1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 namespace { 103 104 /// These are manifest constants used by the bitcode writer. They do not need to 105 /// be kept in sync with the reader, but need to be consistent within this file. 106 enum { 107 // VALUE_SYMTAB_BLOCK abbrev id's. 108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 VST_ENTRY_7_ABBREV, 110 VST_ENTRY_6_ABBREV, 111 VST_BBENTRY_6_ABBREV, 112 113 // CONSTANTS_BLOCK abbrev id's. 114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 CONSTANTS_INTEGER_ABBREV, 116 CONSTANTS_CE_CAST_Abbrev, 117 CONSTANTS_NULL_Abbrev, 118 119 // FUNCTION_BLOCK abbrev id's. 120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 FUNCTION_INST_UNOP_ABBREV, 122 FUNCTION_INST_UNOP_FLAGS_ABBREV, 123 FUNCTION_INST_BINOP_ABBREV, 124 FUNCTION_INST_BINOP_FLAGS_ABBREV, 125 FUNCTION_INST_CAST_ABBREV, 126 FUNCTION_INST_RET_VOID_ABBREV, 127 FUNCTION_INST_RET_VAL_ABBREV, 128 FUNCTION_INST_UNREACHABLE_ABBREV, 129 FUNCTION_INST_GEP_ABBREV, 130 }; 131 132 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 133 /// file type. 134 class BitcodeWriterBase { 135 protected: 136 /// The stream created and owned by the client. 137 BitstreamWriter &Stream; 138 139 StringTableBuilder &StrtabBuilder; 140 141 public: 142 /// Constructs a BitcodeWriterBase object that writes to the provided 143 /// \p Stream. 144 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 145 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 146 147 protected: 148 void writeModuleVersion(); 149 }; 150 151 void BitcodeWriterBase::writeModuleVersion() { 152 // VERSION: [version#] 153 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 154 } 155 156 /// Base class to manage the module bitcode writing, currently subclassed for 157 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 158 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 159 protected: 160 /// The Module to write to bitcode. 161 const Module &M; 162 163 /// Enumerates ids for all values in the module. 164 ValueEnumerator VE; 165 166 /// Optional per-module index to write for ThinLTO. 167 const ModuleSummaryIndex *Index; 168 169 /// Map that holds the correspondence between GUIDs in the summary index, 170 /// that came from indirect call profiles, and a value id generated by this 171 /// class to use in the VST and summary block records. 172 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 173 174 /// Tracks the last value id recorded in the GUIDToValueMap. 175 unsigned GlobalValueId; 176 177 /// Saves the offset of the VSTOffset record that must eventually be 178 /// backpatched with the offset of the actual VST. 179 uint64_t VSTOffsetPlaceholder = 0; 180 181 public: 182 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 183 /// writing to the provided \p Buffer. 184 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 185 BitstreamWriter &Stream, 186 bool ShouldPreserveUseListOrder, 187 const ModuleSummaryIndex *Index) 188 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 189 VE(M, ShouldPreserveUseListOrder), Index(Index) { 190 // Assign ValueIds to any callee values in the index that came from 191 // indirect call profiles and were recorded as a GUID not a Value* 192 // (which would have been assigned an ID by the ValueEnumerator). 193 // The starting ValueId is just after the number of values in the 194 // ValueEnumerator, so that they can be emitted in the VST. 195 GlobalValueId = VE.getValues().size(); 196 if (!Index) 197 return; 198 for (const auto &GUIDSummaryLists : *Index) 199 // Examine all summaries for this GUID. 200 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 201 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 202 // For each call in the function summary, see if the call 203 // is to a GUID (which means it is for an indirect call, 204 // otherwise we would have a Value for it). If so, synthesize 205 // a value id. 206 for (auto &CallEdge : FS->calls()) 207 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 208 assignValueId(CallEdge.first.getGUID()); 209 } 210 211 protected: 212 void writePerModuleGlobalValueSummary(); 213 214 private: 215 void writePerModuleFunctionSummaryRecord( 216 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 217 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 218 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIGlobalVariable(const DIGlobalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDILocalVariable(const DILocalVariable *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDILabel(const DILabel *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIExpression(const DIExpression *N, 358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 359 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 360 SmallVectorImpl<uint64_t> &Record, 361 unsigned Abbrev); 362 void writeDIObjCProperty(const DIObjCProperty *N, 363 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 364 void writeDIImportedEntity(const DIImportedEntity *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 unsigned createNamedMetadataAbbrev(); 368 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 369 unsigned createMetadataStringsAbbrev(); 370 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 371 SmallVectorImpl<uint64_t> &Record); 372 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 373 SmallVectorImpl<uint64_t> &Record, 374 std::vector<unsigned> *MDAbbrevs = nullptr, 375 std::vector<uint64_t> *IndexPos = nullptr); 376 void writeModuleMetadata(); 377 void writeFunctionMetadata(const Function &F); 378 void writeFunctionMetadataAttachment(const Function &F); 379 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 380 const GlobalObject &GO); 381 void writeModuleMetadataKinds(); 382 void writeOperandBundleTags(); 383 void writeSyncScopeNames(); 384 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 385 void writeModuleConstants(); 386 bool pushValueAndType(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void writeOperandBundles(const CallBase &CB, unsigned InstID); 389 void pushValue(const Value *V, unsigned InstID, 390 SmallVectorImpl<unsigned> &Vals); 391 void pushValueSigned(const Value *V, unsigned InstID, 392 SmallVectorImpl<uint64_t> &Vals); 393 void writeInstruction(const Instruction &I, unsigned InstID, 394 SmallVectorImpl<unsigned> &Vals); 395 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 396 void writeGlobalValueSymbolTable( 397 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 398 void writeUseList(UseListOrder &&Order); 399 void writeUseListBlock(const Function *F); 400 void 401 writeFunction(const Function &F, 402 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 403 void writeBlockInfo(); 404 void writeModuleHash(size_t BlockStartPos); 405 406 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 407 return unsigned(SSID); 408 } 409 410 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 411 }; 412 413 /// Class to manage the bitcode writing for a combined index. 414 class IndexBitcodeWriter : public BitcodeWriterBase { 415 /// The combined index to write to bitcode. 416 const ModuleSummaryIndex &Index; 417 418 /// When writing a subset of the index for distributed backends, client 419 /// provides a map of modules to the corresponding GUIDs/summaries to write. 420 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 421 422 /// Map that holds the correspondence between the GUID used in the combined 423 /// index and a value id generated by this class to use in references. 424 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 425 426 // The sorted stack id indices actually used in the summary entries being 427 // written, which will be a subset of those in the full index in the case of 428 // distributed indexes. 429 std::vector<unsigned> StackIdIndices; 430 431 /// Tracks the last value id recorded in the GUIDToValueMap. 432 unsigned GlobalValueId = 0; 433 434 public: 435 /// Constructs a IndexBitcodeWriter object for the given combined index, 436 /// writing to the provided \p Buffer. When writing a subset of the index 437 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 438 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 439 const ModuleSummaryIndex &Index, 440 const std::map<std::string, GVSummaryMapTy> 441 *ModuleToSummariesForIndex = nullptr) 442 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 443 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 444 // Assign unique value ids to all summaries to be written, for use 445 // in writing out the call graph edges. Save the mapping from GUID 446 // to the new global value id to use when writing those edges, which 447 // are currently saved in the index in terms of GUID. 448 forEachSummary([&](GVInfo I, bool IsAliasee) { 449 GUIDToValueIdMap[I.first] = ++GlobalValueId; 450 if (IsAliasee) 451 return; 452 auto *FS = dyn_cast<FunctionSummary>(I.second); 453 if (!FS) 454 return; 455 // Record all stack id indices actually used in the summary entries being 456 // written, so that we can compact them in the case of distributed ThinLTO 457 // indexes. 458 for (auto &CI : FS->callsites()) 459 for (auto Idx : CI.StackIdIndices) 460 StackIdIndices.push_back(Idx); 461 for (auto &AI : FS->allocs()) 462 for (auto &MIB : AI.MIBs) 463 for (auto Idx : MIB.StackIdIndices) 464 StackIdIndices.push_back(Idx); 465 }); 466 llvm::sort(StackIdIndices); 467 StackIdIndices.erase( 468 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 469 StackIdIndices.end()); 470 } 471 472 /// The below iterator returns the GUID and associated summary. 473 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 474 475 /// Calls the callback for each value GUID and summary to be written to 476 /// bitcode. This hides the details of whether they are being pulled from the 477 /// entire index or just those in a provided ModuleToSummariesForIndex map. 478 template<typename Functor> 479 void forEachSummary(Functor Callback) { 480 if (ModuleToSummariesForIndex) { 481 for (auto &M : *ModuleToSummariesForIndex) 482 for (auto &Summary : M.second) { 483 Callback(Summary, false); 484 // Ensure aliasee is handled, e.g. for assigning a valueId, 485 // even if we are not importing the aliasee directly (the 486 // imported alias will contain a copy of aliasee). 487 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 488 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 489 } 490 } else { 491 for (auto &Summaries : Index) 492 for (auto &Summary : Summaries.second.SummaryList) 493 Callback({Summaries.first, Summary.get()}, false); 494 } 495 } 496 497 /// Calls the callback for each entry in the modulePaths StringMap that 498 /// should be written to the module path string table. This hides the details 499 /// of whether they are being pulled from the entire index or just those in a 500 /// provided ModuleToSummariesForIndex map. 501 template <typename Functor> void forEachModule(Functor Callback) { 502 if (ModuleToSummariesForIndex) { 503 for (const auto &M : *ModuleToSummariesForIndex) { 504 const auto &MPI = Index.modulePaths().find(M.first); 505 if (MPI == Index.modulePaths().end()) { 506 // This should only happen if the bitcode file was empty, in which 507 // case we shouldn't be importing (the ModuleToSummariesForIndex 508 // would only include the module we are writing and index for). 509 assert(ModuleToSummariesForIndex->size() == 1); 510 continue; 511 } 512 Callback(*MPI); 513 } 514 } else { 515 for (const auto &MPSE : Index.modulePaths()) 516 Callback(MPSE); 517 } 518 } 519 520 /// Main entry point for writing a combined index to bitcode. 521 void write(); 522 523 private: 524 void writeModStrings(); 525 void writeCombinedGlobalValueSummary(); 526 527 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 528 auto VMI = GUIDToValueIdMap.find(ValGUID); 529 if (VMI == GUIDToValueIdMap.end()) 530 return std::nullopt; 531 return VMI->second; 532 } 533 534 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 535 }; 536 537 } // end anonymous namespace 538 539 static unsigned getEncodedCastOpcode(unsigned Opcode) { 540 switch (Opcode) { 541 default: llvm_unreachable("Unknown cast instruction!"); 542 case Instruction::Trunc : return bitc::CAST_TRUNC; 543 case Instruction::ZExt : return bitc::CAST_ZEXT; 544 case Instruction::SExt : return bitc::CAST_SEXT; 545 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 546 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 547 case Instruction::UIToFP : return bitc::CAST_UITOFP; 548 case Instruction::SIToFP : return bitc::CAST_SITOFP; 549 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 550 case Instruction::FPExt : return bitc::CAST_FPEXT; 551 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 552 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 553 case Instruction::BitCast : return bitc::CAST_BITCAST; 554 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 555 } 556 } 557 558 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 559 switch (Opcode) { 560 default: llvm_unreachable("Unknown binary instruction!"); 561 case Instruction::FNeg: return bitc::UNOP_FNEG; 562 } 563 } 564 565 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 566 switch (Opcode) { 567 default: llvm_unreachable("Unknown binary instruction!"); 568 case Instruction::Add: 569 case Instruction::FAdd: return bitc::BINOP_ADD; 570 case Instruction::Sub: 571 case Instruction::FSub: return bitc::BINOP_SUB; 572 case Instruction::Mul: 573 case Instruction::FMul: return bitc::BINOP_MUL; 574 case Instruction::UDiv: return bitc::BINOP_UDIV; 575 case Instruction::FDiv: 576 case Instruction::SDiv: return bitc::BINOP_SDIV; 577 case Instruction::URem: return bitc::BINOP_UREM; 578 case Instruction::FRem: 579 case Instruction::SRem: return bitc::BINOP_SREM; 580 case Instruction::Shl: return bitc::BINOP_SHL; 581 case Instruction::LShr: return bitc::BINOP_LSHR; 582 case Instruction::AShr: return bitc::BINOP_ASHR; 583 case Instruction::And: return bitc::BINOP_AND; 584 case Instruction::Or: return bitc::BINOP_OR; 585 case Instruction::Xor: return bitc::BINOP_XOR; 586 } 587 } 588 589 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 590 switch (Op) { 591 default: llvm_unreachable("Unknown RMW operation!"); 592 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 593 case AtomicRMWInst::Add: return bitc::RMW_ADD; 594 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 595 case AtomicRMWInst::And: return bitc::RMW_AND; 596 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 597 case AtomicRMWInst::Or: return bitc::RMW_OR; 598 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 599 case AtomicRMWInst::Max: return bitc::RMW_MAX; 600 case AtomicRMWInst::Min: return bitc::RMW_MIN; 601 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 602 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 603 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 604 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 605 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 606 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 607 case AtomicRMWInst::UIncWrap: 608 return bitc::RMW_UINC_WRAP; 609 case AtomicRMWInst::UDecWrap: 610 return bitc::RMW_UDEC_WRAP; 611 } 612 } 613 614 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 615 switch (Ordering) { 616 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 617 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 618 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 619 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 620 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 621 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 622 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 623 } 624 llvm_unreachable("Invalid ordering"); 625 } 626 627 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 628 StringRef Str, unsigned AbbrevToUse) { 629 SmallVector<unsigned, 64> Vals; 630 631 // Code: [strchar x N] 632 for (char C : Str) { 633 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 634 AbbrevToUse = 0; 635 Vals.push_back(C); 636 } 637 638 // Emit the finished record. 639 Stream.EmitRecord(Code, Vals, AbbrevToUse); 640 } 641 642 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 643 switch (Kind) { 644 case Attribute::Alignment: 645 return bitc::ATTR_KIND_ALIGNMENT; 646 case Attribute::AllocAlign: 647 return bitc::ATTR_KIND_ALLOC_ALIGN; 648 case Attribute::AllocSize: 649 return bitc::ATTR_KIND_ALLOC_SIZE; 650 case Attribute::AlwaysInline: 651 return bitc::ATTR_KIND_ALWAYS_INLINE; 652 case Attribute::Builtin: 653 return bitc::ATTR_KIND_BUILTIN; 654 case Attribute::ByVal: 655 return bitc::ATTR_KIND_BY_VAL; 656 case Attribute::Convergent: 657 return bitc::ATTR_KIND_CONVERGENT; 658 case Attribute::InAlloca: 659 return bitc::ATTR_KIND_IN_ALLOCA; 660 case Attribute::Cold: 661 return bitc::ATTR_KIND_COLD; 662 case Attribute::DisableSanitizerInstrumentation: 663 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 664 case Attribute::FnRetThunkExtern: 665 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 666 case Attribute::Hot: 667 return bitc::ATTR_KIND_HOT; 668 case Attribute::ElementType: 669 return bitc::ATTR_KIND_ELEMENTTYPE; 670 case Attribute::InlineHint: 671 return bitc::ATTR_KIND_INLINE_HINT; 672 case Attribute::InReg: 673 return bitc::ATTR_KIND_IN_REG; 674 case Attribute::JumpTable: 675 return bitc::ATTR_KIND_JUMP_TABLE; 676 case Attribute::MinSize: 677 return bitc::ATTR_KIND_MIN_SIZE; 678 case Attribute::AllocatedPointer: 679 return bitc::ATTR_KIND_ALLOCATED_POINTER; 680 case Attribute::AllocKind: 681 return bitc::ATTR_KIND_ALLOC_KIND; 682 case Attribute::Memory: 683 return bitc::ATTR_KIND_MEMORY; 684 case Attribute::NoFPClass: 685 return bitc::ATTR_KIND_NOFPCLASS; 686 case Attribute::Naked: 687 return bitc::ATTR_KIND_NAKED; 688 case Attribute::Nest: 689 return bitc::ATTR_KIND_NEST; 690 case Attribute::NoAlias: 691 return bitc::ATTR_KIND_NO_ALIAS; 692 case Attribute::NoBuiltin: 693 return bitc::ATTR_KIND_NO_BUILTIN; 694 case Attribute::NoCallback: 695 return bitc::ATTR_KIND_NO_CALLBACK; 696 case Attribute::NoCapture: 697 return bitc::ATTR_KIND_NO_CAPTURE; 698 case Attribute::NoDuplicate: 699 return bitc::ATTR_KIND_NO_DUPLICATE; 700 case Attribute::NoFree: 701 return bitc::ATTR_KIND_NOFREE; 702 case Attribute::NoImplicitFloat: 703 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 704 case Attribute::NoInline: 705 return bitc::ATTR_KIND_NO_INLINE; 706 case Attribute::NoRecurse: 707 return bitc::ATTR_KIND_NO_RECURSE; 708 case Attribute::NoMerge: 709 return bitc::ATTR_KIND_NO_MERGE; 710 case Attribute::NonLazyBind: 711 return bitc::ATTR_KIND_NON_LAZY_BIND; 712 case Attribute::NonNull: 713 return bitc::ATTR_KIND_NON_NULL; 714 case Attribute::Dereferenceable: 715 return bitc::ATTR_KIND_DEREFERENCEABLE; 716 case Attribute::DereferenceableOrNull: 717 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 718 case Attribute::NoRedZone: 719 return bitc::ATTR_KIND_NO_RED_ZONE; 720 case Attribute::NoReturn: 721 return bitc::ATTR_KIND_NO_RETURN; 722 case Attribute::NoSync: 723 return bitc::ATTR_KIND_NOSYNC; 724 case Attribute::NoCfCheck: 725 return bitc::ATTR_KIND_NOCF_CHECK; 726 case Attribute::NoProfile: 727 return bitc::ATTR_KIND_NO_PROFILE; 728 case Attribute::SkipProfile: 729 return bitc::ATTR_KIND_SKIP_PROFILE; 730 case Attribute::NoUnwind: 731 return bitc::ATTR_KIND_NO_UNWIND; 732 case Attribute::NoSanitizeBounds: 733 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 734 case Attribute::NoSanitizeCoverage: 735 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 736 case Attribute::NullPointerIsValid: 737 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 738 case Attribute::OptForFuzzing: 739 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 740 case Attribute::OptimizeForSize: 741 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 742 case Attribute::OptimizeNone: 743 return bitc::ATTR_KIND_OPTIMIZE_NONE; 744 case Attribute::ReadNone: 745 return bitc::ATTR_KIND_READ_NONE; 746 case Attribute::ReadOnly: 747 return bitc::ATTR_KIND_READ_ONLY; 748 case Attribute::Returned: 749 return bitc::ATTR_KIND_RETURNED; 750 case Attribute::ReturnsTwice: 751 return bitc::ATTR_KIND_RETURNS_TWICE; 752 case Attribute::SExt: 753 return bitc::ATTR_KIND_S_EXT; 754 case Attribute::Speculatable: 755 return bitc::ATTR_KIND_SPECULATABLE; 756 case Attribute::StackAlignment: 757 return bitc::ATTR_KIND_STACK_ALIGNMENT; 758 case Attribute::StackProtect: 759 return bitc::ATTR_KIND_STACK_PROTECT; 760 case Attribute::StackProtectReq: 761 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 762 case Attribute::StackProtectStrong: 763 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 764 case Attribute::SafeStack: 765 return bitc::ATTR_KIND_SAFESTACK; 766 case Attribute::ShadowCallStack: 767 return bitc::ATTR_KIND_SHADOWCALLSTACK; 768 case Attribute::StrictFP: 769 return bitc::ATTR_KIND_STRICT_FP; 770 case Attribute::StructRet: 771 return bitc::ATTR_KIND_STRUCT_RET; 772 case Attribute::SanitizeAddress: 773 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 774 case Attribute::SanitizeHWAddress: 775 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 776 case Attribute::SanitizeThread: 777 return bitc::ATTR_KIND_SANITIZE_THREAD; 778 case Attribute::SanitizeMemory: 779 return bitc::ATTR_KIND_SANITIZE_MEMORY; 780 case Attribute::SpeculativeLoadHardening: 781 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 782 case Attribute::SwiftError: 783 return bitc::ATTR_KIND_SWIFT_ERROR; 784 case Attribute::SwiftSelf: 785 return bitc::ATTR_KIND_SWIFT_SELF; 786 case Attribute::SwiftAsync: 787 return bitc::ATTR_KIND_SWIFT_ASYNC; 788 case Attribute::UWTable: 789 return bitc::ATTR_KIND_UW_TABLE; 790 case Attribute::VScaleRange: 791 return bitc::ATTR_KIND_VSCALE_RANGE; 792 case Attribute::WillReturn: 793 return bitc::ATTR_KIND_WILLRETURN; 794 case Attribute::WriteOnly: 795 return bitc::ATTR_KIND_WRITEONLY; 796 case Attribute::ZExt: 797 return bitc::ATTR_KIND_Z_EXT; 798 case Attribute::ImmArg: 799 return bitc::ATTR_KIND_IMMARG; 800 case Attribute::SanitizeMemTag: 801 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 802 case Attribute::Preallocated: 803 return bitc::ATTR_KIND_PREALLOCATED; 804 case Attribute::NoUndef: 805 return bitc::ATTR_KIND_NOUNDEF; 806 case Attribute::ByRef: 807 return bitc::ATTR_KIND_BYREF; 808 case Attribute::MustProgress: 809 return bitc::ATTR_KIND_MUSTPROGRESS; 810 case Attribute::PresplitCoroutine: 811 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 812 case Attribute::EndAttrKinds: 813 llvm_unreachable("Can not encode end-attribute kinds marker."); 814 case Attribute::None: 815 llvm_unreachable("Can not encode none-attribute."); 816 case Attribute::EmptyKey: 817 case Attribute::TombstoneKey: 818 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 819 } 820 821 llvm_unreachable("Trying to encode unknown attribute"); 822 } 823 824 void ModuleBitcodeWriter::writeAttributeGroupTable() { 825 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 826 VE.getAttributeGroups(); 827 if (AttrGrps.empty()) return; 828 829 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 830 831 SmallVector<uint64_t, 64> Record; 832 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 833 unsigned AttrListIndex = Pair.first; 834 AttributeSet AS = Pair.second; 835 Record.push_back(VE.getAttributeGroupID(Pair)); 836 Record.push_back(AttrListIndex); 837 838 for (Attribute Attr : AS) { 839 if (Attr.isEnumAttribute()) { 840 Record.push_back(0); 841 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 842 } else if (Attr.isIntAttribute()) { 843 Record.push_back(1); 844 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 845 Record.push_back(Attr.getValueAsInt()); 846 } else if (Attr.isStringAttribute()) { 847 StringRef Kind = Attr.getKindAsString(); 848 StringRef Val = Attr.getValueAsString(); 849 850 Record.push_back(Val.empty() ? 3 : 4); 851 Record.append(Kind.begin(), Kind.end()); 852 Record.push_back(0); 853 if (!Val.empty()) { 854 Record.append(Val.begin(), Val.end()); 855 Record.push_back(0); 856 } 857 } else { 858 assert(Attr.isTypeAttribute()); 859 Type *Ty = Attr.getValueAsType(); 860 Record.push_back(Ty ? 6 : 5); 861 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 862 if (Ty) 863 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 864 } 865 } 866 867 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 868 Record.clear(); 869 } 870 871 Stream.ExitBlock(); 872 } 873 874 void ModuleBitcodeWriter::writeAttributeTable() { 875 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 876 if (Attrs.empty()) return; 877 878 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 879 880 SmallVector<uint64_t, 64> Record; 881 for (const AttributeList &AL : Attrs) { 882 for (unsigned i : AL.indexes()) { 883 AttributeSet AS = AL.getAttributes(i); 884 if (AS.hasAttributes()) 885 Record.push_back(VE.getAttributeGroupID({i, AS})); 886 } 887 888 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 889 Record.clear(); 890 } 891 892 Stream.ExitBlock(); 893 } 894 895 /// WriteTypeTable - Write out the type table for a module. 896 void ModuleBitcodeWriter::writeTypeTable() { 897 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 898 899 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 900 SmallVector<uint64_t, 64> TypeVals; 901 902 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 903 904 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 905 auto Abbv = std::make_shared<BitCodeAbbrev>(); 906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 907 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 908 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 909 910 // Abbrev for TYPE_CODE_FUNCTION. 911 Abbv = std::make_shared<BitCodeAbbrev>(); 912 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 916 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 917 918 // Abbrev for TYPE_CODE_STRUCT_ANON. 919 Abbv = std::make_shared<BitCodeAbbrev>(); 920 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 924 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 925 926 // Abbrev for TYPE_CODE_STRUCT_NAME. 927 Abbv = std::make_shared<BitCodeAbbrev>(); 928 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 931 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 932 933 // Abbrev for TYPE_CODE_STRUCT_NAMED. 934 Abbv = std::make_shared<BitCodeAbbrev>(); 935 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 939 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 940 941 // Abbrev for TYPE_CODE_ARRAY. 942 Abbv = std::make_shared<BitCodeAbbrev>(); 943 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 946 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 947 948 // Emit an entry count so the reader can reserve space. 949 TypeVals.push_back(TypeList.size()); 950 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 951 TypeVals.clear(); 952 953 // Loop over all of the types, emitting each in turn. 954 for (Type *T : TypeList) { 955 int AbbrevToUse = 0; 956 unsigned Code = 0; 957 958 switch (T->getTypeID()) { 959 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 960 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 961 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 962 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 963 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 964 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 965 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 966 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 967 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 968 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 969 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 970 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 971 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 972 case Type::IntegerTyID: 973 // INTEGER: [width] 974 Code = bitc::TYPE_CODE_INTEGER; 975 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 976 break; 977 case Type::PointerTyID: { 978 PointerType *PTy = cast<PointerType>(T); 979 unsigned AddressSpace = PTy->getAddressSpace(); 980 if (PTy->isOpaque()) { 981 // OPAQUE_POINTER: [address space] 982 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 983 TypeVals.push_back(AddressSpace); 984 if (AddressSpace == 0) 985 AbbrevToUse = OpaquePtrAbbrev; 986 } else { 987 // POINTER: [pointee type, address space] 988 Code = bitc::TYPE_CODE_POINTER; 989 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 990 TypeVals.push_back(AddressSpace); 991 } 992 break; 993 } 994 case Type::FunctionTyID: { 995 FunctionType *FT = cast<FunctionType>(T); 996 // FUNCTION: [isvararg, retty, paramty x N] 997 Code = bitc::TYPE_CODE_FUNCTION; 998 TypeVals.push_back(FT->isVarArg()); 999 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1000 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1001 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1002 AbbrevToUse = FunctionAbbrev; 1003 break; 1004 } 1005 case Type::StructTyID: { 1006 StructType *ST = cast<StructType>(T); 1007 // STRUCT: [ispacked, eltty x N] 1008 TypeVals.push_back(ST->isPacked()); 1009 // Output all of the element types. 1010 for (Type *ET : ST->elements()) 1011 TypeVals.push_back(VE.getTypeID(ET)); 1012 1013 if (ST->isLiteral()) { 1014 Code = bitc::TYPE_CODE_STRUCT_ANON; 1015 AbbrevToUse = StructAnonAbbrev; 1016 } else { 1017 if (ST->isOpaque()) { 1018 Code = bitc::TYPE_CODE_OPAQUE; 1019 } else { 1020 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1021 AbbrevToUse = StructNamedAbbrev; 1022 } 1023 1024 // Emit the name if it is present. 1025 if (!ST->getName().empty()) 1026 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1027 StructNameAbbrev); 1028 } 1029 break; 1030 } 1031 case Type::ArrayTyID: { 1032 ArrayType *AT = cast<ArrayType>(T); 1033 // ARRAY: [numelts, eltty] 1034 Code = bitc::TYPE_CODE_ARRAY; 1035 TypeVals.push_back(AT->getNumElements()); 1036 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1037 AbbrevToUse = ArrayAbbrev; 1038 break; 1039 } 1040 case Type::FixedVectorTyID: 1041 case Type::ScalableVectorTyID: { 1042 VectorType *VT = cast<VectorType>(T); 1043 // VECTOR [numelts, eltty] or 1044 // [numelts, eltty, scalable] 1045 Code = bitc::TYPE_CODE_VECTOR; 1046 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1047 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1048 if (isa<ScalableVectorType>(VT)) 1049 TypeVals.push_back(true); 1050 break; 1051 } 1052 case Type::TargetExtTyID: { 1053 TargetExtType *TET = cast<TargetExtType>(T); 1054 Code = bitc::TYPE_CODE_TARGET_TYPE; 1055 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1056 StructNameAbbrev); 1057 TypeVals.push_back(TET->getNumTypeParameters()); 1058 for (Type *InnerTy : TET->type_params()) 1059 TypeVals.push_back(VE.getTypeID(InnerTy)); 1060 for (unsigned IntParam : TET->int_params()) 1061 TypeVals.push_back(IntParam); 1062 break; 1063 } 1064 case Type::TypedPointerTyID: 1065 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1066 } 1067 1068 // Emit the finished record. 1069 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1070 TypeVals.clear(); 1071 } 1072 1073 Stream.ExitBlock(); 1074 } 1075 1076 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1077 switch (Linkage) { 1078 case GlobalValue::ExternalLinkage: 1079 return 0; 1080 case GlobalValue::WeakAnyLinkage: 1081 return 16; 1082 case GlobalValue::AppendingLinkage: 1083 return 2; 1084 case GlobalValue::InternalLinkage: 1085 return 3; 1086 case GlobalValue::LinkOnceAnyLinkage: 1087 return 18; 1088 case GlobalValue::ExternalWeakLinkage: 1089 return 7; 1090 case GlobalValue::CommonLinkage: 1091 return 8; 1092 case GlobalValue::PrivateLinkage: 1093 return 9; 1094 case GlobalValue::WeakODRLinkage: 1095 return 17; 1096 case GlobalValue::LinkOnceODRLinkage: 1097 return 19; 1098 case GlobalValue::AvailableExternallyLinkage: 1099 return 12; 1100 } 1101 llvm_unreachable("Invalid linkage"); 1102 } 1103 1104 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1105 return getEncodedLinkage(GV.getLinkage()); 1106 } 1107 1108 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1109 uint64_t RawFlags = 0; 1110 RawFlags |= Flags.ReadNone; 1111 RawFlags |= (Flags.ReadOnly << 1); 1112 RawFlags |= (Flags.NoRecurse << 2); 1113 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1114 RawFlags |= (Flags.NoInline << 4); 1115 RawFlags |= (Flags.AlwaysInline << 5); 1116 RawFlags |= (Flags.NoUnwind << 6); 1117 RawFlags |= (Flags.MayThrow << 7); 1118 RawFlags |= (Flags.HasUnknownCall << 8); 1119 RawFlags |= (Flags.MustBeUnreachable << 9); 1120 return RawFlags; 1121 } 1122 1123 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1124 // in BitcodeReader.cpp. 1125 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1126 uint64_t RawFlags = 0; 1127 1128 RawFlags |= Flags.NotEligibleToImport; // bool 1129 RawFlags |= (Flags.Live << 1); 1130 RawFlags |= (Flags.DSOLocal << 2); 1131 RawFlags |= (Flags.CanAutoHide << 3); 1132 1133 // Linkage don't need to be remapped at that time for the summary. Any future 1134 // change to the getEncodedLinkage() function will need to be taken into 1135 // account here as well. 1136 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1137 1138 RawFlags |= (Flags.Visibility << 8); // 2 bits 1139 1140 return RawFlags; 1141 } 1142 1143 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1144 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1145 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1146 return RawFlags; 1147 } 1148 1149 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1150 switch (GV.getVisibility()) { 1151 case GlobalValue::DefaultVisibility: return 0; 1152 case GlobalValue::HiddenVisibility: return 1; 1153 case GlobalValue::ProtectedVisibility: return 2; 1154 } 1155 llvm_unreachable("Invalid visibility"); 1156 } 1157 1158 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1159 switch (GV.getDLLStorageClass()) { 1160 case GlobalValue::DefaultStorageClass: return 0; 1161 case GlobalValue::DLLImportStorageClass: return 1; 1162 case GlobalValue::DLLExportStorageClass: return 2; 1163 } 1164 llvm_unreachable("Invalid DLL storage class"); 1165 } 1166 1167 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1168 switch (GV.getThreadLocalMode()) { 1169 case GlobalVariable::NotThreadLocal: return 0; 1170 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1171 case GlobalVariable::LocalDynamicTLSModel: return 2; 1172 case GlobalVariable::InitialExecTLSModel: return 3; 1173 case GlobalVariable::LocalExecTLSModel: return 4; 1174 } 1175 llvm_unreachable("Invalid TLS model"); 1176 } 1177 1178 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1179 switch (C.getSelectionKind()) { 1180 case Comdat::Any: 1181 return bitc::COMDAT_SELECTION_KIND_ANY; 1182 case Comdat::ExactMatch: 1183 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1184 case Comdat::Largest: 1185 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1186 case Comdat::NoDeduplicate: 1187 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1188 case Comdat::SameSize: 1189 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1190 } 1191 llvm_unreachable("Invalid selection kind"); 1192 } 1193 1194 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1195 switch (GV.getUnnamedAddr()) { 1196 case GlobalValue::UnnamedAddr::None: return 0; 1197 case GlobalValue::UnnamedAddr::Local: return 2; 1198 case GlobalValue::UnnamedAddr::Global: return 1; 1199 } 1200 llvm_unreachable("Invalid unnamed_addr"); 1201 } 1202 1203 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1204 if (GenerateHash) 1205 Hasher.update(Str); 1206 return StrtabBuilder.add(Str); 1207 } 1208 1209 void ModuleBitcodeWriter::writeComdats() { 1210 SmallVector<unsigned, 64> Vals; 1211 for (const Comdat *C : VE.getComdats()) { 1212 // COMDAT: [strtab offset, strtab size, selection_kind] 1213 Vals.push_back(addToStrtab(C->getName())); 1214 Vals.push_back(C->getName().size()); 1215 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1216 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1217 Vals.clear(); 1218 } 1219 } 1220 1221 /// Write a record that will eventually hold the word offset of the 1222 /// module-level VST. For now the offset is 0, which will be backpatched 1223 /// after the real VST is written. Saves the bit offset to backpatch. 1224 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1225 // Write a placeholder value in for the offset of the real VST, 1226 // which is written after the function blocks so that it can include 1227 // the offset of each function. The placeholder offset will be 1228 // updated when the real VST is written. 1229 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1230 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1231 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1232 // hold the real VST offset. Must use fixed instead of VBR as we don't 1233 // know how many VBR chunks to reserve ahead of time. 1234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1235 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1236 1237 // Emit the placeholder 1238 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1239 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1240 1241 // Compute and save the bit offset to the placeholder, which will be 1242 // patched when the real VST is written. We can simply subtract the 32-bit 1243 // fixed size from the current bit number to get the location to backpatch. 1244 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1245 } 1246 1247 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1248 1249 /// Determine the encoding to use for the given string name and length. 1250 static StringEncoding getStringEncoding(StringRef Str) { 1251 bool isChar6 = true; 1252 for (char C : Str) { 1253 if (isChar6) 1254 isChar6 = BitCodeAbbrevOp::isChar6(C); 1255 if ((unsigned char)C & 128) 1256 // don't bother scanning the rest. 1257 return SE_Fixed8; 1258 } 1259 if (isChar6) 1260 return SE_Char6; 1261 return SE_Fixed7; 1262 } 1263 1264 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1265 "Sanitizer Metadata is too large for naive serialization."); 1266 static unsigned 1267 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1268 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1269 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1270 } 1271 1272 /// Emit top-level description of module, including target triple, inline asm, 1273 /// descriptors for global variables, and function prototype info. 1274 /// Returns the bit offset to backpatch with the location of the real VST. 1275 void ModuleBitcodeWriter::writeModuleInfo() { 1276 // Emit various pieces of data attached to a module. 1277 if (!M.getTargetTriple().empty()) 1278 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1279 0 /*TODO*/); 1280 const std::string &DL = M.getDataLayoutStr(); 1281 if (!DL.empty()) 1282 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1283 if (!M.getModuleInlineAsm().empty()) 1284 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1285 0 /*TODO*/); 1286 1287 // Emit information about sections and GC, computing how many there are. Also 1288 // compute the maximum alignment value. 1289 std::map<std::string, unsigned> SectionMap; 1290 std::map<std::string, unsigned> GCMap; 1291 MaybeAlign MaxAlignment; 1292 unsigned MaxGlobalType = 0; 1293 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1294 if (A) 1295 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1296 }; 1297 for (const GlobalVariable &GV : M.globals()) { 1298 UpdateMaxAlignment(GV.getAlign()); 1299 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1300 if (GV.hasSection()) { 1301 // Give section names unique ID's. 1302 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1303 if (!Entry) { 1304 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1305 0 /*TODO*/); 1306 Entry = SectionMap.size(); 1307 } 1308 } 1309 } 1310 for (const Function &F : M) { 1311 UpdateMaxAlignment(F.getAlign()); 1312 if (F.hasSection()) { 1313 // Give section names unique ID's. 1314 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1315 if (!Entry) { 1316 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1317 0 /*TODO*/); 1318 Entry = SectionMap.size(); 1319 } 1320 } 1321 if (F.hasGC()) { 1322 // Same for GC names. 1323 unsigned &Entry = GCMap[F.getGC()]; 1324 if (!Entry) { 1325 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1326 0 /*TODO*/); 1327 Entry = GCMap.size(); 1328 } 1329 } 1330 } 1331 1332 // Emit abbrev for globals, now that we know # sections and max alignment. 1333 unsigned SimpleGVarAbbrev = 0; 1334 if (!M.global_empty()) { 1335 // Add an abbrev for common globals with no visibility or thread localness. 1336 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1337 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1341 Log2_32_Ceil(MaxGlobalType+1))); 1342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1343 //| explicitType << 1 1344 //| constant 1345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1347 if (!MaxAlignment) // Alignment. 1348 Abbv->Add(BitCodeAbbrevOp(0)); 1349 else { 1350 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1352 Log2_32_Ceil(MaxEncAlignment+1))); 1353 } 1354 if (SectionMap.empty()) // Section. 1355 Abbv->Add(BitCodeAbbrevOp(0)); 1356 else 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1358 Log2_32_Ceil(SectionMap.size()+1))); 1359 // Don't bother emitting vis + thread local. 1360 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1361 } 1362 1363 SmallVector<unsigned, 64> Vals; 1364 // Emit the module's source file name. 1365 { 1366 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1367 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1368 if (Bits == SE_Char6) 1369 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1370 else if (Bits == SE_Fixed7) 1371 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1372 1373 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1374 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1375 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1377 Abbv->Add(AbbrevOpToUse); 1378 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1379 1380 for (const auto P : M.getSourceFileName()) 1381 Vals.push_back((unsigned char)P); 1382 1383 // Emit the finished record. 1384 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1385 Vals.clear(); 1386 } 1387 1388 // Emit the global variable information. 1389 for (const GlobalVariable &GV : M.globals()) { 1390 unsigned AbbrevToUse = 0; 1391 1392 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1393 // linkage, alignment, section, visibility, threadlocal, 1394 // unnamed_addr, externally_initialized, dllstorageclass, 1395 // comdat, attributes, DSO_Local, GlobalSanitizer] 1396 Vals.push_back(addToStrtab(GV.getName())); 1397 Vals.push_back(GV.getName().size()); 1398 Vals.push_back(VE.getTypeID(GV.getValueType())); 1399 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1400 Vals.push_back(GV.isDeclaration() ? 0 : 1401 (VE.getValueID(GV.getInitializer()) + 1)); 1402 Vals.push_back(getEncodedLinkage(GV)); 1403 Vals.push_back(getEncodedAlign(GV.getAlign())); 1404 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1405 : 0); 1406 if (GV.isThreadLocal() || 1407 GV.getVisibility() != GlobalValue::DefaultVisibility || 1408 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1409 GV.isExternallyInitialized() || 1410 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1411 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1412 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1413 Vals.push_back(getEncodedVisibility(GV)); 1414 Vals.push_back(getEncodedThreadLocalMode(GV)); 1415 Vals.push_back(getEncodedUnnamedAddr(GV)); 1416 Vals.push_back(GV.isExternallyInitialized()); 1417 Vals.push_back(getEncodedDLLStorageClass(GV)); 1418 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1419 1420 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1421 Vals.push_back(VE.getAttributeListID(AL)); 1422 1423 Vals.push_back(GV.isDSOLocal()); 1424 Vals.push_back(addToStrtab(GV.getPartition())); 1425 Vals.push_back(GV.getPartition().size()); 1426 1427 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1428 GV.getSanitizerMetadata()) 1429 : 0)); 1430 } else { 1431 AbbrevToUse = SimpleGVarAbbrev; 1432 } 1433 1434 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1435 Vals.clear(); 1436 } 1437 1438 // Emit the function proto information. 1439 for (const Function &F : M) { 1440 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1441 // linkage, paramattrs, alignment, section, visibility, gc, 1442 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1443 // prefixdata, personalityfn, DSO_Local, addrspace] 1444 Vals.push_back(addToStrtab(F.getName())); 1445 Vals.push_back(F.getName().size()); 1446 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1447 Vals.push_back(F.getCallingConv()); 1448 Vals.push_back(F.isDeclaration()); 1449 Vals.push_back(getEncodedLinkage(F)); 1450 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1451 Vals.push_back(getEncodedAlign(F.getAlign())); 1452 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1453 : 0); 1454 Vals.push_back(getEncodedVisibility(F)); 1455 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1456 Vals.push_back(getEncodedUnnamedAddr(F)); 1457 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1458 : 0); 1459 Vals.push_back(getEncodedDLLStorageClass(F)); 1460 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1461 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1462 : 0); 1463 Vals.push_back( 1464 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1465 1466 Vals.push_back(F.isDSOLocal()); 1467 Vals.push_back(F.getAddressSpace()); 1468 Vals.push_back(addToStrtab(F.getPartition())); 1469 Vals.push_back(F.getPartition().size()); 1470 1471 unsigned AbbrevToUse = 0; 1472 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1473 Vals.clear(); 1474 } 1475 1476 // Emit the alias information. 1477 for (const GlobalAlias &A : M.aliases()) { 1478 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1479 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1480 // DSO_Local] 1481 Vals.push_back(addToStrtab(A.getName())); 1482 Vals.push_back(A.getName().size()); 1483 Vals.push_back(VE.getTypeID(A.getValueType())); 1484 Vals.push_back(A.getType()->getAddressSpace()); 1485 Vals.push_back(VE.getValueID(A.getAliasee())); 1486 Vals.push_back(getEncodedLinkage(A)); 1487 Vals.push_back(getEncodedVisibility(A)); 1488 Vals.push_back(getEncodedDLLStorageClass(A)); 1489 Vals.push_back(getEncodedThreadLocalMode(A)); 1490 Vals.push_back(getEncodedUnnamedAddr(A)); 1491 Vals.push_back(A.isDSOLocal()); 1492 Vals.push_back(addToStrtab(A.getPartition())); 1493 Vals.push_back(A.getPartition().size()); 1494 1495 unsigned AbbrevToUse = 0; 1496 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1497 Vals.clear(); 1498 } 1499 1500 // Emit the ifunc information. 1501 for (const GlobalIFunc &I : M.ifuncs()) { 1502 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1503 // val#, linkage, visibility, DSO_Local] 1504 Vals.push_back(addToStrtab(I.getName())); 1505 Vals.push_back(I.getName().size()); 1506 Vals.push_back(VE.getTypeID(I.getValueType())); 1507 Vals.push_back(I.getType()->getAddressSpace()); 1508 Vals.push_back(VE.getValueID(I.getResolver())); 1509 Vals.push_back(getEncodedLinkage(I)); 1510 Vals.push_back(getEncodedVisibility(I)); 1511 Vals.push_back(I.isDSOLocal()); 1512 Vals.push_back(addToStrtab(I.getPartition())); 1513 Vals.push_back(I.getPartition().size()); 1514 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1515 Vals.clear(); 1516 } 1517 1518 writeValueSymbolTableForwardDecl(); 1519 } 1520 1521 static uint64_t getOptimizationFlags(const Value *V) { 1522 uint64_t Flags = 0; 1523 1524 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1525 if (OBO->hasNoSignedWrap()) 1526 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1527 if (OBO->hasNoUnsignedWrap()) 1528 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1529 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1530 if (PEO->isExact()) 1531 Flags |= 1 << bitc::PEO_EXACT; 1532 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1533 if (FPMO->hasAllowReassoc()) 1534 Flags |= bitc::AllowReassoc; 1535 if (FPMO->hasNoNaNs()) 1536 Flags |= bitc::NoNaNs; 1537 if (FPMO->hasNoInfs()) 1538 Flags |= bitc::NoInfs; 1539 if (FPMO->hasNoSignedZeros()) 1540 Flags |= bitc::NoSignedZeros; 1541 if (FPMO->hasAllowReciprocal()) 1542 Flags |= bitc::AllowReciprocal; 1543 if (FPMO->hasAllowContract()) 1544 Flags |= bitc::AllowContract; 1545 if (FPMO->hasApproxFunc()) 1546 Flags |= bitc::ApproxFunc; 1547 } 1548 1549 return Flags; 1550 } 1551 1552 void ModuleBitcodeWriter::writeValueAsMetadata( 1553 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1554 // Mimic an MDNode with a value as one operand. 1555 Value *V = MD->getValue(); 1556 Record.push_back(VE.getTypeID(V->getType())); 1557 Record.push_back(VE.getValueID(V)); 1558 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1559 Record.clear(); 1560 } 1561 1562 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1563 SmallVectorImpl<uint64_t> &Record, 1564 unsigned Abbrev) { 1565 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1566 Metadata *MD = N->getOperand(i); 1567 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1568 "Unexpected function-local metadata"); 1569 Record.push_back(VE.getMetadataOrNullID(MD)); 1570 } 1571 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1572 : bitc::METADATA_NODE, 1573 Record, Abbrev); 1574 Record.clear(); 1575 } 1576 1577 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1578 // Assume the column is usually under 128, and always output the inlined-at 1579 // location (it's never more expensive than building an array size 1). 1580 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1581 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1588 return Stream.EmitAbbrev(std::move(Abbv)); 1589 } 1590 1591 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1592 SmallVectorImpl<uint64_t> &Record, 1593 unsigned &Abbrev) { 1594 if (!Abbrev) 1595 Abbrev = createDILocationAbbrev(); 1596 1597 Record.push_back(N->isDistinct()); 1598 Record.push_back(N->getLine()); 1599 Record.push_back(N->getColumn()); 1600 Record.push_back(VE.getMetadataID(N->getScope())); 1601 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1602 Record.push_back(N->isImplicitCode()); 1603 1604 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1605 Record.clear(); 1606 } 1607 1608 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1609 // Assume the column is usually under 128, and always output the inlined-at 1610 // location (it's never more expensive than building an array size 1). 1611 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1612 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1619 return Stream.EmitAbbrev(std::move(Abbv)); 1620 } 1621 1622 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1623 SmallVectorImpl<uint64_t> &Record, 1624 unsigned &Abbrev) { 1625 if (!Abbrev) 1626 Abbrev = createGenericDINodeAbbrev(); 1627 1628 Record.push_back(N->isDistinct()); 1629 Record.push_back(N->getTag()); 1630 Record.push_back(0); // Per-tag version field; unused for now. 1631 1632 for (auto &I : N->operands()) 1633 Record.push_back(VE.getMetadataOrNullID(I)); 1634 1635 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1636 Record.clear(); 1637 } 1638 1639 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1640 SmallVectorImpl<uint64_t> &Record, 1641 unsigned Abbrev) { 1642 const uint64_t Version = 2 << 1; 1643 Record.push_back((uint64_t)N->isDistinct() | Version); 1644 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1645 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1646 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1647 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1648 1649 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1650 Record.clear(); 1651 } 1652 1653 void ModuleBitcodeWriter::writeDIGenericSubrange( 1654 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1655 unsigned Abbrev) { 1656 Record.push_back((uint64_t)N->isDistinct()); 1657 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1659 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1660 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1661 1662 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1663 Record.clear(); 1664 } 1665 1666 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1667 if ((int64_t)V >= 0) 1668 Vals.push_back(V << 1); 1669 else 1670 Vals.push_back((-V << 1) | 1); 1671 } 1672 1673 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1674 // We have an arbitrary precision integer value to write whose 1675 // bit width is > 64. However, in canonical unsigned integer 1676 // format it is likely that the high bits are going to be zero. 1677 // So, we only write the number of active words. 1678 unsigned NumWords = A.getActiveWords(); 1679 const uint64_t *RawData = A.getRawData(); 1680 for (unsigned i = 0; i < NumWords; i++) 1681 emitSignedInt64(Vals, RawData[i]); 1682 } 1683 1684 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1685 SmallVectorImpl<uint64_t> &Record, 1686 unsigned Abbrev) { 1687 const uint64_t IsBigInt = 1 << 2; 1688 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1689 Record.push_back(N->getValue().getBitWidth()); 1690 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1691 emitWideAPInt(Record, N->getValue()); 1692 1693 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1694 Record.clear(); 1695 } 1696 1697 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1698 SmallVectorImpl<uint64_t> &Record, 1699 unsigned Abbrev) { 1700 Record.push_back(N->isDistinct()); 1701 Record.push_back(N->getTag()); 1702 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1703 Record.push_back(N->getSizeInBits()); 1704 Record.push_back(N->getAlignInBits()); 1705 Record.push_back(N->getEncoding()); 1706 Record.push_back(N->getFlags()); 1707 1708 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1709 Record.clear(); 1710 } 1711 1712 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1713 SmallVectorImpl<uint64_t> &Record, 1714 unsigned Abbrev) { 1715 Record.push_back(N->isDistinct()); 1716 Record.push_back(N->getTag()); 1717 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1721 Record.push_back(N->getSizeInBits()); 1722 Record.push_back(N->getAlignInBits()); 1723 Record.push_back(N->getEncoding()); 1724 1725 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1726 Record.clear(); 1727 } 1728 1729 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1730 SmallVectorImpl<uint64_t> &Record, 1731 unsigned Abbrev) { 1732 Record.push_back(N->isDistinct()); 1733 Record.push_back(N->getTag()); 1734 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1735 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1736 Record.push_back(N->getLine()); 1737 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1738 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1739 Record.push_back(N->getSizeInBits()); 1740 Record.push_back(N->getAlignInBits()); 1741 Record.push_back(N->getOffsetInBits()); 1742 Record.push_back(N->getFlags()); 1743 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1744 1745 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1746 // that there is no DWARF address space associated with DIDerivedType. 1747 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1748 Record.push_back(*DWARFAddressSpace + 1); 1749 else 1750 Record.push_back(0); 1751 1752 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1753 1754 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1755 Record.clear(); 1756 } 1757 1758 void ModuleBitcodeWriter::writeDICompositeType( 1759 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1760 unsigned Abbrev) { 1761 const unsigned IsNotUsedInOldTypeRef = 0x2; 1762 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1763 Record.push_back(N->getTag()); 1764 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1765 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1766 Record.push_back(N->getLine()); 1767 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1768 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1769 Record.push_back(N->getSizeInBits()); 1770 Record.push_back(N->getAlignInBits()); 1771 Record.push_back(N->getOffsetInBits()); 1772 Record.push_back(N->getFlags()); 1773 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1774 Record.push_back(N->getRuntimeLang()); 1775 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1776 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1778 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1781 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1782 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1783 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1784 1785 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1786 Record.clear(); 1787 } 1788 1789 void ModuleBitcodeWriter::writeDISubroutineType( 1790 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1791 unsigned Abbrev) { 1792 const unsigned HasNoOldTypeRefs = 0x2; 1793 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1794 Record.push_back(N->getFlags()); 1795 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1796 Record.push_back(N->getCC()); 1797 1798 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1799 Record.clear(); 1800 } 1801 1802 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1803 SmallVectorImpl<uint64_t> &Record, 1804 unsigned Abbrev) { 1805 Record.push_back(N->isDistinct()); 1806 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1807 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1808 if (N->getRawChecksum()) { 1809 Record.push_back(N->getRawChecksum()->Kind); 1810 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1811 } else { 1812 // Maintain backwards compatibility with the old internal representation of 1813 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1814 Record.push_back(0); 1815 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1816 } 1817 auto Source = N->getRawSource(); 1818 if (Source) 1819 Record.push_back(VE.getMetadataOrNullID(Source)); 1820 1821 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1822 Record.clear(); 1823 } 1824 1825 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1826 SmallVectorImpl<uint64_t> &Record, 1827 unsigned Abbrev) { 1828 assert(N->isDistinct() && "Expected distinct compile units"); 1829 Record.push_back(/* IsDistinct */ true); 1830 Record.push_back(N->getSourceLanguage()); 1831 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1832 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1833 Record.push_back(N->isOptimized()); 1834 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1835 Record.push_back(N->getRuntimeVersion()); 1836 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1837 Record.push_back(N->getEmissionKind()); 1838 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1839 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1840 Record.push_back(/* subprograms */ 0); 1841 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1842 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1843 Record.push_back(N->getDWOId()); 1844 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1845 Record.push_back(N->getSplitDebugInlining()); 1846 Record.push_back(N->getDebugInfoForProfiling()); 1847 Record.push_back((unsigned)N->getNameTableKind()); 1848 Record.push_back(N->getRangesBaseAddress()); 1849 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1850 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1851 1852 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1853 Record.clear(); 1854 } 1855 1856 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1857 SmallVectorImpl<uint64_t> &Record, 1858 unsigned Abbrev) { 1859 const uint64_t HasUnitFlag = 1 << 1; 1860 const uint64_t HasSPFlagsFlag = 1 << 2; 1861 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1862 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1863 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1864 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1865 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1866 Record.push_back(N->getLine()); 1867 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1868 Record.push_back(N->getScopeLine()); 1869 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1870 Record.push_back(N->getSPFlags()); 1871 Record.push_back(N->getVirtualIndex()); 1872 Record.push_back(N->getFlags()); 1873 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1874 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1875 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1876 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1877 Record.push_back(N->getThisAdjustment()); 1878 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1879 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1880 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1881 1882 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1883 Record.clear(); 1884 } 1885 1886 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1887 SmallVectorImpl<uint64_t> &Record, 1888 unsigned Abbrev) { 1889 Record.push_back(N->isDistinct()); 1890 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1891 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1892 Record.push_back(N->getLine()); 1893 Record.push_back(N->getColumn()); 1894 1895 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1896 Record.clear(); 1897 } 1898 1899 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1900 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1901 unsigned Abbrev) { 1902 Record.push_back(N->isDistinct()); 1903 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1904 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1905 Record.push_back(N->getDiscriminator()); 1906 1907 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1908 Record.clear(); 1909 } 1910 1911 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1912 SmallVectorImpl<uint64_t> &Record, 1913 unsigned Abbrev) { 1914 Record.push_back(N->isDistinct()); 1915 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1916 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1917 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1918 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1919 Record.push_back(N->getLineNo()); 1920 1921 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1922 Record.clear(); 1923 } 1924 1925 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1926 SmallVectorImpl<uint64_t> &Record, 1927 unsigned Abbrev) { 1928 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1929 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1930 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1931 1932 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1933 Record.clear(); 1934 } 1935 1936 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1937 SmallVectorImpl<uint64_t> &Record, 1938 unsigned Abbrev) { 1939 Record.push_back(N->isDistinct()); 1940 Record.push_back(N->getMacinfoType()); 1941 Record.push_back(N->getLine()); 1942 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1943 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1944 1945 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1946 Record.clear(); 1947 } 1948 1949 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1950 SmallVectorImpl<uint64_t> &Record, 1951 unsigned Abbrev) { 1952 Record.push_back(N->isDistinct()); 1953 Record.push_back(N->getMacinfoType()); 1954 Record.push_back(N->getLine()); 1955 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1956 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1957 1958 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1959 Record.clear(); 1960 } 1961 1962 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1963 SmallVectorImpl<uint64_t> &Record, 1964 unsigned Abbrev) { 1965 Record.reserve(N->getArgs().size()); 1966 for (ValueAsMetadata *MD : N->getArgs()) 1967 Record.push_back(VE.getMetadataID(MD)); 1968 1969 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1970 Record.clear(); 1971 } 1972 1973 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1974 SmallVectorImpl<uint64_t> &Record, 1975 unsigned Abbrev) { 1976 Record.push_back(N->isDistinct()); 1977 for (auto &I : N->operands()) 1978 Record.push_back(VE.getMetadataOrNullID(I)); 1979 Record.push_back(N->getLineNo()); 1980 Record.push_back(N->getIsDecl()); 1981 1982 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1983 Record.clear(); 1984 } 1985 1986 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 1987 SmallVectorImpl<uint64_t> &Record, 1988 unsigned Abbrev) { 1989 // There are no arguments for this metadata type. 1990 Record.push_back(N->isDistinct()); 1991 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 1992 Record.clear(); 1993 } 1994 1995 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1996 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1997 unsigned Abbrev) { 1998 Record.push_back(N->isDistinct()); 1999 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2000 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2001 Record.push_back(N->isDefault()); 2002 2003 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2004 Record.clear(); 2005 } 2006 2007 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2008 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2009 unsigned Abbrev) { 2010 Record.push_back(N->isDistinct()); 2011 Record.push_back(N->getTag()); 2012 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2013 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2014 Record.push_back(N->isDefault()); 2015 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2016 2017 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2018 Record.clear(); 2019 } 2020 2021 void ModuleBitcodeWriter::writeDIGlobalVariable( 2022 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2023 unsigned Abbrev) { 2024 const uint64_t Version = 2 << 1; 2025 Record.push_back((uint64_t)N->isDistinct() | Version); 2026 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2027 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2028 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2029 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2030 Record.push_back(N->getLine()); 2031 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2032 Record.push_back(N->isLocalToUnit()); 2033 Record.push_back(N->isDefinition()); 2034 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2035 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2036 Record.push_back(N->getAlignInBits()); 2037 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2038 2039 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2040 Record.clear(); 2041 } 2042 2043 void ModuleBitcodeWriter::writeDILocalVariable( 2044 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2045 unsigned Abbrev) { 2046 // In order to support all possible bitcode formats in BitcodeReader we need 2047 // to distinguish the following cases: 2048 // 1) Record has no artificial tag (Record[1]), 2049 // has no obsolete inlinedAt field (Record[9]). 2050 // In this case Record size will be 8, HasAlignment flag is false. 2051 // 2) Record has artificial tag (Record[1]), 2052 // has no obsolete inlignedAt field (Record[9]). 2053 // In this case Record size will be 9, HasAlignment flag is false. 2054 // 3) Record has both artificial tag (Record[1]) and 2055 // obsolete inlignedAt field (Record[9]). 2056 // In this case Record size will be 10, HasAlignment flag is false. 2057 // 4) Record has neither artificial tag, nor inlignedAt field, but 2058 // HasAlignment flag is true and Record[8] contains alignment value. 2059 const uint64_t HasAlignmentFlag = 1 << 1; 2060 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2061 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2062 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2063 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2064 Record.push_back(N->getLine()); 2065 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2066 Record.push_back(N->getArg()); 2067 Record.push_back(N->getFlags()); 2068 Record.push_back(N->getAlignInBits()); 2069 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2070 2071 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2072 Record.clear(); 2073 } 2074 2075 void ModuleBitcodeWriter::writeDILabel( 2076 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2077 unsigned Abbrev) { 2078 Record.push_back((uint64_t)N->isDistinct()); 2079 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2080 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2081 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2082 Record.push_back(N->getLine()); 2083 2084 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2085 Record.clear(); 2086 } 2087 2088 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2089 SmallVectorImpl<uint64_t> &Record, 2090 unsigned Abbrev) { 2091 Record.reserve(N->getElements().size() + 1); 2092 const uint64_t Version = 3 << 1; 2093 Record.push_back((uint64_t)N->isDistinct() | Version); 2094 Record.append(N->elements_begin(), N->elements_end()); 2095 2096 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2097 Record.clear(); 2098 } 2099 2100 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2101 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2102 unsigned Abbrev) { 2103 Record.push_back(N->isDistinct()); 2104 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2105 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2106 2107 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2108 Record.clear(); 2109 } 2110 2111 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2112 SmallVectorImpl<uint64_t> &Record, 2113 unsigned Abbrev) { 2114 Record.push_back(N->isDistinct()); 2115 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2116 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2117 Record.push_back(N->getLine()); 2118 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2119 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2120 Record.push_back(N->getAttributes()); 2121 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2122 2123 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2124 Record.clear(); 2125 } 2126 2127 void ModuleBitcodeWriter::writeDIImportedEntity( 2128 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2129 unsigned Abbrev) { 2130 Record.push_back(N->isDistinct()); 2131 Record.push_back(N->getTag()); 2132 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2133 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2134 Record.push_back(N->getLine()); 2135 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2136 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2137 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2138 2139 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2140 Record.clear(); 2141 } 2142 2143 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2144 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2145 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2148 return Stream.EmitAbbrev(std::move(Abbv)); 2149 } 2150 2151 void ModuleBitcodeWriter::writeNamedMetadata( 2152 SmallVectorImpl<uint64_t> &Record) { 2153 if (M.named_metadata_empty()) 2154 return; 2155 2156 unsigned Abbrev = createNamedMetadataAbbrev(); 2157 for (const NamedMDNode &NMD : M.named_metadata()) { 2158 // Write name. 2159 StringRef Str = NMD.getName(); 2160 Record.append(Str.bytes_begin(), Str.bytes_end()); 2161 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2162 Record.clear(); 2163 2164 // Write named metadata operands. 2165 for (const MDNode *N : NMD.operands()) 2166 Record.push_back(VE.getMetadataID(N)); 2167 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2168 Record.clear(); 2169 } 2170 } 2171 2172 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2173 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2174 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2178 return Stream.EmitAbbrev(std::move(Abbv)); 2179 } 2180 2181 /// Write out a record for MDString. 2182 /// 2183 /// All the metadata strings in a metadata block are emitted in a single 2184 /// record. The sizes and strings themselves are shoved into a blob. 2185 void ModuleBitcodeWriter::writeMetadataStrings( 2186 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2187 if (Strings.empty()) 2188 return; 2189 2190 // Start the record with the number of strings. 2191 Record.push_back(bitc::METADATA_STRINGS); 2192 Record.push_back(Strings.size()); 2193 2194 // Emit the sizes of the strings in the blob. 2195 SmallString<256> Blob; 2196 { 2197 BitstreamWriter W(Blob); 2198 for (const Metadata *MD : Strings) 2199 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2200 W.FlushToWord(); 2201 } 2202 2203 // Add the offset to the strings to the record. 2204 Record.push_back(Blob.size()); 2205 2206 // Add the strings to the blob. 2207 for (const Metadata *MD : Strings) 2208 Blob.append(cast<MDString>(MD)->getString()); 2209 2210 // Emit the final record. 2211 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2212 Record.clear(); 2213 } 2214 2215 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2216 enum MetadataAbbrev : unsigned { 2217 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2218 #include "llvm/IR/Metadata.def" 2219 LastPlusOne 2220 }; 2221 2222 void ModuleBitcodeWriter::writeMetadataRecords( 2223 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2224 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2225 if (MDs.empty()) 2226 return; 2227 2228 // Initialize MDNode abbreviations. 2229 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2230 #include "llvm/IR/Metadata.def" 2231 2232 for (const Metadata *MD : MDs) { 2233 if (IndexPos) 2234 IndexPos->push_back(Stream.GetCurrentBitNo()); 2235 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2236 assert(N->isResolved() && "Expected forward references to be resolved"); 2237 2238 switch (N->getMetadataID()) { 2239 default: 2240 llvm_unreachable("Invalid MDNode subclass"); 2241 #define HANDLE_MDNODE_LEAF(CLASS) \ 2242 case Metadata::CLASS##Kind: \ 2243 if (MDAbbrevs) \ 2244 write##CLASS(cast<CLASS>(N), Record, \ 2245 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2246 else \ 2247 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2248 continue; 2249 #include "llvm/IR/Metadata.def" 2250 } 2251 } 2252 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2253 } 2254 } 2255 2256 void ModuleBitcodeWriter::writeModuleMetadata() { 2257 if (!VE.hasMDs() && M.named_metadata_empty()) 2258 return; 2259 2260 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2261 SmallVector<uint64_t, 64> Record; 2262 2263 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2264 // block and load any metadata. 2265 std::vector<unsigned> MDAbbrevs; 2266 2267 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2268 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2269 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2270 createGenericDINodeAbbrev(); 2271 2272 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2273 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2276 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2277 2278 Abbv = std::make_shared<BitCodeAbbrev>(); 2279 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2282 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2283 2284 // Emit MDStrings together upfront. 2285 writeMetadataStrings(VE.getMDStrings(), Record); 2286 2287 // We only emit an index for the metadata record if we have more than a given 2288 // (naive) threshold of metadatas, otherwise it is not worth it. 2289 if (VE.getNonMDStrings().size() > IndexThreshold) { 2290 // Write a placeholder value in for the offset of the metadata index, 2291 // which is written after the records, so that it can include 2292 // the offset of each entry. The placeholder offset will be 2293 // updated after all records are emitted. 2294 uint64_t Vals[] = {0, 0}; 2295 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2296 } 2297 2298 // Compute and save the bit offset to the current position, which will be 2299 // patched when we emit the index later. We can simply subtract the 64-bit 2300 // fixed size from the current bit number to get the location to backpatch. 2301 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2302 2303 // This index will contain the bitpos for each individual record. 2304 std::vector<uint64_t> IndexPos; 2305 IndexPos.reserve(VE.getNonMDStrings().size()); 2306 2307 // Write all the records 2308 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2309 2310 if (VE.getNonMDStrings().size() > IndexThreshold) { 2311 // Now that we have emitted all the records we will emit the index. But 2312 // first 2313 // backpatch the forward reference so that the reader can skip the records 2314 // efficiently. 2315 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2316 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2317 2318 // Delta encode the index. 2319 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2320 for (auto &Elt : IndexPos) { 2321 auto EltDelta = Elt - PreviousValue; 2322 PreviousValue = Elt; 2323 Elt = EltDelta; 2324 } 2325 // Emit the index record. 2326 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2327 IndexPos.clear(); 2328 } 2329 2330 // Write the named metadata now. 2331 writeNamedMetadata(Record); 2332 2333 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2334 SmallVector<uint64_t, 4> Record; 2335 Record.push_back(VE.getValueID(&GO)); 2336 pushGlobalMetadataAttachment(Record, GO); 2337 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2338 }; 2339 for (const Function &F : M) 2340 if (F.isDeclaration() && F.hasMetadata()) 2341 AddDeclAttachedMetadata(F); 2342 // FIXME: Only store metadata for declarations here, and move data for global 2343 // variable definitions to a separate block (PR28134). 2344 for (const GlobalVariable &GV : M.globals()) 2345 if (GV.hasMetadata()) 2346 AddDeclAttachedMetadata(GV); 2347 2348 Stream.ExitBlock(); 2349 } 2350 2351 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2352 if (!VE.hasMDs()) 2353 return; 2354 2355 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2356 SmallVector<uint64_t, 64> Record; 2357 writeMetadataStrings(VE.getMDStrings(), Record); 2358 writeMetadataRecords(VE.getNonMDStrings(), Record); 2359 Stream.ExitBlock(); 2360 } 2361 2362 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2363 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2364 // [n x [id, mdnode]] 2365 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2366 GO.getAllMetadata(MDs); 2367 for (const auto &I : MDs) { 2368 Record.push_back(I.first); 2369 Record.push_back(VE.getMetadataID(I.second)); 2370 } 2371 } 2372 2373 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2374 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2375 2376 SmallVector<uint64_t, 64> Record; 2377 2378 if (F.hasMetadata()) { 2379 pushGlobalMetadataAttachment(Record, F); 2380 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2381 Record.clear(); 2382 } 2383 2384 // Write metadata attachments 2385 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2386 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2387 for (const BasicBlock &BB : F) 2388 for (const Instruction &I : BB) { 2389 MDs.clear(); 2390 I.getAllMetadataOtherThanDebugLoc(MDs); 2391 2392 // If no metadata, ignore instruction. 2393 if (MDs.empty()) continue; 2394 2395 Record.push_back(VE.getInstructionID(&I)); 2396 2397 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2398 Record.push_back(MDs[i].first); 2399 Record.push_back(VE.getMetadataID(MDs[i].second)); 2400 } 2401 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2402 Record.clear(); 2403 } 2404 2405 Stream.ExitBlock(); 2406 } 2407 2408 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2409 SmallVector<uint64_t, 64> Record; 2410 2411 // Write metadata kinds 2412 // METADATA_KIND - [n x [id, name]] 2413 SmallVector<StringRef, 8> Names; 2414 M.getMDKindNames(Names); 2415 2416 if (Names.empty()) return; 2417 2418 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2419 2420 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2421 Record.push_back(MDKindID); 2422 StringRef KName = Names[MDKindID]; 2423 Record.append(KName.begin(), KName.end()); 2424 2425 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2426 Record.clear(); 2427 } 2428 2429 Stream.ExitBlock(); 2430 } 2431 2432 void ModuleBitcodeWriter::writeOperandBundleTags() { 2433 // Write metadata kinds 2434 // 2435 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2436 // 2437 // OPERAND_BUNDLE_TAG - [strchr x N] 2438 2439 SmallVector<StringRef, 8> Tags; 2440 M.getOperandBundleTags(Tags); 2441 2442 if (Tags.empty()) 2443 return; 2444 2445 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2446 2447 SmallVector<uint64_t, 64> Record; 2448 2449 for (auto Tag : Tags) { 2450 Record.append(Tag.begin(), Tag.end()); 2451 2452 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2453 Record.clear(); 2454 } 2455 2456 Stream.ExitBlock(); 2457 } 2458 2459 void ModuleBitcodeWriter::writeSyncScopeNames() { 2460 SmallVector<StringRef, 8> SSNs; 2461 M.getContext().getSyncScopeNames(SSNs); 2462 if (SSNs.empty()) 2463 return; 2464 2465 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2466 2467 SmallVector<uint64_t, 64> Record; 2468 for (auto SSN : SSNs) { 2469 Record.append(SSN.begin(), SSN.end()); 2470 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2471 Record.clear(); 2472 } 2473 2474 Stream.ExitBlock(); 2475 } 2476 2477 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2478 bool isGlobal) { 2479 if (FirstVal == LastVal) return; 2480 2481 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2482 2483 unsigned AggregateAbbrev = 0; 2484 unsigned String8Abbrev = 0; 2485 unsigned CString7Abbrev = 0; 2486 unsigned CString6Abbrev = 0; 2487 // If this is a constant pool for the module, emit module-specific abbrevs. 2488 if (isGlobal) { 2489 // Abbrev for CST_CODE_AGGREGATE. 2490 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2491 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2494 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2495 2496 // Abbrev for CST_CODE_STRING. 2497 Abbv = std::make_shared<BitCodeAbbrev>(); 2498 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2501 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2502 // Abbrev for CST_CODE_CSTRING. 2503 Abbv = std::make_shared<BitCodeAbbrev>(); 2504 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2507 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2508 // Abbrev for CST_CODE_CSTRING. 2509 Abbv = std::make_shared<BitCodeAbbrev>(); 2510 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2513 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2514 } 2515 2516 SmallVector<uint64_t, 64> Record; 2517 2518 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2519 Type *LastTy = nullptr; 2520 for (unsigned i = FirstVal; i != LastVal; ++i) { 2521 const Value *V = Vals[i].first; 2522 // If we need to switch types, do so now. 2523 if (V->getType() != LastTy) { 2524 LastTy = V->getType(); 2525 Record.push_back(VE.getTypeID(LastTy)); 2526 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2527 CONSTANTS_SETTYPE_ABBREV); 2528 Record.clear(); 2529 } 2530 2531 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2532 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2533 Record.push_back( 2534 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2535 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2536 2537 // Add the asm string. 2538 const std::string &AsmStr = IA->getAsmString(); 2539 Record.push_back(AsmStr.size()); 2540 Record.append(AsmStr.begin(), AsmStr.end()); 2541 2542 // Add the constraint string. 2543 const std::string &ConstraintStr = IA->getConstraintString(); 2544 Record.push_back(ConstraintStr.size()); 2545 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2546 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2547 Record.clear(); 2548 continue; 2549 } 2550 const Constant *C = cast<Constant>(V); 2551 unsigned Code = -1U; 2552 unsigned AbbrevToUse = 0; 2553 if (C->isNullValue()) { 2554 Code = bitc::CST_CODE_NULL; 2555 } else if (isa<PoisonValue>(C)) { 2556 Code = bitc::CST_CODE_POISON; 2557 } else if (isa<UndefValue>(C)) { 2558 Code = bitc::CST_CODE_UNDEF; 2559 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2560 if (IV->getBitWidth() <= 64) { 2561 uint64_t V = IV->getSExtValue(); 2562 emitSignedInt64(Record, V); 2563 Code = bitc::CST_CODE_INTEGER; 2564 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2565 } else { // Wide integers, > 64 bits in size. 2566 emitWideAPInt(Record, IV->getValue()); 2567 Code = bitc::CST_CODE_WIDE_INTEGER; 2568 } 2569 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2570 Code = bitc::CST_CODE_FLOAT; 2571 Type *Ty = CFP->getType(); 2572 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2573 Ty->isDoubleTy()) { 2574 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2575 } else if (Ty->isX86_FP80Ty()) { 2576 // api needed to prevent premature destruction 2577 // bits are not in the same order as a normal i80 APInt, compensate. 2578 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2579 const uint64_t *p = api.getRawData(); 2580 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2581 Record.push_back(p[0] & 0xffffLL); 2582 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2583 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2584 const uint64_t *p = api.getRawData(); 2585 Record.push_back(p[0]); 2586 Record.push_back(p[1]); 2587 } else { 2588 assert(0 && "Unknown FP type!"); 2589 } 2590 } else if (isa<ConstantDataSequential>(C) && 2591 cast<ConstantDataSequential>(C)->isString()) { 2592 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2593 // Emit constant strings specially. 2594 unsigned NumElts = Str->getNumElements(); 2595 // If this is a null-terminated string, use the denser CSTRING encoding. 2596 if (Str->isCString()) { 2597 Code = bitc::CST_CODE_CSTRING; 2598 --NumElts; // Don't encode the null, which isn't allowed by char6. 2599 } else { 2600 Code = bitc::CST_CODE_STRING; 2601 AbbrevToUse = String8Abbrev; 2602 } 2603 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2604 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2605 for (unsigned i = 0; i != NumElts; ++i) { 2606 unsigned char V = Str->getElementAsInteger(i); 2607 Record.push_back(V); 2608 isCStr7 &= (V & 128) == 0; 2609 if (isCStrChar6) 2610 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2611 } 2612 2613 if (isCStrChar6) 2614 AbbrevToUse = CString6Abbrev; 2615 else if (isCStr7) 2616 AbbrevToUse = CString7Abbrev; 2617 } else if (const ConstantDataSequential *CDS = 2618 dyn_cast<ConstantDataSequential>(C)) { 2619 Code = bitc::CST_CODE_DATA; 2620 Type *EltTy = CDS->getElementType(); 2621 if (isa<IntegerType>(EltTy)) { 2622 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2623 Record.push_back(CDS->getElementAsInteger(i)); 2624 } else { 2625 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2626 Record.push_back( 2627 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2628 } 2629 } else if (isa<ConstantAggregate>(C)) { 2630 Code = bitc::CST_CODE_AGGREGATE; 2631 for (const Value *Op : C->operands()) 2632 Record.push_back(VE.getValueID(Op)); 2633 AbbrevToUse = AggregateAbbrev; 2634 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2635 switch (CE->getOpcode()) { 2636 default: 2637 if (Instruction::isCast(CE->getOpcode())) { 2638 Code = bitc::CST_CODE_CE_CAST; 2639 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2640 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2641 Record.push_back(VE.getValueID(C->getOperand(0))); 2642 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2643 } else { 2644 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2645 Code = bitc::CST_CODE_CE_BINOP; 2646 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2647 Record.push_back(VE.getValueID(C->getOperand(0))); 2648 Record.push_back(VE.getValueID(C->getOperand(1))); 2649 uint64_t Flags = getOptimizationFlags(CE); 2650 if (Flags != 0) 2651 Record.push_back(Flags); 2652 } 2653 break; 2654 case Instruction::FNeg: { 2655 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2656 Code = bitc::CST_CODE_CE_UNOP; 2657 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2658 Record.push_back(VE.getValueID(C->getOperand(0))); 2659 uint64_t Flags = getOptimizationFlags(CE); 2660 if (Flags != 0) 2661 Record.push_back(Flags); 2662 break; 2663 } 2664 case Instruction::GetElementPtr: { 2665 Code = bitc::CST_CODE_CE_GEP; 2666 const auto *GO = cast<GEPOperator>(C); 2667 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2668 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2669 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2670 Record.push_back((*Idx << 1) | GO->isInBounds()); 2671 } else if (GO->isInBounds()) 2672 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2673 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2674 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2675 Record.push_back(VE.getValueID(C->getOperand(i))); 2676 } 2677 break; 2678 } 2679 case Instruction::Select: 2680 Code = bitc::CST_CODE_CE_SELECT; 2681 Record.push_back(VE.getValueID(C->getOperand(0))); 2682 Record.push_back(VE.getValueID(C->getOperand(1))); 2683 Record.push_back(VE.getValueID(C->getOperand(2))); 2684 break; 2685 case Instruction::ExtractElement: 2686 Code = bitc::CST_CODE_CE_EXTRACTELT; 2687 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2688 Record.push_back(VE.getValueID(C->getOperand(0))); 2689 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2690 Record.push_back(VE.getValueID(C->getOperand(1))); 2691 break; 2692 case Instruction::InsertElement: 2693 Code = bitc::CST_CODE_CE_INSERTELT; 2694 Record.push_back(VE.getValueID(C->getOperand(0))); 2695 Record.push_back(VE.getValueID(C->getOperand(1))); 2696 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2697 Record.push_back(VE.getValueID(C->getOperand(2))); 2698 break; 2699 case Instruction::ShuffleVector: 2700 // If the return type and argument types are the same, this is a 2701 // standard shufflevector instruction. If the types are different, 2702 // then the shuffle is widening or truncating the input vectors, and 2703 // the argument type must also be encoded. 2704 if (C->getType() == C->getOperand(0)->getType()) { 2705 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2706 } else { 2707 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2708 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2709 } 2710 Record.push_back(VE.getValueID(C->getOperand(0))); 2711 Record.push_back(VE.getValueID(C->getOperand(1))); 2712 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2713 break; 2714 case Instruction::ICmp: 2715 case Instruction::FCmp: 2716 Code = bitc::CST_CODE_CE_CMP; 2717 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2718 Record.push_back(VE.getValueID(C->getOperand(0))); 2719 Record.push_back(VE.getValueID(C->getOperand(1))); 2720 Record.push_back(CE->getPredicate()); 2721 break; 2722 } 2723 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2724 Code = bitc::CST_CODE_BLOCKADDRESS; 2725 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2726 Record.push_back(VE.getValueID(BA->getFunction())); 2727 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2728 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2729 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2730 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2731 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2732 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2733 Code = bitc::CST_CODE_NO_CFI_VALUE; 2734 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2735 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2736 } else { 2737 #ifndef NDEBUG 2738 C->dump(); 2739 #endif 2740 llvm_unreachable("Unknown constant!"); 2741 } 2742 Stream.EmitRecord(Code, Record, AbbrevToUse); 2743 Record.clear(); 2744 } 2745 2746 Stream.ExitBlock(); 2747 } 2748 2749 void ModuleBitcodeWriter::writeModuleConstants() { 2750 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2751 2752 // Find the first constant to emit, which is the first non-globalvalue value. 2753 // We know globalvalues have been emitted by WriteModuleInfo. 2754 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2755 if (!isa<GlobalValue>(Vals[i].first)) { 2756 writeConstants(i, Vals.size(), true); 2757 return; 2758 } 2759 } 2760 } 2761 2762 /// pushValueAndType - The file has to encode both the value and type id for 2763 /// many values, because we need to know what type to create for forward 2764 /// references. However, most operands are not forward references, so this type 2765 /// field is not needed. 2766 /// 2767 /// This function adds V's value ID to Vals. If the value ID is higher than the 2768 /// instruction ID, then it is a forward reference, and it also includes the 2769 /// type ID. The value ID that is written is encoded relative to the InstID. 2770 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2771 SmallVectorImpl<unsigned> &Vals) { 2772 unsigned ValID = VE.getValueID(V); 2773 // Make encoding relative to the InstID. 2774 Vals.push_back(InstID - ValID); 2775 if (ValID >= InstID) { 2776 Vals.push_back(VE.getTypeID(V->getType())); 2777 return true; 2778 } 2779 return false; 2780 } 2781 2782 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2783 unsigned InstID) { 2784 SmallVector<unsigned, 64> Record; 2785 LLVMContext &C = CS.getContext(); 2786 2787 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2788 const auto &Bundle = CS.getOperandBundleAt(i); 2789 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2790 2791 for (auto &Input : Bundle.Inputs) 2792 pushValueAndType(Input, InstID, Record); 2793 2794 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2795 Record.clear(); 2796 } 2797 } 2798 2799 /// pushValue - Like pushValueAndType, but where the type of the value is 2800 /// omitted (perhaps it was already encoded in an earlier operand). 2801 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2802 SmallVectorImpl<unsigned> &Vals) { 2803 unsigned ValID = VE.getValueID(V); 2804 Vals.push_back(InstID - ValID); 2805 } 2806 2807 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2808 SmallVectorImpl<uint64_t> &Vals) { 2809 unsigned ValID = VE.getValueID(V); 2810 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2811 emitSignedInt64(Vals, diff); 2812 } 2813 2814 /// WriteInstruction - Emit an instruction to the specified stream. 2815 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2816 unsigned InstID, 2817 SmallVectorImpl<unsigned> &Vals) { 2818 unsigned Code = 0; 2819 unsigned AbbrevToUse = 0; 2820 VE.setInstructionID(&I); 2821 switch (I.getOpcode()) { 2822 default: 2823 if (Instruction::isCast(I.getOpcode())) { 2824 Code = bitc::FUNC_CODE_INST_CAST; 2825 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2826 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2827 Vals.push_back(VE.getTypeID(I.getType())); 2828 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2829 } else { 2830 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2831 Code = bitc::FUNC_CODE_INST_BINOP; 2832 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2833 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2834 pushValue(I.getOperand(1), InstID, Vals); 2835 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2836 uint64_t Flags = getOptimizationFlags(&I); 2837 if (Flags != 0) { 2838 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2839 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2840 Vals.push_back(Flags); 2841 } 2842 } 2843 break; 2844 case Instruction::FNeg: { 2845 Code = bitc::FUNC_CODE_INST_UNOP; 2846 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2847 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2848 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2849 uint64_t Flags = getOptimizationFlags(&I); 2850 if (Flags != 0) { 2851 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2852 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2853 Vals.push_back(Flags); 2854 } 2855 break; 2856 } 2857 case Instruction::GetElementPtr: { 2858 Code = bitc::FUNC_CODE_INST_GEP; 2859 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2860 auto &GEPInst = cast<GetElementPtrInst>(I); 2861 Vals.push_back(GEPInst.isInBounds()); 2862 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2863 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2864 pushValueAndType(I.getOperand(i), InstID, Vals); 2865 break; 2866 } 2867 case Instruction::ExtractValue: { 2868 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2869 pushValueAndType(I.getOperand(0), InstID, Vals); 2870 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2871 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2872 break; 2873 } 2874 case Instruction::InsertValue: { 2875 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2876 pushValueAndType(I.getOperand(0), InstID, Vals); 2877 pushValueAndType(I.getOperand(1), InstID, Vals); 2878 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2879 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2880 break; 2881 } 2882 case Instruction::Select: { 2883 Code = bitc::FUNC_CODE_INST_VSELECT; 2884 pushValueAndType(I.getOperand(1), InstID, Vals); 2885 pushValue(I.getOperand(2), InstID, Vals); 2886 pushValueAndType(I.getOperand(0), InstID, Vals); 2887 uint64_t Flags = getOptimizationFlags(&I); 2888 if (Flags != 0) 2889 Vals.push_back(Flags); 2890 break; 2891 } 2892 case Instruction::ExtractElement: 2893 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2894 pushValueAndType(I.getOperand(0), InstID, Vals); 2895 pushValueAndType(I.getOperand(1), InstID, Vals); 2896 break; 2897 case Instruction::InsertElement: 2898 Code = bitc::FUNC_CODE_INST_INSERTELT; 2899 pushValueAndType(I.getOperand(0), InstID, Vals); 2900 pushValue(I.getOperand(1), InstID, Vals); 2901 pushValueAndType(I.getOperand(2), InstID, Vals); 2902 break; 2903 case Instruction::ShuffleVector: 2904 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2905 pushValueAndType(I.getOperand(0), InstID, Vals); 2906 pushValue(I.getOperand(1), InstID, Vals); 2907 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2908 Vals); 2909 break; 2910 case Instruction::ICmp: 2911 case Instruction::FCmp: { 2912 // compare returning Int1Ty or vector of Int1Ty 2913 Code = bitc::FUNC_CODE_INST_CMP2; 2914 pushValueAndType(I.getOperand(0), InstID, Vals); 2915 pushValue(I.getOperand(1), InstID, Vals); 2916 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2917 uint64_t Flags = getOptimizationFlags(&I); 2918 if (Flags != 0) 2919 Vals.push_back(Flags); 2920 break; 2921 } 2922 2923 case Instruction::Ret: 2924 { 2925 Code = bitc::FUNC_CODE_INST_RET; 2926 unsigned NumOperands = I.getNumOperands(); 2927 if (NumOperands == 0) 2928 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2929 else if (NumOperands == 1) { 2930 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2931 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2932 } else { 2933 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2934 pushValueAndType(I.getOperand(i), InstID, Vals); 2935 } 2936 } 2937 break; 2938 case Instruction::Br: 2939 { 2940 Code = bitc::FUNC_CODE_INST_BR; 2941 const BranchInst &II = cast<BranchInst>(I); 2942 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2943 if (II.isConditional()) { 2944 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2945 pushValue(II.getCondition(), InstID, Vals); 2946 } 2947 } 2948 break; 2949 case Instruction::Switch: 2950 { 2951 Code = bitc::FUNC_CODE_INST_SWITCH; 2952 const SwitchInst &SI = cast<SwitchInst>(I); 2953 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2954 pushValue(SI.getCondition(), InstID, Vals); 2955 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2956 for (auto Case : SI.cases()) { 2957 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2958 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2959 } 2960 } 2961 break; 2962 case Instruction::IndirectBr: 2963 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2964 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2965 // Encode the address operand as relative, but not the basic blocks. 2966 pushValue(I.getOperand(0), InstID, Vals); 2967 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2968 Vals.push_back(VE.getValueID(I.getOperand(i))); 2969 break; 2970 2971 case Instruction::Invoke: { 2972 const InvokeInst *II = cast<InvokeInst>(&I); 2973 const Value *Callee = II->getCalledOperand(); 2974 FunctionType *FTy = II->getFunctionType(); 2975 2976 if (II->hasOperandBundles()) 2977 writeOperandBundles(*II, InstID); 2978 2979 Code = bitc::FUNC_CODE_INST_INVOKE; 2980 2981 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2982 Vals.push_back(II->getCallingConv() | 1 << 13); 2983 Vals.push_back(VE.getValueID(II->getNormalDest())); 2984 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2985 Vals.push_back(VE.getTypeID(FTy)); 2986 pushValueAndType(Callee, InstID, Vals); 2987 2988 // Emit value #'s for the fixed parameters. 2989 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2990 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2991 2992 // Emit type/value pairs for varargs params. 2993 if (FTy->isVarArg()) { 2994 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2995 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2996 } 2997 break; 2998 } 2999 case Instruction::Resume: 3000 Code = bitc::FUNC_CODE_INST_RESUME; 3001 pushValueAndType(I.getOperand(0), InstID, Vals); 3002 break; 3003 case Instruction::CleanupRet: { 3004 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3005 const auto &CRI = cast<CleanupReturnInst>(I); 3006 pushValue(CRI.getCleanupPad(), InstID, Vals); 3007 if (CRI.hasUnwindDest()) 3008 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3009 break; 3010 } 3011 case Instruction::CatchRet: { 3012 Code = bitc::FUNC_CODE_INST_CATCHRET; 3013 const auto &CRI = cast<CatchReturnInst>(I); 3014 pushValue(CRI.getCatchPad(), InstID, Vals); 3015 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3016 break; 3017 } 3018 case Instruction::CleanupPad: 3019 case Instruction::CatchPad: { 3020 const auto &FuncletPad = cast<FuncletPadInst>(I); 3021 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3022 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3023 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3024 3025 unsigned NumArgOperands = FuncletPad.arg_size(); 3026 Vals.push_back(NumArgOperands); 3027 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3028 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3029 break; 3030 } 3031 case Instruction::CatchSwitch: { 3032 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3033 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3034 3035 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3036 3037 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3038 Vals.push_back(NumHandlers); 3039 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3040 Vals.push_back(VE.getValueID(CatchPadBB)); 3041 3042 if (CatchSwitch.hasUnwindDest()) 3043 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3044 break; 3045 } 3046 case Instruction::CallBr: { 3047 const CallBrInst *CBI = cast<CallBrInst>(&I); 3048 const Value *Callee = CBI->getCalledOperand(); 3049 FunctionType *FTy = CBI->getFunctionType(); 3050 3051 if (CBI->hasOperandBundles()) 3052 writeOperandBundles(*CBI, InstID); 3053 3054 Code = bitc::FUNC_CODE_INST_CALLBR; 3055 3056 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3057 3058 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3059 1 << bitc::CALL_EXPLICIT_TYPE); 3060 3061 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3062 Vals.push_back(CBI->getNumIndirectDests()); 3063 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3064 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3065 3066 Vals.push_back(VE.getTypeID(FTy)); 3067 pushValueAndType(Callee, InstID, Vals); 3068 3069 // Emit value #'s for the fixed parameters. 3070 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3071 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3072 3073 // Emit type/value pairs for varargs params. 3074 if (FTy->isVarArg()) { 3075 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3076 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3077 } 3078 break; 3079 } 3080 case Instruction::Unreachable: 3081 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3082 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3083 break; 3084 3085 case Instruction::PHI: { 3086 const PHINode &PN = cast<PHINode>(I); 3087 Code = bitc::FUNC_CODE_INST_PHI; 3088 // With the newer instruction encoding, forward references could give 3089 // negative valued IDs. This is most common for PHIs, so we use 3090 // signed VBRs. 3091 SmallVector<uint64_t, 128> Vals64; 3092 Vals64.push_back(VE.getTypeID(PN.getType())); 3093 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3094 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3095 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3096 } 3097 3098 uint64_t Flags = getOptimizationFlags(&I); 3099 if (Flags != 0) 3100 Vals64.push_back(Flags); 3101 3102 // Emit a Vals64 vector and exit. 3103 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3104 Vals64.clear(); 3105 return; 3106 } 3107 3108 case Instruction::LandingPad: { 3109 const LandingPadInst &LP = cast<LandingPadInst>(I); 3110 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3111 Vals.push_back(VE.getTypeID(LP.getType())); 3112 Vals.push_back(LP.isCleanup()); 3113 Vals.push_back(LP.getNumClauses()); 3114 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3115 if (LP.isCatch(I)) 3116 Vals.push_back(LandingPadInst::Catch); 3117 else 3118 Vals.push_back(LandingPadInst::Filter); 3119 pushValueAndType(LP.getClause(I), InstID, Vals); 3120 } 3121 break; 3122 } 3123 3124 case Instruction::Alloca: { 3125 Code = bitc::FUNC_CODE_INST_ALLOCA; 3126 const AllocaInst &AI = cast<AllocaInst>(I); 3127 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3128 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3129 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3130 using APV = AllocaPackedValues; 3131 unsigned Record = 0; 3132 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3133 Bitfield::set<APV::AlignLower>( 3134 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3135 Bitfield::set<APV::AlignUpper>(Record, 3136 EncodedAlign >> APV::AlignLower::Bits); 3137 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3138 Bitfield::set<APV::ExplicitType>(Record, true); 3139 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3140 Vals.push_back(Record); 3141 3142 unsigned AS = AI.getAddressSpace(); 3143 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3144 Vals.push_back(AS); 3145 break; 3146 } 3147 3148 case Instruction::Load: 3149 if (cast<LoadInst>(I).isAtomic()) { 3150 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3151 pushValueAndType(I.getOperand(0), InstID, Vals); 3152 } else { 3153 Code = bitc::FUNC_CODE_INST_LOAD; 3154 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3155 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3156 } 3157 Vals.push_back(VE.getTypeID(I.getType())); 3158 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3159 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3160 if (cast<LoadInst>(I).isAtomic()) { 3161 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3162 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3163 } 3164 break; 3165 case Instruction::Store: 3166 if (cast<StoreInst>(I).isAtomic()) 3167 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3168 else 3169 Code = bitc::FUNC_CODE_INST_STORE; 3170 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3171 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3172 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3173 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3174 if (cast<StoreInst>(I).isAtomic()) { 3175 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3176 Vals.push_back( 3177 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3178 } 3179 break; 3180 case Instruction::AtomicCmpXchg: 3181 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3182 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3183 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3184 pushValue(I.getOperand(2), InstID, Vals); // newval. 3185 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3186 Vals.push_back( 3187 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3188 Vals.push_back( 3189 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3190 Vals.push_back( 3191 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3192 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3193 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3194 break; 3195 case Instruction::AtomicRMW: 3196 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3197 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3198 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3199 Vals.push_back( 3200 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3201 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3202 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3203 Vals.push_back( 3204 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3205 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3206 break; 3207 case Instruction::Fence: 3208 Code = bitc::FUNC_CODE_INST_FENCE; 3209 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3210 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3211 break; 3212 case Instruction::Call: { 3213 const CallInst &CI = cast<CallInst>(I); 3214 FunctionType *FTy = CI.getFunctionType(); 3215 3216 if (CI.hasOperandBundles()) 3217 writeOperandBundles(CI, InstID); 3218 3219 Code = bitc::FUNC_CODE_INST_CALL; 3220 3221 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3222 3223 unsigned Flags = getOptimizationFlags(&I); 3224 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3225 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3226 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3227 1 << bitc::CALL_EXPLICIT_TYPE | 3228 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3229 unsigned(Flags != 0) << bitc::CALL_FMF); 3230 if (Flags != 0) 3231 Vals.push_back(Flags); 3232 3233 Vals.push_back(VE.getTypeID(FTy)); 3234 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3235 3236 // Emit value #'s for the fixed parameters. 3237 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3238 // Check for labels (can happen with asm labels). 3239 if (FTy->getParamType(i)->isLabelTy()) 3240 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3241 else 3242 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3243 } 3244 3245 // Emit type/value pairs for varargs params. 3246 if (FTy->isVarArg()) { 3247 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3248 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3249 } 3250 break; 3251 } 3252 case Instruction::VAArg: 3253 Code = bitc::FUNC_CODE_INST_VAARG; 3254 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3255 pushValue(I.getOperand(0), InstID, Vals); // valist. 3256 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3257 break; 3258 case Instruction::Freeze: 3259 Code = bitc::FUNC_CODE_INST_FREEZE; 3260 pushValueAndType(I.getOperand(0), InstID, Vals); 3261 break; 3262 } 3263 3264 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3265 Vals.clear(); 3266 } 3267 3268 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3269 /// to allow clients to efficiently find the function body. 3270 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3271 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3272 // Get the offset of the VST we are writing, and backpatch it into 3273 // the VST forward declaration record. 3274 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3275 // The BitcodeStartBit was the stream offset of the identification block. 3276 VSTOffset -= bitcodeStartBit(); 3277 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3278 // Note that we add 1 here because the offset is relative to one word 3279 // before the start of the identification block, which was historically 3280 // always the start of the regular bitcode header. 3281 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3282 3283 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3284 3285 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3286 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3289 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3290 3291 for (const Function &F : M) { 3292 uint64_t Record[2]; 3293 3294 if (F.isDeclaration()) 3295 continue; 3296 3297 Record[0] = VE.getValueID(&F); 3298 3299 // Save the word offset of the function (from the start of the 3300 // actual bitcode written to the stream). 3301 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3302 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3303 // Note that we add 1 here because the offset is relative to one word 3304 // before the start of the identification block, which was historically 3305 // always the start of the regular bitcode header. 3306 Record[1] = BitcodeIndex / 32 + 1; 3307 3308 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3309 } 3310 3311 Stream.ExitBlock(); 3312 } 3313 3314 /// Emit names for arguments, instructions and basic blocks in a function. 3315 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3316 const ValueSymbolTable &VST) { 3317 if (VST.empty()) 3318 return; 3319 3320 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3321 3322 // FIXME: Set up the abbrev, we know how many values there are! 3323 // FIXME: We know if the type names can use 7-bit ascii. 3324 SmallVector<uint64_t, 64> NameVals; 3325 3326 for (const ValueName &Name : VST) { 3327 // Figure out the encoding to use for the name. 3328 StringEncoding Bits = getStringEncoding(Name.getKey()); 3329 3330 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3331 NameVals.push_back(VE.getValueID(Name.getValue())); 3332 3333 // VST_CODE_ENTRY: [valueid, namechar x N] 3334 // VST_CODE_BBENTRY: [bbid, namechar x N] 3335 unsigned Code; 3336 if (isa<BasicBlock>(Name.getValue())) { 3337 Code = bitc::VST_CODE_BBENTRY; 3338 if (Bits == SE_Char6) 3339 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3340 } else { 3341 Code = bitc::VST_CODE_ENTRY; 3342 if (Bits == SE_Char6) 3343 AbbrevToUse = VST_ENTRY_6_ABBREV; 3344 else if (Bits == SE_Fixed7) 3345 AbbrevToUse = VST_ENTRY_7_ABBREV; 3346 } 3347 3348 for (const auto P : Name.getKey()) 3349 NameVals.push_back((unsigned char)P); 3350 3351 // Emit the finished record. 3352 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3353 NameVals.clear(); 3354 } 3355 3356 Stream.ExitBlock(); 3357 } 3358 3359 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3360 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3361 unsigned Code; 3362 if (isa<BasicBlock>(Order.V)) 3363 Code = bitc::USELIST_CODE_BB; 3364 else 3365 Code = bitc::USELIST_CODE_DEFAULT; 3366 3367 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3368 Record.push_back(VE.getValueID(Order.V)); 3369 Stream.EmitRecord(Code, Record); 3370 } 3371 3372 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3373 assert(VE.shouldPreserveUseListOrder() && 3374 "Expected to be preserving use-list order"); 3375 3376 auto hasMore = [&]() { 3377 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3378 }; 3379 if (!hasMore()) 3380 // Nothing to do. 3381 return; 3382 3383 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3384 while (hasMore()) { 3385 writeUseList(std::move(VE.UseListOrders.back())); 3386 VE.UseListOrders.pop_back(); 3387 } 3388 Stream.ExitBlock(); 3389 } 3390 3391 /// Emit a function body to the module stream. 3392 void ModuleBitcodeWriter::writeFunction( 3393 const Function &F, 3394 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3395 // Save the bitcode index of the start of this function block for recording 3396 // in the VST. 3397 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3398 3399 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3400 VE.incorporateFunction(F); 3401 3402 SmallVector<unsigned, 64> Vals; 3403 3404 // Emit the number of basic blocks, so the reader can create them ahead of 3405 // time. 3406 Vals.push_back(VE.getBasicBlocks().size()); 3407 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3408 Vals.clear(); 3409 3410 // If there are function-local constants, emit them now. 3411 unsigned CstStart, CstEnd; 3412 VE.getFunctionConstantRange(CstStart, CstEnd); 3413 writeConstants(CstStart, CstEnd, false); 3414 3415 // If there is function-local metadata, emit it now. 3416 writeFunctionMetadata(F); 3417 3418 // Keep a running idea of what the instruction ID is. 3419 unsigned InstID = CstEnd; 3420 3421 bool NeedsMetadataAttachment = F.hasMetadata(); 3422 3423 DILocation *LastDL = nullptr; 3424 SmallSetVector<Function *, 4> BlockAddressUsers; 3425 3426 // Finally, emit all the instructions, in order. 3427 for (const BasicBlock &BB : F) { 3428 for (const Instruction &I : BB) { 3429 writeInstruction(I, InstID, Vals); 3430 3431 if (!I.getType()->isVoidTy()) 3432 ++InstID; 3433 3434 // If the instruction has metadata, write a metadata attachment later. 3435 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3436 3437 // If the instruction has a debug location, emit it. 3438 DILocation *DL = I.getDebugLoc(); 3439 if (!DL) 3440 continue; 3441 3442 if (DL == LastDL) { 3443 // Just repeat the same debug loc as last time. 3444 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3445 continue; 3446 } 3447 3448 Vals.push_back(DL->getLine()); 3449 Vals.push_back(DL->getColumn()); 3450 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3451 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3452 Vals.push_back(DL->isImplicitCode()); 3453 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3454 Vals.clear(); 3455 3456 LastDL = DL; 3457 } 3458 3459 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3460 SmallVector<Value *> Worklist{BA}; 3461 SmallPtrSet<Value *, 8> Visited{BA}; 3462 while (!Worklist.empty()) { 3463 Value *V = Worklist.pop_back_val(); 3464 for (User *U : V->users()) { 3465 if (auto *I = dyn_cast<Instruction>(U)) { 3466 Function *P = I->getFunction(); 3467 if (P != &F) 3468 BlockAddressUsers.insert(P); 3469 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3470 Visited.insert(U).second) 3471 Worklist.push_back(U); 3472 } 3473 } 3474 } 3475 } 3476 3477 if (!BlockAddressUsers.empty()) { 3478 Vals.resize(BlockAddressUsers.size()); 3479 for (auto I : llvm::enumerate(BlockAddressUsers)) 3480 Vals[I.index()] = VE.getValueID(I.value()); 3481 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3482 Vals.clear(); 3483 } 3484 3485 // Emit names for all the instructions etc. 3486 if (auto *Symtab = F.getValueSymbolTable()) 3487 writeFunctionLevelValueSymbolTable(*Symtab); 3488 3489 if (NeedsMetadataAttachment) 3490 writeFunctionMetadataAttachment(F); 3491 if (VE.shouldPreserveUseListOrder()) 3492 writeUseListBlock(&F); 3493 VE.purgeFunction(); 3494 Stream.ExitBlock(); 3495 } 3496 3497 // Emit blockinfo, which defines the standard abbreviations etc. 3498 void ModuleBitcodeWriter::writeBlockInfo() { 3499 // We only want to emit block info records for blocks that have multiple 3500 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3501 // Other blocks can define their abbrevs inline. 3502 Stream.EnterBlockInfoBlock(); 3503 3504 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3505 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3510 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3511 VST_ENTRY_8_ABBREV) 3512 llvm_unreachable("Unexpected abbrev ordering!"); 3513 } 3514 3515 { // 7-bit fixed width VST_CODE_ENTRY strings. 3516 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3517 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3521 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3522 VST_ENTRY_7_ABBREV) 3523 llvm_unreachable("Unexpected abbrev ordering!"); 3524 } 3525 { // 6-bit char6 VST_CODE_ENTRY strings. 3526 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3527 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3531 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3532 VST_ENTRY_6_ABBREV) 3533 llvm_unreachable("Unexpected abbrev ordering!"); 3534 } 3535 { // 6-bit char6 VST_CODE_BBENTRY strings. 3536 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3537 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3541 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3542 VST_BBENTRY_6_ABBREV) 3543 llvm_unreachable("Unexpected abbrev ordering!"); 3544 } 3545 3546 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3547 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3548 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3550 VE.computeBitsRequiredForTypeIndicies())); 3551 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3552 CONSTANTS_SETTYPE_ABBREV) 3553 llvm_unreachable("Unexpected abbrev ordering!"); 3554 } 3555 3556 { // INTEGER abbrev for CONSTANTS_BLOCK. 3557 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3558 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3560 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3561 CONSTANTS_INTEGER_ABBREV) 3562 llvm_unreachable("Unexpected abbrev ordering!"); 3563 } 3564 3565 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3566 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3567 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3570 VE.computeBitsRequiredForTypeIndicies())); 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3572 3573 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3574 CONSTANTS_CE_CAST_Abbrev) 3575 llvm_unreachable("Unexpected abbrev ordering!"); 3576 } 3577 { // NULL abbrev for CONSTANTS_BLOCK. 3578 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3579 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3580 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3581 CONSTANTS_NULL_Abbrev) 3582 llvm_unreachable("Unexpected abbrev ordering!"); 3583 } 3584 3585 // FIXME: This should only use space for first class types! 3586 3587 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3588 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3589 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3592 VE.computeBitsRequiredForTypeIndicies())); 3593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3595 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3596 FUNCTION_INST_LOAD_ABBREV) 3597 llvm_unreachable("Unexpected abbrev ordering!"); 3598 } 3599 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3600 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3601 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3604 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3605 FUNCTION_INST_UNOP_ABBREV) 3606 llvm_unreachable("Unexpected abbrev ordering!"); 3607 } 3608 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3609 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3610 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3614 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3615 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3616 llvm_unreachable("Unexpected abbrev ordering!"); 3617 } 3618 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3619 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3620 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3624 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3625 FUNCTION_INST_BINOP_ABBREV) 3626 llvm_unreachable("Unexpected abbrev ordering!"); 3627 } 3628 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3629 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3630 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3635 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3636 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3637 llvm_unreachable("Unexpected abbrev ordering!"); 3638 } 3639 { // INST_CAST abbrev for FUNCTION_BLOCK. 3640 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3641 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3644 VE.computeBitsRequiredForTypeIndicies())); 3645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3646 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3647 FUNCTION_INST_CAST_ABBREV) 3648 llvm_unreachable("Unexpected abbrev ordering!"); 3649 } 3650 3651 { // INST_RET abbrev for FUNCTION_BLOCK. 3652 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3653 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3654 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3655 FUNCTION_INST_RET_VOID_ABBREV) 3656 llvm_unreachable("Unexpected abbrev ordering!"); 3657 } 3658 { // INST_RET abbrev for FUNCTION_BLOCK. 3659 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3660 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3662 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3663 FUNCTION_INST_RET_VAL_ABBREV) 3664 llvm_unreachable("Unexpected abbrev ordering!"); 3665 } 3666 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3667 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3668 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3669 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3670 FUNCTION_INST_UNREACHABLE_ABBREV) 3671 llvm_unreachable("Unexpected abbrev ordering!"); 3672 } 3673 { 3674 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3675 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3678 Log2_32_Ceil(VE.getTypes().size() + 1))); 3679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3681 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3682 FUNCTION_INST_GEP_ABBREV) 3683 llvm_unreachable("Unexpected abbrev ordering!"); 3684 } 3685 3686 Stream.ExitBlock(); 3687 } 3688 3689 /// Write the module path strings, currently only used when generating 3690 /// a combined index file. 3691 void IndexBitcodeWriter::writeModStrings() { 3692 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3693 3694 // TODO: See which abbrev sizes we actually need to emit 3695 3696 // 8-bit fixed-width MST_ENTRY strings. 3697 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3698 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3702 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3703 3704 // 7-bit fixed width MST_ENTRY strings. 3705 Abbv = std::make_shared<BitCodeAbbrev>(); 3706 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3710 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3711 3712 // 6-bit char6 MST_ENTRY strings. 3713 Abbv = std::make_shared<BitCodeAbbrev>(); 3714 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3718 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3719 3720 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3721 Abbv = std::make_shared<BitCodeAbbrev>(); 3722 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3728 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3729 3730 SmallVector<unsigned, 64> Vals; 3731 forEachModule( 3732 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3733 StringRef Key = MPSE.getKey(); 3734 const auto &Value = MPSE.getValue(); 3735 StringEncoding Bits = getStringEncoding(Key); 3736 unsigned AbbrevToUse = Abbrev8Bit; 3737 if (Bits == SE_Char6) 3738 AbbrevToUse = Abbrev6Bit; 3739 else if (Bits == SE_Fixed7) 3740 AbbrevToUse = Abbrev7Bit; 3741 3742 Vals.push_back(Value.first); 3743 Vals.append(Key.begin(), Key.end()); 3744 3745 // Emit the finished record. 3746 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3747 3748 // Emit an optional hash for the module now 3749 const auto &Hash = Value.second; 3750 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3751 Vals.assign(Hash.begin(), Hash.end()); 3752 // Emit the hash record. 3753 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3754 } 3755 3756 Vals.clear(); 3757 }); 3758 Stream.ExitBlock(); 3759 } 3760 3761 /// Write the function type metadata related records that need to appear before 3762 /// a function summary entry (whether per-module or combined). 3763 template <typename Fn> 3764 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3765 FunctionSummary *FS, 3766 Fn GetValueID) { 3767 if (!FS->type_tests().empty()) 3768 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3769 3770 SmallVector<uint64_t, 64> Record; 3771 3772 auto WriteVFuncIdVec = [&](uint64_t Ty, 3773 ArrayRef<FunctionSummary::VFuncId> VFs) { 3774 if (VFs.empty()) 3775 return; 3776 Record.clear(); 3777 for (auto &VF : VFs) { 3778 Record.push_back(VF.GUID); 3779 Record.push_back(VF.Offset); 3780 } 3781 Stream.EmitRecord(Ty, Record); 3782 }; 3783 3784 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3785 FS->type_test_assume_vcalls()); 3786 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3787 FS->type_checked_load_vcalls()); 3788 3789 auto WriteConstVCallVec = [&](uint64_t Ty, 3790 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3791 for (auto &VC : VCs) { 3792 Record.clear(); 3793 Record.push_back(VC.VFunc.GUID); 3794 Record.push_back(VC.VFunc.Offset); 3795 llvm::append_range(Record, VC.Args); 3796 Stream.EmitRecord(Ty, Record); 3797 } 3798 }; 3799 3800 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3801 FS->type_test_assume_const_vcalls()); 3802 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3803 FS->type_checked_load_const_vcalls()); 3804 3805 auto WriteRange = [&](ConstantRange Range) { 3806 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3807 assert(Range.getLower().getNumWords() == 1); 3808 assert(Range.getUpper().getNumWords() == 1); 3809 emitSignedInt64(Record, *Range.getLower().getRawData()); 3810 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3811 }; 3812 3813 if (!FS->paramAccesses().empty()) { 3814 Record.clear(); 3815 for (auto &Arg : FS->paramAccesses()) { 3816 size_t UndoSize = Record.size(); 3817 Record.push_back(Arg.ParamNo); 3818 WriteRange(Arg.Use); 3819 Record.push_back(Arg.Calls.size()); 3820 for (auto &Call : Arg.Calls) { 3821 Record.push_back(Call.ParamNo); 3822 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 3823 if (!ValueID) { 3824 // If ValueID is unknown we can't drop just this call, we must drop 3825 // entire parameter. 3826 Record.resize(UndoSize); 3827 break; 3828 } 3829 Record.push_back(*ValueID); 3830 WriteRange(Call.Offsets); 3831 } 3832 } 3833 if (!Record.empty()) 3834 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3835 } 3836 } 3837 3838 /// Collect type IDs from type tests used by function. 3839 static void 3840 getReferencedTypeIds(FunctionSummary *FS, 3841 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3842 if (!FS->type_tests().empty()) 3843 for (auto &TT : FS->type_tests()) 3844 ReferencedTypeIds.insert(TT); 3845 3846 auto GetReferencedTypesFromVFuncIdVec = 3847 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3848 for (auto &VF : VFs) 3849 ReferencedTypeIds.insert(VF.GUID); 3850 }; 3851 3852 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3853 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3854 3855 auto GetReferencedTypesFromConstVCallVec = 3856 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3857 for (auto &VC : VCs) 3858 ReferencedTypeIds.insert(VC.VFunc.GUID); 3859 }; 3860 3861 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3862 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3863 } 3864 3865 static void writeWholeProgramDevirtResolutionByArg( 3866 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3867 const WholeProgramDevirtResolution::ByArg &ByArg) { 3868 NameVals.push_back(args.size()); 3869 llvm::append_range(NameVals, args); 3870 3871 NameVals.push_back(ByArg.TheKind); 3872 NameVals.push_back(ByArg.Info); 3873 NameVals.push_back(ByArg.Byte); 3874 NameVals.push_back(ByArg.Bit); 3875 } 3876 3877 static void writeWholeProgramDevirtResolution( 3878 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3879 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3880 NameVals.push_back(Id); 3881 3882 NameVals.push_back(Wpd.TheKind); 3883 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3884 NameVals.push_back(Wpd.SingleImplName.size()); 3885 3886 NameVals.push_back(Wpd.ResByArg.size()); 3887 for (auto &A : Wpd.ResByArg) 3888 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3889 } 3890 3891 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3892 StringTableBuilder &StrtabBuilder, 3893 const std::string &Id, 3894 const TypeIdSummary &Summary) { 3895 NameVals.push_back(StrtabBuilder.add(Id)); 3896 NameVals.push_back(Id.size()); 3897 3898 NameVals.push_back(Summary.TTRes.TheKind); 3899 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3900 NameVals.push_back(Summary.TTRes.AlignLog2); 3901 NameVals.push_back(Summary.TTRes.SizeM1); 3902 NameVals.push_back(Summary.TTRes.BitMask); 3903 NameVals.push_back(Summary.TTRes.InlineBits); 3904 3905 for (auto &W : Summary.WPDRes) 3906 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3907 W.second); 3908 } 3909 3910 static void writeTypeIdCompatibleVtableSummaryRecord( 3911 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3912 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3913 ValueEnumerator &VE) { 3914 NameVals.push_back(StrtabBuilder.add(Id)); 3915 NameVals.push_back(Id.size()); 3916 3917 for (auto &P : Summary) { 3918 NameVals.push_back(P.AddressPointOffset); 3919 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3920 } 3921 } 3922 3923 static void writeFunctionHeapProfileRecords( 3924 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 3925 unsigned AllocAbbrev, bool PerModule, 3926 std::function<unsigned(const ValueInfo &VI)> GetValueID, 3927 std::function<unsigned(unsigned)> GetStackIndex) { 3928 SmallVector<uint64_t> Record; 3929 3930 for (auto &CI : FS->callsites()) { 3931 Record.clear(); 3932 // Per module callsite clones should always have a single entry of 3933 // value 0. 3934 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 3935 Record.push_back(GetValueID(CI.Callee)); 3936 if (!PerModule) { 3937 Record.push_back(CI.StackIdIndices.size()); 3938 Record.push_back(CI.Clones.size()); 3939 } 3940 for (auto Id : CI.StackIdIndices) 3941 Record.push_back(GetStackIndex(Id)); 3942 if (!PerModule) { 3943 for (auto V : CI.Clones) 3944 Record.push_back(V); 3945 } 3946 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 3947 : bitc::FS_COMBINED_CALLSITE_INFO, 3948 Record, CallsiteAbbrev); 3949 } 3950 3951 for (auto &AI : FS->allocs()) { 3952 Record.clear(); 3953 // Per module alloc versions should always have a single entry of 3954 // value 0. 3955 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 3956 if (!PerModule) { 3957 Record.push_back(AI.MIBs.size()); 3958 Record.push_back(AI.Versions.size()); 3959 } 3960 for (auto &MIB : AI.MIBs) { 3961 Record.push_back((uint8_t)MIB.AllocType); 3962 Record.push_back(MIB.StackIdIndices.size()); 3963 for (auto Id : MIB.StackIdIndices) 3964 Record.push_back(GetStackIndex(Id)); 3965 } 3966 if (!PerModule) { 3967 for (auto V : AI.Versions) 3968 Record.push_back(V); 3969 } 3970 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 3971 : bitc::FS_COMBINED_ALLOC_INFO, 3972 Record, AllocAbbrev); 3973 } 3974 } 3975 3976 // Helper to emit a single function summary record. 3977 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3978 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3979 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3980 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) { 3981 NameVals.push_back(ValueID); 3982 3983 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3984 3985 writeFunctionTypeMetadataRecords( 3986 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 3987 return {VE.getValueID(VI.getValue())}; 3988 }); 3989 3990 writeFunctionHeapProfileRecords( 3991 Stream, FS, CallsiteAbbrev, AllocAbbrev, 3992 /*PerModule*/ true, 3993 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 3994 /*GetStackIndex*/ [&](unsigned I) { return I; }); 3995 3996 auto SpecialRefCnts = FS->specialRefCounts(); 3997 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3998 NameVals.push_back(FS->instCount()); 3999 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4000 NameVals.push_back(FS->refs().size()); 4001 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4002 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4003 4004 for (auto &RI : FS->refs()) 4005 NameVals.push_back(VE.getValueID(RI.getValue())); 4006 4007 bool HasProfileData = 4008 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 4009 for (auto &ECI : FS->calls()) { 4010 NameVals.push_back(getValueId(ECI.first)); 4011 if (HasProfileData) 4012 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 4013 else if (WriteRelBFToSummary) 4014 NameVals.push_back(ECI.second.RelBlockFreq); 4015 } 4016 4017 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4018 unsigned Code = 4019 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 4020 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 4021 : bitc::FS_PERMODULE)); 4022 4023 // Emit the finished record. 4024 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4025 NameVals.clear(); 4026 } 4027 4028 // Collect the global value references in the given variable's initializer, 4029 // and emit them in a summary record. 4030 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4031 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4032 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4033 auto VI = Index->getValueInfo(V.getGUID()); 4034 if (!VI || VI.getSummaryList().empty()) { 4035 // Only declarations should not have a summary (a declaration might however 4036 // have a summary if the def was in module level asm). 4037 assert(V.isDeclaration()); 4038 return; 4039 } 4040 auto *Summary = VI.getSummaryList()[0].get(); 4041 NameVals.push_back(VE.getValueID(&V)); 4042 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4043 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4044 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4045 4046 auto VTableFuncs = VS->vTableFuncs(); 4047 if (!VTableFuncs.empty()) 4048 NameVals.push_back(VS->refs().size()); 4049 4050 unsigned SizeBeforeRefs = NameVals.size(); 4051 for (auto &RI : VS->refs()) 4052 NameVals.push_back(VE.getValueID(RI.getValue())); 4053 // Sort the refs for determinism output, the vector returned by FS->refs() has 4054 // been initialized from a DenseSet. 4055 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4056 4057 if (VTableFuncs.empty()) 4058 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4059 FSModRefsAbbrev); 4060 else { 4061 // VTableFuncs pairs should already be sorted by offset. 4062 for (auto &P : VTableFuncs) { 4063 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4064 NameVals.push_back(P.VTableOffset); 4065 } 4066 4067 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4068 FSModVTableRefsAbbrev); 4069 } 4070 NameVals.clear(); 4071 } 4072 4073 /// Emit the per-module summary section alongside the rest of 4074 /// the module's bitcode. 4075 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4076 // By default we compile with ThinLTO if the module has a summary, but the 4077 // client can request full LTO with a module flag. 4078 bool IsThinLTO = true; 4079 if (auto *MD = 4080 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4081 IsThinLTO = MD->getZExtValue(); 4082 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4083 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4084 4); 4085 4086 Stream.EmitRecord( 4087 bitc::FS_VERSION, 4088 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4089 4090 // Write the index flags. 4091 uint64_t Flags = 0; 4092 // Bits 1-3 are set only in the combined index, skip them. 4093 if (Index->enableSplitLTOUnit()) 4094 Flags |= 0x8; 4095 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4096 4097 if (Index->begin() == Index->end()) { 4098 Stream.ExitBlock(); 4099 return; 4100 } 4101 4102 for (const auto &GVI : valueIds()) { 4103 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4104 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4105 } 4106 4107 if (!Index->stackIds().empty()) { 4108 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4109 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4110 // numids x stackid 4111 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4112 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4113 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4114 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4115 } 4116 4117 // Abbrev for FS_PERMODULE_PROFILE. 4118 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4119 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4127 // numrefs x valueid, n x (valueid, hotness) 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4130 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4131 4132 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4133 Abbv = std::make_shared<BitCodeAbbrev>(); 4134 if (WriteRelBFToSummary) 4135 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4136 else 4137 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4145 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4148 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4149 4150 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4151 Abbv = std::make_shared<BitCodeAbbrev>(); 4152 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4157 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4158 4159 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4160 Abbv = std::make_shared<BitCodeAbbrev>(); 4161 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4165 // numrefs x valueid, n x (valueid , offset) 4166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4168 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4169 4170 // Abbrev for FS_ALIAS. 4171 Abbv = std::make_shared<BitCodeAbbrev>(); 4172 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4176 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4177 4178 // Abbrev for FS_TYPE_ID_METADATA 4179 Abbv = std::make_shared<BitCodeAbbrev>(); 4180 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4183 // n x (valueid , offset) 4184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4186 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4187 4188 Abbv = std::make_shared<BitCodeAbbrev>(); 4189 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4191 // n x stackidindex 4192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4194 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4195 4196 Abbv = std::make_shared<BitCodeAbbrev>(); 4197 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4198 // n x (alloc type, numstackids, numstackids x stackidindex) 4199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4201 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4202 4203 SmallVector<uint64_t, 64> NameVals; 4204 // Iterate over the list of functions instead of the Index to 4205 // ensure the ordering is stable. 4206 for (const Function &F : M) { 4207 // Summary emission does not support anonymous functions, they have to 4208 // renamed using the anonymous function renaming pass. 4209 if (!F.hasName()) 4210 report_fatal_error("Unexpected anonymous function when writing summary"); 4211 4212 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4213 if (!VI || VI.getSummaryList().empty()) { 4214 // Only declarations should not have a summary (a declaration might 4215 // however have a summary if the def was in module level asm). 4216 assert(F.isDeclaration()); 4217 continue; 4218 } 4219 auto *Summary = VI.getSummaryList()[0].get(); 4220 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4221 FSCallsAbbrev, FSCallsProfileAbbrev, 4222 CallsiteAbbrev, AllocAbbrev, F); 4223 } 4224 4225 // Capture references from GlobalVariable initializers, which are outside 4226 // of a function scope. 4227 for (const GlobalVariable &G : M.globals()) 4228 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4229 FSModVTableRefsAbbrev); 4230 4231 for (const GlobalAlias &A : M.aliases()) { 4232 auto *Aliasee = A.getAliaseeObject(); 4233 // Skip ifunc and nameless functions which don't have an entry in the 4234 // summary. 4235 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4236 continue; 4237 auto AliasId = VE.getValueID(&A); 4238 auto AliaseeId = VE.getValueID(Aliasee); 4239 NameVals.push_back(AliasId); 4240 auto *Summary = Index->getGlobalValueSummary(A); 4241 AliasSummary *AS = cast<AliasSummary>(Summary); 4242 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4243 NameVals.push_back(AliaseeId); 4244 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4245 NameVals.clear(); 4246 } 4247 4248 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4249 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4250 S.second, VE); 4251 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4252 TypeIdCompatibleVtableAbbrev); 4253 NameVals.clear(); 4254 } 4255 4256 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4257 ArrayRef<uint64_t>{Index->getBlockCount()}); 4258 4259 Stream.ExitBlock(); 4260 } 4261 4262 /// Emit the combined summary section into the combined index file. 4263 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4264 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4265 Stream.EmitRecord( 4266 bitc::FS_VERSION, 4267 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4268 4269 // Write the index flags. 4270 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4271 4272 for (const auto &GVI : valueIds()) { 4273 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4274 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4275 } 4276 4277 if (!StackIdIndices.empty()) { 4278 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4279 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4280 // numids x stackid 4281 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4282 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4283 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4284 // Write the stack ids used by this index, which will be a subset of those in 4285 // the full index in the case of distributed indexes. 4286 std::vector<uint64_t> StackIds; 4287 for (auto &I : StackIdIndices) 4288 StackIds.push_back(Index.getStackIdAtIndex(I)); 4289 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4290 } 4291 4292 // Abbrev for FS_COMBINED. 4293 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4294 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4304 // numrefs x valueid, n x (valueid) 4305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4307 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4308 4309 // Abbrev for FS_COMBINED_PROFILE. 4310 Abbv = std::make_shared<BitCodeAbbrev>(); 4311 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4321 // numrefs x valueid, n x (valueid, hotness) 4322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4324 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4325 4326 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4327 Abbv = std::make_shared<BitCodeAbbrev>(); 4328 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4334 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4335 4336 // Abbrev for FS_COMBINED_ALIAS. 4337 Abbv = std::make_shared<BitCodeAbbrev>(); 4338 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4343 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4344 4345 Abbv = std::make_shared<BitCodeAbbrev>(); 4346 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4350 // numstackindices x stackidindex, numver x version 4351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4353 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4354 4355 Abbv = std::make_shared<BitCodeAbbrev>(); 4356 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4359 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4360 // numver x version 4361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4363 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4364 4365 // The aliases are emitted as a post-pass, and will point to the value 4366 // id of the aliasee. Save them in a vector for post-processing. 4367 SmallVector<AliasSummary *, 64> Aliases; 4368 4369 // Save the value id for each summary for alias emission. 4370 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4371 4372 SmallVector<uint64_t, 64> NameVals; 4373 4374 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4375 // with the type ids referenced by this index file. 4376 std::set<GlobalValue::GUID> ReferencedTypeIds; 4377 4378 // For local linkage, we also emit the original name separately 4379 // immediately after the record. 4380 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4381 // We don't need to emit the original name if we are writing the index for 4382 // distributed backends (in which case ModuleToSummariesForIndex is 4383 // non-null). The original name is only needed during the thin link, since 4384 // for SamplePGO the indirect call targets for local functions have 4385 // have the original name annotated in profile. 4386 // Continue to emit it when writing out the entire combined index, which is 4387 // used in testing the thin link via llvm-lto. 4388 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4389 return; 4390 NameVals.push_back(S.getOriginalName()); 4391 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4392 NameVals.clear(); 4393 }; 4394 4395 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4396 forEachSummary([&](GVInfo I, bool IsAliasee) { 4397 GlobalValueSummary *S = I.second; 4398 assert(S); 4399 DefOrUseGUIDs.insert(I.first); 4400 for (const ValueInfo &VI : S->refs()) 4401 DefOrUseGUIDs.insert(VI.getGUID()); 4402 4403 auto ValueId = getValueId(I.first); 4404 assert(ValueId); 4405 SummaryToValueIdMap[S] = *ValueId; 4406 4407 // If this is invoked for an aliasee, we want to record the above 4408 // mapping, but then not emit a summary entry (if the aliasee is 4409 // to be imported, we will invoke this separately with IsAliasee=false). 4410 if (IsAliasee) 4411 return; 4412 4413 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4414 // Will process aliases as a post-pass because the reader wants all 4415 // global to be loaded first. 4416 Aliases.push_back(AS); 4417 return; 4418 } 4419 4420 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4421 NameVals.push_back(*ValueId); 4422 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4423 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4424 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4425 for (auto &RI : VS->refs()) { 4426 auto RefValueId = getValueId(RI.getGUID()); 4427 if (!RefValueId) 4428 continue; 4429 NameVals.push_back(*RefValueId); 4430 } 4431 4432 // Emit the finished record. 4433 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4434 FSModRefsAbbrev); 4435 NameVals.clear(); 4436 MaybeEmitOriginalName(*S); 4437 return; 4438 } 4439 4440 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4441 if (!VI) 4442 return std::nullopt; 4443 return getValueId(VI.getGUID()); 4444 }; 4445 4446 auto *FS = cast<FunctionSummary>(S); 4447 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4448 getReferencedTypeIds(FS, ReferencedTypeIds); 4449 4450 writeFunctionHeapProfileRecords( 4451 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4452 /*PerModule*/ false, 4453 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4454 std::optional<unsigned> ValueID = GetValueId(VI); 4455 // This can happen in shared index files for distributed ThinLTO if 4456 // the callee function summary is not included. Record 0 which we 4457 // will have to deal with conservatively when doing any kind of 4458 // validation in the ThinLTO backends. 4459 if (!ValueID) 4460 return 0; 4461 return *ValueID; 4462 }, 4463 /*GetStackIndex*/ [&](unsigned I) { 4464 // Get the corresponding index into the list of StackIdIndices 4465 // actually being written for this combined index (which may be a 4466 // subset in the case of distributed indexes). 4467 auto Lower = llvm::lower_bound(StackIdIndices, I); 4468 return std::distance(StackIdIndices.begin(), Lower); 4469 }); 4470 4471 NameVals.push_back(*ValueId); 4472 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4473 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4474 NameVals.push_back(FS->instCount()); 4475 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4476 NameVals.push_back(FS->entryCount()); 4477 4478 // Fill in below 4479 NameVals.push_back(0); // numrefs 4480 NameVals.push_back(0); // rorefcnt 4481 NameVals.push_back(0); // worefcnt 4482 4483 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4484 for (auto &RI : FS->refs()) { 4485 auto RefValueId = getValueId(RI.getGUID()); 4486 if (!RefValueId) 4487 continue; 4488 NameVals.push_back(*RefValueId); 4489 if (RI.isReadOnly()) 4490 RORefCnt++; 4491 else if (RI.isWriteOnly()) 4492 WORefCnt++; 4493 Count++; 4494 } 4495 NameVals[6] = Count; 4496 NameVals[7] = RORefCnt; 4497 NameVals[8] = WORefCnt; 4498 4499 bool HasProfileData = false; 4500 for (auto &EI : FS->calls()) { 4501 HasProfileData |= 4502 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4503 if (HasProfileData) 4504 break; 4505 } 4506 4507 for (auto &EI : FS->calls()) { 4508 // If this GUID doesn't have a value id, it doesn't have a function 4509 // summary and we don't need to record any calls to it. 4510 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4511 if (!CallValueId) 4512 continue; 4513 NameVals.push_back(*CallValueId); 4514 if (HasProfileData) 4515 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4516 } 4517 4518 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4519 unsigned Code = 4520 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4521 4522 // Emit the finished record. 4523 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4524 NameVals.clear(); 4525 MaybeEmitOriginalName(*S); 4526 }); 4527 4528 for (auto *AS : Aliases) { 4529 auto AliasValueId = SummaryToValueIdMap[AS]; 4530 assert(AliasValueId); 4531 NameVals.push_back(AliasValueId); 4532 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4533 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4534 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4535 assert(AliaseeValueId); 4536 NameVals.push_back(AliaseeValueId); 4537 4538 // Emit the finished record. 4539 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4540 NameVals.clear(); 4541 MaybeEmitOriginalName(*AS); 4542 4543 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4544 getReferencedTypeIds(FS, ReferencedTypeIds); 4545 } 4546 4547 if (!Index.cfiFunctionDefs().empty()) { 4548 for (auto &S : Index.cfiFunctionDefs()) { 4549 if (DefOrUseGUIDs.count( 4550 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4551 NameVals.push_back(StrtabBuilder.add(S)); 4552 NameVals.push_back(S.size()); 4553 } 4554 } 4555 if (!NameVals.empty()) { 4556 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4557 NameVals.clear(); 4558 } 4559 } 4560 4561 if (!Index.cfiFunctionDecls().empty()) { 4562 for (auto &S : Index.cfiFunctionDecls()) { 4563 if (DefOrUseGUIDs.count( 4564 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4565 NameVals.push_back(StrtabBuilder.add(S)); 4566 NameVals.push_back(S.size()); 4567 } 4568 } 4569 if (!NameVals.empty()) { 4570 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4571 NameVals.clear(); 4572 } 4573 } 4574 4575 // Walk the GUIDs that were referenced, and write the 4576 // corresponding type id records. 4577 for (auto &T : ReferencedTypeIds) { 4578 auto TidIter = Index.typeIds().equal_range(T); 4579 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4580 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4581 It->second.second); 4582 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4583 NameVals.clear(); 4584 } 4585 } 4586 4587 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4588 ArrayRef<uint64_t>{Index.getBlockCount()}); 4589 4590 Stream.ExitBlock(); 4591 } 4592 4593 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4594 /// current llvm version, and a record for the epoch number. 4595 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4596 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4597 4598 // Write the "user readable" string identifying the bitcode producer 4599 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4600 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4603 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4604 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4605 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4606 4607 // Write the epoch version 4608 Abbv = std::make_shared<BitCodeAbbrev>(); 4609 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4611 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4612 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4613 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4614 Stream.ExitBlock(); 4615 } 4616 4617 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4618 // Emit the module's hash. 4619 // MODULE_CODE_HASH: [5*i32] 4620 if (GenerateHash) { 4621 uint32_t Vals[5]; 4622 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4623 Buffer.size() - BlockStartPos)); 4624 std::array<uint8_t, 20> Hash = Hasher.result(); 4625 for (int Pos = 0; Pos < 20; Pos += 4) { 4626 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4627 } 4628 4629 // Emit the finished record. 4630 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4631 4632 if (ModHash) 4633 // Save the written hash value. 4634 llvm::copy(Vals, std::begin(*ModHash)); 4635 } 4636 } 4637 4638 void ModuleBitcodeWriter::write() { 4639 writeIdentificationBlock(Stream); 4640 4641 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4642 size_t BlockStartPos = Buffer.size(); 4643 4644 writeModuleVersion(); 4645 4646 // Emit blockinfo, which defines the standard abbreviations etc. 4647 writeBlockInfo(); 4648 4649 // Emit information describing all of the types in the module. 4650 writeTypeTable(); 4651 4652 // Emit information about attribute groups. 4653 writeAttributeGroupTable(); 4654 4655 // Emit information about parameter attributes. 4656 writeAttributeTable(); 4657 4658 writeComdats(); 4659 4660 // Emit top-level description of module, including target triple, inline asm, 4661 // descriptors for global variables, and function prototype info. 4662 writeModuleInfo(); 4663 4664 // Emit constants. 4665 writeModuleConstants(); 4666 4667 // Emit metadata kind names. 4668 writeModuleMetadataKinds(); 4669 4670 // Emit metadata. 4671 writeModuleMetadata(); 4672 4673 // Emit module-level use-lists. 4674 if (VE.shouldPreserveUseListOrder()) 4675 writeUseListBlock(nullptr); 4676 4677 writeOperandBundleTags(); 4678 writeSyncScopeNames(); 4679 4680 // Emit function bodies. 4681 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4682 for (const Function &F : M) 4683 if (!F.isDeclaration()) 4684 writeFunction(F, FunctionToBitcodeIndex); 4685 4686 // Need to write after the above call to WriteFunction which populates 4687 // the summary information in the index. 4688 if (Index) 4689 writePerModuleGlobalValueSummary(); 4690 4691 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4692 4693 writeModuleHash(BlockStartPos); 4694 4695 Stream.ExitBlock(); 4696 } 4697 4698 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4699 uint32_t &Position) { 4700 support::endian::write32le(&Buffer[Position], Value); 4701 Position += 4; 4702 } 4703 4704 /// If generating a bc file on darwin, we have to emit a 4705 /// header and trailer to make it compatible with the system archiver. To do 4706 /// this we emit the following header, and then emit a trailer that pads the 4707 /// file out to be a multiple of 16 bytes. 4708 /// 4709 /// struct bc_header { 4710 /// uint32_t Magic; // 0x0B17C0DE 4711 /// uint32_t Version; // Version, currently always 0. 4712 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4713 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4714 /// uint32_t CPUType; // CPU specifier. 4715 /// ... potentially more later ... 4716 /// }; 4717 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4718 const Triple &TT) { 4719 unsigned CPUType = ~0U; 4720 4721 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4722 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4723 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4724 // specific constants here because they are implicitly part of the Darwin ABI. 4725 enum { 4726 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4727 DARWIN_CPU_TYPE_X86 = 7, 4728 DARWIN_CPU_TYPE_ARM = 12, 4729 DARWIN_CPU_TYPE_POWERPC = 18 4730 }; 4731 4732 Triple::ArchType Arch = TT.getArch(); 4733 if (Arch == Triple::x86_64) 4734 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4735 else if (Arch == Triple::x86) 4736 CPUType = DARWIN_CPU_TYPE_X86; 4737 else if (Arch == Triple::ppc) 4738 CPUType = DARWIN_CPU_TYPE_POWERPC; 4739 else if (Arch == Triple::ppc64) 4740 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4741 else if (Arch == Triple::arm || Arch == Triple::thumb) 4742 CPUType = DARWIN_CPU_TYPE_ARM; 4743 4744 // Traditional Bitcode starts after header. 4745 assert(Buffer.size() >= BWH_HeaderSize && 4746 "Expected header size to be reserved"); 4747 unsigned BCOffset = BWH_HeaderSize; 4748 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4749 4750 // Write the magic and version. 4751 unsigned Position = 0; 4752 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4753 writeInt32ToBuffer(0, Buffer, Position); // Version. 4754 writeInt32ToBuffer(BCOffset, Buffer, Position); 4755 writeInt32ToBuffer(BCSize, Buffer, Position); 4756 writeInt32ToBuffer(CPUType, Buffer, Position); 4757 4758 // If the file is not a multiple of 16 bytes, insert dummy padding. 4759 while (Buffer.size() & 15) 4760 Buffer.push_back(0); 4761 } 4762 4763 /// Helper to write the header common to all bitcode files. 4764 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4765 // Emit the file header. 4766 Stream.Emit((unsigned)'B', 8); 4767 Stream.Emit((unsigned)'C', 8); 4768 Stream.Emit(0x0, 4); 4769 Stream.Emit(0xC, 4); 4770 Stream.Emit(0xE, 4); 4771 Stream.Emit(0xD, 4); 4772 } 4773 4774 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4775 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4776 writeBitcodeHeader(*Stream); 4777 } 4778 4779 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4780 4781 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4782 Stream->EnterSubblock(Block, 3); 4783 4784 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4785 Abbv->Add(BitCodeAbbrevOp(Record)); 4786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4787 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4788 4789 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4790 4791 Stream->ExitBlock(); 4792 } 4793 4794 void BitcodeWriter::writeSymtab() { 4795 assert(!WroteStrtab && !WroteSymtab); 4796 4797 // If any module has module-level inline asm, we will require a registered asm 4798 // parser for the target so that we can create an accurate symbol table for 4799 // the module. 4800 for (Module *M : Mods) { 4801 if (M->getModuleInlineAsm().empty()) 4802 continue; 4803 4804 std::string Err; 4805 const Triple TT(M->getTargetTriple()); 4806 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4807 if (!T || !T->hasMCAsmParser()) 4808 return; 4809 } 4810 4811 WroteSymtab = true; 4812 SmallVector<char, 0> Symtab; 4813 // The irsymtab::build function may be unable to create a symbol table if the 4814 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4815 // table is not required for correctness, but we still want to be able to 4816 // write malformed modules to bitcode files, so swallow the error. 4817 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4818 consumeError(std::move(E)); 4819 return; 4820 } 4821 4822 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4823 {Symtab.data(), Symtab.size()}); 4824 } 4825 4826 void BitcodeWriter::writeStrtab() { 4827 assert(!WroteStrtab); 4828 4829 std::vector<char> Strtab; 4830 StrtabBuilder.finalizeInOrder(); 4831 Strtab.resize(StrtabBuilder.getSize()); 4832 StrtabBuilder.write((uint8_t *)Strtab.data()); 4833 4834 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4835 {Strtab.data(), Strtab.size()}); 4836 4837 WroteStrtab = true; 4838 } 4839 4840 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4841 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4842 WroteStrtab = true; 4843 } 4844 4845 void BitcodeWriter::writeModule(const Module &M, 4846 bool ShouldPreserveUseListOrder, 4847 const ModuleSummaryIndex *Index, 4848 bool GenerateHash, ModuleHash *ModHash) { 4849 assert(!WroteStrtab); 4850 4851 // The Mods vector is used by irsymtab::build, which requires non-const 4852 // Modules in case it needs to materialize metadata. But the bitcode writer 4853 // requires that the module is materialized, so we can cast to non-const here, 4854 // after checking that it is in fact materialized. 4855 assert(M.isMaterialized()); 4856 Mods.push_back(const_cast<Module *>(&M)); 4857 4858 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4859 ShouldPreserveUseListOrder, Index, 4860 GenerateHash, ModHash); 4861 ModuleWriter.write(); 4862 } 4863 4864 void BitcodeWriter::writeIndex( 4865 const ModuleSummaryIndex *Index, 4866 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4867 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4868 ModuleToSummariesForIndex); 4869 IndexWriter.write(); 4870 } 4871 4872 /// Write the specified module to the specified output stream. 4873 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4874 bool ShouldPreserveUseListOrder, 4875 const ModuleSummaryIndex *Index, 4876 bool GenerateHash, ModuleHash *ModHash) { 4877 SmallVector<char, 0> Buffer; 4878 Buffer.reserve(256*1024); 4879 4880 // If this is darwin or another generic macho target, reserve space for the 4881 // header. 4882 Triple TT(M.getTargetTriple()); 4883 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4884 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4885 4886 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4887 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4888 ModHash); 4889 Writer.writeSymtab(); 4890 Writer.writeStrtab(); 4891 4892 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4893 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4894 4895 // Write the generated bitstream to "Out". 4896 if (!Buffer.empty()) 4897 Out.write((char *)&Buffer.front(), Buffer.size()); 4898 } 4899 4900 void IndexBitcodeWriter::write() { 4901 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4902 4903 writeModuleVersion(); 4904 4905 // Write the module paths in the combined index. 4906 writeModStrings(); 4907 4908 // Write the summary combined index records. 4909 writeCombinedGlobalValueSummary(); 4910 4911 Stream.ExitBlock(); 4912 } 4913 4914 // Write the specified module summary index to the given raw output stream, 4915 // where it will be written in a new bitcode block. This is used when 4916 // writing the combined index file for ThinLTO. When writing a subset of the 4917 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4918 void llvm::writeIndexToFile( 4919 const ModuleSummaryIndex &Index, raw_ostream &Out, 4920 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4921 SmallVector<char, 0> Buffer; 4922 Buffer.reserve(256 * 1024); 4923 4924 BitcodeWriter Writer(Buffer); 4925 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4926 Writer.writeStrtab(); 4927 4928 Out.write((char *)&Buffer.front(), Buffer.size()); 4929 } 4930 4931 namespace { 4932 4933 /// Class to manage the bitcode writing for a thin link bitcode file. 4934 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4935 /// ModHash is for use in ThinLTO incremental build, generated while writing 4936 /// the module bitcode file. 4937 const ModuleHash *ModHash; 4938 4939 public: 4940 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4941 BitstreamWriter &Stream, 4942 const ModuleSummaryIndex &Index, 4943 const ModuleHash &ModHash) 4944 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4945 /*ShouldPreserveUseListOrder=*/false, &Index), 4946 ModHash(&ModHash) {} 4947 4948 void write(); 4949 4950 private: 4951 void writeSimplifiedModuleInfo(); 4952 }; 4953 4954 } // end anonymous namespace 4955 4956 // This function writes a simpilified module info for thin link bitcode file. 4957 // It only contains the source file name along with the name(the offset and 4958 // size in strtab) and linkage for global values. For the global value info 4959 // entry, in order to keep linkage at offset 5, there are three zeros used 4960 // as padding. 4961 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4962 SmallVector<unsigned, 64> Vals; 4963 // Emit the module's source file name. 4964 { 4965 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4966 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4967 if (Bits == SE_Char6) 4968 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4969 else if (Bits == SE_Fixed7) 4970 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4971 4972 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4973 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4974 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4976 Abbv->Add(AbbrevOpToUse); 4977 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4978 4979 for (const auto P : M.getSourceFileName()) 4980 Vals.push_back((unsigned char)P); 4981 4982 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4983 Vals.clear(); 4984 } 4985 4986 // Emit the global variable information. 4987 for (const GlobalVariable &GV : M.globals()) { 4988 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4989 Vals.push_back(StrtabBuilder.add(GV.getName())); 4990 Vals.push_back(GV.getName().size()); 4991 Vals.push_back(0); 4992 Vals.push_back(0); 4993 Vals.push_back(0); 4994 Vals.push_back(getEncodedLinkage(GV)); 4995 4996 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4997 Vals.clear(); 4998 } 4999 5000 // Emit the function proto information. 5001 for (const Function &F : M) { 5002 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5003 Vals.push_back(StrtabBuilder.add(F.getName())); 5004 Vals.push_back(F.getName().size()); 5005 Vals.push_back(0); 5006 Vals.push_back(0); 5007 Vals.push_back(0); 5008 Vals.push_back(getEncodedLinkage(F)); 5009 5010 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5011 Vals.clear(); 5012 } 5013 5014 // Emit the alias information. 5015 for (const GlobalAlias &A : M.aliases()) { 5016 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5017 Vals.push_back(StrtabBuilder.add(A.getName())); 5018 Vals.push_back(A.getName().size()); 5019 Vals.push_back(0); 5020 Vals.push_back(0); 5021 Vals.push_back(0); 5022 Vals.push_back(getEncodedLinkage(A)); 5023 5024 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5025 Vals.clear(); 5026 } 5027 5028 // Emit the ifunc information. 5029 for (const GlobalIFunc &I : M.ifuncs()) { 5030 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5031 Vals.push_back(StrtabBuilder.add(I.getName())); 5032 Vals.push_back(I.getName().size()); 5033 Vals.push_back(0); 5034 Vals.push_back(0); 5035 Vals.push_back(0); 5036 Vals.push_back(getEncodedLinkage(I)); 5037 5038 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5039 Vals.clear(); 5040 } 5041 } 5042 5043 void ThinLinkBitcodeWriter::write() { 5044 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5045 5046 writeModuleVersion(); 5047 5048 writeSimplifiedModuleInfo(); 5049 5050 writePerModuleGlobalValueSummary(); 5051 5052 // Write module hash. 5053 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5054 5055 Stream.ExitBlock(); 5056 } 5057 5058 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5059 const ModuleSummaryIndex &Index, 5060 const ModuleHash &ModHash) { 5061 assert(!WroteStrtab); 5062 5063 // The Mods vector is used by irsymtab::build, which requires non-const 5064 // Modules in case it needs to materialize metadata. But the bitcode writer 5065 // requires that the module is materialized, so we can cast to non-const here, 5066 // after checking that it is in fact materialized. 5067 assert(M.isMaterialized()); 5068 Mods.push_back(const_cast<Module *>(&M)); 5069 5070 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5071 ModHash); 5072 ThinLinkWriter.write(); 5073 } 5074 5075 // Write the specified thin link bitcode file to the given raw output stream, 5076 // where it will be written in a new bitcode block. This is used when 5077 // writing the per-module index file for ThinLTO. 5078 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5079 const ModuleSummaryIndex &Index, 5080 const ModuleHash &ModHash) { 5081 SmallVector<char, 0> Buffer; 5082 Buffer.reserve(256 * 1024); 5083 5084 BitcodeWriter Writer(Buffer); 5085 Writer.writeThinLinkBitcode(M, Index, ModHash); 5086 Writer.writeSymtab(); 5087 Writer.writeStrtab(); 5088 5089 Out.write((char *)&Buffer.front(), Buffer.size()); 5090 } 5091 5092 static const char *getSectionNameForBitcode(const Triple &T) { 5093 switch (T.getObjectFormat()) { 5094 case Triple::MachO: 5095 return "__LLVM,__bitcode"; 5096 case Triple::COFF: 5097 case Triple::ELF: 5098 case Triple::Wasm: 5099 case Triple::UnknownObjectFormat: 5100 return ".llvmbc"; 5101 case Triple::GOFF: 5102 llvm_unreachable("GOFF is not yet implemented"); 5103 break; 5104 case Triple::SPIRV: 5105 llvm_unreachable("SPIRV is not yet implemented"); 5106 break; 5107 case Triple::XCOFF: 5108 llvm_unreachable("XCOFF is not yet implemented"); 5109 break; 5110 case Triple::DXContainer: 5111 llvm_unreachable("DXContainer is not yet implemented"); 5112 break; 5113 } 5114 llvm_unreachable("Unimplemented ObjectFormatType"); 5115 } 5116 5117 static const char *getSectionNameForCommandline(const Triple &T) { 5118 switch (T.getObjectFormat()) { 5119 case Triple::MachO: 5120 return "__LLVM,__cmdline"; 5121 case Triple::COFF: 5122 case Triple::ELF: 5123 case Triple::Wasm: 5124 case Triple::UnknownObjectFormat: 5125 return ".llvmcmd"; 5126 case Triple::GOFF: 5127 llvm_unreachable("GOFF is not yet implemented"); 5128 break; 5129 case Triple::SPIRV: 5130 llvm_unreachable("SPIRV is not yet implemented"); 5131 break; 5132 case Triple::XCOFF: 5133 llvm_unreachable("XCOFF is not yet implemented"); 5134 break; 5135 case Triple::DXContainer: 5136 llvm_unreachable("DXC is not yet implemented"); 5137 break; 5138 } 5139 llvm_unreachable("Unimplemented ObjectFormatType"); 5140 } 5141 5142 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5143 bool EmbedBitcode, bool EmbedCmdline, 5144 const std::vector<uint8_t> &CmdArgs) { 5145 // Save llvm.compiler.used and remove it. 5146 SmallVector<Constant *, 2> UsedArray; 5147 SmallVector<GlobalValue *, 4> UsedGlobals; 5148 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 5149 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5150 for (auto *GV : UsedGlobals) { 5151 if (GV->getName() != "llvm.embedded.module" && 5152 GV->getName() != "llvm.cmdline") 5153 UsedArray.push_back( 5154 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5155 } 5156 if (Used) 5157 Used->eraseFromParent(); 5158 5159 // Embed the bitcode for the llvm module. 5160 std::string Data; 5161 ArrayRef<uint8_t> ModuleData; 5162 Triple T(M.getTargetTriple()); 5163 5164 if (EmbedBitcode) { 5165 if (Buf.getBufferSize() == 0 || 5166 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5167 (const unsigned char *)Buf.getBufferEnd())) { 5168 // If the input is LLVM Assembly, bitcode is produced by serializing 5169 // the module. Use-lists order need to be preserved in this case. 5170 llvm::raw_string_ostream OS(Data); 5171 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5172 ModuleData = 5173 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5174 } else 5175 // If the input is LLVM bitcode, write the input byte stream directly. 5176 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5177 Buf.getBufferSize()); 5178 } 5179 llvm::Constant *ModuleConstant = 5180 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5181 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5182 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5183 ModuleConstant); 5184 GV->setSection(getSectionNameForBitcode(T)); 5185 // Set alignment to 1 to prevent padding between two contributions from input 5186 // sections after linking. 5187 GV->setAlignment(Align(1)); 5188 UsedArray.push_back( 5189 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5190 if (llvm::GlobalVariable *Old = 5191 M.getGlobalVariable("llvm.embedded.module", true)) { 5192 assert(Old->hasZeroLiveUses() && 5193 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5194 GV->takeName(Old); 5195 Old->eraseFromParent(); 5196 } else { 5197 GV->setName("llvm.embedded.module"); 5198 } 5199 5200 // Skip if only bitcode needs to be embedded. 5201 if (EmbedCmdline) { 5202 // Embed command-line options. 5203 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5204 CmdArgs.size()); 5205 llvm::Constant *CmdConstant = 5206 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5207 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5208 llvm::GlobalValue::PrivateLinkage, 5209 CmdConstant); 5210 GV->setSection(getSectionNameForCommandline(T)); 5211 GV->setAlignment(Align(1)); 5212 UsedArray.push_back( 5213 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5214 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5215 assert(Old->hasZeroLiveUses() && 5216 "llvm.cmdline can only be used once in llvm.compiler.used"); 5217 GV->takeName(Old); 5218 Old->eraseFromParent(); 5219 } else { 5220 GV->setName("llvm.cmdline"); 5221 } 5222 } 5223 5224 if (UsedArray.empty()) 5225 return; 5226 5227 // Recreate llvm.compiler.used. 5228 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5229 auto *NewUsed = new GlobalVariable( 5230 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5231 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5232 NewUsed->setSection("llvm.metadata"); 5233 } 5234