) 2463 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2464 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2465 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2466 Record.push_back(VE.getValueID(C->getOperand(i))); 2467 } 2468 break; 2469 } 2470 case Instruction::Select: 2471 Code = bitc::CST_CODE_CE_SELECT; 2472 Record.push_back(VE.getValueID(C->getOperand(0))); 2473 Record.push_back(VE.getValueID(C->getOperand(1))); 2474 Record.push_back(VE.getValueID(C->getOperand(2))); 2475 break; 2476 case Instruction::ExtractElement: 2477 Code = bitc::CST_CODE_CE_EXTRACTELT; 2478 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2479 Record.push_back(VE.getValueID(C->getOperand(0))); 2480 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2481 Record.push_back(VE.getValueID(C->getOperand(1))); 2482 break; 2483 case Instruction::InsertElement: 2484 Code = bitc::CST_CODE_CE_INSERTELT; 2485 Record.push_back(VE.getValueID(C->getOperand(0))); 2486 Record.push_back(VE.getValueID(C->getOperand(1))); 2487 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2488 Record.push_back(VE.getValueID(C->getOperand(2))); 2489 break; 2490 case Instruction::ShuffleVector: 2491 // If the return type and argument types are the same, this is a 2492 // standard shufflevector instruction. If the types are different, 2493 // then the shuffle is widening or truncating the input vectors, and 2494 // the argument type must also be encoded. 2495 if (C->getType() == C->getOperand(0)->getType()) { 2496 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2497 } else { 2498 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2499 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2500 } 2501 Record.push_back(VE.getValueID(C->getOperand(0))); 2502 Record.push_back(VE.getValueID(C->getOperand(1))); 2503 Record.push_back(VE.getValueID(C->getOperand(2))); 2504 break; 2505 case Instruction::ICmp: 2506 case Instruction::FCmp: 2507 Code = bitc::CST_CODE_CE_CMP; 2508 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2509 Record.push_back(VE.getValueID(C->getOperand(0))); 2510 Record.push_back(VE.getValueID(C->getOperand(1))); 2511 Record.push_back(CE->getPredicate()); 2512 break; 2513 } 2514 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2515 Code = bitc::CST_CODE_BLOCKADDRESS; 2516 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2517 Record.push_back(VE.getValueID(BA->getFunction())); 2518 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2519 } else { 2520 #ifndef NDEBUG 2521 C->dump(); 2522 #endif 2523 llvm_unreachable("Unknown constant!"); 2524 } 2525 Stream.EmitRecord(Code, Record, AbbrevToUse); 2526 Record.clear(); 2527 } 2528 2529 Stream.ExitBlock(); 2530 } 2531 2532 void ModuleBitcodeWriter::writeModuleConstants() { 2533 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2534 2535 // Find the first constant to emit, which is the first non-globalvalue value. 2536 // We know globalvalues have been emitted by WriteModuleInfo. 2537 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2538 if (!isa<GlobalValue>(Vals[i].first)) { 2539 writeConstants(i, Vals.size(), true); 2540 return; 2541 } 2542 } 2543 } 2544 2545 /// pushValueAndType - The file has to encode both the value and type id for 2546 /// many values, because we need to know what type to create for forward 2547 /// references. However, most operands are not forward references, so this type 2548 /// field is not needed. 2549 /// 2550 /// This function adds V's value ID to Vals. If the value ID is higher than the 2551 /// instruction ID, then it is a forward reference, and it also includes the 2552 /// type ID. The value ID that is written is encoded relative to the InstID. 2553 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2554 SmallVectorImpl<unsigned> &Vals) { 2555 unsigned ValID = VE.getValueID(V); 2556 // Make encoding relative to the InstID. 2557 Vals.push_back(InstID - ValID); 2558 if (ValID >= InstID) { 2559 Vals.push_back(VE.getTypeID(V->getType())); 2560 return true; 2561 } 2562 return false; 2563 } 2564 2565 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2566 unsigned InstID) { 2567 SmallVector<unsigned, 64> Record; 2568 LLVMContext &C = CS.getInstruction()->getContext(); 2569 2570 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2571 const auto &Bundle = CS.getOperandBundleAt(i); 2572 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2573 2574 for (auto &Input : Bundle.Inputs) 2575 pushValueAndType(Input, InstID, Record); 2576 2577 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2578 Record.clear(); 2579 } 2580 } 2581 2582 /// pushValue - Like pushValueAndType, but where the type of the value is 2583 /// omitted (perhaps it was already encoded in an earlier operand). 2584 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2585 SmallVectorImpl<unsigned> &Vals) { 2586 unsigned ValID = VE.getValueID(V); 2587 Vals.push_back(InstID - ValID); 2588 } 2589 2590 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2591 SmallVectorImpl<uint64_t> &Vals) { 2592 unsigned ValID = VE.getValueID(V); 2593 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2594 emitSignedInt64(Vals, diff); 2595 } 2596 2597 /// WriteInstruction - Emit an instruction to the specified stream. 2598 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2599 unsigned InstID, 2600 SmallVectorImpl<unsigned> &Vals) { 2601 unsigned Code = 0; 2602 unsigned AbbrevToUse = 0; 2603 VE.setInstructionID(&I); 2604 switch (I.getOpcode()) { 2605 default: 2606 if (Instruction::isCast(I.getOpcode())) { 2607 Code = bitc::FUNC_CODE_INST_CAST; 2608 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2609 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2610 Vals.push_back(VE.getTypeID(I.getType())); 2611 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2612 } else { 2613 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2614 Code = bitc::FUNC_CODE_INST_BINOP; 2615 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2616 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2617 pushValue(I.getOperand(1), InstID, Vals); 2618 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2619 uint64_t Flags = getOptimizationFlags(&I); 2620 if (Flags != 0) { 2621 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2622 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2623 Vals.push_back(Flags); 2624 } 2625 } 2626 break; 2627 case Instruction::FNeg: { 2628 Code = bitc::FUNC_CODE_INST_UNOP; 2629 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2630 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2631 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2632 uint64_t Flags = getOptimizationFlags(&I); 2633 if (Flags != 0) { 2634 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2635 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2636 Vals.push_back(Flags); 2637 } 2638 break; 2639 } 2640 case Instruction::GetElementPtr: { 2641 Code = bitc::FUNC_CODE_INST_GEP; 2642 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2643 auto &GEPInst = cast<GetElementPtrInst>(I); 2644 Vals.push_back(GEPInst.isInBounds()); 2645 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2646 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2647 pushValueAndType(I.getOperand(i), InstID, Vals); 2648 break; 2649 } 2650 case Instruction::ExtractValue: { 2651 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2652 pushValueAndType(I.getOperand(0), InstID, Vals); 2653 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2654 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2655 break; 2656 } 2657 case Instruction::InsertValue: { 2658 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2659 pushValueAndType(I.getOperand(0), InstID, Vals); 2660 pushValueAndType(I.getOperand(1), InstID, Vals); 2661 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2662 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2663 break; 2664 } 2665 case Instruction::Select: { 2666 Code = bitc::FUNC_CODE_INST_VSELECT; 2667 pushValueAndType(I.getOperand(1), InstID, Vals); 2668 pushValue(I.getOperand(2), InstID, Vals); 2669 pushValueAndType(I.getOperand(0), InstID, Vals); 2670 uint64_t Flags = getOptimizationFlags(&I); 2671 if (Flags != 0) 2672 Vals.push_back(Flags); 2673 break; 2674 } 2675 case Instruction::ExtractElement: 2676 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2677 pushValueAndType(I.getOperand(0), InstID, Vals); 2678 pushValueAndType(I.getOperand(1), InstID, Vals); 2679 break; 2680 case Instruction::InsertElement: 2681 Code = bitc::FUNC_CODE_INST_INSERTELT; 2682 pushValueAndType(I.getOperand(0), InstID, Vals); 2683 pushValue(I.getOperand(1), InstID, Vals); 2684 pushValueAndType(I.getOperand(2), InstID, Vals); 2685 break; 2686 case Instruction::ShuffleVector: 2687 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2688 pushValueAndType(I.getOperand(0), InstID, Vals); 2689 pushValue(I.getOperand(1), InstID, Vals); 2690 pushValue(I.getOperand(2), InstID, Vals); 2691 break; 2692 case Instruction::ICmp: 2693 case Instruction::FCmp: { 2694 // compare returning Int1Ty or vector of Int1Ty 2695 Code = bitc::FUNC_CODE_INST_CMP2; 2696 pushValueAndType(I.getOperand(0), InstID, Vals); 2697 pushValue(I.getOperand(1), InstID, Vals); 2698 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2699 uint64_t Flags = getOptimizationFlags(&I); 2700 if (Flags != 0) 2701 Vals.push_back(Flags); 2702 break; 2703 } 2704 2705 case Instruction::Ret: 2706 { 2707 Code = bitc::FUNC_CODE_INST_RET; 2708 unsigned NumOperands = I.getNumOperands(); 2709 if (NumOperands == 0) 2710 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2711 else if (NumOperands == 1) { 2712 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2713 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2714 } else { 2715 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2716 pushValueAndType(I.getOperand(i), InstID, Vals); 2717 } 2718 } 2719 break; 2720 case Instruction::Br: 2721 { 2722 Code = bitc::FUNC_CODE_INST_BR; 2723 const BranchInst &II = cast<BranchInst>(I); 2724 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2725 if (II.isConditional()) { 2726 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2727 pushValue(II.getCondition(), InstID, Vals); 2728 } 2729 } 2730 break; 2731 case Instruction::Switch: 2732 { 2733 Code = bitc::FUNC_CODE_INST_SWITCH; 2734 const SwitchInst &SI = cast<SwitchInst>(I); 2735 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2736 pushValue(SI.getCondition(), InstID, Vals); 2737 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2738 for (auto Case : SI.cases()) { 2739 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2740 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2741 } 2742 } 2743 break; 2744 case Instruction::IndirectBr: 2745 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2746 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2747 // Encode the address operand as relative, but not the basic blocks. 2748 pushValue(I.getOperand(0), InstID, Vals); 2749 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2750 Vals.push_back(VE.getValueID(I.getOperand(i))); 2751 break; 2752 2753 case Instruction::Invoke: { 2754 const InvokeInst *II = cast<InvokeInst>(&I); 2755 const Value *Callee = II->getCalledValue(); 2756 FunctionType *FTy = II->getFunctionType(); 2757 2758 if (II->hasOperandBundles()) 2759 writeOperandBundles(II, InstID); 2760 2761 Code = bitc::FUNC_CODE_INST_INVOKE; 2762 2763 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2764 Vals.push_back(II->getCallingConv() | 1 << 13); 2765 Vals.push_back(VE.getValueID(II->getNormalDest())); 2766 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2767 Vals.push_back(VE.getTypeID(FTy)); 2768 pushValueAndType(Callee, InstID, Vals); 2769 2770 // Emit value #'s for the fixed parameters. 2771 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2772 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2773 2774 // Emit type/value pairs for varargs params. 2775 if (FTy->isVarArg()) { 2776 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2777 i != e; ++i) 2778 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2779 } 2780 break; 2781 } 2782 case Instruction::Resume: 2783 Code = bitc::FUNC_CODE_INST_RESUME; 2784 pushValueAndType(I.getOperand(0), InstID, Vals); 2785 break; 2786 case Instruction::CleanupRet: { 2787 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2788 const auto &CRI = cast<CleanupReturnInst>(I); 2789 pushValue(CRI.getCleanupPad(), InstID, Vals); 2790 if (CRI.hasUnwindDest()) 2791 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2792 break; 2793 } 2794 case Instruction::CatchRet: { 2795 Code = bitc::FUNC_CODE_INST_CATCHRET; 2796 const auto &CRI = cast<CatchReturnInst>(I); 2797 pushValue(CRI.getCatchPad(), InstID, Vals); 2798 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2799 break; 2800 } 2801 case Instruction::CleanupPad: 2802 case Instruction::CatchPad: { 2803 const auto &FuncletPad = cast<FuncletPadInst>(I); 2804 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2805 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2806 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2807 2808 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2809 Vals.push_back(NumArgOperands); 2810 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2811 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2812 break; 2813 } 2814 case Instruction::CatchSwitch: { 2815 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2816 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2817 2818 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2819 2820 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2821 Vals.push_back(NumHandlers); 2822 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2823 Vals.push_back(VE.getValueID(CatchPadBB)); 2824 2825 if (CatchSwitch.hasUnwindDest()) 2826 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2827 break; 2828 } 2829 case Instruction::CallBr: { 2830 const CallBrInst *CBI = cast<CallBrInst>(&I); 2831 const Value *Callee = CBI->getCalledValue(); 2832 FunctionType *FTy = CBI->getFunctionType(); 2833 2834 if (CBI->hasOperandBundles()) 2835 writeOperandBundles(CBI, InstID); 2836 2837 Code = bitc::FUNC_CODE_INST_CALLBR; 2838 2839 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2840 2841 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2842 1 << bitc::CALL_EXPLICIT_TYPE); 2843 2844 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2845 Vals.push_back(CBI->getNumIndirectDests()); 2846 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2847 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2848 2849 Vals.push_back(VE.getTypeID(FTy)); 2850 pushValueAndType(Callee, InstID, Vals); 2851 2852 // Emit value #'s for the fixed parameters. 2853 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2854 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2855 2856 // Emit type/value pairs for varargs params. 2857 if (FTy->isVarArg()) { 2858 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2859 i != e; ++i) 2860 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2861 } 2862 break; 2863 } 2864 case Instruction::Unreachable: 2865 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2866 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2867 break; 2868 2869 case Instruction::PHI: { 2870 const PHINode &PN = cast<PHINode>(I); 2871 Code = bitc::FUNC_CODE_INST_PHI; 2872 // With the newer instruction encoding, forward references could give 2873 // negative valued IDs. This is most common for PHIs, so we use 2874 // signed VBRs. 2875 SmallVector<uint64_t, 128> Vals64; 2876 Vals64.push_back(VE.getTypeID(PN.getType())); 2877 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2878 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2879 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2880 } 2881 // Emit a Vals64 vector and exit. 2882 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2883 Vals64.clear(); 2884 return; 2885 } 2886 2887 case Instruction::LandingPad: { 2888 const LandingPadInst &LP = cast<LandingPadInst>(I); 2889 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2890 Vals.push_back(VE.getTypeID(LP.getType())); 2891 Vals.push_back(LP.isCleanup()); 2892 Vals.push_back(LP.getNumClauses()); 2893 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2894 if (LP.isCatch(I)) 2895 Vals.push_back(LandingPadInst::Catch); 2896 else 2897 Vals.push_back(LandingPadInst::Filter); 2898 pushValueAndType(LP.getClause(I), InstID, Vals); 2899 } 2900 break; 2901 } 2902 2903 case Instruction::Alloca: { 2904 Code = bitc::FUNC_CODE_INST_ALLOCA; 2905 const AllocaInst &AI = cast<AllocaInst>(I); 2906 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2907 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2908 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2909 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2910 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2911 "not enough bits for maximum alignment"); 2912 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2913 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2914 AlignRecord |= 1 << 6; 2915 AlignRecord |= AI.isSwiftError() << 7; 2916 Vals.push_back(AlignRecord); 2917 break; 2918 } 2919 2920 case Instruction::Load: 2921 if (cast<LoadInst>(I).isAtomic()) { 2922 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2923 pushValueAndType(I.getOperand(0), InstID, Vals); 2924 } else { 2925 Code = bitc::FUNC_CODE_INST_LOAD; 2926 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2927 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2928 } 2929 Vals.push_back(VE.getTypeID(I.getType())); 2930 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2931 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2932 if (cast<LoadInst>(I).isAtomic()) { 2933 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2934 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2935 } 2936 break; 2937 case Instruction::Store: 2938 if (cast<StoreInst>(I).isAtomic()) 2939 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2940 else 2941 Code = bitc::FUNC_CODE_INST_STORE; 2942 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2943 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2944 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2945 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2946 if (cast<StoreInst>(I).isAtomic()) { 2947 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2948 Vals.push_back( 2949 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2950 } 2951 break; 2952 case Instruction::AtomicCmpXchg: 2953 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2954 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2955 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2956 pushValue(I.getOperand(2), InstID, Vals); // newval. 2957 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2958 Vals.push_back( 2959 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2960 Vals.push_back( 2961 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2962 Vals.push_back( 2963 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2964 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2965 break; 2966 case Instruction::AtomicRMW: 2967 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2968 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2969 pushValue(I.getOperand(1), InstID, Vals); // val. 2970 Vals.push_back( 2971 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2972 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2973 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2974 Vals.push_back( 2975 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2976 break; 2977 case Instruction::Fence: 2978 Code = bitc::FUNC_CODE_INST_FENCE; 2979 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2980 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2981 break; 2982 case Instruction::Call: { 2983 const CallInst &CI = cast<CallInst>(I); 2984 FunctionType *FTy = CI.getFunctionType(); 2985 2986 if (CI.hasOperandBundles()) 2987 writeOperandBundles(&CI, InstID); 2988 2989 Code = bitc::FUNC_CODE_INST_CALL; 2990 2991 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2992 2993 unsigned Flags = getOptimizationFlags(&I); 2994 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2995 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2996 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2997 1 << bitc::CALL_EXPLICIT_TYPE | 2998 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2999 unsigned(Flags != 0) << bitc::CALL_FMF); 3000 if (Flags != 0) 3001 Vals.push_back(Flags); 3002 3003 Vals.push_back(VE.getTypeID(FTy)); 3004 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 3005 3006 // Emit value #'s for the fixed parameters. 3007 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3008 // Check for labels (can happen with asm labels). 3009 if (FTy->getParamType(i)->isLabelTy()) 3010 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3011 else 3012 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3013 } 3014 3015 // Emit type/value pairs for varargs params. 3016 if (FTy->isVarArg()) { 3017 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3018 i != e; ++i) 3019 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3020 } 3021 break; 3022 } 3023 case Instruction::VAArg: 3024 Code = bitc::FUNC_CODE_INST_VAARG; 3025 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3026 pushValue(I.getOperand(0), InstID, Vals); // valist. 3027 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3028 break; 3029 } 3030 3031 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3032 Vals.clear(); 3033 } 3034 3035 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3036 /// to allow clients to efficiently find the function body. 3037 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3038 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3039 // Get the offset of the VST we are writing, and backpatch it into 3040 // the VST forward declaration record. 3041 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3042 // The BitcodeStartBit was the stream offset of the identification block. 3043 VSTOffset -= bitcodeStartBit(); 3044 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3045 // Note that we add 1 here because the offset is relative to one word 3046 // before the start of the identification block, which was historically 3047 // always the start of the regular bitcode header. 3048 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3049 3050 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3051 3052 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3053 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3056 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3057 3058 for (const Function &F : M) { 3059 uint64_t Record[2]; 3060 3061 if (F.isDeclaration()) 3062 continue; 3063 3064 Record[0] = VE.getValueID(&F); 3065 3066 // Save the word offset of the function (from the start of the 3067 // actual bitcode written to the stream). 3068 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3069 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3070 // Note that we add 1 here because the offset is relative to one word 3071 // before the start of the identification block, which was historically 3072 // always the start of the regular bitcode header. 3073 Record[1] = BitcodeIndex / 32 + 1; 3074 3075 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3076 } 3077 3078 Stream.ExitBlock(); 3079 } 3080 3081 /// Emit names for arguments, instructions and basic blocks in a function. 3082 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3083 const ValueSymbolTable &VST) { 3084 if (VST.empty()) 3085 return; 3086 3087 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3088 3089 // FIXME: Set up the abbrev, we know how many values there are! 3090 // FIXME: We know if the type names can use 7-bit ascii. 3091 SmallVector<uint64_t, 64> NameVals; 3092 3093 for (const ValueName &Name : VST) { 3094 // Figure out the encoding to use for the name. 3095 StringEncoding Bits = getStringEncoding(Name.getKey()); 3096 3097 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3098 NameVals.push_back(VE.getValueID(Name.getValue())); 3099 3100 // VST_CODE_ENTRY: [valueid, namechar x N] 3101 // VST_CODE_BBENTRY: [bbid, namechar x N] 3102 unsigned Code; 3103 if (isa<BasicBlock>(Name.getValue())) { 3104 Code = bitc::VST_CODE_BBENTRY; 3105 if (Bits == SE_Char6) 3106 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3107 } else { 3108 Code = bitc::VST_CODE_ENTRY; 3109 if (Bits == SE_Char6) 3110 AbbrevToUse = VST_ENTRY_6_ABBREV; 3111 else if (Bits == SE_Fixed7) 3112 AbbrevToUse = VST_ENTRY_7_ABBREV; 3113 } 3114 3115 for (const auto P : Name.getKey()) 3116 NameVals.push_back((unsigned char)P); 3117 3118 // Emit the finished record. 3119 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3120 NameVals.clear(); 3121 } 3122 3123 Stream.ExitBlock(); 3124 } 3125 3126 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3127 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3128 unsigned Code; 3129 if (isa<BasicBlock>(Order.V)) 3130 Code = bitc::USELIST_CODE_BB; 3131 else 3132 Code = bitc::USELIST_CODE_DEFAULT; 3133 3134 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3135 Record.push_back(VE.getValueID(Order.V)); 3136 Stream.EmitRecord(Code, Record); 3137 } 3138 3139 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3140 assert(VE.shouldPreserveUseListOrder() && 3141 "Expected to be preserving use-list order"); 3142 3143 auto hasMore = [&]() { 3144 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3145 }; 3146 if (!hasMore()) 3147 // Nothing to do. 3148 return; 3149 3150 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3151 while (hasMore()) { 3152 writeUseList(std::move(VE.UseListOrders.back())); 3153 VE.UseListOrders.pop_back(); 3154 } 3155 Stream.ExitBlock(); 3156 } 3157 3158 /// Emit a function body to the module stream. 3159 void ModuleBitcodeWriter::writeFunction( 3160 const Function &F, 3161 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3162 // Save the bitcode index of the start of this function block for recording 3163 // in the VST. 3164 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3165 3166 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3167 VE.incorporateFunction(F); 3168 3169 SmallVector<unsigned, 64> Vals; 3170 3171 // Emit the number of basic blocks, so the reader can create them ahead of 3172 // time. 3173 Vals.push_back(VE.getBasicBlocks().size()); 3174 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3175 Vals.clear(); 3176 3177 // If there are function-local constants, emit them now. 3178 unsigned CstStart, CstEnd; 3179 VE.getFunctionConstantRange(CstStart, CstEnd); 3180 writeConstants(CstStart, CstEnd, false); 3181 3182 // If there is function-local metadata, emit it now. 3183 writeFunctionMetadata(F); 3184 3185 // Keep a running idea of what the instruction ID is. 3186 unsigned InstID = CstEnd; 3187 3188 bool NeedsMetadataAttachment = F.hasMetadata(); 3189 3190 DILocation *LastDL = nullptr; 3191 // Finally, emit all the instructions, in order. 3192 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3193 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3194 I != E; ++I) { 3195 writeInstruction(*I, InstID, Vals); 3196 3197 if (!I->getType()->isVoidTy()) 3198 ++InstID; 3199 3200 // If the instruction has metadata, write a metadata attachment later. 3201 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3202 3203 // If the instruction has a debug location, emit it. 3204 DILocation *DL = I->getDebugLoc(); 3205 if (!DL) 3206 continue; 3207 3208 if (DL == LastDL) { 3209 // Just repeat the same debug loc as last time. 3210 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3211 continue; 3212 } 3213 3214 Vals.push_back(DL->getLine()); 3215 Vals.push_back(DL->getColumn()); 3216 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3217 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3218 Vals.push_back(DL->isImplicitCode()); 3219 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3220 Vals.clear(); 3221 3222 LastDL = DL; 3223 } 3224 3225 // Emit names for all the instructions etc. 3226 if (auto *Symtab = F.getValueSymbolTable()) 3227 writeFunctionLevelValueSymbolTable(*Symtab); 3228 3229 if (NeedsMetadataAttachment) 3230 writeFunctionMetadataAttachment(F); 3231 if (VE.shouldPreserveUseListOrder()) 3232 writeUseListBlock(&F); 3233 VE.purgeFunction(); 3234 Stream.ExitBlock(); 3235 } 3236 3237 // Emit blockinfo, which defines the standard abbreviations etc. 3238 void ModuleBitcodeWriter::writeBlockInfo() { 3239 // We only want to emit block info records for blocks that have multiple 3240 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3241 // Other blocks can define their abbrevs inline. 3242 Stream.EnterBlockInfoBlock(); 3243 3244 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3245 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3250 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3251 VST_ENTRY_8_ABBREV) 3252 llvm_unreachable("Unexpected abbrev ordering!"); 3253 } 3254 3255 { // 7-bit fixed width VST_CODE_ENTRY strings. 3256 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3257 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3261 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3262 VST_ENTRY_7_ABBREV) 3263 llvm_unreachable("Unexpected abbrev ordering!"); 3264 } 3265 { // 6-bit char6 VST_CODE_ENTRY strings. 3266 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3267 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3271 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3272 VST_ENTRY_6_ABBREV) 3273 llvm_unreachable("Unexpected abbrev ordering!"); 3274 } 3275 { // 6-bit char6 VST_CODE_BBENTRY strings. 3276 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3277 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3281 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3282 VST_BBENTRY_6_ABBREV) 3283 llvm_unreachable("Unexpected abbrev ordering!"); 3284 } 3285 3286 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3287 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3288 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3290 VE.computeBitsRequiredForTypeIndicies())); 3291 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3292 CONSTANTS_SETTYPE_ABBREV) 3293 llvm_unreachable("Unexpected abbrev ordering!"); 3294 } 3295 3296 { // INTEGER abbrev for CONSTANTS_BLOCK. 3297 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3298 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3300 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3301 CONSTANTS_INTEGER_ABBREV) 3302 llvm_unreachable("Unexpected abbrev ordering!"); 3303 } 3304 3305 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3306 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3307 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3310 VE.computeBitsRequiredForTypeIndicies())); 3311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3312 3313 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3314 CONSTANTS_CE_CAST_Abbrev) 3315 llvm_unreachable("Unexpected abbrev ordering!"); 3316 } 3317 { // NULL abbrev for CONSTANTS_BLOCK. 3318 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3319 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3320 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3321 CONSTANTS_NULL_Abbrev) 3322 llvm_unreachable("Unexpected abbrev ordering!"); 3323 } 3324 3325 // FIXME: This should only use space for first class types! 3326 3327 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3328 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3329 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3332 VE.computeBitsRequiredForTypeIndicies())); 3333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3335 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3336 FUNCTION_INST_LOAD_ABBREV) 3337 llvm_unreachable("Unexpected abbrev ordering!"); 3338 } 3339 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3340 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3341 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3344 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3345 FUNCTION_INST_UNOP_ABBREV) 3346 llvm_unreachable("Unexpected abbrev ordering!"); 3347 } 3348 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3349 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3350 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3354 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3355 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3356 llvm_unreachable("Unexpected abbrev ordering!"); 3357 } 3358 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3359 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3360 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3364 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3365 FUNCTION_INST_BINOP_ABBREV) 3366 llvm_unreachable("Unexpected abbrev ordering!"); 3367 } 3368 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3369 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3370 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3375 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3376 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3377 llvm_unreachable("Unexpected abbrev ordering!"); 3378 } 3379 { // INST_CAST abbrev for FUNCTION_BLOCK. 3380 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3381 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3384 VE.computeBitsRequiredForTypeIndicies())); 3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3386 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3387 FUNCTION_INST_CAST_ABBREV) 3388 llvm_unreachable("Unexpected abbrev ordering!"); 3389 } 3390 3391 { // INST_RET abbrev for FUNCTION_BLOCK. 3392 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3393 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3394 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3395 FUNCTION_INST_RET_VOID_ABBREV) 3396 llvm_unreachable("Unexpected abbrev ordering!"); 3397 } 3398 { // INST_RET abbrev for FUNCTION_BLOCK. 3399 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3400 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3402 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3403 FUNCTION_INST_RET_VAL_ABBREV) 3404 llvm_unreachable("Unexpected abbrev ordering!"); 3405 } 3406 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3407 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3408 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3409 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3410 FUNCTION_INST_UNREACHABLE_ABBREV) 3411 llvm_unreachable("Unexpected abbrev ordering!"); 3412 } 3413 { 3414 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3415 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3418 Log2_32_Ceil(VE.getTypes().size() + 1))); 3419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3421 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3422 FUNCTION_INST_GEP_ABBREV) 3423 llvm_unreachable("Unexpected abbrev ordering!"); 3424 } 3425 3426 Stream.ExitBlock(); 3427 } 3428 3429 /// Write the module path strings, currently only used when generating 3430 /// a combined index file. 3431 void IndexBitcodeWriter::writeModStrings() { 3432 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3433 3434 // TODO: See which abbrev sizes we actually need to emit 3435 3436 // 8-bit fixed-width MST_ENTRY strings. 3437 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3438 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3442 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3443 3444 // 7-bit fixed width MST_ENTRY strings. 3445 Abbv = std::make_shared<BitCodeAbbrev>(); 3446 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3450 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3451 3452 // 6-bit char6 MST_ENTRY strings. 3453 Abbv = std::make_shared<BitCodeAbbrev>(); 3454 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3458 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3459 3460 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3461 Abbv = std::make_shared<BitCodeAbbrev>(); 3462 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3468 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3469 3470 SmallVector<unsigned, 64> Vals; 3471 forEachModule( 3472 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3473 StringRef Key = MPSE.getKey(); 3474 const auto &Value = MPSE.getValue(); 3475 StringEncoding Bits = getStringEncoding(Key); 3476 unsigned AbbrevToUse = Abbrev8Bit; 3477 if (Bits == SE_Char6) 3478 AbbrevToUse = Abbrev6Bit; 3479 else if (Bits == SE_Fixed7) 3480 AbbrevToUse = Abbrev7Bit; 3481 3482 Vals.push_back(Value.first); 3483 Vals.append(Key.begin(), Key.end()); 3484 3485 // Emit the finished record. 3486 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3487 3488 // Emit an optional hash for the module now 3489 const auto &Hash = Value.second; 3490 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3491 Vals.assign(Hash.begin(), Hash.end()); 3492 // Emit the hash record. 3493 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3494 } 3495 3496 Vals.clear(); 3497 }); 3498 Stream.ExitBlock(); 3499 } 3500 3501 /// Write the function type metadata related records that need to appear before 3502 /// a function summary entry (whether per-module or combined). 3503 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3504 FunctionSummary *FS) { 3505 if (!FS->type_tests().empty()) 3506 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3507 3508 SmallVector<uint64_t, 64> Record; 3509 3510 auto WriteVFuncIdVec = [&](uint64_t Ty, 3511 ArrayRef<FunctionSummary::VFuncId> VFs) { 3512 if (VFs.empty()) 3513 return; 3514 Record.clear(); 3515 for (auto &VF : VFs) { 3516 Record.push_back(VF.GUID); 3517 Record.push_back(VF.Offset); 3518 } 3519 Stream.EmitRecord(Ty, Record); 3520 }; 3521 3522 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3523 FS->type_test_assume_vcalls()); 3524 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3525 FS->type_checked_load_vcalls()); 3526 3527 auto WriteConstVCallVec = [&](uint64_t Ty, 3528 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3529 for (auto &VC : VCs) { 3530 Record.clear(); 3531 Record.push_back(VC.VFunc.GUID); 3532 Record.push_back(VC.VFunc.Offset); 3533 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3534 Stream.EmitRecord(Ty, Record); 3535 } 3536 }; 3537 3538 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3539 FS->type_test_assume_const_vcalls()); 3540 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3541 FS->type_checked_load_const_vcalls()); 3542 } 3543 3544 /// Collect type IDs from type tests used by function. 3545 static void 3546 getReferencedTypeIds(FunctionSummary *FS, 3547 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3548 if (!FS->type_tests().empty()) 3549 for (auto &TT : FS->type_tests()) 3550 ReferencedTypeIds.insert(TT); 3551 3552 auto GetReferencedTypesFromVFuncIdVec = 3553 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3554 for (auto &VF : VFs) 3555 ReferencedTypeIds.insert(VF.GUID); 3556 }; 3557 3558 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3559 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3560 3561 auto GetReferencedTypesFromConstVCallVec = 3562 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3563 for (auto &VC : VCs) 3564 ReferencedTypeIds.insert(VC.VFunc.GUID); 3565 }; 3566 3567 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3568 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3569 } 3570 3571 static void writeWholeProgramDevirtResolutionByArg( 3572 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3573 const WholeProgramDevirtResolution::ByArg &ByArg) { 3574 NameVals.push_back(args.size()); 3575 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3576 3577 NameVals.push_back(ByArg.TheKind); 3578 NameVals.push_back(ByArg.Info); 3579 NameVals.push_back(ByArg.Byte); 3580 NameVals.push_back(ByArg.Bit); 3581 } 3582 3583 static void writeWholeProgramDevirtResolution( 3584 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3585 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3586 NameVals.push_back(Id); 3587 3588 NameVals.push_back(Wpd.TheKind); 3589 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3590 NameVals.push_back(Wpd.SingleImplName.size()); 3591 3592 NameVals.push_back(Wpd.ResByArg.size()); 3593 for (auto &A : Wpd.ResByArg) 3594 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3595 } 3596 3597 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3598 StringTableBuilder &StrtabBuilder, 3599 const std::string &Id, 3600 const TypeIdSummary &Summary) { 3601 NameVals.push_back(StrtabBuilder.add(Id)); 3602 NameVals.push_back(Id.size()); 3603 3604 NameVals.push_back(Summary.TTRes.TheKind); 3605 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3606 NameVals.push_back(Summary.TTRes.AlignLog2); 3607 NameVals.push_back(Summary.TTRes.SizeM1); 3608 NameVals.push_back(Summary.TTRes.BitMask); 3609 NameVals.push_back(Summary.TTRes.InlineBits); 3610 3611 for (auto &W : Summary.WPDRes) 3612 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3613 W.second); 3614 } 3615 3616 static void writeTypeIdCompatibleVtableSummaryRecord( 3617 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3618 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3619 ValueEnumerator &VE) { 3620 NameVals.push_back(StrtabBuilder.add(Id)); 3621 NameVals.push_back(Id.size()); 3622 3623 for (auto &P : Summary) { 3624 NameVals.push_back(P.AddressPointOffset); 3625 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3626 } 3627 } 3628 3629 // Helper to emit a single function summary record. 3630 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3631 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3632 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3633 const Function &F) { 3634 NameVals.push_back(ValueID); 3635 3636 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3637 writeFunctionTypeMetadataRecords(Stream, FS); 3638 3639 auto SpecialRefCnts = FS->specialRefCounts(); 3640 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3641 NameVals.push_back(FS->instCount()); 3642 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3643 NameVals.push_back(FS->refs().size()); 3644 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3645 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3646 3647 for (auto &RI : FS->refs()) 3648 NameVals.push_back(VE.getValueID(RI.getValue())); 3649 3650 bool HasProfileData = 3651 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3652 for (auto &ECI : FS->calls()) { 3653 NameVals.push_back(getValueId(ECI.first)); 3654 if (HasProfileData) 3655 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3656 else if (WriteRelBFToSummary) 3657 NameVals.push_back(ECI.second.RelBlockFreq); 3658 } 3659 3660 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3661 unsigned Code = 3662 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3663 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3664 : bitc::FS_PERMODULE)); 3665 3666 // Emit the finished record. 3667 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3668 NameVals.clear(); 3669 } 3670 3671 // Collect the global value references in the given variable's initializer, 3672 // and emit them in a summary record. 3673 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3674 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3675 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3676 auto VI = Index->getValueInfo(V.getGUID()); 3677 if (!VI || VI.getSummaryList().empty()) { 3678 // Only declarations should not have a summary (a declaration might however 3679 // have a summary if the def was in module level asm). 3680 assert(V.isDeclaration()); 3681 return; 3682 } 3683 auto *Summary = VI.getSummaryList()[0].get(); 3684 NameVals.push_back(VE.getValueID(&V)); 3685 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3686 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3687 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3688 3689 auto VTableFuncs = VS->vTableFuncs(); 3690 if (!VTableFuncs.empty()) 3691 NameVals.push_back(VS->refs().size()); 3692 3693 unsigned SizeBeforeRefs = NameVals.size(); 3694 for (auto &RI : VS->refs()) 3695 NameVals.push_back(VE.getValueID(RI.getValue())); 3696 // Sort the refs for determinism output, the vector returned by FS->refs() has 3697 // been initialized from a DenseSet. 3698 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3699 3700 if (VTableFuncs.empty()) 3701 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3702 FSModRefsAbbrev); 3703 else { 3704 // VTableFuncs pairs should already be sorted by offset. 3705 for (auto &P : VTableFuncs) { 3706 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3707 NameVals.push_back(P.VTableOffset); 3708 } 3709 3710 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3711 FSModVTableRefsAbbrev); 3712 } 3713 NameVals.clear(); 3714 } 3715 3716 // Current version for the summary. 3717 // This is bumped whenever we introduce changes in the way some record are 3718 // interpreted, like flags for instance. 3719 static const uint64_t INDEX_VERSION = 7; 3720 3721 /// Emit the per-module summary section alongside the rest of 3722 /// the module's bitcode. 3723 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3724 // By default we compile with ThinLTO if the module has a summary, but the 3725 // client can request full LTO with a module flag. 3726 bool IsThinLTO = true; 3727 if (auto *MD = 3728 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3729 IsThinLTO = MD->getZExtValue(); 3730 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3731 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3732 4); 3733 3734 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3735 3736 // Write the index flags. 3737 uint64_t Flags = 0; 3738 // Bits 1-3 are set only in the combined index, skip them. 3739 if (Index->enableSplitLTOUnit()) 3740 Flags |= 0x8; 3741 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3742 3743 if (Index->begin() == Index->end()) { 3744 Stream.ExitBlock(); 3745 return; 3746 } 3747 3748 for (const auto &GVI : valueIds()) { 3749 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3750 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3751 } 3752 3753 // Abbrev for FS_PERMODULE_PROFILE. 3754 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3755 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3763 // numrefs x valueid, n x (valueid, hotness) 3764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3766 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3767 3768 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3769 Abbv = std::make_shared<BitCodeAbbrev>(); 3770 if (WriteRelBFToSummary) 3771 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3772 else 3773 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3781 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3784 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3785 3786 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3787 Abbv = std::make_shared<BitCodeAbbrev>(); 3788 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3793 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3794 3795 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3796 Abbv = std::make_shared<BitCodeAbbrev>(); 3797 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3801 // numrefs x valueid, n x (valueid , offset) 3802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3804 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3805 3806 // Abbrev for FS_ALIAS. 3807 Abbv = std::make_shared<BitCodeAbbrev>(); 3808 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3812 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3813 3814 // Abbrev for FS_TYPE_ID_METADATA 3815 Abbv = std::make_shared<BitCodeAbbrev>(); 3816 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3819 // n x (valueid , offset) 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3822 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3823 3824 SmallVector<uint64_t, 64> NameVals; 3825 // Iterate over the list of functions instead of the Index to 3826 // ensure the ordering is stable. 3827 for (const Function &F : M) { 3828 // Summary emission does not support anonymous functions, they have to 3829 // renamed using the anonymous function renaming pass. 3830 if (!F.hasName()) 3831 report_fatal_error("Unexpected anonymous function when writing summary"); 3832 3833 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3834 if (!VI || VI.getSummaryList().empty()) { 3835 // Only declarations should not have a summary (a declaration might 3836 // however have a summary if the def was in module level asm). 3837 assert(F.isDeclaration()); 3838 continue; 3839 } 3840 auto *Summary = VI.getSummaryList()[0].get(); 3841 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3842 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3843 } 3844 3845 // Capture references from GlobalVariable initializers, which are outside 3846 // of a function scope. 3847 for (const GlobalVariable &G : M.globals()) 3848 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3849 FSModVTableRefsAbbrev); 3850 3851 for (const GlobalAlias &A : M.aliases()) { 3852 auto *Aliasee = A.getBaseObject(); 3853 if (!Aliasee->hasName()) 3854 // Nameless function don't have an entry in the summary, skip it. 3855 continue; 3856 auto AliasId = VE.getValueID(&A); 3857 auto AliaseeId = VE.getValueID(Aliasee); 3858 NameVals.push_back(AliasId); 3859 auto *Summary = Index->getGlobalValueSummary(A); 3860 AliasSummary *AS = cast<AliasSummary>(Summary); 3861 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3862 NameVals.push_back(AliaseeId); 3863 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3864 NameVals.clear(); 3865 } 3866 3867 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3868 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3869 S.second, VE); 3870 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3871 TypeIdCompatibleVtableAbbrev); 3872 NameVals.clear(); 3873 } 3874 3875 Stream.ExitBlock(); 3876 } 3877 3878 /// Emit the combined summary section into the combined index file. 3879 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3880 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3881 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3882 3883 // Write the index flags. 3884 uint64_t Flags = 0; 3885 if (Index.withGlobalValueDeadStripping()) 3886 Flags |= 0x1; 3887 if (Index.skipModuleByDistributedBackend()) 3888 Flags |= 0x2; 3889 if (Index.hasSyntheticEntryCounts()) 3890 Flags |= 0x4; 3891 if (Index.enableSplitLTOUnit()) 3892 Flags |= 0x8; 3893 if (Index.partiallySplitLTOUnits()) 3894 Flags |= 0x10; 3895 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3896 3897 for (const auto &GVI : valueIds()) { 3898 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3899 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3900 } 3901 3902 // Abbrev for FS_COMBINED. 3903 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3904 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3914 // numrefs x valueid, n x (valueid) 3915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3917 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3918 3919 // Abbrev for FS_COMBINED_PROFILE. 3920 Abbv = std::make_shared<BitCodeAbbrev>(); 3921 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3931 // numrefs x valueid, n x (valueid, hotness) 3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3934 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3935 3936 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3937 Abbv = std::make_shared<BitCodeAbbrev>(); 3938 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3944 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3945 3946 // Abbrev for FS_COMBINED_ALIAS. 3947 Abbv = std::make_shared<BitCodeAbbrev>(); 3948 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3953 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3954 3955 // The aliases are emitted as a post-pass, and will point to the value 3956 // id of the aliasee. Save them in a vector for post-processing. 3957 SmallVector<AliasSummary *, 64> Aliases; 3958 3959 // Save the value id for each summary for alias emission. 3960 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3961 3962 SmallVector<uint64_t, 64> NameVals; 3963 3964 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3965 // with the type ids referenced by this index file. 3966 std::set<GlobalValue::GUID> ReferencedTypeIds; 3967 3968 // For local linkage, we also emit the original name separately 3969 // immediately after the record. 3970 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3971 if (!GlobalValue::isLocalLinkage(S.linkage())) 3972 return; 3973 NameVals.push_back(S.getOriginalName()); 3974 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3975 NameVals.clear(); 3976 }; 3977 3978 std::set<GlobalValue::GUID> DefOrUseGUIDs; 3979 forEachSummary([&](GVInfo I, bool IsAliasee) { 3980 GlobalValueSummary *S = I.second; 3981 assert(S); 3982 DefOrUseGUIDs.insert(I.first); 3983 for (const ValueInfo &VI : S->refs()) 3984 DefOrUseGUIDs.insert(VI.getGUID()); 3985 3986 auto ValueId = getValueId(I.first); 3987 assert(ValueId); 3988 SummaryToValueIdMap[S] = *ValueId; 3989 3990 // If this is invoked for an aliasee, we want to record the above 3991 // mapping, but then not emit a summary entry (if the aliasee is 3992 // to be imported, we will invoke this separately with IsAliasee=false). 3993 if (IsAliasee) 3994 return; 3995 3996 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3997 // Will process aliases as a post-pass because the reader wants all 3998 // global to be loaded first. 3999 Aliases.push_back(AS); 4000 return; 4001 } 4002 4003 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4004 NameVals.push_back(*ValueId); 4005 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4006 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4007 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4008 for (auto &RI : VS->refs()) { 4009 auto RefValueId = getValueId(RI.getGUID()); 4010 if (!RefValueId) 4011 continue; 4012 NameVals.push_back(*RefValueId); 4013 } 4014 4015 // Emit the finished record. 4016 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4017 FSModRefsAbbrev); 4018 NameVals.clear(); 4019 MaybeEmitOriginalName(*S); 4020 return; 4021 } 4022 4023 auto *FS = cast<FunctionSummary>(S); 4024 writeFunctionTypeMetadataRecords(Stream, FS); 4025 getReferencedTypeIds(FS, ReferencedTypeIds); 4026 4027 NameVals.push_back(*ValueId); 4028 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4029 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4030 NameVals.push_back(FS->instCount()); 4031 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4032 NameVals.push_back(FS->entryCount()); 4033 4034 // Fill in below 4035 NameVals.push_back(0); // numrefs 4036 NameVals.push_back(0); // rorefcnt 4037 NameVals.push_back(0); // worefcnt 4038 4039 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4040 for (auto &RI : FS->refs()) { 4041 auto RefValueId = getValueId(RI.getGUID()); 4042 if (!RefValueId) 4043 continue; 4044 NameVals.push_back(*RefValueId); 4045 if (RI.isReadOnly()) 4046 RORefCnt++; 4047 else if (RI.isWriteOnly()) 4048 WORefCnt++; 4049 Count++; 4050 } 4051 NameVals[6] = Count; 4052 NameVals[7] = RORefCnt; 4053 NameVals[8] = WORefCnt; 4054 4055 bool HasProfileData = false; 4056 for (auto &EI : FS->calls()) { 4057 HasProfileData |= 4058 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4059 if (HasProfileData) 4060 break; 4061 } 4062 4063 for (auto &EI : FS->calls()) { 4064 // If this GUID doesn't have a value id, it doesn't have a function 4065 // summary and we don't need to record any calls to it. 4066 GlobalValue::GUID GUID = EI.first.getGUID(); 4067 auto CallValueId = getValueId(GUID); 4068 if (!CallValueId) { 4069 // For SamplePGO, the indirect call targets for local functions will 4070 // have its original name annotated in profile. We try to find the 4071 // corresponding PGOFuncName as the GUID. 4072 GUID = Index.getGUIDFromOriginalID(GUID); 4073 if (GUID == 0) 4074 continue; 4075 CallValueId = getValueId(GUID); 4076 if (!CallValueId) 4077 continue; 4078 // The mapping from OriginalId to GUID may return a GUID 4079 // that corresponds to a static variable. Filter it out here. 4080 // This can happen when 4081 // 1) There is a call to a library function which does not have 4082 // a CallValidId; 4083 // 2) There is a static variable with the OriginalGUID identical 4084 // to the GUID of the library function in 1); 4085 // When this happens, the logic for SamplePGO kicks in and 4086 // the static variable in 2) will be found, which needs to be 4087 // filtered out. 4088 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4089 if (GVSum && 4090 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4091 continue; 4092 } 4093 NameVals.push_back(*CallValueId); 4094 if (HasProfileData) 4095 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4096 } 4097 4098 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4099 unsigned Code = 4100 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4101 4102 // Emit the finished record. 4103 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4104 NameVals.clear(); 4105 MaybeEmitOriginalName(*S); 4106 }); 4107 4108 for (auto *AS : Aliases) { 4109 auto AliasValueId = SummaryToValueIdMap[AS]; 4110 assert(AliasValueId); 4111 NameVals.push_back(AliasValueId); 4112 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4113 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4114 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4115 assert(AliaseeValueId); 4116 NameVals.push_back(AliaseeValueId); 4117 4118 // Emit the finished record. 4119 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4120 NameVals.clear(); 4121 MaybeEmitOriginalName(*AS); 4122 4123 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4124 getReferencedTypeIds(FS, ReferencedTypeIds); 4125 } 4126 4127 if (!Index.cfiFunctionDefs().empty()) { 4128 for (auto &S : Index.cfiFunctionDefs()) { 4129 if (DefOrUseGUIDs.count( 4130 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4131 NameVals.push_back(StrtabBuilder.add(S)); 4132 NameVals.push_back(S.size()); 4133 } 4134 } 4135 if (!NameVals.empty()) { 4136 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4137 NameVals.clear(); 4138 } 4139 } 4140 4141 if (!Index.cfiFunctionDecls().empty()) { 4142 for (auto &S : Index.cfiFunctionDecls()) { 4143 if (DefOrUseGUIDs.count( 4144 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4145 NameVals.push_back(StrtabBuilder.add(S)); 4146 NameVals.push_back(S.size()); 4147 } 4148 } 4149 if (!NameVals.empty()) { 4150 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4151 NameVals.clear(); 4152 } 4153 } 4154 4155 // Walk the GUIDs that were referenced, and write the 4156 // corresponding type id records. 4157 for (auto &T : ReferencedTypeIds) { 4158 auto TidIter = Index.typeIds().equal_range(T); 4159 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4160 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4161 It->second.second); 4162 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4163 NameVals.clear(); 4164 } 4165 } 4166 4167 Stream.ExitBlock(); 4168 } 4169 4170 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4171 /// current llvm version, and a record for the epoch number. 4172 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4173 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4174 4175 // Write the "user readable" string identifying the bitcode producer 4176 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4177 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4180 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4181 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4182 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4183 4184 // Write the epoch version 4185 Abbv = std::make_shared<BitCodeAbbrev>(); 4186 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4188 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4189 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 4190 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4191 Stream.ExitBlock(); 4192 } 4193 4194 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4195 // Emit the module's hash. 4196 // MODULE_CODE_HASH: [5*i32] 4197 if (GenerateHash) { 4198 uint32_t Vals[5]; 4199 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4200 Buffer.size() - BlockStartPos)); 4201 StringRef Hash = Hasher.result(); 4202 for (int Pos = 0; Pos < 20; Pos += 4) { 4203 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4204 } 4205 4206 // Emit the finished record. 4207 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4208 4209 if (ModHash) 4210 // Save the written hash value. 4211 llvm::copy(Vals, std::begin(*ModHash)); 4212 } 4213 } 4214 4215 void ModuleBitcodeWriter::write() { 4216 writeIdentificationBlock(Stream); 4217 4218 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4219 size_t BlockStartPos = Buffer.size(); 4220 4221 writeModuleVersion(); 4222 4223 // Emit blockinfo, which defines the standard abbreviations etc. 4224 writeBlockInfo(); 4225 4226 // Emit information describing all of the types in the module. 4227 writeTypeTable(); 4228 4229 // Emit information about attribute groups. 4230 writeAttributeGroupTable(); 4231 4232 // Emit information about parameter attributes. 4233 writeAttributeTable(); 4234 4235 writeComdats(); 4236 4237 // Emit top-level description of module, including target triple, inline asm, 4238 // descriptors for global variables, and function prototype info. 4239 writeModuleInfo(); 4240 4241 // Emit constants. 4242 writeModuleConstants(); 4243 4244 // Emit metadata kind names. 4245 writeModuleMetadataKinds(); 4246 4247 // Emit metadata. 4248 writeModuleMetadata(); 4249 4250 // Emit module-level use-lists. 4251 if (VE.shouldPreserveUseListOrder()) 4252 writeUseListBlock(nullptr); 4253 4254 writeOperandBundleTags(); 4255 writeSyncScopeNames(); 4256 4257 // Emit function bodies. 4258 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4259 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4260 if (!F->isDeclaration()) 4261 writeFunction(*F, FunctionToBitcodeIndex); 4262 4263 // Need to write after the above call to WriteFunction which populates 4264 // the summary information in the index. 4265 if (Index) 4266 writePerModuleGlobalValueSummary(); 4267 4268 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4269 4270 writeModuleHash(BlockStartPos); 4271 4272 Stream.ExitBlock(); 4273 } 4274 4275 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4276 uint32_t &Position) { 4277 support::endian::write32le(&Buffer[Position], Value); 4278 Position += 4; 4279 } 4280 4281 /// If generating a bc file on darwin, we have to emit a 4282 /// header and trailer to make it compatible with the system archiver. To do 4283 /// this we emit the following header, and then emit a trailer that pads the 4284 /// file out to be a multiple of 16 bytes. 4285 /// 4286 /// struct bc_header { 4287 /// uint32_t Magic; // 0x0B17C0DE 4288 /// uint32_t Version; // Version, currently always 0. 4289 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4290 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4291 /// uint32_t CPUType; // CPU specifier. 4292 /// ... potentially more later ... 4293 /// }; 4294 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4295 const Triple &TT) { 4296 unsigned CPUType = ~0U; 4297 4298 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4299 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4300 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4301 // specific constants here because they are implicitly part of the Darwin ABI. 4302 enum { 4303 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4304 DARWIN_CPU_TYPE_X86 = 7, 4305 DARWIN_CPU_TYPE_ARM = 12, 4306 DARWIN_CPU_TYPE_POWERPC = 18 4307 }; 4308 4309 Triple::ArchType Arch = TT.getArch(); 4310 if (Arch == Triple::x86_64) 4311 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4312 else if (Arch == Triple::x86) 4313 CPUType = DARWIN_CPU_TYPE_X86; 4314 else if (Arch == Triple::ppc) 4315 CPUType = DARWIN_CPU_TYPE_POWERPC; 4316 else if (Arch == Triple::ppc64) 4317 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4318 else if (Arch == Triple::arm || Arch == Triple::thumb) 4319 CPUType = DARWIN_CPU_TYPE_ARM; 4320 4321 // Traditional Bitcode starts after header. 4322 assert(Buffer.size() >= BWH_HeaderSize && 4323 "Expected header size to be reserved"); 4324 unsigned BCOffset = BWH_HeaderSize; 4325 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4326 4327 // Write the magic and version. 4328 unsigned Position = 0; 4329 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4330 writeInt32ToBuffer(0, Buffer, Position); // Version. 4331 writeInt32ToBuffer(BCOffset, Buffer, Position); 4332 writeInt32ToBuffer(BCSize, Buffer, Position); 4333 writeInt32ToBuffer(CPUType, Buffer, Position); 4334 4335 // If the file is not a multiple of 16 bytes, insert dummy padding. 4336 while (Buffer.size() & 15) 4337 Buffer.push_back(0); 4338 } 4339 4340 /// Helper to write the header common to all bitcode files. 4341 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4342 // Emit the file header. 4343 Stream.Emit((unsigned)'B', 8); 4344 Stream.Emit((unsigned)'C', 8); 4345 Stream.Emit(0x0, 4); 4346 Stream.Emit(0xC, 4); 4347 Stream.Emit(0xE, 4); 4348 Stream.Emit(0xD, 4); 4349 } 4350 4351 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4352 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4353 writeBitcodeHeader(*Stream); 4354 } 4355 4356 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4357 4358 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4359 Stream->EnterSubblock(Block, 3); 4360 4361 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4362 Abbv->Add(BitCodeAbbrevOp(Record)); 4363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4364 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4365 4366 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4367 4368 Stream->ExitBlock(); 4369 } 4370 4371 void BitcodeWriter::writeSymtab() { 4372 assert(!WroteStrtab && !WroteSymtab); 4373 4374 // If any module has module-level inline asm, we will require a registered asm 4375 // parser for the target so that we can create an accurate symbol table for 4376 // the module. 4377 for (Module *M : Mods) { 4378 if (M->getModuleInlineAsm().empty()) 4379 continue; 4380 4381 std::string Err; 4382 const Triple TT(M->getTargetTriple()); 4383 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4384 if (!T || !T->hasMCAsmParser()) 4385 return; 4386 } 4387 4388 WroteSymtab = true; 4389 SmallVector<char, 0> Symtab; 4390 // The irsymtab::build function may be unable to create a symbol table if the 4391 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4392 // table is not required for correctness, but we still want to be able to 4393 // write malformed modules to bitcode files, so swallow the error. 4394 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4395 consumeError(std::move(E)); 4396 return; 4397 } 4398 4399 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4400 {Symtab.data(), Symtab.size()}); 4401 } 4402 4403 void BitcodeWriter::writeStrtab() { 4404 assert(!WroteStrtab); 4405 4406 std::vector<char> Strtab; 4407 StrtabBuilder.finalizeInOrder(); 4408 Strtab.resize(StrtabBuilder.getSize()); 4409 StrtabBuilder.write((uint8_t *)Strtab.data()); 4410 4411 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4412 {Strtab.data(), Strtab.size()}); 4413 4414 WroteStrtab = true; 4415 } 4416 4417 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4418 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4419 WroteStrtab = true; 4420 } 4421 4422 void BitcodeWriter::writeModule(const Module &M, 4423 bool ShouldPreserveUseListOrder, 4424 const ModuleSummaryIndex *Index, 4425 bool GenerateHash, ModuleHash *ModHash) { 4426 assert(!WroteStrtab); 4427 4428 // The Mods vector is used by irsymtab::build, which requires non-const 4429 // Modules in case it needs to materialize metadata. But the bitcode writer 4430 // requires that the module is materialized, so we can cast to non-const here, 4431 // after checking that it is in fact materialized. 4432 assert(M.isMaterialized()); 4433 Mods.push_back(const_cast<Module *>(&M)); 4434 4435 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4436 ShouldPreserveUseListOrder, Index, 4437 GenerateHash, ModHash); 4438 ModuleWriter.write(); 4439 } 4440 4441 void BitcodeWriter::writeIndex( 4442 const ModuleSummaryIndex *Index, 4443 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4444 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4445 ModuleToSummariesForIndex); 4446 IndexWriter.write(); 4447 } 4448 4449 /// Write the specified module to the specified output stream. 4450 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4451 bool ShouldPreserveUseListOrder, 4452 const ModuleSummaryIndex *Index, 4453 bool GenerateHash, ModuleHash *ModHash) { 4454 SmallVector<char, 0> Buffer; 4455 Buffer.reserve(256*1024); 4456 4457 // If this is darwin or another generic macho target, reserve space for the 4458 // header. 4459 Triple TT(M.getTargetTriple()); 4460 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4461 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4462 4463 BitcodeWriter Writer(Buffer); 4464 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4465 ModHash); 4466 Writer.writeSymtab(); 4467 Writer.writeStrtab(); 4468 4469 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4470 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4471 4472 // Write the generated bitstream to "Out". 4473 Out.write((char*)&Buffer.front(), Buffer.size()); 4474 } 4475 4476 void IndexBitcodeWriter::write() { 4477 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4478 4479 writeModuleVersion(); 4480 4481 // Write the module paths in the combined index. 4482 writeModStrings(); 4483 4484 // Write the summary combined index records. 4485 writeCombinedGlobalValueSummary(); 4486 4487 Stream.ExitBlock(); 4488 } 4489 4490 // Write the specified module summary index to the given raw output stream, 4491 // where it will be written in a new bitcode block. This is used when 4492 // writing the combined index file for ThinLTO. When writing a subset of the 4493 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4494 void llvm::WriteIndexToFile( 4495 const ModuleSummaryIndex &Index, raw_ostream &Out, 4496 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4497 SmallVector<char, 0> Buffer; 4498 Buffer.reserve(256 * 1024); 4499 4500 BitcodeWriter Writer(Buffer); 4501 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4502 Writer.writeStrtab(); 4503 4504 Out.write((char *)&Buffer.front(), Buffer.size()); 4505 } 4506 4507 namespace { 4508 4509 /// Class to manage the bitcode writing for a thin link bitcode file. 4510 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4511 /// ModHash is for use in ThinLTO incremental build, generated while writing 4512 /// the module bitcode file. 4513 const ModuleHash *ModHash; 4514 4515 public: 4516 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4517 BitstreamWriter &Stream, 4518 const ModuleSummaryIndex &Index, 4519 const ModuleHash &ModHash) 4520 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4521 /*ShouldPreserveUseListOrder=*/false, &Index), 4522 ModHash(&ModHash) {} 4523 4524 void write(); 4525 4526 private: 4527 void writeSimplifiedModuleInfo(); 4528 }; 4529 4530 } // end anonymous namespace 4531 4532 // This function writes a simpilified module info for thin link bitcode file. 4533 // It only contains the source file name along with the name(the offset and 4534 // size in strtab) and linkage for global values. For the global value info 4535 // entry, in order to keep linkage at offset 5, there are three zeros used 4536 // as padding. 4537 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4538 SmallVector<unsigned, 64> Vals; 4539 // Emit the module's source file name. 4540 { 4541 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4542 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4543 if (Bits == SE_Char6) 4544 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4545 else if (Bits == SE_Fixed7) 4546 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4547 4548 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4549 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4550 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4552 Abbv->Add(AbbrevOpToUse); 4553 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4554 4555 for (const auto P : M.getSourceFileName()) 4556 Vals.push_back((unsigned char)P); 4557 4558 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4559 Vals.clear(); 4560 } 4561 4562 // Emit the global variable information. 4563 for (const GlobalVariable &GV : M.globals()) { 4564 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4565 Vals.push_back(StrtabBuilder.add(GV.getName())); 4566 Vals.push_back(GV.getName().size()); 4567 Vals.push_back(0); 4568 Vals.push_back(0); 4569 Vals.push_back(0); 4570 Vals.push_back(getEncodedLinkage(GV)); 4571 4572 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4573 Vals.clear(); 4574 } 4575 4576 // Emit the function proto information. 4577 for (const Function &F : M) { 4578 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4579 Vals.push_back(StrtabBuilder.add(F.getName())); 4580 Vals.push_back(F.getName().size()); 4581 Vals.push_back(0); 4582 Vals.push_back(0); 4583 Vals.push_back(0); 4584 Vals.push_back(getEncodedLinkage(F)); 4585 4586 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4587 Vals.clear(); 4588 } 4589 4590 // Emit the alias information. 4591 for (const GlobalAlias &A : M.aliases()) { 4592 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4593 Vals.push_back(StrtabBuilder.add(A.getName())); 4594 Vals.push_back(A.getName().size()); 4595 Vals.push_back(0); 4596 Vals.push_back(0); 4597 Vals.push_back(0); 4598 Vals.push_back(getEncodedLinkage(A)); 4599 4600 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4601 Vals.clear(); 4602 } 4603 4604 // Emit the ifunc information. 4605 for (const GlobalIFunc &I : M.ifuncs()) { 4606 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4607 Vals.push_back(StrtabBuilder.add(I.getName())); 4608 Vals.push_back(I.getName().size()); 4609 Vals.push_back(0); 4610 Vals.push_back(0); 4611 Vals.push_back(0); 4612 Vals.push_back(getEncodedLinkage(I)); 4613 4614 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4615 Vals.clear(); 4616 } 4617 } 4618 4619 void ThinLinkBitcodeWriter::write() { 4620 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4621 4622 writeModuleVersion(); 4623 4624 writeSimplifiedModuleInfo(); 4625 4626 writePerModuleGlobalValueSummary(); 4627 4628 // Write module hash. 4629 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4630 4631 Stream.ExitBlock(); 4632 } 4633 4634 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4635 const ModuleSummaryIndex &Index, 4636 const ModuleHash &ModHash) { 4637 assert(!WroteStrtab); 4638 4639 // The Mods vector is used by irsymtab::build, which requires non-const 4640 // Modules in case it needs to materialize metadata. But the bitcode writer 4641 // requires that the module is materialized, so we can cast to non-const here, 4642 // after checking that it is in fact materialized. 4643 assert(M.isMaterialized()); 4644 Mods.push_back(const_cast<Module *>(&M)); 4645 4646 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4647 ModHash); 4648 ThinLinkWriter.write(); 4649 } 4650 4651 // Write the specified thin link bitcode file to the given raw output stream, 4652 // where it will be written in a new bitcode block. This is used when 4653 // writing the per-module index file for ThinLTO. 4654 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4655 const ModuleSummaryIndex &Index, 4656 const ModuleHash &ModHash) { 4657 SmallVector<char, 0> Buffer; 4658 Buffer.reserve(256 * 1024); 4659 4660 BitcodeWriter Writer(Buffer); 4661 Writer.writeThinLinkBitcode(M, Index, ModHash); 4662 Writer.writeSymtab(); 4663 Writer.writeStrtab(); 4664 4665 Out.write((char *)&Buffer.front(), Buffer.size()); 4666 } 4667