1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/ParameterAttributes.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/MathExtras.h" 27 using namespace llvm; 28 29 /// These are manifest constants used by the bitcode writer. They do not need to 30 /// be kept in sync with the reader, but need to be consistent within this file. 31 enum { 32 CurVersion = 0, 33 34 // VALUE_SYMTAB_BLOCK abbrev id's. 35 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 36 VST_ENTRY_7_ABBREV, 37 VST_ENTRY_6_ABBREV, 38 VST_BBENTRY_6_ABBREV, 39 40 // CONSTANTS_BLOCK abbrev id's. 41 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 CONSTANTS_INTEGER_ABBREV, 43 CONSTANTS_CE_CAST_Abbrev, 44 CONSTANTS_NULL_Abbrev, 45 46 // FUNCTION_BLOCK abbrev id's. 47 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 FUNCTION_INST_BINOP_ABBREV, 49 FUNCTION_INST_CAST_ABBREV, 50 FUNCTION_INST_RET_VOID_ABBREV, 51 FUNCTION_INST_RET_VAL_ABBREV, 52 FUNCTION_INST_UNREACHABLE_ABBREV 53 }; 54 55 56 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 57 switch (Opcode) { 58 default: assert(0 && "Unknown cast instruction!"); 59 case Instruction::Trunc : return bitc::CAST_TRUNC; 60 case Instruction::ZExt : return bitc::CAST_ZEXT; 61 case Instruction::SExt : return bitc::CAST_SEXT; 62 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 63 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 64 case Instruction::UIToFP : return bitc::CAST_UITOFP; 65 case Instruction::SIToFP : return bitc::CAST_SITOFP; 66 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 67 case Instruction::FPExt : return bitc::CAST_FPEXT; 68 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 69 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 70 case Instruction::BitCast : return bitc::CAST_BITCAST; 71 } 72 } 73 74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 75 switch (Opcode) { 76 default: assert(0 && "Unknown binary instruction!"); 77 case Instruction::Add: return bitc::BINOP_ADD; 78 case Instruction::Sub: return bitc::BINOP_SUB; 79 case Instruction::Mul: return bitc::BINOP_MUL; 80 case Instruction::UDiv: return bitc::BINOP_UDIV; 81 case Instruction::FDiv: 82 case Instruction::SDiv: return bitc::BINOP_SDIV; 83 case Instruction::URem: return bitc::BINOP_UREM; 84 case Instruction::FRem: 85 case Instruction::SRem: return bitc::BINOP_SREM; 86 case Instruction::Shl: return bitc::BINOP_SHL; 87 case Instruction::LShr: return bitc::BINOP_LSHR; 88 case Instruction::AShr: return bitc::BINOP_ASHR; 89 case Instruction::And: return bitc::BINOP_AND; 90 case Instruction::Or: return bitc::BINOP_OR; 91 case Instruction::Xor: return bitc::BINOP_XOR; 92 } 93 } 94 95 96 97 static void WriteStringRecord(unsigned Code, const std::string &Str, 98 unsigned AbbrevToUse, BitstreamWriter &Stream) { 99 SmallVector<unsigned, 64> Vals; 100 101 // Code: [strchar x N] 102 for (unsigned i = 0, e = Str.size(); i != e; ++i) 103 Vals.push_back(Str[i]); 104 105 // Emit the finished record. 106 Stream.EmitRecord(Code, Vals, AbbrevToUse); 107 } 108 109 // Emit information about parameter attributes. 110 static void WriteParamAttrTable(const ValueEnumerator &VE, 111 BitstreamWriter &Stream) { 112 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 113 if (Attrs.empty()) return; 114 115 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 116 117 SmallVector<uint64_t, 64> Record; 118 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 119 const ParamAttrsList *A = Attrs[i]; 120 for (unsigned op = 0, e = A->size(); op != e; ++op) { 121 Record.push_back(A->getParamIndex(op)); 122 Record.push_back(A->getParamAttrsAtIndex(op)); 123 } 124 125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 126 Record.clear(); 127 } 128 129 Stream.ExitBlock(); 130 } 131 132 /// WriteTypeTable - Write out the type table for a module. 133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 134 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 135 136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 137 SmallVector<uint64_t, 64> TypeVals; 138 139 // Abbrev for TYPE_CODE_POINTER. 140 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 143 Log2_32_Ceil(VE.getTypes().size()+1))); 144 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 145 146 // Abbrev for TYPE_CODE_FUNCTION. 147 Abbv = new BitCodeAbbrev(); 148 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 151 Log2_32_Ceil(VE.getParamAttrs().size()+1))); 152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 154 Log2_32_Ceil(VE.getTypes().size()+1))); 155 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 156 157 // Abbrev for TYPE_CODE_STRUCT. 158 Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 163 Log2_32_Ceil(VE.getTypes().size()+1))); 164 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 165 166 // Abbrev for TYPE_CODE_ARRAY. 167 Abbv = new BitCodeAbbrev(); 168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 171 Log2_32_Ceil(VE.getTypes().size()+1))); 172 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 173 174 // Emit an entry count so the reader can reserve space. 175 TypeVals.push_back(TypeList.size()); 176 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 177 TypeVals.clear(); 178 179 // Loop over all of the types, emitting each in turn. 180 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 181 const Type *T = TypeList[i].first; 182 int AbbrevToUse = 0; 183 unsigned Code = 0; 184 185 switch (T->getTypeID()) { 186 default: assert(0 && "Unknown type!"); 187 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 188 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 189 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 190 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 191 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 192 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 193 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 194 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 195 case Type::IntegerTyID: 196 // INTEGER: [width] 197 Code = bitc::TYPE_CODE_INTEGER; 198 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 199 break; 200 case Type::PointerTyID: 201 // POINTER: [pointee type] 202 Code = bitc::TYPE_CODE_POINTER; 203 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 204 AbbrevToUse = PtrAbbrev; 205 break; 206 207 case Type::FunctionTyID: { 208 const FunctionType *FT = cast<FunctionType>(T); 209 // FUNCTION: [isvararg, attrid, retty, paramty x N] 210 Code = bitc::TYPE_CODE_FUNCTION; 211 TypeVals.push_back(FT->isVarArg()); 212 TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs())); 213 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 214 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 215 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 216 AbbrevToUse = FunctionAbbrev; 217 break; 218 } 219 case Type::StructTyID: { 220 const StructType *ST = cast<StructType>(T); 221 // STRUCT: [ispacked, eltty x N] 222 Code = bitc::TYPE_CODE_STRUCT; 223 TypeVals.push_back(ST->isPacked()); 224 // Output all of the element types. 225 for (StructType::element_iterator I = ST->element_begin(), 226 E = ST->element_end(); I != E; ++I) 227 TypeVals.push_back(VE.getTypeID(*I)); 228 AbbrevToUse = StructAbbrev; 229 break; 230 } 231 case Type::ArrayTyID: { 232 const ArrayType *AT = cast<ArrayType>(T); 233 // ARRAY: [numelts, eltty] 234 Code = bitc::TYPE_CODE_ARRAY; 235 TypeVals.push_back(AT->getNumElements()); 236 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 237 AbbrevToUse = ArrayAbbrev; 238 break; 239 } 240 case Type::VectorTyID: { 241 const VectorType *VT = cast<VectorType>(T); 242 // VECTOR [numelts, eltty] 243 Code = bitc::TYPE_CODE_VECTOR; 244 TypeVals.push_back(VT->getNumElements()); 245 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 246 break; 247 } 248 } 249 250 // Emit the finished record. 251 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 252 TypeVals.clear(); 253 } 254 255 Stream.ExitBlock(); 256 } 257 258 static unsigned getEncodedLinkage(const GlobalValue *GV) { 259 switch (GV->getLinkage()) { 260 default: assert(0 && "Invalid linkage!"); 261 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 262 case GlobalValue::ExternalLinkage: return 0; 263 case GlobalValue::WeakLinkage: return 1; 264 case GlobalValue::AppendingLinkage: return 2; 265 case GlobalValue::InternalLinkage: return 3; 266 case GlobalValue::LinkOnceLinkage: return 4; 267 case GlobalValue::DLLImportLinkage: return 5; 268 case GlobalValue::DLLExportLinkage: return 6; 269 case GlobalValue::ExternalWeakLinkage: return 7; 270 } 271 } 272 273 static unsigned getEncodedVisibility(const GlobalValue *GV) { 274 switch (GV->getVisibility()) { 275 default: assert(0 && "Invalid visibility!"); 276 case GlobalValue::DefaultVisibility: return 0; 277 case GlobalValue::HiddenVisibility: return 1; 278 case GlobalValue::ProtectedVisibility: return 2; 279 } 280 } 281 282 // Emit top-level description of module, including target triple, inline asm, 283 // descriptors for global variables, and function prototype info. 284 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 285 BitstreamWriter &Stream) { 286 // Emit the list of dependent libraries for the Module. 287 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 288 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 289 290 // Emit various pieces of data attached to a module. 291 if (!M->getTargetTriple().empty()) 292 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 293 0/*TODO*/, Stream); 294 if (!M->getDataLayout().empty()) 295 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 296 0/*TODO*/, Stream); 297 if (!M->getModuleInlineAsm().empty()) 298 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 299 0/*TODO*/, Stream); 300 301 // Emit information about sections, computing how many there are. Also 302 // compute the maximum alignment value. 303 std::map<std::string, unsigned> SectionMap; 304 unsigned MaxAlignment = 0; 305 unsigned MaxGlobalType = 0; 306 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 307 GV != E; ++GV) { 308 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 309 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 310 311 if (!GV->hasSection()) continue; 312 // Give section names unique ID's. 313 unsigned &Entry = SectionMap[GV->getSection()]; 314 if (Entry != 0) continue; 315 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 316 0/*TODO*/, Stream); 317 Entry = SectionMap.size(); 318 } 319 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 320 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 321 if (!F->hasSection()) continue; 322 // Give section names unique ID's. 323 unsigned &Entry = SectionMap[F->getSection()]; 324 if (Entry != 0) continue; 325 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 326 0/*TODO*/, Stream); 327 Entry = SectionMap.size(); 328 } 329 330 // Emit abbrev for globals, now that we know # sections and max alignment. 331 unsigned SimpleGVarAbbrev = 0; 332 if (!M->global_empty()) { 333 // Add an abbrev for common globals with no visibility or thread localness. 334 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 335 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 337 Log2_32_Ceil(MaxGlobalType+1))); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 341 if (MaxAlignment == 0) // Alignment. 342 Abbv->Add(BitCodeAbbrevOp(0)); 343 else { 344 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 346 Log2_32_Ceil(MaxEncAlignment+1))); 347 } 348 if (SectionMap.empty()) // Section. 349 Abbv->Add(BitCodeAbbrevOp(0)); 350 else 351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 352 Log2_32_Ceil(SectionMap.size()+1))); 353 // Don't bother emitting vis + thread local. 354 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 355 } 356 357 // Emit the global variable information. 358 SmallVector<unsigned, 64> Vals; 359 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 360 GV != E; ++GV) { 361 unsigned AbbrevToUse = 0; 362 363 // GLOBALVAR: [type, isconst, initid, 364 // linkage, alignment, section, visibility, threadlocal] 365 Vals.push_back(VE.getTypeID(GV->getType())); 366 Vals.push_back(GV->isConstant()); 367 Vals.push_back(GV->isDeclaration() ? 0 : 368 (VE.getValueID(GV->getInitializer()) + 1)); 369 Vals.push_back(getEncodedLinkage(GV)); 370 Vals.push_back(Log2_32(GV->getAlignment())+1); 371 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 372 if (GV->isThreadLocal() || 373 GV->getVisibility() != GlobalValue::DefaultVisibility) { 374 Vals.push_back(getEncodedVisibility(GV)); 375 Vals.push_back(GV->isThreadLocal()); 376 } else { 377 AbbrevToUse = SimpleGVarAbbrev; 378 } 379 380 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 381 Vals.clear(); 382 } 383 384 // Emit the function proto information. 385 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 386 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section, 387 // visibility] 388 Vals.push_back(VE.getTypeID(F->getType())); 389 Vals.push_back(F->getCallingConv()); 390 Vals.push_back(F->isDeclaration()); 391 Vals.push_back(getEncodedLinkage(F)); 392 393 // Note: we emit the param attr ID number for the function type of this 394 // function. In the future, we intend for attrs to be properties of 395 // functions, instead of on the type. This is to support this future work. 396 Vals.push_back(VE.getParamAttrID(F->getFunctionType()->getParamAttrs())); 397 398 Vals.push_back(Log2_32(F->getAlignment())+1); 399 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 400 Vals.push_back(getEncodedVisibility(F)); 401 402 unsigned AbbrevToUse = 0; 403 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 404 Vals.clear(); 405 } 406 407 408 // Emit the alias information. 409 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 410 AI != E; ++AI) { 411 Vals.push_back(VE.getTypeID(AI->getType())); 412 Vals.push_back(VE.getValueID(AI->getAliasee())); 413 Vals.push_back(getEncodedLinkage(AI)); 414 unsigned AbbrevToUse = 0; 415 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 416 Vals.clear(); 417 } 418 } 419 420 421 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 422 const ValueEnumerator &VE, 423 BitstreamWriter &Stream, bool isGlobal) { 424 if (FirstVal == LastVal) return; 425 426 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 427 428 unsigned AggregateAbbrev = 0; 429 unsigned String8Abbrev = 0; 430 unsigned CString7Abbrev = 0; 431 unsigned CString6Abbrev = 0; 432 // If this is a constant pool for the module, emit module-specific abbrevs. 433 if (isGlobal) { 434 // Abbrev for CST_CODE_AGGREGATE. 435 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 436 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 439 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 440 441 // Abbrev for CST_CODE_STRING. 442 Abbv = new BitCodeAbbrev(); 443 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 446 String8Abbrev = Stream.EmitAbbrev(Abbv); 447 // Abbrev for CST_CODE_CSTRING. 448 Abbv = new BitCodeAbbrev(); 449 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 452 CString7Abbrev = Stream.EmitAbbrev(Abbv); 453 // Abbrev for CST_CODE_CSTRING. 454 Abbv = new BitCodeAbbrev(); 455 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 458 CString6Abbrev = Stream.EmitAbbrev(Abbv); 459 } 460 461 SmallVector<uint64_t, 64> Record; 462 463 const ValueEnumerator::ValueList &Vals = VE.getValues(); 464 const Type *LastTy = 0; 465 for (unsigned i = FirstVal; i != LastVal; ++i) { 466 const Value *V = Vals[i].first; 467 // If we need to switch types, do so now. 468 if (V->getType() != LastTy) { 469 LastTy = V->getType(); 470 Record.push_back(VE.getTypeID(LastTy)); 471 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 472 CONSTANTS_SETTYPE_ABBREV); 473 Record.clear(); 474 } 475 476 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 477 Record.push_back(unsigned(IA->hasSideEffects())); 478 479 // Add the asm string. 480 const std::string &AsmStr = IA->getAsmString(); 481 Record.push_back(AsmStr.size()); 482 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 483 Record.push_back(AsmStr[i]); 484 485 // Add the constraint string. 486 const std::string &ConstraintStr = IA->getConstraintString(); 487 Record.push_back(ConstraintStr.size()); 488 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 489 Record.push_back(ConstraintStr[i]); 490 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 491 Record.clear(); 492 continue; 493 } 494 const Constant *C = cast<Constant>(V); 495 unsigned Code = -1U; 496 unsigned AbbrevToUse = 0; 497 if (C->isNullValue()) { 498 Code = bitc::CST_CODE_NULL; 499 } else if (isa<UndefValue>(C)) { 500 Code = bitc::CST_CODE_UNDEF; 501 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 502 if (IV->getBitWidth() <= 64) { 503 int64_t V = IV->getSExtValue(); 504 if (V >= 0) 505 Record.push_back(V << 1); 506 else 507 Record.push_back((-V << 1) | 1); 508 Code = bitc::CST_CODE_INTEGER; 509 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 510 } else { // Wide integers, > 64 bits in size. 511 // We have an arbitrary precision integer value to write whose 512 // bit width is > 64. However, in canonical unsigned integer 513 // format it is likely that the high bits are going to be zero. 514 // So, we only write the number of active words. 515 unsigned NWords = IV->getValue().getActiveWords(); 516 const uint64_t *RawWords = IV->getValue().getRawData(); 517 for (unsigned i = 0; i != NWords; ++i) { 518 int64_t V = RawWords[i]; 519 if (V >= 0) 520 Record.push_back(V << 1); 521 else 522 Record.push_back((-V << 1) | 1); 523 } 524 Code = bitc::CST_CODE_WIDE_INTEGER; 525 } 526 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 527 Code = bitc::CST_CODE_FLOAT; 528 const Type *Ty = CFP->getType(); 529 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 530 Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue()); 531 } else if (Ty == Type::X86_FP80Ty) { 532 const uint64_t *p = CFP->getValueAPF().convertToAPInt().getRawData(); 533 Record.push_back(p[0]); 534 Record.push_back((uint16_t)p[1]); 535 } else if (Ty == Type::FP128Ty) { 536 const uint64_t *p = CFP->getValueAPF().convertToAPInt().getRawData(); 537 Record.push_back(p[0]); 538 Record.push_back(p[1]); 539 } else if (Ty == Type::PPC_FP128Ty) { 540 assert(0 && "PowerPC long double constants not handled yet."); 541 } else { 542 assert (0 && "Unknown FP type!"); 543 } 544 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 545 // Emit constant strings specially. 546 unsigned NumOps = C->getNumOperands(); 547 // If this is a null-terminated string, use the denser CSTRING encoding. 548 if (C->getOperand(NumOps-1)->isNullValue()) { 549 Code = bitc::CST_CODE_CSTRING; 550 --NumOps; // Don't encode the null, which isn't allowed by char6. 551 } else { 552 Code = bitc::CST_CODE_STRING; 553 AbbrevToUse = String8Abbrev; 554 } 555 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 556 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 557 for (unsigned i = 0; i != NumOps; ++i) { 558 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 559 Record.push_back(V); 560 isCStr7 &= (V & 128) == 0; 561 if (isCStrChar6) 562 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 563 } 564 565 if (isCStrChar6) 566 AbbrevToUse = CString6Abbrev; 567 else if (isCStr7) 568 AbbrevToUse = CString7Abbrev; 569 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 570 isa<ConstantVector>(V)) { 571 Code = bitc::CST_CODE_AGGREGATE; 572 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 573 Record.push_back(VE.getValueID(C->getOperand(i))); 574 AbbrevToUse = AggregateAbbrev; 575 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 576 switch (CE->getOpcode()) { 577 default: 578 if (Instruction::isCast(CE->getOpcode())) { 579 Code = bitc::CST_CODE_CE_CAST; 580 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 581 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 582 Record.push_back(VE.getValueID(C->getOperand(0))); 583 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 584 } else { 585 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 586 Code = bitc::CST_CODE_CE_BINOP; 587 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 588 Record.push_back(VE.getValueID(C->getOperand(0))); 589 Record.push_back(VE.getValueID(C->getOperand(1))); 590 } 591 break; 592 case Instruction::GetElementPtr: 593 Code = bitc::CST_CODE_CE_GEP; 594 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 595 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 596 Record.push_back(VE.getValueID(C->getOperand(i))); 597 } 598 break; 599 case Instruction::Select: 600 Code = bitc::CST_CODE_CE_SELECT; 601 Record.push_back(VE.getValueID(C->getOperand(0))); 602 Record.push_back(VE.getValueID(C->getOperand(1))); 603 Record.push_back(VE.getValueID(C->getOperand(2))); 604 break; 605 case Instruction::ExtractElement: 606 Code = bitc::CST_CODE_CE_EXTRACTELT; 607 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 608 Record.push_back(VE.getValueID(C->getOperand(0))); 609 Record.push_back(VE.getValueID(C->getOperand(1))); 610 break; 611 case Instruction::InsertElement: 612 Code = bitc::CST_CODE_CE_INSERTELT; 613 Record.push_back(VE.getValueID(C->getOperand(0))); 614 Record.push_back(VE.getValueID(C->getOperand(1))); 615 Record.push_back(VE.getValueID(C->getOperand(2))); 616 break; 617 case Instruction::ShuffleVector: 618 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 619 Record.push_back(VE.getValueID(C->getOperand(0))); 620 Record.push_back(VE.getValueID(C->getOperand(1))); 621 Record.push_back(VE.getValueID(C->getOperand(2))); 622 break; 623 case Instruction::ICmp: 624 case Instruction::FCmp: 625 Code = bitc::CST_CODE_CE_CMP; 626 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 627 Record.push_back(VE.getValueID(C->getOperand(0))); 628 Record.push_back(VE.getValueID(C->getOperand(1))); 629 Record.push_back(CE->getPredicate()); 630 break; 631 } 632 } else { 633 assert(0 && "Unknown constant!"); 634 } 635 Stream.EmitRecord(Code, Record, AbbrevToUse); 636 Record.clear(); 637 } 638 639 Stream.ExitBlock(); 640 } 641 642 static void WriteModuleConstants(const ValueEnumerator &VE, 643 BitstreamWriter &Stream) { 644 const ValueEnumerator::ValueList &Vals = VE.getValues(); 645 646 // Find the first constant to emit, which is the first non-globalvalue value. 647 // We know globalvalues have been emitted by WriteModuleInfo. 648 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 649 if (!isa<GlobalValue>(Vals[i].first)) { 650 WriteConstants(i, Vals.size(), VE, Stream, true); 651 return; 652 } 653 } 654 } 655 656 /// PushValueAndType - The file has to encode both the value and type id for 657 /// many values, because we need to know what type to create for forward 658 /// references. However, most operands are not forward references, so this type 659 /// field is not needed. 660 /// 661 /// This function adds V's value ID to Vals. If the value ID is higher than the 662 /// instruction ID, then it is a forward reference, and it also includes the 663 /// type ID. 664 static bool PushValueAndType(Value *V, unsigned InstID, 665 SmallVector<unsigned, 64> &Vals, 666 ValueEnumerator &VE) { 667 unsigned ValID = VE.getValueID(V); 668 Vals.push_back(ValID); 669 if (ValID >= InstID) { 670 Vals.push_back(VE.getTypeID(V->getType())); 671 return true; 672 } 673 return false; 674 } 675 676 /// WriteInstruction - Emit an instruction to the specified stream. 677 static void WriteInstruction(const Instruction &I, unsigned InstID, 678 ValueEnumerator &VE, BitstreamWriter &Stream, 679 SmallVector<unsigned, 64> &Vals) { 680 unsigned Code = 0; 681 unsigned AbbrevToUse = 0; 682 switch (I.getOpcode()) { 683 default: 684 if (Instruction::isCast(I.getOpcode())) { 685 Code = bitc::FUNC_CODE_INST_CAST; 686 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 687 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 688 Vals.push_back(VE.getTypeID(I.getType())); 689 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 690 } else { 691 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 692 Code = bitc::FUNC_CODE_INST_BINOP; 693 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 694 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 695 Vals.push_back(VE.getValueID(I.getOperand(1))); 696 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 697 } 698 break; 699 700 case Instruction::GetElementPtr: 701 Code = bitc::FUNC_CODE_INST_GEP; 702 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 703 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 704 break; 705 case Instruction::Select: 706 Code = bitc::FUNC_CODE_INST_SELECT; 707 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 708 Vals.push_back(VE.getValueID(I.getOperand(2))); 709 Vals.push_back(VE.getValueID(I.getOperand(0))); 710 break; 711 case Instruction::ExtractElement: 712 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 713 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 714 Vals.push_back(VE.getValueID(I.getOperand(1))); 715 break; 716 case Instruction::InsertElement: 717 Code = bitc::FUNC_CODE_INST_INSERTELT; 718 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 719 Vals.push_back(VE.getValueID(I.getOperand(1))); 720 Vals.push_back(VE.getValueID(I.getOperand(2))); 721 break; 722 case Instruction::ShuffleVector: 723 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 724 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 725 Vals.push_back(VE.getValueID(I.getOperand(1))); 726 Vals.push_back(VE.getValueID(I.getOperand(2))); 727 break; 728 case Instruction::ICmp: 729 case Instruction::FCmp: 730 Code = bitc::FUNC_CODE_INST_CMP; 731 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 732 Vals.push_back(VE.getValueID(I.getOperand(1))); 733 Vals.push_back(cast<CmpInst>(I).getPredicate()); 734 break; 735 736 case Instruction::Ret: 737 Code = bitc::FUNC_CODE_INST_RET; 738 if (!I.getNumOperands()) 739 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 740 else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 741 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 742 break; 743 case Instruction::Br: 744 Code = bitc::FUNC_CODE_INST_BR; 745 Vals.push_back(VE.getValueID(I.getOperand(0))); 746 if (cast<BranchInst>(I).isConditional()) { 747 Vals.push_back(VE.getValueID(I.getOperand(1))); 748 Vals.push_back(VE.getValueID(I.getOperand(2))); 749 } 750 break; 751 case Instruction::Switch: 752 Code = bitc::FUNC_CODE_INST_SWITCH; 753 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 754 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 755 Vals.push_back(VE.getValueID(I.getOperand(i))); 756 break; 757 case Instruction::Invoke: { 758 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 759 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 760 Code = bitc::FUNC_CODE_INST_INVOKE; 761 762 // Note: we emit the param attr ID number for the function type of this 763 // function. In the future, we intend for attrs to be properties of 764 // functions, instead of on the type. This is to support this future work. 765 Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs())); 766 767 Vals.push_back(cast<InvokeInst>(I).getCallingConv()); 768 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 769 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 770 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 771 772 // Emit value #'s for the fixed parameters. 773 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 774 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 775 776 // Emit type/value pairs for varargs params. 777 if (FTy->isVarArg()) { 778 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 779 i != e; ++i) 780 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 781 } 782 break; 783 } 784 case Instruction::Unwind: 785 Code = bitc::FUNC_CODE_INST_UNWIND; 786 break; 787 case Instruction::Unreachable: 788 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 789 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 790 break; 791 792 case Instruction::PHI: 793 Code = bitc::FUNC_CODE_INST_PHI; 794 Vals.push_back(VE.getTypeID(I.getType())); 795 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 796 Vals.push_back(VE.getValueID(I.getOperand(i))); 797 break; 798 799 case Instruction::Malloc: 800 Code = bitc::FUNC_CODE_INST_MALLOC; 801 Vals.push_back(VE.getTypeID(I.getType())); 802 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 803 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 804 break; 805 806 case Instruction::Free: 807 Code = bitc::FUNC_CODE_INST_FREE; 808 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 809 break; 810 811 case Instruction::Alloca: 812 Code = bitc::FUNC_CODE_INST_ALLOCA; 813 Vals.push_back(VE.getTypeID(I.getType())); 814 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 815 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 816 break; 817 818 case Instruction::Load: 819 Code = bitc::FUNC_CODE_INST_LOAD; 820 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 821 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 822 823 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 824 Vals.push_back(cast<LoadInst>(I).isVolatile()); 825 break; 826 case Instruction::Store: 827 Code = bitc::FUNC_CODE_INST_STORE; 828 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // val. 829 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr. 830 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 831 Vals.push_back(cast<StoreInst>(I).isVolatile()); 832 break; 833 case Instruction::Call: { 834 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 835 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 836 837 Code = bitc::FUNC_CODE_INST_CALL; 838 839 // Note: we emit the param attr ID number for the function type of this 840 // function. In the future, we intend for attrs to be properties of 841 // functions, instead of on the type. This is to support this future work. 842 Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs())); 843 844 Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) | 845 unsigned(cast<CallInst>(I).isTailCall())); 846 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // Callee 847 848 // Emit value #'s for the fixed parameters. 849 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 850 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 851 852 // Emit type/value pairs for varargs params. 853 if (FTy->isVarArg()) { 854 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 855 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 856 i != e; ++i) 857 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 858 } 859 break; 860 } 861 case Instruction::VAArg: 862 Code = bitc::FUNC_CODE_INST_VAARG; 863 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 864 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 865 Vals.push_back(VE.getTypeID(I.getType())); // restype. 866 break; 867 } 868 869 Stream.EmitRecord(Code, Vals, AbbrevToUse); 870 Vals.clear(); 871 } 872 873 // Emit names for globals/functions etc. 874 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 875 const ValueEnumerator &VE, 876 BitstreamWriter &Stream) { 877 if (VST.empty()) return; 878 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 879 880 // FIXME: Set up the abbrev, we know how many values there are! 881 // FIXME: We know if the type names can use 7-bit ascii. 882 SmallVector<unsigned, 64> NameVals; 883 884 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 885 SI != SE; ++SI) { 886 887 const ValueName &Name = *SI; 888 889 // Figure out the encoding to use for the name. 890 bool is7Bit = true; 891 bool isChar6 = true; 892 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 893 C != E; ++C) { 894 if (isChar6) 895 isChar6 = BitCodeAbbrevOp::isChar6(*C); 896 if ((unsigned char)*C & 128) { 897 is7Bit = false; 898 break; // don't bother scanning the rest. 899 } 900 } 901 902 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 903 904 // VST_ENTRY: [valueid, namechar x N] 905 // VST_BBENTRY: [bbid, namechar x N] 906 unsigned Code; 907 if (isa<BasicBlock>(SI->getValue())) { 908 Code = bitc::VST_CODE_BBENTRY; 909 if (isChar6) 910 AbbrevToUse = VST_BBENTRY_6_ABBREV; 911 } else { 912 Code = bitc::VST_CODE_ENTRY; 913 if (isChar6) 914 AbbrevToUse = VST_ENTRY_6_ABBREV; 915 else if (is7Bit) 916 AbbrevToUse = VST_ENTRY_7_ABBREV; 917 } 918 919 NameVals.push_back(VE.getValueID(SI->getValue())); 920 for (const char *P = Name.getKeyData(), 921 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 922 NameVals.push_back((unsigned char)*P); 923 924 // Emit the finished record. 925 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 926 NameVals.clear(); 927 } 928 Stream.ExitBlock(); 929 } 930 931 /// WriteFunction - Emit a function body to the module stream. 932 static void WriteFunction(const Function &F, ValueEnumerator &VE, 933 BitstreamWriter &Stream) { 934 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 935 VE.incorporateFunction(F); 936 937 SmallVector<unsigned, 64> Vals; 938 939 // Emit the number of basic blocks, so the reader can create them ahead of 940 // time. 941 Vals.push_back(VE.getBasicBlocks().size()); 942 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 943 Vals.clear(); 944 945 // If there are function-local constants, emit them now. 946 unsigned CstStart, CstEnd; 947 VE.getFunctionConstantRange(CstStart, CstEnd); 948 WriteConstants(CstStart, CstEnd, VE, Stream, false); 949 950 // Keep a running idea of what the instruction ID is. 951 unsigned InstID = CstEnd; 952 953 // Finally, emit all the instructions, in order. 954 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 955 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 956 I != E; ++I) { 957 WriteInstruction(*I, InstID, VE, Stream, Vals); 958 if (I->getType() != Type::VoidTy) 959 ++InstID; 960 } 961 962 // Emit names for all the instructions etc. 963 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 964 965 VE.purgeFunction(); 966 Stream.ExitBlock(); 967 } 968 969 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 970 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 971 const ValueEnumerator &VE, 972 BitstreamWriter &Stream) { 973 if (TST.empty()) return; 974 975 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 976 977 // 7-bit fixed width VST_CODE_ENTRY strings. 978 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 979 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 981 Log2_32_Ceil(VE.getTypes().size()+1))); 982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 984 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 985 986 SmallVector<unsigned, 64> NameVals; 987 988 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 989 TI != TE; ++TI) { 990 // TST_ENTRY: [typeid, namechar x N] 991 NameVals.push_back(VE.getTypeID(TI->second)); 992 993 const std::string &Str = TI->first; 994 bool is7Bit = true; 995 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 996 NameVals.push_back((unsigned char)Str[i]); 997 if (Str[i] & 128) 998 is7Bit = false; 999 } 1000 1001 // Emit the finished record. 1002 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1003 NameVals.clear(); 1004 } 1005 1006 Stream.ExitBlock(); 1007 } 1008 1009 // Emit blockinfo, which defines the standard abbreviations etc. 1010 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1011 // We only want to emit block info records for blocks that have multiple 1012 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1013 // blocks can defined their abbrevs inline. 1014 Stream.EnterBlockInfoBlock(2); 1015 1016 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1017 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1022 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1023 Abbv) != VST_ENTRY_8_ABBREV) 1024 assert(0 && "Unexpected abbrev ordering!"); 1025 } 1026 1027 { // 7-bit fixed width VST_ENTRY strings. 1028 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1029 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1033 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1034 Abbv) != VST_ENTRY_7_ABBREV) 1035 assert(0 && "Unexpected abbrev ordering!"); 1036 } 1037 { // 6-bit char6 VST_ENTRY strings. 1038 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1039 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1043 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1044 Abbv) != VST_ENTRY_6_ABBREV) 1045 assert(0 && "Unexpected abbrev ordering!"); 1046 } 1047 { // 6-bit char6 VST_BBENTRY strings. 1048 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1049 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1053 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1054 Abbv) != VST_BBENTRY_6_ABBREV) 1055 assert(0 && "Unexpected abbrev ordering!"); 1056 } 1057 1058 1059 1060 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1061 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1062 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1064 Log2_32_Ceil(VE.getTypes().size()+1))); 1065 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1066 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1067 assert(0 && "Unexpected abbrev ordering!"); 1068 } 1069 1070 { // INTEGER abbrev for CONSTANTS_BLOCK. 1071 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1072 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1074 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1075 Abbv) != CONSTANTS_INTEGER_ABBREV) 1076 assert(0 && "Unexpected abbrev ordering!"); 1077 } 1078 1079 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1080 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1081 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1084 Log2_32_Ceil(VE.getTypes().size()+1))); 1085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1086 1087 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1088 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1089 assert(0 && "Unexpected abbrev ordering!"); 1090 } 1091 { // NULL abbrev for CONSTANTS_BLOCK. 1092 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1093 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1094 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1095 Abbv) != CONSTANTS_NULL_Abbrev) 1096 assert(0 && "Unexpected abbrev ordering!"); 1097 } 1098 1099 // FIXME: This should only use space for first class types! 1100 1101 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1102 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1103 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1107 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1108 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1109 assert(0 && "Unexpected abbrev ordering!"); 1110 } 1111 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1112 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1113 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1117 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1118 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1119 assert(0 && "Unexpected abbrev ordering!"); 1120 } 1121 { // INST_CAST abbrev for FUNCTION_BLOCK. 1122 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1123 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1126 Log2_32_Ceil(VE.getTypes().size()+1))); 1127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1128 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1129 Abbv) != FUNCTION_INST_CAST_ABBREV) 1130 assert(0 && "Unexpected abbrev ordering!"); 1131 } 1132 1133 { // INST_RET abbrev for FUNCTION_BLOCK. 1134 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1135 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1136 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1137 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1138 assert(0 && "Unexpected abbrev ordering!"); 1139 } 1140 { // INST_RET abbrev for FUNCTION_BLOCK. 1141 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1142 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1144 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1145 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1146 assert(0 && "Unexpected abbrev ordering!"); 1147 } 1148 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1149 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1150 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1151 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1152 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1153 assert(0 && "Unexpected abbrev ordering!"); 1154 } 1155 1156 Stream.ExitBlock(); 1157 } 1158 1159 1160 /// WriteModule - Emit the specified module to the bitstream. 1161 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1162 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1163 1164 // Emit the version number if it is non-zero. 1165 if (CurVersion) { 1166 SmallVector<unsigned, 1> Vals; 1167 Vals.push_back(CurVersion); 1168 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1169 } 1170 1171 // Analyze the module, enumerating globals, functions, etc. 1172 ValueEnumerator VE(M); 1173 1174 // Emit blockinfo, which defines the standard abbreviations etc. 1175 WriteBlockInfo(VE, Stream); 1176 1177 // Emit information about parameter attributes. 1178 WriteParamAttrTable(VE, Stream); 1179 1180 // Emit information describing all of the types in the module. 1181 WriteTypeTable(VE, Stream); 1182 1183 // Emit top-level description of module, including target triple, inline asm, 1184 // descriptors for global variables, and function prototype info. 1185 WriteModuleInfo(M, VE, Stream); 1186 1187 // Emit constants. 1188 WriteModuleConstants(VE, Stream); 1189 1190 // If we have any aggregate values in the value table, purge them - these can 1191 // only be used to initialize global variables. Doing so makes the value 1192 // namespace smaller for code in functions. 1193 int NumNonAggregates = VE.PurgeAggregateValues(); 1194 if (NumNonAggregates != -1) { 1195 SmallVector<unsigned, 1> Vals; 1196 Vals.push_back(NumNonAggregates); 1197 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1198 } 1199 1200 // Emit function bodies. 1201 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1202 if (!I->isDeclaration()) 1203 WriteFunction(*I, VE, Stream); 1204 1205 // Emit the type symbol table information. 1206 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1207 1208 // Emit names for globals/functions etc. 1209 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1210 1211 Stream.ExitBlock(); 1212 } 1213 1214 1215 /// WriteBitcodeToFile - Write the specified module to the specified output 1216 /// stream. 1217 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1218 std::vector<unsigned char> Buffer; 1219 BitstreamWriter Stream(Buffer); 1220 1221 Buffer.reserve(256*1024); 1222 1223 // Emit the file header. 1224 Stream.Emit((unsigned)'B', 8); 1225 Stream.Emit((unsigned)'C', 8); 1226 Stream.Emit(0x0, 4); 1227 Stream.Emit(0xC, 4); 1228 Stream.Emit(0xE, 4); 1229 Stream.Emit(0xD, 4); 1230 1231 // Emit the module. 1232 WriteModule(M, Stream); 1233 1234 // Write the generated bitstream to "Out". 1235 Out.write((char*)&Buffer.front(), Buffer.size()); 1236 1237 // Make sure it hits disk now. 1238 Out.flush(); 1239 } 1240