1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/ParameterAttributes.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/MathExtras.h" 27 using namespace llvm; 28 29 /// These are manifest constants used by the bitcode writer. They do not need to 30 /// be kept in sync with the reader, but need to be consistent within this file. 31 enum { 32 CurVersion = 0, 33 34 // VALUE_SYMTAB_BLOCK abbrev id's. 35 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 36 VST_ENTRY_7_ABBREV, 37 VST_ENTRY_6_ABBREV, 38 VST_BBENTRY_6_ABBREV, 39 40 // CONSTANTS_BLOCK abbrev id's. 41 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 CONSTANTS_INTEGER_ABBREV, 43 CONSTANTS_CE_CAST_Abbrev, 44 CONSTANTS_NULL_Abbrev, 45 46 // FUNCTION_BLOCK abbrev id's. 47 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 FUNCTION_INST_BINOP_ABBREV, 49 FUNCTION_INST_CAST_ABBREV, 50 FUNCTION_INST_RET_VOID_ABBREV, 51 FUNCTION_INST_RET_VAL_ABBREV, 52 FUNCTION_INST_UNREACHABLE_ABBREV 53 }; 54 55 56 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 57 switch (Opcode) { 58 default: assert(0 && "Unknown cast instruction!"); 59 case Instruction::Trunc : return bitc::CAST_TRUNC; 60 case Instruction::ZExt : return bitc::CAST_ZEXT; 61 case Instruction::SExt : return bitc::CAST_SEXT; 62 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 63 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 64 case Instruction::UIToFP : return bitc::CAST_UITOFP; 65 case Instruction::SIToFP : return bitc::CAST_SITOFP; 66 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 67 case Instruction::FPExt : return bitc::CAST_FPEXT; 68 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 69 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 70 case Instruction::BitCast : return bitc::CAST_BITCAST; 71 } 72 } 73 74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 75 switch (Opcode) { 76 default: assert(0 && "Unknown binary instruction!"); 77 case Instruction::Add: return bitc::BINOP_ADD; 78 case Instruction::Sub: return bitc::BINOP_SUB; 79 case Instruction::Mul: return bitc::BINOP_MUL; 80 case Instruction::UDiv: return bitc::BINOP_UDIV; 81 case Instruction::FDiv: 82 case Instruction::SDiv: return bitc::BINOP_SDIV; 83 case Instruction::URem: return bitc::BINOP_UREM; 84 case Instruction::FRem: 85 case Instruction::SRem: return bitc::BINOP_SREM; 86 case Instruction::Shl: return bitc::BINOP_SHL; 87 case Instruction::LShr: return bitc::BINOP_LSHR; 88 case Instruction::AShr: return bitc::BINOP_ASHR; 89 case Instruction::And: return bitc::BINOP_AND; 90 case Instruction::Or: return bitc::BINOP_OR; 91 case Instruction::Xor: return bitc::BINOP_XOR; 92 } 93 } 94 95 96 97 static void WriteStringRecord(unsigned Code, const std::string &Str, 98 unsigned AbbrevToUse, BitstreamWriter &Stream) { 99 SmallVector<unsigned, 64> Vals; 100 101 // Code: [strchar x N] 102 for (unsigned i = 0, e = Str.size(); i != e; ++i) 103 Vals.push_back(Str[i]); 104 105 // Emit the finished record. 106 Stream.EmitRecord(Code, Vals, AbbrevToUse); 107 } 108 109 // Emit information about parameter attributes. 110 static void WriteParamAttrTable(const ValueEnumerator &VE, 111 BitstreamWriter &Stream) { 112 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 113 if (Attrs.empty()) return; 114 115 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 116 117 SmallVector<uint64_t, 64> Record; 118 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 119 const ParamAttrsList *A = Attrs[i]; 120 for (unsigned op = 0, e = A->size(); op != e; ++op) { 121 Record.push_back(A->getParamIndex(op)); 122 Record.push_back(A->getParamAttrsAtIndex(op)); 123 } 124 125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 126 Record.clear(); 127 } 128 129 Stream.ExitBlock(); 130 } 131 132 /// WriteTypeTable - Write out the type table for a module. 133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 134 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 135 136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 137 SmallVector<uint64_t, 64> TypeVals; 138 139 // Abbrev for TYPE_CODE_POINTER. 140 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 143 Log2_32_Ceil(VE.getTypes().size()+1))); 144 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 145 146 // Abbrev for TYPE_CODE_FUNCTION. 147 Abbv = new BitCodeAbbrev(); 148 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 151 Log2_32_Ceil(VE.getParamAttrs().size()+1))); 152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 154 Log2_32_Ceil(VE.getTypes().size()+1))); 155 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 156 157 // Abbrev for TYPE_CODE_STRUCT. 158 Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 163 Log2_32_Ceil(VE.getTypes().size()+1))); 164 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 165 166 // Abbrev for TYPE_CODE_ARRAY. 167 Abbv = new BitCodeAbbrev(); 168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 171 Log2_32_Ceil(VE.getTypes().size()+1))); 172 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 173 174 // Emit an entry count so the reader can reserve space. 175 TypeVals.push_back(TypeList.size()); 176 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 177 TypeVals.clear(); 178 179 // Loop over all of the types, emitting each in turn. 180 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 181 const Type *T = TypeList[i].first; 182 int AbbrevToUse = 0; 183 unsigned Code = 0; 184 185 switch (T->getTypeID()) { 186 default: assert(0 && "Unknown type!"); 187 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 188 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 189 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 190 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 191 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 192 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 193 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 194 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 195 case Type::IntegerTyID: 196 // INTEGER: [width] 197 Code = bitc::TYPE_CODE_INTEGER; 198 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 199 break; 200 case Type::PointerTyID: 201 // POINTER: [pointee type] 202 Code = bitc::TYPE_CODE_POINTER; 203 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 204 AbbrevToUse = PtrAbbrev; 205 break; 206 207 case Type::FunctionTyID: { 208 const FunctionType *FT = cast<FunctionType>(T); 209 // FUNCTION: [isvararg, attrid, retty, paramty x N] 210 Code = bitc::TYPE_CODE_FUNCTION; 211 TypeVals.push_back(FT->isVarArg()); 212 TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs())); 213 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 214 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 215 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 216 AbbrevToUse = FunctionAbbrev; 217 break; 218 } 219 case Type::StructTyID: { 220 const StructType *ST = cast<StructType>(T); 221 // STRUCT: [ispacked, eltty x N] 222 Code = bitc::TYPE_CODE_STRUCT; 223 TypeVals.push_back(ST->isPacked()); 224 // Output all of the element types. 225 for (StructType::element_iterator I = ST->element_begin(), 226 E = ST->element_end(); I != E; ++I) 227 TypeVals.push_back(VE.getTypeID(*I)); 228 AbbrevToUse = StructAbbrev; 229 break; 230 } 231 case Type::ArrayTyID: { 232 const ArrayType *AT = cast<ArrayType>(T); 233 // ARRAY: [numelts, eltty] 234 Code = bitc::TYPE_CODE_ARRAY; 235 TypeVals.push_back(AT->getNumElements()); 236 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 237 AbbrevToUse = ArrayAbbrev; 238 break; 239 } 240 case Type::VectorTyID: { 241 const VectorType *VT = cast<VectorType>(T); 242 // VECTOR [numelts, eltty] 243 Code = bitc::TYPE_CODE_VECTOR; 244 TypeVals.push_back(VT->getNumElements()); 245 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 246 break; 247 } 248 } 249 250 // Emit the finished record. 251 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 252 TypeVals.clear(); 253 } 254 255 Stream.ExitBlock(); 256 } 257 258 static unsigned getEncodedLinkage(const GlobalValue *GV) { 259 switch (GV->getLinkage()) { 260 default: assert(0 && "Invalid linkage!"); 261 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 262 case GlobalValue::ExternalLinkage: return 0; 263 case GlobalValue::WeakLinkage: return 1; 264 case GlobalValue::AppendingLinkage: return 2; 265 case GlobalValue::InternalLinkage: return 3; 266 case GlobalValue::LinkOnceLinkage: return 4; 267 case GlobalValue::DLLImportLinkage: return 5; 268 case GlobalValue::DLLExportLinkage: return 6; 269 case GlobalValue::ExternalWeakLinkage: return 7; 270 } 271 } 272 273 static unsigned getEncodedVisibility(const GlobalValue *GV) { 274 switch (GV->getVisibility()) { 275 default: assert(0 && "Invalid visibility!"); 276 case GlobalValue::DefaultVisibility: return 0; 277 case GlobalValue::HiddenVisibility: return 1; 278 case GlobalValue::ProtectedVisibility: return 2; 279 } 280 } 281 282 // Emit top-level description of module, including target triple, inline asm, 283 // descriptors for global variables, and function prototype info. 284 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 285 BitstreamWriter &Stream) { 286 // Emit the list of dependent libraries for the Module. 287 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 288 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 289 290 // Emit various pieces of data attached to a module. 291 if (!M->getTargetTriple().empty()) 292 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 293 0/*TODO*/, Stream); 294 if (!M->getDataLayout().empty()) 295 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 296 0/*TODO*/, Stream); 297 if (!M->getModuleInlineAsm().empty()) 298 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 299 0/*TODO*/, Stream); 300 301 // Emit information about sections, computing how many there are. Also 302 // compute the maximum alignment value. 303 std::map<std::string, unsigned> SectionMap; 304 unsigned MaxAlignment = 0; 305 unsigned MaxGlobalType = 0; 306 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 307 GV != E; ++GV) { 308 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 309 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 310 311 if (!GV->hasSection()) continue; 312 // Give section names unique ID's. 313 unsigned &Entry = SectionMap[GV->getSection()]; 314 if (Entry != 0) continue; 315 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 316 0/*TODO*/, Stream); 317 Entry = SectionMap.size(); 318 } 319 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 320 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 321 if (!F->hasSection()) continue; 322 // Give section names unique ID's. 323 unsigned &Entry = SectionMap[F->getSection()]; 324 if (Entry != 0) continue; 325 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 326 0/*TODO*/, Stream); 327 Entry = SectionMap.size(); 328 } 329 330 // Emit abbrev for globals, now that we know # sections and max alignment. 331 unsigned SimpleGVarAbbrev = 0; 332 if (!M->global_empty()) { 333 // Add an abbrev for common globals with no visibility or thread localness. 334 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 335 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 337 Log2_32_Ceil(MaxGlobalType+1))); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 341 if (MaxAlignment == 0) // Alignment. 342 Abbv->Add(BitCodeAbbrevOp(0)); 343 else { 344 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 346 Log2_32_Ceil(MaxEncAlignment+1))); 347 } 348 if (SectionMap.empty()) // Section. 349 Abbv->Add(BitCodeAbbrevOp(0)); 350 else 351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 352 Log2_32_Ceil(SectionMap.size()+1))); 353 // Don't bother emitting vis + thread local. 354 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 355 } 356 357 // Emit the global variable information. 358 SmallVector<unsigned, 64> Vals; 359 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 360 GV != E; ++GV) { 361 unsigned AbbrevToUse = 0; 362 363 // GLOBALVAR: [type, isconst, initid, 364 // linkage, alignment, section, visibility, threadlocal] 365 Vals.push_back(VE.getTypeID(GV->getType())); 366 Vals.push_back(GV->isConstant()); 367 Vals.push_back(GV->isDeclaration() ? 0 : 368 (VE.getValueID(GV->getInitializer()) + 1)); 369 Vals.push_back(getEncodedLinkage(GV)); 370 Vals.push_back(Log2_32(GV->getAlignment())+1); 371 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 372 if (GV->isThreadLocal() || 373 GV->getVisibility() != GlobalValue::DefaultVisibility) { 374 Vals.push_back(getEncodedVisibility(GV)); 375 Vals.push_back(GV->isThreadLocal()); 376 } else { 377 AbbrevToUse = SimpleGVarAbbrev; 378 } 379 380 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 381 Vals.clear(); 382 } 383 384 // Emit the function proto information. 385 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 386 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section, 387 // visibility] 388 Vals.push_back(VE.getTypeID(F->getType())); 389 Vals.push_back(F->getCallingConv()); 390 Vals.push_back(F->isDeclaration()); 391 Vals.push_back(getEncodedLinkage(F)); 392 393 // Note: we emit the param attr ID number for the function type of this 394 // function. In the future, we intend for attrs to be properties of 395 // functions, instead of on the type. This is to support this future work. 396 Vals.push_back(VE.getParamAttrID(F->getFunctionType()->getParamAttrs())); 397 398 Vals.push_back(Log2_32(F->getAlignment())+1); 399 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 400 Vals.push_back(getEncodedVisibility(F)); 401 402 unsigned AbbrevToUse = 0; 403 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 404 Vals.clear(); 405 } 406 407 408 // Emit the alias information. 409 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 410 AI != E; ++AI) { 411 Vals.push_back(VE.getTypeID(AI->getType())); 412 Vals.push_back(VE.getValueID(AI->getAliasee())); 413 Vals.push_back(getEncodedLinkage(AI)); 414 unsigned AbbrevToUse = 0; 415 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 416 Vals.clear(); 417 } 418 } 419 420 421 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 422 const ValueEnumerator &VE, 423 BitstreamWriter &Stream, bool isGlobal) { 424 if (FirstVal == LastVal) return; 425 426 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 427 428 unsigned AggregateAbbrev = 0; 429 unsigned String8Abbrev = 0; 430 unsigned CString7Abbrev = 0; 431 unsigned CString6Abbrev = 0; 432 // If this is a constant pool for the module, emit module-specific abbrevs. 433 if (isGlobal) { 434 // Abbrev for CST_CODE_AGGREGATE. 435 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 436 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 439 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 440 441 // Abbrev for CST_CODE_STRING. 442 Abbv = new BitCodeAbbrev(); 443 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 446 String8Abbrev = Stream.EmitAbbrev(Abbv); 447 // Abbrev for CST_CODE_CSTRING. 448 Abbv = new BitCodeAbbrev(); 449 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 452 CString7Abbrev = Stream.EmitAbbrev(Abbv); 453 // Abbrev for CST_CODE_CSTRING. 454 Abbv = new BitCodeAbbrev(); 455 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 458 CString6Abbrev = Stream.EmitAbbrev(Abbv); 459 } 460 461 SmallVector<uint64_t, 64> Record; 462 463 const ValueEnumerator::ValueList &Vals = VE.getValues(); 464 const Type *LastTy = 0; 465 for (unsigned i = FirstVal; i != LastVal; ++i) { 466 const Value *V = Vals[i].first; 467 // If we need to switch types, do so now. 468 if (V->getType() != LastTy) { 469 LastTy = V->getType(); 470 Record.push_back(VE.getTypeID(LastTy)); 471 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 472 CONSTANTS_SETTYPE_ABBREV); 473 Record.clear(); 474 } 475 476 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 477 Record.push_back(unsigned(IA->hasSideEffects())); 478 479 // Add the asm string. 480 const std::string &AsmStr = IA->getAsmString(); 481 Record.push_back(AsmStr.size()); 482 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 483 Record.push_back(AsmStr[i]); 484 485 // Add the constraint string. 486 const std::string &ConstraintStr = IA->getConstraintString(); 487 Record.push_back(ConstraintStr.size()); 488 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 489 Record.push_back(ConstraintStr[i]); 490 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 491 Record.clear(); 492 continue; 493 } 494 const Constant *C = cast<Constant>(V); 495 unsigned Code = -1U; 496 unsigned AbbrevToUse = 0; 497 if (C->isNullValue()) { 498 Code = bitc::CST_CODE_NULL; 499 } else if (isa<UndefValue>(C)) { 500 Code = bitc::CST_CODE_UNDEF; 501 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 502 if (IV->getBitWidth() <= 64) { 503 int64_t V = IV->getSExtValue(); 504 if (V >= 0) 505 Record.push_back(V << 1); 506 else 507 Record.push_back((-V << 1) | 1); 508 Code = bitc::CST_CODE_INTEGER; 509 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 510 } else { // Wide integers, > 64 bits in size. 511 // We have an arbitrary precision integer value to write whose 512 // bit width is > 64. However, in canonical unsigned integer 513 // format it is likely that the high bits are going to be zero. 514 // So, we only write the number of active words. 515 unsigned NWords = IV->getValue().getActiveWords(); 516 const uint64_t *RawWords = IV->getValue().getRawData(); 517 for (unsigned i = 0; i != NWords; ++i) { 518 int64_t V = RawWords[i]; 519 if (V >= 0) 520 Record.push_back(V << 1); 521 else 522 Record.push_back((-V << 1) | 1); 523 } 524 Code = bitc::CST_CODE_WIDE_INTEGER; 525 } 526 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 527 Code = bitc::CST_CODE_FLOAT; 528 const Type *Ty = CFP->getType(); 529 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 530 Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue()); 531 } else if (Ty == Type::X86_FP80Ty) { 532 // api needed to prevent premature destruction 533 APInt api = CFP->getValueAPF().convertToAPInt(); 534 const uint64_t *p = api.getRawData(); 535 Record.push_back(p[0]); 536 Record.push_back((uint16_t)p[1]); 537 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 538 APInt api = CFP->getValueAPF().convertToAPInt(); 539 const uint64_t *p = api.getRawData(); 540 Record.push_back(p[0]); 541 Record.push_back(p[1]); 542 } else { 543 assert (0 && "Unknown FP type!"); 544 } 545 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 546 // Emit constant strings specially. 547 unsigned NumOps = C->getNumOperands(); 548 // If this is a null-terminated string, use the denser CSTRING encoding. 549 if (C->getOperand(NumOps-1)->isNullValue()) { 550 Code = bitc::CST_CODE_CSTRING; 551 --NumOps; // Don't encode the null, which isn't allowed by char6. 552 } else { 553 Code = bitc::CST_CODE_STRING; 554 AbbrevToUse = String8Abbrev; 555 } 556 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 557 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 558 for (unsigned i = 0; i != NumOps; ++i) { 559 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 560 Record.push_back(V); 561 isCStr7 &= (V & 128) == 0; 562 if (isCStrChar6) 563 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 564 } 565 566 if (isCStrChar6) 567 AbbrevToUse = CString6Abbrev; 568 else if (isCStr7) 569 AbbrevToUse = CString7Abbrev; 570 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 571 isa<ConstantVector>(V)) { 572 Code = bitc::CST_CODE_AGGREGATE; 573 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 574 Record.push_back(VE.getValueID(C->getOperand(i))); 575 AbbrevToUse = AggregateAbbrev; 576 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 577 switch (CE->getOpcode()) { 578 default: 579 if (Instruction::isCast(CE->getOpcode())) { 580 Code = bitc::CST_CODE_CE_CAST; 581 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 582 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 583 Record.push_back(VE.getValueID(C->getOperand(0))); 584 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 585 } else { 586 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 587 Code = bitc::CST_CODE_CE_BINOP; 588 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 589 Record.push_back(VE.getValueID(C->getOperand(0))); 590 Record.push_back(VE.getValueID(C->getOperand(1))); 591 } 592 break; 593 case Instruction::GetElementPtr: 594 Code = bitc::CST_CODE_CE_GEP; 595 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 596 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 597 Record.push_back(VE.getValueID(C->getOperand(i))); 598 } 599 break; 600 case Instruction::Select: 601 Code = bitc::CST_CODE_CE_SELECT; 602 Record.push_back(VE.getValueID(C->getOperand(0))); 603 Record.push_back(VE.getValueID(C->getOperand(1))); 604 Record.push_back(VE.getValueID(C->getOperand(2))); 605 break; 606 case Instruction::ExtractElement: 607 Code = bitc::CST_CODE_CE_EXTRACTELT; 608 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 609 Record.push_back(VE.getValueID(C->getOperand(0))); 610 Record.push_back(VE.getValueID(C->getOperand(1))); 611 break; 612 case Instruction::InsertElement: 613 Code = bitc::CST_CODE_CE_INSERTELT; 614 Record.push_back(VE.getValueID(C->getOperand(0))); 615 Record.push_back(VE.getValueID(C->getOperand(1))); 616 Record.push_back(VE.getValueID(C->getOperand(2))); 617 break; 618 case Instruction::ShuffleVector: 619 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 620 Record.push_back(VE.getValueID(C->getOperand(0))); 621 Record.push_back(VE.getValueID(C->getOperand(1))); 622 Record.push_back(VE.getValueID(C->getOperand(2))); 623 break; 624 case Instruction::ICmp: 625 case Instruction::FCmp: 626 Code = bitc::CST_CODE_CE_CMP; 627 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 628 Record.push_back(VE.getValueID(C->getOperand(0))); 629 Record.push_back(VE.getValueID(C->getOperand(1))); 630 Record.push_back(CE->getPredicate()); 631 break; 632 } 633 } else { 634 assert(0 && "Unknown constant!"); 635 } 636 Stream.EmitRecord(Code, Record, AbbrevToUse); 637 Record.clear(); 638 } 639 640 Stream.ExitBlock(); 641 } 642 643 static void WriteModuleConstants(const ValueEnumerator &VE, 644 BitstreamWriter &Stream) { 645 const ValueEnumerator::ValueList &Vals = VE.getValues(); 646 647 // Find the first constant to emit, which is the first non-globalvalue value. 648 // We know globalvalues have been emitted by WriteModuleInfo. 649 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 650 if (!isa<GlobalValue>(Vals[i].first)) { 651 WriteConstants(i, Vals.size(), VE, Stream, true); 652 return; 653 } 654 } 655 } 656 657 /// PushValueAndType - The file has to encode both the value and type id for 658 /// many values, because we need to know what type to create for forward 659 /// references. However, most operands are not forward references, so this type 660 /// field is not needed. 661 /// 662 /// This function adds V's value ID to Vals. If the value ID is higher than the 663 /// instruction ID, then it is a forward reference, and it also includes the 664 /// type ID. 665 static bool PushValueAndType(Value *V, unsigned InstID, 666 SmallVector<unsigned, 64> &Vals, 667 ValueEnumerator &VE) { 668 unsigned ValID = VE.getValueID(V); 669 Vals.push_back(ValID); 670 if (ValID >= InstID) { 671 Vals.push_back(VE.getTypeID(V->getType())); 672 return true; 673 } 674 return false; 675 } 676 677 /// WriteInstruction - Emit an instruction to the specified stream. 678 static void WriteInstruction(const Instruction &I, unsigned InstID, 679 ValueEnumerator &VE, BitstreamWriter &Stream, 680 SmallVector<unsigned, 64> &Vals) { 681 unsigned Code = 0; 682 unsigned AbbrevToUse = 0; 683 switch (I.getOpcode()) { 684 default: 685 if (Instruction::isCast(I.getOpcode())) { 686 Code = bitc::FUNC_CODE_INST_CAST; 687 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 688 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 689 Vals.push_back(VE.getTypeID(I.getType())); 690 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 691 } else { 692 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 693 Code = bitc::FUNC_CODE_INST_BINOP; 694 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 695 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 696 Vals.push_back(VE.getValueID(I.getOperand(1))); 697 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 698 } 699 break; 700 701 case Instruction::GetElementPtr: 702 Code = bitc::FUNC_CODE_INST_GEP; 703 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 704 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 705 break; 706 case Instruction::Select: 707 Code = bitc::FUNC_CODE_INST_SELECT; 708 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 709 Vals.push_back(VE.getValueID(I.getOperand(2))); 710 Vals.push_back(VE.getValueID(I.getOperand(0))); 711 break; 712 case Instruction::ExtractElement: 713 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 714 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 715 Vals.push_back(VE.getValueID(I.getOperand(1))); 716 break; 717 case Instruction::InsertElement: 718 Code = bitc::FUNC_CODE_INST_INSERTELT; 719 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 720 Vals.push_back(VE.getValueID(I.getOperand(1))); 721 Vals.push_back(VE.getValueID(I.getOperand(2))); 722 break; 723 case Instruction::ShuffleVector: 724 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 725 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 726 Vals.push_back(VE.getValueID(I.getOperand(1))); 727 Vals.push_back(VE.getValueID(I.getOperand(2))); 728 break; 729 case Instruction::ICmp: 730 case Instruction::FCmp: 731 Code = bitc::FUNC_CODE_INST_CMP; 732 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 733 Vals.push_back(VE.getValueID(I.getOperand(1))); 734 Vals.push_back(cast<CmpInst>(I).getPredicate()); 735 break; 736 737 case Instruction::Ret: 738 Code = bitc::FUNC_CODE_INST_RET; 739 if (!I.getNumOperands()) 740 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 741 else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 742 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 743 break; 744 case Instruction::Br: 745 Code = bitc::FUNC_CODE_INST_BR; 746 Vals.push_back(VE.getValueID(I.getOperand(0))); 747 if (cast<BranchInst>(I).isConditional()) { 748 Vals.push_back(VE.getValueID(I.getOperand(1))); 749 Vals.push_back(VE.getValueID(I.getOperand(2))); 750 } 751 break; 752 case Instruction::Switch: 753 Code = bitc::FUNC_CODE_INST_SWITCH; 754 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 755 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 756 Vals.push_back(VE.getValueID(I.getOperand(i))); 757 break; 758 case Instruction::Invoke: { 759 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 760 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 761 Code = bitc::FUNC_CODE_INST_INVOKE; 762 763 // Note: we emit the param attr ID number for the function type of this 764 // function. In the future, we intend for attrs to be properties of 765 // functions, instead of on the type. This is to support this future work. 766 Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs())); 767 768 Vals.push_back(cast<InvokeInst>(I).getCallingConv()); 769 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 770 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 771 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 772 773 // Emit value #'s for the fixed parameters. 774 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 775 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 776 777 // Emit type/value pairs for varargs params. 778 if (FTy->isVarArg()) { 779 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 780 i != e; ++i) 781 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 782 } 783 break; 784 } 785 case Instruction::Unwind: 786 Code = bitc::FUNC_CODE_INST_UNWIND; 787 break; 788 case Instruction::Unreachable: 789 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 790 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 791 break; 792 793 case Instruction::PHI: 794 Code = bitc::FUNC_CODE_INST_PHI; 795 Vals.push_back(VE.getTypeID(I.getType())); 796 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 797 Vals.push_back(VE.getValueID(I.getOperand(i))); 798 break; 799 800 case Instruction::Malloc: 801 Code = bitc::FUNC_CODE_INST_MALLOC; 802 Vals.push_back(VE.getTypeID(I.getType())); 803 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 804 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 805 break; 806 807 case Instruction::Free: 808 Code = bitc::FUNC_CODE_INST_FREE; 809 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 810 break; 811 812 case Instruction::Alloca: 813 Code = bitc::FUNC_CODE_INST_ALLOCA; 814 Vals.push_back(VE.getTypeID(I.getType())); 815 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 816 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 817 break; 818 819 case Instruction::Load: 820 Code = bitc::FUNC_CODE_INST_LOAD; 821 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 822 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 823 824 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 825 Vals.push_back(cast<LoadInst>(I).isVolatile()); 826 break; 827 case Instruction::Store: 828 Code = bitc::FUNC_CODE_INST_STORE; 829 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // val. 830 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr. 831 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 832 Vals.push_back(cast<StoreInst>(I).isVolatile()); 833 break; 834 case Instruction::Call: { 835 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 836 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 837 838 Code = bitc::FUNC_CODE_INST_CALL; 839 840 // Note: we emit the param attr ID number for the function type of this 841 // function. In the future, we intend for attrs to be properties of 842 // functions, instead of on the type. This is to support this future work. 843 Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs())); 844 845 Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) | 846 unsigned(cast<CallInst>(I).isTailCall())); 847 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // Callee 848 849 // Emit value #'s for the fixed parameters. 850 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 851 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 852 853 // Emit type/value pairs for varargs params. 854 if (FTy->isVarArg()) { 855 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 856 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 857 i != e; ++i) 858 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 859 } 860 break; 861 } 862 case Instruction::VAArg: 863 Code = bitc::FUNC_CODE_INST_VAARG; 864 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 865 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 866 Vals.push_back(VE.getTypeID(I.getType())); // restype. 867 break; 868 } 869 870 Stream.EmitRecord(Code, Vals, AbbrevToUse); 871 Vals.clear(); 872 } 873 874 // Emit names for globals/functions etc. 875 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 876 const ValueEnumerator &VE, 877 BitstreamWriter &Stream) { 878 if (VST.empty()) return; 879 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 880 881 // FIXME: Set up the abbrev, we know how many values there are! 882 // FIXME: We know if the type names can use 7-bit ascii. 883 SmallVector<unsigned, 64> NameVals; 884 885 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 886 SI != SE; ++SI) { 887 888 const ValueName &Name = *SI; 889 890 // Figure out the encoding to use for the name. 891 bool is7Bit = true; 892 bool isChar6 = true; 893 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 894 C != E; ++C) { 895 if (isChar6) 896 isChar6 = BitCodeAbbrevOp::isChar6(*C); 897 if ((unsigned char)*C & 128) { 898 is7Bit = false; 899 break; // don't bother scanning the rest. 900 } 901 } 902 903 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 904 905 // VST_ENTRY: [valueid, namechar x N] 906 // VST_BBENTRY: [bbid, namechar x N] 907 unsigned Code; 908 if (isa<BasicBlock>(SI->getValue())) { 909 Code = bitc::VST_CODE_BBENTRY; 910 if (isChar6) 911 AbbrevToUse = VST_BBENTRY_6_ABBREV; 912 } else { 913 Code = bitc::VST_CODE_ENTRY; 914 if (isChar6) 915 AbbrevToUse = VST_ENTRY_6_ABBREV; 916 else if (is7Bit) 917 AbbrevToUse = VST_ENTRY_7_ABBREV; 918 } 919 920 NameVals.push_back(VE.getValueID(SI->getValue())); 921 for (const char *P = Name.getKeyData(), 922 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 923 NameVals.push_back((unsigned char)*P); 924 925 // Emit the finished record. 926 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 927 NameVals.clear(); 928 } 929 Stream.ExitBlock(); 930 } 931 932 /// WriteFunction - Emit a function body to the module stream. 933 static void WriteFunction(const Function &F, ValueEnumerator &VE, 934 BitstreamWriter &Stream) { 935 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 936 VE.incorporateFunction(F); 937 938 SmallVector<unsigned, 64> Vals; 939 940 // Emit the number of basic blocks, so the reader can create them ahead of 941 // time. 942 Vals.push_back(VE.getBasicBlocks().size()); 943 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 944 Vals.clear(); 945 946 // If there are function-local constants, emit them now. 947 unsigned CstStart, CstEnd; 948 VE.getFunctionConstantRange(CstStart, CstEnd); 949 WriteConstants(CstStart, CstEnd, VE, Stream, false); 950 951 // Keep a running idea of what the instruction ID is. 952 unsigned InstID = CstEnd; 953 954 // Finally, emit all the instructions, in order. 955 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 956 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 957 I != E; ++I) { 958 WriteInstruction(*I, InstID, VE, Stream, Vals); 959 if (I->getType() != Type::VoidTy) 960 ++InstID; 961 } 962 963 // Emit names for all the instructions etc. 964 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 965 966 VE.purgeFunction(); 967 Stream.ExitBlock(); 968 } 969 970 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 971 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 972 const ValueEnumerator &VE, 973 BitstreamWriter &Stream) { 974 if (TST.empty()) return; 975 976 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 977 978 // 7-bit fixed width VST_CODE_ENTRY strings. 979 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 980 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 982 Log2_32_Ceil(VE.getTypes().size()+1))); 983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 985 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 986 987 SmallVector<unsigned, 64> NameVals; 988 989 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 990 TI != TE; ++TI) { 991 // TST_ENTRY: [typeid, namechar x N] 992 NameVals.push_back(VE.getTypeID(TI->second)); 993 994 const std::string &Str = TI->first; 995 bool is7Bit = true; 996 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 997 NameVals.push_back((unsigned char)Str[i]); 998 if (Str[i] & 128) 999 is7Bit = false; 1000 } 1001 1002 // Emit the finished record. 1003 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1004 NameVals.clear(); 1005 } 1006 1007 Stream.ExitBlock(); 1008 } 1009 1010 // Emit blockinfo, which defines the standard abbreviations etc. 1011 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1012 // We only want to emit block info records for blocks that have multiple 1013 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1014 // blocks can defined their abbrevs inline. 1015 Stream.EnterBlockInfoBlock(2); 1016 1017 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1018 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1023 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1024 Abbv) != VST_ENTRY_8_ABBREV) 1025 assert(0 && "Unexpected abbrev ordering!"); 1026 } 1027 1028 { // 7-bit fixed width VST_ENTRY strings. 1029 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1030 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1034 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1035 Abbv) != VST_ENTRY_7_ABBREV) 1036 assert(0 && "Unexpected abbrev ordering!"); 1037 } 1038 { // 6-bit char6 VST_ENTRY strings. 1039 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1040 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1044 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1045 Abbv) != VST_ENTRY_6_ABBREV) 1046 assert(0 && "Unexpected abbrev ordering!"); 1047 } 1048 { // 6-bit char6 VST_BBENTRY strings. 1049 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1050 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1054 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1055 Abbv) != VST_BBENTRY_6_ABBREV) 1056 assert(0 && "Unexpected abbrev ordering!"); 1057 } 1058 1059 1060 1061 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1062 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1063 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1065 Log2_32_Ceil(VE.getTypes().size()+1))); 1066 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1067 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1068 assert(0 && "Unexpected abbrev ordering!"); 1069 } 1070 1071 { // INTEGER abbrev for CONSTANTS_BLOCK. 1072 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1073 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1075 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1076 Abbv) != CONSTANTS_INTEGER_ABBREV) 1077 assert(0 && "Unexpected abbrev ordering!"); 1078 } 1079 1080 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1081 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1082 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1085 Log2_32_Ceil(VE.getTypes().size()+1))); 1086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1087 1088 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1089 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1090 assert(0 && "Unexpected abbrev ordering!"); 1091 } 1092 { // NULL abbrev for CONSTANTS_BLOCK. 1093 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1094 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1095 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1096 Abbv) != CONSTANTS_NULL_Abbrev) 1097 assert(0 && "Unexpected abbrev ordering!"); 1098 } 1099 1100 // FIXME: This should only use space for first class types! 1101 1102 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1103 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1104 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1108 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1109 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1110 assert(0 && "Unexpected abbrev ordering!"); 1111 } 1112 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1113 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1114 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1118 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1119 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1120 assert(0 && "Unexpected abbrev ordering!"); 1121 } 1122 { // INST_CAST abbrev for FUNCTION_BLOCK. 1123 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1124 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1127 Log2_32_Ceil(VE.getTypes().size()+1))); 1128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1129 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1130 Abbv) != FUNCTION_INST_CAST_ABBREV) 1131 assert(0 && "Unexpected abbrev ordering!"); 1132 } 1133 1134 { // INST_RET abbrev for FUNCTION_BLOCK. 1135 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1136 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1137 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1138 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1139 assert(0 && "Unexpected abbrev ordering!"); 1140 } 1141 { // INST_RET abbrev for FUNCTION_BLOCK. 1142 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1143 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1145 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1146 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1147 assert(0 && "Unexpected abbrev ordering!"); 1148 } 1149 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1150 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1151 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1152 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1153 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1154 assert(0 && "Unexpected abbrev ordering!"); 1155 } 1156 1157 Stream.ExitBlock(); 1158 } 1159 1160 1161 /// WriteModule - Emit the specified module to the bitstream. 1162 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1163 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1164 1165 // Emit the version number if it is non-zero. 1166 if (CurVersion) { 1167 SmallVector<unsigned, 1> Vals; 1168 Vals.push_back(CurVersion); 1169 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1170 } 1171 1172 // Analyze the module, enumerating globals, functions, etc. 1173 ValueEnumerator VE(M); 1174 1175 // Emit blockinfo, which defines the standard abbreviations etc. 1176 WriteBlockInfo(VE, Stream); 1177 1178 // Emit information about parameter attributes. 1179 WriteParamAttrTable(VE, Stream); 1180 1181 // Emit information describing all of the types in the module. 1182 WriteTypeTable(VE, Stream); 1183 1184 // Emit top-level description of module, including target triple, inline asm, 1185 // descriptors for global variables, and function prototype info. 1186 WriteModuleInfo(M, VE, Stream); 1187 1188 // Emit constants. 1189 WriteModuleConstants(VE, Stream); 1190 1191 // If we have any aggregate values in the value table, purge them - these can 1192 // only be used to initialize global variables. Doing so makes the value 1193 // namespace smaller for code in functions. 1194 int NumNonAggregates = VE.PurgeAggregateValues(); 1195 if (NumNonAggregates != -1) { 1196 SmallVector<unsigned, 1> Vals; 1197 Vals.push_back(NumNonAggregates); 1198 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1199 } 1200 1201 // Emit function bodies. 1202 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1203 if (!I->isDeclaration()) 1204 WriteFunction(*I, VE, Stream); 1205 1206 // Emit the type symbol table information. 1207 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1208 1209 // Emit names for globals/functions etc. 1210 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1211 1212 Stream.ExitBlock(); 1213 } 1214 1215 1216 /// WriteBitcodeToFile - Write the specified module to the specified output 1217 /// stream. 1218 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1219 std::vector<unsigned char> Buffer; 1220 BitstreamWriter Stream(Buffer); 1221 1222 Buffer.reserve(256*1024); 1223 1224 // Emit the file header. 1225 Stream.Emit((unsigned)'B', 8); 1226 Stream.Emit((unsigned)'C', 8); 1227 Stream.Emit(0x0, 4); 1228 Stream.Emit(0xC, 4); 1229 Stream.Emit(0xE, 4); 1230 Stream.Emit(0xD, 4); 1231 1232 // Emit the module. 1233 WriteModule(M, Stream); 1234 1235 // Write the generated bitstream to "Out". 1236 Out.write((char*)&Buffer.front(), Buffer.size()); 1237 1238 // Make sure it hits disk now. 1239 Out.flush(); 1240 } 1241