xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision fe64b26df9429c82f706424dcdae3d65723c3e5e)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <optional>
84 #include <set>
85 #include <string>
86 #include <system_error>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 
93 static cl::opt<bool> PrintSummaryGUIDs(
94     "print-summary-global-ids", cl::init(false), cl::Hidden,
95     cl::desc(
96         "Print the global id for each value when reading the module summary"));
97 
98 static cl::opt<bool> ExpandConstantExprs(
99     "expand-constant-exprs", cl::Hidden,
100     cl::desc(
101         "Expand constant expressions to instructions for testing purposes"));
102 
103 /// Load bitcode directly into RemoveDIs format (use debug records instead
104 /// of debug intrinsics). UNSET is treated as FALSE, so the default action
105 /// is to do nothing. Individual tools can override this to incrementally add
106 /// support for the RemoveDIs format.
107 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
108     "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
109     cl::desc("Load bitcode directly into the new debug info format (regardless "
110              "of input format)"));
111 
112 namespace {
113 
114 enum {
115   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
116 };
117 
118 } // end anonymous namespace
119 
120 static Error error(const Twine &Message) {
121   return make_error<StringError>(
122       Message, make_error_code(BitcodeError::CorruptedBitcode));
123 }
124 
125 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
126   if (!Stream.canSkipToPos(4))
127     return createStringError(std::errc::illegal_byte_sequence,
128                              "file too small to contain bitcode header");
129   for (unsigned C : {'B', 'C'})
130     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
131       if (Res.get() != C)
132         return createStringError(std::errc::illegal_byte_sequence,
133                                  "file doesn't start with bitcode header");
134     } else
135       return Res.takeError();
136   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
137     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
138       if (Res.get() != C)
139         return createStringError(std::errc::illegal_byte_sequence,
140                                  "file doesn't start with bitcode header");
141     } else
142       return Res.takeError();
143   return Error::success();
144 }
145 
146 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
147   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
148   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
149 
150   if (Buffer.getBufferSize() & 3)
151     return error("Invalid bitcode signature");
152 
153   // If we have a wrapper header, parse it and ignore the non-bc file contents.
154   // The magic number is 0x0B17C0DE stored in little endian.
155   if (isBitcodeWrapper(BufPtr, BufEnd))
156     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
157       return error("Invalid bitcode wrapper header");
158 
159   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
160   if (Error Err = hasInvalidBitcodeHeader(Stream))
161     return std::move(Err);
162 
163   return std::move(Stream);
164 }
165 
166 /// Convert a string from a record into an std::string, return true on failure.
167 template <typename StrTy>
168 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
169                             StrTy &Result) {
170   if (Idx > Record.size())
171     return true;
172 
173   Result.append(Record.begin() + Idx, Record.end());
174   return false;
175 }
176 
177 // Strip all the TBAA attachment for the module.
178 static void stripTBAA(Module *M) {
179   for (auto &F : *M) {
180     if (F.isMaterializable())
181       continue;
182     for (auto &I : instructions(F))
183       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
184   }
185 }
186 
187 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
188 /// "epoch" encoded in the bitcode, and return the producer name if any.
189 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
190   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
191     return std::move(Err);
192 
193   // Read all the records.
194   SmallVector<uint64_t, 64> Record;
195 
196   std::string ProducerIdentification;
197 
198   while (true) {
199     BitstreamEntry Entry;
200     if (Error E = Stream.advance().moveInto(Entry))
201       return std::move(E);
202 
203     switch (Entry.Kind) {
204     default:
205     case BitstreamEntry::Error:
206       return error("Malformed block");
207     case BitstreamEntry::EndBlock:
208       return ProducerIdentification;
209     case BitstreamEntry::Record:
210       // The interesting case.
211       break;
212     }
213 
214     // Read a record.
215     Record.clear();
216     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
217     if (!MaybeBitCode)
218       return MaybeBitCode.takeError();
219     switch (MaybeBitCode.get()) {
220     default: // Default behavior: reject
221       return error("Invalid value");
222     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
223       convertToString(Record, 0, ProducerIdentification);
224       break;
225     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
226       unsigned epoch = (unsigned)Record[0];
227       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
228         return error(
229           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
230           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
231       }
232     }
233     }
234   }
235 }
236 
237 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
238   // We expect a number of well-defined blocks, though we don't necessarily
239   // need to understand them all.
240   while (true) {
241     if (Stream.AtEndOfStream())
242       return "";
243 
244     BitstreamEntry Entry;
245     if (Error E = Stream.advance().moveInto(Entry))
246       return std::move(E);
247 
248     switch (Entry.Kind) {
249     case BitstreamEntry::EndBlock:
250     case BitstreamEntry::Error:
251       return error("Malformed block");
252 
253     case BitstreamEntry::SubBlock:
254       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
255         return readIdentificationBlock(Stream);
256 
257       // Ignore other sub-blocks.
258       if (Error Err = Stream.SkipBlock())
259         return std::move(Err);
260       continue;
261     case BitstreamEntry::Record:
262       if (Error E = Stream.skipRecord(Entry.ID).takeError())
263         return std::move(E);
264       continue;
265     }
266   }
267 }
268 
269 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
270   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
271     return std::move(Err);
272 
273   SmallVector<uint64_t, 64> Record;
274   // Read all the records for this module.
275 
276   while (true) {
277     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
278     if (!MaybeEntry)
279       return MaybeEntry.takeError();
280     BitstreamEntry Entry = MaybeEntry.get();
281 
282     switch (Entry.Kind) {
283     case BitstreamEntry::SubBlock: // Handled for us already.
284     case BitstreamEntry::Error:
285       return error("Malformed block");
286     case BitstreamEntry::EndBlock:
287       return false;
288     case BitstreamEntry::Record:
289       // The interesting case.
290       break;
291     }
292 
293     // Read a record.
294     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
295     if (!MaybeRecord)
296       return MaybeRecord.takeError();
297     switch (MaybeRecord.get()) {
298     default:
299       break; // Default behavior, ignore unknown content.
300     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
301       std::string S;
302       if (convertToString(Record, 0, S))
303         return error("Invalid section name record");
304       // Check for the i386 and other (x86_64, ARM) conventions
305       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
306           S.find("__OBJC,__category") != std::string::npos)
307         return true;
308       break;
309     }
310     }
311     Record.clear();
312   }
313   llvm_unreachable("Exit infinite loop");
314 }
315 
316 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
317   // We expect a number of well-defined blocks, though we don't necessarily
318   // need to understand them all.
319   while (true) {
320     BitstreamEntry Entry;
321     if (Error E = Stream.advance().moveInto(Entry))
322       return std::move(E);
323 
324     switch (Entry.Kind) {
325     case BitstreamEntry::Error:
326       return error("Malformed block");
327     case BitstreamEntry::EndBlock:
328       return false;
329 
330     case BitstreamEntry::SubBlock:
331       if (Entry.ID == bitc::MODULE_BLOCK_ID)
332         return hasObjCCategoryInModule(Stream);
333 
334       // Ignore other sub-blocks.
335       if (Error Err = Stream.SkipBlock())
336         return std::move(Err);
337       continue;
338 
339     case BitstreamEntry::Record:
340       if (Error E = Stream.skipRecord(Entry.ID).takeError())
341         return std::move(E);
342       continue;
343     }
344   }
345 }
346 
347 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
348   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
349     return std::move(Err);
350 
351   SmallVector<uint64_t, 64> Record;
352 
353   std::string Triple;
354 
355   // Read all the records for this module.
356   while (true) {
357     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
358     if (!MaybeEntry)
359       return MaybeEntry.takeError();
360     BitstreamEntry Entry = MaybeEntry.get();
361 
362     switch (Entry.Kind) {
363     case BitstreamEntry::SubBlock: // Handled for us already.
364     case BitstreamEntry::Error:
365       return error("Malformed block");
366     case BitstreamEntry::EndBlock:
367       return Triple;
368     case BitstreamEntry::Record:
369       // The interesting case.
370       break;
371     }
372 
373     // Read a record.
374     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
375     if (!MaybeRecord)
376       return MaybeRecord.takeError();
377     switch (MaybeRecord.get()) {
378     default: break;  // Default behavior, ignore unknown content.
379     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
380       std::string S;
381       if (convertToString(Record, 0, S))
382         return error("Invalid triple record");
383       Triple = S;
384       break;
385     }
386     }
387     Record.clear();
388   }
389   llvm_unreachable("Exit infinite loop");
390 }
391 
392 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
393   // We expect a number of well-defined blocks, though we don't necessarily
394   // need to understand them all.
395   while (true) {
396     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
397     if (!MaybeEntry)
398       return MaybeEntry.takeError();
399     BitstreamEntry Entry = MaybeEntry.get();
400 
401     switch (Entry.Kind) {
402     case BitstreamEntry::Error:
403       return error("Malformed block");
404     case BitstreamEntry::EndBlock:
405       return "";
406 
407     case BitstreamEntry::SubBlock:
408       if (Entry.ID == bitc::MODULE_BLOCK_ID)
409         return readModuleTriple(Stream);
410 
411       // Ignore other sub-blocks.
412       if (Error Err = Stream.SkipBlock())
413         return std::move(Err);
414       continue;
415 
416     case BitstreamEntry::Record:
417       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
418         continue;
419       else
420         return Skipped.takeError();
421     }
422   }
423 }
424 
425 namespace {
426 
427 class BitcodeReaderBase {
428 protected:
429   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
430       : Stream(std::move(Stream)), Strtab(Strtab) {
431     this->Stream.setBlockInfo(&BlockInfo);
432   }
433 
434   BitstreamBlockInfo BlockInfo;
435   BitstreamCursor Stream;
436   StringRef Strtab;
437 
438   /// In version 2 of the bitcode we store names of global values and comdats in
439   /// a string table rather than in the VST.
440   bool UseStrtab = false;
441 
442   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
443 
444   /// If this module uses a string table, pop the reference to the string table
445   /// and return the referenced string and the rest of the record. Otherwise
446   /// just return the record itself.
447   std::pair<StringRef, ArrayRef<uint64_t>>
448   readNameFromStrtab(ArrayRef<uint64_t> Record);
449 
450   Error readBlockInfo();
451 
452   // Contains an arbitrary and optional string identifying the bitcode producer
453   std::string ProducerIdentification;
454 
455   Error error(const Twine &Message);
456 };
457 
458 } // end anonymous namespace
459 
460 Error BitcodeReaderBase::error(const Twine &Message) {
461   std::string FullMsg = Message.str();
462   if (!ProducerIdentification.empty())
463     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
464                LLVM_VERSION_STRING "')";
465   return ::error(FullMsg);
466 }
467 
468 Expected<unsigned>
469 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
470   if (Record.empty())
471     return error("Invalid version record");
472   unsigned ModuleVersion = Record[0];
473   if (ModuleVersion > 2)
474     return error("Invalid value");
475   UseStrtab = ModuleVersion >= 2;
476   return ModuleVersion;
477 }
478 
479 std::pair<StringRef, ArrayRef<uint64_t>>
480 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
481   if (!UseStrtab)
482     return {"", Record};
483   // Invalid reference. Let the caller complain about the record being empty.
484   if (Record[0] + Record[1] > Strtab.size())
485     return {"", {}};
486   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
487 }
488 
489 namespace {
490 
491 /// This represents a constant expression or constant aggregate using a custom
492 /// structure internal to the bitcode reader. Later, this structure will be
493 /// expanded by materializeValue() either into a constant expression/aggregate,
494 /// or into an instruction sequence at the point of use. This allows us to
495 /// upgrade bitcode using constant expressions even if this kind of constant
496 /// expression is no longer supported.
497 class BitcodeConstant final : public Value,
498                               TrailingObjects<BitcodeConstant, unsigned> {
499   friend TrailingObjects;
500 
501   // Value subclass ID: Pick largest possible value to avoid any clashes.
502   static constexpr uint8_t SubclassID = 255;
503 
504 public:
505   // Opcodes used for non-expressions. This includes constant aggregates
506   // (struct, array, vector) that might need expansion, as well as non-leaf
507   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
508   // but still go through BitcodeConstant to avoid different uselist orders
509   // between the two cases.
510   static constexpr uint8_t ConstantStructOpcode = 255;
511   static constexpr uint8_t ConstantArrayOpcode = 254;
512   static constexpr uint8_t ConstantVectorOpcode = 253;
513   static constexpr uint8_t NoCFIOpcode = 252;
514   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
515   static constexpr uint8_t BlockAddressOpcode = 250;
516   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
517 
518   // Separate struct to make passing different number of parameters to
519   // BitcodeConstant::create() more convenient.
520   struct ExtraInfo {
521     uint8_t Opcode;
522     uint8_t Flags;
523     unsigned BlockAddressBB = 0;
524     Type *SrcElemTy = nullptr;
525     std::optional<ConstantRange> InRange;
526 
527     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
528               std::optional<ConstantRange> InRange = std::nullopt)
529         : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
530           InRange(std::move(InRange)) {}
531 
532     ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
533         : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
534   };
535 
536   uint8_t Opcode;
537   uint8_t Flags;
538   unsigned NumOperands;
539   unsigned BlockAddressBB;
540   Type *SrcElemTy; // GEP source element type.
541   std::optional<ConstantRange> InRange; // GEP inrange attribute.
542 
543 private:
544   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
545       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
546         NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
547         SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
548     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
549                             getTrailingObjects<unsigned>());
550   }
551 
552   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
553 
554 public:
555   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
556                                  const ExtraInfo &Info,
557                                  ArrayRef<unsigned> OpIDs) {
558     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
559                            alignof(BitcodeConstant));
560     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
561   }
562 
563   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
564 
565   ArrayRef<unsigned> getOperandIDs() const {
566     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
567   }
568 
569   std::optional<ConstantRange> getInRange() const {
570     assert(Opcode == Instruction::GetElementPtr);
571     return InRange;
572   }
573 
574   const char *getOpcodeName() const {
575     return Instruction::getOpcodeName(Opcode);
576   }
577 };
578 
579 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
580   LLVMContext &Context;
581   Module *TheModule = nullptr;
582   // Next offset to start scanning for lazy parsing of function bodies.
583   uint64_t NextUnreadBit = 0;
584   // Last function offset found in the VST.
585   uint64_t LastFunctionBlockBit = 0;
586   bool SeenValueSymbolTable = false;
587   uint64_t VSTOffset = 0;
588 
589   std::vector<std::string> SectionTable;
590   std::vector<std::string> GCTable;
591 
592   std::vector<Type *> TypeList;
593   /// Track type IDs of contained types. Order is the same as the contained
594   /// types of a Type*. This is used during upgrades of typed pointer IR in
595   /// opaque pointer mode.
596   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
597   /// In some cases, we need to create a type ID for a type that was not
598   /// explicitly encoded in the bitcode, or we don't know about at the current
599   /// point. For example, a global may explicitly encode the value type ID, but
600   /// not have a type ID for the pointer to value type, for which we create a
601   /// virtual type ID instead. This map stores the new type ID that was created
602   /// for the given pair of Type and contained type ID.
603   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
604   DenseMap<Function *, unsigned> FunctionTypeIDs;
605   /// Allocator for BitcodeConstants. This should come before ValueList,
606   /// because the ValueList might hold ValueHandles to these constants, so
607   /// ValueList must be destroyed before Alloc.
608   BumpPtrAllocator Alloc;
609   BitcodeReaderValueList ValueList;
610   std::optional<MetadataLoader> MDLoader;
611   std::vector<Comdat *> ComdatList;
612   DenseSet<GlobalObject *> ImplicitComdatObjects;
613   SmallVector<Instruction *, 64> InstructionList;
614 
615   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
616   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
617 
618   struct FunctionOperandInfo {
619     Function *F;
620     unsigned PersonalityFn;
621     unsigned Prefix;
622     unsigned Prologue;
623   };
624   std::vector<FunctionOperandInfo> FunctionOperands;
625 
626   /// The set of attributes by index.  Index zero in the file is for null, and
627   /// is thus not represented here.  As such all indices are off by one.
628   std::vector<AttributeList> MAttributes;
629 
630   /// The set of attribute groups.
631   std::map<unsigned, AttributeList> MAttributeGroups;
632 
633   /// While parsing a function body, this is a list of the basic blocks for the
634   /// function.
635   std::vector<BasicBlock*> FunctionBBs;
636 
637   // When reading the module header, this list is populated with functions that
638   // have bodies later in the file.
639   std::vector<Function*> FunctionsWithBodies;
640 
641   // When intrinsic functions are encountered which require upgrading they are
642   // stored here with their replacement function.
643   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
644   UpdatedIntrinsicMap UpgradedIntrinsics;
645 
646   // Several operations happen after the module header has been read, but
647   // before function bodies are processed. This keeps track of whether
648   // we've done this yet.
649   bool SeenFirstFunctionBody = false;
650 
651   /// When function bodies are initially scanned, this map contains info about
652   /// where to find deferred function body in the stream.
653   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
654 
655   /// When Metadata block is initially scanned when parsing the module, we may
656   /// choose to defer parsing of the metadata. This vector contains info about
657   /// which Metadata blocks are deferred.
658   std::vector<uint64_t> DeferredMetadataInfo;
659 
660   /// These are basic blocks forward-referenced by block addresses.  They are
661   /// inserted lazily into functions when they're loaded.  The basic block ID is
662   /// its index into the vector.
663   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
664   std::deque<Function *> BasicBlockFwdRefQueue;
665 
666   /// These are Functions that contain BlockAddresses which refer a different
667   /// Function. When parsing the different Function, queue Functions that refer
668   /// to the different Function. Those Functions must be materialized in order
669   /// to resolve their BlockAddress constants before the different Function
670   /// gets moved into another Module.
671   std::vector<Function *> BackwardRefFunctions;
672 
673   /// Indicates that we are using a new encoding for instruction operands where
674   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
675   /// instruction number, for a more compact encoding.  Some instruction
676   /// operands are not relative to the instruction ID: basic block numbers, and
677   /// types. Once the old style function blocks have been phased out, we would
678   /// not need this flag.
679   bool UseRelativeIDs = false;
680 
681   /// True if all functions will be materialized, negating the need to process
682   /// (e.g.) blockaddress forward references.
683   bool WillMaterializeAllForwardRefs = false;
684 
685   bool StripDebugInfo = false;
686   TBAAVerifier TBAAVerifyHelper;
687 
688   std::vector<std::string> BundleTags;
689   SmallVector<SyncScope::ID, 8> SSIDs;
690 
691   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
692 
693 public:
694   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
695                 StringRef ProducerIdentification, LLVMContext &Context);
696 
697   Error materializeForwardReferencedFunctions();
698 
699   Error materialize(GlobalValue *GV) override;
700   Error materializeModule() override;
701   std::vector<StructType *> getIdentifiedStructTypes() const override;
702 
703   /// Main interface to parsing a bitcode buffer.
704   /// \returns true if an error occurred.
705   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
706                          bool IsImporting, ParserCallbacks Callbacks = {});
707 
708   static uint64_t decodeSignRotatedValue(uint64_t V);
709 
710   /// Materialize any deferred Metadata block.
711   Error materializeMetadata() override;
712 
713   void setStripDebugInfo() override;
714 
715 private:
716   std::vector<StructType *> IdentifiedStructTypes;
717   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
718   StructType *createIdentifiedStructType(LLVMContext &Context);
719 
720   static constexpr unsigned InvalidTypeID = ~0u;
721 
722   Type *getTypeByID(unsigned ID);
723   Type *getPtrElementTypeByID(unsigned ID);
724   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
725   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
726 
727   void callValueTypeCallback(Value *F, unsigned TypeID);
728   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
729   Expected<Constant *> getValueForInitializer(unsigned ID);
730 
731   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
732                         BasicBlock *ConstExprInsertBB) {
733     if (Ty && Ty->isMetadataTy())
734       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
735     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
736   }
737 
738   Metadata *getFnMetadataByID(unsigned ID) {
739     return MDLoader->getMetadataFwdRefOrLoad(ID);
740   }
741 
742   BasicBlock *getBasicBlock(unsigned ID) const {
743     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
744     return FunctionBBs[ID];
745   }
746 
747   AttributeList getAttributes(unsigned i) const {
748     if (i-1 < MAttributes.size())
749       return MAttributes[i-1];
750     return AttributeList();
751   }
752 
753   /// Read a value/type pair out of the specified record from slot 'Slot'.
754   /// Increment Slot past the number of slots used in the record. Return true on
755   /// failure.
756   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
757                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
758                         BasicBlock *ConstExprInsertBB) {
759     if (Slot == Record.size()) return true;
760     unsigned ValNo = (unsigned)Record[Slot++];
761     // Adjust the ValNo, if it was encoded relative to the InstNum.
762     if (UseRelativeIDs)
763       ValNo = InstNum - ValNo;
764     if (ValNo < InstNum) {
765       // If this is not a forward reference, just return the value we already
766       // have.
767       TypeID = ValueList.getTypeID(ValNo);
768       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
769       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
770              "Incorrect type ID stored for value");
771       return ResVal == nullptr;
772     }
773     if (Slot == Record.size())
774       return true;
775 
776     TypeID = (unsigned)Record[Slot++];
777     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
778                             ConstExprInsertBB);
779     return ResVal == nullptr;
780   }
781 
782   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
783   /// past the number of slots used by the value in the record. Return true if
784   /// there is an error.
785   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
786                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
787                 BasicBlock *ConstExprInsertBB) {
788     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
789       return true;
790     // All values currently take a single record slot.
791     ++Slot;
792     return false;
793   }
794 
795   /// Like popValue, but does not increment the Slot number.
796   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
797                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
798                 BasicBlock *ConstExprInsertBB) {
799     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
800     return ResVal == nullptr;
801   }
802 
803   /// Version of getValue that returns ResVal directly, or 0 if there is an
804   /// error.
805   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
806                   unsigned InstNum, Type *Ty, unsigned TyID,
807                   BasicBlock *ConstExprInsertBB) {
808     if (Slot == Record.size()) return nullptr;
809     unsigned ValNo = (unsigned)Record[Slot];
810     // Adjust the ValNo, if it was encoded relative to the InstNum.
811     if (UseRelativeIDs)
812       ValNo = InstNum - ValNo;
813     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
814   }
815 
816   /// Like getValue, but decodes signed VBRs.
817   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
818                         unsigned InstNum, Type *Ty, unsigned TyID,
819                         BasicBlock *ConstExprInsertBB) {
820     if (Slot == Record.size()) return nullptr;
821     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
822     // Adjust the ValNo, if it was encoded relative to the InstNum.
823     if (UseRelativeIDs)
824       ValNo = InstNum - ValNo;
825     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
826   }
827 
828   Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
829                                             unsigned &OpNum) {
830     if (Record.size() - OpNum < 3)
831       return error("Too few records for range");
832     unsigned BitWidth = Record[OpNum++];
833     if (BitWidth > 64) {
834       unsigned LowerActiveWords = Record[OpNum];
835       unsigned UpperActiveWords = Record[OpNum++] >> 32;
836       if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
837         return error("Too few records for range");
838       APInt Lower =
839           readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
840       OpNum += LowerActiveWords;
841       APInt Upper =
842           readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
843       OpNum += UpperActiveWords;
844       return ConstantRange(Lower, Upper);
845     } else {
846       int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
847       int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
848       return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End));
849     }
850   }
851 
852   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
853   /// corresponding argument's pointee type. Also upgrades intrinsics that now
854   /// require an elementtype attribute.
855   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
856 
857   /// Converts alignment exponent (i.e. power of two (or zero)) to the
858   /// corresponding alignment to use. If alignment is too large, returns
859   /// a corresponding error code.
860   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
861   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
862   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
863                     ParserCallbacks Callbacks = {});
864 
865   Error parseComdatRecord(ArrayRef<uint64_t> Record);
866   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
867   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
868   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
869                                         ArrayRef<uint64_t> Record);
870 
871   Error parseAttributeBlock();
872   Error parseAttributeGroupBlock();
873   Error parseTypeTable();
874   Error parseTypeTableBody();
875   Error parseOperandBundleTags();
876   Error parseSyncScopeNames();
877 
878   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
879                                 unsigned NameIndex, Triple &TT);
880   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
881                                ArrayRef<uint64_t> Record);
882   Error parseValueSymbolTable(uint64_t Offset = 0);
883   Error parseGlobalValueSymbolTable();
884   Error parseConstants();
885   Error rememberAndSkipFunctionBodies();
886   Error rememberAndSkipFunctionBody();
887   /// Save the positions of the Metadata blocks and skip parsing the blocks.
888   Error rememberAndSkipMetadata();
889   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
890   Error parseFunctionBody(Function *F);
891   Error globalCleanup();
892   Error resolveGlobalAndIndirectSymbolInits();
893   Error parseUseLists();
894   Error findFunctionInStream(
895       Function *F,
896       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
897 
898   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
899 };
900 
901 /// Class to manage reading and parsing function summary index bitcode
902 /// files/sections.
903 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
904   /// The module index built during parsing.
905   ModuleSummaryIndex &TheIndex;
906 
907   /// Indicates whether we have encountered a global value summary section
908   /// yet during parsing.
909   bool SeenGlobalValSummary = false;
910 
911   /// Indicates whether we have already parsed the VST, used for error checking.
912   bool SeenValueSymbolTable = false;
913 
914   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
915   /// Used to enable on-demand parsing of the VST.
916   uint64_t VSTOffset = 0;
917 
918   // Map to save ValueId to ValueInfo association that was recorded in the
919   // ValueSymbolTable. It is used after the VST is parsed to convert
920   // call graph edges read from the function summary from referencing
921   // callees by their ValueId to using the ValueInfo instead, which is how
922   // they are recorded in the summary index being built.
923   // We save a GUID which refers to the same global as the ValueInfo, but
924   // ignoring the linkage, i.e. for values other than local linkage they are
925   // identical (this is the second tuple member).
926   // The third tuple member is the real GUID of the ValueInfo.
927   DenseMap<unsigned,
928            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
929       ValueIdToValueInfoMap;
930 
931   /// Map populated during module path string table parsing, from the
932   /// module ID to a string reference owned by the index's module
933   /// path string table, used to correlate with combined index
934   /// summary records.
935   DenseMap<uint64_t, StringRef> ModuleIdMap;
936 
937   /// Original source file name recorded in a bitcode record.
938   std::string SourceFileName;
939 
940   /// The string identifier given to this module by the client, normally the
941   /// path to the bitcode file.
942   StringRef ModulePath;
943 
944   /// Callback to ask whether a symbol is the prevailing copy when invoked
945   /// during combined index building.
946   std::function<bool(GlobalValue::GUID)> IsPrevailing;
947 
948   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
949   /// ids from the lists in the callsite and alloc entries to the index.
950   std::vector<uint64_t> StackIds;
951 
952 public:
953   ModuleSummaryIndexBitcodeReader(
954       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
955       StringRef ModulePath,
956       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
957 
958   Error parseModule();
959 
960 private:
961   void setValueGUID(uint64_t ValueID, StringRef ValueName,
962                     GlobalValue::LinkageTypes Linkage,
963                     StringRef SourceFileName);
964   Error parseValueSymbolTable(
965       uint64_t Offset,
966       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
967   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
968   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
969                                                     bool IsOldProfileFormat,
970                                                     bool HasProfile,
971                                                     bool HasRelBF);
972   Error parseEntireSummary(unsigned ID);
973   Error parseModuleStringTable();
974   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
975   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
976                                        TypeIdCompatibleVtableInfo &TypeId);
977   std::vector<FunctionSummary::ParamAccess>
978   parseParamAccesses(ArrayRef<uint64_t> Record);
979 
980   template <bool AllowNullValueInfo = false>
981   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
982   getValueInfoFromValueId(unsigned ValueId);
983 
984   void addThisModule();
985   ModuleSummaryIndex::ModuleInfo *getThisModule();
986 };
987 
988 } // end anonymous namespace
989 
990 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
991                                                     Error Err) {
992   if (Err) {
993     std::error_code EC;
994     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
995       EC = EIB.convertToErrorCode();
996       Ctx.emitError(EIB.message());
997     });
998     return EC;
999   }
1000   return std::error_code();
1001 }
1002 
1003 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1004                              StringRef ProducerIdentification,
1005                              LLVMContext &Context)
1006     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1007       ValueList(this->Stream.SizeInBytes(),
1008                 [this](unsigned ValID, BasicBlock *InsertBB) {
1009                   return materializeValue(ValID, InsertBB);
1010                 }) {
1011   this->ProducerIdentification = std::string(ProducerIdentification);
1012 }
1013 
1014 Error BitcodeReader::materializeForwardReferencedFunctions() {
1015   if (WillMaterializeAllForwardRefs)
1016     return Error::success();
1017 
1018   // Prevent recursion.
1019   WillMaterializeAllForwardRefs = true;
1020 
1021   while (!BasicBlockFwdRefQueue.empty()) {
1022     Function *F = BasicBlockFwdRefQueue.front();
1023     BasicBlockFwdRefQueue.pop_front();
1024     assert(F && "Expected valid function");
1025     if (!BasicBlockFwdRefs.count(F))
1026       // Already materialized.
1027       continue;
1028 
1029     // Check for a function that isn't materializable to prevent an infinite
1030     // loop.  When parsing a blockaddress stored in a global variable, there
1031     // isn't a trivial way to check if a function will have a body without a
1032     // linear search through FunctionsWithBodies, so just check it here.
1033     if (!F->isMaterializable())
1034       return error("Never resolved function from blockaddress");
1035 
1036     // Try to materialize F.
1037     if (Error Err = materialize(F))
1038       return Err;
1039   }
1040   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1041 
1042   for (Function *F : BackwardRefFunctions)
1043     if (Error Err = materialize(F))
1044       return Err;
1045   BackwardRefFunctions.clear();
1046 
1047   // Reset state.
1048   WillMaterializeAllForwardRefs = false;
1049   return Error::success();
1050 }
1051 
1052 //===----------------------------------------------------------------------===//
1053 //  Helper functions to implement forward reference resolution, etc.
1054 //===----------------------------------------------------------------------===//
1055 
1056 static bool hasImplicitComdat(size_t Val) {
1057   switch (Val) {
1058   default:
1059     return false;
1060   case 1:  // Old WeakAnyLinkage
1061   case 4:  // Old LinkOnceAnyLinkage
1062   case 10: // Old WeakODRLinkage
1063   case 11: // Old LinkOnceODRLinkage
1064     return true;
1065   }
1066 }
1067 
1068 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1069   switch (Val) {
1070   default: // Map unknown/new linkages to external
1071   case 0:
1072     return GlobalValue::ExternalLinkage;
1073   case 2:
1074     return GlobalValue::AppendingLinkage;
1075   case 3:
1076     return GlobalValue::InternalLinkage;
1077   case 5:
1078     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1079   case 6:
1080     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1081   case 7:
1082     return GlobalValue::ExternalWeakLinkage;
1083   case 8:
1084     return GlobalValue::CommonLinkage;
1085   case 9:
1086     return GlobalValue::PrivateLinkage;
1087   case 12:
1088     return GlobalValue::AvailableExternallyLinkage;
1089   case 13:
1090     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1091   case 14:
1092     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1093   case 15:
1094     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1095   case 1: // Old value with implicit comdat.
1096   case 16:
1097     return GlobalValue::WeakAnyLinkage;
1098   case 10: // Old value with implicit comdat.
1099   case 17:
1100     return GlobalValue::WeakODRLinkage;
1101   case 4: // Old value with implicit comdat.
1102   case 18:
1103     return GlobalValue::LinkOnceAnyLinkage;
1104   case 11: // Old value with implicit comdat.
1105   case 19:
1106     return GlobalValue::LinkOnceODRLinkage;
1107   }
1108 }
1109 
1110 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1111   FunctionSummary::FFlags Flags;
1112   Flags.ReadNone = RawFlags & 0x1;
1113   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1114   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1115   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1116   Flags.NoInline = (RawFlags >> 4) & 0x1;
1117   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1118   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1119   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1120   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1121   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1122   return Flags;
1123 }
1124 
1125 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1126 //
1127 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1128 // visibility: [8, 10).
1129 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1130                                                             uint64_t Version) {
1131   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1132   // like getDecodedLinkage() above. Any future change to the linkage enum and
1133   // to getDecodedLinkage() will need to be taken into account here as above.
1134   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1135   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1136   RawFlags = RawFlags >> 4;
1137   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1138   // The Live flag wasn't introduced until version 3. For dead stripping
1139   // to work correctly on earlier versions, we must conservatively treat all
1140   // values as live.
1141   bool Live = (RawFlags & 0x2) || Version < 3;
1142   bool Local = (RawFlags & 0x4);
1143   bool AutoHide = (RawFlags & 0x8);
1144 
1145   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1146                                      Live, Local, AutoHide);
1147 }
1148 
1149 // Decode the flags for GlobalVariable in the summary
1150 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1151   return GlobalVarSummary::GVarFlags(
1152       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1153       (RawFlags & 0x4) ? true : false,
1154       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1155 }
1156 
1157 static std::pair<CalleeInfo::HotnessType, bool>
1158 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1159   CalleeInfo::HotnessType Hotness =
1160       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1161   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1162   return {Hotness, HasTailCall};
1163 }
1164 
1165 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1166                                         bool &HasTailCall) {
1167   static constexpr uint64_t RelBlockFreqMask =
1168       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1169   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1170   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1171 }
1172 
1173 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1174   switch (Val) {
1175   default: // Map unknown visibilities to default.
1176   case 0: return GlobalValue::DefaultVisibility;
1177   case 1: return GlobalValue::HiddenVisibility;
1178   case 2: return GlobalValue::ProtectedVisibility;
1179   }
1180 }
1181 
1182 static GlobalValue::DLLStorageClassTypes
1183 getDecodedDLLStorageClass(unsigned Val) {
1184   switch (Val) {
1185   default: // Map unknown values to default.
1186   case 0: return GlobalValue::DefaultStorageClass;
1187   case 1: return GlobalValue::DLLImportStorageClass;
1188   case 2: return GlobalValue::DLLExportStorageClass;
1189   }
1190 }
1191 
1192 static bool getDecodedDSOLocal(unsigned Val) {
1193   switch(Val) {
1194   default: // Map unknown values to preemptable.
1195   case 0:  return false;
1196   case 1:  return true;
1197   }
1198 }
1199 
1200 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1201   switch (Val) {
1202   case 1:
1203     return CodeModel::Tiny;
1204   case 2:
1205     return CodeModel::Small;
1206   case 3:
1207     return CodeModel::Kernel;
1208   case 4:
1209     return CodeModel::Medium;
1210   case 5:
1211     return CodeModel::Large;
1212   }
1213 
1214   return {};
1215 }
1216 
1217 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1218   switch (Val) {
1219     case 0: return GlobalVariable::NotThreadLocal;
1220     default: // Map unknown non-zero value to general dynamic.
1221     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1222     case 2: return GlobalVariable::LocalDynamicTLSModel;
1223     case 3: return GlobalVariable::InitialExecTLSModel;
1224     case 4: return GlobalVariable::LocalExecTLSModel;
1225   }
1226 }
1227 
1228 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1229   switch (Val) {
1230     default: // Map unknown to UnnamedAddr::None.
1231     case 0: return GlobalVariable::UnnamedAddr::None;
1232     case 1: return GlobalVariable::UnnamedAddr::Global;
1233     case 2: return GlobalVariable::UnnamedAddr::Local;
1234   }
1235 }
1236 
1237 static int getDecodedCastOpcode(unsigned Val) {
1238   switch (Val) {
1239   default: return -1;
1240   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1241   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1242   case bitc::CAST_SEXT    : return Instruction::SExt;
1243   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1244   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1245   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1246   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1247   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1248   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1249   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1250   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1251   case bitc::CAST_BITCAST : return Instruction::BitCast;
1252   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1253   }
1254 }
1255 
1256 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1257   bool IsFP = Ty->isFPOrFPVectorTy();
1258   // UnOps are only valid for int/fp or vector of int/fp types
1259   if (!IsFP && !Ty->isIntOrIntVectorTy())
1260     return -1;
1261 
1262   switch (Val) {
1263   default:
1264     return -1;
1265   case bitc::UNOP_FNEG:
1266     return IsFP ? Instruction::FNeg : -1;
1267   }
1268 }
1269 
1270 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1271   bool IsFP = Ty->isFPOrFPVectorTy();
1272   // BinOps are only valid for int/fp or vector of int/fp types
1273   if (!IsFP && !Ty->isIntOrIntVectorTy())
1274     return -1;
1275 
1276   switch (Val) {
1277   default:
1278     return -1;
1279   case bitc::BINOP_ADD:
1280     return IsFP ? Instruction::FAdd : Instruction::Add;
1281   case bitc::BINOP_SUB:
1282     return IsFP ? Instruction::FSub : Instruction::Sub;
1283   case bitc::BINOP_MUL:
1284     return IsFP ? Instruction::FMul : Instruction::Mul;
1285   case bitc::BINOP_UDIV:
1286     return IsFP ? -1 : Instruction::UDiv;
1287   case bitc::BINOP_SDIV:
1288     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1289   case bitc::BINOP_UREM:
1290     return IsFP ? -1 : Instruction::URem;
1291   case bitc::BINOP_SREM:
1292     return IsFP ? Instruction::FRem : Instruction::SRem;
1293   case bitc::BINOP_SHL:
1294     return IsFP ? -1 : Instruction::Shl;
1295   case bitc::BINOP_LSHR:
1296     return IsFP ? -1 : Instruction::LShr;
1297   case bitc::BINOP_ASHR:
1298     return IsFP ? -1 : Instruction::AShr;
1299   case bitc::BINOP_AND:
1300     return IsFP ? -1 : Instruction::And;
1301   case bitc::BINOP_OR:
1302     return IsFP ? -1 : Instruction::Or;
1303   case bitc::BINOP_XOR:
1304     return IsFP ? -1 : Instruction::Xor;
1305   }
1306 }
1307 
1308 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1309   switch (Val) {
1310   default: return AtomicRMWInst::BAD_BINOP;
1311   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1312   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1313   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1314   case bitc::RMW_AND: return AtomicRMWInst::And;
1315   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1316   case bitc::RMW_OR: return AtomicRMWInst::Or;
1317   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1318   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1319   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1320   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1321   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1322   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1323   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1324   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1325   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1326   case bitc::RMW_UINC_WRAP:
1327     return AtomicRMWInst::UIncWrap;
1328   case bitc::RMW_UDEC_WRAP:
1329     return AtomicRMWInst::UDecWrap;
1330   }
1331 }
1332 
1333 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1334   switch (Val) {
1335   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1336   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1337   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1338   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1339   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1340   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1341   default: // Map unknown orderings to sequentially-consistent.
1342   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1343   }
1344 }
1345 
1346 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1347   switch (Val) {
1348   default: // Map unknown selection kinds to any.
1349   case bitc::COMDAT_SELECTION_KIND_ANY:
1350     return Comdat::Any;
1351   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1352     return Comdat::ExactMatch;
1353   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1354     return Comdat::Largest;
1355   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1356     return Comdat::NoDeduplicate;
1357   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1358     return Comdat::SameSize;
1359   }
1360 }
1361 
1362 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1363   FastMathFlags FMF;
1364   if (0 != (Val & bitc::UnsafeAlgebra))
1365     FMF.setFast();
1366   if (0 != (Val & bitc::AllowReassoc))
1367     FMF.setAllowReassoc();
1368   if (0 != (Val & bitc::NoNaNs))
1369     FMF.setNoNaNs();
1370   if (0 != (Val & bitc::NoInfs))
1371     FMF.setNoInfs();
1372   if (0 != (Val & bitc::NoSignedZeros))
1373     FMF.setNoSignedZeros();
1374   if (0 != (Val & bitc::AllowReciprocal))
1375     FMF.setAllowReciprocal();
1376   if (0 != (Val & bitc::AllowContract))
1377     FMF.setAllowContract(true);
1378   if (0 != (Val & bitc::ApproxFunc))
1379     FMF.setApproxFunc();
1380   return FMF;
1381 }
1382 
1383 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1384   // A GlobalValue with local linkage cannot have a DLL storage class.
1385   if (GV->hasLocalLinkage())
1386     return;
1387   switch (Val) {
1388   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1389   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1390   }
1391 }
1392 
1393 Type *BitcodeReader::getTypeByID(unsigned ID) {
1394   // The type table size is always specified correctly.
1395   if (ID >= TypeList.size())
1396     return nullptr;
1397 
1398   if (Type *Ty = TypeList[ID])
1399     return Ty;
1400 
1401   // If we have a forward reference, the only possible case is when it is to a
1402   // named struct.  Just create a placeholder for now.
1403   return TypeList[ID] = createIdentifiedStructType(Context);
1404 }
1405 
1406 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1407   auto It = ContainedTypeIDs.find(ID);
1408   if (It == ContainedTypeIDs.end())
1409     return InvalidTypeID;
1410 
1411   if (Idx >= It->second.size())
1412     return InvalidTypeID;
1413 
1414   return It->second[Idx];
1415 }
1416 
1417 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1418   if (ID >= TypeList.size())
1419     return nullptr;
1420 
1421   Type *Ty = TypeList[ID];
1422   if (!Ty->isPointerTy())
1423     return nullptr;
1424 
1425   return getTypeByID(getContainedTypeID(ID, 0));
1426 }
1427 
1428 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1429                                          ArrayRef<unsigned> ChildTypeIDs) {
1430   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1431   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1432   auto It = VirtualTypeIDs.find(CacheKey);
1433   if (It != VirtualTypeIDs.end()) {
1434     // The cmpxchg return value is the only place we need more than one
1435     // contained type ID, however the second one will always be the same (i1),
1436     // so we don't need to include it in the cache key. This asserts that the
1437     // contained types are indeed as expected and there are no collisions.
1438     assert((ChildTypeIDs.empty() ||
1439             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1440            "Incorrect cached contained type IDs");
1441     return It->second;
1442   }
1443 
1444   unsigned TypeID = TypeList.size();
1445   TypeList.push_back(Ty);
1446   if (!ChildTypeIDs.empty())
1447     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1448   VirtualTypeIDs.insert({CacheKey, TypeID});
1449   return TypeID;
1450 }
1451 
1452 static bool isConstExprSupported(const BitcodeConstant *BC) {
1453   uint8_t Opcode = BC->Opcode;
1454 
1455   // These are not real constant expressions, always consider them supported.
1456   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1457     return true;
1458 
1459   // If -expand-constant-exprs is set, we want to consider all expressions
1460   // as unsupported.
1461   if (ExpandConstantExprs)
1462     return false;
1463 
1464   if (Instruction::isBinaryOp(Opcode))
1465     return ConstantExpr::isSupportedBinOp(Opcode);
1466 
1467   if (Instruction::isCast(Opcode))
1468     return ConstantExpr::isSupportedCastOp(Opcode);
1469 
1470   if (Opcode == Instruction::GetElementPtr)
1471     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1472 
1473   switch (Opcode) {
1474   case Instruction::FNeg:
1475   case Instruction::Select:
1476     return false;
1477   default:
1478     return true;
1479   }
1480 }
1481 
1482 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1483                                                   BasicBlock *InsertBB) {
1484   // Quickly handle the case where there is no BitcodeConstant to resolve.
1485   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1486       !isa<BitcodeConstant>(ValueList[StartValID]))
1487     return ValueList[StartValID];
1488 
1489   SmallDenseMap<unsigned, Value *> MaterializedValues;
1490   SmallVector<unsigned> Worklist;
1491   Worklist.push_back(StartValID);
1492   while (!Worklist.empty()) {
1493     unsigned ValID = Worklist.back();
1494     if (MaterializedValues.count(ValID)) {
1495       // Duplicate expression that was already handled.
1496       Worklist.pop_back();
1497       continue;
1498     }
1499 
1500     if (ValID >= ValueList.size() || !ValueList[ValID])
1501       return error("Invalid value ID");
1502 
1503     Value *V = ValueList[ValID];
1504     auto *BC = dyn_cast<BitcodeConstant>(V);
1505     if (!BC) {
1506       MaterializedValues.insert({ValID, V});
1507       Worklist.pop_back();
1508       continue;
1509     }
1510 
1511     // Iterate in reverse, so values will get popped from the worklist in
1512     // expected order.
1513     SmallVector<Value *> Ops;
1514     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1515       auto It = MaterializedValues.find(OpID);
1516       if (It != MaterializedValues.end())
1517         Ops.push_back(It->second);
1518       else
1519         Worklist.push_back(OpID);
1520     }
1521 
1522     // Some expressions have not been resolved yet, handle them first and then
1523     // revisit this one.
1524     if (Ops.size() != BC->getOperandIDs().size())
1525       continue;
1526     std::reverse(Ops.begin(), Ops.end());
1527 
1528     SmallVector<Constant *> ConstOps;
1529     for (Value *Op : Ops)
1530       if (auto *C = dyn_cast<Constant>(Op))
1531         ConstOps.push_back(C);
1532 
1533     // Materialize as constant expression if possible.
1534     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1535       Constant *C;
1536       if (Instruction::isCast(BC->Opcode)) {
1537         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1538         if (!C)
1539           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1540       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1541         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1542       } else {
1543         switch (BC->Opcode) {
1544         case BitcodeConstant::NoCFIOpcode: {
1545           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1546           if (!GV)
1547             return error("no_cfi operand must be GlobalValue");
1548           C = NoCFIValue::get(GV);
1549           break;
1550         }
1551         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1552           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1553           if (!GV)
1554             return error("dso_local operand must be GlobalValue");
1555           C = DSOLocalEquivalent::get(GV);
1556           break;
1557         }
1558         case BitcodeConstant::BlockAddressOpcode: {
1559           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1560           if (!Fn)
1561             return error("blockaddress operand must be a function");
1562 
1563           // If the function is already parsed we can insert the block address
1564           // right away.
1565           BasicBlock *BB;
1566           unsigned BBID = BC->BlockAddressBB;
1567           if (!BBID)
1568             // Invalid reference to entry block.
1569             return error("Invalid ID");
1570           if (!Fn->empty()) {
1571             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1572             for (size_t I = 0, E = BBID; I != E; ++I) {
1573               if (BBI == BBE)
1574                 return error("Invalid ID");
1575               ++BBI;
1576             }
1577             BB = &*BBI;
1578           } else {
1579             // Otherwise insert a placeholder and remember it so it can be
1580             // inserted when the function is parsed.
1581             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1582             if (FwdBBs.empty())
1583               BasicBlockFwdRefQueue.push_back(Fn);
1584             if (FwdBBs.size() < BBID + 1)
1585               FwdBBs.resize(BBID + 1);
1586             if (!FwdBBs[BBID])
1587               FwdBBs[BBID] = BasicBlock::Create(Context);
1588             BB = FwdBBs[BBID];
1589           }
1590           C = BlockAddress::get(Fn, BB);
1591           break;
1592         }
1593         case BitcodeConstant::ConstantStructOpcode:
1594           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1595           break;
1596         case BitcodeConstant::ConstantArrayOpcode:
1597           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1598           break;
1599         case BitcodeConstant::ConstantVectorOpcode:
1600           C = ConstantVector::get(ConstOps);
1601           break;
1602         case Instruction::ICmp:
1603         case Instruction::FCmp:
1604           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1605           break;
1606         case Instruction::GetElementPtr:
1607           C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1608                                              ArrayRef(ConstOps).drop_front(),
1609                                              BC->Flags, BC->getInRange());
1610           break;
1611         case Instruction::ExtractElement:
1612           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1613           break;
1614         case Instruction::InsertElement:
1615           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1616                                              ConstOps[2]);
1617           break;
1618         case Instruction::ShuffleVector: {
1619           SmallVector<int, 16> Mask;
1620           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1621           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1622           break;
1623         }
1624         default:
1625           llvm_unreachable("Unhandled bitcode constant");
1626         }
1627       }
1628 
1629       // Cache resolved constant.
1630       ValueList.replaceValueWithoutRAUW(ValID, C);
1631       MaterializedValues.insert({ValID, C});
1632       Worklist.pop_back();
1633       continue;
1634     }
1635 
1636     if (!InsertBB)
1637       return error(Twine("Value referenced by initializer is an unsupported "
1638                          "constant expression of type ") +
1639                    BC->getOpcodeName());
1640 
1641     // Materialize as instructions if necessary.
1642     Instruction *I;
1643     if (Instruction::isCast(BC->Opcode)) {
1644       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1645                            BC->getType(), "constexpr", InsertBB);
1646     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1647       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1648                                 "constexpr", InsertBB);
1649     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1650       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1651                                  Ops[1], "constexpr", InsertBB);
1652       if (isa<OverflowingBinaryOperator>(I)) {
1653         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1654           I->setHasNoSignedWrap();
1655         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1656           I->setHasNoUnsignedWrap();
1657       }
1658       if (isa<PossiblyExactOperator>(I) &&
1659           (BC->Flags & PossiblyExactOperator::IsExact))
1660         I->setIsExact();
1661     } else {
1662       switch (BC->Opcode) {
1663       case BitcodeConstant::ConstantVectorOpcode: {
1664         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1665         Value *V = PoisonValue::get(BC->getType());
1666         for (auto Pair : enumerate(Ops)) {
1667           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1668           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1669                                         InsertBB);
1670         }
1671         I = cast<Instruction>(V);
1672         break;
1673       }
1674       case BitcodeConstant::ConstantStructOpcode:
1675       case BitcodeConstant::ConstantArrayOpcode: {
1676         Value *V = PoisonValue::get(BC->getType());
1677         for (auto Pair : enumerate(Ops))
1678           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1679                                       "constexpr.ins", InsertBB);
1680         I = cast<Instruction>(V);
1681         break;
1682       }
1683       case Instruction::ICmp:
1684       case Instruction::FCmp:
1685         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1686                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1687                             "constexpr", InsertBB);
1688         break;
1689       case Instruction::GetElementPtr:
1690         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1691                                       ArrayRef(Ops).drop_front(), "constexpr",
1692                                       InsertBB);
1693         if (BC->Flags)
1694           cast<GetElementPtrInst>(I)->setIsInBounds();
1695         break;
1696       case Instruction::Select:
1697         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1698         break;
1699       case Instruction::ExtractElement:
1700         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1701         break;
1702       case Instruction::InsertElement:
1703         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1704                                       InsertBB);
1705         break;
1706       case Instruction::ShuffleVector:
1707         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1708                                   InsertBB);
1709         break;
1710       default:
1711         llvm_unreachable("Unhandled bitcode constant");
1712       }
1713     }
1714 
1715     MaterializedValues.insert({ValID, I});
1716     Worklist.pop_back();
1717   }
1718 
1719   return MaterializedValues[StartValID];
1720 }
1721 
1722 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1723   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1724   if (!MaybeV)
1725     return MaybeV.takeError();
1726 
1727   // Result must be Constant if InsertBB is nullptr.
1728   return cast<Constant>(MaybeV.get());
1729 }
1730 
1731 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1732                                                       StringRef Name) {
1733   auto *Ret = StructType::create(Context, Name);
1734   IdentifiedStructTypes.push_back(Ret);
1735   return Ret;
1736 }
1737 
1738 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1739   auto *Ret = StructType::create(Context);
1740   IdentifiedStructTypes.push_back(Ret);
1741   return Ret;
1742 }
1743 
1744 //===----------------------------------------------------------------------===//
1745 //  Functions for parsing blocks from the bitcode file
1746 //===----------------------------------------------------------------------===//
1747 
1748 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1749   switch (Val) {
1750   case Attribute::EndAttrKinds:
1751   case Attribute::EmptyKey:
1752   case Attribute::TombstoneKey:
1753     llvm_unreachable("Synthetic enumerators which should never get here");
1754 
1755   case Attribute::None:            return 0;
1756   case Attribute::ZExt:            return 1 << 0;
1757   case Attribute::SExt:            return 1 << 1;
1758   case Attribute::NoReturn:        return 1 << 2;
1759   case Attribute::InReg:           return 1 << 3;
1760   case Attribute::StructRet:       return 1 << 4;
1761   case Attribute::NoUnwind:        return 1 << 5;
1762   case Attribute::NoAlias:         return 1 << 6;
1763   case Attribute::ByVal:           return 1 << 7;
1764   case Attribute::Nest:            return 1 << 8;
1765   case Attribute::ReadNone:        return 1 << 9;
1766   case Attribute::ReadOnly:        return 1 << 10;
1767   case Attribute::NoInline:        return 1 << 11;
1768   case Attribute::AlwaysInline:    return 1 << 12;
1769   case Attribute::OptimizeForSize: return 1 << 13;
1770   case Attribute::StackProtect:    return 1 << 14;
1771   case Attribute::StackProtectReq: return 1 << 15;
1772   case Attribute::Alignment:       return 31 << 16;
1773   case Attribute::NoCapture:       return 1 << 21;
1774   case Attribute::NoRedZone:       return 1 << 22;
1775   case Attribute::NoImplicitFloat: return 1 << 23;
1776   case Attribute::Naked:           return 1 << 24;
1777   case Attribute::InlineHint:      return 1 << 25;
1778   case Attribute::StackAlignment:  return 7 << 26;
1779   case Attribute::ReturnsTwice:    return 1 << 29;
1780   case Attribute::UWTable:         return 1 << 30;
1781   case Attribute::NonLazyBind:     return 1U << 31;
1782   case Attribute::SanitizeAddress: return 1ULL << 32;
1783   case Attribute::MinSize:         return 1ULL << 33;
1784   case Attribute::NoDuplicate:     return 1ULL << 34;
1785   case Attribute::StackProtectStrong: return 1ULL << 35;
1786   case Attribute::SanitizeThread:  return 1ULL << 36;
1787   case Attribute::SanitizeMemory:  return 1ULL << 37;
1788   case Attribute::NoBuiltin:       return 1ULL << 38;
1789   case Attribute::Returned:        return 1ULL << 39;
1790   case Attribute::Cold:            return 1ULL << 40;
1791   case Attribute::Builtin:         return 1ULL << 41;
1792   case Attribute::OptimizeNone:    return 1ULL << 42;
1793   case Attribute::InAlloca:        return 1ULL << 43;
1794   case Attribute::NonNull:         return 1ULL << 44;
1795   case Attribute::JumpTable:       return 1ULL << 45;
1796   case Attribute::Convergent:      return 1ULL << 46;
1797   case Attribute::SafeStack:       return 1ULL << 47;
1798   case Attribute::NoRecurse:       return 1ULL << 48;
1799   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1800   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1801   case Attribute::SwiftSelf:       return 1ULL << 51;
1802   case Attribute::SwiftError:      return 1ULL << 52;
1803   case Attribute::WriteOnly:       return 1ULL << 53;
1804   case Attribute::Speculatable:    return 1ULL << 54;
1805   case Attribute::StrictFP:        return 1ULL << 55;
1806   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1807   case Attribute::NoCfCheck:       return 1ULL << 57;
1808   case Attribute::OptForFuzzing:   return 1ULL << 58;
1809   case Attribute::ShadowCallStack: return 1ULL << 59;
1810   case Attribute::SpeculativeLoadHardening:
1811     return 1ULL << 60;
1812   case Attribute::ImmArg:
1813     return 1ULL << 61;
1814   case Attribute::WillReturn:
1815     return 1ULL << 62;
1816   case Attribute::NoFree:
1817     return 1ULL << 63;
1818   default:
1819     // Other attributes are not supported in the raw format,
1820     // as we ran out of space.
1821     return 0;
1822   }
1823   llvm_unreachable("Unsupported attribute type");
1824 }
1825 
1826 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1827   if (!Val) return;
1828 
1829   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1830        I = Attribute::AttrKind(I + 1)) {
1831     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1832       if (I == Attribute::Alignment)
1833         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1834       else if (I == Attribute::StackAlignment)
1835         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1836       else if (Attribute::isTypeAttrKind(I))
1837         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1838       else
1839         B.addAttribute(I);
1840     }
1841   }
1842 }
1843 
1844 /// This fills an AttrBuilder object with the LLVM attributes that have
1845 /// been decoded from the given integer. This function must stay in sync with
1846 /// 'encodeLLVMAttributesForBitcode'.
1847 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1848                                            uint64_t EncodedAttrs,
1849                                            uint64_t AttrIdx) {
1850   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1851   // the bits above 31 down by 11 bits.
1852   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1853   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1854          "Alignment must be a power of two.");
1855 
1856   if (Alignment)
1857     B.addAlignmentAttr(Alignment);
1858 
1859   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1860                    (EncodedAttrs & 0xffff);
1861 
1862   if (AttrIdx == AttributeList::FunctionIndex) {
1863     // Upgrade old memory attributes.
1864     MemoryEffects ME = MemoryEffects::unknown();
1865     if (Attrs & (1ULL << 9)) {
1866       // ReadNone
1867       Attrs &= ~(1ULL << 9);
1868       ME &= MemoryEffects::none();
1869     }
1870     if (Attrs & (1ULL << 10)) {
1871       // ReadOnly
1872       Attrs &= ~(1ULL << 10);
1873       ME &= MemoryEffects::readOnly();
1874     }
1875     if (Attrs & (1ULL << 49)) {
1876       // InaccessibleMemOnly
1877       Attrs &= ~(1ULL << 49);
1878       ME &= MemoryEffects::inaccessibleMemOnly();
1879     }
1880     if (Attrs & (1ULL << 50)) {
1881       // InaccessibleMemOrArgMemOnly
1882       Attrs &= ~(1ULL << 50);
1883       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1884     }
1885     if (Attrs & (1ULL << 53)) {
1886       // WriteOnly
1887       Attrs &= ~(1ULL << 53);
1888       ME &= MemoryEffects::writeOnly();
1889     }
1890     if (ME != MemoryEffects::unknown())
1891       B.addMemoryAttr(ME);
1892   }
1893 
1894   addRawAttributeValue(B, Attrs);
1895 }
1896 
1897 Error BitcodeReader::parseAttributeBlock() {
1898   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1899     return Err;
1900 
1901   if (!MAttributes.empty())
1902     return error("Invalid multiple blocks");
1903 
1904   SmallVector<uint64_t, 64> Record;
1905 
1906   SmallVector<AttributeList, 8> Attrs;
1907 
1908   // Read all the records.
1909   while (true) {
1910     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1911     if (!MaybeEntry)
1912       return MaybeEntry.takeError();
1913     BitstreamEntry Entry = MaybeEntry.get();
1914 
1915     switch (Entry.Kind) {
1916     case BitstreamEntry::SubBlock: // Handled for us already.
1917     case BitstreamEntry::Error:
1918       return error("Malformed block");
1919     case BitstreamEntry::EndBlock:
1920       return Error::success();
1921     case BitstreamEntry::Record:
1922       // The interesting case.
1923       break;
1924     }
1925 
1926     // Read a record.
1927     Record.clear();
1928     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1929     if (!MaybeRecord)
1930       return MaybeRecord.takeError();
1931     switch (MaybeRecord.get()) {
1932     default:  // Default behavior: ignore.
1933       break;
1934     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1935       // Deprecated, but still needed to read old bitcode files.
1936       if (Record.size() & 1)
1937         return error("Invalid parameter attribute record");
1938 
1939       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1940         AttrBuilder B(Context);
1941         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1942         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1943       }
1944 
1945       MAttributes.push_back(AttributeList::get(Context, Attrs));
1946       Attrs.clear();
1947       break;
1948     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1949       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1950         Attrs.push_back(MAttributeGroups[Record[i]]);
1951 
1952       MAttributes.push_back(AttributeList::get(Context, Attrs));
1953       Attrs.clear();
1954       break;
1955     }
1956   }
1957 }
1958 
1959 // Returns Attribute::None on unrecognized codes.
1960 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1961   switch (Code) {
1962   default:
1963     return Attribute::None;
1964   case bitc::ATTR_KIND_ALIGNMENT:
1965     return Attribute::Alignment;
1966   case bitc::ATTR_KIND_ALWAYS_INLINE:
1967     return Attribute::AlwaysInline;
1968   case bitc::ATTR_KIND_BUILTIN:
1969     return Attribute::Builtin;
1970   case bitc::ATTR_KIND_BY_VAL:
1971     return Attribute::ByVal;
1972   case bitc::ATTR_KIND_IN_ALLOCA:
1973     return Attribute::InAlloca;
1974   case bitc::ATTR_KIND_COLD:
1975     return Attribute::Cold;
1976   case bitc::ATTR_KIND_CONVERGENT:
1977     return Attribute::Convergent;
1978   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1979     return Attribute::DisableSanitizerInstrumentation;
1980   case bitc::ATTR_KIND_ELEMENTTYPE:
1981     return Attribute::ElementType;
1982   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1983     return Attribute::FnRetThunkExtern;
1984   case bitc::ATTR_KIND_INLINE_HINT:
1985     return Attribute::InlineHint;
1986   case bitc::ATTR_KIND_IN_REG:
1987     return Attribute::InReg;
1988   case bitc::ATTR_KIND_JUMP_TABLE:
1989     return Attribute::JumpTable;
1990   case bitc::ATTR_KIND_MEMORY:
1991     return Attribute::Memory;
1992   case bitc::ATTR_KIND_NOFPCLASS:
1993     return Attribute::NoFPClass;
1994   case bitc::ATTR_KIND_MIN_SIZE:
1995     return Attribute::MinSize;
1996   case bitc::ATTR_KIND_NAKED:
1997     return Attribute::Naked;
1998   case bitc::ATTR_KIND_NEST:
1999     return Attribute::Nest;
2000   case bitc::ATTR_KIND_NO_ALIAS:
2001     return Attribute::NoAlias;
2002   case bitc::ATTR_KIND_NO_BUILTIN:
2003     return Attribute::NoBuiltin;
2004   case bitc::ATTR_KIND_NO_CALLBACK:
2005     return Attribute::NoCallback;
2006   case bitc::ATTR_KIND_NO_CAPTURE:
2007     return Attribute::NoCapture;
2008   case bitc::ATTR_KIND_NO_DUPLICATE:
2009     return Attribute::NoDuplicate;
2010   case bitc::ATTR_KIND_NOFREE:
2011     return Attribute::NoFree;
2012   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2013     return Attribute::NoImplicitFloat;
2014   case bitc::ATTR_KIND_NO_INLINE:
2015     return Attribute::NoInline;
2016   case bitc::ATTR_KIND_NO_RECURSE:
2017     return Attribute::NoRecurse;
2018   case bitc::ATTR_KIND_NO_MERGE:
2019     return Attribute::NoMerge;
2020   case bitc::ATTR_KIND_NON_LAZY_BIND:
2021     return Attribute::NonLazyBind;
2022   case bitc::ATTR_KIND_NON_NULL:
2023     return Attribute::NonNull;
2024   case bitc::ATTR_KIND_DEREFERENCEABLE:
2025     return Attribute::Dereferenceable;
2026   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2027     return Attribute::DereferenceableOrNull;
2028   case bitc::ATTR_KIND_ALLOC_ALIGN:
2029     return Attribute::AllocAlign;
2030   case bitc::ATTR_KIND_ALLOC_KIND:
2031     return Attribute::AllocKind;
2032   case bitc::ATTR_KIND_ALLOC_SIZE:
2033     return Attribute::AllocSize;
2034   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2035     return Attribute::AllocatedPointer;
2036   case bitc::ATTR_KIND_NO_RED_ZONE:
2037     return Attribute::NoRedZone;
2038   case bitc::ATTR_KIND_NO_RETURN:
2039     return Attribute::NoReturn;
2040   case bitc::ATTR_KIND_NOSYNC:
2041     return Attribute::NoSync;
2042   case bitc::ATTR_KIND_NOCF_CHECK:
2043     return Attribute::NoCfCheck;
2044   case bitc::ATTR_KIND_NO_PROFILE:
2045     return Attribute::NoProfile;
2046   case bitc::ATTR_KIND_SKIP_PROFILE:
2047     return Attribute::SkipProfile;
2048   case bitc::ATTR_KIND_NO_UNWIND:
2049     return Attribute::NoUnwind;
2050   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2051     return Attribute::NoSanitizeBounds;
2052   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2053     return Attribute::NoSanitizeCoverage;
2054   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2055     return Attribute::NullPointerIsValid;
2056   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2057     return Attribute::OptimizeForDebugging;
2058   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2059     return Attribute::OptForFuzzing;
2060   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2061     return Attribute::OptimizeForSize;
2062   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2063     return Attribute::OptimizeNone;
2064   case bitc::ATTR_KIND_READ_NONE:
2065     return Attribute::ReadNone;
2066   case bitc::ATTR_KIND_READ_ONLY:
2067     return Attribute::ReadOnly;
2068   case bitc::ATTR_KIND_RETURNED:
2069     return Attribute::Returned;
2070   case bitc::ATTR_KIND_RETURNS_TWICE:
2071     return Attribute::ReturnsTwice;
2072   case bitc::ATTR_KIND_S_EXT:
2073     return Attribute::SExt;
2074   case bitc::ATTR_KIND_SPECULATABLE:
2075     return Attribute::Speculatable;
2076   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2077     return Attribute::StackAlignment;
2078   case bitc::ATTR_KIND_STACK_PROTECT:
2079     return Attribute::StackProtect;
2080   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2081     return Attribute::StackProtectReq;
2082   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2083     return Attribute::StackProtectStrong;
2084   case bitc::ATTR_KIND_SAFESTACK:
2085     return Attribute::SafeStack;
2086   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2087     return Attribute::ShadowCallStack;
2088   case bitc::ATTR_KIND_STRICT_FP:
2089     return Attribute::StrictFP;
2090   case bitc::ATTR_KIND_STRUCT_RET:
2091     return Attribute::StructRet;
2092   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2093     return Attribute::SanitizeAddress;
2094   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2095     return Attribute::SanitizeHWAddress;
2096   case bitc::ATTR_KIND_SANITIZE_THREAD:
2097     return Attribute::SanitizeThread;
2098   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2099     return Attribute::SanitizeMemory;
2100   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2101     return Attribute::SpeculativeLoadHardening;
2102   case bitc::ATTR_KIND_SWIFT_ERROR:
2103     return Attribute::SwiftError;
2104   case bitc::ATTR_KIND_SWIFT_SELF:
2105     return Attribute::SwiftSelf;
2106   case bitc::ATTR_KIND_SWIFT_ASYNC:
2107     return Attribute::SwiftAsync;
2108   case bitc::ATTR_KIND_UW_TABLE:
2109     return Attribute::UWTable;
2110   case bitc::ATTR_KIND_VSCALE_RANGE:
2111     return Attribute::VScaleRange;
2112   case bitc::ATTR_KIND_WILLRETURN:
2113     return Attribute::WillReturn;
2114   case bitc::ATTR_KIND_WRITEONLY:
2115     return Attribute::WriteOnly;
2116   case bitc::ATTR_KIND_Z_EXT:
2117     return Attribute::ZExt;
2118   case bitc::ATTR_KIND_IMMARG:
2119     return Attribute::ImmArg;
2120   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2121     return Attribute::SanitizeMemTag;
2122   case bitc::ATTR_KIND_PREALLOCATED:
2123     return Attribute::Preallocated;
2124   case bitc::ATTR_KIND_NOUNDEF:
2125     return Attribute::NoUndef;
2126   case bitc::ATTR_KIND_BYREF:
2127     return Attribute::ByRef;
2128   case bitc::ATTR_KIND_MUSTPROGRESS:
2129     return Attribute::MustProgress;
2130   case bitc::ATTR_KIND_HOT:
2131     return Attribute::Hot;
2132   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2133     return Attribute::PresplitCoroutine;
2134   case bitc::ATTR_KIND_WRITABLE:
2135     return Attribute::Writable;
2136   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2137     return Attribute::CoroDestroyOnlyWhenComplete;
2138   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2139     return Attribute::DeadOnUnwind;
2140   case bitc::ATTR_KIND_RANGE:
2141     return Attribute::Range;
2142   }
2143 }
2144 
2145 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2146                                          MaybeAlign &Alignment) {
2147   // Note: Alignment in bitcode files is incremented by 1, so that zero
2148   // can be used for default alignment.
2149   if (Exponent > Value::MaxAlignmentExponent + 1)
2150     return error("Invalid alignment value");
2151   Alignment = decodeMaybeAlign(Exponent);
2152   return Error::success();
2153 }
2154 
2155 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2156   *Kind = getAttrFromCode(Code);
2157   if (*Kind == Attribute::None)
2158     return error("Unknown attribute kind (" + Twine(Code) + ")");
2159   return Error::success();
2160 }
2161 
2162 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2163   switch (EncodedKind) {
2164   case bitc::ATTR_KIND_READ_NONE:
2165     ME &= MemoryEffects::none();
2166     return true;
2167   case bitc::ATTR_KIND_READ_ONLY:
2168     ME &= MemoryEffects::readOnly();
2169     return true;
2170   case bitc::ATTR_KIND_WRITEONLY:
2171     ME &= MemoryEffects::writeOnly();
2172     return true;
2173   case bitc::ATTR_KIND_ARGMEMONLY:
2174     ME &= MemoryEffects::argMemOnly();
2175     return true;
2176   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2177     ME &= MemoryEffects::inaccessibleMemOnly();
2178     return true;
2179   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2180     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2181     return true;
2182   default:
2183     return false;
2184   }
2185 }
2186 
2187 Error BitcodeReader::parseAttributeGroupBlock() {
2188   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2189     return Err;
2190 
2191   if (!MAttributeGroups.empty())
2192     return error("Invalid multiple blocks");
2193 
2194   SmallVector<uint64_t, 64> Record;
2195 
2196   // Read all the records.
2197   while (true) {
2198     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2199     if (!MaybeEntry)
2200       return MaybeEntry.takeError();
2201     BitstreamEntry Entry = MaybeEntry.get();
2202 
2203     switch (Entry.Kind) {
2204     case BitstreamEntry::SubBlock: // Handled for us already.
2205     case BitstreamEntry::Error:
2206       return error("Malformed block");
2207     case BitstreamEntry::EndBlock:
2208       return Error::success();
2209     case BitstreamEntry::Record:
2210       // The interesting case.
2211       break;
2212     }
2213 
2214     // Read a record.
2215     Record.clear();
2216     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2217     if (!MaybeRecord)
2218       return MaybeRecord.takeError();
2219     switch (MaybeRecord.get()) {
2220     default:  // Default behavior: ignore.
2221       break;
2222     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2223       if (Record.size() < 3)
2224         return error("Invalid grp record");
2225 
2226       uint64_t GrpID = Record[0];
2227       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2228 
2229       AttrBuilder B(Context);
2230       MemoryEffects ME = MemoryEffects::unknown();
2231       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2232         if (Record[i] == 0) {        // Enum attribute
2233           Attribute::AttrKind Kind;
2234           uint64_t EncodedKind = Record[++i];
2235           if (Idx == AttributeList::FunctionIndex &&
2236               upgradeOldMemoryAttribute(ME, EncodedKind))
2237             continue;
2238 
2239           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2240             return Err;
2241 
2242           // Upgrade old-style byval attribute to one with a type, even if it's
2243           // nullptr. We will have to insert the real type when we associate
2244           // this AttributeList with a function.
2245           if (Kind == Attribute::ByVal)
2246             B.addByValAttr(nullptr);
2247           else if (Kind == Attribute::StructRet)
2248             B.addStructRetAttr(nullptr);
2249           else if (Kind == Attribute::InAlloca)
2250             B.addInAllocaAttr(nullptr);
2251           else if (Kind == Attribute::UWTable)
2252             B.addUWTableAttr(UWTableKind::Default);
2253           else if (Attribute::isEnumAttrKind(Kind))
2254             B.addAttribute(Kind);
2255           else
2256             return error("Not an enum attribute");
2257         } else if (Record[i] == 1) { // Integer attribute
2258           Attribute::AttrKind Kind;
2259           if (Error Err = parseAttrKind(Record[++i], &Kind))
2260             return Err;
2261           if (!Attribute::isIntAttrKind(Kind))
2262             return error("Not an int attribute");
2263           if (Kind == Attribute::Alignment)
2264             B.addAlignmentAttr(Record[++i]);
2265           else if (Kind == Attribute::StackAlignment)
2266             B.addStackAlignmentAttr(Record[++i]);
2267           else if (Kind == Attribute::Dereferenceable)
2268             B.addDereferenceableAttr(Record[++i]);
2269           else if (Kind == Attribute::DereferenceableOrNull)
2270             B.addDereferenceableOrNullAttr(Record[++i]);
2271           else if (Kind == Attribute::AllocSize)
2272             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2273           else if (Kind == Attribute::VScaleRange)
2274             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2275           else if (Kind == Attribute::UWTable)
2276             B.addUWTableAttr(UWTableKind(Record[++i]));
2277           else if (Kind == Attribute::AllocKind)
2278             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2279           else if (Kind == Attribute::Memory)
2280             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2281           else if (Kind == Attribute::NoFPClass)
2282             B.addNoFPClassAttr(
2283                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2284         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2285           bool HasValue = (Record[i++] == 4);
2286           SmallString<64> KindStr;
2287           SmallString<64> ValStr;
2288 
2289           while (Record[i] != 0 && i != e)
2290             KindStr += Record[i++];
2291           assert(Record[i] == 0 && "Kind string not null terminated");
2292 
2293           if (HasValue) {
2294             // Has a value associated with it.
2295             ++i; // Skip the '0' that terminates the "kind" string.
2296             while (Record[i] != 0 && i != e)
2297               ValStr += Record[i++];
2298             assert(Record[i] == 0 && "Value string not null terminated");
2299           }
2300 
2301           B.addAttribute(KindStr.str(), ValStr.str());
2302         } else if (Record[i] == 5 || Record[i] == 6) {
2303           bool HasType = Record[i] == 6;
2304           Attribute::AttrKind Kind;
2305           if (Error Err = parseAttrKind(Record[++i], &Kind))
2306             return Err;
2307           if (!Attribute::isTypeAttrKind(Kind))
2308             return error("Not a type attribute");
2309 
2310           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2311         } else if (Record[i] == 7) {
2312           Attribute::AttrKind Kind;
2313 
2314           i++;
2315           if (Error Err = parseAttrKind(Record[i++], &Kind))
2316             return Err;
2317           if (!Attribute::isConstantRangeAttrKind(Kind))
2318             return error("Not a ConstantRange attribute");
2319 
2320           Expected<ConstantRange> MaybeCR = readConstantRange(Record, i);
2321           if (!MaybeCR)
2322             return MaybeCR.takeError();
2323           i--;
2324 
2325           B.addConstantRangeAttr(Kind, MaybeCR.get());
2326         } else {
2327           return error("Invalid attribute group entry");
2328         }
2329       }
2330 
2331       if (ME != MemoryEffects::unknown())
2332         B.addMemoryAttr(ME);
2333 
2334       UpgradeAttributes(B);
2335       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2336       break;
2337     }
2338     }
2339   }
2340 }
2341 
2342 Error BitcodeReader::parseTypeTable() {
2343   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2344     return Err;
2345 
2346   return parseTypeTableBody();
2347 }
2348 
2349 Error BitcodeReader::parseTypeTableBody() {
2350   if (!TypeList.empty())
2351     return error("Invalid multiple blocks");
2352 
2353   SmallVector<uint64_t, 64> Record;
2354   unsigned NumRecords = 0;
2355 
2356   SmallString<64> TypeName;
2357 
2358   // Read all the records for this type table.
2359   while (true) {
2360     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2361     if (!MaybeEntry)
2362       return MaybeEntry.takeError();
2363     BitstreamEntry Entry = MaybeEntry.get();
2364 
2365     switch (Entry.Kind) {
2366     case BitstreamEntry::SubBlock: // Handled for us already.
2367     case BitstreamEntry::Error:
2368       return error("Malformed block");
2369     case BitstreamEntry::EndBlock:
2370       if (NumRecords != TypeList.size())
2371         return error("Malformed block");
2372       return Error::success();
2373     case BitstreamEntry::Record:
2374       // The interesting case.
2375       break;
2376     }
2377 
2378     // Read a record.
2379     Record.clear();
2380     Type *ResultTy = nullptr;
2381     SmallVector<unsigned> ContainedIDs;
2382     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2383     if (!MaybeRecord)
2384       return MaybeRecord.takeError();
2385     switch (MaybeRecord.get()) {
2386     default:
2387       return error("Invalid value");
2388     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2389       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2390       // type list.  This allows us to reserve space.
2391       if (Record.empty())
2392         return error("Invalid numentry record");
2393       TypeList.resize(Record[0]);
2394       continue;
2395     case bitc::TYPE_CODE_VOID:      // VOID
2396       ResultTy = Type::getVoidTy(Context);
2397       break;
2398     case bitc::TYPE_CODE_HALF:     // HALF
2399       ResultTy = Type::getHalfTy(Context);
2400       break;
2401     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2402       ResultTy = Type::getBFloatTy(Context);
2403       break;
2404     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2405       ResultTy = Type::getFloatTy(Context);
2406       break;
2407     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2408       ResultTy = Type::getDoubleTy(Context);
2409       break;
2410     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2411       ResultTy = Type::getX86_FP80Ty(Context);
2412       break;
2413     case bitc::TYPE_CODE_FP128:     // FP128
2414       ResultTy = Type::getFP128Ty(Context);
2415       break;
2416     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2417       ResultTy = Type::getPPC_FP128Ty(Context);
2418       break;
2419     case bitc::TYPE_CODE_LABEL:     // LABEL
2420       ResultTy = Type::getLabelTy(Context);
2421       break;
2422     case bitc::TYPE_CODE_METADATA:  // METADATA
2423       ResultTy = Type::getMetadataTy(Context);
2424       break;
2425     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2426       ResultTy = Type::getX86_MMXTy(Context);
2427       break;
2428     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2429       ResultTy = Type::getX86_AMXTy(Context);
2430       break;
2431     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2432       ResultTy = Type::getTokenTy(Context);
2433       break;
2434     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2435       if (Record.empty())
2436         return error("Invalid integer record");
2437 
2438       uint64_t NumBits = Record[0];
2439       if (NumBits < IntegerType::MIN_INT_BITS ||
2440           NumBits > IntegerType::MAX_INT_BITS)
2441         return error("Bitwidth for integer type out of range");
2442       ResultTy = IntegerType::get(Context, NumBits);
2443       break;
2444     }
2445     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2446                                     //          [pointee type, address space]
2447       if (Record.empty())
2448         return error("Invalid pointer record");
2449       unsigned AddressSpace = 0;
2450       if (Record.size() == 2)
2451         AddressSpace = Record[1];
2452       ResultTy = getTypeByID(Record[0]);
2453       if (!ResultTy ||
2454           !PointerType::isValidElementType(ResultTy))
2455         return error("Invalid type");
2456       ContainedIDs.push_back(Record[0]);
2457       ResultTy = PointerType::get(ResultTy, AddressSpace);
2458       break;
2459     }
2460     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2461       if (Record.size() != 1)
2462         return error("Invalid opaque pointer record");
2463       unsigned AddressSpace = Record[0];
2464       ResultTy = PointerType::get(Context, AddressSpace);
2465       break;
2466     }
2467     case bitc::TYPE_CODE_FUNCTION_OLD: {
2468       // Deprecated, but still needed to read old bitcode files.
2469       // FUNCTION: [vararg, attrid, retty, paramty x N]
2470       if (Record.size() < 3)
2471         return error("Invalid function record");
2472       SmallVector<Type*, 8> ArgTys;
2473       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2474         if (Type *T = getTypeByID(Record[i]))
2475           ArgTys.push_back(T);
2476         else
2477           break;
2478       }
2479 
2480       ResultTy = getTypeByID(Record[2]);
2481       if (!ResultTy || ArgTys.size() < Record.size()-3)
2482         return error("Invalid type");
2483 
2484       ContainedIDs.append(Record.begin() + 2, Record.end());
2485       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2486       break;
2487     }
2488     case bitc::TYPE_CODE_FUNCTION: {
2489       // FUNCTION: [vararg, retty, paramty x N]
2490       if (Record.size() < 2)
2491         return error("Invalid function record");
2492       SmallVector<Type*, 8> ArgTys;
2493       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2494         if (Type *T = getTypeByID(Record[i])) {
2495           if (!FunctionType::isValidArgumentType(T))
2496             return error("Invalid function argument type");
2497           ArgTys.push_back(T);
2498         }
2499         else
2500           break;
2501       }
2502 
2503       ResultTy = getTypeByID(Record[1]);
2504       if (!ResultTy || ArgTys.size() < Record.size()-2)
2505         return error("Invalid type");
2506 
2507       ContainedIDs.append(Record.begin() + 1, Record.end());
2508       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2509       break;
2510     }
2511     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2512       if (Record.empty())
2513         return error("Invalid anon struct record");
2514       SmallVector<Type*, 8> EltTys;
2515       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2516         if (Type *T = getTypeByID(Record[i]))
2517           EltTys.push_back(T);
2518         else
2519           break;
2520       }
2521       if (EltTys.size() != Record.size()-1)
2522         return error("Invalid type");
2523       ContainedIDs.append(Record.begin() + 1, Record.end());
2524       ResultTy = StructType::get(Context, EltTys, Record[0]);
2525       break;
2526     }
2527     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2528       if (convertToString(Record, 0, TypeName))
2529         return error("Invalid struct name record");
2530       continue;
2531 
2532     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2533       if (Record.empty())
2534         return error("Invalid named struct record");
2535 
2536       if (NumRecords >= TypeList.size())
2537         return error("Invalid TYPE table");
2538 
2539       // Check to see if this was forward referenced, if so fill in the temp.
2540       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2541       if (Res) {
2542         Res->setName(TypeName);
2543         TypeList[NumRecords] = nullptr;
2544       } else  // Otherwise, create a new struct.
2545         Res = createIdentifiedStructType(Context, TypeName);
2546       TypeName.clear();
2547 
2548       SmallVector<Type*, 8> EltTys;
2549       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2550         if (Type *T = getTypeByID(Record[i]))
2551           EltTys.push_back(T);
2552         else
2553           break;
2554       }
2555       if (EltTys.size() != Record.size()-1)
2556         return error("Invalid named struct record");
2557       Res->setBody(EltTys, Record[0]);
2558       ContainedIDs.append(Record.begin() + 1, Record.end());
2559       ResultTy = Res;
2560       break;
2561     }
2562     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2563       if (Record.size() != 1)
2564         return error("Invalid opaque type record");
2565 
2566       if (NumRecords >= TypeList.size())
2567         return error("Invalid TYPE table");
2568 
2569       // Check to see if this was forward referenced, if so fill in the temp.
2570       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2571       if (Res) {
2572         Res->setName(TypeName);
2573         TypeList[NumRecords] = nullptr;
2574       } else  // Otherwise, create a new struct with no body.
2575         Res = createIdentifiedStructType(Context, TypeName);
2576       TypeName.clear();
2577       ResultTy = Res;
2578       break;
2579     }
2580     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2581       if (Record.size() < 1)
2582         return error("Invalid target extension type record");
2583 
2584       if (NumRecords >= TypeList.size())
2585         return error("Invalid TYPE table");
2586 
2587       if (Record[0] >= Record.size())
2588         return error("Too many type parameters");
2589 
2590       unsigned NumTys = Record[0];
2591       SmallVector<Type *, 4> TypeParams;
2592       SmallVector<unsigned, 8> IntParams;
2593       for (unsigned i = 0; i < NumTys; i++) {
2594         if (Type *T = getTypeByID(Record[i + 1]))
2595           TypeParams.push_back(T);
2596         else
2597           return error("Invalid type");
2598       }
2599 
2600       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2601         if (Record[i] > UINT_MAX)
2602           return error("Integer parameter too large");
2603         IntParams.push_back(Record[i]);
2604       }
2605       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2606       TypeName.clear();
2607       break;
2608     }
2609     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2610       if (Record.size() < 2)
2611         return error("Invalid array type record");
2612       ResultTy = getTypeByID(Record[1]);
2613       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2614         return error("Invalid type");
2615       ContainedIDs.push_back(Record[1]);
2616       ResultTy = ArrayType::get(ResultTy, Record[0]);
2617       break;
2618     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2619                                     //         [numelts, eltty, scalable]
2620       if (Record.size() < 2)
2621         return error("Invalid vector type record");
2622       if (Record[0] == 0)
2623         return error("Invalid vector length");
2624       ResultTy = getTypeByID(Record[1]);
2625       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2626         return error("Invalid type");
2627       bool Scalable = Record.size() > 2 ? Record[2] : false;
2628       ContainedIDs.push_back(Record[1]);
2629       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2630       break;
2631     }
2632 
2633     if (NumRecords >= TypeList.size())
2634       return error("Invalid TYPE table");
2635     if (TypeList[NumRecords])
2636       return error(
2637           "Invalid TYPE table: Only named structs can be forward referenced");
2638     assert(ResultTy && "Didn't read a type?");
2639     TypeList[NumRecords] = ResultTy;
2640     if (!ContainedIDs.empty())
2641       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2642     ++NumRecords;
2643   }
2644 }
2645 
2646 Error BitcodeReader::parseOperandBundleTags() {
2647   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2648     return Err;
2649 
2650   if (!BundleTags.empty())
2651     return error("Invalid multiple blocks");
2652 
2653   SmallVector<uint64_t, 64> Record;
2654 
2655   while (true) {
2656     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2657     if (!MaybeEntry)
2658       return MaybeEntry.takeError();
2659     BitstreamEntry Entry = MaybeEntry.get();
2660 
2661     switch (Entry.Kind) {
2662     case BitstreamEntry::SubBlock: // Handled for us already.
2663     case BitstreamEntry::Error:
2664       return error("Malformed block");
2665     case BitstreamEntry::EndBlock:
2666       return Error::success();
2667     case BitstreamEntry::Record:
2668       // The interesting case.
2669       break;
2670     }
2671 
2672     // Tags are implicitly mapped to integers by their order.
2673 
2674     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2675     if (!MaybeRecord)
2676       return MaybeRecord.takeError();
2677     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2678       return error("Invalid operand bundle record");
2679 
2680     // OPERAND_BUNDLE_TAG: [strchr x N]
2681     BundleTags.emplace_back();
2682     if (convertToString(Record, 0, BundleTags.back()))
2683       return error("Invalid operand bundle record");
2684     Record.clear();
2685   }
2686 }
2687 
2688 Error BitcodeReader::parseSyncScopeNames() {
2689   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2690     return Err;
2691 
2692   if (!SSIDs.empty())
2693     return error("Invalid multiple synchronization scope names blocks");
2694 
2695   SmallVector<uint64_t, 64> Record;
2696   while (true) {
2697     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2698     if (!MaybeEntry)
2699       return MaybeEntry.takeError();
2700     BitstreamEntry Entry = MaybeEntry.get();
2701 
2702     switch (Entry.Kind) {
2703     case BitstreamEntry::SubBlock: // Handled for us already.
2704     case BitstreamEntry::Error:
2705       return error("Malformed block");
2706     case BitstreamEntry::EndBlock:
2707       if (SSIDs.empty())
2708         return error("Invalid empty synchronization scope names block");
2709       return Error::success();
2710     case BitstreamEntry::Record:
2711       // The interesting case.
2712       break;
2713     }
2714 
2715     // Synchronization scope names are implicitly mapped to synchronization
2716     // scope IDs by their order.
2717 
2718     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2719     if (!MaybeRecord)
2720       return MaybeRecord.takeError();
2721     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2722       return error("Invalid sync scope record");
2723 
2724     SmallString<16> SSN;
2725     if (convertToString(Record, 0, SSN))
2726       return error("Invalid sync scope record");
2727 
2728     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2729     Record.clear();
2730   }
2731 }
2732 
2733 /// Associate a value with its name from the given index in the provided record.
2734 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2735                                              unsigned NameIndex, Triple &TT) {
2736   SmallString<128> ValueName;
2737   if (convertToString(Record, NameIndex, ValueName))
2738     return error("Invalid record");
2739   unsigned ValueID = Record[0];
2740   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2741     return error("Invalid record");
2742   Value *V = ValueList[ValueID];
2743 
2744   StringRef NameStr(ValueName.data(), ValueName.size());
2745   if (NameStr.contains(0))
2746     return error("Invalid value name");
2747   V->setName(NameStr);
2748   auto *GO = dyn_cast<GlobalObject>(V);
2749   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2750     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2751   return V;
2752 }
2753 
2754 /// Helper to note and return the current location, and jump to the given
2755 /// offset.
2756 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2757                                                  BitstreamCursor &Stream) {
2758   // Save the current parsing location so we can jump back at the end
2759   // of the VST read.
2760   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2761   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2762     return std::move(JumpFailed);
2763   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2764   if (!MaybeEntry)
2765     return MaybeEntry.takeError();
2766   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2767       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2768     return error("Expected value symbol table subblock");
2769   return CurrentBit;
2770 }
2771 
2772 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2773                                             Function *F,
2774                                             ArrayRef<uint64_t> Record) {
2775   // Note that we subtract 1 here because the offset is relative to one word
2776   // before the start of the identification or module block, which was
2777   // historically always the start of the regular bitcode header.
2778   uint64_t FuncWordOffset = Record[1] - 1;
2779   uint64_t FuncBitOffset = FuncWordOffset * 32;
2780   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2781   // Set the LastFunctionBlockBit to point to the last function block.
2782   // Later when parsing is resumed after function materialization,
2783   // we can simply skip that last function block.
2784   if (FuncBitOffset > LastFunctionBlockBit)
2785     LastFunctionBlockBit = FuncBitOffset;
2786 }
2787 
2788 /// Read a new-style GlobalValue symbol table.
2789 Error BitcodeReader::parseGlobalValueSymbolTable() {
2790   unsigned FuncBitcodeOffsetDelta =
2791       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2792 
2793   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2794     return Err;
2795 
2796   SmallVector<uint64_t, 64> Record;
2797   while (true) {
2798     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2799     if (!MaybeEntry)
2800       return MaybeEntry.takeError();
2801     BitstreamEntry Entry = MaybeEntry.get();
2802 
2803     switch (Entry.Kind) {
2804     case BitstreamEntry::SubBlock:
2805     case BitstreamEntry::Error:
2806       return error("Malformed block");
2807     case BitstreamEntry::EndBlock:
2808       return Error::success();
2809     case BitstreamEntry::Record:
2810       break;
2811     }
2812 
2813     Record.clear();
2814     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2815     if (!MaybeRecord)
2816       return MaybeRecord.takeError();
2817     switch (MaybeRecord.get()) {
2818     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2819       unsigned ValueID = Record[0];
2820       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2821         return error("Invalid value reference in symbol table");
2822       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2823                               cast<Function>(ValueList[ValueID]), Record);
2824       break;
2825     }
2826     }
2827   }
2828 }
2829 
2830 /// Parse the value symbol table at either the current parsing location or
2831 /// at the given bit offset if provided.
2832 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2833   uint64_t CurrentBit;
2834   // Pass in the Offset to distinguish between calling for the module-level
2835   // VST (where we want to jump to the VST offset) and the function-level
2836   // VST (where we don't).
2837   if (Offset > 0) {
2838     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2839     if (!MaybeCurrentBit)
2840       return MaybeCurrentBit.takeError();
2841     CurrentBit = MaybeCurrentBit.get();
2842     // If this module uses a string table, read this as a module-level VST.
2843     if (UseStrtab) {
2844       if (Error Err = parseGlobalValueSymbolTable())
2845         return Err;
2846       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2847         return JumpFailed;
2848       return Error::success();
2849     }
2850     // Otherwise, the VST will be in a similar format to a function-level VST,
2851     // and will contain symbol names.
2852   }
2853 
2854   // Compute the delta between the bitcode indices in the VST (the word offset
2855   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2856   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2857   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2858   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2859   // just before entering the VST subblock because: 1) the EnterSubBlock
2860   // changes the AbbrevID width; 2) the VST block is nested within the same
2861   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2862   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2863   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2864   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2865   unsigned FuncBitcodeOffsetDelta =
2866       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2867 
2868   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2869     return Err;
2870 
2871   SmallVector<uint64_t, 64> Record;
2872 
2873   Triple TT(TheModule->getTargetTriple());
2874 
2875   // Read all the records for this value table.
2876   SmallString<128> ValueName;
2877 
2878   while (true) {
2879     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2880     if (!MaybeEntry)
2881       return MaybeEntry.takeError();
2882     BitstreamEntry Entry = MaybeEntry.get();
2883 
2884     switch (Entry.Kind) {
2885     case BitstreamEntry::SubBlock: // Handled for us already.
2886     case BitstreamEntry::Error:
2887       return error("Malformed block");
2888     case BitstreamEntry::EndBlock:
2889       if (Offset > 0)
2890         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2891           return JumpFailed;
2892       return Error::success();
2893     case BitstreamEntry::Record:
2894       // The interesting case.
2895       break;
2896     }
2897 
2898     // Read a record.
2899     Record.clear();
2900     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2901     if (!MaybeRecord)
2902       return MaybeRecord.takeError();
2903     switch (MaybeRecord.get()) {
2904     default:  // Default behavior: unknown type.
2905       break;
2906     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2907       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2908       if (Error Err = ValOrErr.takeError())
2909         return Err;
2910       ValOrErr.get();
2911       break;
2912     }
2913     case bitc::VST_CODE_FNENTRY: {
2914       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2915       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2916       if (Error Err = ValOrErr.takeError())
2917         return Err;
2918       Value *V = ValOrErr.get();
2919 
2920       // Ignore function offsets emitted for aliases of functions in older
2921       // versions of LLVM.
2922       if (auto *F = dyn_cast<Function>(V))
2923         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2924       break;
2925     }
2926     case bitc::VST_CODE_BBENTRY: {
2927       if (convertToString(Record, 1, ValueName))
2928         return error("Invalid bbentry record");
2929       BasicBlock *BB = getBasicBlock(Record[0]);
2930       if (!BB)
2931         return error("Invalid bbentry record");
2932 
2933       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2934       ValueName.clear();
2935       break;
2936     }
2937     }
2938   }
2939 }
2940 
2941 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2942 /// encoding.
2943 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2944   if ((V & 1) == 0)
2945     return V >> 1;
2946   if (V != 1)
2947     return -(V >> 1);
2948   // There is no such thing as -0 with integers.  "-0" really means MININT.
2949   return 1ULL << 63;
2950 }
2951 
2952 /// Resolve all of the initializers for global values and aliases that we can.
2953 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2954   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2955   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2956   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2957 
2958   GlobalInitWorklist.swap(GlobalInits);
2959   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2960   FunctionOperandWorklist.swap(FunctionOperands);
2961 
2962   while (!GlobalInitWorklist.empty()) {
2963     unsigned ValID = GlobalInitWorklist.back().second;
2964     if (ValID >= ValueList.size()) {
2965       // Not ready to resolve this yet, it requires something later in the file.
2966       GlobalInits.push_back(GlobalInitWorklist.back());
2967     } else {
2968       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2969       if (!MaybeC)
2970         return MaybeC.takeError();
2971       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2972     }
2973     GlobalInitWorklist.pop_back();
2974   }
2975 
2976   while (!IndirectSymbolInitWorklist.empty()) {
2977     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2978     if (ValID >= ValueList.size()) {
2979       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2980     } else {
2981       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2982       if (!MaybeC)
2983         return MaybeC.takeError();
2984       Constant *C = MaybeC.get();
2985       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2986       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2987         if (C->getType() != GV->getType())
2988           return error("Alias and aliasee types don't match");
2989         GA->setAliasee(C);
2990       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2991         GI->setResolver(C);
2992       } else {
2993         return error("Expected an alias or an ifunc");
2994       }
2995     }
2996     IndirectSymbolInitWorklist.pop_back();
2997   }
2998 
2999   while (!FunctionOperandWorklist.empty()) {
3000     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3001     if (Info.PersonalityFn) {
3002       unsigned ValID = Info.PersonalityFn - 1;
3003       if (ValID < ValueList.size()) {
3004         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3005         if (!MaybeC)
3006           return MaybeC.takeError();
3007         Info.F->setPersonalityFn(MaybeC.get());
3008         Info.PersonalityFn = 0;
3009       }
3010     }
3011     if (Info.Prefix) {
3012       unsigned ValID = Info.Prefix - 1;
3013       if (ValID < ValueList.size()) {
3014         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3015         if (!MaybeC)
3016           return MaybeC.takeError();
3017         Info.F->setPrefixData(MaybeC.get());
3018         Info.Prefix = 0;
3019       }
3020     }
3021     if (Info.Prologue) {
3022       unsigned ValID = Info.Prologue - 1;
3023       if (ValID < ValueList.size()) {
3024         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3025         if (!MaybeC)
3026           return MaybeC.takeError();
3027         Info.F->setPrologueData(MaybeC.get());
3028         Info.Prologue = 0;
3029       }
3030     }
3031     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3032       FunctionOperands.push_back(Info);
3033     FunctionOperandWorklist.pop_back();
3034   }
3035 
3036   return Error::success();
3037 }
3038 
3039 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3040   SmallVector<uint64_t, 8> Words(Vals.size());
3041   transform(Vals, Words.begin(),
3042                  BitcodeReader::decodeSignRotatedValue);
3043 
3044   return APInt(TypeBits, Words);
3045 }
3046 
3047 Error BitcodeReader::parseConstants() {
3048   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3049     return Err;
3050 
3051   SmallVector<uint64_t, 64> Record;
3052 
3053   // Read all the records for this value table.
3054   Type *CurTy = Type::getInt32Ty(Context);
3055   unsigned Int32TyID = getVirtualTypeID(CurTy);
3056   unsigned CurTyID = Int32TyID;
3057   Type *CurElemTy = nullptr;
3058   unsigned NextCstNo = ValueList.size();
3059 
3060   while (true) {
3061     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3062     if (!MaybeEntry)
3063       return MaybeEntry.takeError();
3064     BitstreamEntry Entry = MaybeEntry.get();
3065 
3066     switch (Entry.Kind) {
3067     case BitstreamEntry::SubBlock: // Handled for us already.
3068     case BitstreamEntry::Error:
3069       return error("Malformed block");
3070     case BitstreamEntry::EndBlock:
3071       if (NextCstNo != ValueList.size())
3072         return error("Invalid constant reference");
3073       return Error::success();
3074     case BitstreamEntry::Record:
3075       // The interesting case.
3076       break;
3077     }
3078 
3079     // Read a record.
3080     Record.clear();
3081     Type *VoidType = Type::getVoidTy(Context);
3082     Value *V = nullptr;
3083     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3084     if (!MaybeBitCode)
3085       return MaybeBitCode.takeError();
3086     switch (unsigned BitCode = MaybeBitCode.get()) {
3087     default:  // Default behavior: unknown constant
3088     case bitc::CST_CODE_UNDEF:     // UNDEF
3089       V = UndefValue::get(CurTy);
3090       break;
3091     case bitc::CST_CODE_POISON:    // POISON
3092       V = PoisonValue::get(CurTy);
3093       break;
3094     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3095       if (Record.empty())
3096         return error("Invalid settype record");
3097       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3098         return error("Invalid settype record");
3099       if (TypeList[Record[0]] == VoidType)
3100         return error("Invalid constant type");
3101       CurTyID = Record[0];
3102       CurTy = TypeList[CurTyID];
3103       CurElemTy = getPtrElementTypeByID(CurTyID);
3104       continue;  // Skip the ValueList manipulation.
3105     case bitc::CST_CODE_NULL:      // NULL
3106       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3107         return error("Invalid type for a constant null value");
3108       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3109         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3110           return error("Invalid type for a constant null value");
3111       V = Constant::getNullValue(CurTy);
3112       break;
3113     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3114       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3115         return error("Invalid integer const record");
3116       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3117       break;
3118     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3119       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3120         return error("Invalid wide integer const record");
3121 
3122       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3123       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3124       V = ConstantInt::get(CurTy, VInt);
3125       break;
3126     }
3127     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3128       if (Record.empty())
3129         return error("Invalid float const record");
3130 
3131       auto *ScalarTy = CurTy->getScalarType();
3132       if (ScalarTy->isHalfTy())
3133         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3134                                            APInt(16, (uint16_t)Record[0])));
3135       else if (ScalarTy->isBFloatTy())
3136         V = ConstantFP::get(
3137             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3138       else if (ScalarTy->isFloatTy())
3139         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3140                                            APInt(32, (uint32_t)Record[0])));
3141       else if (ScalarTy->isDoubleTy())
3142         V = ConstantFP::get(
3143             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3144       else if (ScalarTy->isX86_FP80Ty()) {
3145         // Bits are not stored the same way as a normal i80 APInt, compensate.
3146         uint64_t Rearrange[2];
3147         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3148         Rearrange[1] = Record[0] >> 48;
3149         V = ConstantFP::get(
3150             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3151       } else if (ScalarTy->isFP128Ty())
3152         V = ConstantFP::get(CurTy,
3153                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3154       else if (ScalarTy->isPPC_FP128Ty())
3155         V = ConstantFP::get(
3156             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3157       else
3158         V = UndefValue::get(CurTy);
3159       break;
3160     }
3161 
3162     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3163       if (Record.empty())
3164         return error("Invalid aggregate record");
3165 
3166       unsigned Size = Record.size();
3167       SmallVector<unsigned, 16> Elts;
3168       for (unsigned i = 0; i != Size; ++i)
3169         Elts.push_back(Record[i]);
3170 
3171       if (isa<StructType>(CurTy)) {
3172         V = BitcodeConstant::create(
3173             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3174       } else if (isa<ArrayType>(CurTy)) {
3175         V = BitcodeConstant::create(Alloc, CurTy,
3176                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3177       } else if (isa<VectorType>(CurTy)) {
3178         V = BitcodeConstant::create(
3179             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3180       } else {
3181         V = UndefValue::get(CurTy);
3182       }
3183       break;
3184     }
3185     case bitc::CST_CODE_STRING:    // STRING: [values]
3186     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3187       if (Record.empty())
3188         return error("Invalid string record");
3189 
3190       SmallString<16> Elts(Record.begin(), Record.end());
3191       V = ConstantDataArray::getString(Context, Elts,
3192                                        BitCode == bitc::CST_CODE_CSTRING);
3193       break;
3194     }
3195     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3196       if (Record.empty())
3197         return error("Invalid data record");
3198 
3199       Type *EltTy;
3200       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3201         EltTy = Array->getElementType();
3202       else
3203         EltTy = cast<VectorType>(CurTy)->getElementType();
3204       if (EltTy->isIntegerTy(8)) {
3205         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3206         if (isa<VectorType>(CurTy))
3207           V = ConstantDataVector::get(Context, Elts);
3208         else
3209           V = ConstantDataArray::get(Context, Elts);
3210       } else if (EltTy->isIntegerTy(16)) {
3211         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3212         if (isa<VectorType>(CurTy))
3213           V = ConstantDataVector::get(Context, Elts);
3214         else
3215           V = ConstantDataArray::get(Context, Elts);
3216       } else if (EltTy->isIntegerTy(32)) {
3217         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3218         if (isa<VectorType>(CurTy))
3219           V = ConstantDataVector::get(Context, Elts);
3220         else
3221           V = ConstantDataArray::get(Context, Elts);
3222       } else if (EltTy->isIntegerTy(64)) {
3223         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3224         if (isa<VectorType>(CurTy))
3225           V = ConstantDataVector::get(Context, Elts);
3226         else
3227           V = ConstantDataArray::get(Context, Elts);
3228       } else if (EltTy->isHalfTy()) {
3229         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3230         if (isa<VectorType>(CurTy))
3231           V = ConstantDataVector::getFP(EltTy, Elts);
3232         else
3233           V = ConstantDataArray::getFP(EltTy, Elts);
3234       } else if (EltTy->isBFloatTy()) {
3235         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3236         if (isa<VectorType>(CurTy))
3237           V = ConstantDataVector::getFP(EltTy, Elts);
3238         else
3239           V = ConstantDataArray::getFP(EltTy, Elts);
3240       } else if (EltTy->isFloatTy()) {
3241         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3242         if (isa<VectorType>(CurTy))
3243           V = ConstantDataVector::getFP(EltTy, Elts);
3244         else
3245           V = ConstantDataArray::getFP(EltTy, Elts);
3246       } else if (EltTy->isDoubleTy()) {
3247         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3248         if (isa<VectorType>(CurTy))
3249           V = ConstantDataVector::getFP(EltTy, Elts);
3250         else
3251           V = ConstantDataArray::getFP(EltTy, Elts);
3252       } else {
3253         return error("Invalid type for value");
3254       }
3255       break;
3256     }
3257     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3258       if (Record.size() < 2)
3259         return error("Invalid unary op constexpr record");
3260       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3261       if (Opc < 0) {
3262         V = UndefValue::get(CurTy);  // Unknown unop.
3263       } else {
3264         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3265       }
3266       break;
3267     }
3268     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3269       if (Record.size() < 3)
3270         return error("Invalid binary op constexpr record");
3271       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3272       if (Opc < 0) {
3273         V = UndefValue::get(CurTy);  // Unknown binop.
3274       } else {
3275         uint8_t Flags = 0;
3276         if (Record.size() >= 4) {
3277           if (Opc == Instruction::Add ||
3278               Opc == Instruction::Sub ||
3279               Opc == Instruction::Mul ||
3280               Opc == Instruction::Shl) {
3281             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3282               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3283             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3284               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3285           } else if (Opc == Instruction::SDiv ||
3286                      Opc == Instruction::UDiv ||
3287                      Opc == Instruction::LShr ||
3288                      Opc == Instruction::AShr) {
3289             if (Record[3] & (1 << bitc::PEO_EXACT))
3290               Flags |= PossiblyExactOperator::IsExact;
3291           }
3292         }
3293         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3294                                     {(unsigned)Record[1], (unsigned)Record[2]});
3295       }
3296       break;
3297     }
3298     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3299       if (Record.size() < 3)
3300         return error("Invalid cast constexpr record");
3301       int Opc = getDecodedCastOpcode(Record[0]);
3302       if (Opc < 0) {
3303         V = UndefValue::get(CurTy);  // Unknown cast.
3304       } else {
3305         unsigned OpTyID = Record[1];
3306         Type *OpTy = getTypeByID(OpTyID);
3307         if (!OpTy)
3308           return error("Invalid cast constexpr record");
3309         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3310       }
3311       break;
3312     }
3313     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3314     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3315     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3316                                                        // operands]
3317     case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3318                                                // operands]
3319       if (Record.size() < 2)
3320         return error("Constant GEP record must have at least two elements");
3321       unsigned OpNum = 0;
3322       Type *PointeeType = nullptr;
3323       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3324           BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || Record.size() % 2)
3325         PointeeType = getTypeByID(Record[OpNum++]);
3326 
3327       bool InBounds = false;
3328       std::optional<ConstantRange> InRange;
3329       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3330         uint64_t Op = Record[OpNum++];
3331         InBounds = Op & 1;
3332         unsigned InRangeIndex = Op >> 1;
3333         // "Upgrade" inrange by dropping it. The feature is too niche to
3334         // bother.
3335         (void)InRangeIndex;
3336       } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3337         uint64_t Op = Record[OpNum++];
3338         InBounds = Op & 1;
3339         Expected<ConstantRange> MaybeInRange = readConstantRange(Record, OpNum);
3340         if (!MaybeInRange)
3341           return MaybeInRange.takeError();
3342         InRange = MaybeInRange.get();
3343       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3344         InBounds = true;
3345 
3346       SmallVector<unsigned, 16> Elts;
3347       unsigned BaseTypeID = Record[OpNum];
3348       while (OpNum != Record.size()) {
3349         unsigned ElTyID = Record[OpNum++];
3350         Type *ElTy = getTypeByID(ElTyID);
3351         if (!ElTy)
3352           return error("Invalid getelementptr constexpr record");
3353         Elts.push_back(Record[OpNum++]);
3354       }
3355 
3356       if (Elts.size() < 1)
3357         return error("Invalid gep with no operands");
3358 
3359       Type *BaseType = getTypeByID(BaseTypeID);
3360       if (isa<VectorType>(BaseType)) {
3361         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3362         BaseType = getTypeByID(BaseTypeID);
3363       }
3364 
3365       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3366       if (!OrigPtrTy)
3367         return error("GEP base operand must be pointer or vector of pointer");
3368 
3369       if (!PointeeType) {
3370         PointeeType = getPtrElementTypeByID(BaseTypeID);
3371         if (!PointeeType)
3372           return error("Missing element type for old-style constant GEP");
3373       }
3374 
3375       V = BitcodeConstant::create(
3376           Alloc, CurTy,
3377           {Instruction::GetElementPtr, InBounds, PointeeType, InRange}, Elts);
3378       break;
3379     }
3380     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3381       if (Record.size() < 3)
3382         return error("Invalid select constexpr record");
3383 
3384       V = BitcodeConstant::create(
3385           Alloc, CurTy, Instruction::Select,
3386           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3387       break;
3388     }
3389     case bitc::CST_CODE_CE_EXTRACTELT
3390         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3391       if (Record.size() < 3)
3392         return error("Invalid extractelement constexpr record");
3393       unsigned OpTyID = Record[0];
3394       VectorType *OpTy =
3395         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3396       if (!OpTy)
3397         return error("Invalid extractelement constexpr record");
3398       unsigned IdxRecord;
3399       if (Record.size() == 4) {
3400         unsigned IdxTyID = Record[2];
3401         Type *IdxTy = getTypeByID(IdxTyID);
3402         if (!IdxTy)
3403           return error("Invalid extractelement constexpr record");
3404         IdxRecord = Record[3];
3405       } else {
3406         // Deprecated, but still needed to read old bitcode files.
3407         IdxRecord = Record[2];
3408       }
3409       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3410                                   {(unsigned)Record[1], IdxRecord});
3411       break;
3412     }
3413     case bitc::CST_CODE_CE_INSERTELT
3414         : { // CE_INSERTELT: [opval, opval, opty, opval]
3415       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3416       if (Record.size() < 3 || !OpTy)
3417         return error("Invalid insertelement constexpr record");
3418       unsigned IdxRecord;
3419       if (Record.size() == 4) {
3420         unsigned IdxTyID = Record[2];
3421         Type *IdxTy = getTypeByID(IdxTyID);
3422         if (!IdxTy)
3423           return error("Invalid insertelement constexpr record");
3424         IdxRecord = Record[3];
3425       } else {
3426         // Deprecated, but still needed to read old bitcode files.
3427         IdxRecord = Record[2];
3428       }
3429       V = BitcodeConstant::create(
3430           Alloc, CurTy, Instruction::InsertElement,
3431           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3432       break;
3433     }
3434     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3435       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3436       if (Record.size() < 3 || !OpTy)
3437         return error("Invalid shufflevector constexpr record");
3438       V = BitcodeConstant::create(
3439           Alloc, CurTy, Instruction::ShuffleVector,
3440           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3441       break;
3442     }
3443     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3444       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3445       VectorType *OpTy =
3446         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3447       if (Record.size() < 4 || !RTy || !OpTy)
3448         return error("Invalid shufflevector constexpr record");
3449       V = BitcodeConstant::create(
3450           Alloc, CurTy, Instruction::ShuffleVector,
3451           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3452       break;
3453     }
3454     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3455       if (Record.size() < 4)
3456         return error("Invalid cmp constexpt record");
3457       unsigned OpTyID = Record[0];
3458       Type *OpTy = getTypeByID(OpTyID);
3459       if (!OpTy)
3460         return error("Invalid cmp constexpr record");
3461       V = BitcodeConstant::create(
3462           Alloc, CurTy,
3463           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3464                                               : Instruction::ICmp),
3465            (uint8_t)Record[3]},
3466           {(unsigned)Record[1], (unsigned)Record[2]});
3467       break;
3468     }
3469     // This maintains backward compatibility, pre-asm dialect keywords.
3470     // Deprecated, but still needed to read old bitcode files.
3471     case bitc::CST_CODE_INLINEASM_OLD: {
3472       if (Record.size() < 2)
3473         return error("Invalid inlineasm record");
3474       std::string AsmStr, ConstrStr;
3475       bool HasSideEffects = Record[0] & 1;
3476       bool IsAlignStack = Record[0] >> 1;
3477       unsigned AsmStrSize = Record[1];
3478       if (2+AsmStrSize >= Record.size())
3479         return error("Invalid inlineasm record");
3480       unsigned ConstStrSize = Record[2+AsmStrSize];
3481       if (3+AsmStrSize+ConstStrSize > Record.size())
3482         return error("Invalid inlineasm record");
3483 
3484       for (unsigned i = 0; i != AsmStrSize; ++i)
3485         AsmStr += (char)Record[2+i];
3486       for (unsigned i = 0; i != ConstStrSize; ++i)
3487         ConstrStr += (char)Record[3+AsmStrSize+i];
3488       UpgradeInlineAsmString(&AsmStr);
3489       if (!CurElemTy)
3490         return error("Missing element type for old-style inlineasm");
3491       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3492                          HasSideEffects, IsAlignStack);
3493       break;
3494     }
3495     // This version adds support for the asm dialect keywords (e.g.,
3496     // inteldialect).
3497     case bitc::CST_CODE_INLINEASM_OLD2: {
3498       if (Record.size() < 2)
3499         return error("Invalid inlineasm record");
3500       std::string AsmStr, ConstrStr;
3501       bool HasSideEffects = Record[0] & 1;
3502       bool IsAlignStack = (Record[0] >> 1) & 1;
3503       unsigned AsmDialect = Record[0] >> 2;
3504       unsigned AsmStrSize = Record[1];
3505       if (2+AsmStrSize >= Record.size())
3506         return error("Invalid inlineasm record");
3507       unsigned ConstStrSize = Record[2+AsmStrSize];
3508       if (3+AsmStrSize+ConstStrSize > Record.size())
3509         return error("Invalid inlineasm record");
3510 
3511       for (unsigned i = 0; i != AsmStrSize; ++i)
3512         AsmStr += (char)Record[2+i];
3513       for (unsigned i = 0; i != ConstStrSize; ++i)
3514         ConstrStr += (char)Record[3+AsmStrSize+i];
3515       UpgradeInlineAsmString(&AsmStr);
3516       if (!CurElemTy)
3517         return error("Missing element type for old-style inlineasm");
3518       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3519                          HasSideEffects, IsAlignStack,
3520                          InlineAsm::AsmDialect(AsmDialect));
3521       break;
3522     }
3523     // This version adds support for the unwind keyword.
3524     case bitc::CST_CODE_INLINEASM_OLD3: {
3525       if (Record.size() < 2)
3526         return error("Invalid inlineasm record");
3527       unsigned OpNum = 0;
3528       std::string AsmStr, ConstrStr;
3529       bool HasSideEffects = Record[OpNum] & 1;
3530       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3531       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3532       bool CanThrow = (Record[OpNum] >> 3) & 1;
3533       ++OpNum;
3534       unsigned AsmStrSize = Record[OpNum];
3535       ++OpNum;
3536       if (OpNum + AsmStrSize >= Record.size())
3537         return error("Invalid inlineasm record");
3538       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3539       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3540         return error("Invalid inlineasm record");
3541 
3542       for (unsigned i = 0; i != AsmStrSize; ++i)
3543         AsmStr += (char)Record[OpNum + i];
3544       ++OpNum;
3545       for (unsigned i = 0; i != ConstStrSize; ++i)
3546         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3547       UpgradeInlineAsmString(&AsmStr);
3548       if (!CurElemTy)
3549         return error("Missing element type for old-style inlineasm");
3550       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3551                          HasSideEffects, IsAlignStack,
3552                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3553       break;
3554     }
3555     // This version adds explicit function type.
3556     case bitc::CST_CODE_INLINEASM: {
3557       if (Record.size() < 3)
3558         return error("Invalid inlineasm record");
3559       unsigned OpNum = 0;
3560       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3561       ++OpNum;
3562       if (!FnTy)
3563         return error("Invalid inlineasm record");
3564       std::string AsmStr, ConstrStr;
3565       bool HasSideEffects = Record[OpNum] & 1;
3566       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3567       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3568       bool CanThrow = (Record[OpNum] >> 3) & 1;
3569       ++OpNum;
3570       unsigned AsmStrSize = Record[OpNum];
3571       ++OpNum;
3572       if (OpNum + AsmStrSize >= Record.size())
3573         return error("Invalid inlineasm record");
3574       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3575       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3576         return error("Invalid inlineasm record");
3577 
3578       for (unsigned i = 0; i != AsmStrSize; ++i)
3579         AsmStr += (char)Record[OpNum + i];
3580       ++OpNum;
3581       for (unsigned i = 0; i != ConstStrSize; ++i)
3582         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3583       UpgradeInlineAsmString(&AsmStr);
3584       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3585                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3586       break;
3587     }
3588     case bitc::CST_CODE_BLOCKADDRESS:{
3589       if (Record.size() < 3)
3590         return error("Invalid blockaddress record");
3591       unsigned FnTyID = Record[0];
3592       Type *FnTy = getTypeByID(FnTyID);
3593       if (!FnTy)
3594         return error("Invalid blockaddress record");
3595       V = BitcodeConstant::create(
3596           Alloc, CurTy,
3597           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3598           Record[1]);
3599       break;
3600     }
3601     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3602       if (Record.size() < 2)
3603         return error("Invalid dso_local record");
3604       unsigned GVTyID = Record[0];
3605       Type *GVTy = getTypeByID(GVTyID);
3606       if (!GVTy)
3607         return error("Invalid dso_local record");
3608       V = BitcodeConstant::create(
3609           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3610       break;
3611     }
3612     case bitc::CST_CODE_NO_CFI_VALUE: {
3613       if (Record.size() < 2)
3614         return error("Invalid no_cfi record");
3615       unsigned GVTyID = Record[0];
3616       Type *GVTy = getTypeByID(GVTyID);
3617       if (!GVTy)
3618         return error("Invalid no_cfi record");
3619       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3620                                   Record[1]);
3621       break;
3622     }
3623     }
3624 
3625     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3626     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3627       return Err;
3628     ++NextCstNo;
3629   }
3630 }
3631 
3632 Error BitcodeReader::parseUseLists() {
3633   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3634     return Err;
3635 
3636   // Read all the records.
3637   SmallVector<uint64_t, 64> Record;
3638 
3639   while (true) {
3640     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3641     if (!MaybeEntry)
3642       return MaybeEntry.takeError();
3643     BitstreamEntry Entry = MaybeEntry.get();
3644 
3645     switch (Entry.Kind) {
3646     case BitstreamEntry::SubBlock: // Handled for us already.
3647     case BitstreamEntry::Error:
3648       return error("Malformed block");
3649     case BitstreamEntry::EndBlock:
3650       return Error::success();
3651     case BitstreamEntry::Record:
3652       // The interesting case.
3653       break;
3654     }
3655 
3656     // Read a use list record.
3657     Record.clear();
3658     bool IsBB = false;
3659     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3660     if (!MaybeRecord)
3661       return MaybeRecord.takeError();
3662     switch (MaybeRecord.get()) {
3663     default:  // Default behavior: unknown type.
3664       break;
3665     case bitc::USELIST_CODE_BB:
3666       IsBB = true;
3667       [[fallthrough]];
3668     case bitc::USELIST_CODE_DEFAULT: {
3669       unsigned RecordLength = Record.size();
3670       if (RecordLength < 3)
3671         // Records should have at least an ID and two indexes.
3672         return error("Invalid record");
3673       unsigned ID = Record.pop_back_val();
3674 
3675       Value *V;
3676       if (IsBB) {
3677         assert(ID < FunctionBBs.size() && "Basic block not found");
3678         V = FunctionBBs[ID];
3679       } else
3680         V = ValueList[ID];
3681       unsigned NumUses = 0;
3682       SmallDenseMap<const Use *, unsigned, 16> Order;
3683       for (const Use &U : V->materialized_uses()) {
3684         if (++NumUses > Record.size())
3685           break;
3686         Order[&U] = Record[NumUses - 1];
3687       }
3688       if (Order.size() != Record.size() || NumUses > Record.size())
3689         // Mismatches can happen if the functions are being materialized lazily
3690         // (out-of-order), or a value has been upgraded.
3691         break;
3692 
3693       V->sortUseList([&](const Use &L, const Use &R) {
3694         return Order.lookup(&L) < Order.lookup(&R);
3695       });
3696       break;
3697     }
3698     }
3699   }
3700 }
3701 
3702 /// When we see the block for metadata, remember where it is and then skip it.
3703 /// This lets us lazily deserialize the metadata.
3704 Error BitcodeReader::rememberAndSkipMetadata() {
3705   // Save the current stream state.
3706   uint64_t CurBit = Stream.GetCurrentBitNo();
3707   DeferredMetadataInfo.push_back(CurBit);
3708 
3709   // Skip over the block for now.
3710   if (Error Err = Stream.SkipBlock())
3711     return Err;
3712   return Error::success();
3713 }
3714 
3715 Error BitcodeReader::materializeMetadata() {
3716   for (uint64_t BitPos : DeferredMetadataInfo) {
3717     // Move the bit stream to the saved position.
3718     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3719       return JumpFailed;
3720     if (Error Err = MDLoader->parseModuleMetadata())
3721       return Err;
3722   }
3723 
3724   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3725   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3726   // multiple times.
3727   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3728     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3729       NamedMDNode *LinkerOpts =
3730           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3731       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3732         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3733     }
3734   }
3735 
3736   DeferredMetadataInfo.clear();
3737   return Error::success();
3738 }
3739 
3740 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3741 
3742 /// When we see the block for a function body, remember where it is and then
3743 /// skip it.  This lets us lazily deserialize the functions.
3744 Error BitcodeReader::rememberAndSkipFunctionBody() {
3745   // Get the function we are talking about.
3746   if (FunctionsWithBodies.empty())
3747     return error("Insufficient function protos");
3748 
3749   Function *Fn = FunctionsWithBodies.back();
3750   FunctionsWithBodies.pop_back();
3751 
3752   // Save the current stream state.
3753   uint64_t CurBit = Stream.GetCurrentBitNo();
3754   assert(
3755       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3756       "Mismatch between VST and scanned function offsets");
3757   DeferredFunctionInfo[Fn] = CurBit;
3758 
3759   // Skip over the function block for now.
3760   if (Error Err = Stream.SkipBlock())
3761     return Err;
3762   return Error::success();
3763 }
3764 
3765 Error BitcodeReader::globalCleanup() {
3766   // Patch the initializers for globals and aliases up.
3767   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3768     return Err;
3769   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3770     return error("Malformed global initializer set");
3771 
3772   // Look for intrinsic functions which need to be upgraded at some point
3773   // and functions that need to have their function attributes upgraded.
3774   for (Function &F : *TheModule) {
3775     MDLoader->upgradeDebugIntrinsics(F);
3776     Function *NewFn;
3777     if (UpgradeIntrinsicFunction(&F, NewFn))
3778       UpgradedIntrinsics[&F] = NewFn;
3779     // Look for functions that rely on old function attribute behavior.
3780     UpgradeFunctionAttributes(F);
3781   }
3782 
3783   // Look for global variables which need to be renamed.
3784   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3785   for (GlobalVariable &GV : TheModule->globals())
3786     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3787       UpgradedVariables.emplace_back(&GV, Upgraded);
3788   for (auto &Pair : UpgradedVariables) {
3789     Pair.first->eraseFromParent();
3790     TheModule->insertGlobalVariable(Pair.second);
3791   }
3792 
3793   // Force deallocation of memory for these vectors to favor the client that
3794   // want lazy deserialization.
3795   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3796   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3797   return Error::success();
3798 }
3799 
3800 /// Support for lazy parsing of function bodies. This is required if we
3801 /// either have an old bitcode file without a VST forward declaration record,
3802 /// or if we have an anonymous function being materialized, since anonymous
3803 /// functions do not have a name and are therefore not in the VST.
3804 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3805   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3806     return JumpFailed;
3807 
3808   if (Stream.AtEndOfStream())
3809     return error("Could not find function in stream");
3810 
3811   if (!SeenFirstFunctionBody)
3812     return error("Trying to materialize functions before seeing function blocks");
3813 
3814   // An old bitcode file with the symbol table at the end would have
3815   // finished the parse greedily.
3816   assert(SeenValueSymbolTable);
3817 
3818   SmallVector<uint64_t, 64> Record;
3819 
3820   while (true) {
3821     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3822     if (!MaybeEntry)
3823       return MaybeEntry.takeError();
3824     llvm::BitstreamEntry Entry = MaybeEntry.get();
3825 
3826     switch (Entry.Kind) {
3827     default:
3828       return error("Expect SubBlock");
3829     case BitstreamEntry::SubBlock:
3830       switch (Entry.ID) {
3831       default:
3832         return error("Expect function block");
3833       case bitc::FUNCTION_BLOCK_ID:
3834         if (Error Err = rememberAndSkipFunctionBody())
3835           return Err;
3836         NextUnreadBit = Stream.GetCurrentBitNo();
3837         return Error::success();
3838       }
3839     }
3840   }
3841 }
3842 
3843 Error BitcodeReaderBase::readBlockInfo() {
3844   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3845       Stream.ReadBlockInfoBlock();
3846   if (!MaybeNewBlockInfo)
3847     return MaybeNewBlockInfo.takeError();
3848   std::optional<BitstreamBlockInfo> NewBlockInfo =
3849       std::move(MaybeNewBlockInfo.get());
3850   if (!NewBlockInfo)
3851     return error("Malformed block");
3852   BlockInfo = std::move(*NewBlockInfo);
3853   return Error::success();
3854 }
3855 
3856 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3857   // v1: [selection_kind, name]
3858   // v2: [strtab_offset, strtab_size, selection_kind]
3859   StringRef Name;
3860   std::tie(Name, Record) = readNameFromStrtab(Record);
3861 
3862   if (Record.empty())
3863     return error("Invalid record");
3864   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3865   std::string OldFormatName;
3866   if (!UseStrtab) {
3867     if (Record.size() < 2)
3868       return error("Invalid record");
3869     unsigned ComdatNameSize = Record[1];
3870     if (ComdatNameSize > Record.size() - 2)
3871       return error("Comdat name size too large");
3872     OldFormatName.reserve(ComdatNameSize);
3873     for (unsigned i = 0; i != ComdatNameSize; ++i)
3874       OldFormatName += (char)Record[2 + i];
3875     Name = OldFormatName;
3876   }
3877   Comdat *C = TheModule->getOrInsertComdat(Name);
3878   C->setSelectionKind(SK);
3879   ComdatList.push_back(C);
3880   return Error::success();
3881 }
3882 
3883 static void inferDSOLocal(GlobalValue *GV) {
3884   // infer dso_local from linkage and visibility if it is not encoded.
3885   if (GV->hasLocalLinkage() ||
3886       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3887     GV->setDSOLocal(true);
3888 }
3889 
3890 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3891   GlobalValue::SanitizerMetadata Meta;
3892   if (V & (1 << 0))
3893     Meta.NoAddress = true;
3894   if (V & (1 << 1))
3895     Meta.NoHWAddress = true;
3896   if (V & (1 << 2))
3897     Meta.Memtag = true;
3898   if (V & (1 << 3))
3899     Meta.IsDynInit = true;
3900   return Meta;
3901 }
3902 
3903 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3904   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3905   // visibility, threadlocal, unnamed_addr, externally_initialized,
3906   // dllstorageclass, comdat, attributes, preemption specifier,
3907   // partition strtab offset, partition strtab size] (name in VST)
3908   // v2: [strtab_offset, strtab_size, v1]
3909   // v3: [v2, code_model]
3910   StringRef Name;
3911   std::tie(Name, Record) = readNameFromStrtab(Record);
3912 
3913   if (Record.size() < 6)
3914     return error("Invalid record");
3915   unsigned TyID = Record[0];
3916   Type *Ty = getTypeByID(TyID);
3917   if (!Ty)
3918     return error("Invalid record");
3919   bool isConstant = Record[1] & 1;
3920   bool explicitType = Record[1] & 2;
3921   unsigned AddressSpace;
3922   if (explicitType) {
3923     AddressSpace = Record[1] >> 2;
3924   } else {
3925     if (!Ty->isPointerTy())
3926       return error("Invalid type for value");
3927     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3928     TyID = getContainedTypeID(TyID);
3929     Ty = getTypeByID(TyID);
3930     if (!Ty)
3931       return error("Missing element type for old-style global");
3932   }
3933 
3934   uint64_t RawLinkage = Record[3];
3935   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3936   MaybeAlign Alignment;
3937   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3938     return Err;
3939   std::string Section;
3940   if (Record[5]) {
3941     if (Record[5] - 1 >= SectionTable.size())
3942       return error("Invalid ID");
3943     Section = SectionTable[Record[5] - 1];
3944   }
3945   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3946   // Local linkage must have default visibility.
3947   // auto-upgrade `hidden` and `protected` for old bitcode.
3948   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3949     Visibility = getDecodedVisibility(Record[6]);
3950 
3951   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3952   if (Record.size() > 7)
3953     TLM = getDecodedThreadLocalMode(Record[7]);
3954 
3955   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3956   if (Record.size() > 8)
3957     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3958 
3959   bool ExternallyInitialized = false;
3960   if (Record.size() > 9)
3961     ExternallyInitialized = Record[9];
3962 
3963   GlobalVariable *NewGV =
3964       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3965                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3966   if (Alignment)
3967     NewGV->setAlignment(*Alignment);
3968   if (!Section.empty())
3969     NewGV->setSection(Section);
3970   NewGV->setVisibility(Visibility);
3971   NewGV->setUnnamedAddr(UnnamedAddr);
3972 
3973   if (Record.size() > 10) {
3974     // A GlobalValue with local linkage cannot have a DLL storage class.
3975     if (!NewGV->hasLocalLinkage()) {
3976       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3977     }
3978   } else {
3979     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3980   }
3981 
3982   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3983 
3984   // Remember which value to use for the global initializer.
3985   if (unsigned InitID = Record[2])
3986     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3987 
3988   if (Record.size() > 11) {
3989     if (unsigned ComdatID = Record[11]) {
3990       if (ComdatID > ComdatList.size())
3991         return error("Invalid global variable comdat ID");
3992       NewGV->setComdat(ComdatList[ComdatID - 1]);
3993     }
3994   } else if (hasImplicitComdat(RawLinkage)) {
3995     ImplicitComdatObjects.insert(NewGV);
3996   }
3997 
3998   if (Record.size() > 12) {
3999     auto AS = getAttributes(Record[12]).getFnAttrs();
4000     NewGV->setAttributes(AS);
4001   }
4002 
4003   if (Record.size() > 13) {
4004     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
4005   }
4006   inferDSOLocal(NewGV);
4007 
4008   // Check whether we have enough values to read a partition name.
4009   if (Record.size() > 15)
4010     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4011 
4012   if (Record.size() > 16 && Record[16]) {
4013     llvm::GlobalValue::SanitizerMetadata Meta =
4014         deserializeSanitizerMetadata(Record[16]);
4015     NewGV->setSanitizerMetadata(Meta);
4016   }
4017 
4018   if (Record.size() > 17 && Record[17]) {
4019     if (auto CM = getDecodedCodeModel(Record[17]))
4020       NewGV->setCodeModel(*CM);
4021     else
4022       return error("Invalid global variable code model");
4023   }
4024 
4025   return Error::success();
4026 }
4027 
4028 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4029   if (ValueTypeCallback) {
4030     (*ValueTypeCallback)(
4031         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4032         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4033   }
4034 }
4035 
4036 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4037   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4038   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4039   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
4040   // v2: [strtab_offset, strtab_size, v1]
4041   StringRef Name;
4042   std::tie(Name, Record) = readNameFromStrtab(Record);
4043 
4044   if (Record.size() < 8)
4045     return error("Invalid record");
4046   unsigned FTyID = Record[0];
4047   Type *FTy = getTypeByID(FTyID);
4048   if (!FTy)
4049     return error("Invalid record");
4050   if (isa<PointerType>(FTy)) {
4051     FTyID = getContainedTypeID(FTyID, 0);
4052     FTy = getTypeByID(FTyID);
4053     if (!FTy)
4054       return error("Missing element type for old-style function");
4055   }
4056 
4057   if (!isa<FunctionType>(FTy))
4058     return error("Invalid type for value");
4059   auto CC = static_cast<CallingConv::ID>(Record[1]);
4060   if (CC & ~CallingConv::MaxID)
4061     return error("Invalid calling convention ID");
4062 
4063   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4064   if (Record.size() > 16)
4065     AddrSpace = Record[16];
4066 
4067   Function *Func =
4068       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4069                        AddrSpace, Name, TheModule);
4070 
4071   assert(Func->getFunctionType() == FTy &&
4072          "Incorrect fully specified type provided for function");
4073   FunctionTypeIDs[Func] = FTyID;
4074 
4075   Func->setCallingConv(CC);
4076   bool isProto = Record[2];
4077   uint64_t RawLinkage = Record[3];
4078   Func->setLinkage(getDecodedLinkage(RawLinkage));
4079   Func->setAttributes(getAttributes(Record[4]));
4080   callValueTypeCallback(Func, FTyID);
4081 
4082   // Upgrade any old-style byval or sret without a type by propagating the
4083   // argument's pointee type. There should be no opaque pointers where the byval
4084   // type is implicit.
4085   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4086     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4087                                      Attribute::InAlloca}) {
4088       if (!Func->hasParamAttribute(i, Kind))
4089         continue;
4090 
4091       if (Func->getParamAttribute(i, Kind).getValueAsType())
4092         continue;
4093 
4094       Func->removeParamAttr(i, Kind);
4095 
4096       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4097       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4098       if (!PtrEltTy)
4099         return error("Missing param element type for attribute upgrade");
4100 
4101       Attribute NewAttr;
4102       switch (Kind) {
4103       case Attribute::ByVal:
4104         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4105         break;
4106       case Attribute::StructRet:
4107         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4108         break;
4109       case Attribute::InAlloca:
4110         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4111         break;
4112       default:
4113         llvm_unreachable("not an upgraded type attribute");
4114       }
4115 
4116       Func->addParamAttr(i, NewAttr);
4117     }
4118   }
4119 
4120   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4121       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4122     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4123     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4124     if (!ByValTy)
4125       return error("Missing param element type for x86_intrcc upgrade");
4126     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4127     Func->addParamAttr(0, NewAttr);
4128   }
4129 
4130   MaybeAlign Alignment;
4131   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4132     return Err;
4133   if (Alignment)
4134     Func->setAlignment(*Alignment);
4135   if (Record[6]) {
4136     if (Record[6] - 1 >= SectionTable.size())
4137       return error("Invalid ID");
4138     Func->setSection(SectionTable[Record[6] - 1]);
4139   }
4140   // Local linkage must have default visibility.
4141   // auto-upgrade `hidden` and `protected` for old bitcode.
4142   if (!Func->hasLocalLinkage())
4143     Func->setVisibility(getDecodedVisibility(Record[7]));
4144   if (Record.size() > 8 && Record[8]) {
4145     if (Record[8] - 1 >= GCTable.size())
4146       return error("Invalid ID");
4147     Func->setGC(GCTable[Record[8] - 1]);
4148   }
4149   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4150   if (Record.size() > 9)
4151     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4152   Func->setUnnamedAddr(UnnamedAddr);
4153 
4154   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4155   if (Record.size() > 10)
4156     OperandInfo.Prologue = Record[10];
4157 
4158   if (Record.size() > 11) {
4159     // A GlobalValue with local linkage cannot have a DLL storage class.
4160     if (!Func->hasLocalLinkage()) {
4161       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4162     }
4163   } else {
4164     upgradeDLLImportExportLinkage(Func, RawLinkage);
4165   }
4166 
4167   if (Record.size() > 12) {
4168     if (unsigned ComdatID = Record[12]) {
4169       if (ComdatID > ComdatList.size())
4170         return error("Invalid function comdat ID");
4171       Func->setComdat(ComdatList[ComdatID - 1]);
4172     }
4173   } else if (hasImplicitComdat(RawLinkage)) {
4174     ImplicitComdatObjects.insert(Func);
4175   }
4176 
4177   if (Record.size() > 13)
4178     OperandInfo.Prefix = Record[13];
4179 
4180   if (Record.size() > 14)
4181     OperandInfo.PersonalityFn = Record[14];
4182 
4183   if (Record.size() > 15) {
4184     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4185   }
4186   inferDSOLocal(Func);
4187 
4188   // Record[16] is the address space number.
4189 
4190   // Check whether we have enough values to read a partition name. Also make
4191   // sure Strtab has enough values.
4192   if (Record.size() > 18 && Strtab.data() &&
4193       Record[17] + Record[18] <= Strtab.size()) {
4194     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4195   }
4196 
4197   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4198 
4199   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4200     FunctionOperands.push_back(OperandInfo);
4201 
4202   // If this is a function with a body, remember the prototype we are
4203   // creating now, so that we can match up the body with them later.
4204   if (!isProto) {
4205     Func->setIsMaterializable(true);
4206     FunctionsWithBodies.push_back(Func);
4207     DeferredFunctionInfo[Func] = 0;
4208   }
4209   return Error::success();
4210 }
4211 
4212 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4213     unsigned BitCode, ArrayRef<uint64_t> Record) {
4214   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4215   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4216   // dllstorageclass, threadlocal, unnamed_addr,
4217   // preemption specifier] (name in VST)
4218   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4219   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4220   // preemption specifier] (name in VST)
4221   // v2: [strtab_offset, strtab_size, v1]
4222   StringRef Name;
4223   std::tie(Name, Record) = readNameFromStrtab(Record);
4224 
4225   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4226   if (Record.size() < (3 + (unsigned)NewRecord))
4227     return error("Invalid record");
4228   unsigned OpNum = 0;
4229   unsigned TypeID = Record[OpNum++];
4230   Type *Ty = getTypeByID(TypeID);
4231   if (!Ty)
4232     return error("Invalid record");
4233 
4234   unsigned AddrSpace;
4235   if (!NewRecord) {
4236     auto *PTy = dyn_cast<PointerType>(Ty);
4237     if (!PTy)
4238       return error("Invalid type for value");
4239     AddrSpace = PTy->getAddressSpace();
4240     TypeID = getContainedTypeID(TypeID);
4241     Ty = getTypeByID(TypeID);
4242     if (!Ty)
4243       return error("Missing element type for old-style indirect symbol");
4244   } else {
4245     AddrSpace = Record[OpNum++];
4246   }
4247 
4248   auto Val = Record[OpNum++];
4249   auto Linkage = Record[OpNum++];
4250   GlobalValue *NewGA;
4251   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4252       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4253     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4254                                 TheModule);
4255   else
4256     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4257                                 nullptr, TheModule);
4258 
4259   // Local linkage must have default visibility.
4260   // auto-upgrade `hidden` and `protected` for old bitcode.
4261   if (OpNum != Record.size()) {
4262     auto VisInd = OpNum++;
4263     if (!NewGA->hasLocalLinkage())
4264       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4265   }
4266   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4267       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4268     if (OpNum != Record.size()) {
4269       auto S = Record[OpNum++];
4270       // A GlobalValue with local linkage cannot have a DLL storage class.
4271       if (!NewGA->hasLocalLinkage())
4272         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4273     }
4274     else
4275       upgradeDLLImportExportLinkage(NewGA, Linkage);
4276     if (OpNum != Record.size())
4277       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4278     if (OpNum != Record.size())
4279       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4280   }
4281   if (OpNum != Record.size())
4282     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4283   inferDSOLocal(NewGA);
4284 
4285   // Check whether we have enough values to read a partition name.
4286   if (OpNum + 1 < Record.size()) {
4287     // Check Strtab has enough values for the partition.
4288     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4289       return error("Malformed partition, too large.");
4290     NewGA->setPartition(
4291         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4292     OpNum += 2;
4293   }
4294 
4295   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4296   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4297   return Error::success();
4298 }
4299 
4300 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4301                                  bool ShouldLazyLoadMetadata,
4302                                  ParserCallbacks Callbacks) {
4303   // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4304   // has been set to true (default action: load into the old debug format).
4305   TheModule->IsNewDbgInfoFormat =
4306       UseNewDbgInfoFormat &&
4307       LoadBitcodeIntoNewDbgInfoFormat == cl::boolOrDefault::BOU_TRUE;
4308 
4309   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4310   if (ResumeBit) {
4311     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4312       return JumpFailed;
4313   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4314     return Err;
4315 
4316   SmallVector<uint64_t, 64> Record;
4317 
4318   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4319   // finalize the datalayout before we run any of that code.
4320   bool ResolvedDataLayout = false;
4321   // In order to support importing modules with illegal data layout strings,
4322   // delay parsing the data layout string until after upgrades and overrides
4323   // have been applied, allowing to fix illegal data layout strings.
4324   // Initialize to the current module's layout string in case none is specified.
4325   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4326 
4327   auto ResolveDataLayout = [&]() -> Error {
4328     if (ResolvedDataLayout)
4329       return Error::success();
4330 
4331     // Datalayout and triple can't be parsed after this point.
4332     ResolvedDataLayout = true;
4333 
4334     // Auto-upgrade the layout string
4335     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4336         TentativeDataLayoutStr, TheModule->getTargetTriple());
4337 
4338     // Apply override
4339     if (Callbacks.DataLayout) {
4340       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4341               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4342         TentativeDataLayoutStr = *LayoutOverride;
4343     }
4344 
4345     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4346     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4347     if (!MaybeDL)
4348       return MaybeDL.takeError();
4349 
4350     TheModule->setDataLayout(MaybeDL.get());
4351     return Error::success();
4352   };
4353 
4354   // Read all the records for this module.
4355   while (true) {
4356     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4357     if (!MaybeEntry)
4358       return MaybeEntry.takeError();
4359     llvm::BitstreamEntry Entry = MaybeEntry.get();
4360 
4361     switch (Entry.Kind) {
4362     case BitstreamEntry::Error:
4363       return error("Malformed block");
4364     case BitstreamEntry::EndBlock:
4365       if (Error Err = ResolveDataLayout())
4366         return Err;
4367       return globalCleanup();
4368 
4369     case BitstreamEntry::SubBlock:
4370       switch (Entry.ID) {
4371       default:  // Skip unknown content.
4372         if (Error Err = Stream.SkipBlock())
4373           return Err;
4374         break;
4375       case bitc::BLOCKINFO_BLOCK_ID:
4376         if (Error Err = readBlockInfo())
4377           return Err;
4378         break;
4379       case bitc::PARAMATTR_BLOCK_ID:
4380         if (Error Err = parseAttributeBlock())
4381           return Err;
4382         break;
4383       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4384         if (Error Err = parseAttributeGroupBlock())
4385           return Err;
4386         break;
4387       case bitc::TYPE_BLOCK_ID_NEW:
4388         if (Error Err = parseTypeTable())
4389           return Err;
4390         break;
4391       case bitc::VALUE_SYMTAB_BLOCK_ID:
4392         if (!SeenValueSymbolTable) {
4393           // Either this is an old form VST without function index and an
4394           // associated VST forward declaration record (which would have caused
4395           // the VST to be jumped to and parsed before it was encountered
4396           // normally in the stream), or there were no function blocks to
4397           // trigger an earlier parsing of the VST.
4398           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4399           if (Error Err = parseValueSymbolTable())
4400             return Err;
4401           SeenValueSymbolTable = true;
4402         } else {
4403           // We must have had a VST forward declaration record, which caused
4404           // the parser to jump to and parse the VST earlier.
4405           assert(VSTOffset > 0);
4406           if (Error Err = Stream.SkipBlock())
4407             return Err;
4408         }
4409         break;
4410       case bitc::CONSTANTS_BLOCK_ID:
4411         if (Error Err = parseConstants())
4412           return Err;
4413         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4414           return Err;
4415         break;
4416       case bitc::METADATA_BLOCK_ID:
4417         if (ShouldLazyLoadMetadata) {
4418           if (Error Err = rememberAndSkipMetadata())
4419             return Err;
4420           break;
4421         }
4422         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4423         if (Error Err = MDLoader->parseModuleMetadata())
4424           return Err;
4425         break;
4426       case bitc::METADATA_KIND_BLOCK_ID:
4427         if (Error Err = MDLoader->parseMetadataKinds())
4428           return Err;
4429         break;
4430       case bitc::FUNCTION_BLOCK_ID:
4431         if (Error Err = ResolveDataLayout())
4432           return Err;
4433 
4434         // If this is the first function body we've seen, reverse the
4435         // FunctionsWithBodies list.
4436         if (!SeenFirstFunctionBody) {
4437           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4438           if (Error Err = globalCleanup())
4439             return Err;
4440           SeenFirstFunctionBody = true;
4441         }
4442 
4443         if (VSTOffset > 0) {
4444           // If we have a VST forward declaration record, make sure we
4445           // parse the VST now if we haven't already. It is needed to
4446           // set up the DeferredFunctionInfo vector for lazy reading.
4447           if (!SeenValueSymbolTable) {
4448             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4449               return Err;
4450             SeenValueSymbolTable = true;
4451             // Fall through so that we record the NextUnreadBit below.
4452             // This is necessary in case we have an anonymous function that
4453             // is later materialized. Since it will not have a VST entry we
4454             // need to fall back to the lazy parse to find its offset.
4455           } else {
4456             // If we have a VST forward declaration record, but have already
4457             // parsed the VST (just above, when the first function body was
4458             // encountered here), then we are resuming the parse after
4459             // materializing functions. The ResumeBit points to the
4460             // start of the last function block recorded in the
4461             // DeferredFunctionInfo map. Skip it.
4462             if (Error Err = Stream.SkipBlock())
4463               return Err;
4464             continue;
4465           }
4466         }
4467 
4468         // Support older bitcode files that did not have the function
4469         // index in the VST, nor a VST forward declaration record, as
4470         // well as anonymous functions that do not have VST entries.
4471         // Build the DeferredFunctionInfo vector on the fly.
4472         if (Error Err = rememberAndSkipFunctionBody())
4473           return Err;
4474 
4475         // Suspend parsing when we reach the function bodies. Subsequent
4476         // materialization calls will resume it when necessary. If the bitcode
4477         // file is old, the symbol table will be at the end instead and will not
4478         // have been seen yet. In this case, just finish the parse now.
4479         if (SeenValueSymbolTable) {
4480           NextUnreadBit = Stream.GetCurrentBitNo();
4481           // After the VST has been parsed, we need to make sure intrinsic name
4482           // are auto-upgraded.
4483           return globalCleanup();
4484         }
4485         break;
4486       case bitc::USELIST_BLOCK_ID:
4487         if (Error Err = parseUseLists())
4488           return Err;
4489         break;
4490       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4491         if (Error Err = parseOperandBundleTags())
4492           return Err;
4493         break;
4494       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4495         if (Error Err = parseSyncScopeNames())
4496           return Err;
4497         break;
4498       }
4499       continue;
4500 
4501     case BitstreamEntry::Record:
4502       // The interesting case.
4503       break;
4504     }
4505 
4506     // Read a record.
4507     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4508     if (!MaybeBitCode)
4509       return MaybeBitCode.takeError();
4510     switch (unsigned BitCode = MaybeBitCode.get()) {
4511     default: break;  // Default behavior, ignore unknown content.
4512     case bitc::MODULE_CODE_VERSION: {
4513       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4514       if (!VersionOrErr)
4515         return VersionOrErr.takeError();
4516       UseRelativeIDs = *VersionOrErr >= 1;
4517       break;
4518     }
4519     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4520       if (ResolvedDataLayout)
4521         return error("target triple too late in module");
4522       std::string S;
4523       if (convertToString(Record, 0, S))
4524         return error("Invalid record");
4525       TheModule->setTargetTriple(S);
4526       break;
4527     }
4528     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4529       if (ResolvedDataLayout)
4530         return error("datalayout too late in module");
4531       if (convertToString(Record, 0, TentativeDataLayoutStr))
4532         return error("Invalid record");
4533       break;
4534     }
4535     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4536       std::string S;
4537       if (convertToString(Record, 0, S))
4538         return error("Invalid record");
4539       TheModule->setModuleInlineAsm(S);
4540       break;
4541     }
4542     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4543       // Deprecated, but still needed to read old bitcode files.
4544       std::string S;
4545       if (convertToString(Record, 0, S))
4546         return error("Invalid record");
4547       // Ignore value.
4548       break;
4549     }
4550     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4551       std::string S;
4552       if (convertToString(Record, 0, S))
4553         return error("Invalid record");
4554       SectionTable.push_back(S);
4555       break;
4556     }
4557     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4558       std::string S;
4559       if (convertToString(Record, 0, S))
4560         return error("Invalid record");
4561       GCTable.push_back(S);
4562       break;
4563     }
4564     case bitc::MODULE_CODE_COMDAT:
4565       if (Error Err = parseComdatRecord(Record))
4566         return Err;
4567       break;
4568     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4569     // written by ThinLinkBitcodeWriter. See
4570     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4571     // record
4572     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4573     case bitc::MODULE_CODE_GLOBALVAR:
4574       if (Error Err = parseGlobalVarRecord(Record))
4575         return Err;
4576       break;
4577     case bitc::MODULE_CODE_FUNCTION:
4578       if (Error Err = ResolveDataLayout())
4579         return Err;
4580       if (Error Err = parseFunctionRecord(Record))
4581         return Err;
4582       break;
4583     case bitc::MODULE_CODE_IFUNC:
4584     case bitc::MODULE_CODE_ALIAS:
4585     case bitc::MODULE_CODE_ALIAS_OLD:
4586       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4587         return Err;
4588       break;
4589     /// MODULE_CODE_VSTOFFSET: [offset]
4590     case bitc::MODULE_CODE_VSTOFFSET:
4591       if (Record.empty())
4592         return error("Invalid record");
4593       // Note that we subtract 1 here because the offset is relative to one word
4594       // before the start of the identification or module block, which was
4595       // historically always the start of the regular bitcode header.
4596       VSTOffset = Record[0] - 1;
4597       break;
4598     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4599     case bitc::MODULE_CODE_SOURCE_FILENAME:
4600       SmallString<128> ValueName;
4601       if (convertToString(Record, 0, ValueName))
4602         return error("Invalid record");
4603       TheModule->setSourceFileName(ValueName);
4604       break;
4605     }
4606     Record.clear();
4607   }
4608   this->ValueTypeCallback = std::nullopt;
4609   return Error::success();
4610 }
4611 
4612 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4613                                       bool IsImporting,
4614                                       ParserCallbacks Callbacks) {
4615   TheModule = M;
4616   MetadataLoaderCallbacks MDCallbacks;
4617   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4618   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4619     return getContainedTypeID(I, J);
4620   };
4621   MDCallbacks.MDType = Callbacks.MDType;
4622   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4623   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4624 }
4625 
4626 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4627   if (!isa<PointerType>(PtrType))
4628     return error("Load/Store operand is not a pointer type");
4629   if (!PointerType::isLoadableOrStorableType(ValType))
4630     return error("Cannot load/store from pointer");
4631   return Error::success();
4632 }
4633 
4634 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4635                                              ArrayRef<unsigned> ArgTyIDs) {
4636   AttributeList Attrs = CB->getAttributes();
4637   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4638     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4639                                      Attribute::InAlloca}) {
4640       if (!Attrs.hasParamAttr(i, Kind) ||
4641           Attrs.getParamAttr(i, Kind).getValueAsType())
4642         continue;
4643 
4644       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4645       if (!PtrEltTy)
4646         return error("Missing element type for typed attribute upgrade");
4647 
4648       Attribute NewAttr;
4649       switch (Kind) {
4650       case Attribute::ByVal:
4651         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4652         break;
4653       case Attribute::StructRet:
4654         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4655         break;
4656       case Attribute::InAlloca:
4657         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4658         break;
4659       default:
4660         llvm_unreachable("not an upgraded type attribute");
4661       }
4662 
4663       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4664     }
4665   }
4666 
4667   if (CB->isInlineAsm()) {
4668     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4669     unsigned ArgNo = 0;
4670     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4671       if (!CI.hasArg())
4672         continue;
4673 
4674       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4675         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4676         if (!ElemTy)
4677           return error("Missing element type for inline asm upgrade");
4678         Attrs = Attrs.addParamAttribute(
4679             Context, ArgNo,
4680             Attribute::get(Context, Attribute::ElementType, ElemTy));
4681       }
4682 
4683       ArgNo++;
4684     }
4685   }
4686 
4687   switch (CB->getIntrinsicID()) {
4688   case Intrinsic::preserve_array_access_index:
4689   case Intrinsic::preserve_struct_access_index:
4690   case Intrinsic::aarch64_ldaxr:
4691   case Intrinsic::aarch64_ldxr:
4692   case Intrinsic::aarch64_stlxr:
4693   case Intrinsic::aarch64_stxr:
4694   case Intrinsic::arm_ldaex:
4695   case Intrinsic::arm_ldrex:
4696   case Intrinsic::arm_stlex:
4697   case Intrinsic::arm_strex: {
4698     unsigned ArgNo;
4699     switch (CB->getIntrinsicID()) {
4700     case Intrinsic::aarch64_stlxr:
4701     case Intrinsic::aarch64_stxr:
4702     case Intrinsic::arm_stlex:
4703     case Intrinsic::arm_strex:
4704       ArgNo = 1;
4705       break;
4706     default:
4707       ArgNo = 0;
4708       break;
4709     }
4710     if (!Attrs.getParamElementType(ArgNo)) {
4711       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4712       if (!ElTy)
4713         return error("Missing element type for elementtype upgrade");
4714       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4715       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4716     }
4717     break;
4718   }
4719   default:
4720     break;
4721   }
4722 
4723   CB->setAttributes(Attrs);
4724   return Error::success();
4725 }
4726 
4727 /// Lazily parse the specified function body block.
4728 Error BitcodeReader::parseFunctionBody(Function *F) {
4729   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4730     return Err;
4731 
4732   // Unexpected unresolved metadata when parsing function.
4733   if (MDLoader->hasFwdRefs())
4734     return error("Invalid function metadata: incoming forward references");
4735 
4736   InstructionList.clear();
4737   unsigned ModuleValueListSize = ValueList.size();
4738   unsigned ModuleMDLoaderSize = MDLoader->size();
4739 
4740   // Add all the function arguments to the value table.
4741   unsigned ArgNo = 0;
4742   unsigned FTyID = FunctionTypeIDs[F];
4743   for (Argument &I : F->args()) {
4744     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4745     assert(I.getType() == getTypeByID(ArgTyID) &&
4746            "Incorrect fully specified type for Function Argument");
4747     ValueList.push_back(&I, ArgTyID);
4748     ++ArgNo;
4749   }
4750   unsigned NextValueNo = ValueList.size();
4751   BasicBlock *CurBB = nullptr;
4752   unsigned CurBBNo = 0;
4753   // Block into which constant expressions from phi nodes are materialized.
4754   BasicBlock *PhiConstExprBB = nullptr;
4755   // Edge blocks for phi nodes into which constant expressions have been
4756   // expanded.
4757   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4758     ConstExprEdgeBBs;
4759 
4760   DebugLoc LastLoc;
4761   auto getLastInstruction = [&]() -> Instruction * {
4762     if (CurBB && !CurBB->empty())
4763       return &CurBB->back();
4764     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4765              !FunctionBBs[CurBBNo - 1]->empty())
4766       return &FunctionBBs[CurBBNo - 1]->back();
4767     return nullptr;
4768   };
4769 
4770   std::vector<OperandBundleDef> OperandBundles;
4771 
4772   // Read all the records.
4773   SmallVector<uint64_t, 64> Record;
4774 
4775   while (true) {
4776     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4777     if (!MaybeEntry)
4778       return MaybeEntry.takeError();
4779     llvm::BitstreamEntry Entry = MaybeEntry.get();
4780 
4781     switch (Entry.Kind) {
4782     case BitstreamEntry::Error:
4783       return error("Malformed block");
4784     case BitstreamEntry::EndBlock:
4785       goto OutOfRecordLoop;
4786 
4787     case BitstreamEntry::SubBlock:
4788       switch (Entry.ID) {
4789       default:  // Skip unknown content.
4790         if (Error Err = Stream.SkipBlock())
4791           return Err;
4792         break;
4793       case bitc::CONSTANTS_BLOCK_ID:
4794         if (Error Err = parseConstants())
4795           return Err;
4796         NextValueNo = ValueList.size();
4797         break;
4798       case bitc::VALUE_SYMTAB_BLOCK_ID:
4799         if (Error Err = parseValueSymbolTable())
4800           return Err;
4801         break;
4802       case bitc::METADATA_ATTACHMENT_ID:
4803         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4804           return Err;
4805         break;
4806       case bitc::METADATA_BLOCK_ID:
4807         assert(DeferredMetadataInfo.empty() &&
4808                "Must read all module-level metadata before function-level");
4809         if (Error Err = MDLoader->parseFunctionMetadata())
4810           return Err;
4811         break;
4812       case bitc::USELIST_BLOCK_ID:
4813         if (Error Err = parseUseLists())
4814           return Err;
4815         break;
4816       }
4817       continue;
4818 
4819     case BitstreamEntry::Record:
4820       // The interesting case.
4821       break;
4822     }
4823 
4824     // Read a record.
4825     Record.clear();
4826     Instruction *I = nullptr;
4827     unsigned ResTypeID = InvalidTypeID;
4828     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4829     if (!MaybeBitCode)
4830       return MaybeBitCode.takeError();
4831     switch (unsigned BitCode = MaybeBitCode.get()) {
4832     default: // Default behavior: reject
4833       return error("Invalid value");
4834     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4835       if (Record.empty() || Record[0] == 0)
4836         return error("Invalid record");
4837       // Create all the basic blocks for the function.
4838       FunctionBBs.resize(Record[0]);
4839 
4840       // See if anything took the address of blocks in this function.
4841       auto BBFRI = BasicBlockFwdRefs.find(F);
4842       if (BBFRI == BasicBlockFwdRefs.end()) {
4843         for (BasicBlock *&BB : FunctionBBs)
4844           BB = BasicBlock::Create(Context, "", F);
4845       } else {
4846         auto &BBRefs = BBFRI->second;
4847         // Check for invalid basic block references.
4848         if (BBRefs.size() > FunctionBBs.size())
4849           return error("Invalid ID");
4850         assert(!BBRefs.empty() && "Unexpected empty array");
4851         assert(!BBRefs.front() && "Invalid reference to entry block");
4852         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4853              ++I)
4854           if (I < RE && BBRefs[I]) {
4855             BBRefs[I]->insertInto(F);
4856             FunctionBBs[I] = BBRefs[I];
4857           } else {
4858             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4859           }
4860 
4861         // Erase from the table.
4862         BasicBlockFwdRefs.erase(BBFRI);
4863       }
4864 
4865       CurBB = FunctionBBs[0];
4866       continue;
4867     }
4868 
4869     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4870       // The record should not be emitted if it's an empty list.
4871       if (Record.empty())
4872         return error("Invalid record");
4873       // When we have the RARE case of a BlockAddress Constant that is not
4874       // scoped to the Function it refers to, we need to conservatively
4875       // materialize the referred to Function, regardless of whether or not
4876       // that Function will ultimately be linked, otherwise users of
4877       // BitcodeReader might start splicing out Function bodies such that we
4878       // might no longer be able to materialize the BlockAddress since the
4879       // BasicBlock (and entire body of the Function) the BlockAddress refers
4880       // to may have been moved. In the case that the user of BitcodeReader
4881       // decides ultimately not to link the Function body, materializing here
4882       // could be considered wasteful, but it's better than a deserialization
4883       // failure as described. This keeps BitcodeReader unaware of complex
4884       // linkage policy decisions such as those use by LTO, leaving those
4885       // decisions "one layer up."
4886       for (uint64_t ValID : Record)
4887         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4888           BackwardRefFunctions.push_back(F);
4889         else
4890           return error("Invalid record");
4891 
4892       continue;
4893 
4894     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4895       // This record indicates that the last instruction is at the same
4896       // location as the previous instruction with a location.
4897       I = getLastInstruction();
4898 
4899       if (!I)
4900         return error("Invalid record");
4901       I->setDebugLoc(LastLoc);
4902       I = nullptr;
4903       continue;
4904 
4905     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4906       I = getLastInstruction();
4907       if (!I || Record.size() < 4)
4908         return error("Invalid record");
4909 
4910       unsigned Line = Record[0], Col = Record[1];
4911       unsigned ScopeID = Record[2], IAID = Record[3];
4912       bool isImplicitCode = Record.size() == 5 && Record[4];
4913 
4914       MDNode *Scope = nullptr, *IA = nullptr;
4915       if (ScopeID) {
4916         Scope = dyn_cast_or_null<MDNode>(
4917             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4918         if (!Scope)
4919           return error("Invalid record");
4920       }
4921       if (IAID) {
4922         IA = dyn_cast_or_null<MDNode>(
4923             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4924         if (!IA)
4925           return error("Invalid record");
4926       }
4927       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4928                                 isImplicitCode);
4929       I->setDebugLoc(LastLoc);
4930       I = nullptr;
4931       continue;
4932     }
4933     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4934       unsigned OpNum = 0;
4935       Value *LHS;
4936       unsigned TypeID;
4937       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4938           OpNum+1 > Record.size())
4939         return error("Invalid record");
4940 
4941       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4942       if (Opc == -1)
4943         return error("Invalid record");
4944       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4945       ResTypeID = TypeID;
4946       InstructionList.push_back(I);
4947       if (OpNum < Record.size()) {
4948         if (isa<FPMathOperator>(I)) {
4949           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4950           if (FMF.any())
4951             I->setFastMathFlags(FMF);
4952         }
4953       }
4954       break;
4955     }
4956     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4957       unsigned OpNum = 0;
4958       Value *LHS, *RHS;
4959       unsigned TypeID;
4960       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4961           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4962                    CurBB) ||
4963           OpNum+1 > Record.size())
4964         return error("Invalid record");
4965 
4966       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4967       if (Opc == -1)
4968         return error("Invalid record");
4969       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4970       ResTypeID = TypeID;
4971       InstructionList.push_back(I);
4972       if (OpNum < Record.size()) {
4973         if (Opc == Instruction::Add ||
4974             Opc == Instruction::Sub ||
4975             Opc == Instruction::Mul ||
4976             Opc == Instruction::Shl) {
4977           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4978             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4979           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4980             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4981         } else if (Opc == Instruction::SDiv ||
4982                    Opc == Instruction::UDiv ||
4983                    Opc == Instruction::LShr ||
4984                    Opc == Instruction::AShr) {
4985           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4986             cast<BinaryOperator>(I)->setIsExact(true);
4987         } else if (Opc == Instruction::Or) {
4988           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
4989             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
4990         } else if (isa<FPMathOperator>(I)) {
4991           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4992           if (FMF.any())
4993             I->setFastMathFlags(FMF);
4994         }
4995       }
4996       break;
4997     }
4998     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4999       unsigned OpNum = 0;
5000       Value *Op;
5001       unsigned OpTypeID;
5002       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5003           OpNum + 1 > Record.size())
5004         return error("Invalid record");
5005 
5006       ResTypeID = Record[OpNum++];
5007       Type *ResTy = getTypeByID(ResTypeID);
5008       int Opc = getDecodedCastOpcode(Record[OpNum++]);
5009 
5010       if (Opc == -1 || !ResTy)
5011         return error("Invalid record");
5012       Instruction *Temp = nullptr;
5013       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
5014         if (Temp) {
5015           InstructionList.push_back(Temp);
5016           assert(CurBB && "No current BB?");
5017           Temp->insertInto(CurBB, CurBB->end());
5018         }
5019       } else {
5020         auto CastOp = (Instruction::CastOps)Opc;
5021         if (!CastInst::castIsValid(CastOp, Op, ResTy))
5022           return error("Invalid cast");
5023         I = CastInst::Create(CastOp, Op, ResTy);
5024       }
5025       if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) &&
5026           (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)))
5027         I->setNonNeg(true);
5028       InstructionList.push_back(I);
5029       break;
5030     }
5031     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5032     case bitc::FUNC_CODE_INST_GEP_OLD:
5033     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5034       unsigned OpNum = 0;
5035 
5036       unsigned TyID;
5037       Type *Ty;
5038       bool InBounds;
5039 
5040       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5041         InBounds = Record[OpNum++];
5042         TyID = Record[OpNum++];
5043         Ty = getTypeByID(TyID);
5044       } else {
5045         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
5046         TyID = InvalidTypeID;
5047         Ty = nullptr;
5048       }
5049 
5050       Value *BasePtr;
5051       unsigned BasePtrTypeID;
5052       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5053                            CurBB))
5054         return error("Invalid record");
5055 
5056       if (!Ty) {
5057         TyID = getContainedTypeID(BasePtrTypeID);
5058         if (BasePtr->getType()->isVectorTy())
5059           TyID = getContainedTypeID(TyID);
5060         Ty = getTypeByID(TyID);
5061       }
5062 
5063       SmallVector<Value*, 16> GEPIdx;
5064       while (OpNum != Record.size()) {
5065         Value *Op;
5066         unsigned OpTypeID;
5067         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5068           return error("Invalid record");
5069         GEPIdx.push_back(Op);
5070       }
5071 
5072       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5073 
5074       ResTypeID = TyID;
5075       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5076         auto GTI = std::next(gep_type_begin(I));
5077         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5078           unsigned SubType = 0;
5079           if (GTI.isStruct()) {
5080             ConstantInt *IdxC =
5081                 Idx->getType()->isVectorTy()
5082                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5083                     : cast<ConstantInt>(Idx);
5084             SubType = IdxC->getZExtValue();
5085           }
5086           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5087           ++GTI;
5088         }
5089       }
5090 
5091       // At this point ResTypeID is the result element type. We need a pointer
5092       // or vector of pointer to it.
5093       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5094       if (I->getType()->isVectorTy())
5095         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5096 
5097       InstructionList.push_back(I);
5098       if (InBounds)
5099         cast<GetElementPtrInst>(I)->setIsInBounds(true);
5100       break;
5101     }
5102 
5103     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5104                                        // EXTRACTVAL: [opty, opval, n x indices]
5105       unsigned OpNum = 0;
5106       Value *Agg;
5107       unsigned AggTypeID;
5108       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5109         return error("Invalid record");
5110       Type *Ty = Agg->getType();
5111 
5112       unsigned RecSize = Record.size();
5113       if (OpNum == RecSize)
5114         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5115 
5116       SmallVector<unsigned, 4> EXTRACTVALIdx;
5117       ResTypeID = AggTypeID;
5118       for (; OpNum != RecSize; ++OpNum) {
5119         bool IsArray = Ty->isArrayTy();
5120         bool IsStruct = Ty->isStructTy();
5121         uint64_t Index = Record[OpNum];
5122 
5123         if (!IsStruct && !IsArray)
5124           return error("EXTRACTVAL: Invalid type");
5125         if ((unsigned)Index != Index)
5126           return error("Invalid value");
5127         if (IsStruct && Index >= Ty->getStructNumElements())
5128           return error("EXTRACTVAL: Invalid struct index");
5129         if (IsArray && Index >= Ty->getArrayNumElements())
5130           return error("EXTRACTVAL: Invalid array index");
5131         EXTRACTVALIdx.push_back((unsigned)Index);
5132 
5133         if (IsStruct) {
5134           Ty = Ty->getStructElementType(Index);
5135           ResTypeID = getContainedTypeID(ResTypeID, Index);
5136         } else {
5137           Ty = Ty->getArrayElementType();
5138           ResTypeID = getContainedTypeID(ResTypeID);
5139         }
5140       }
5141 
5142       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5143       InstructionList.push_back(I);
5144       break;
5145     }
5146 
5147     case bitc::FUNC_CODE_INST_INSERTVAL: {
5148                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5149       unsigned OpNum = 0;
5150       Value *Agg;
5151       unsigned AggTypeID;
5152       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5153         return error("Invalid record");
5154       Value *Val;
5155       unsigned ValTypeID;
5156       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5157         return error("Invalid record");
5158 
5159       unsigned RecSize = Record.size();
5160       if (OpNum == RecSize)
5161         return error("INSERTVAL: Invalid instruction with 0 indices");
5162 
5163       SmallVector<unsigned, 4> INSERTVALIdx;
5164       Type *CurTy = Agg->getType();
5165       for (; OpNum != RecSize; ++OpNum) {
5166         bool IsArray = CurTy->isArrayTy();
5167         bool IsStruct = CurTy->isStructTy();
5168         uint64_t Index = Record[OpNum];
5169 
5170         if (!IsStruct && !IsArray)
5171           return error("INSERTVAL: Invalid type");
5172         if ((unsigned)Index != Index)
5173           return error("Invalid value");
5174         if (IsStruct && Index >= CurTy->getStructNumElements())
5175           return error("INSERTVAL: Invalid struct index");
5176         if (IsArray && Index >= CurTy->getArrayNumElements())
5177           return error("INSERTVAL: Invalid array index");
5178 
5179         INSERTVALIdx.push_back((unsigned)Index);
5180         if (IsStruct)
5181           CurTy = CurTy->getStructElementType(Index);
5182         else
5183           CurTy = CurTy->getArrayElementType();
5184       }
5185 
5186       if (CurTy != Val->getType())
5187         return error("Inserted value type doesn't match aggregate type");
5188 
5189       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5190       ResTypeID = AggTypeID;
5191       InstructionList.push_back(I);
5192       break;
5193     }
5194 
5195     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5196       // obsolete form of select
5197       // handles select i1 ... in old bitcode
5198       unsigned OpNum = 0;
5199       Value *TrueVal, *FalseVal, *Cond;
5200       unsigned TypeID;
5201       Type *CondType = Type::getInt1Ty(Context);
5202       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5203                            CurBB) ||
5204           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5205                    FalseVal, CurBB) ||
5206           popValue(Record, OpNum, NextValueNo, CondType,
5207                    getVirtualTypeID(CondType), Cond, CurBB))
5208         return error("Invalid record");
5209 
5210       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5211       ResTypeID = TypeID;
5212       InstructionList.push_back(I);
5213       break;
5214     }
5215 
5216     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5217       // new form of select
5218       // handles select i1 or select [N x i1]
5219       unsigned OpNum = 0;
5220       Value *TrueVal, *FalseVal, *Cond;
5221       unsigned ValTypeID, CondTypeID;
5222       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5223                            CurBB) ||
5224           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5225                    FalseVal, CurBB) ||
5226           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5227         return error("Invalid record");
5228 
5229       // select condition can be either i1 or [N x i1]
5230       if (VectorType* vector_type =
5231           dyn_cast<VectorType>(Cond->getType())) {
5232         // expect <n x i1>
5233         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5234           return error("Invalid type for value");
5235       } else {
5236         // expect i1
5237         if (Cond->getType() != Type::getInt1Ty(Context))
5238           return error("Invalid type for value");
5239       }
5240 
5241       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5242       ResTypeID = ValTypeID;
5243       InstructionList.push_back(I);
5244       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5245         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5246         if (FMF.any())
5247           I->setFastMathFlags(FMF);
5248       }
5249       break;
5250     }
5251 
5252     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5253       unsigned OpNum = 0;
5254       Value *Vec, *Idx;
5255       unsigned VecTypeID, IdxTypeID;
5256       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5257           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5258         return error("Invalid record");
5259       if (!Vec->getType()->isVectorTy())
5260         return error("Invalid type for value");
5261       I = ExtractElementInst::Create(Vec, Idx);
5262       ResTypeID = getContainedTypeID(VecTypeID);
5263       InstructionList.push_back(I);
5264       break;
5265     }
5266 
5267     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5268       unsigned OpNum = 0;
5269       Value *Vec, *Elt, *Idx;
5270       unsigned VecTypeID, IdxTypeID;
5271       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5272         return error("Invalid record");
5273       if (!Vec->getType()->isVectorTy())
5274         return error("Invalid type for value");
5275       if (popValue(Record, OpNum, NextValueNo,
5276                    cast<VectorType>(Vec->getType())->getElementType(),
5277                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5278           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5279         return error("Invalid record");
5280       I = InsertElementInst::Create(Vec, Elt, Idx);
5281       ResTypeID = VecTypeID;
5282       InstructionList.push_back(I);
5283       break;
5284     }
5285 
5286     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5287       unsigned OpNum = 0;
5288       Value *Vec1, *Vec2, *Mask;
5289       unsigned Vec1TypeID;
5290       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5291                            CurBB) ||
5292           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5293                    Vec2, CurBB))
5294         return error("Invalid record");
5295 
5296       unsigned MaskTypeID;
5297       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5298         return error("Invalid record");
5299       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5300         return error("Invalid type for value");
5301 
5302       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5303       ResTypeID =
5304           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5305       InstructionList.push_back(I);
5306       break;
5307     }
5308 
5309     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5310       // Old form of ICmp/FCmp returning bool
5311       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5312       // both legal on vectors but had different behaviour.
5313     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5314       // FCmp/ICmp returning bool or vector of bool
5315 
5316       unsigned OpNum = 0;
5317       Value *LHS, *RHS;
5318       unsigned LHSTypeID;
5319       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5320           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5321                    CurBB))
5322         return error("Invalid record");
5323 
5324       if (OpNum >= Record.size())
5325         return error(
5326             "Invalid record: operand number exceeded available operands");
5327 
5328       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5329       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5330       FastMathFlags FMF;
5331       if (IsFP && Record.size() > OpNum+1)
5332         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5333 
5334       if (OpNum+1 != Record.size())
5335         return error("Invalid record");
5336 
5337       if (IsFP) {
5338         if (!CmpInst::isFPPredicate(PredVal))
5339           return error("Invalid fcmp predicate");
5340         I = new FCmpInst(PredVal, LHS, RHS);
5341       } else {
5342         if (!CmpInst::isIntPredicate(PredVal))
5343           return error("Invalid icmp predicate");
5344         I = new ICmpInst(PredVal, LHS, RHS);
5345       }
5346 
5347       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5348       if (LHS->getType()->isVectorTy())
5349         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5350 
5351       if (FMF.any())
5352         I->setFastMathFlags(FMF);
5353       InstructionList.push_back(I);
5354       break;
5355     }
5356 
5357     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5358       {
5359         unsigned Size = Record.size();
5360         if (Size == 0) {
5361           I = ReturnInst::Create(Context);
5362           InstructionList.push_back(I);
5363           break;
5364         }
5365 
5366         unsigned OpNum = 0;
5367         Value *Op = nullptr;
5368         unsigned OpTypeID;
5369         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5370           return error("Invalid record");
5371         if (OpNum != Record.size())
5372           return error("Invalid record");
5373 
5374         I = ReturnInst::Create(Context, Op);
5375         InstructionList.push_back(I);
5376         break;
5377       }
5378     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5379       if (Record.size() != 1 && Record.size() != 3)
5380         return error("Invalid record");
5381       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5382       if (!TrueDest)
5383         return error("Invalid record");
5384 
5385       if (Record.size() == 1) {
5386         I = BranchInst::Create(TrueDest);
5387         InstructionList.push_back(I);
5388       }
5389       else {
5390         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5391         Type *CondType = Type::getInt1Ty(Context);
5392         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5393                                getVirtualTypeID(CondType), CurBB);
5394         if (!FalseDest || !Cond)
5395           return error("Invalid record");
5396         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5397         InstructionList.push_back(I);
5398       }
5399       break;
5400     }
5401     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5402       if (Record.size() != 1 && Record.size() != 2)
5403         return error("Invalid record");
5404       unsigned Idx = 0;
5405       Type *TokenTy = Type::getTokenTy(Context);
5406       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5407                                    getVirtualTypeID(TokenTy), CurBB);
5408       if (!CleanupPad)
5409         return error("Invalid record");
5410       BasicBlock *UnwindDest = nullptr;
5411       if (Record.size() == 2) {
5412         UnwindDest = getBasicBlock(Record[Idx++]);
5413         if (!UnwindDest)
5414           return error("Invalid record");
5415       }
5416 
5417       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5418       InstructionList.push_back(I);
5419       break;
5420     }
5421     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5422       if (Record.size() != 2)
5423         return error("Invalid record");
5424       unsigned Idx = 0;
5425       Type *TokenTy = Type::getTokenTy(Context);
5426       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5427                                  getVirtualTypeID(TokenTy), CurBB);
5428       if (!CatchPad)
5429         return error("Invalid record");
5430       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5431       if (!BB)
5432         return error("Invalid record");
5433 
5434       I = CatchReturnInst::Create(CatchPad, BB);
5435       InstructionList.push_back(I);
5436       break;
5437     }
5438     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5439       // We must have, at minimum, the outer scope and the number of arguments.
5440       if (Record.size() < 2)
5441         return error("Invalid record");
5442 
5443       unsigned Idx = 0;
5444 
5445       Type *TokenTy = Type::getTokenTy(Context);
5446       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5447                                   getVirtualTypeID(TokenTy), CurBB);
5448       if (!ParentPad)
5449         return error("Invalid record");
5450 
5451       unsigned NumHandlers = Record[Idx++];
5452 
5453       SmallVector<BasicBlock *, 2> Handlers;
5454       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5455         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5456         if (!BB)
5457           return error("Invalid record");
5458         Handlers.push_back(BB);
5459       }
5460 
5461       BasicBlock *UnwindDest = nullptr;
5462       if (Idx + 1 == Record.size()) {
5463         UnwindDest = getBasicBlock(Record[Idx++]);
5464         if (!UnwindDest)
5465           return error("Invalid record");
5466       }
5467 
5468       if (Record.size() != Idx)
5469         return error("Invalid record");
5470 
5471       auto *CatchSwitch =
5472           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5473       for (BasicBlock *Handler : Handlers)
5474         CatchSwitch->addHandler(Handler);
5475       I = CatchSwitch;
5476       ResTypeID = getVirtualTypeID(I->getType());
5477       InstructionList.push_back(I);
5478       break;
5479     }
5480     case bitc::FUNC_CODE_INST_CATCHPAD:
5481     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5482       // We must have, at minimum, the outer scope and the number of arguments.
5483       if (Record.size() < 2)
5484         return error("Invalid record");
5485 
5486       unsigned Idx = 0;
5487 
5488       Type *TokenTy = Type::getTokenTy(Context);
5489       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5490                                   getVirtualTypeID(TokenTy), CurBB);
5491       if (!ParentPad)
5492         return error("Invald record");
5493 
5494       unsigned NumArgOperands = Record[Idx++];
5495 
5496       SmallVector<Value *, 2> Args;
5497       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5498         Value *Val;
5499         unsigned ValTypeID;
5500         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5501           return error("Invalid record");
5502         Args.push_back(Val);
5503       }
5504 
5505       if (Record.size() != Idx)
5506         return error("Invalid record");
5507 
5508       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5509         I = CleanupPadInst::Create(ParentPad, Args);
5510       else
5511         I = CatchPadInst::Create(ParentPad, Args);
5512       ResTypeID = getVirtualTypeID(I->getType());
5513       InstructionList.push_back(I);
5514       break;
5515     }
5516     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5517       // Check magic
5518       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5519         // "New" SwitchInst format with case ranges. The changes to write this
5520         // format were reverted but we still recognize bitcode that uses it.
5521         // Hopefully someday we will have support for case ranges and can use
5522         // this format again.
5523 
5524         unsigned OpTyID = Record[1];
5525         Type *OpTy = getTypeByID(OpTyID);
5526         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5527 
5528         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5529         BasicBlock *Default = getBasicBlock(Record[3]);
5530         if (!OpTy || !Cond || !Default)
5531           return error("Invalid record");
5532 
5533         unsigned NumCases = Record[4];
5534 
5535         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5536         InstructionList.push_back(SI);
5537 
5538         unsigned CurIdx = 5;
5539         for (unsigned i = 0; i != NumCases; ++i) {
5540           SmallVector<ConstantInt*, 1> CaseVals;
5541           unsigned NumItems = Record[CurIdx++];
5542           for (unsigned ci = 0; ci != NumItems; ++ci) {
5543             bool isSingleNumber = Record[CurIdx++];
5544 
5545             APInt Low;
5546             unsigned ActiveWords = 1;
5547             if (ValueBitWidth > 64)
5548               ActiveWords = Record[CurIdx++];
5549             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5550                                 ValueBitWidth);
5551             CurIdx += ActiveWords;
5552 
5553             if (!isSingleNumber) {
5554               ActiveWords = 1;
5555               if (ValueBitWidth > 64)
5556                 ActiveWords = Record[CurIdx++];
5557               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5558                                          ValueBitWidth);
5559               CurIdx += ActiveWords;
5560 
5561               // FIXME: It is not clear whether values in the range should be
5562               // compared as signed or unsigned values. The partially
5563               // implemented changes that used this format in the past used
5564               // unsigned comparisons.
5565               for ( ; Low.ule(High); ++Low)
5566                 CaseVals.push_back(ConstantInt::get(Context, Low));
5567             } else
5568               CaseVals.push_back(ConstantInt::get(Context, Low));
5569           }
5570           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5571           for (ConstantInt *Cst : CaseVals)
5572             SI->addCase(Cst, DestBB);
5573         }
5574         I = SI;
5575         break;
5576       }
5577 
5578       // Old SwitchInst format without case ranges.
5579 
5580       if (Record.size() < 3 || (Record.size() & 1) == 0)
5581         return error("Invalid record");
5582       unsigned OpTyID = Record[0];
5583       Type *OpTy = getTypeByID(OpTyID);
5584       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5585       BasicBlock *Default = getBasicBlock(Record[2]);
5586       if (!OpTy || !Cond || !Default)
5587         return error("Invalid record");
5588       unsigned NumCases = (Record.size()-3)/2;
5589       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5590       InstructionList.push_back(SI);
5591       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5592         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5593             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5594         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5595         if (!CaseVal || !DestBB) {
5596           delete SI;
5597           return error("Invalid record");
5598         }
5599         SI->addCase(CaseVal, DestBB);
5600       }
5601       I = SI;
5602       break;
5603     }
5604     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5605       if (Record.size() < 2)
5606         return error("Invalid record");
5607       unsigned OpTyID = Record[0];
5608       Type *OpTy = getTypeByID(OpTyID);
5609       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5610       if (!OpTy || !Address)
5611         return error("Invalid record");
5612       unsigned NumDests = Record.size()-2;
5613       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5614       InstructionList.push_back(IBI);
5615       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5616         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5617           IBI->addDestination(DestBB);
5618         } else {
5619           delete IBI;
5620           return error("Invalid record");
5621         }
5622       }
5623       I = IBI;
5624       break;
5625     }
5626 
5627     case bitc::FUNC_CODE_INST_INVOKE: {
5628       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5629       if (Record.size() < 4)
5630         return error("Invalid record");
5631       unsigned OpNum = 0;
5632       AttributeList PAL = getAttributes(Record[OpNum++]);
5633       unsigned CCInfo = Record[OpNum++];
5634       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5635       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5636 
5637       unsigned FTyID = InvalidTypeID;
5638       FunctionType *FTy = nullptr;
5639       if ((CCInfo >> 13) & 1) {
5640         FTyID = Record[OpNum++];
5641         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5642         if (!FTy)
5643           return error("Explicit invoke type is not a function type");
5644       }
5645 
5646       Value *Callee;
5647       unsigned CalleeTypeID;
5648       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5649                            CurBB))
5650         return error("Invalid record");
5651 
5652       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5653       if (!CalleeTy)
5654         return error("Callee is not a pointer");
5655       if (!FTy) {
5656         FTyID = getContainedTypeID(CalleeTypeID);
5657         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5658         if (!FTy)
5659           return error("Callee is not of pointer to function type");
5660       }
5661       if (Record.size() < FTy->getNumParams() + OpNum)
5662         return error("Insufficient operands to call");
5663 
5664       SmallVector<Value*, 16> Ops;
5665       SmallVector<unsigned, 16> ArgTyIDs;
5666       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5667         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5668         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5669                                ArgTyID, CurBB));
5670         ArgTyIDs.push_back(ArgTyID);
5671         if (!Ops.back())
5672           return error("Invalid record");
5673       }
5674 
5675       if (!FTy->isVarArg()) {
5676         if (Record.size() != OpNum)
5677           return error("Invalid record");
5678       } else {
5679         // Read type/value pairs for varargs params.
5680         while (OpNum != Record.size()) {
5681           Value *Op;
5682           unsigned OpTypeID;
5683           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5684             return error("Invalid record");
5685           Ops.push_back(Op);
5686           ArgTyIDs.push_back(OpTypeID);
5687         }
5688       }
5689 
5690       // Upgrade the bundles if needed.
5691       if (!OperandBundles.empty())
5692         UpgradeOperandBundles(OperandBundles);
5693 
5694       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5695                              OperandBundles);
5696       ResTypeID = getContainedTypeID(FTyID);
5697       OperandBundles.clear();
5698       InstructionList.push_back(I);
5699       cast<InvokeInst>(I)->setCallingConv(
5700           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5701       cast<InvokeInst>(I)->setAttributes(PAL);
5702       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5703         I->deleteValue();
5704         return Err;
5705       }
5706 
5707       break;
5708     }
5709     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5710       unsigned Idx = 0;
5711       Value *Val = nullptr;
5712       unsigned ValTypeID;
5713       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5714         return error("Invalid record");
5715       I = ResumeInst::Create(Val);
5716       InstructionList.push_back(I);
5717       break;
5718     }
5719     case bitc::FUNC_CODE_INST_CALLBR: {
5720       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5721       unsigned OpNum = 0;
5722       AttributeList PAL = getAttributes(Record[OpNum++]);
5723       unsigned CCInfo = Record[OpNum++];
5724 
5725       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5726       unsigned NumIndirectDests = Record[OpNum++];
5727       SmallVector<BasicBlock *, 16> IndirectDests;
5728       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5729         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5730 
5731       unsigned FTyID = InvalidTypeID;
5732       FunctionType *FTy = nullptr;
5733       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5734         FTyID = Record[OpNum++];
5735         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5736         if (!FTy)
5737           return error("Explicit call type is not a function type");
5738       }
5739 
5740       Value *Callee;
5741       unsigned CalleeTypeID;
5742       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5743                            CurBB))
5744         return error("Invalid record");
5745 
5746       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5747       if (!OpTy)
5748         return error("Callee is not a pointer type");
5749       if (!FTy) {
5750         FTyID = getContainedTypeID(CalleeTypeID);
5751         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5752         if (!FTy)
5753           return error("Callee is not of pointer to function type");
5754       }
5755       if (Record.size() < FTy->getNumParams() + OpNum)
5756         return error("Insufficient operands to call");
5757 
5758       SmallVector<Value*, 16> Args;
5759       SmallVector<unsigned, 16> ArgTyIDs;
5760       // Read the fixed params.
5761       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5762         Value *Arg;
5763         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5764         if (FTy->getParamType(i)->isLabelTy())
5765           Arg = getBasicBlock(Record[OpNum]);
5766         else
5767           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5768                          ArgTyID, CurBB);
5769         if (!Arg)
5770           return error("Invalid record");
5771         Args.push_back(Arg);
5772         ArgTyIDs.push_back(ArgTyID);
5773       }
5774 
5775       // Read type/value pairs for varargs params.
5776       if (!FTy->isVarArg()) {
5777         if (OpNum != Record.size())
5778           return error("Invalid record");
5779       } else {
5780         while (OpNum != Record.size()) {
5781           Value *Op;
5782           unsigned OpTypeID;
5783           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5784             return error("Invalid record");
5785           Args.push_back(Op);
5786           ArgTyIDs.push_back(OpTypeID);
5787         }
5788       }
5789 
5790       // Upgrade the bundles if needed.
5791       if (!OperandBundles.empty())
5792         UpgradeOperandBundles(OperandBundles);
5793 
5794       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5795         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5796         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5797           return CI.Type == InlineAsm::isLabel;
5798         };
5799         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5800           // Upgrade explicit blockaddress arguments to label constraints.
5801           // Verify that the last arguments are blockaddress arguments that
5802           // match the indirect destinations. Clang always generates callbr
5803           // in this form. We could support reordering with more effort.
5804           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5805           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5806             unsigned LabelNo = ArgNo - FirstBlockArg;
5807             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5808             if (!BA || BA->getFunction() != F ||
5809                 LabelNo > IndirectDests.size() ||
5810                 BA->getBasicBlock() != IndirectDests[LabelNo])
5811               return error("callbr argument does not match indirect dest");
5812           }
5813 
5814           // Remove blockaddress arguments.
5815           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5816           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5817 
5818           // Recreate the function type with less arguments.
5819           SmallVector<Type *> ArgTys;
5820           for (Value *Arg : Args)
5821             ArgTys.push_back(Arg->getType());
5822           FTy =
5823               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5824 
5825           // Update constraint string to use label constraints.
5826           std::string Constraints = IA->getConstraintString();
5827           unsigned ArgNo = 0;
5828           size_t Pos = 0;
5829           for (const auto &CI : ConstraintInfo) {
5830             if (CI.hasArg()) {
5831               if (ArgNo >= FirstBlockArg)
5832                 Constraints.insert(Pos, "!");
5833               ++ArgNo;
5834             }
5835 
5836             // Go to next constraint in string.
5837             Pos = Constraints.find(',', Pos);
5838             if (Pos == std::string::npos)
5839               break;
5840             ++Pos;
5841           }
5842 
5843           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5844                                   IA->hasSideEffects(), IA->isAlignStack(),
5845                                   IA->getDialect(), IA->canThrow());
5846         }
5847       }
5848 
5849       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5850                              OperandBundles);
5851       ResTypeID = getContainedTypeID(FTyID);
5852       OperandBundles.clear();
5853       InstructionList.push_back(I);
5854       cast<CallBrInst>(I)->setCallingConv(
5855           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5856       cast<CallBrInst>(I)->setAttributes(PAL);
5857       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5858         I->deleteValue();
5859         return Err;
5860       }
5861       break;
5862     }
5863     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5864       I = new UnreachableInst(Context);
5865       InstructionList.push_back(I);
5866       break;
5867     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5868       if (Record.empty())
5869         return error("Invalid phi record");
5870       // The first record specifies the type.
5871       unsigned TyID = Record[0];
5872       Type *Ty = getTypeByID(TyID);
5873       if (!Ty)
5874         return error("Invalid phi record");
5875 
5876       // Phi arguments are pairs of records of [value, basic block].
5877       // There is an optional final record for fast-math-flags if this phi has a
5878       // floating-point type.
5879       size_t NumArgs = (Record.size() - 1) / 2;
5880       PHINode *PN = PHINode::Create(Ty, NumArgs);
5881       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5882         PN->deleteValue();
5883         return error("Invalid phi record");
5884       }
5885       InstructionList.push_back(PN);
5886 
5887       SmallDenseMap<BasicBlock *, Value *> Args;
5888       for (unsigned i = 0; i != NumArgs; i++) {
5889         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5890         if (!BB) {
5891           PN->deleteValue();
5892           return error("Invalid phi BB");
5893         }
5894 
5895         // Phi nodes may contain the same predecessor multiple times, in which
5896         // case the incoming value must be identical. Directly reuse the already
5897         // seen value here, to avoid expanding a constant expression multiple
5898         // times.
5899         auto It = Args.find(BB);
5900         if (It != Args.end()) {
5901           PN->addIncoming(It->second, BB);
5902           continue;
5903         }
5904 
5905         // If there already is a block for this edge (from a different phi),
5906         // use it.
5907         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5908         if (!EdgeBB) {
5909           // Otherwise, use a temporary block (that we will discard if it
5910           // turns out to be unnecessary).
5911           if (!PhiConstExprBB)
5912             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5913           EdgeBB = PhiConstExprBB;
5914         }
5915 
5916         // With the new function encoding, it is possible that operands have
5917         // negative IDs (for forward references).  Use a signed VBR
5918         // representation to keep the encoding small.
5919         Value *V;
5920         if (UseRelativeIDs)
5921           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5922         else
5923           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5924         if (!V) {
5925           PN->deleteValue();
5926           PhiConstExprBB->eraseFromParent();
5927           return error("Invalid phi record");
5928         }
5929 
5930         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5931           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5932           PhiConstExprBB = nullptr;
5933         }
5934         PN->addIncoming(V, BB);
5935         Args.insert({BB, V});
5936       }
5937       I = PN;
5938       ResTypeID = TyID;
5939 
5940       // If there are an even number of records, the final record must be FMF.
5941       if (Record.size() % 2 == 0) {
5942         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5943         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5944         if (FMF.any())
5945           I->setFastMathFlags(FMF);
5946       }
5947 
5948       break;
5949     }
5950 
5951     case bitc::FUNC_CODE_INST_LANDINGPAD:
5952     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5953       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5954       unsigned Idx = 0;
5955       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5956         if (Record.size() < 3)
5957           return error("Invalid record");
5958       } else {
5959         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5960         if (Record.size() < 4)
5961           return error("Invalid record");
5962       }
5963       ResTypeID = Record[Idx++];
5964       Type *Ty = getTypeByID(ResTypeID);
5965       if (!Ty)
5966         return error("Invalid record");
5967       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5968         Value *PersFn = nullptr;
5969         unsigned PersFnTypeID;
5970         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5971                              nullptr))
5972           return error("Invalid record");
5973 
5974         if (!F->hasPersonalityFn())
5975           F->setPersonalityFn(cast<Constant>(PersFn));
5976         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5977           return error("Personality function mismatch");
5978       }
5979 
5980       bool IsCleanup = !!Record[Idx++];
5981       unsigned NumClauses = Record[Idx++];
5982       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5983       LP->setCleanup(IsCleanup);
5984       for (unsigned J = 0; J != NumClauses; ++J) {
5985         LandingPadInst::ClauseType CT =
5986           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5987         Value *Val;
5988         unsigned ValTypeID;
5989 
5990         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5991                              nullptr)) {
5992           delete LP;
5993           return error("Invalid record");
5994         }
5995 
5996         assert((CT != LandingPadInst::Catch ||
5997                 !isa<ArrayType>(Val->getType())) &&
5998                "Catch clause has a invalid type!");
5999         assert((CT != LandingPadInst::Filter ||
6000                 isa<ArrayType>(Val->getType())) &&
6001                "Filter clause has invalid type!");
6002         LP->addClause(cast<Constant>(Val));
6003       }
6004 
6005       I = LP;
6006       InstructionList.push_back(I);
6007       break;
6008     }
6009 
6010     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6011       if (Record.size() != 4 && Record.size() != 5)
6012         return error("Invalid record");
6013       using APV = AllocaPackedValues;
6014       const uint64_t Rec = Record[3];
6015       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
6016       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
6017       unsigned TyID = Record[0];
6018       Type *Ty = getTypeByID(TyID);
6019       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
6020         TyID = getContainedTypeID(TyID);
6021         Ty = getTypeByID(TyID);
6022         if (!Ty)
6023           return error("Missing element type for old-style alloca");
6024       }
6025       unsigned OpTyID = Record[1];
6026       Type *OpTy = getTypeByID(OpTyID);
6027       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6028       MaybeAlign Align;
6029       uint64_t AlignExp =
6030           Bitfield::get<APV::AlignLower>(Rec) |
6031           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6032       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6033         return Err;
6034       }
6035       if (!Ty || !Size)
6036         return error("Invalid record");
6037 
6038       const DataLayout &DL = TheModule->getDataLayout();
6039       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6040 
6041       SmallPtrSet<Type *, 4> Visited;
6042       if (!Align && !Ty->isSized(&Visited))
6043         return error("alloca of unsized type");
6044       if (!Align)
6045         Align = DL.getPrefTypeAlign(Ty);
6046 
6047       if (!Size->getType()->isIntegerTy())
6048         return error("alloca element count must have integer type");
6049 
6050       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6051       AI->setUsedWithInAlloca(InAlloca);
6052       AI->setSwiftError(SwiftError);
6053       I = AI;
6054       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6055       InstructionList.push_back(I);
6056       break;
6057     }
6058     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6059       unsigned OpNum = 0;
6060       Value *Op;
6061       unsigned OpTypeID;
6062       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6063           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6064         return error("Invalid record");
6065 
6066       if (!isa<PointerType>(Op->getType()))
6067         return error("Load operand is not a pointer type");
6068 
6069       Type *Ty = nullptr;
6070       if (OpNum + 3 == Record.size()) {
6071         ResTypeID = Record[OpNum++];
6072         Ty = getTypeByID(ResTypeID);
6073       } else {
6074         ResTypeID = getContainedTypeID(OpTypeID);
6075         Ty = getTypeByID(ResTypeID);
6076       }
6077 
6078       if (!Ty)
6079         return error("Missing load type");
6080 
6081       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6082         return Err;
6083 
6084       MaybeAlign Align;
6085       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6086         return Err;
6087       SmallPtrSet<Type *, 4> Visited;
6088       if (!Align && !Ty->isSized(&Visited))
6089         return error("load of unsized type");
6090       if (!Align)
6091         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6092       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6093       InstructionList.push_back(I);
6094       break;
6095     }
6096     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6097        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6098       unsigned OpNum = 0;
6099       Value *Op;
6100       unsigned OpTypeID;
6101       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6102           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6103         return error("Invalid record");
6104 
6105       if (!isa<PointerType>(Op->getType()))
6106         return error("Load operand is not a pointer type");
6107 
6108       Type *Ty = nullptr;
6109       if (OpNum + 5 == Record.size()) {
6110         ResTypeID = Record[OpNum++];
6111         Ty = getTypeByID(ResTypeID);
6112       } else {
6113         ResTypeID = getContainedTypeID(OpTypeID);
6114         Ty = getTypeByID(ResTypeID);
6115       }
6116 
6117       if (!Ty)
6118         return error("Missing atomic load type");
6119 
6120       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6121         return Err;
6122 
6123       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6124       if (Ordering == AtomicOrdering::NotAtomic ||
6125           Ordering == AtomicOrdering::Release ||
6126           Ordering == AtomicOrdering::AcquireRelease)
6127         return error("Invalid record");
6128       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6129         return error("Invalid record");
6130       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6131 
6132       MaybeAlign Align;
6133       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6134         return Err;
6135       if (!Align)
6136         return error("Alignment missing from atomic load");
6137       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6138       InstructionList.push_back(I);
6139       break;
6140     }
6141     case bitc::FUNC_CODE_INST_STORE:
6142     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6143       unsigned OpNum = 0;
6144       Value *Val, *Ptr;
6145       unsigned PtrTypeID, ValTypeID;
6146       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6147         return error("Invalid record");
6148 
6149       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6150         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6151           return error("Invalid record");
6152       } else {
6153         ValTypeID = getContainedTypeID(PtrTypeID);
6154         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6155                      ValTypeID, Val, CurBB))
6156           return error("Invalid record");
6157       }
6158 
6159       if (OpNum + 2 != Record.size())
6160         return error("Invalid record");
6161 
6162       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6163         return Err;
6164       MaybeAlign Align;
6165       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6166         return Err;
6167       SmallPtrSet<Type *, 4> Visited;
6168       if (!Align && !Val->getType()->isSized(&Visited))
6169         return error("store of unsized type");
6170       if (!Align)
6171         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6172       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6173       InstructionList.push_back(I);
6174       break;
6175     }
6176     case bitc::FUNC_CODE_INST_STOREATOMIC:
6177     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6178       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6179       unsigned OpNum = 0;
6180       Value *Val, *Ptr;
6181       unsigned PtrTypeID, ValTypeID;
6182       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6183           !isa<PointerType>(Ptr->getType()))
6184         return error("Invalid record");
6185       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6186         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6187           return error("Invalid record");
6188       } else {
6189         ValTypeID = getContainedTypeID(PtrTypeID);
6190         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6191                      ValTypeID, Val, CurBB))
6192           return error("Invalid record");
6193       }
6194 
6195       if (OpNum + 4 != Record.size())
6196         return error("Invalid record");
6197 
6198       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6199         return Err;
6200       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6201       if (Ordering == AtomicOrdering::NotAtomic ||
6202           Ordering == AtomicOrdering::Acquire ||
6203           Ordering == AtomicOrdering::AcquireRelease)
6204         return error("Invalid record");
6205       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6206       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6207         return error("Invalid record");
6208 
6209       MaybeAlign Align;
6210       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6211         return Err;
6212       if (!Align)
6213         return error("Alignment missing from atomic store");
6214       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6215       InstructionList.push_back(I);
6216       break;
6217     }
6218     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6219       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6220       // failure_ordering?, weak?]
6221       const size_t NumRecords = Record.size();
6222       unsigned OpNum = 0;
6223       Value *Ptr = nullptr;
6224       unsigned PtrTypeID;
6225       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6226         return error("Invalid record");
6227 
6228       if (!isa<PointerType>(Ptr->getType()))
6229         return error("Cmpxchg operand is not a pointer type");
6230 
6231       Value *Cmp = nullptr;
6232       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6233       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6234                    CmpTypeID, Cmp, CurBB))
6235         return error("Invalid record");
6236 
6237       Value *New = nullptr;
6238       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6239                    New, CurBB) ||
6240           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6241         return error("Invalid record");
6242 
6243       const AtomicOrdering SuccessOrdering =
6244           getDecodedOrdering(Record[OpNum + 1]);
6245       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6246           SuccessOrdering == AtomicOrdering::Unordered)
6247         return error("Invalid record");
6248 
6249       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6250 
6251       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6252         return Err;
6253 
6254       const AtomicOrdering FailureOrdering =
6255           NumRecords < 7
6256               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6257               : getDecodedOrdering(Record[OpNum + 3]);
6258 
6259       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6260           FailureOrdering == AtomicOrdering::Unordered)
6261         return error("Invalid record");
6262 
6263       const Align Alignment(
6264           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6265 
6266       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6267                                 FailureOrdering, SSID);
6268       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6269 
6270       if (NumRecords < 8) {
6271         // Before weak cmpxchgs existed, the instruction simply returned the
6272         // value loaded from memory, so bitcode files from that era will be
6273         // expecting the first component of a modern cmpxchg.
6274         I->insertInto(CurBB, CurBB->end());
6275         I = ExtractValueInst::Create(I, 0);
6276         ResTypeID = CmpTypeID;
6277       } else {
6278         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6279         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6280         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6281       }
6282 
6283       InstructionList.push_back(I);
6284       break;
6285     }
6286     case bitc::FUNC_CODE_INST_CMPXCHG: {
6287       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6288       // failure_ordering, weak, align?]
6289       const size_t NumRecords = Record.size();
6290       unsigned OpNum = 0;
6291       Value *Ptr = nullptr;
6292       unsigned PtrTypeID;
6293       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6294         return error("Invalid record");
6295 
6296       if (!isa<PointerType>(Ptr->getType()))
6297         return error("Cmpxchg operand is not a pointer type");
6298 
6299       Value *Cmp = nullptr;
6300       unsigned CmpTypeID;
6301       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6302         return error("Invalid record");
6303 
6304       Value *Val = nullptr;
6305       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6306                    CurBB))
6307         return error("Invalid record");
6308 
6309       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6310         return error("Invalid record");
6311 
6312       const bool IsVol = Record[OpNum];
6313 
6314       const AtomicOrdering SuccessOrdering =
6315           getDecodedOrdering(Record[OpNum + 1]);
6316       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6317         return error("Invalid cmpxchg success ordering");
6318 
6319       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6320 
6321       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6322         return Err;
6323 
6324       const AtomicOrdering FailureOrdering =
6325           getDecodedOrdering(Record[OpNum + 3]);
6326       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6327         return error("Invalid cmpxchg failure ordering");
6328 
6329       const bool IsWeak = Record[OpNum + 4];
6330 
6331       MaybeAlign Alignment;
6332 
6333       if (NumRecords == (OpNum + 6)) {
6334         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6335           return Err;
6336       }
6337       if (!Alignment)
6338         Alignment =
6339             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6340 
6341       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6342                                 FailureOrdering, SSID);
6343       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6344       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6345 
6346       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6347       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6348 
6349       InstructionList.push_back(I);
6350       break;
6351     }
6352     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6353     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6354       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6355       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6356       const size_t NumRecords = Record.size();
6357       unsigned OpNum = 0;
6358 
6359       Value *Ptr = nullptr;
6360       unsigned PtrTypeID;
6361       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6362         return error("Invalid record");
6363 
6364       if (!isa<PointerType>(Ptr->getType()))
6365         return error("Invalid record");
6366 
6367       Value *Val = nullptr;
6368       unsigned ValTypeID = InvalidTypeID;
6369       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6370         ValTypeID = getContainedTypeID(PtrTypeID);
6371         if (popValue(Record, OpNum, NextValueNo,
6372                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6373           return error("Invalid record");
6374       } else {
6375         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6376           return error("Invalid record");
6377       }
6378 
6379       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6380         return error("Invalid record");
6381 
6382       const AtomicRMWInst::BinOp Operation =
6383           getDecodedRMWOperation(Record[OpNum]);
6384       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6385           Operation > AtomicRMWInst::LAST_BINOP)
6386         return error("Invalid record");
6387 
6388       const bool IsVol = Record[OpNum + 1];
6389 
6390       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6391       if (Ordering == AtomicOrdering::NotAtomic ||
6392           Ordering == AtomicOrdering::Unordered)
6393         return error("Invalid record");
6394 
6395       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6396 
6397       MaybeAlign Alignment;
6398 
6399       if (NumRecords == (OpNum + 5)) {
6400         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6401           return Err;
6402       }
6403 
6404       if (!Alignment)
6405         Alignment =
6406             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6407 
6408       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6409       ResTypeID = ValTypeID;
6410       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6411 
6412       InstructionList.push_back(I);
6413       break;
6414     }
6415     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6416       if (2 != Record.size())
6417         return error("Invalid record");
6418       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6419       if (Ordering == AtomicOrdering::NotAtomic ||
6420           Ordering == AtomicOrdering::Unordered ||
6421           Ordering == AtomicOrdering::Monotonic)
6422         return error("Invalid record");
6423       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6424       I = new FenceInst(Context, Ordering, SSID);
6425       InstructionList.push_back(I);
6426       break;
6427     }
6428     case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6429       // DbgLabelRecords are placed after the Instructions that they are
6430       // attached to.
6431       Instruction *Inst = getLastInstruction();
6432       if (!Inst)
6433         return error("Invalid dbg record: missing instruction");
6434       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6435       DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6436       Inst->getParent()->insertDbgRecordBefore(
6437           new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
6438       continue; // This isn't an instruction.
6439     }
6440     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6441     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6442     case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6443     case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6444       // DbgVariableRecords are placed after the Instructions that they are
6445       // attached to.
6446       Instruction *Inst = getLastInstruction();
6447       if (!Inst)
6448         return error("Invalid dbg record: missing instruction");
6449 
6450       // First 3 fields are common to all kinds:
6451       //   DILocation, DILocalVariable, DIExpression
6452       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6453       //   ..., LocationMetadata
6454       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6455       //   ..., Value
6456       // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6457       //   ..., LocationMetadata
6458       // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6459       //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6460       unsigned Slot = 0;
6461       // Common fields (0-2).
6462       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6463       DILocalVariable *Var =
6464           cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6465       DIExpression *Expr =
6466           cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6467 
6468       // Union field (3: LocationMetadata | Value).
6469       Metadata *RawLocation = nullptr;
6470       if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6471         Value *V = nullptr;
6472         unsigned TyID = 0;
6473         // We never expect to see a fwd reference value here because
6474         // use-before-defs are encoded with the standard non-abbrev record
6475         // type (they'd require encoding the type too, and they're rare). As a
6476         // result, getValueTypePair only ever increments Slot by one here (once
6477         // for the value, never twice for value and type).
6478         unsigned SlotBefore = Slot;
6479         if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6480           return error("Invalid dbg record: invalid value");
6481         (void)SlotBefore;
6482         assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6483         RawLocation = ValueAsMetadata::get(V);
6484       } else {
6485         RawLocation = getFnMetadataByID(Record[Slot++]);
6486       }
6487 
6488       DbgVariableRecord *DVR = nullptr;
6489       switch (BitCode) {
6490       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6491       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6492         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6493                                     DbgVariableRecord::LocationType::Value);
6494         break;
6495       case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6496         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6497                                     DbgVariableRecord::LocationType::Declare);
6498         break;
6499       case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6500         DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6501         DIExpression *AddrExpr =
6502             cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6503         Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6504         DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6505                                     DIL);
6506         break;
6507       }
6508       default:
6509         llvm_unreachable("Unknown DbgVariableRecord bitcode");
6510       }
6511       Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
6512       continue; // This isn't an instruction.
6513     }
6514     case bitc::FUNC_CODE_INST_CALL: {
6515       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6516       if (Record.size() < 3)
6517         return error("Invalid record");
6518 
6519       unsigned OpNum = 0;
6520       AttributeList PAL = getAttributes(Record[OpNum++]);
6521       unsigned CCInfo = Record[OpNum++];
6522 
6523       FastMathFlags FMF;
6524       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6525         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6526         if (!FMF.any())
6527           return error("Fast math flags indicator set for call with no FMF");
6528       }
6529 
6530       unsigned FTyID = InvalidTypeID;
6531       FunctionType *FTy = nullptr;
6532       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6533         FTyID = Record[OpNum++];
6534         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6535         if (!FTy)
6536           return error("Explicit call type is not a function type");
6537       }
6538 
6539       Value *Callee;
6540       unsigned CalleeTypeID;
6541       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6542                            CurBB))
6543         return error("Invalid record");
6544 
6545       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6546       if (!OpTy)
6547         return error("Callee is not a pointer type");
6548       if (!FTy) {
6549         FTyID = getContainedTypeID(CalleeTypeID);
6550         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6551         if (!FTy)
6552           return error("Callee is not of pointer to function type");
6553       }
6554       if (Record.size() < FTy->getNumParams() + OpNum)
6555         return error("Insufficient operands to call");
6556 
6557       SmallVector<Value*, 16> Args;
6558       SmallVector<unsigned, 16> ArgTyIDs;
6559       // Read the fixed params.
6560       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6561         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6562         if (FTy->getParamType(i)->isLabelTy())
6563           Args.push_back(getBasicBlock(Record[OpNum]));
6564         else
6565           Args.push_back(getValue(Record, OpNum, NextValueNo,
6566                                   FTy->getParamType(i), ArgTyID, CurBB));
6567         ArgTyIDs.push_back(ArgTyID);
6568         if (!Args.back())
6569           return error("Invalid record");
6570       }
6571 
6572       // Read type/value pairs for varargs params.
6573       if (!FTy->isVarArg()) {
6574         if (OpNum != Record.size())
6575           return error("Invalid record");
6576       } else {
6577         while (OpNum != Record.size()) {
6578           Value *Op;
6579           unsigned OpTypeID;
6580           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6581             return error("Invalid record");
6582           Args.push_back(Op);
6583           ArgTyIDs.push_back(OpTypeID);
6584         }
6585       }
6586 
6587       // Upgrade the bundles if needed.
6588       if (!OperandBundles.empty())
6589         UpgradeOperandBundles(OperandBundles);
6590 
6591       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6592       ResTypeID = getContainedTypeID(FTyID);
6593       OperandBundles.clear();
6594       InstructionList.push_back(I);
6595       cast<CallInst>(I)->setCallingConv(
6596           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6597       CallInst::TailCallKind TCK = CallInst::TCK_None;
6598       if (CCInfo & (1 << bitc::CALL_TAIL))
6599         TCK = CallInst::TCK_Tail;
6600       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6601         TCK = CallInst::TCK_MustTail;
6602       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6603         TCK = CallInst::TCK_NoTail;
6604       cast<CallInst>(I)->setTailCallKind(TCK);
6605       cast<CallInst>(I)->setAttributes(PAL);
6606       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6607         I->deleteValue();
6608         return Err;
6609       }
6610       if (FMF.any()) {
6611         if (!isa<FPMathOperator>(I))
6612           return error("Fast-math-flags specified for call without "
6613                        "floating-point scalar or vector return type");
6614         I->setFastMathFlags(FMF);
6615       }
6616       break;
6617     }
6618     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6619       if (Record.size() < 3)
6620         return error("Invalid record");
6621       unsigned OpTyID = Record[0];
6622       Type *OpTy = getTypeByID(OpTyID);
6623       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6624       ResTypeID = Record[2];
6625       Type *ResTy = getTypeByID(ResTypeID);
6626       if (!OpTy || !Op || !ResTy)
6627         return error("Invalid record");
6628       I = new VAArgInst(Op, ResTy);
6629       InstructionList.push_back(I);
6630       break;
6631     }
6632 
6633     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6634       // A call or an invoke can be optionally prefixed with some variable
6635       // number of operand bundle blocks.  These blocks are read into
6636       // OperandBundles and consumed at the next call or invoke instruction.
6637 
6638       if (Record.empty() || Record[0] >= BundleTags.size())
6639         return error("Invalid record");
6640 
6641       std::vector<Value *> Inputs;
6642 
6643       unsigned OpNum = 1;
6644       while (OpNum != Record.size()) {
6645         Value *Op;
6646         unsigned OpTypeID;
6647         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6648           return error("Invalid record");
6649         Inputs.push_back(Op);
6650       }
6651 
6652       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6653       continue;
6654     }
6655 
6656     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6657       unsigned OpNum = 0;
6658       Value *Op = nullptr;
6659       unsigned OpTypeID;
6660       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6661         return error("Invalid record");
6662       if (OpNum != Record.size())
6663         return error("Invalid record");
6664 
6665       I = new FreezeInst(Op);
6666       ResTypeID = OpTypeID;
6667       InstructionList.push_back(I);
6668       break;
6669     }
6670     }
6671 
6672     // Add instruction to end of current BB.  If there is no current BB, reject
6673     // this file.
6674     if (!CurBB) {
6675       I->deleteValue();
6676       return error("Invalid instruction with no BB");
6677     }
6678     if (!OperandBundles.empty()) {
6679       I->deleteValue();
6680       return error("Operand bundles found with no consumer");
6681     }
6682     I->insertInto(CurBB, CurBB->end());
6683 
6684     // If this was a terminator instruction, move to the next block.
6685     if (I->isTerminator()) {
6686       ++CurBBNo;
6687       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6688     }
6689 
6690     // Non-void values get registered in the value table for future use.
6691     if (!I->getType()->isVoidTy()) {
6692       assert(I->getType() == getTypeByID(ResTypeID) &&
6693              "Incorrect result type ID");
6694       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6695         return Err;
6696     }
6697   }
6698 
6699 OutOfRecordLoop:
6700 
6701   if (!OperandBundles.empty())
6702     return error("Operand bundles found with no consumer");
6703 
6704   // Check the function list for unresolved values.
6705   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6706     if (!A->getParent()) {
6707       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6708       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6709         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6710           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6711           delete A;
6712         }
6713       }
6714       return error("Never resolved value found in function");
6715     }
6716   }
6717 
6718   // Unexpected unresolved metadata about to be dropped.
6719   if (MDLoader->hasFwdRefs())
6720     return error("Invalid function metadata: outgoing forward refs");
6721 
6722   if (PhiConstExprBB)
6723     PhiConstExprBB->eraseFromParent();
6724 
6725   for (const auto &Pair : ConstExprEdgeBBs) {
6726     BasicBlock *From = Pair.first.first;
6727     BasicBlock *To = Pair.first.second;
6728     BasicBlock *EdgeBB = Pair.second;
6729     BranchInst::Create(To, EdgeBB);
6730     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6731     To->replacePhiUsesWith(From, EdgeBB);
6732     EdgeBB->moveBefore(To);
6733   }
6734 
6735   // Trim the value list down to the size it was before we parsed this function.
6736   ValueList.shrinkTo(ModuleValueListSize);
6737   MDLoader->shrinkTo(ModuleMDLoaderSize);
6738   std::vector<BasicBlock*>().swap(FunctionBBs);
6739   return Error::success();
6740 }
6741 
6742 /// Find the function body in the bitcode stream
6743 Error BitcodeReader::findFunctionInStream(
6744     Function *F,
6745     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6746   while (DeferredFunctionInfoIterator->second == 0) {
6747     // This is the fallback handling for the old format bitcode that
6748     // didn't contain the function index in the VST, or when we have
6749     // an anonymous function which would not have a VST entry.
6750     // Assert that we have one of those two cases.
6751     assert(VSTOffset == 0 || !F->hasName());
6752     // Parse the next body in the stream and set its position in the
6753     // DeferredFunctionInfo map.
6754     if (Error Err = rememberAndSkipFunctionBodies())
6755       return Err;
6756   }
6757   return Error::success();
6758 }
6759 
6760 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6761   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6762     return SyncScope::ID(Val);
6763   if (Val >= SSIDs.size())
6764     return SyncScope::System; // Map unknown synchronization scopes to system.
6765   return SSIDs[Val];
6766 }
6767 
6768 //===----------------------------------------------------------------------===//
6769 // GVMaterializer implementation
6770 //===----------------------------------------------------------------------===//
6771 
6772 Error BitcodeReader::materialize(GlobalValue *GV) {
6773   Function *F = dyn_cast<Function>(GV);
6774   // If it's not a function or is already material, ignore the request.
6775   if (!F || !F->isMaterializable())
6776     return Error::success();
6777 
6778   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6779   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6780   // If its position is recorded as 0, its body is somewhere in the stream
6781   // but we haven't seen it yet.
6782   if (DFII->second == 0)
6783     if (Error Err = findFunctionInStream(F, DFII))
6784       return Err;
6785 
6786   // Materialize metadata before parsing any function bodies.
6787   if (Error Err = materializeMetadata())
6788     return Err;
6789 
6790   // Move the bit stream to the saved position of the deferred function body.
6791   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6792     return JumpFailed;
6793 
6794   // Set the debug info mode to "new", possibly creating a mismatch between
6795   // module and function debug modes. This is okay because we'll convert
6796   // everything back to the old mode after parsing if needed.
6797   // FIXME: Remove this once all tools support RemoveDIs.
6798   F->IsNewDbgInfoFormat = true;
6799 
6800   if (Error Err = parseFunctionBody(F))
6801     return Err;
6802   F->setIsMaterializable(false);
6803 
6804   // Convert new debug info records into intrinsics.
6805   // FIXME: Remove this once all tools support RemoveDIs.
6806   if (!F->getParent()->IsNewDbgInfoFormat)
6807     F->convertFromNewDbgValues();
6808 
6809   if (StripDebugInfo)
6810     stripDebugInfo(*F);
6811 
6812   // Upgrade any old intrinsic calls in the function.
6813   for (auto &I : UpgradedIntrinsics) {
6814     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6815       if (CallInst *CI = dyn_cast<CallInst>(U))
6816         UpgradeIntrinsicCall(CI, I.second);
6817   }
6818 
6819   // Finish fn->subprogram upgrade for materialized functions.
6820   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6821     F->setSubprogram(SP);
6822 
6823   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6824   if (!MDLoader->isStrippingTBAA()) {
6825     for (auto &I : instructions(F)) {
6826       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6827       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6828         continue;
6829       MDLoader->setStripTBAA(true);
6830       stripTBAA(F->getParent());
6831     }
6832   }
6833 
6834   for (auto &I : instructions(F)) {
6835     // "Upgrade" older incorrect branch weights by dropping them.
6836     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6837       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6838         MDString *MDS = cast<MDString>(MD->getOperand(0));
6839         StringRef ProfName = MDS->getString();
6840         // Check consistency of !prof branch_weights metadata.
6841         if (!ProfName.equals("branch_weights"))
6842           continue;
6843         unsigned ExpectedNumOperands = 0;
6844         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6845           ExpectedNumOperands = BI->getNumSuccessors();
6846         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6847           ExpectedNumOperands = SI->getNumSuccessors();
6848         else if (isa<CallInst>(&I))
6849           ExpectedNumOperands = 1;
6850         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6851           ExpectedNumOperands = IBI->getNumDestinations();
6852         else if (isa<SelectInst>(&I))
6853           ExpectedNumOperands = 2;
6854         else
6855           continue; // ignore and continue.
6856 
6857         // If branch weight doesn't match, just strip branch weight.
6858         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6859           I.setMetadata(LLVMContext::MD_prof, nullptr);
6860       }
6861     }
6862 
6863     // Remove incompatible attributes on function calls.
6864     if (auto *CI = dyn_cast<CallBase>(&I)) {
6865       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6866           CI->getFunctionType()->getReturnType()));
6867 
6868       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6869         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6870                                         CI->getArgOperand(ArgNo)->getType()));
6871     }
6872   }
6873 
6874   // Look for functions that rely on old function attribute behavior.
6875   UpgradeFunctionAttributes(*F);
6876 
6877   // Bring in any functions that this function forward-referenced via
6878   // blockaddresses.
6879   return materializeForwardReferencedFunctions();
6880 }
6881 
6882 Error BitcodeReader::materializeModule() {
6883   if (Error Err = materializeMetadata())
6884     return Err;
6885 
6886   // Promise to materialize all forward references.
6887   WillMaterializeAllForwardRefs = true;
6888 
6889   // Iterate over the module, deserializing any functions that are still on
6890   // disk.
6891   for (Function &F : *TheModule) {
6892     if (Error Err = materialize(&F))
6893       return Err;
6894   }
6895   // At this point, if there are any function bodies, parse the rest of
6896   // the bits in the module past the last function block we have recorded
6897   // through either lazy scanning or the VST.
6898   if (LastFunctionBlockBit || NextUnreadBit)
6899     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6900                                     ? LastFunctionBlockBit
6901                                     : NextUnreadBit))
6902       return Err;
6903 
6904   // Check that all block address forward references got resolved (as we
6905   // promised above).
6906   if (!BasicBlockFwdRefs.empty())
6907     return error("Never resolved function from blockaddress");
6908 
6909   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6910   // delete the old functions to clean up. We can't do this unless the entire
6911   // module is materialized because there could always be another function body
6912   // with calls to the old function.
6913   for (auto &I : UpgradedIntrinsics) {
6914     for (auto *U : I.first->users()) {
6915       if (CallInst *CI = dyn_cast<CallInst>(U))
6916         UpgradeIntrinsicCall(CI, I.second);
6917     }
6918     if (!I.first->use_empty())
6919       I.first->replaceAllUsesWith(I.second);
6920     I.first->eraseFromParent();
6921   }
6922   UpgradedIntrinsics.clear();
6923 
6924   UpgradeDebugInfo(*TheModule);
6925 
6926   UpgradeModuleFlags(*TheModule);
6927 
6928   UpgradeARCRuntime(*TheModule);
6929 
6930   return Error::success();
6931 }
6932 
6933 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6934   return IdentifiedStructTypes;
6935 }
6936 
6937 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6938     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6939     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
6940     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6941       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
6942 
6943 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6944   TheIndex.addModule(ModulePath);
6945 }
6946 
6947 ModuleSummaryIndex::ModuleInfo *
6948 ModuleSummaryIndexBitcodeReader::getThisModule() {
6949   return TheIndex.getModule(ModulePath);
6950 }
6951 
6952 template <bool AllowNullValueInfo>
6953 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
6954 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6955   auto VGI = ValueIdToValueInfoMap[ValueId];
6956   // We can have a null value info for memprof callsite info records in
6957   // distributed ThinLTO index files when the callee function summary is not
6958   // included in the index. The bitcode writer records 0 in that case,
6959   // and the caller of this helper will set AllowNullValueInfo to true.
6960   assert(AllowNullValueInfo || std::get<0>(VGI));
6961   return VGI;
6962 }
6963 
6964 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6965     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6966     StringRef SourceFileName) {
6967   std::string GlobalId =
6968       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6969   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6970   auto OriginalNameID = ValueGUID;
6971   if (GlobalValue::isLocalLinkage(Linkage))
6972     OriginalNameID = GlobalValue::getGUID(ValueName);
6973   if (PrintSummaryGUIDs)
6974     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6975            << ValueName << "\n";
6976 
6977   // UseStrtab is false for legacy summary formats and value names are
6978   // created on stack. In that case we save the name in a string saver in
6979   // the index so that the value name can be recorded.
6980   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6981       TheIndex.getOrInsertValueInfo(
6982           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6983       OriginalNameID, ValueGUID);
6984 }
6985 
6986 // Specialized value symbol table parser used when reading module index
6987 // blocks where we don't actually create global values. The parsed information
6988 // is saved in the bitcode reader for use when later parsing summaries.
6989 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6990     uint64_t Offset,
6991     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6992   // With a strtab the VST is not required to parse the summary.
6993   if (UseStrtab)
6994     return Error::success();
6995 
6996   assert(Offset > 0 && "Expected non-zero VST offset");
6997   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6998   if (!MaybeCurrentBit)
6999     return MaybeCurrentBit.takeError();
7000   uint64_t CurrentBit = MaybeCurrentBit.get();
7001 
7002   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
7003     return Err;
7004 
7005   SmallVector<uint64_t, 64> Record;
7006 
7007   // Read all the records for this value table.
7008   SmallString<128> ValueName;
7009 
7010   while (true) {
7011     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7012     if (!MaybeEntry)
7013       return MaybeEntry.takeError();
7014     BitstreamEntry Entry = MaybeEntry.get();
7015 
7016     switch (Entry.Kind) {
7017     case BitstreamEntry::SubBlock: // Handled for us already.
7018     case BitstreamEntry::Error:
7019       return error("Malformed block");
7020     case BitstreamEntry::EndBlock:
7021       // Done parsing VST, jump back to wherever we came from.
7022       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
7023         return JumpFailed;
7024       return Error::success();
7025     case BitstreamEntry::Record:
7026       // The interesting case.
7027       break;
7028     }
7029 
7030     // Read a record.
7031     Record.clear();
7032     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7033     if (!MaybeRecord)
7034       return MaybeRecord.takeError();
7035     switch (MaybeRecord.get()) {
7036     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7037       break;
7038     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7039       if (convertToString(Record, 1, ValueName))
7040         return error("Invalid record");
7041       unsigned ValueID = Record[0];
7042       assert(!SourceFileName.empty());
7043       auto VLI = ValueIdToLinkageMap.find(ValueID);
7044       assert(VLI != ValueIdToLinkageMap.end() &&
7045              "No linkage found for VST entry?");
7046       auto Linkage = VLI->second;
7047       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7048       ValueName.clear();
7049       break;
7050     }
7051     case bitc::VST_CODE_FNENTRY: {
7052       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7053       if (convertToString(Record, 2, ValueName))
7054         return error("Invalid record");
7055       unsigned ValueID = Record[0];
7056       assert(!SourceFileName.empty());
7057       auto VLI = ValueIdToLinkageMap.find(ValueID);
7058       assert(VLI != ValueIdToLinkageMap.end() &&
7059              "No linkage found for VST entry?");
7060       auto Linkage = VLI->second;
7061       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7062       ValueName.clear();
7063       break;
7064     }
7065     case bitc::VST_CODE_COMBINED_ENTRY: {
7066       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7067       unsigned ValueID = Record[0];
7068       GlobalValue::GUID RefGUID = Record[1];
7069       // The "original name", which is the second value of the pair will be
7070       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7071       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7072           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7073       break;
7074     }
7075     }
7076   }
7077 }
7078 
7079 // Parse just the blocks needed for building the index out of the module.
7080 // At the end of this routine the module Index is populated with a map
7081 // from global value id to GlobalValueSummary objects.
7082 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7083   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7084     return Err;
7085 
7086   SmallVector<uint64_t, 64> Record;
7087   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7088   unsigned ValueId = 0;
7089 
7090   // Read the index for this module.
7091   while (true) {
7092     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7093     if (!MaybeEntry)
7094       return MaybeEntry.takeError();
7095     llvm::BitstreamEntry Entry = MaybeEntry.get();
7096 
7097     switch (Entry.Kind) {
7098     case BitstreamEntry::Error:
7099       return error("Malformed block");
7100     case BitstreamEntry::EndBlock:
7101       return Error::success();
7102 
7103     case BitstreamEntry::SubBlock:
7104       switch (Entry.ID) {
7105       default: // Skip unknown content.
7106         if (Error Err = Stream.SkipBlock())
7107           return Err;
7108         break;
7109       case bitc::BLOCKINFO_BLOCK_ID:
7110         // Need to parse these to get abbrev ids (e.g. for VST)
7111         if (Error Err = readBlockInfo())
7112           return Err;
7113         break;
7114       case bitc::VALUE_SYMTAB_BLOCK_ID:
7115         // Should have been parsed earlier via VSTOffset, unless there
7116         // is no summary section.
7117         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7118                 !SeenGlobalValSummary) &&
7119                "Expected early VST parse via VSTOffset record");
7120         if (Error Err = Stream.SkipBlock())
7121           return Err;
7122         break;
7123       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7124       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7125         // Add the module if it is a per-module index (has a source file name).
7126         if (!SourceFileName.empty())
7127           addThisModule();
7128         assert(!SeenValueSymbolTable &&
7129                "Already read VST when parsing summary block?");
7130         // We might not have a VST if there were no values in the
7131         // summary. An empty summary block generated when we are
7132         // performing ThinLTO compiles so we don't later invoke
7133         // the regular LTO process on them.
7134         if (VSTOffset > 0) {
7135           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7136             return Err;
7137           SeenValueSymbolTable = true;
7138         }
7139         SeenGlobalValSummary = true;
7140         if (Error Err = parseEntireSummary(Entry.ID))
7141           return Err;
7142         break;
7143       case bitc::MODULE_STRTAB_BLOCK_ID:
7144         if (Error Err = parseModuleStringTable())
7145           return Err;
7146         break;
7147       }
7148       continue;
7149 
7150     case BitstreamEntry::Record: {
7151         Record.clear();
7152         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7153         if (!MaybeBitCode)
7154           return MaybeBitCode.takeError();
7155         switch (MaybeBitCode.get()) {
7156         default:
7157           break; // Default behavior, ignore unknown content.
7158         case bitc::MODULE_CODE_VERSION: {
7159           if (Error Err = parseVersionRecord(Record).takeError())
7160             return Err;
7161           break;
7162         }
7163         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7164         case bitc::MODULE_CODE_SOURCE_FILENAME: {
7165           SmallString<128> ValueName;
7166           if (convertToString(Record, 0, ValueName))
7167             return error("Invalid record");
7168           SourceFileName = ValueName.c_str();
7169           break;
7170         }
7171         /// MODULE_CODE_HASH: [5*i32]
7172         case bitc::MODULE_CODE_HASH: {
7173           if (Record.size() != 5)
7174             return error("Invalid hash length " + Twine(Record.size()).str());
7175           auto &Hash = getThisModule()->second;
7176           int Pos = 0;
7177           for (auto &Val : Record) {
7178             assert(!(Val >> 32) && "Unexpected high bits set");
7179             Hash[Pos++] = Val;
7180           }
7181           break;
7182         }
7183         /// MODULE_CODE_VSTOFFSET: [offset]
7184         case bitc::MODULE_CODE_VSTOFFSET:
7185           if (Record.empty())
7186             return error("Invalid record");
7187           // Note that we subtract 1 here because the offset is relative to one
7188           // word before the start of the identification or module block, which
7189           // was historically always the start of the regular bitcode header.
7190           VSTOffset = Record[0] - 1;
7191           break;
7192         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7193         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7194         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7195         // v2: [strtab offset, strtab size, v1]
7196         case bitc::MODULE_CODE_GLOBALVAR:
7197         case bitc::MODULE_CODE_FUNCTION:
7198         case bitc::MODULE_CODE_ALIAS: {
7199           StringRef Name;
7200           ArrayRef<uint64_t> GVRecord;
7201           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7202           if (GVRecord.size() <= 3)
7203             return error("Invalid record");
7204           uint64_t RawLinkage = GVRecord[3];
7205           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7206           if (!UseStrtab) {
7207             ValueIdToLinkageMap[ValueId++] = Linkage;
7208             break;
7209           }
7210 
7211           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7212           break;
7213         }
7214         }
7215       }
7216       continue;
7217     }
7218   }
7219 }
7220 
7221 std::vector<ValueInfo>
7222 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7223   std::vector<ValueInfo> Ret;
7224   Ret.reserve(Record.size());
7225   for (uint64_t RefValueId : Record)
7226     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7227   return Ret;
7228 }
7229 
7230 std::vector<FunctionSummary::EdgeTy>
7231 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7232                                               bool IsOldProfileFormat,
7233                                               bool HasProfile, bool HasRelBF) {
7234   std::vector<FunctionSummary::EdgeTy> Ret;
7235   Ret.reserve(Record.size());
7236   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7237     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7238     bool HasTailCall = false;
7239     uint64_t RelBF = 0;
7240     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7241     if (IsOldProfileFormat) {
7242       I += 1; // Skip old callsitecount field
7243       if (HasProfile)
7244         I += 1; // Skip old profilecount field
7245     } else if (HasProfile)
7246       std::tie(Hotness, HasTailCall) =
7247           getDecodedHotnessCallEdgeInfo(Record[++I]);
7248     else if (HasRelBF)
7249       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7250     Ret.push_back(FunctionSummary::EdgeTy{
7251         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7252   }
7253   return Ret;
7254 }
7255 
7256 static void
7257 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7258                                        WholeProgramDevirtResolution &Wpd) {
7259   uint64_t ArgNum = Record[Slot++];
7260   WholeProgramDevirtResolution::ByArg &B =
7261       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7262   Slot += ArgNum;
7263 
7264   B.TheKind =
7265       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7266   B.Info = Record[Slot++];
7267   B.Byte = Record[Slot++];
7268   B.Bit = Record[Slot++];
7269 }
7270 
7271 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7272                                               StringRef Strtab, size_t &Slot,
7273                                               TypeIdSummary &TypeId) {
7274   uint64_t Id = Record[Slot++];
7275   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7276 
7277   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7278   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7279                         static_cast<size_t>(Record[Slot + 1])};
7280   Slot += 2;
7281 
7282   uint64_t ResByArgNum = Record[Slot++];
7283   for (uint64_t I = 0; I != ResByArgNum; ++I)
7284     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7285 }
7286 
7287 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7288                                      StringRef Strtab,
7289                                      ModuleSummaryIndex &TheIndex) {
7290   size_t Slot = 0;
7291   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7292       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7293   Slot += 2;
7294 
7295   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7296   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7297   TypeId.TTRes.AlignLog2 = Record[Slot++];
7298   TypeId.TTRes.SizeM1 = Record[Slot++];
7299   TypeId.TTRes.BitMask = Record[Slot++];
7300   TypeId.TTRes.InlineBits = Record[Slot++];
7301 
7302   while (Slot < Record.size())
7303     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7304 }
7305 
7306 std::vector<FunctionSummary::ParamAccess>
7307 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7308   auto ReadRange = [&]() {
7309     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7310                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7311     Record = Record.drop_front();
7312     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7313                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7314     Record = Record.drop_front();
7315     ConstantRange Range{Lower, Upper};
7316     assert(!Range.isFullSet());
7317     assert(!Range.isUpperSignWrapped());
7318     return Range;
7319   };
7320 
7321   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7322   while (!Record.empty()) {
7323     PendingParamAccesses.emplace_back();
7324     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7325     ParamAccess.ParamNo = Record.front();
7326     Record = Record.drop_front();
7327     ParamAccess.Use = ReadRange();
7328     ParamAccess.Calls.resize(Record.front());
7329     Record = Record.drop_front();
7330     for (auto &Call : ParamAccess.Calls) {
7331       Call.ParamNo = Record.front();
7332       Record = Record.drop_front();
7333       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7334       Record = Record.drop_front();
7335       Call.Offsets = ReadRange();
7336     }
7337   }
7338   return PendingParamAccesses;
7339 }
7340 
7341 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7342     ArrayRef<uint64_t> Record, size_t &Slot,
7343     TypeIdCompatibleVtableInfo &TypeId) {
7344   uint64_t Offset = Record[Slot++];
7345   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7346   TypeId.push_back({Offset, Callee});
7347 }
7348 
7349 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7350     ArrayRef<uint64_t> Record) {
7351   size_t Slot = 0;
7352   TypeIdCompatibleVtableInfo &TypeId =
7353       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7354           {Strtab.data() + Record[Slot],
7355            static_cast<size_t>(Record[Slot + 1])});
7356   Slot += 2;
7357 
7358   while (Slot < Record.size())
7359     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7360 }
7361 
7362 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7363                            unsigned WOCnt) {
7364   // Readonly and writeonly refs are in the end of the refs list.
7365   assert(ROCnt + WOCnt <= Refs.size());
7366   unsigned FirstWORef = Refs.size() - WOCnt;
7367   unsigned RefNo = FirstWORef - ROCnt;
7368   for (; RefNo < FirstWORef; ++RefNo)
7369     Refs[RefNo].setReadOnly();
7370   for (; RefNo < Refs.size(); ++RefNo)
7371     Refs[RefNo].setWriteOnly();
7372 }
7373 
7374 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7375 // objects in the index.
7376 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7377   if (Error Err = Stream.EnterSubBlock(ID))
7378     return Err;
7379   SmallVector<uint64_t, 64> Record;
7380 
7381   // Parse version
7382   {
7383     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7384     if (!MaybeEntry)
7385       return MaybeEntry.takeError();
7386     BitstreamEntry Entry = MaybeEntry.get();
7387 
7388     if (Entry.Kind != BitstreamEntry::Record)
7389       return error("Invalid Summary Block: record for version expected");
7390     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7391     if (!MaybeRecord)
7392       return MaybeRecord.takeError();
7393     if (MaybeRecord.get() != bitc::FS_VERSION)
7394       return error("Invalid Summary Block: version expected");
7395   }
7396   const uint64_t Version = Record[0];
7397   const bool IsOldProfileFormat = Version == 1;
7398   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7399     return error("Invalid summary version " + Twine(Version) +
7400                  ". Version should be in the range [1-" +
7401                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7402                  "].");
7403   Record.clear();
7404 
7405   // Keep around the last seen summary to be used when we see an optional
7406   // "OriginalName" attachement.
7407   GlobalValueSummary *LastSeenSummary = nullptr;
7408   GlobalValue::GUID LastSeenGUID = 0;
7409 
7410   // We can expect to see any number of type ID information records before
7411   // each function summary records; these variables store the information
7412   // collected so far so that it can be used to create the summary object.
7413   std::vector<GlobalValue::GUID> PendingTypeTests;
7414   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7415       PendingTypeCheckedLoadVCalls;
7416   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7417       PendingTypeCheckedLoadConstVCalls;
7418   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7419 
7420   std::vector<CallsiteInfo> PendingCallsites;
7421   std::vector<AllocInfo> PendingAllocs;
7422 
7423   while (true) {
7424     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7425     if (!MaybeEntry)
7426       return MaybeEntry.takeError();
7427     BitstreamEntry Entry = MaybeEntry.get();
7428 
7429     switch (Entry.Kind) {
7430     case BitstreamEntry::SubBlock: // Handled for us already.
7431     case BitstreamEntry::Error:
7432       return error("Malformed block");
7433     case BitstreamEntry::EndBlock:
7434       return Error::success();
7435     case BitstreamEntry::Record:
7436       // The interesting case.
7437       break;
7438     }
7439 
7440     // Read a record. The record format depends on whether this
7441     // is a per-module index or a combined index file. In the per-module
7442     // case the records contain the associated value's ID for correlation
7443     // with VST entries. In the combined index the correlation is done
7444     // via the bitcode offset of the summary records (which were saved
7445     // in the combined index VST entries). The records also contain
7446     // information used for ThinLTO renaming and importing.
7447     Record.clear();
7448     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7449     if (!MaybeBitCode)
7450       return MaybeBitCode.takeError();
7451     switch (unsigned BitCode = MaybeBitCode.get()) {
7452     default: // Default behavior: ignore.
7453       break;
7454     case bitc::FS_FLAGS: {  // [flags]
7455       TheIndex.setFlags(Record[0]);
7456       break;
7457     }
7458     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7459       uint64_t ValueID = Record[0];
7460       GlobalValue::GUID RefGUID = Record[1];
7461       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7462           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7463       break;
7464     }
7465     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7466     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7467     //                numrefs x valueid, n x (valueid)]
7468     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7469     //                        numrefs x valueid,
7470     //                        n x (valueid, hotness+tailcall flags)]
7471     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7472     //                      numrefs x valueid,
7473     //                      n x (valueid, relblockfreq+tailcall)]
7474     case bitc::FS_PERMODULE:
7475     case bitc::FS_PERMODULE_RELBF:
7476     case bitc::FS_PERMODULE_PROFILE: {
7477       unsigned ValueID = Record[0];
7478       uint64_t RawFlags = Record[1];
7479       unsigned InstCount = Record[2];
7480       uint64_t RawFunFlags = 0;
7481       unsigned NumRefs = Record[3];
7482       unsigned NumRORefs = 0, NumWORefs = 0;
7483       int RefListStartIndex = 4;
7484       if (Version >= 4) {
7485         RawFunFlags = Record[3];
7486         NumRefs = Record[4];
7487         RefListStartIndex = 5;
7488         if (Version >= 5) {
7489           NumRORefs = Record[5];
7490           RefListStartIndex = 6;
7491           if (Version >= 7) {
7492             NumWORefs = Record[6];
7493             RefListStartIndex = 7;
7494           }
7495         }
7496       }
7497 
7498       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7499       // The module path string ref set in the summary must be owned by the
7500       // index's module string table. Since we don't have a module path
7501       // string table section in the per-module index, we create a single
7502       // module path string table entry with an empty (0) ID to take
7503       // ownership.
7504       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7505       assert(Record.size() >= RefListStartIndex + NumRefs &&
7506              "Record size inconsistent with number of references");
7507       std::vector<ValueInfo> Refs = makeRefList(
7508           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7509       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7510       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7511       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7512           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7513           IsOldProfileFormat, HasProfile, HasRelBF);
7514       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7515       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7516       // In order to save memory, only record the memprof summaries if this is
7517       // the prevailing copy of a symbol. The linker doesn't resolve local
7518       // linkage values so don't check whether those are prevailing.
7519       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7520       if (IsPrevailing &&
7521           !GlobalValue::isLocalLinkage(LT) &&
7522           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7523         PendingCallsites.clear();
7524         PendingAllocs.clear();
7525       }
7526       auto FS = std::make_unique<FunctionSummary>(
7527           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7528           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7529           std::move(PendingTypeTestAssumeVCalls),
7530           std::move(PendingTypeCheckedLoadVCalls),
7531           std::move(PendingTypeTestAssumeConstVCalls),
7532           std::move(PendingTypeCheckedLoadConstVCalls),
7533           std::move(PendingParamAccesses), std::move(PendingCallsites),
7534           std::move(PendingAllocs));
7535       FS->setModulePath(getThisModule()->first());
7536       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7537       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7538                                      std::move(FS));
7539       break;
7540     }
7541     // FS_ALIAS: [valueid, flags, valueid]
7542     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7543     // they expect all aliasee summaries to be available.
7544     case bitc::FS_ALIAS: {
7545       unsigned ValueID = Record[0];
7546       uint64_t RawFlags = Record[1];
7547       unsigned AliaseeID = Record[2];
7548       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7549       auto AS = std::make_unique<AliasSummary>(Flags);
7550       // The module path string ref set in the summary must be owned by the
7551       // index's module string table. Since we don't have a module path
7552       // string table section in the per-module index, we create a single
7553       // module path string table entry with an empty (0) ID to take
7554       // ownership.
7555       AS->setModulePath(getThisModule()->first());
7556 
7557       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7558       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7559       if (!AliaseeInModule)
7560         return error("Alias expects aliasee summary to be parsed");
7561       AS->setAliasee(AliaseeVI, AliaseeInModule);
7562 
7563       auto GUID = getValueInfoFromValueId(ValueID);
7564       AS->setOriginalName(std::get<1>(GUID));
7565       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7566       break;
7567     }
7568     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7569     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7570       unsigned ValueID = Record[0];
7571       uint64_t RawFlags = Record[1];
7572       unsigned RefArrayStart = 2;
7573       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7574                                       /* WriteOnly */ false,
7575                                       /* Constant */ false,
7576                                       GlobalObject::VCallVisibilityPublic);
7577       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7578       if (Version >= 5) {
7579         GVF = getDecodedGVarFlags(Record[2]);
7580         RefArrayStart = 3;
7581       }
7582       std::vector<ValueInfo> Refs =
7583           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7584       auto FS =
7585           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7586       FS->setModulePath(getThisModule()->first());
7587       auto GUID = getValueInfoFromValueId(ValueID);
7588       FS->setOriginalName(std::get<1>(GUID));
7589       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7590       break;
7591     }
7592     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7593     //                        numrefs, numrefs x valueid,
7594     //                        n x (valueid, offset)]
7595     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7596       unsigned ValueID = Record[0];
7597       uint64_t RawFlags = Record[1];
7598       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7599       unsigned NumRefs = Record[3];
7600       unsigned RefListStartIndex = 4;
7601       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7602       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7603       std::vector<ValueInfo> Refs = makeRefList(
7604           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7605       VTableFuncList VTableFuncs;
7606       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7607         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7608         uint64_t Offset = Record[++I];
7609         VTableFuncs.push_back({Callee, Offset});
7610       }
7611       auto VS =
7612           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7613       VS->setModulePath(getThisModule()->first());
7614       VS->setVTableFuncs(VTableFuncs);
7615       auto GUID = getValueInfoFromValueId(ValueID);
7616       VS->setOriginalName(std::get<1>(GUID));
7617       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7618       break;
7619     }
7620     // FS_COMBINED is legacy and does not have support for the tail call flag.
7621     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7622     //               numrefs x valueid, n x (valueid)]
7623     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7624     //                       numrefs x valueid,
7625     //                       n x (valueid, hotness+tailcall flags)]
7626     case bitc::FS_COMBINED:
7627     case bitc::FS_COMBINED_PROFILE: {
7628       unsigned ValueID = Record[0];
7629       uint64_t ModuleId = Record[1];
7630       uint64_t RawFlags = Record[2];
7631       unsigned InstCount = Record[3];
7632       uint64_t RawFunFlags = 0;
7633       uint64_t EntryCount = 0;
7634       unsigned NumRefs = Record[4];
7635       unsigned NumRORefs = 0, NumWORefs = 0;
7636       int RefListStartIndex = 5;
7637 
7638       if (Version >= 4) {
7639         RawFunFlags = Record[4];
7640         RefListStartIndex = 6;
7641         size_t NumRefsIndex = 5;
7642         if (Version >= 5) {
7643           unsigned NumRORefsOffset = 1;
7644           RefListStartIndex = 7;
7645           if (Version >= 6) {
7646             NumRefsIndex = 6;
7647             EntryCount = Record[5];
7648             RefListStartIndex = 8;
7649             if (Version >= 7) {
7650               RefListStartIndex = 9;
7651               NumWORefs = Record[8];
7652               NumRORefsOffset = 2;
7653             }
7654           }
7655           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7656         }
7657         NumRefs = Record[NumRefsIndex];
7658       }
7659 
7660       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7661       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7662       assert(Record.size() >= RefListStartIndex + NumRefs &&
7663              "Record size inconsistent with number of references");
7664       std::vector<ValueInfo> Refs = makeRefList(
7665           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7666       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7667       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7668           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7669           IsOldProfileFormat, HasProfile, false);
7670       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7671       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7672       auto FS = std::make_unique<FunctionSummary>(
7673           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7674           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7675           std::move(PendingTypeTestAssumeVCalls),
7676           std::move(PendingTypeCheckedLoadVCalls),
7677           std::move(PendingTypeTestAssumeConstVCalls),
7678           std::move(PendingTypeCheckedLoadConstVCalls),
7679           std::move(PendingParamAccesses), std::move(PendingCallsites),
7680           std::move(PendingAllocs));
7681       LastSeenSummary = FS.get();
7682       LastSeenGUID = VI.getGUID();
7683       FS->setModulePath(ModuleIdMap[ModuleId]);
7684       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7685       break;
7686     }
7687     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7688     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7689     // they expect all aliasee summaries to be available.
7690     case bitc::FS_COMBINED_ALIAS: {
7691       unsigned ValueID = Record[0];
7692       uint64_t ModuleId = Record[1];
7693       uint64_t RawFlags = Record[2];
7694       unsigned AliaseeValueId = Record[3];
7695       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7696       auto AS = std::make_unique<AliasSummary>(Flags);
7697       LastSeenSummary = AS.get();
7698       AS->setModulePath(ModuleIdMap[ModuleId]);
7699 
7700       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7701       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7702       AS->setAliasee(AliaseeVI, AliaseeInModule);
7703 
7704       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7705       LastSeenGUID = VI.getGUID();
7706       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7707       break;
7708     }
7709     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7710     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7711       unsigned ValueID = Record[0];
7712       uint64_t ModuleId = Record[1];
7713       uint64_t RawFlags = Record[2];
7714       unsigned RefArrayStart = 3;
7715       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7716                                       /* WriteOnly */ false,
7717                                       /* Constant */ false,
7718                                       GlobalObject::VCallVisibilityPublic);
7719       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7720       if (Version >= 5) {
7721         GVF = getDecodedGVarFlags(Record[3]);
7722         RefArrayStart = 4;
7723       }
7724       std::vector<ValueInfo> Refs =
7725           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7726       auto FS =
7727           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7728       LastSeenSummary = FS.get();
7729       FS->setModulePath(ModuleIdMap[ModuleId]);
7730       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7731       LastSeenGUID = VI.getGUID();
7732       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7733       break;
7734     }
7735     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7736     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7737       uint64_t OriginalName = Record[0];
7738       if (!LastSeenSummary)
7739         return error("Name attachment that does not follow a combined record");
7740       LastSeenSummary->setOriginalName(OriginalName);
7741       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7742       // Reset the LastSeenSummary
7743       LastSeenSummary = nullptr;
7744       LastSeenGUID = 0;
7745       break;
7746     }
7747     case bitc::FS_TYPE_TESTS:
7748       assert(PendingTypeTests.empty());
7749       llvm::append_range(PendingTypeTests, Record);
7750       break;
7751 
7752     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7753       assert(PendingTypeTestAssumeVCalls.empty());
7754       for (unsigned I = 0; I != Record.size(); I += 2)
7755         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7756       break;
7757 
7758     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7759       assert(PendingTypeCheckedLoadVCalls.empty());
7760       for (unsigned I = 0; I != Record.size(); I += 2)
7761         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7762       break;
7763 
7764     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7765       PendingTypeTestAssumeConstVCalls.push_back(
7766           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7767       break;
7768 
7769     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7770       PendingTypeCheckedLoadConstVCalls.push_back(
7771           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7772       break;
7773 
7774     case bitc::FS_CFI_FUNCTION_DEFS: {
7775       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7776       for (unsigned I = 0; I != Record.size(); I += 2)
7777         CfiFunctionDefs.insert(
7778             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7779       break;
7780     }
7781 
7782     case bitc::FS_CFI_FUNCTION_DECLS: {
7783       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7784       for (unsigned I = 0; I != Record.size(); I += 2)
7785         CfiFunctionDecls.insert(
7786             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7787       break;
7788     }
7789 
7790     case bitc::FS_TYPE_ID:
7791       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7792       break;
7793 
7794     case bitc::FS_TYPE_ID_METADATA:
7795       parseTypeIdCompatibleVtableSummaryRecord(Record);
7796       break;
7797 
7798     case bitc::FS_BLOCK_COUNT:
7799       TheIndex.addBlockCount(Record[0]);
7800       break;
7801 
7802     case bitc::FS_PARAM_ACCESS: {
7803       PendingParamAccesses = parseParamAccesses(Record);
7804       break;
7805     }
7806 
7807     case bitc::FS_STACK_IDS: { // [n x stackid]
7808       // Save stack ids in the reader to consult when adding stack ids from the
7809       // lists in the stack node and alloc node entries.
7810       StackIds = ArrayRef<uint64_t>(Record);
7811       break;
7812     }
7813 
7814     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7815       unsigned ValueID = Record[0];
7816       SmallVector<unsigned> StackIdList;
7817       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7818         assert(*R < StackIds.size());
7819         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7820       }
7821       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7822       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7823       break;
7824     }
7825 
7826     case bitc::FS_COMBINED_CALLSITE_INFO: {
7827       auto RecordIter = Record.begin();
7828       unsigned ValueID = *RecordIter++;
7829       unsigned NumStackIds = *RecordIter++;
7830       unsigned NumVersions = *RecordIter++;
7831       assert(Record.size() == 3 + NumStackIds + NumVersions);
7832       SmallVector<unsigned> StackIdList;
7833       for (unsigned J = 0; J < NumStackIds; J++) {
7834         assert(*RecordIter < StackIds.size());
7835         StackIdList.push_back(
7836             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7837       }
7838       SmallVector<unsigned> Versions;
7839       for (unsigned J = 0; J < NumVersions; J++)
7840         Versions.push_back(*RecordIter++);
7841       ValueInfo VI = std::get<0>(
7842           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7843       PendingCallsites.push_back(
7844           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7845       break;
7846     }
7847 
7848     case bitc::FS_PERMODULE_ALLOC_INFO: {
7849       unsigned I = 0;
7850       std::vector<MIBInfo> MIBs;
7851       while (I < Record.size()) {
7852         assert(Record.size() - I >= 2);
7853         AllocationType AllocType = (AllocationType)Record[I++];
7854         unsigned NumStackEntries = Record[I++];
7855         assert(Record.size() - I >= NumStackEntries);
7856         SmallVector<unsigned> StackIdList;
7857         for (unsigned J = 0; J < NumStackEntries; J++) {
7858           assert(Record[I] < StackIds.size());
7859           StackIdList.push_back(
7860               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7861         }
7862         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7863       }
7864       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7865       break;
7866     }
7867 
7868     case bitc::FS_COMBINED_ALLOC_INFO: {
7869       unsigned I = 0;
7870       std::vector<MIBInfo> MIBs;
7871       unsigned NumMIBs = Record[I++];
7872       unsigned NumVersions = Record[I++];
7873       unsigned MIBsRead = 0;
7874       while (MIBsRead++ < NumMIBs) {
7875         assert(Record.size() - I >= 2);
7876         AllocationType AllocType = (AllocationType)Record[I++];
7877         unsigned NumStackEntries = Record[I++];
7878         assert(Record.size() - I >= NumStackEntries);
7879         SmallVector<unsigned> StackIdList;
7880         for (unsigned J = 0; J < NumStackEntries; J++) {
7881           assert(Record[I] < StackIds.size());
7882           StackIdList.push_back(
7883               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7884         }
7885         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7886       }
7887       assert(Record.size() - I >= NumVersions);
7888       SmallVector<uint8_t> Versions;
7889       for (unsigned J = 0; J < NumVersions; J++)
7890         Versions.push_back(Record[I++]);
7891       PendingAllocs.push_back(
7892           AllocInfo(std::move(Versions), std::move(MIBs)));
7893       break;
7894     }
7895     }
7896   }
7897   llvm_unreachable("Exit infinite loop");
7898 }
7899 
7900 // Parse the  module string table block into the Index.
7901 // This populates the ModulePathStringTable map in the index.
7902 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7903   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7904     return Err;
7905 
7906   SmallVector<uint64_t, 64> Record;
7907 
7908   SmallString<128> ModulePath;
7909   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7910 
7911   while (true) {
7912     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7913     if (!MaybeEntry)
7914       return MaybeEntry.takeError();
7915     BitstreamEntry Entry = MaybeEntry.get();
7916 
7917     switch (Entry.Kind) {
7918     case BitstreamEntry::SubBlock: // Handled for us already.
7919     case BitstreamEntry::Error:
7920       return error("Malformed block");
7921     case BitstreamEntry::EndBlock:
7922       return Error::success();
7923     case BitstreamEntry::Record:
7924       // The interesting case.
7925       break;
7926     }
7927 
7928     Record.clear();
7929     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7930     if (!MaybeRecord)
7931       return MaybeRecord.takeError();
7932     switch (MaybeRecord.get()) {
7933     default: // Default behavior: ignore.
7934       break;
7935     case bitc::MST_CODE_ENTRY: {
7936       // MST_ENTRY: [modid, namechar x N]
7937       uint64_t ModuleId = Record[0];
7938 
7939       if (convertToString(Record, 1, ModulePath))
7940         return error("Invalid record");
7941 
7942       LastSeenModule = TheIndex.addModule(ModulePath);
7943       ModuleIdMap[ModuleId] = LastSeenModule->first();
7944 
7945       ModulePath.clear();
7946       break;
7947     }
7948     /// MST_CODE_HASH: [5*i32]
7949     case bitc::MST_CODE_HASH: {
7950       if (Record.size() != 5)
7951         return error("Invalid hash length " + Twine(Record.size()).str());
7952       if (!LastSeenModule)
7953         return error("Invalid hash that does not follow a module path");
7954       int Pos = 0;
7955       for (auto &Val : Record) {
7956         assert(!(Val >> 32) && "Unexpected high bits set");
7957         LastSeenModule->second[Pos++] = Val;
7958       }
7959       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7960       LastSeenModule = nullptr;
7961       break;
7962     }
7963     }
7964   }
7965   llvm_unreachable("Exit infinite loop");
7966 }
7967 
7968 namespace {
7969 
7970 // FIXME: This class is only here to support the transition to llvm::Error. It
7971 // will be removed once this transition is complete. Clients should prefer to
7972 // deal with the Error value directly, rather than converting to error_code.
7973 class BitcodeErrorCategoryType : public std::error_category {
7974   const char *name() const noexcept override {
7975     return "llvm.bitcode";
7976   }
7977 
7978   std::string message(int IE) const override {
7979     BitcodeError E = static_cast<BitcodeError>(IE);
7980     switch (E) {
7981     case BitcodeError::CorruptedBitcode:
7982       return "Corrupted bitcode";
7983     }
7984     llvm_unreachable("Unknown error type!");
7985   }
7986 };
7987 
7988 } // end anonymous namespace
7989 
7990 const std::error_category &llvm::BitcodeErrorCategory() {
7991   static BitcodeErrorCategoryType ErrorCategory;
7992   return ErrorCategory;
7993 }
7994 
7995 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7996                                             unsigned Block, unsigned RecordID) {
7997   if (Error Err = Stream.EnterSubBlock(Block))
7998     return std::move(Err);
7999 
8000   StringRef Strtab;
8001   while (true) {
8002     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8003     if (!MaybeEntry)
8004       return MaybeEntry.takeError();
8005     llvm::BitstreamEntry Entry = MaybeEntry.get();
8006 
8007     switch (Entry.Kind) {
8008     case BitstreamEntry::EndBlock:
8009       return Strtab;
8010 
8011     case BitstreamEntry::Error:
8012       return error("Malformed block");
8013 
8014     case BitstreamEntry::SubBlock:
8015       if (Error Err = Stream.SkipBlock())
8016         return std::move(Err);
8017       break;
8018 
8019     case BitstreamEntry::Record:
8020       StringRef Blob;
8021       SmallVector<uint64_t, 1> Record;
8022       Expected<unsigned> MaybeRecord =
8023           Stream.readRecord(Entry.ID, Record, &Blob);
8024       if (!MaybeRecord)
8025         return MaybeRecord.takeError();
8026       if (MaybeRecord.get() == RecordID)
8027         Strtab = Blob;
8028       break;
8029     }
8030   }
8031 }
8032 
8033 //===----------------------------------------------------------------------===//
8034 // External interface
8035 //===----------------------------------------------------------------------===//
8036 
8037 Expected<std::vector<BitcodeModule>>
8038 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8039   auto FOrErr = getBitcodeFileContents(Buffer);
8040   if (!FOrErr)
8041     return FOrErr.takeError();
8042   return std::move(FOrErr->Mods);
8043 }
8044 
8045 Expected<BitcodeFileContents>
8046 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8047   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8048   if (!StreamOrErr)
8049     return StreamOrErr.takeError();
8050   BitstreamCursor &Stream = *StreamOrErr;
8051 
8052   BitcodeFileContents F;
8053   while (true) {
8054     uint64_t BCBegin = Stream.getCurrentByteNo();
8055 
8056     // We may be consuming bitcode from a client that leaves garbage at the end
8057     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8058     // the end that there cannot possibly be another module, stop looking.
8059     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8060       return F;
8061 
8062     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8063     if (!MaybeEntry)
8064       return MaybeEntry.takeError();
8065     llvm::BitstreamEntry Entry = MaybeEntry.get();
8066 
8067     switch (Entry.Kind) {
8068     case BitstreamEntry::EndBlock:
8069     case BitstreamEntry::Error:
8070       return error("Malformed block");
8071 
8072     case BitstreamEntry::SubBlock: {
8073       uint64_t IdentificationBit = -1ull;
8074       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8075         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8076         if (Error Err = Stream.SkipBlock())
8077           return std::move(Err);
8078 
8079         {
8080           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8081           if (!MaybeEntry)
8082             return MaybeEntry.takeError();
8083           Entry = MaybeEntry.get();
8084         }
8085 
8086         if (Entry.Kind != BitstreamEntry::SubBlock ||
8087             Entry.ID != bitc::MODULE_BLOCK_ID)
8088           return error("Malformed block");
8089       }
8090 
8091       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8092         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8093         if (Error Err = Stream.SkipBlock())
8094           return std::move(Err);
8095 
8096         F.Mods.push_back({Stream.getBitcodeBytes().slice(
8097                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
8098                           Buffer.getBufferIdentifier(), IdentificationBit,
8099                           ModuleBit});
8100         continue;
8101       }
8102 
8103       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8104         Expected<StringRef> Strtab =
8105             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8106         if (!Strtab)
8107           return Strtab.takeError();
8108         // This string table is used by every preceding bitcode module that does
8109         // not have its own string table. A bitcode file may have multiple
8110         // string tables if it was created by binary concatenation, for example
8111         // with "llvm-cat -b".
8112         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8113           if (!I.Strtab.empty())
8114             break;
8115           I.Strtab = *Strtab;
8116         }
8117         // Similarly, the string table is used by every preceding symbol table;
8118         // normally there will be just one unless the bitcode file was created
8119         // by binary concatenation.
8120         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8121           F.StrtabForSymtab = *Strtab;
8122         continue;
8123       }
8124 
8125       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8126         Expected<StringRef> SymtabOrErr =
8127             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8128         if (!SymtabOrErr)
8129           return SymtabOrErr.takeError();
8130 
8131         // We can expect the bitcode file to have multiple symbol tables if it
8132         // was created by binary concatenation. In that case we silently
8133         // ignore any subsequent symbol tables, which is fine because this is a
8134         // low level function. The client is expected to notice that the number
8135         // of modules in the symbol table does not match the number of modules
8136         // in the input file and regenerate the symbol table.
8137         if (F.Symtab.empty())
8138           F.Symtab = *SymtabOrErr;
8139         continue;
8140       }
8141 
8142       if (Error Err = Stream.SkipBlock())
8143         return std::move(Err);
8144       continue;
8145     }
8146     case BitstreamEntry::Record:
8147       if (Error E = Stream.skipRecord(Entry.ID).takeError())
8148         return std::move(E);
8149       continue;
8150     }
8151   }
8152 }
8153 
8154 /// Get a lazy one-at-time loading module from bitcode.
8155 ///
8156 /// This isn't always used in a lazy context.  In particular, it's also used by
8157 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
8158 /// in forward-referenced functions from block address references.
8159 ///
8160 /// \param[in] MaterializeAll Set to \c true if we should materialize
8161 /// everything.
8162 Expected<std::unique_ptr<Module>>
8163 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8164                              bool ShouldLazyLoadMetadata, bool IsImporting,
8165                              ParserCallbacks Callbacks) {
8166   BitstreamCursor Stream(Buffer);
8167 
8168   std::string ProducerIdentification;
8169   if (IdentificationBit != -1ull) {
8170     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8171       return std::move(JumpFailed);
8172     if (Error E =
8173             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8174       return std::move(E);
8175   }
8176 
8177   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8178     return std::move(JumpFailed);
8179   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8180                               Context);
8181 
8182   std::unique_ptr<Module> M =
8183       std::make_unique<Module>(ModuleIdentifier, Context);
8184   M->setMaterializer(R);
8185 
8186   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8187   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8188                                       IsImporting, Callbacks))
8189     return std::move(Err);
8190 
8191   if (MaterializeAll) {
8192     // Read in the entire module, and destroy the BitcodeReader.
8193     if (Error Err = M->materializeAll())
8194       return std::move(Err);
8195   } else {
8196     // Resolve forward references from blockaddresses.
8197     if (Error Err = R->materializeForwardReferencedFunctions())
8198       return std::move(Err);
8199   }
8200 
8201   return std::move(M);
8202 }
8203 
8204 Expected<std::unique_ptr<Module>>
8205 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8206                              bool IsImporting, ParserCallbacks Callbacks) {
8207   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8208                        Callbacks);
8209 }
8210 
8211 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8212 // We don't use ModuleIdentifier here because the client may need to control the
8213 // module path used in the combined summary (e.g. when reading summaries for
8214 // regular LTO modules).
8215 Error BitcodeModule::readSummary(
8216     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8217     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8218   BitstreamCursor Stream(Buffer);
8219   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8220     return JumpFailed;
8221 
8222   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8223                                     ModulePath, IsPrevailing);
8224   return R.parseModule();
8225 }
8226 
8227 // Parse the specified bitcode buffer, returning the function info index.
8228 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8229   BitstreamCursor Stream(Buffer);
8230   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8231     return std::move(JumpFailed);
8232 
8233   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8234   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8235                                     ModuleIdentifier, 0);
8236 
8237   if (Error Err = R.parseModule())
8238     return std::move(Err);
8239 
8240   return std::move(Index);
8241 }
8242 
8243 static Expected<std::pair<bool, bool>>
8244 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8245                                                  unsigned ID,
8246                                                  BitcodeLTOInfo &LTOInfo) {
8247   if (Error Err = Stream.EnterSubBlock(ID))
8248     return std::move(Err);
8249   SmallVector<uint64_t, 64> Record;
8250 
8251   while (true) {
8252     BitstreamEntry Entry;
8253     std::pair<bool, bool> Result = {false,false};
8254     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8255       return std::move(E);
8256 
8257     switch (Entry.Kind) {
8258     case BitstreamEntry::SubBlock: // Handled for us already.
8259     case BitstreamEntry::Error:
8260       return error("Malformed block");
8261     case BitstreamEntry::EndBlock: {
8262       // If no flags record found, set both flags to false.
8263       return Result;
8264     }
8265     case BitstreamEntry::Record:
8266       // The interesting case.
8267       break;
8268     }
8269 
8270     // Look for the FS_FLAGS record.
8271     Record.clear();
8272     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8273     if (!MaybeBitCode)
8274       return MaybeBitCode.takeError();
8275     switch (MaybeBitCode.get()) {
8276     default: // Default behavior: ignore.
8277       break;
8278     case bitc::FS_FLAGS: { // [flags]
8279       uint64_t Flags = Record[0];
8280       // Scan flags.
8281       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8282 
8283       bool EnableSplitLTOUnit = Flags & 0x8;
8284       bool UnifiedLTO = Flags & 0x200;
8285       Result = {EnableSplitLTOUnit, UnifiedLTO};
8286 
8287       return Result;
8288     }
8289     }
8290   }
8291   llvm_unreachable("Exit infinite loop");
8292 }
8293 
8294 // Check if the given bitcode buffer contains a global value summary block.
8295 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8296   BitstreamCursor Stream(Buffer);
8297   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8298     return std::move(JumpFailed);
8299 
8300   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8301     return std::move(Err);
8302 
8303   while (true) {
8304     llvm::BitstreamEntry Entry;
8305     if (Error E = Stream.advance().moveInto(Entry))
8306       return std::move(E);
8307 
8308     switch (Entry.Kind) {
8309     case BitstreamEntry::Error:
8310       return error("Malformed block");
8311     case BitstreamEntry::EndBlock:
8312       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8313                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8314 
8315     case BitstreamEntry::SubBlock:
8316       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8317         BitcodeLTOInfo LTOInfo;
8318         Expected<std::pair<bool, bool>> Flags =
8319             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8320         if (!Flags)
8321           return Flags.takeError();
8322         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8323         LTOInfo.IsThinLTO = true;
8324         LTOInfo.HasSummary = true;
8325         return LTOInfo;
8326       }
8327 
8328       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8329         BitcodeLTOInfo LTOInfo;
8330         Expected<std::pair<bool, bool>> Flags =
8331             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8332         if (!Flags)
8333           return Flags.takeError();
8334         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8335         LTOInfo.IsThinLTO = false;
8336         LTOInfo.HasSummary = true;
8337         return LTOInfo;
8338       }
8339 
8340       // Ignore other sub-blocks.
8341       if (Error Err = Stream.SkipBlock())
8342         return std::move(Err);
8343       continue;
8344 
8345     case BitstreamEntry::Record:
8346       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8347         continue;
8348       else
8349         return StreamFailed.takeError();
8350     }
8351   }
8352 }
8353 
8354 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8355   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8356   if (!MsOrErr)
8357     return MsOrErr.takeError();
8358 
8359   if (MsOrErr->size() != 1)
8360     return error("Expected a single module");
8361 
8362   return (*MsOrErr)[0];
8363 }
8364 
8365 Expected<std::unique_ptr<Module>>
8366 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8367                            bool ShouldLazyLoadMetadata, bool IsImporting,
8368                            ParserCallbacks Callbacks) {
8369   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8370   if (!BM)
8371     return BM.takeError();
8372 
8373   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8374                            Callbacks);
8375 }
8376 
8377 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8378     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8379     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8380   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8381                                      IsImporting, Callbacks);
8382   if (MOrErr)
8383     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8384   return MOrErr;
8385 }
8386 
8387 Expected<std::unique_ptr<Module>>
8388 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8389   return getModuleImpl(Context, true, false, false, Callbacks);
8390   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8391   // written.  We must defer until the Module has been fully materialized.
8392 }
8393 
8394 Expected<std::unique_ptr<Module>>
8395 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8396                        ParserCallbacks Callbacks) {
8397   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8398   if (!BM)
8399     return BM.takeError();
8400 
8401   return BM->parseModule(Context, Callbacks);
8402 }
8403 
8404 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8405   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8406   if (!StreamOrErr)
8407     return StreamOrErr.takeError();
8408 
8409   return readTriple(*StreamOrErr);
8410 }
8411 
8412 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8413   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8414   if (!StreamOrErr)
8415     return StreamOrErr.takeError();
8416 
8417   return hasObjCCategory(*StreamOrErr);
8418 }
8419 
8420 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8421   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8422   if (!StreamOrErr)
8423     return StreamOrErr.takeError();
8424 
8425   return readIdentificationCode(*StreamOrErr);
8426 }
8427 
8428 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8429                                    ModuleSummaryIndex &CombinedIndex) {
8430   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8431   if (!BM)
8432     return BM.takeError();
8433 
8434   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8435 }
8436 
8437 Expected<std::unique_ptr<ModuleSummaryIndex>>
8438 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8439   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8440   if (!BM)
8441     return BM.takeError();
8442 
8443   return BM->getSummary();
8444 }
8445 
8446 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8447   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8448   if (!BM)
8449     return BM.takeError();
8450 
8451   return BM->getLTOInfo();
8452 }
8453 
8454 Expected<std::unique_ptr<ModuleSummaryIndex>>
8455 llvm::getModuleSummaryIndexForFile(StringRef Path,
8456                                    bool IgnoreEmptyThinLTOIndexFile) {
8457   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8458       MemoryBuffer::getFileOrSTDIN(Path);
8459   if (!FileOrErr)
8460     return errorCodeToError(FileOrErr.getError());
8461   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8462     return nullptr;
8463   return getModuleSummaryIndex(**FileOrErr);
8464 }
8465