1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV 60 }; 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 78 } 79 } 80 81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 82 switch (Opcode) { 83 default: llvm_unreachable("Unknown binary instruction!"); 84 case Instruction::Add: 85 case Instruction::FAdd: return bitc::BINOP_ADD; 86 case Instruction::Sub: 87 case Instruction::FSub: return bitc::BINOP_SUB; 88 case Instruction::Mul: 89 case Instruction::FMul: return bitc::BINOP_MUL; 90 case Instruction::UDiv: return bitc::BINOP_UDIV; 91 case Instruction::FDiv: 92 case Instruction::SDiv: return bitc::BINOP_SDIV; 93 case Instruction::URem: return bitc::BINOP_UREM; 94 case Instruction::FRem: 95 case Instruction::SRem: return bitc::BINOP_SREM; 96 case Instruction::Shl: return bitc::BINOP_SHL; 97 case Instruction::LShr: return bitc::BINOP_LSHR; 98 case Instruction::AShr: return bitc::BINOP_ASHR; 99 case Instruction::And: return bitc::BINOP_AND; 100 case Instruction::Or: return bitc::BINOP_OR; 101 case Instruction::Xor: return bitc::BINOP_XOR; 102 } 103 } 104 105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 106 switch (Op) { 107 default: llvm_unreachable("Unknown RMW operation!"); 108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 109 case AtomicRMWInst::Add: return bitc::RMW_ADD; 110 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 111 case AtomicRMWInst::And: return bitc::RMW_AND; 112 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 113 case AtomicRMWInst::Or: return bitc::RMW_OR; 114 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 115 case AtomicRMWInst::Max: return bitc::RMW_MAX; 116 case AtomicRMWInst::Min: return bitc::RMW_MIN; 117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 119 } 120 } 121 122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 123 switch (Ordering) { 124 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 125 case Unordered: return bitc::ORDERING_UNORDERED; 126 case Monotonic: return bitc::ORDERING_MONOTONIC; 127 case Acquire: return bitc::ORDERING_ACQUIRE; 128 case Release: return bitc::ORDERING_RELEASE; 129 case AcquireRelease: return bitc::ORDERING_ACQREL; 130 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 131 } 132 llvm_unreachable("Invalid ordering"); 133 } 134 135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 136 switch (SynchScope) { 137 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 138 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 139 } 140 llvm_unreachable("Invalid synch scope"); 141 } 142 143 static void WriteStringRecord(unsigned Code, StringRef Str, 144 unsigned AbbrevToUse, BitstreamWriter &Stream) { 145 SmallVector<unsigned, 64> Vals; 146 147 // Code: [strchar x N] 148 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 150 AbbrevToUse = 0; 151 Vals.push_back(Str[i]); 152 } 153 154 // Emit the finished record. 155 Stream.EmitRecord(Code, Vals, AbbrevToUse); 156 } 157 158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 159 switch (Kind) { 160 case Attribute::Alignment: 161 return bitc::ATTR_KIND_ALIGNMENT; 162 case Attribute::AlwaysInline: 163 return bitc::ATTR_KIND_ALWAYS_INLINE; 164 case Attribute::Builtin: 165 return bitc::ATTR_KIND_BUILTIN; 166 case Attribute::ByVal: 167 return bitc::ATTR_KIND_BY_VAL; 168 case Attribute::InAlloca: 169 return bitc::ATTR_KIND_IN_ALLOCA; 170 case Attribute::Cold: 171 return bitc::ATTR_KIND_COLD; 172 case Attribute::InlineHint: 173 return bitc::ATTR_KIND_INLINE_HINT; 174 case Attribute::InReg: 175 return bitc::ATTR_KIND_IN_REG; 176 case Attribute::JumpTable: 177 return bitc::ATTR_KIND_JUMP_TABLE; 178 case Attribute::MinSize: 179 return bitc::ATTR_KIND_MIN_SIZE; 180 case Attribute::Naked: 181 return bitc::ATTR_KIND_NAKED; 182 case Attribute::Nest: 183 return bitc::ATTR_KIND_NEST; 184 case Attribute::NoAlias: 185 return bitc::ATTR_KIND_NO_ALIAS; 186 case Attribute::NoBuiltin: 187 return bitc::ATTR_KIND_NO_BUILTIN; 188 case Attribute::NoCapture: 189 return bitc::ATTR_KIND_NO_CAPTURE; 190 case Attribute::NoDuplicate: 191 return bitc::ATTR_KIND_NO_DUPLICATE; 192 case Attribute::NoImplicitFloat: 193 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 194 case Attribute::NoInline: 195 return bitc::ATTR_KIND_NO_INLINE; 196 case Attribute::NonLazyBind: 197 return bitc::ATTR_KIND_NON_LAZY_BIND; 198 case Attribute::NonNull: 199 return bitc::ATTR_KIND_NON_NULL; 200 case Attribute::Dereferenceable: 201 return bitc::ATTR_KIND_DEREFERENCEABLE; 202 case Attribute::NoRedZone: 203 return bitc::ATTR_KIND_NO_RED_ZONE; 204 case Attribute::NoReturn: 205 return bitc::ATTR_KIND_NO_RETURN; 206 case Attribute::NoUnwind: 207 return bitc::ATTR_KIND_NO_UNWIND; 208 case Attribute::OptimizeForSize: 209 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 210 case Attribute::OptimizeNone: 211 return bitc::ATTR_KIND_OPTIMIZE_NONE; 212 case Attribute::ReadNone: 213 return bitc::ATTR_KIND_READ_NONE; 214 case Attribute::ReadOnly: 215 return bitc::ATTR_KIND_READ_ONLY; 216 case Attribute::Returned: 217 return bitc::ATTR_KIND_RETURNED; 218 case Attribute::ReturnsTwice: 219 return bitc::ATTR_KIND_RETURNS_TWICE; 220 case Attribute::SExt: 221 return bitc::ATTR_KIND_S_EXT; 222 case Attribute::StackAlignment: 223 return bitc::ATTR_KIND_STACK_ALIGNMENT; 224 case Attribute::StackProtect: 225 return bitc::ATTR_KIND_STACK_PROTECT; 226 case Attribute::StackProtectReq: 227 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 228 case Attribute::StackProtectStrong: 229 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 230 case Attribute::StructRet: 231 return bitc::ATTR_KIND_STRUCT_RET; 232 case Attribute::SanitizeAddress: 233 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 234 case Attribute::SanitizeThread: 235 return bitc::ATTR_KIND_SANITIZE_THREAD; 236 case Attribute::SanitizeMemory: 237 return bitc::ATTR_KIND_SANITIZE_MEMORY; 238 case Attribute::UWTable: 239 return bitc::ATTR_KIND_UW_TABLE; 240 case Attribute::ZExt: 241 return bitc::ATTR_KIND_Z_EXT; 242 case Attribute::EndAttrKinds: 243 llvm_unreachable("Can not encode end-attribute kinds marker."); 244 case Attribute::None: 245 llvm_unreachable("Can not encode none-attribute."); 246 } 247 248 llvm_unreachable("Trying to encode unknown attribute"); 249 } 250 251 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 252 BitstreamWriter &Stream) { 253 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 254 if (AttrGrps.empty()) return; 255 256 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 257 258 SmallVector<uint64_t, 64> Record; 259 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 260 AttributeSet AS = AttrGrps[i]; 261 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 262 AttributeSet A = AS.getSlotAttributes(i); 263 264 Record.push_back(VE.getAttributeGroupID(A)); 265 Record.push_back(AS.getSlotIndex(i)); 266 267 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 268 I != E; ++I) { 269 Attribute Attr = *I; 270 if (Attr.isEnumAttribute()) { 271 Record.push_back(0); 272 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 273 } else if (Attr.isIntAttribute()) { 274 Record.push_back(1); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 Record.push_back(Attr.getValueAsInt()); 277 } else { 278 StringRef Kind = Attr.getKindAsString(); 279 StringRef Val = Attr.getValueAsString(); 280 281 Record.push_back(Val.empty() ? 3 : 4); 282 Record.append(Kind.begin(), Kind.end()); 283 Record.push_back(0); 284 if (!Val.empty()) { 285 Record.append(Val.begin(), Val.end()); 286 Record.push_back(0); 287 } 288 } 289 } 290 291 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 292 Record.clear(); 293 } 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static void WriteAttributeTable(const ValueEnumerator &VE, 300 BitstreamWriter &Stream) { 301 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 302 if (Attrs.empty()) return; 303 304 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 305 306 SmallVector<uint64_t, 64> Record; 307 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 308 const AttributeSet &A = Attrs[i]; 309 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 310 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 311 312 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 313 Record.clear(); 314 } 315 316 Stream.ExitBlock(); 317 } 318 319 /// WriteTypeTable - Write out the type table for a module. 320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 321 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 322 323 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 324 SmallVector<uint64_t, 64> TypeVals; 325 326 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 327 328 // Abbrev for TYPE_CODE_POINTER. 329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 330 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 332 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 333 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 334 335 // Abbrev for TYPE_CODE_FUNCTION. 336 Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 342 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_STRUCT_ANON. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_NAME. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 358 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAMED. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_ARRAY. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Emit an entry count so the reader can reserve space. 378 TypeVals.push_back(TypeList.size()); 379 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 380 TypeVals.clear(); 381 382 // Loop over all of the types, emitting each in turn. 383 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 384 Type *T = TypeList[i]; 385 int AbbrevToUse = 0; 386 unsigned Code = 0; 387 388 switch (T->getTypeID()) { 389 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 390 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 391 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 392 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 393 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 394 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 395 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 396 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 397 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 398 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 399 case Type::IntegerTyID: 400 // INTEGER: [width] 401 Code = bitc::TYPE_CODE_INTEGER; 402 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 403 break; 404 case Type::PointerTyID: { 405 PointerType *PTy = cast<PointerType>(T); 406 // POINTER: [pointee type, address space] 407 Code = bitc::TYPE_CODE_POINTER; 408 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 409 unsigned AddressSpace = PTy->getAddressSpace(); 410 TypeVals.push_back(AddressSpace); 411 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 412 break; 413 } 414 case Type::FunctionTyID: { 415 FunctionType *FT = cast<FunctionType>(T); 416 // FUNCTION: [isvararg, retty, paramty x N] 417 Code = bitc::TYPE_CODE_FUNCTION; 418 TypeVals.push_back(FT->isVarArg()); 419 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 421 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 422 AbbrevToUse = FunctionAbbrev; 423 break; 424 } 425 case Type::StructTyID: { 426 StructType *ST = cast<StructType>(T); 427 // STRUCT: [ispacked, eltty x N] 428 TypeVals.push_back(ST->isPacked()); 429 // Output all of the element types. 430 for (StructType::element_iterator I = ST->element_begin(), 431 E = ST->element_end(); I != E; ++I) 432 TypeVals.push_back(VE.getTypeID(*I)); 433 434 if (ST->isLiteral()) { 435 Code = bitc::TYPE_CODE_STRUCT_ANON; 436 AbbrevToUse = StructAnonAbbrev; 437 } else { 438 if (ST->isOpaque()) { 439 Code = bitc::TYPE_CODE_OPAQUE; 440 } else { 441 Code = bitc::TYPE_CODE_STRUCT_NAMED; 442 AbbrevToUse = StructNamedAbbrev; 443 } 444 445 // Emit the name if it is present. 446 if (!ST->getName().empty()) 447 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 448 StructNameAbbrev, Stream); 449 } 450 break; 451 } 452 case Type::ArrayTyID: { 453 ArrayType *AT = cast<ArrayType>(T); 454 // ARRAY: [numelts, eltty] 455 Code = bitc::TYPE_CODE_ARRAY; 456 TypeVals.push_back(AT->getNumElements()); 457 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 458 AbbrevToUse = ArrayAbbrev; 459 break; 460 } 461 case Type::VectorTyID: { 462 VectorType *VT = cast<VectorType>(T); 463 // VECTOR [numelts, eltty] 464 Code = bitc::TYPE_CODE_VECTOR; 465 TypeVals.push_back(VT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 467 break; 468 } 469 } 470 471 // Emit the finished record. 472 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 473 TypeVals.clear(); 474 } 475 476 Stream.ExitBlock(); 477 } 478 479 static unsigned getEncodedLinkage(const GlobalValue &GV) { 480 switch (GV.getLinkage()) { 481 case GlobalValue::ExternalLinkage: 482 return 0; 483 case GlobalValue::WeakAnyLinkage: 484 return 16; 485 case GlobalValue::AppendingLinkage: 486 return 2; 487 case GlobalValue::InternalLinkage: 488 return 3; 489 case GlobalValue::LinkOnceAnyLinkage: 490 return 18; 491 case GlobalValue::ExternalWeakLinkage: 492 return 7; 493 case GlobalValue::CommonLinkage: 494 return 8; 495 case GlobalValue::PrivateLinkage: 496 return 9; 497 case GlobalValue::WeakODRLinkage: 498 return 17; 499 case GlobalValue::LinkOnceODRLinkage: 500 return 19; 501 case GlobalValue::AvailableExternallyLinkage: 502 return 12; 503 } 504 llvm_unreachable("Invalid linkage"); 505 } 506 507 static unsigned getEncodedVisibility(const GlobalValue &GV) { 508 switch (GV.getVisibility()) { 509 case GlobalValue::DefaultVisibility: return 0; 510 case GlobalValue::HiddenVisibility: return 1; 511 case GlobalValue::ProtectedVisibility: return 2; 512 } 513 llvm_unreachable("Invalid visibility"); 514 } 515 516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 517 switch (GV.getDLLStorageClass()) { 518 case GlobalValue::DefaultStorageClass: return 0; 519 case GlobalValue::DLLImportStorageClass: return 1; 520 case GlobalValue::DLLExportStorageClass: return 2; 521 } 522 llvm_unreachable("Invalid DLL storage class"); 523 } 524 525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 526 switch (GV.getThreadLocalMode()) { 527 case GlobalVariable::NotThreadLocal: return 0; 528 case GlobalVariable::GeneralDynamicTLSModel: return 1; 529 case GlobalVariable::LocalDynamicTLSModel: return 2; 530 case GlobalVariable::InitialExecTLSModel: return 3; 531 case GlobalVariable::LocalExecTLSModel: return 4; 532 } 533 llvm_unreachable("Invalid TLS model"); 534 } 535 536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 537 switch (C.getSelectionKind()) { 538 case Comdat::Any: 539 return bitc::COMDAT_SELECTION_KIND_ANY; 540 case Comdat::ExactMatch: 541 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 542 case Comdat::Largest: 543 return bitc::COMDAT_SELECTION_KIND_LARGEST; 544 case Comdat::NoDuplicates: 545 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 546 case Comdat::SameSize: 547 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 548 } 549 llvm_unreachable("Invalid selection kind"); 550 } 551 552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 553 SmallVector<uint16_t, 64> Vals; 554 for (const Comdat *C : VE.getComdats()) { 555 // COMDAT: [selection_kind, name] 556 Vals.push_back(getEncodedComdatSelectionKind(*C)); 557 size_t Size = C->getName().size(); 558 assert(isUInt<16>(Size)); 559 Vals.push_back(Size); 560 for (char Chr : C->getName()) 561 Vals.push_back((unsigned char)Chr); 562 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 563 Vals.clear(); 564 } 565 } 566 567 // Emit top-level description of module, including target triple, inline asm, 568 // descriptors for global variables, and function prototype info. 569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 570 BitstreamWriter &Stream) { 571 // Emit various pieces of data attached to a module. 572 if (!M->getTargetTriple().empty()) 573 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 574 0/*TODO*/, Stream); 575 const std::string &DL = M->getDataLayoutStr(); 576 if (!DL.empty()) 577 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 578 if (!M->getModuleInlineAsm().empty()) 579 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 580 0/*TODO*/, Stream); 581 582 // Emit information about sections and GC, computing how many there are. Also 583 // compute the maximum alignment value. 584 std::map<std::string, unsigned> SectionMap; 585 std::map<std::string, unsigned> GCMap; 586 unsigned MaxAlignment = 0; 587 unsigned MaxGlobalType = 0; 588 for (const GlobalValue &GV : M->globals()) { 589 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 590 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 591 if (GV.hasSection()) { 592 // Give section names unique ID's. 593 unsigned &Entry = SectionMap[GV.getSection()]; 594 if (!Entry) { 595 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 596 0/*TODO*/, Stream); 597 Entry = SectionMap.size(); 598 } 599 } 600 } 601 for (const Function &F : *M) { 602 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 603 if (F.hasSection()) { 604 // Give section names unique ID's. 605 unsigned &Entry = SectionMap[F.getSection()]; 606 if (!Entry) { 607 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 608 0/*TODO*/, Stream); 609 Entry = SectionMap.size(); 610 } 611 } 612 if (F.hasGC()) { 613 // Same for GC names. 614 unsigned &Entry = GCMap[F.getGC()]; 615 if (!Entry) { 616 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 617 0/*TODO*/, Stream); 618 Entry = GCMap.size(); 619 } 620 } 621 } 622 623 // Emit abbrev for globals, now that we know # sections and max alignment. 624 unsigned SimpleGVarAbbrev = 0; 625 if (!M->global_empty()) { 626 // Add an abbrev for common globals with no visibility or thread localness. 627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 628 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 630 Log2_32_Ceil(MaxGlobalType+1))); 631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 634 if (MaxAlignment == 0) // Alignment. 635 Abbv->Add(BitCodeAbbrevOp(0)); 636 else { 637 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 639 Log2_32_Ceil(MaxEncAlignment+1))); 640 } 641 if (SectionMap.empty()) // Section. 642 Abbv->Add(BitCodeAbbrevOp(0)); 643 else 644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 645 Log2_32_Ceil(SectionMap.size()+1))); 646 // Don't bother emitting vis + thread local. 647 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 648 } 649 650 // Emit the global variable information. 651 SmallVector<unsigned, 64> Vals; 652 for (const GlobalVariable &GV : M->globals()) { 653 unsigned AbbrevToUse = 0; 654 655 // GLOBALVAR: [type, isconst, initid, 656 // linkage, alignment, section, visibility, threadlocal, 657 // unnamed_addr, externally_initialized, dllstorageclass, 658 // comdat] 659 Vals.push_back(VE.getTypeID(GV.getType())); 660 Vals.push_back(GV.isConstant()); 661 Vals.push_back(GV.isDeclaration() ? 0 : 662 (VE.getValueID(GV.getInitializer()) + 1)); 663 Vals.push_back(getEncodedLinkage(GV)); 664 Vals.push_back(Log2_32(GV.getAlignment())+1); 665 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 666 if (GV.isThreadLocal() || 667 GV.getVisibility() != GlobalValue::DefaultVisibility || 668 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 669 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 670 GV.hasComdat()) { 671 Vals.push_back(getEncodedVisibility(GV)); 672 Vals.push_back(getEncodedThreadLocalMode(GV)); 673 Vals.push_back(GV.hasUnnamedAddr()); 674 Vals.push_back(GV.isExternallyInitialized()); 675 Vals.push_back(getEncodedDLLStorageClass(GV)); 676 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 677 } else { 678 AbbrevToUse = SimpleGVarAbbrev; 679 } 680 681 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 682 Vals.clear(); 683 } 684 685 // Emit the function proto information. 686 for (const Function &F : *M) { 687 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 688 // section, visibility, gc, unnamed_addr, prologuedata, 689 // dllstorageclass, comdat, prefixdata] 690 Vals.push_back(VE.getTypeID(F.getType())); 691 Vals.push_back(F.getCallingConv()); 692 Vals.push_back(F.isDeclaration()); 693 Vals.push_back(getEncodedLinkage(F)); 694 Vals.push_back(VE.getAttributeID(F.getAttributes())); 695 Vals.push_back(Log2_32(F.getAlignment())+1); 696 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 697 Vals.push_back(getEncodedVisibility(F)); 698 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 699 Vals.push_back(F.hasUnnamedAddr()); 700 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 701 : 0); 702 Vals.push_back(getEncodedDLLStorageClass(F)); 703 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 704 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 705 : 0); 706 707 unsigned AbbrevToUse = 0; 708 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 709 Vals.clear(); 710 } 711 712 // Emit the alias information. 713 for (const GlobalAlias &A : M->aliases()) { 714 // ALIAS: [alias type, aliasee val#, linkage, visibility] 715 Vals.push_back(VE.getTypeID(A.getType())); 716 Vals.push_back(VE.getValueID(A.getAliasee())); 717 Vals.push_back(getEncodedLinkage(A)); 718 Vals.push_back(getEncodedVisibility(A)); 719 Vals.push_back(getEncodedDLLStorageClass(A)); 720 Vals.push_back(getEncodedThreadLocalMode(A)); 721 Vals.push_back(A.hasUnnamedAddr()); 722 unsigned AbbrevToUse = 0; 723 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 724 Vals.clear(); 725 } 726 } 727 728 static uint64_t GetOptimizationFlags(const Value *V) { 729 uint64_t Flags = 0; 730 731 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 732 if (OBO->hasNoSignedWrap()) 733 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 734 if (OBO->hasNoUnsignedWrap()) 735 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 736 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 737 if (PEO->isExact()) 738 Flags |= 1 << bitc::PEO_EXACT; 739 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 740 if (FPMO->hasUnsafeAlgebra()) 741 Flags |= FastMathFlags::UnsafeAlgebra; 742 if (FPMO->hasNoNaNs()) 743 Flags |= FastMathFlags::NoNaNs; 744 if (FPMO->hasNoInfs()) 745 Flags |= FastMathFlags::NoInfs; 746 if (FPMO->hasNoSignedZeros()) 747 Flags |= FastMathFlags::NoSignedZeros; 748 if (FPMO->hasAllowReciprocal()) 749 Flags |= FastMathFlags::AllowReciprocal; 750 } 751 752 return Flags; 753 } 754 755 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 756 const ValueEnumerator &VE, 757 BitstreamWriter &Stream, 758 SmallVectorImpl<uint64_t> &Record) { 759 // Mimic an MDNode with a value as one operand. 760 Value *V = MD->getValue(); 761 Record.push_back(VE.getTypeID(V->getType())); 762 Record.push_back(VE.getValueID(V)); 763 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 764 Record.clear(); 765 } 766 767 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 768 BitstreamWriter &Stream, 769 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 770 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 771 Metadata *MD = N->getOperand(i); 772 assert(!(MD && isa<LocalAsMetadata>(MD)) && 773 "Unexpected function-local metadata"); 774 Record.push_back(VE.getMetadataOrNullID(MD)); 775 } 776 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 777 : bitc::METADATA_NODE, 778 Record, Abbrev); 779 Record.clear(); 780 } 781 782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 783 BitstreamWriter &Stream, 784 SmallVectorImpl<uint64_t> &Record, 785 unsigned Abbrev) { 786 Record.push_back(N->isDistinct()); 787 Record.push_back(N->getLine()); 788 Record.push_back(N->getColumn()); 789 Record.push_back(VE.getMetadataID(N->getScope())); 790 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 791 792 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 793 Record.clear(); 794 } 795 796 static void WriteGenericDebugNode(const GenericDebugNode *N, 797 const ValueEnumerator &VE, 798 BitstreamWriter &Stream, 799 SmallVectorImpl<uint64_t> &Record, 800 unsigned Abbrev) { 801 Record.push_back(N->isDistinct()); 802 Record.push_back(N->getTag()); 803 Record.push_back(0); // Per-tag version field; unused for now. 804 805 for (auto &I : N->operands()) 806 Record.push_back(VE.getMetadataOrNullID(I)); 807 808 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 809 Record.clear(); 810 } 811 812 static void WriteMDSubrange(const MDSubrange *, const ValueEnumerator &, 813 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 814 unsigned) { 815 llvm_unreachable("write not implemented"); 816 } 817 static void WriteMDEnumerator(const MDEnumerator *, const ValueEnumerator &, 818 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 819 unsigned) { 820 llvm_unreachable("write not implemented"); 821 } 822 static void WriteMDBasicType(const MDBasicType *, const ValueEnumerator &, 823 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 824 unsigned) { 825 llvm_unreachable("write not implemented"); 826 } 827 static void WriteMDDerivedType(const MDDerivedType *, const ValueEnumerator &, 828 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 829 unsigned) { 830 llvm_unreachable("write not implemented"); 831 } 832 static void WriteMDCompositeType(const MDCompositeType *, 833 const ValueEnumerator &, BitstreamWriter &, 834 SmallVectorImpl<uint64_t> &, unsigned) { 835 llvm_unreachable("write not implemented"); 836 } 837 static void WriteMDSubroutineType(const MDSubroutineType *, 838 const ValueEnumerator &, BitstreamWriter &, 839 SmallVectorImpl<uint64_t> &, unsigned) { 840 llvm_unreachable("write not implemented"); 841 } 842 static void WriteMDFile(const MDFile *, const ValueEnumerator &, 843 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 844 unsigned) { 845 llvm_unreachable("write not implemented"); 846 } 847 static void WriteMDCompileUnit(const MDCompileUnit *, const ValueEnumerator &, 848 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 849 unsigned) { 850 llvm_unreachable("write not implemented"); 851 } 852 static void WriteMDSubprogram(const MDSubprogram *, const ValueEnumerator &, 853 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 854 unsigned) { 855 llvm_unreachable("write not implemented"); 856 } 857 static void WriteMDLexicalBlock(const MDLexicalBlock *, const ValueEnumerator &, 858 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 859 unsigned) { 860 llvm_unreachable("write not implemented"); 861 } 862 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *, 863 const ValueEnumerator &, BitstreamWriter &, 864 SmallVectorImpl<uint64_t> &, unsigned) { 865 llvm_unreachable("write not implemented"); 866 } 867 static void WriteMDNamespace(const MDNamespace *, const ValueEnumerator &, 868 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 869 unsigned) { 870 llvm_unreachable("write not implemented"); 871 } 872 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *, 873 const ValueEnumerator &, 874 BitstreamWriter &, 875 SmallVectorImpl<uint64_t> &, 876 unsigned) { 877 llvm_unreachable("write not implemented"); 878 } 879 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *, 880 const ValueEnumerator &, 881 BitstreamWriter &, 882 SmallVectorImpl<uint64_t> &, 883 unsigned) { 884 llvm_unreachable("write not implemented"); 885 } 886 static void WriteMDGlobalVariable(const MDGlobalVariable *, 887 const ValueEnumerator &, BitstreamWriter &, 888 SmallVectorImpl<uint64_t> &, unsigned) { 889 llvm_unreachable("write not implemented"); 890 } 891 static void WriteMDLocalVariable(const MDLocalVariable *, 892 const ValueEnumerator &, BitstreamWriter &, 893 SmallVectorImpl<uint64_t> &, unsigned) { 894 llvm_unreachable("write not implemented"); 895 } 896 static void WriteMDExpression(const MDExpression *, const ValueEnumerator &, 897 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 898 unsigned) { 899 llvm_unreachable("write not implemented"); 900 } 901 static void WriteMDObjCProperty(const MDObjCProperty *, const ValueEnumerator &, 902 BitstreamWriter &, SmallVectorImpl<uint64_t> &, 903 unsigned) { 904 llvm_unreachable("write not implemented"); 905 } 906 static void WriteMDImportedEntity(const MDImportedEntity *, 907 const ValueEnumerator &, BitstreamWriter &, 908 SmallVectorImpl<uint64_t> &, unsigned) { 909 llvm_unreachable("write not implemented"); 910 } 911 912 static void WriteModuleMetadata(const Module *M, 913 const ValueEnumerator &VE, 914 BitstreamWriter &Stream) { 915 const auto &MDs = VE.getMDs(); 916 if (MDs.empty() && M->named_metadata_empty()) 917 return; 918 919 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 920 921 unsigned MDSAbbrev = 0; 922 if (VE.hasMDString()) { 923 // Abbrev for METADATA_STRING. 924 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 925 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 928 MDSAbbrev = Stream.EmitAbbrev(Abbv); 929 } 930 931 // Initialize MDNode abbreviations. 932 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 933 #include "llvm/IR/Metadata.def" 934 935 if (VE.hasMDLocation()) { 936 // Abbrev for METADATA_LOCATION. 937 // 938 // Assume the column is usually under 128, and always output the inlined-at 939 // location (it's never more expensive than building an array size 1). 940 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 941 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 947 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 948 } 949 950 if (VE.hasGenericDebugNode()) { 951 // Abbrev for METADATA_GENERIC_DEBUG. 952 // 953 // Assume the column is usually under 128, and always output the inlined-at 954 // location (it's never more expensive than building an array size 1). 955 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 956 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 963 GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv); 964 } 965 966 unsigned NameAbbrev = 0; 967 if (!M->named_metadata_empty()) { 968 // Abbrev for METADATA_NAME. 969 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 970 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 973 NameAbbrev = Stream.EmitAbbrev(Abbv); 974 } 975 976 SmallVector<uint64_t, 64> Record; 977 for (const Metadata *MD : MDs) { 978 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 979 switch (N->getMetadataID()) { 980 default: 981 llvm_unreachable("Invalid MDNode subclass"); 982 #define HANDLE_MDNODE_LEAF(CLASS) \ 983 case Metadata::CLASS##Kind: \ 984 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 985 continue; 986 #include "llvm/IR/Metadata.def" 987 } 988 } 989 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 990 WriteValueAsMetadata(MDC, VE, Stream, Record); 991 continue; 992 } 993 const MDString *MDS = cast<MDString>(MD); 994 // Code: [strchar x N] 995 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 996 997 // Emit the finished record. 998 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 999 Record.clear(); 1000 } 1001 1002 // Write named metadata. 1003 for (const NamedMDNode &NMD : M->named_metadata()) { 1004 // Write name. 1005 StringRef Str = NMD.getName(); 1006 Record.append(Str.bytes_begin(), Str.bytes_end()); 1007 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1008 Record.clear(); 1009 1010 // Write named metadata operands. 1011 for (const MDNode *N : NMD.operands()) 1012 Record.push_back(VE.getMetadataID(N)); 1013 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1014 Record.clear(); 1015 } 1016 1017 Stream.ExitBlock(); 1018 } 1019 1020 static void WriteFunctionLocalMetadata(const Function &F, 1021 const ValueEnumerator &VE, 1022 BitstreamWriter &Stream) { 1023 bool StartedMetadataBlock = false; 1024 SmallVector<uint64_t, 64> Record; 1025 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1026 VE.getFunctionLocalMDs(); 1027 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1028 assert(MDs[i] && "Expected valid function-local metadata"); 1029 if (!StartedMetadataBlock) { 1030 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1031 StartedMetadataBlock = true; 1032 } 1033 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1034 } 1035 1036 if (StartedMetadataBlock) 1037 Stream.ExitBlock(); 1038 } 1039 1040 static void WriteMetadataAttachment(const Function &F, 1041 const ValueEnumerator &VE, 1042 BitstreamWriter &Stream) { 1043 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1044 1045 SmallVector<uint64_t, 64> Record; 1046 1047 // Write metadata attachments 1048 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1049 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1050 1051 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1052 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1053 I != E; ++I) { 1054 MDs.clear(); 1055 I->getAllMetadataOtherThanDebugLoc(MDs); 1056 1057 // If no metadata, ignore instruction. 1058 if (MDs.empty()) continue; 1059 1060 Record.push_back(VE.getInstructionID(I)); 1061 1062 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1063 Record.push_back(MDs[i].first); 1064 Record.push_back(VE.getMetadataID(MDs[i].second)); 1065 } 1066 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1067 Record.clear(); 1068 } 1069 1070 Stream.ExitBlock(); 1071 } 1072 1073 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1074 SmallVector<uint64_t, 64> Record; 1075 1076 // Write metadata kinds 1077 // METADATA_KIND - [n x [id, name]] 1078 SmallVector<StringRef, 8> Names; 1079 M->getMDKindNames(Names); 1080 1081 if (Names.empty()) return; 1082 1083 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1084 1085 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1086 Record.push_back(MDKindID); 1087 StringRef KName = Names[MDKindID]; 1088 Record.append(KName.begin(), KName.end()); 1089 1090 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1091 Record.clear(); 1092 } 1093 1094 Stream.ExitBlock(); 1095 } 1096 1097 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1098 if ((int64_t)V >= 0) 1099 Vals.push_back(V << 1); 1100 else 1101 Vals.push_back((-V << 1) | 1); 1102 } 1103 1104 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1105 const ValueEnumerator &VE, 1106 BitstreamWriter &Stream, bool isGlobal) { 1107 if (FirstVal == LastVal) return; 1108 1109 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1110 1111 unsigned AggregateAbbrev = 0; 1112 unsigned String8Abbrev = 0; 1113 unsigned CString7Abbrev = 0; 1114 unsigned CString6Abbrev = 0; 1115 // If this is a constant pool for the module, emit module-specific abbrevs. 1116 if (isGlobal) { 1117 // Abbrev for CST_CODE_AGGREGATE. 1118 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1119 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1122 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1123 1124 // Abbrev for CST_CODE_STRING. 1125 Abbv = new BitCodeAbbrev(); 1126 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1129 String8Abbrev = Stream.EmitAbbrev(Abbv); 1130 // Abbrev for CST_CODE_CSTRING. 1131 Abbv = new BitCodeAbbrev(); 1132 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1135 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1136 // Abbrev for CST_CODE_CSTRING. 1137 Abbv = new BitCodeAbbrev(); 1138 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1141 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1142 } 1143 1144 SmallVector<uint64_t, 64> Record; 1145 1146 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1147 Type *LastTy = nullptr; 1148 for (unsigned i = FirstVal; i != LastVal; ++i) { 1149 const Value *V = Vals[i].first; 1150 // If we need to switch types, do so now. 1151 if (V->getType() != LastTy) { 1152 LastTy = V->getType(); 1153 Record.push_back(VE.getTypeID(LastTy)); 1154 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1155 CONSTANTS_SETTYPE_ABBREV); 1156 Record.clear(); 1157 } 1158 1159 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1160 Record.push_back(unsigned(IA->hasSideEffects()) | 1161 unsigned(IA->isAlignStack()) << 1 | 1162 unsigned(IA->getDialect()&1) << 2); 1163 1164 // Add the asm string. 1165 const std::string &AsmStr = IA->getAsmString(); 1166 Record.push_back(AsmStr.size()); 1167 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 1168 Record.push_back(AsmStr[i]); 1169 1170 // Add the constraint string. 1171 const std::string &ConstraintStr = IA->getConstraintString(); 1172 Record.push_back(ConstraintStr.size()); 1173 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1174 Record.push_back(ConstraintStr[i]); 1175 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1176 Record.clear(); 1177 continue; 1178 } 1179 const Constant *C = cast<Constant>(V); 1180 unsigned Code = -1U; 1181 unsigned AbbrevToUse = 0; 1182 if (C->isNullValue()) { 1183 Code = bitc::CST_CODE_NULL; 1184 } else if (isa<UndefValue>(C)) { 1185 Code = bitc::CST_CODE_UNDEF; 1186 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1187 if (IV->getBitWidth() <= 64) { 1188 uint64_t V = IV->getSExtValue(); 1189 emitSignedInt64(Record, V); 1190 Code = bitc::CST_CODE_INTEGER; 1191 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1192 } else { // Wide integers, > 64 bits in size. 1193 // We have an arbitrary precision integer value to write whose 1194 // bit width is > 64. However, in canonical unsigned integer 1195 // format it is likely that the high bits are going to be zero. 1196 // So, we only write the number of active words. 1197 unsigned NWords = IV->getValue().getActiveWords(); 1198 const uint64_t *RawWords = IV->getValue().getRawData(); 1199 for (unsigned i = 0; i != NWords; ++i) { 1200 emitSignedInt64(Record, RawWords[i]); 1201 } 1202 Code = bitc::CST_CODE_WIDE_INTEGER; 1203 } 1204 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1205 Code = bitc::CST_CODE_FLOAT; 1206 Type *Ty = CFP->getType(); 1207 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1208 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1209 } else if (Ty->isX86_FP80Ty()) { 1210 // api needed to prevent premature destruction 1211 // bits are not in the same order as a normal i80 APInt, compensate. 1212 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1213 const uint64_t *p = api.getRawData(); 1214 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1215 Record.push_back(p[0] & 0xffffLL); 1216 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1217 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1218 const uint64_t *p = api.getRawData(); 1219 Record.push_back(p[0]); 1220 Record.push_back(p[1]); 1221 } else { 1222 assert (0 && "Unknown FP type!"); 1223 } 1224 } else if (isa<ConstantDataSequential>(C) && 1225 cast<ConstantDataSequential>(C)->isString()) { 1226 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1227 // Emit constant strings specially. 1228 unsigned NumElts = Str->getNumElements(); 1229 // If this is a null-terminated string, use the denser CSTRING encoding. 1230 if (Str->isCString()) { 1231 Code = bitc::CST_CODE_CSTRING; 1232 --NumElts; // Don't encode the null, which isn't allowed by char6. 1233 } else { 1234 Code = bitc::CST_CODE_STRING; 1235 AbbrevToUse = String8Abbrev; 1236 } 1237 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1238 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1239 for (unsigned i = 0; i != NumElts; ++i) { 1240 unsigned char V = Str->getElementAsInteger(i); 1241 Record.push_back(V); 1242 isCStr7 &= (V & 128) == 0; 1243 if (isCStrChar6) 1244 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1245 } 1246 1247 if (isCStrChar6) 1248 AbbrevToUse = CString6Abbrev; 1249 else if (isCStr7) 1250 AbbrevToUse = CString7Abbrev; 1251 } else if (const ConstantDataSequential *CDS = 1252 dyn_cast<ConstantDataSequential>(C)) { 1253 Code = bitc::CST_CODE_DATA; 1254 Type *EltTy = CDS->getType()->getElementType(); 1255 if (isa<IntegerType>(EltTy)) { 1256 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1257 Record.push_back(CDS->getElementAsInteger(i)); 1258 } else if (EltTy->isFloatTy()) { 1259 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1260 union { float F; uint32_t I; }; 1261 F = CDS->getElementAsFloat(i); 1262 Record.push_back(I); 1263 } 1264 } else { 1265 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1266 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1267 union { double F; uint64_t I; }; 1268 F = CDS->getElementAsDouble(i); 1269 Record.push_back(I); 1270 } 1271 } 1272 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1273 isa<ConstantVector>(C)) { 1274 Code = bitc::CST_CODE_AGGREGATE; 1275 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1276 Record.push_back(VE.getValueID(C->getOperand(i))); 1277 AbbrevToUse = AggregateAbbrev; 1278 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1279 switch (CE->getOpcode()) { 1280 default: 1281 if (Instruction::isCast(CE->getOpcode())) { 1282 Code = bitc::CST_CODE_CE_CAST; 1283 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1284 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1285 Record.push_back(VE.getValueID(C->getOperand(0))); 1286 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1287 } else { 1288 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1289 Code = bitc::CST_CODE_CE_BINOP; 1290 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1291 Record.push_back(VE.getValueID(C->getOperand(0))); 1292 Record.push_back(VE.getValueID(C->getOperand(1))); 1293 uint64_t Flags = GetOptimizationFlags(CE); 1294 if (Flags != 0) 1295 Record.push_back(Flags); 1296 } 1297 break; 1298 case Instruction::GetElementPtr: 1299 Code = bitc::CST_CODE_CE_GEP; 1300 if (cast<GEPOperator>(C)->isInBounds()) 1301 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1302 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1303 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1304 Record.push_back(VE.getValueID(C->getOperand(i))); 1305 } 1306 break; 1307 case Instruction::Select: 1308 Code = bitc::CST_CODE_CE_SELECT; 1309 Record.push_back(VE.getValueID(C->getOperand(0))); 1310 Record.push_back(VE.getValueID(C->getOperand(1))); 1311 Record.push_back(VE.getValueID(C->getOperand(2))); 1312 break; 1313 case Instruction::ExtractElement: 1314 Code = bitc::CST_CODE_CE_EXTRACTELT; 1315 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1316 Record.push_back(VE.getValueID(C->getOperand(0))); 1317 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1318 Record.push_back(VE.getValueID(C->getOperand(1))); 1319 break; 1320 case Instruction::InsertElement: 1321 Code = bitc::CST_CODE_CE_INSERTELT; 1322 Record.push_back(VE.getValueID(C->getOperand(0))); 1323 Record.push_back(VE.getValueID(C->getOperand(1))); 1324 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1325 Record.push_back(VE.getValueID(C->getOperand(2))); 1326 break; 1327 case Instruction::ShuffleVector: 1328 // If the return type and argument types are the same, this is a 1329 // standard shufflevector instruction. If the types are different, 1330 // then the shuffle is widening or truncating the input vectors, and 1331 // the argument type must also be encoded. 1332 if (C->getType() == C->getOperand(0)->getType()) { 1333 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1334 } else { 1335 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1336 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1337 } 1338 Record.push_back(VE.getValueID(C->getOperand(0))); 1339 Record.push_back(VE.getValueID(C->getOperand(1))); 1340 Record.push_back(VE.getValueID(C->getOperand(2))); 1341 break; 1342 case Instruction::ICmp: 1343 case Instruction::FCmp: 1344 Code = bitc::CST_CODE_CE_CMP; 1345 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1346 Record.push_back(VE.getValueID(C->getOperand(0))); 1347 Record.push_back(VE.getValueID(C->getOperand(1))); 1348 Record.push_back(CE->getPredicate()); 1349 break; 1350 } 1351 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1352 Code = bitc::CST_CODE_BLOCKADDRESS; 1353 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1354 Record.push_back(VE.getValueID(BA->getFunction())); 1355 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1356 } else { 1357 #ifndef NDEBUG 1358 C->dump(); 1359 #endif 1360 llvm_unreachable("Unknown constant!"); 1361 } 1362 Stream.EmitRecord(Code, Record, AbbrevToUse); 1363 Record.clear(); 1364 } 1365 1366 Stream.ExitBlock(); 1367 } 1368 1369 static void WriteModuleConstants(const ValueEnumerator &VE, 1370 BitstreamWriter &Stream) { 1371 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1372 1373 // Find the first constant to emit, which is the first non-globalvalue value. 1374 // We know globalvalues have been emitted by WriteModuleInfo. 1375 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1376 if (!isa<GlobalValue>(Vals[i].first)) { 1377 WriteConstants(i, Vals.size(), VE, Stream, true); 1378 return; 1379 } 1380 } 1381 } 1382 1383 /// PushValueAndType - The file has to encode both the value and type id for 1384 /// many values, because we need to know what type to create for forward 1385 /// references. However, most operands are not forward references, so this type 1386 /// field is not needed. 1387 /// 1388 /// This function adds V's value ID to Vals. If the value ID is higher than the 1389 /// instruction ID, then it is a forward reference, and it also includes the 1390 /// type ID. The value ID that is written is encoded relative to the InstID. 1391 static bool PushValueAndType(const Value *V, unsigned InstID, 1392 SmallVectorImpl<unsigned> &Vals, 1393 ValueEnumerator &VE) { 1394 unsigned ValID = VE.getValueID(V); 1395 // Make encoding relative to the InstID. 1396 Vals.push_back(InstID - ValID); 1397 if (ValID >= InstID) { 1398 Vals.push_back(VE.getTypeID(V->getType())); 1399 return true; 1400 } 1401 return false; 1402 } 1403 1404 /// pushValue - Like PushValueAndType, but where the type of the value is 1405 /// omitted (perhaps it was already encoded in an earlier operand). 1406 static void pushValue(const Value *V, unsigned InstID, 1407 SmallVectorImpl<unsigned> &Vals, 1408 ValueEnumerator &VE) { 1409 unsigned ValID = VE.getValueID(V); 1410 Vals.push_back(InstID - ValID); 1411 } 1412 1413 static void pushValueSigned(const Value *V, unsigned InstID, 1414 SmallVectorImpl<uint64_t> &Vals, 1415 ValueEnumerator &VE) { 1416 unsigned ValID = VE.getValueID(V); 1417 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1418 emitSignedInt64(Vals, diff); 1419 } 1420 1421 /// WriteInstruction - Emit an instruction to the specified stream. 1422 static void WriteInstruction(const Instruction &I, unsigned InstID, 1423 ValueEnumerator &VE, BitstreamWriter &Stream, 1424 SmallVectorImpl<unsigned> &Vals) { 1425 unsigned Code = 0; 1426 unsigned AbbrevToUse = 0; 1427 VE.setInstructionID(&I); 1428 switch (I.getOpcode()) { 1429 default: 1430 if (Instruction::isCast(I.getOpcode())) { 1431 Code = bitc::FUNC_CODE_INST_CAST; 1432 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1433 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1434 Vals.push_back(VE.getTypeID(I.getType())); 1435 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1436 } else { 1437 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1438 Code = bitc::FUNC_CODE_INST_BINOP; 1439 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1440 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1441 pushValue(I.getOperand(1), InstID, Vals, VE); 1442 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1443 uint64_t Flags = GetOptimizationFlags(&I); 1444 if (Flags != 0) { 1445 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1446 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1447 Vals.push_back(Flags); 1448 } 1449 } 1450 break; 1451 1452 case Instruction::GetElementPtr: 1453 Code = bitc::FUNC_CODE_INST_GEP; 1454 if (cast<GEPOperator>(&I)->isInBounds()) 1455 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1456 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1457 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1458 break; 1459 case Instruction::ExtractValue: { 1460 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1461 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1462 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1463 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1464 Vals.push_back(*i); 1465 break; 1466 } 1467 case Instruction::InsertValue: { 1468 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1469 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1470 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1471 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1472 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1473 Vals.push_back(*i); 1474 break; 1475 } 1476 case Instruction::Select: 1477 Code = bitc::FUNC_CODE_INST_VSELECT; 1478 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1479 pushValue(I.getOperand(2), InstID, Vals, VE); 1480 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1481 break; 1482 case Instruction::ExtractElement: 1483 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1484 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1485 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1486 break; 1487 case Instruction::InsertElement: 1488 Code = bitc::FUNC_CODE_INST_INSERTELT; 1489 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1490 pushValue(I.getOperand(1), InstID, Vals, VE); 1491 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1492 break; 1493 case Instruction::ShuffleVector: 1494 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1495 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1496 pushValue(I.getOperand(1), InstID, Vals, VE); 1497 pushValue(I.getOperand(2), InstID, Vals, VE); 1498 break; 1499 case Instruction::ICmp: 1500 case Instruction::FCmp: 1501 // compare returning Int1Ty or vector of Int1Ty 1502 Code = bitc::FUNC_CODE_INST_CMP2; 1503 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1504 pushValue(I.getOperand(1), InstID, Vals, VE); 1505 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1506 break; 1507 1508 case Instruction::Ret: 1509 { 1510 Code = bitc::FUNC_CODE_INST_RET; 1511 unsigned NumOperands = I.getNumOperands(); 1512 if (NumOperands == 0) 1513 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1514 else if (NumOperands == 1) { 1515 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1516 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1517 } else { 1518 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1519 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1520 } 1521 } 1522 break; 1523 case Instruction::Br: 1524 { 1525 Code = bitc::FUNC_CODE_INST_BR; 1526 const BranchInst &II = cast<BranchInst>(I); 1527 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1528 if (II.isConditional()) { 1529 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1530 pushValue(II.getCondition(), InstID, Vals, VE); 1531 } 1532 } 1533 break; 1534 case Instruction::Switch: 1535 { 1536 Code = bitc::FUNC_CODE_INST_SWITCH; 1537 const SwitchInst &SI = cast<SwitchInst>(I); 1538 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1539 pushValue(SI.getCondition(), InstID, Vals, VE); 1540 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1541 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1542 i != e; ++i) { 1543 Vals.push_back(VE.getValueID(i.getCaseValue())); 1544 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1545 } 1546 } 1547 break; 1548 case Instruction::IndirectBr: 1549 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1550 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1551 // Encode the address operand as relative, but not the basic blocks. 1552 pushValue(I.getOperand(0), InstID, Vals, VE); 1553 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1554 Vals.push_back(VE.getValueID(I.getOperand(i))); 1555 break; 1556 1557 case Instruction::Invoke: { 1558 const InvokeInst *II = cast<InvokeInst>(&I); 1559 const Value *Callee(II->getCalledValue()); 1560 PointerType *PTy = cast<PointerType>(Callee->getType()); 1561 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1562 Code = bitc::FUNC_CODE_INST_INVOKE; 1563 1564 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1565 Vals.push_back(II->getCallingConv()); 1566 Vals.push_back(VE.getValueID(II->getNormalDest())); 1567 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1568 PushValueAndType(Callee, InstID, Vals, VE); 1569 1570 // Emit value #'s for the fixed parameters. 1571 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1572 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1573 1574 // Emit type/value pairs for varargs params. 1575 if (FTy->isVarArg()) { 1576 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1577 i != e; ++i) 1578 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1579 } 1580 break; 1581 } 1582 case Instruction::Resume: 1583 Code = bitc::FUNC_CODE_INST_RESUME; 1584 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1585 break; 1586 case Instruction::Unreachable: 1587 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1588 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1589 break; 1590 1591 case Instruction::PHI: { 1592 const PHINode &PN = cast<PHINode>(I); 1593 Code = bitc::FUNC_CODE_INST_PHI; 1594 // With the newer instruction encoding, forward references could give 1595 // negative valued IDs. This is most common for PHIs, so we use 1596 // signed VBRs. 1597 SmallVector<uint64_t, 128> Vals64; 1598 Vals64.push_back(VE.getTypeID(PN.getType())); 1599 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1600 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1601 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1602 } 1603 // Emit a Vals64 vector and exit. 1604 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1605 Vals64.clear(); 1606 return; 1607 } 1608 1609 case Instruction::LandingPad: { 1610 const LandingPadInst &LP = cast<LandingPadInst>(I); 1611 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1612 Vals.push_back(VE.getTypeID(LP.getType())); 1613 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1614 Vals.push_back(LP.isCleanup()); 1615 Vals.push_back(LP.getNumClauses()); 1616 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1617 if (LP.isCatch(I)) 1618 Vals.push_back(LandingPadInst::Catch); 1619 else 1620 Vals.push_back(LandingPadInst::Filter); 1621 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1622 } 1623 break; 1624 } 1625 1626 case Instruction::Alloca: { 1627 Code = bitc::FUNC_CODE_INST_ALLOCA; 1628 Vals.push_back(VE.getTypeID(I.getType())); 1629 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1630 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1631 const AllocaInst &AI = cast<AllocaInst>(I); 1632 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1633 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1634 "not enough bits for maximum alignment"); 1635 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1636 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1637 Vals.push_back(AlignRecord); 1638 break; 1639 } 1640 1641 case Instruction::Load: 1642 if (cast<LoadInst>(I).isAtomic()) { 1643 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1644 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1645 } else { 1646 Code = bitc::FUNC_CODE_INST_LOAD; 1647 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1648 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1649 } 1650 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1651 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1652 if (cast<LoadInst>(I).isAtomic()) { 1653 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1654 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1655 } 1656 break; 1657 case Instruction::Store: 1658 if (cast<StoreInst>(I).isAtomic()) 1659 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1660 else 1661 Code = bitc::FUNC_CODE_INST_STORE; 1662 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1663 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1664 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1665 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1666 if (cast<StoreInst>(I).isAtomic()) { 1667 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1668 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1669 } 1670 break; 1671 case Instruction::AtomicCmpXchg: 1672 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1673 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1674 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1675 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1676 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1677 Vals.push_back(GetEncodedOrdering( 1678 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1679 Vals.push_back(GetEncodedSynchScope( 1680 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1681 Vals.push_back(GetEncodedOrdering( 1682 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1683 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1684 break; 1685 case Instruction::AtomicRMW: 1686 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1687 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1688 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1689 Vals.push_back(GetEncodedRMWOperation( 1690 cast<AtomicRMWInst>(I).getOperation())); 1691 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1692 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1693 Vals.push_back(GetEncodedSynchScope( 1694 cast<AtomicRMWInst>(I).getSynchScope())); 1695 break; 1696 case Instruction::Fence: 1697 Code = bitc::FUNC_CODE_INST_FENCE; 1698 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1699 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1700 break; 1701 case Instruction::Call: { 1702 const CallInst &CI = cast<CallInst>(I); 1703 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1704 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1705 1706 Code = bitc::FUNC_CODE_INST_CALL; 1707 1708 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1709 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1710 unsigned(CI.isMustTailCall()) << 14); 1711 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1712 1713 // Emit value #'s for the fixed parameters. 1714 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1715 // Check for labels (can happen with asm labels). 1716 if (FTy->getParamType(i)->isLabelTy()) 1717 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1718 else 1719 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1720 } 1721 1722 // Emit type/value pairs for varargs params. 1723 if (FTy->isVarArg()) { 1724 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1725 i != e; ++i) 1726 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1727 } 1728 break; 1729 } 1730 case Instruction::VAArg: 1731 Code = bitc::FUNC_CODE_INST_VAARG; 1732 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1733 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1734 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1735 break; 1736 } 1737 1738 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1739 Vals.clear(); 1740 } 1741 1742 // Emit names for globals/functions etc. 1743 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1744 const ValueEnumerator &VE, 1745 BitstreamWriter &Stream) { 1746 if (VST.empty()) return; 1747 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1748 1749 // FIXME: Set up the abbrev, we know how many values there are! 1750 // FIXME: We know if the type names can use 7-bit ascii. 1751 SmallVector<unsigned, 64> NameVals; 1752 1753 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1754 SI != SE; ++SI) { 1755 1756 const ValueName &Name = *SI; 1757 1758 // Figure out the encoding to use for the name. 1759 bool is7Bit = true; 1760 bool isChar6 = true; 1761 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1762 C != E; ++C) { 1763 if (isChar6) 1764 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1765 if ((unsigned char)*C & 128) { 1766 is7Bit = false; 1767 break; // don't bother scanning the rest. 1768 } 1769 } 1770 1771 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1772 1773 // VST_ENTRY: [valueid, namechar x N] 1774 // VST_BBENTRY: [bbid, namechar x N] 1775 unsigned Code; 1776 if (isa<BasicBlock>(SI->getValue())) { 1777 Code = bitc::VST_CODE_BBENTRY; 1778 if (isChar6) 1779 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1780 } else { 1781 Code = bitc::VST_CODE_ENTRY; 1782 if (isChar6) 1783 AbbrevToUse = VST_ENTRY_6_ABBREV; 1784 else if (is7Bit) 1785 AbbrevToUse = VST_ENTRY_7_ABBREV; 1786 } 1787 1788 NameVals.push_back(VE.getValueID(SI->getValue())); 1789 for (const char *P = Name.getKeyData(), 1790 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1791 NameVals.push_back((unsigned char)*P); 1792 1793 // Emit the finished record. 1794 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1795 NameVals.clear(); 1796 } 1797 Stream.ExitBlock(); 1798 } 1799 1800 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1801 BitstreamWriter &Stream) { 1802 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1803 unsigned Code; 1804 if (isa<BasicBlock>(Order.V)) 1805 Code = bitc::USELIST_CODE_BB; 1806 else 1807 Code = bitc::USELIST_CODE_DEFAULT; 1808 1809 SmallVector<uint64_t, 64> Record; 1810 for (unsigned I : Order.Shuffle) 1811 Record.push_back(I); 1812 Record.push_back(VE.getValueID(Order.V)); 1813 Stream.EmitRecord(Code, Record); 1814 } 1815 1816 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1817 BitstreamWriter &Stream) { 1818 auto hasMore = [&]() { 1819 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1820 }; 1821 if (!hasMore()) 1822 // Nothing to do. 1823 return; 1824 1825 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1826 while (hasMore()) { 1827 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1828 VE.UseListOrders.pop_back(); 1829 } 1830 Stream.ExitBlock(); 1831 } 1832 1833 /// WriteFunction - Emit a function body to the module stream. 1834 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1835 BitstreamWriter &Stream) { 1836 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1837 VE.incorporateFunction(F); 1838 1839 SmallVector<unsigned, 64> Vals; 1840 1841 // Emit the number of basic blocks, so the reader can create them ahead of 1842 // time. 1843 Vals.push_back(VE.getBasicBlocks().size()); 1844 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1845 Vals.clear(); 1846 1847 // If there are function-local constants, emit them now. 1848 unsigned CstStart, CstEnd; 1849 VE.getFunctionConstantRange(CstStart, CstEnd); 1850 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1851 1852 // If there is function-local metadata, emit it now. 1853 WriteFunctionLocalMetadata(F, VE, Stream); 1854 1855 // Keep a running idea of what the instruction ID is. 1856 unsigned InstID = CstEnd; 1857 1858 bool NeedsMetadataAttachment = false; 1859 1860 DebugLoc LastDL; 1861 1862 // Finally, emit all the instructions, in order. 1863 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1864 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1865 I != E; ++I) { 1866 WriteInstruction(*I, InstID, VE, Stream, Vals); 1867 1868 if (!I->getType()->isVoidTy()) 1869 ++InstID; 1870 1871 // If the instruction has metadata, write a metadata attachment later. 1872 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1873 1874 // If the instruction has a debug location, emit it. 1875 DebugLoc DL = I->getDebugLoc(); 1876 if (DL.isUnknown()) { 1877 // nothing todo. 1878 } else if (DL == LastDL) { 1879 // Just repeat the same debug loc as last time. 1880 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1881 } else { 1882 MDNode *Scope, *IA; 1883 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1884 assert(Scope && "Expected valid scope"); 1885 1886 Vals.push_back(DL.getLine()); 1887 Vals.push_back(DL.getCol()); 1888 Vals.push_back(VE.getMetadataOrNullID(Scope)); 1889 Vals.push_back(VE.getMetadataOrNullID(IA)); 1890 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1891 Vals.clear(); 1892 1893 LastDL = DL; 1894 } 1895 } 1896 1897 // Emit names for all the instructions etc. 1898 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1899 1900 if (NeedsMetadataAttachment) 1901 WriteMetadataAttachment(F, VE, Stream); 1902 if (shouldPreserveBitcodeUseListOrder()) 1903 WriteUseListBlock(&F, VE, Stream); 1904 VE.purgeFunction(); 1905 Stream.ExitBlock(); 1906 } 1907 1908 // Emit blockinfo, which defines the standard abbreviations etc. 1909 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1910 // We only want to emit block info records for blocks that have multiple 1911 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1912 // Other blocks can define their abbrevs inline. 1913 Stream.EnterBlockInfoBlock(2); 1914 1915 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1916 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1921 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1922 Abbv) != VST_ENTRY_8_ABBREV) 1923 llvm_unreachable("Unexpected abbrev ordering!"); 1924 } 1925 1926 { // 7-bit fixed width VST_ENTRY strings. 1927 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1928 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1932 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1933 Abbv) != VST_ENTRY_7_ABBREV) 1934 llvm_unreachable("Unexpected abbrev ordering!"); 1935 } 1936 { // 6-bit char6 VST_ENTRY strings. 1937 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1938 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1942 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1943 Abbv) != VST_ENTRY_6_ABBREV) 1944 llvm_unreachable("Unexpected abbrev ordering!"); 1945 } 1946 { // 6-bit char6 VST_BBENTRY strings. 1947 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1948 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1952 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1953 Abbv) != VST_BBENTRY_6_ABBREV) 1954 llvm_unreachable("Unexpected abbrev ordering!"); 1955 } 1956 1957 1958 1959 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1960 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1961 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1963 Log2_32_Ceil(VE.getTypes().size()+1))); 1964 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1965 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1966 llvm_unreachable("Unexpected abbrev ordering!"); 1967 } 1968 1969 { // INTEGER abbrev for CONSTANTS_BLOCK. 1970 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1971 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1973 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1974 Abbv) != CONSTANTS_INTEGER_ABBREV) 1975 llvm_unreachable("Unexpected abbrev ordering!"); 1976 } 1977 1978 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1979 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1980 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1983 Log2_32_Ceil(VE.getTypes().size()+1))); 1984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1985 1986 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1987 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1988 llvm_unreachable("Unexpected abbrev ordering!"); 1989 } 1990 { // NULL abbrev for CONSTANTS_BLOCK. 1991 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1992 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1993 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1994 Abbv) != CONSTANTS_NULL_Abbrev) 1995 llvm_unreachable("Unexpected abbrev ordering!"); 1996 } 1997 1998 // FIXME: This should only use space for first class types! 1999 2000 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2001 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2002 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2006 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2007 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2008 llvm_unreachable("Unexpected abbrev ordering!"); 2009 } 2010 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2011 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2012 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2016 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2017 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2018 llvm_unreachable("Unexpected abbrev ordering!"); 2019 } 2020 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2021 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2022 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2027 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2028 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2029 llvm_unreachable("Unexpected abbrev ordering!"); 2030 } 2031 { // INST_CAST abbrev for FUNCTION_BLOCK. 2032 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2033 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2036 Log2_32_Ceil(VE.getTypes().size()+1))); 2037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2038 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2039 Abbv) != FUNCTION_INST_CAST_ABBREV) 2040 llvm_unreachable("Unexpected abbrev ordering!"); 2041 } 2042 2043 { // INST_RET abbrev for FUNCTION_BLOCK. 2044 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2045 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2046 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2047 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2048 llvm_unreachable("Unexpected abbrev ordering!"); 2049 } 2050 { // INST_RET abbrev for FUNCTION_BLOCK. 2051 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2052 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2054 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2055 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2056 llvm_unreachable("Unexpected abbrev ordering!"); 2057 } 2058 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2059 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2060 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2061 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2062 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2063 llvm_unreachable("Unexpected abbrev ordering!"); 2064 } 2065 2066 Stream.ExitBlock(); 2067 } 2068 2069 /// WriteModule - Emit the specified module to the bitstream. 2070 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 2071 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2072 2073 SmallVector<unsigned, 1> Vals; 2074 unsigned CurVersion = 1; 2075 Vals.push_back(CurVersion); 2076 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2077 2078 // Analyze the module, enumerating globals, functions, etc. 2079 ValueEnumerator VE(*M); 2080 2081 // Emit blockinfo, which defines the standard abbreviations etc. 2082 WriteBlockInfo(VE, Stream); 2083 2084 // Emit information about attribute groups. 2085 WriteAttributeGroupTable(VE, Stream); 2086 2087 // Emit information about parameter attributes. 2088 WriteAttributeTable(VE, Stream); 2089 2090 // Emit information describing all of the types in the module. 2091 WriteTypeTable(VE, Stream); 2092 2093 writeComdats(VE, Stream); 2094 2095 // Emit top-level description of module, including target triple, inline asm, 2096 // descriptors for global variables, and function prototype info. 2097 WriteModuleInfo(M, VE, Stream); 2098 2099 // Emit constants. 2100 WriteModuleConstants(VE, Stream); 2101 2102 // Emit metadata. 2103 WriteModuleMetadata(M, VE, Stream); 2104 2105 // Emit metadata. 2106 WriteModuleMetadataStore(M, Stream); 2107 2108 // Emit names for globals/functions etc. 2109 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2110 2111 // Emit module-level use-lists. 2112 if (shouldPreserveBitcodeUseListOrder()) 2113 WriteUseListBlock(nullptr, VE, Stream); 2114 2115 // Emit function bodies. 2116 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2117 if (!F->isDeclaration()) 2118 WriteFunction(*F, VE, Stream); 2119 2120 Stream.ExitBlock(); 2121 } 2122 2123 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2124 /// header and trailer to make it compatible with the system archiver. To do 2125 /// this we emit the following header, and then emit a trailer that pads the 2126 /// file out to be a multiple of 16 bytes. 2127 /// 2128 /// struct bc_header { 2129 /// uint32_t Magic; // 0x0B17C0DE 2130 /// uint32_t Version; // Version, currently always 0. 2131 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2132 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2133 /// uint32_t CPUType; // CPU specifier. 2134 /// ... potentially more later ... 2135 /// }; 2136 enum { 2137 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2138 DarwinBCHeaderSize = 5*4 2139 }; 2140 2141 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2142 uint32_t &Position) { 2143 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2144 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2145 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2146 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2147 Position += 4; 2148 } 2149 2150 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2151 const Triple &TT) { 2152 unsigned CPUType = ~0U; 2153 2154 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2155 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2156 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2157 // specific constants here because they are implicitly part of the Darwin ABI. 2158 enum { 2159 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2160 DARWIN_CPU_TYPE_X86 = 7, 2161 DARWIN_CPU_TYPE_ARM = 12, 2162 DARWIN_CPU_TYPE_POWERPC = 18 2163 }; 2164 2165 Triple::ArchType Arch = TT.getArch(); 2166 if (Arch == Triple::x86_64) 2167 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2168 else if (Arch == Triple::x86) 2169 CPUType = DARWIN_CPU_TYPE_X86; 2170 else if (Arch == Triple::ppc) 2171 CPUType = DARWIN_CPU_TYPE_POWERPC; 2172 else if (Arch == Triple::ppc64) 2173 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2174 else if (Arch == Triple::arm || Arch == Triple::thumb) 2175 CPUType = DARWIN_CPU_TYPE_ARM; 2176 2177 // Traditional Bitcode starts after header. 2178 assert(Buffer.size() >= DarwinBCHeaderSize && 2179 "Expected header size to be reserved"); 2180 unsigned BCOffset = DarwinBCHeaderSize; 2181 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2182 2183 // Write the magic and version. 2184 unsigned Position = 0; 2185 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2186 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2187 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2188 WriteInt32ToBuffer(BCSize , Buffer, Position); 2189 WriteInt32ToBuffer(CPUType , Buffer, Position); 2190 2191 // If the file is not a multiple of 16 bytes, insert dummy padding. 2192 while (Buffer.size() & 15) 2193 Buffer.push_back(0); 2194 } 2195 2196 /// WriteBitcodeToFile - Write the specified module to the specified output 2197 /// stream. 2198 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2199 SmallVector<char, 0> Buffer; 2200 Buffer.reserve(256*1024); 2201 2202 // If this is darwin or another generic macho target, reserve space for the 2203 // header. 2204 Triple TT(M->getTargetTriple()); 2205 if (TT.isOSDarwin()) 2206 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2207 2208 // Emit the module into the buffer. 2209 { 2210 BitstreamWriter Stream(Buffer); 2211 2212 // Emit the file header. 2213 Stream.Emit((unsigned)'B', 8); 2214 Stream.Emit((unsigned)'C', 8); 2215 Stream.Emit(0x0, 4); 2216 Stream.Emit(0xC, 4); 2217 Stream.Emit(0xE, 4); 2218 Stream.Emit(0xD, 4); 2219 2220 // Emit the module. 2221 WriteModule(M, Stream); 2222 } 2223 2224 if (TT.isOSDarwin()) 2225 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2226 2227 // Write the generated bitstream to "Out". 2228 Out.write((char*)&Buffer.front(), Buffer.size()); 2229 } 2230