xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision fa4fbaefde8569ca64594fc3845340536ec8eb02)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantRangeList.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/ProfDataUtils.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/Verifier.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Error.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/ErrorOr.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/MemoryBuffer.h"
75 #include "llvm/Support/ModRef.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/TargetParser/Triple.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <deque>
83 #include <map>
84 #include <memory>
85 #include <optional>
86 #include <set>
87 #include <string>
88 #include <system_error>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
92 
93 using namespace llvm;
94 
95 static cl::opt<bool> PrintSummaryGUIDs(
96     "print-summary-global-ids", cl::init(false), cl::Hidden,
97     cl::desc(
98         "Print the global id for each value when reading the module summary"));
99 
100 static cl::opt<bool> ExpandConstantExprs(
101     "expand-constant-exprs", cl::Hidden,
102     cl::desc(
103         "Expand constant expressions to instructions for testing purposes"));
104 
105 /// Load bitcode directly into RemoveDIs format (use debug records instead
106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action
107 /// is to do nothing. Individual tools can override this to incrementally add
108 /// support for the RemoveDIs format.
109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
110     "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
111     cl::desc("Load bitcode directly into the new debug info format (regardless "
112              "of input format)"));
113 extern cl::opt<bool> UseNewDbgInfoFormat;
114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
115 extern bool WriteNewDbgInfoFormatToBitcode;
116 extern cl::opt<bool> WriteNewDbgInfoFormat;
117 
118 namespace {
119 
120 enum {
121   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
122 };
123 
124 } // end anonymous namespace
125 
126 static Error error(const Twine &Message) {
127   return make_error<StringError>(
128       Message, make_error_code(BitcodeError::CorruptedBitcode));
129 }
130 
131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
132   if (!Stream.canSkipToPos(4))
133     return createStringError(std::errc::illegal_byte_sequence,
134                              "file too small to contain bitcode header");
135   for (unsigned C : {'B', 'C'})
136     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
137       if (Res.get() != C)
138         return createStringError(std::errc::illegal_byte_sequence,
139                                  "file doesn't start with bitcode header");
140     } else
141       return Res.takeError();
142   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
143     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
144       if (Res.get() != C)
145         return createStringError(std::errc::illegal_byte_sequence,
146                                  "file doesn't start with bitcode header");
147     } else
148       return Res.takeError();
149   return Error::success();
150 }
151 
152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
153   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
154   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
155 
156   if (Buffer.getBufferSize() & 3)
157     return error("Invalid bitcode signature");
158 
159   // If we have a wrapper header, parse it and ignore the non-bc file contents.
160   // The magic number is 0x0B17C0DE stored in little endian.
161   if (isBitcodeWrapper(BufPtr, BufEnd))
162     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
163       return error("Invalid bitcode wrapper header");
164 
165   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
166   if (Error Err = hasInvalidBitcodeHeader(Stream))
167     return std::move(Err);
168 
169   return std::move(Stream);
170 }
171 
172 /// Convert a string from a record into an std::string, return true on failure.
173 template <typename StrTy>
174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
175                             StrTy &Result) {
176   if (Idx > Record.size())
177     return true;
178 
179   Result.append(Record.begin() + Idx, Record.end());
180   return false;
181 }
182 
183 // Strip all the TBAA attachment for the module.
184 static void stripTBAA(Module *M) {
185   for (auto &F : *M) {
186     if (F.isMaterializable())
187       continue;
188     for (auto &I : instructions(F))
189       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
190   }
191 }
192 
193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
194 /// "epoch" encoded in the bitcode, and return the producer name if any.
195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
196   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
197     return std::move(Err);
198 
199   // Read all the records.
200   SmallVector<uint64_t, 64> Record;
201 
202   std::string ProducerIdentification;
203 
204   while (true) {
205     BitstreamEntry Entry;
206     if (Error E = Stream.advance().moveInto(Entry))
207       return std::move(E);
208 
209     switch (Entry.Kind) {
210     default:
211     case BitstreamEntry::Error:
212       return error("Malformed block");
213     case BitstreamEntry::EndBlock:
214       return ProducerIdentification;
215     case BitstreamEntry::Record:
216       // The interesting case.
217       break;
218     }
219 
220     // Read a record.
221     Record.clear();
222     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
223     if (!MaybeBitCode)
224       return MaybeBitCode.takeError();
225     switch (MaybeBitCode.get()) {
226     default: // Default behavior: reject
227       return error("Invalid value");
228     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
229       convertToString(Record, 0, ProducerIdentification);
230       break;
231     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
232       unsigned epoch = (unsigned)Record[0];
233       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
234         return error(
235           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
236           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
237       }
238     }
239     }
240   }
241 }
242 
243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
244   // We expect a number of well-defined blocks, though we don't necessarily
245   // need to understand them all.
246   while (true) {
247     if (Stream.AtEndOfStream())
248       return "";
249 
250     BitstreamEntry Entry;
251     if (Error E = Stream.advance().moveInto(Entry))
252       return std::move(E);
253 
254     switch (Entry.Kind) {
255     case BitstreamEntry::EndBlock:
256     case BitstreamEntry::Error:
257       return error("Malformed block");
258 
259     case BitstreamEntry::SubBlock:
260       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
261         return readIdentificationBlock(Stream);
262 
263       // Ignore other sub-blocks.
264       if (Error Err = Stream.SkipBlock())
265         return std::move(Err);
266       continue;
267     case BitstreamEntry::Record:
268       if (Error E = Stream.skipRecord(Entry.ID).takeError())
269         return std::move(E);
270       continue;
271     }
272   }
273 }
274 
275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
276   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
277     return std::move(Err);
278 
279   SmallVector<uint64_t, 64> Record;
280   // Read all the records for this module.
281 
282   while (true) {
283     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
284     if (!MaybeEntry)
285       return MaybeEntry.takeError();
286     BitstreamEntry Entry = MaybeEntry.get();
287 
288     switch (Entry.Kind) {
289     case BitstreamEntry::SubBlock: // Handled for us already.
290     case BitstreamEntry::Error:
291       return error("Malformed block");
292     case BitstreamEntry::EndBlock:
293       return false;
294     case BitstreamEntry::Record:
295       // The interesting case.
296       break;
297     }
298 
299     // Read a record.
300     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
301     if (!MaybeRecord)
302       return MaybeRecord.takeError();
303     switch (MaybeRecord.get()) {
304     default:
305       break; // Default behavior, ignore unknown content.
306     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
307       std::string S;
308       if (convertToString(Record, 0, S))
309         return error("Invalid section name record");
310       // Check for the i386 and other (x86_64, ARM) conventions
311       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
312           S.find("__OBJC,__category") != std::string::npos ||
313           S.find("__TEXT,__swift") != std::string::npos)
314         return true;
315       break;
316     }
317     }
318     Record.clear();
319   }
320   llvm_unreachable("Exit infinite loop");
321 }
322 
323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
324   // We expect a number of well-defined blocks, though we don't necessarily
325   // need to understand them all.
326   while (true) {
327     BitstreamEntry Entry;
328     if (Error E = Stream.advance().moveInto(Entry))
329       return std::move(E);
330 
331     switch (Entry.Kind) {
332     case BitstreamEntry::Error:
333       return error("Malformed block");
334     case BitstreamEntry::EndBlock:
335       return false;
336 
337     case BitstreamEntry::SubBlock:
338       if (Entry.ID == bitc::MODULE_BLOCK_ID)
339         return hasObjCCategoryInModule(Stream);
340 
341       // Ignore other sub-blocks.
342       if (Error Err = Stream.SkipBlock())
343         return std::move(Err);
344       continue;
345 
346     case BitstreamEntry::Record:
347       if (Error E = Stream.skipRecord(Entry.ID).takeError())
348         return std::move(E);
349       continue;
350     }
351   }
352 }
353 
354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
355   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
356     return std::move(Err);
357 
358   SmallVector<uint64_t, 64> Record;
359 
360   std::string Triple;
361 
362   // Read all the records for this module.
363   while (true) {
364     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
365     if (!MaybeEntry)
366       return MaybeEntry.takeError();
367     BitstreamEntry Entry = MaybeEntry.get();
368 
369     switch (Entry.Kind) {
370     case BitstreamEntry::SubBlock: // Handled for us already.
371     case BitstreamEntry::Error:
372       return error("Malformed block");
373     case BitstreamEntry::EndBlock:
374       return Triple;
375     case BitstreamEntry::Record:
376       // The interesting case.
377       break;
378     }
379 
380     // Read a record.
381     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
382     if (!MaybeRecord)
383       return MaybeRecord.takeError();
384     switch (MaybeRecord.get()) {
385     default: break;  // Default behavior, ignore unknown content.
386     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
387       std::string S;
388       if (convertToString(Record, 0, S))
389         return error("Invalid triple record");
390       Triple = S;
391       break;
392     }
393     }
394     Record.clear();
395   }
396   llvm_unreachable("Exit infinite loop");
397 }
398 
399 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
400   // We expect a number of well-defined blocks, though we don't necessarily
401   // need to understand them all.
402   while (true) {
403     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
404     if (!MaybeEntry)
405       return MaybeEntry.takeError();
406     BitstreamEntry Entry = MaybeEntry.get();
407 
408     switch (Entry.Kind) {
409     case BitstreamEntry::Error:
410       return error("Malformed block");
411     case BitstreamEntry::EndBlock:
412       return "";
413 
414     case BitstreamEntry::SubBlock:
415       if (Entry.ID == bitc::MODULE_BLOCK_ID)
416         return readModuleTriple(Stream);
417 
418       // Ignore other sub-blocks.
419       if (Error Err = Stream.SkipBlock())
420         return std::move(Err);
421       continue;
422 
423     case BitstreamEntry::Record:
424       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
425         continue;
426       else
427         return Skipped.takeError();
428     }
429   }
430 }
431 
432 namespace {
433 
434 class BitcodeReaderBase {
435 protected:
436   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
437       : Stream(std::move(Stream)), Strtab(Strtab) {
438     this->Stream.setBlockInfo(&BlockInfo);
439   }
440 
441   BitstreamBlockInfo BlockInfo;
442   BitstreamCursor Stream;
443   StringRef Strtab;
444 
445   /// In version 2 of the bitcode we store names of global values and comdats in
446   /// a string table rather than in the VST.
447   bool UseStrtab = false;
448 
449   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
450 
451   /// If this module uses a string table, pop the reference to the string table
452   /// and return the referenced string and the rest of the record. Otherwise
453   /// just return the record itself.
454   std::pair<StringRef, ArrayRef<uint64_t>>
455   readNameFromStrtab(ArrayRef<uint64_t> Record);
456 
457   Error readBlockInfo();
458 
459   // Contains an arbitrary and optional string identifying the bitcode producer
460   std::string ProducerIdentification;
461 
462   Error error(const Twine &Message);
463 };
464 
465 } // end anonymous namespace
466 
467 Error BitcodeReaderBase::error(const Twine &Message) {
468   std::string FullMsg = Message.str();
469   if (!ProducerIdentification.empty())
470     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
471                LLVM_VERSION_STRING "')";
472   return ::error(FullMsg);
473 }
474 
475 Expected<unsigned>
476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
477   if (Record.empty())
478     return error("Invalid version record");
479   unsigned ModuleVersion = Record[0];
480   if (ModuleVersion > 2)
481     return error("Invalid value");
482   UseStrtab = ModuleVersion >= 2;
483   return ModuleVersion;
484 }
485 
486 std::pair<StringRef, ArrayRef<uint64_t>>
487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
488   if (!UseStrtab)
489     return {"", Record};
490   // Invalid reference. Let the caller complain about the record being empty.
491   if (Record[0] + Record[1] > Strtab.size())
492     return {"", {}};
493   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
494 }
495 
496 namespace {
497 
498 /// This represents a constant expression or constant aggregate using a custom
499 /// structure internal to the bitcode reader. Later, this structure will be
500 /// expanded by materializeValue() either into a constant expression/aggregate,
501 /// or into an instruction sequence at the point of use. This allows us to
502 /// upgrade bitcode using constant expressions even if this kind of constant
503 /// expression is no longer supported.
504 class BitcodeConstant final : public Value,
505                               TrailingObjects<BitcodeConstant, unsigned> {
506   friend TrailingObjects;
507 
508   // Value subclass ID: Pick largest possible value to avoid any clashes.
509   static constexpr uint8_t SubclassID = 255;
510 
511 public:
512   // Opcodes used for non-expressions. This includes constant aggregates
513   // (struct, array, vector) that might need expansion, as well as non-leaf
514   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
515   // but still go through BitcodeConstant to avoid different uselist orders
516   // between the two cases.
517   static constexpr uint8_t ConstantStructOpcode = 255;
518   static constexpr uint8_t ConstantArrayOpcode = 254;
519   static constexpr uint8_t ConstantVectorOpcode = 253;
520   static constexpr uint8_t NoCFIOpcode = 252;
521   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
522   static constexpr uint8_t BlockAddressOpcode = 250;
523   static constexpr uint8_t ConstantPtrAuthOpcode = 249;
524   static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode;
525 
526   // Separate struct to make passing different number of parameters to
527   // BitcodeConstant::create() more convenient.
528   struct ExtraInfo {
529     uint8_t Opcode;
530     uint8_t Flags;
531     unsigned BlockAddressBB = 0;
532     Type *SrcElemTy = nullptr;
533     std::optional<ConstantRange> InRange;
534 
535     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
536               std::optional<ConstantRange> InRange = std::nullopt)
537         : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
538           InRange(std::move(InRange)) {}
539 
540     ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
541         : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
542   };
543 
544   uint8_t Opcode;
545   uint8_t Flags;
546   unsigned NumOperands;
547   unsigned BlockAddressBB;
548   Type *SrcElemTy; // GEP source element type.
549   std::optional<ConstantRange> InRange; // GEP inrange attribute.
550 
551 private:
552   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
553       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
554         NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
555         SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
556     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
557                             getTrailingObjects<unsigned>());
558   }
559 
560   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
561 
562 public:
563   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
564                                  const ExtraInfo &Info,
565                                  ArrayRef<unsigned> OpIDs) {
566     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
567                            alignof(BitcodeConstant));
568     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
569   }
570 
571   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
572 
573   ArrayRef<unsigned> getOperandIDs() const {
574     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
575   }
576 
577   std::optional<ConstantRange> getInRange() const {
578     assert(Opcode == Instruction::GetElementPtr);
579     return InRange;
580   }
581 
582   const char *getOpcodeName() const {
583     return Instruction::getOpcodeName(Opcode);
584   }
585 };
586 
587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
588   LLVMContext &Context;
589   Module *TheModule = nullptr;
590   // Next offset to start scanning for lazy parsing of function bodies.
591   uint64_t NextUnreadBit = 0;
592   // Last function offset found in the VST.
593   uint64_t LastFunctionBlockBit = 0;
594   bool SeenValueSymbolTable = false;
595   uint64_t VSTOffset = 0;
596 
597   std::vector<std::string> SectionTable;
598   std::vector<std::string> GCTable;
599 
600   std::vector<Type *> TypeList;
601   /// Track type IDs of contained types. Order is the same as the contained
602   /// types of a Type*. This is used during upgrades of typed pointer IR in
603   /// opaque pointer mode.
604   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
605   /// In some cases, we need to create a type ID for a type that was not
606   /// explicitly encoded in the bitcode, or we don't know about at the current
607   /// point. For example, a global may explicitly encode the value type ID, but
608   /// not have a type ID for the pointer to value type, for which we create a
609   /// virtual type ID instead. This map stores the new type ID that was created
610   /// for the given pair of Type and contained type ID.
611   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
612   DenseMap<Function *, unsigned> FunctionTypeIDs;
613   /// Allocator for BitcodeConstants. This should come before ValueList,
614   /// because the ValueList might hold ValueHandles to these constants, so
615   /// ValueList must be destroyed before Alloc.
616   BumpPtrAllocator Alloc;
617   BitcodeReaderValueList ValueList;
618   std::optional<MetadataLoader> MDLoader;
619   std::vector<Comdat *> ComdatList;
620   DenseSet<GlobalObject *> ImplicitComdatObjects;
621   SmallVector<Instruction *, 64> InstructionList;
622 
623   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
624   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
625 
626   struct FunctionOperandInfo {
627     Function *F;
628     unsigned PersonalityFn;
629     unsigned Prefix;
630     unsigned Prologue;
631   };
632   std::vector<FunctionOperandInfo> FunctionOperands;
633 
634   /// The set of attributes by index.  Index zero in the file is for null, and
635   /// is thus not represented here.  As such all indices are off by one.
636   std::vector<AttributeList> MAttributes;
637 
638   /// The set of attribute groups.
639   std::map<unsigned, AttributeList> MAttributeGroups;
640 
641   /// While parsing a function body, this is a list of the basic blocks for the
642   /// function.
643   std::vector<BasicBlock*> FunctionBBs;
644 
645   // When reading the module header, this list is populated with functions that
646   // have bodies later in the file.
647   std::vector<Function*> FunctionsWithBodies;
648 
649   // When intrinsic functions are encountered which require upgrading they are
650   // stored here with their replacement function.
651   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
652   UpdatedIntrinsicMap UpgradedIntrinsics;
653 
654   // Several operations happen after the module header has been read, but
655   // before function bodies are processed. This keeps track of whether
656   // we've done this yet.
657   bool SeenFirstFunctionBody = false;
658 
659   /// When function bodies are initially scanned, this map contains info about
660   /// where to find deferred function body in the stream.
661   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
662 
663   /// When Metadata block is initially scanned when parsing the module, we may
664   /// choose to defer parsing of the metadata. This vector contains info about
665   /// which Metadata blocks are deferred.
666   std::vector<uint64_t> DeferredMetadataInfo;
667 
668   /// These are basic blocks forward-referenced by block addresses.  They are
669   /// inserted lazily into functions when they're loaded.  The basic block ID is
670   /// its index into the vector.
671   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
672   std::deque<Function *> BasicBlockFwdRefQueue;
673 
674   /// These are Functions that contain BlockAddresses which refer a different
675   /// Function. When parsing the different Function, queue Functions that refer
676   /// to the different Function. Those Functions must be materialized in order
677   /// to resolve their BlockAddress constants before the different Function
678   /// gets moved into another Module.
679   std::vector<Function *> BackwardRefFunctions;
680 
681   /// Indicates that we are using a new encoding for instruction operands where
682   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
683   /// instruction number, for a more compact encoding.  Some instruction
684   /// operands are not relative to the instruction ID: basic block numbers, and
685   /// types. Once the old style function blocks have been phased out, we would
686   /// not need this flag.
687   bool UseRelativeIDs = false;
688 
689   /// True if all functions will be materialized, negating the need to process
690   /// (e.g.) blockaddress forward references.
691   bool WillMaterializeAllForwardRefs = false;
692 
693   /// Tracks whether we have seen debug intrinsics or records in this bitcode;
694   /// seeing both in a single module is currently a fatal error.
695   bool SeenDebugIntrinsic = false;
696   bool SeenDebugRecord = false;
697 
698   bool StripDebugInfo = false;
699   TBAAVerifier TBAAVerifyHelper;
700 
701   std::vector<std::string> BundleTags;
702   SmallVector<SyncScope::ID, 8> SSIDs;
703 
704   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
705 
706 public:
707   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
708                 StringRef ProducerIdentification, LLVMContext &Context);
709 
710   Error materializeForwardReferencedFunctions();
711 
712   Error materialize(GlobalValue *GV) override;
713   Error materializeModule() override;
714   std::vector<StructType *> getIdentifiedStructTypes() const override;
715 
716   /// Main interface to parsing a bitcode buffer.
717   /// \returns true if an error occurred.
718   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
719                          bool IsImporting, ParserCallbacks Callbacks = {});
720 
721   static uint64_t decodeSignRotatedValue(uint64_t V);
722 
723   /// Materialize any deferred Metadata block.
724   Error materializeMetadata() override;
725 
726   void setStripDebugInfo() override;
727 
728 private:
729   std::vector<StructType *> IdentifiedStructTypes;
730   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
731   StructType *createIdentifiedStructType(LLVMContext &Context);
732 
733   static constexpr unsigned InvalidTypeID = ~0u;
734 
735   Type *getTypeByID(unsigned ID);
736   Type *getPtrElementTypeByID(unsigned ID);
737   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
738   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
739 
740   void callValueTypeCallback(Value *F, unsigned TypeID);
741   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
742   Expected<Constant *> getValueForInitializer(unsigned ID);
743 
744   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Ty && Ty->isMetadataTy())
747       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
748     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
749   }
750 
751   Metadata *getFnMetadataByID(unsigned ID) {
752     return MDLoader->getMetadataFwdRefOrLoad(ID);
753   }
754 
755   BasicBlock *getBasicBlock(unsigned ID) const {
756     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
757     return FunctionBBs[ID];
758   }
759 
760   AttributeList getAttributes(unsigned i) const {
761     if (i-1 < MAttributes.size())
762       return MAttributes[i-1];
763     return AttributeList();
764   }
765 
766   /// Read a value/type pair out of the specified record from slot 'Slot'.
767   /// Increment Slot past the number of slots used in the record. Return true on
768   /// failure.
769   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
770                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
771                         BasicBlock *ConstExprInsertBB) {
772     if (Slot == Record.size()) return true;
773     unsigned ValNo = (unsigned)Record[Slot++];
774     // Adjust the ValNo, if it was encoded relative to the InstNum.
775     if (UseRelativeIDs)
776       ValNo = InstNum - ValNo;
777     if (ValNo < InstNum) {
778       // If this is not a forward reference, just return the value we already
779       // have.
780       TypeID = ValueList.getTypeID(ValNo);
781       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
782       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
783              "Incorrect type ID stored for value");
784       return ResVal == nullptr;
785     }
786     if (Slot == Record.size())
787       return true;
788 
789     TypeID = (unsigned)Record[Slot++];
790     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
791                             ConstExprInsertBB);
792     return ResVal == nullptr;
793   }
794 
795   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
796   /// past the number of slots used by the value in the record. Return true if
797   /// there is an error.
798   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
799                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
800                 BasicBlock *ConstExprInsertBB) {
801     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
802       return true;
803     // All values currently take a single record slot.
804     ++Slot;
805     return false;
806   }
807 
808   /// Like popValue, but does not increment the Slot number.
809   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
810                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
811                 BasicBlock *ConstExprInsertBB) {
812     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
813     return ResVal == nullptr;
814   }
815 
816   /// Version of getValue that returns ResVal directly, or 0 if there is an
817   /// error.
818   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
819                   unsigned InstNum, Type *Ty, unsigned TyID,
820                   BasicBlock *ConstExprInsertBB) {
821     if (Slot == Record.size()) return nullptr;
822     unsigned ValNo = (unsigned)Record[Slot];
823     // Adjust the ValNo, if it was encoded relative to the InstNum.
824     if (UseRelativeIDs)
825       ValNo = InstNum - ValNo;
826     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
827   }
828 
829   /// Like getValue, but decodes signed VBRs.
830   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
831                         unsigned InstNum, Type *Ty, unsigned TyID,
832                         BasicBlock *ConstExprInsertBB) {
833     if (Slot == Record.size()) return nullptr;
834     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
835     // Adjust the ValNo, if it was encoded relative to the InstNum.
836     if (UseRelativeIDs)
837       ValNo = InstNum - ValNo;
838     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
839   }
840 
841   Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
842                                             unsigned &OpNum,
843                                             unsigned BitWidth) {
844     if (Record.size() - OpNum < 2)
845       return error("Too few records for range");
846     if (BitWidth > 64) {
847       unsigned LowerActiveWords = Record[OpNum];
848       unsigned UpperActiveWords = Record[OpNum++] >> 32;
849       if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
850         return error("Too few records for range");
851       APInt Lower =
852           readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
853       OpNum += LowerActiveWords;
854       APInt Upper =
855           readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
856       OpNum += UpperActiveWords;
857       return ConstantRange(Lower, Upper);
858     } else {
859       int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
860       int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
861       return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End));
862     }
863   }
864 
865   Expected<ConstantRange>
866   readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) {
867     if (Record.size() - OpNum < 1)
868       return error("Too few records for range");
869     unsigned BitWidth = Record[OpNum++];
870     return readConstantRange(Record, OpNum, BitWidth);
871   }
872 
873   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
874   /// corresponding argument's pointee type. Also upgrades intrinsics that now
875   /// require an elementtype attribute.
876   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
877 
878   /// Converts alignment exponent (i.e. power of two (or zero)) to the
879   /// corresponding alignment to use. If alignment is too large, returns
880   /// a corresponding error code.
881   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
882   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
883   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
884                     ParserCallbacks Callbacks = {});
885 
886   Error parseComdatRecord(ArrayRef<uint64_t> Record);
887   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
888   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
889   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
890                                         ArrayRef<uint64_t> Record);
891 
892   Error parseAttributeBlock();
893   Error parseAttributeGroupBlock();
894   Error parseTypeTable();
895   Error parseTypeTableBody();
896   Error parseOperandBundleTags();
897   Error parseSyncScopeNames();
898 
899   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
900                                 unsigned NameIndex, Triple &TT);
901   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
902                                ArrayRef<uint64_t> Record);
903   Error parseValueSymbolTable(uint64_t Offset = 0);
904   Error parseGlobalValueSymbolTable();
905   Error parseConstants();
906   Error rememberAndSkipFunctionBodies();
907   Error rememberAndSkipFunctionBody();
908   /// Save the positions of the Metadata blocks and skip parsing the blocks.
909   Error rememberAndSkipMetadata();
910   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
911   Error parseFunctionBody(Function *F);
912   Error globalCleanup();
913   Error resolveGlobalAndIndirectSymbolInits();
914   Error parseUseLists();
915   Error findFunctionInStream(
916       Function *F,
917       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
918 
919   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
920 };
921 
922 /// Class to manage reading and parsing function summary index bitcode
923 /// files/sections.
924 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
925   /// The module index built during parsing.
926   ModuleSummaryIndex &TheIndex;
927 
928   /// Indicates whether we have encountered a global value summary section
929   /// yet during parsing.
930   bool SeenGlobalValSummary = false;
931 
932   /// Indicates whether we have already parsed the VST, used for error checking.
933   bool SeenValueSymbolTable = false;
934 
935   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
936   /// Used to enable on-demand parsing of the VST.
937   uint64_t VSTOffset = 0;
938 
939   // Map to save ValueId to ValueInfo association that was recorded in the
940   // ValueSymbolTable. It is used after the VST is parsed to convert
941   // call graph edges read from the function summary from referencing
942   // callees by their ValueId to using the ValueInfo instead, which is how
943   // they are recorded in the summary index being built.
944   // We save a GUID which refers to the same global as the ValueInfo, but
945   // ignoring the linkage, i.e. for values other than local linkage they are
946   // identical (this is the second tuple member).
947   // The third tuple member is the real GUID of the ValueInfo.
948   DenseMap<unsigned,
949            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
950       ValueIdToValueInfoMap;
951 
952   /// Map populated during module path string table parsing, from the
953   /// module ID to a string reference owned by the index's module
954   /// path string table, used to correlate with combined index
955   /// summary records.
956   DenseMap<uint64_t, StringRef> ModuleIdMap;
957 
958   /// Original source file name recorded in a bitcode record.
959   std::string SourceFileName;
960 
961   /// The string identifier given to this module by the client, normally the
962   /// path to the bitcode file.
963   StringRef ModulePath;
964 
965   /// Callback to ask whether a symbol is the prevailing copy when invoked
966   /// during combined index building.
967   std::function<bool(GlobalValue::GUID)> IsPrevailing;
968 
969   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
970   /// ids from the lists in the callsite and alloc entries to the index.
971   std::vector<uint64_t> StackIds;
972 
973 public:
974   ModuleSummaryIndexBitcodeReader(
975       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
976       StringRef ModulePath,
977       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
978 
979   Error parseModule();
980 
981 private:
982   void setValueGUID(uint64_t ValueID, StringRef ValueName,
983                     GlobalValue::LinkageTypes Linkage,
984                     StringRef SourceFileName);
985   Error parseValueSymbolTable(
986       uint64_t Offset,
987       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
988   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
989   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
990                                                     bool IsOldProfileFormat,
991                                                     bool HasProfile,
992                                                     bool HasRelBF);
993   Error parseEntireSummary(unsigned ID);
994   Error parseModuleStringTable();
995   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
996   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
997                                        TypeIdCompatibleVtableInfo &TypeId);
998   std::vector<FunctionSummary::ParamAccess>
999   parseParamAccesses(ArrayRef<uint64_t> Record);
1000 
1001   template <bool AllowNullValueInfo = false>
1002   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
1003   getValueInfoFromValueId(unsigned ValueId);
1004 
1005   void addThisModule();
1006   ModuleSummaryIndex::ModuleInfo *getThisModule();
1007 };
1008 
1009 } // end anonymous namespace
1010 
1011 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
1012                                                     Error Err) {
1013   if (Err) {
1014     std::error_code EC;
1015     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
1016       EC = EIB.convertToErrorCode();
1017       Ctx.emitError(EIB.message());
1018     });
1019     return EC;
1020   }
1021   return std::error_code();
1022 }
1023 
1024 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1025                              StringRef ProducerIdentification,
1026                              LLVMContext &Context)
1027     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1028       ValueList(this->Stream.SizeInBytes(),
1029                 [this](unsigned ValID, BasicBlock *InsertBB) {
1030                   return materializeValue(ValID, InsertBB);
1031                 }) {
1032   this->ProducerIdentification = std::string(ProducerIdentification);
1033 }
1034 
1035 Error BitcodeReader::materializeForwardReferencedFunctions() {
1036   if (WillMaterializeAllForwardRefs)
1037     return Error::success();
1038 
1039   // Prevent recursion.
1040   WillMaterializeAllForwardRefs = true;
1041 
1042   while (!BasicBlockFwdRefQueue.empty()) {
1043     Function *F = BasicBlockFwdRefQueue.front();
1044     BasicBlockFwdRefQueue.pop_front();
1045     assert(F && "Expected valid function");
1046     if (!BasicBlockFwdRefs.count(F))
1047       // Already materialized.
1048       continue;
1049 
1050     // Check for a function that isn't materializable to prevent an infinite
1051     // loop.  When parsing a blockaddress stored in a global variable, there
1052     // isn't a trivial way to check if a function will have a body without a
1053     // linear search through FunctionsWithBodies, so just check it here.
1054     if (!F->isMaterializable())
1055       return error("Never resolved function from blockaddress");
1056 
1057     // Try to materialize F.
1058     if (Error Err = materialize(F))
1059       return Err;
1060   }
1061   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1062 
1063   for (Function *F : BackwardRefFunctions)
1064     if (Error Err = materialize(F))
1065       return Err;
1066   BackwardRefFunctions.clear();
1067 
1068   // Reset state.
1069   WillMaterializeAllForwardRefs = false;
1070   return Error::success();
1071 }
1072 
1073 //===----------------------------------------------------------------------===//
1074 //  Helper functions to implement forward reference resolution, etc.
1075 //===----------------------------------------------------------------------===//
1076 
1077 static bool hasImplicitComdat(size_t Val) {
1078   switch (Val) {
1079   default:
1080     return false;
1081   case 1:  // Old WeakAnyLinkage
1082   case 4:  // Old LinkOnceAnyLinkage
1083   case 10: // Old WeakODRLinkage
1084   case 11: // Old LinkOnceODRLinkage
1085     return true;
1086   }
1087 }
1088 
1089 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1090   switch (Val) {
1091   default: // Map unknown/new linkages to external
1092   case 0:
1093     return GlobalValue::ExternalLinkage;
1094   case 2:
1095     return GlobalValue::AppendingLinkage;
1096   case 3:
1097     return GlobalValue::InternalLinkage;
1098   case 5:
1099     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1100   case 6:
1101     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1102   case 7:
1103     return GlobalValue::ExternalWeakLinkage;
1104   case 8:
1105     return GlobalValue::CommonLinkage;
1106   case 9:
1107     return GlobalValue::PrivateLinkage;
1108   case 12:
1109     return GlobalValue::AvailableExternallyLinkage;
1110   case 13:
1111     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1112   case 14:
1113     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1114   case 15:
1115     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1116   case 1: // Old value with implicit comdat.
1117   case 16:
1118     return GlobalValue::WeakAnyLinkage;
1119   case 10: // Old value with implicit comdat.
1120   case 17:
1121     return GlobalValue::WeakODRLinkage;
1122   case 4: // Old value with implicit comdat.
1123   case 18:
1124     return GlobalValue::LinkOnceAnyLinkage;
1125   case 11: // Old value with implicit comdat.
1126   case 19:
1127     return GlobalValue::LinkOnceODRLinkage;
1128   }
1129 }
1130 
1131 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1132   FunctionSummary::FFlags Flags;
1133   Flags.ReadNone = RawFlags & 0x1;
1134   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1135   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1136   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1137   Flags.NoInline = (RawFlags >> 4) & 0x1;
1138   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1139   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1140   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1141   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1142   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1143   return Flags;
1144 }
1145 
1146 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1147 //
1148 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1149 // visibility: [8, 10).
1150 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1151                                                             uint64_t Version) {
1152   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1153   // like getDecodedLinkage() above. Any future change to the linkage enum and
1154   // to getDecodedLinkage() will need to be taken into account here as above.
1155   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1156   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1157   auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1);      // 1 bit
1158   RawFlags = RawFlags >> 4;
1159   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1160   // The Live flag wasn't introduced until version 3. For dead stripping
1161   // to work correctly on earlier versions, we must conservatively treat all
1162   // values as live.
1163   bool Live = (RawFlags & 0x2) || Version < 3;
1164   bool Local = (RawFlags & 0x4);
1165   bool AutoHide = (RawFlags & 0x8);
1166 
1167   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1168                                      Live, Local, AutoHide, IK);
1169 }
1170 
1171 // Decode the flags for GlobalVariable in the summary
1172 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1173   return GlobalVarSummary::GVarFlags(
1174       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1175       (RawFlags & 0x4) ? true : false,
1176       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1177 }
1178 
1179 static std::pair<CalleeInfo::HotnessType, bool>
1180 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1181   CalleeInfo::HotnessType Hotness =
1182       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1183   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1184   return {Hotness, HasTailCall};
1185 }
1186 
1187 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1188                                         bool &HasTailCall) {
1189   static constexpr uint64_t RelBlockFreqMask =
1190       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1191   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1192   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1193 }
1194 
1195 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1196   switch (Val) {
1197   default: // Map unknown visibilities to default.
1198   case 0: return GlobalValue::DefaultVisibility;
1199   case 1: return GlobalValue::HiddenVisibility;
1200   case 2: return GlobalValue::ProtectedVisibility;
1201   }
1202 }
1203 
1204 static GlobalValue::DLLStorageClassTypes
1205 getDecodedDLLStorageClass(unsigned Val) {
1206   switch (Val) {
1207   default: // Map unknown values to default.
1208   case 0: return GlobalValue::DefaultStorageClass;
1209   case 1: return GlobalValue::DLLImportStorageClass;
1210   case 2: return GlobalValue::DLLExportStorageClass;
1211   }
1212 }
1213 
1214 static bool getDecodedDSOLocal(unsigned Val) {
1215   switch(Val) {
1216   default: // Map unknown values to preemptable.
1217   case 0:  return false;
1218   case 1:  return true;
1219   }
1220 }
1221 
1222 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1223   switch (Val) {
1224   case 1:
1225     return CodeModel::Tiny;
1226   case 2:
1227     return CodeModel::Small;
1228   case 3:
1229     return CodeModel::Kernel;
1230   case 4:
1231     return CodeModel::Medium;
1232   case 5:
1233     return CodeModel::Large;
1234   }
1235 
1236   return {};
1237 }
1238 
1239 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1240   switch (Val) {
1241     case 0: return GlobalVariable::NotThreadLocal;
1242     default: // Map unknown non-zero value to general dynamic.
1243     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1244     case 2: return GlobalVariable::LocalDynamicTLSModel;
1245     case 3: return GlobalVariable::InitialExecTLSModel;
1246     case 4: return GlobalVariable::LocalExecTLSModel;
1247   }
1248 }
1249 
1250 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1251   switch (Val) {
1252     default: // Map unknown to UnnamedAddr::None.
1253     case 0: return GlobalVariable::UnnamedAddr::None;
1254     case 1: return GlobalVariable::UnnamedAddr::Global;
1255     case 2: return GlobalVariable::UnnamedAddr::Local;
1256   }
1257 }
1258 
1259 static int getDecodedCastOpcode(unsigned Val) {
1260   switch (Val) {
1261   default: return -1;
1262   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1263   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1264   case bitc::CAST_SEXT    : return Instruction::SExt;
1265   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1266   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1267   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1268   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1269   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1270   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1271   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1272   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1273   case bitc::CAST_BITCAST : return Instruction::BitCast;
1274   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1275   }
1276 }
1277 
1278 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1279   bool IsFP = Ty->isFPOrFPVectorTy();
1280   // UnOps are only valid for int/fp or vector of int/fp types
1281   if (!IsFP && !Ty->isIntOrIntVectorTy())
1282     return -1;
1283 
1284   switch (Val) {
1285   default:
1286     return -1;
1287   case bitc::UNOP_FNEG:
1288     return IsFP ? Instruction::FNeg : -1;
1289   }
1290 }
1291 
1292 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1293   bool IsFP = Ty->isFPOrFPVectorTy();
1294   // BinOps are only valid for int/fp or vector of int/fp types
1295   if (!IsFP && !Ty->isIntOrIntVectorTy())
1296     return -1;
1297 
1298   switch (Val) {
1299   default:
1300     return -1;
1301   case bitc::BINOP_ADD:
1302     return IsFP ? Instruction::FAdd : Instruction::Add;
1303   case bitc::BINOP_SUB:
1304     return IsFP ? Instruction::FSub : Instruction::Sub;
1305   case bitc::BINOP_MUL:
1306     return IsFP ? Instruction::FMul : Instruction::Mul;
1307   case bitc::BINOP_UDIV:
1308     return IsFP ? -1 : Instruction::UDiv;
1309   case bitc::BINOP_SDIV:
1310     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1311   case bitc::BINOP_UREM:
1312     return IsFP ? -1 : Instruction::URem;
1313   case bitc::BINOP_SREM:
1314     return IsFP ? Instruction::FRem : Instruction::SRem;
1315   case bitc::BINOP_SHL:
1316     return IsFP ? -1 : Instruction::Shl;
1317   case bitc::BINOP_LSHR:
1318     return IsFP ? -1 : Instruction::LShr;
1319   case bitc::BINOP_ASHR:
1320     return IsFP ? -1 : Instruction::AShr;
1321   case bitc::BINOP_AND:
1322     return IsFP ? -1 : Instruction::And;
1323   case bitc::BINOP_OR:
1324     return IsFP ? -1 : Instruction::Or;
1325   case bitc::BINOP_XOR:
1326     return IsFP ? -1 : Instruction::Xor;
1327   }
1328 }
1329 
1330 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1331   switch (Val) {
1332   default: return AtomicRMWInst::BAD_BINOP;
1333   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1334   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1335   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1336   case bitc::RMW_AND: return AtomicRMWInst::And;
1337   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1338   case bitc::RMW_OR: return AtomicRMWInst::Or;
1339   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1340   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1341   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1342   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1343   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1344   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1345   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1346   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1347   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1348   case bitc::RMW_UINC_WRAP:
1349     return AtomicRMWInst::UIncWrap;
1350   case bitc::RMW_UDEC_WRAP:
1351     return AtomicRMWInst::UDecWrap;
1352   }
1353 }
1354 
1355 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1356   switch (Val) {
1357   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1358   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1359   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1360   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1361   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1362   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1363   default: // Map unknown orderings to sequentially-consistent.
1364   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1365   }
1366 }
1367 
1368 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1369   switch (Val) {
1370   default: // Map unknown selection kinds to any.
1371   case bitc::COMDAT_SELECTION_KIND_ANY:
1372     return Comdat::Any;
1373   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1374     return Comdat::ExactMatch;
1375   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1376     return Comdat::Largest;
1377   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1378     return Comdat::NoDeduplicate;
1379   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1380     return Comdat::SameSize;
1381   }
1382 }
1383 
1384 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1385   FastMathFlags FMF;
1386   if (0 != (Val & bitc::UnsafeAlgebra))
1387     FMF.setFast();
1388   if (0 != (Val & bitc::AllowReassoc))
1389     FMF.setAllowReassoc();
1390   if (0 != (Val & bitc::NoNaNs))
1391     FMF.setNoNaNs();
1392   if (0 != (Val & bitc::NoInfs))
1393     FMF.setNoInfs();
1394   if (0 != (Val & bitc::NoSignedZeros))
1395     FMF.setNoSignedZeros();
1396   if (0 != (Val & bitc::AllowReciprocal))
1397     FMF.setAllowReciprocal();
1398   if (0 != (Val & bitc::AllowContract))
1399     FMF.setAllowContract(true);
1400   if (0 != (Val & bitc::ApproxFunc))
1401     FMF.setApproxFunc();
1402   return FMF;
1403 }
1404 
1405 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1406   // A GlobalValue with local linkage cannot have a DLL storage class.
1407   if (GV->hasLocalLinkage())
1408     return;
1409   switch (Val) {
1410   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1411   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1412   }
1413 }
1414 
1415 Type *BitcodeReader::getTypeByID(unsigned ID) {
1416   // The type table size is always specified correctly.
1417   if (ID >= TypeList.size())
1418     return nullptr;
1419 
1420   if (Type *Ty = TypeList[ID])
1421     return Ty;
1422 
1423   // If we have a forward reference, the only possible case is when it is to a
1424   // named struct.  Just create a placeholder for now.
1425   return TypeList[ID] = createIdentifiedStructType(Context);
1426 }
1427 
1428 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1429   auto It = ContainedTypeIDs.find(ID);
1430   if (It == ContainedTypeIDs.end())
1431     return InvalidTypeID;
1432 
1433   if (Idx >= It->second.size())
1434     return InvalidTypeID;
1435 
1436   return It->second[Idx];
1437 }
1438 
1439 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1440   if (ID >= TypeList.size())
1441     return nullptr;
1442 
1443   Type *Ty = TypeList[ID];
1444   if (!Ty->isPointerTy())
1445     return nullptr;
1446 
1447   return getTypeByID(getContainedTypeID(ID, 0));
1448 }
1449 
1450 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1451                                          ArrayRef<unsigned> ChildTypeIDs) {
1452   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1453   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1454   auto It = VirtualTypeIDs.find(CacheKey);
1455   if (It != VirtualTypeIDs.end()) {
1456     // The cmpxchg return value is the only place we need more than one
1457     // contained type ID, however the second one will always be the same (i1),
1458     // so we don't need to include it in the cache key. This asserts that the
1459     // contained types are indeed as expected and there are no collisions.
1460     assert((ChildTypeIDs.empty() ||
1461             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1462            "Incorrect cached contained type IDs");
1463     return It->second;
1464   }
1465 
1466   unsigned TypeID = TypeList.size();
1467   TypeList.push_back(Ty);
1468   if (!ChildTypeIDs.empty())
1469     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1470   VirtualTypeIDs.insert({CacheKey, TypeID});
1471   return TypeID;
1472 }
1473 
1474 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) {
1475   GEPNoWrapFlags NW;
1476   if (Flags & (1 << bitc::GEP_INBOUNDS))
1477     NW |= GEPNoWrapFlags::inBounds();
1478   if (Flags & (1 << bitc::GEP_NUSW))
1479     NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
1480   if (Flags & (1 << bitc::GEP_NUW))
1481     NW |= GEPNoWrapFlags::noUnsignedWrap();
1482   return NW;
1483 }
1484 
1485 static bool isConstExprSupported(const BitcodeConstant *BC) {
1486   uint8_t Opcode = BC->Opcode;
1487 
1488   // These are not real constant expressions, always consider them supported.
1489   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1490     return true;
1491 
1492   // If -expand-constant-exprs is set, we want to consider all expressions
1493   // as unsupported.
1494   if (ExpandConstantExprs)
1495     return false;
1496 
1497   if (Instruction::isBinaryOp(Opcode))
1498     return ConstantExpr::isSupportedBinOp(Opcode);
1499 
1500   if (Instruction::isCast(Opcode))
1501     return ConstantExpr::isSupportedCastOp(Opcode);
1502 
1503   if (Opcode == Instruction::GetElementPtr)
1504     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1505 
1506   switch (Opcode) {
1507   case Instruction::FNeg:
1508   case Instruction::Select:
1509   case Instruction::ICmp:
1510   case Instruction::FCmp:
1511     return false;
1512   default:
1513     return true;
1514   }
1515 }
1516 
1517 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1518                                                   BasicBlock *InsertBB) {
1519   // Quickly handle the case where there is no BitcodeConstant to resolve.
1520   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1521       !isa<BitcodeConstant>(ValueList[StartValID]))
1522     return ValueList[StartValID];
1523 
1524   SmallDenseMap<unsigned, Value *> MaterializedValues;
1525   SmallVector<unsigned> Worklist;
1526   Worklist.push_back(StartValID);
1527   while (!Worklist.empty()) {
1528     unsigned ValID = Worklist.back();
1529     if (MaterializedValues.count(ValID)) {
1530       // Duplicate expression that was already handled.
1531       Worklist.pop_back();
1532       continue;
1533     }
1534 
1535     if (ValID >= ValueList.size() || !ValueList[ValID])
1536       return error("Invalid value ID");
1537 
1538     Value *V = ValueList[ValID];
1539     auto *BC = dyn_cast<BitcodeConstant>(V);
1540     if (!BC) {
1541       MaterializedValues.insert({ValID, V});
1542       Worklist.pop_back();
1543       continue;
1544     }
1545 
1546     // Iterate in reverse, so values will get popped from the worklist in
1547     // expected order.
1548     SmallVector<Value *> Ops;
1549     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1550       auto It = MaterializedValues.find(OpID);
1551       if (It != MaterializedValues.end())
1552         Ops.push_back(It->second);
1553       else
1554         Worklist.push_back(OpID);
1555     }
1556 
1557     // Some expressions have not been resolved yet, handle them first and then
1558     // revisit this one.
1559     if (Ops.size() != BC->getOperandIDs().size())
1560       continue;
1561     std::reverse(Ops.begin(), Ops.end());
1562 
1563     SmallVector<Constant *> ConstOps;
1564     for (Value *Op : Ops)
1565       if (auto *C = dyn_cast<Constant>(Op))
1566         ConstOps.push_back(C);
1567 
1568     // Materialize as constant expression if possible.
1569     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1570       Constant *C;
1571       if (Instruction::isCast(BC->Opcode)) {
1572         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1573         if (!C)
1574           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1575       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1576         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1577       } else {
1578         switch (BC->Opcode) {
1579         case BitcodeConstant::ConstantPtrAuthOpcode: {
1580           auto *Key = dyn_cast<ConstantInt>(ConstOps[1]);
1581           if (!Key)
1582             return error("ptrauth key operand must be ConstantInt");
1583 
1584           auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]);
1585           if (!Disc)
1586             return error("ptrauth disc operand must be ConstantInt");
1587 
1588           C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]);
1589           break;
1590         }
1591         case BitcodeConstant::NoCFIOpcode: {
1592           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1593           if (!GV)
1594             return error("no_cfi operand must be GlobalValue");
1595           C = NoCFIValue::get(GV);
1596           break;
1597         }
1598         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1599           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1600           if (!GV)
1601             return error("dso_local operand must be GlobalValue");
1602           C = DSOLocalEquivalent::get(GV);
1603           break;
1604         }
1605         case BitcodeConstant::BlockAddressOpcode: {
1606           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1607           if (!Fn)
1608             return error("blockaddress operand must be a function");
1609 
1610           // If the function is already parsed we can insert the block address
1611           // right away.
1612           BasicBlock *BB;
1613           unsigned BBID = BC->BlockAddressBB;
1614           if (!BBID)
1615             // Invalid reference to entry block.
1616             return error("Invalid ID");
1617           if (!Fn->empty()) {
1618             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1619             for (size_t I = 0, E = BBID; I != E; ++I) {
1620               if (BBI == BBE)
1621                 return error("Invalid ID");
1622               ++BBI;
1623             }
1624             BB = &*BBI;
1625           } else {
1626             // Otherwise insert a placeholder and remember it so it can be
1627             // inserted when the function is parsed.
1628             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1629             if (FwdBBs.empty())
1630               BasicBlockFwdRefQueue.push_back(Fn);
1631             if (FwdBBs.size() < BBID + 1)
1632               FwdBBs.resize(BBID + 1);
1633             if (!FwdBBs[BBID])
1634               FwdBBs[BBID] = BasicBlock::Create(Context);
1635             BB = FwdBBs[BBID];
1636           }
1637           C = BlockAddress::get(Fn, BB);
1638           break;
1639         }
1640         case BitcodeConstant::ConstantStructOpcode:
1641           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1642           break;
1643         case BitcodeConstant::ConstantArrayOpcode:
1644           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1645           break;
1646         case BitcodeConstant::ConstantVectorOpcode:
1647           C = ConstantVector::get(ConstOps);
1648           break;
1649         case Instruction::GetElementPtr:
1650           C = ConstantExpr::getGetElementPtr(
1651               BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(),
1652               toGEPNoWrapFlags(BC->Flags), BC->getInRange());
1653           break;
1654         case Instruction::ExtractElement:
1655           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1656           break;
1657         case Instruction::InsertElement:
1658           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1659                                              ConstOps[2]);
1660           break;
1661         case Instruction::ShuffleVector: {
1662           SmallVector<int, 16> Mask;
1663           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1664           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1665           break;
1666         }
1667         default:
1668           llvm_unreachable("Unhandled bitcode constant");
1669         }
1670       }
1671 
1672       // Cache resolved constant.
1673       ValueList.replaceValueWithoutRAUW(ValID, C);
1674       MaterializedValues.insert({ValID, C});
1675       Worklist.pop_back();
1676       continue;
1677     }
1678 
1679     if (!InsertBB)
1680       return error(Twine("Value referenced by initializer is an unsupported "
1681                          "constant expression of type ") +
1682                    BC->getOpcodeName());
1683 
1684     // Materialize as instructions if necessary.
1685     Instruction *I;
1686     if (Instruction::isCast(BC->Opcode)) {
1687       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1688                            BC->getType(), "constexpr", InsertBB);
1689     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1690       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1691                                 "constexpr", InsertBB);
1692     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1693       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1694                                  Ops[1], "constexpr", InsertBB);
1695       if (isa<OverflowingBinaryOperator>(I)) {
1696         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1697           I->setHasNoSignedWrap();
1698         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1699           I->setHasNoUnsignedWrap();
1700       }
1701       if (isa<PossiblyExactOperator>(I) &&
1702           (BC->Flags & PossiblyExactOperator::IsExact))
1703         I->setIsExact();
1704     } else {
1705       switch (BC->Opcode) {
1706       case BitcodeConstant::ConstantVectorOpcode: {
1707         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1708         Value *V = PoisonValue::get(BC->getType());
1709         for (auto Pair : enumerate(Ops)) {
1710           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1711           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1712                                         InsertBB);
1713         }
1714         I = cast<Instruction>(V);
1715         break;
1716       }
1717       case BitcodeConstant::ConstantStructOpcode:
1718       case BitcodeConstant::ConstantArrayOpcode: {
1719         Value *V = PoisonValue::get(BC->getType());
1720         for (auto Pair : enumerate(Ops))
1721           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1722                                       "constexpr.ins", InsertBB);
1723         I = cast<Instruction>(V);
1724         break;
1725       }
1726       case Instruction::ICmp:
1727       case Instruction::FCmp:
1728         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1729                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1730                             "constexpr", InsertBB);
1731         break;
1732       case Instruction::GetElementPtr:
1733         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1734                                       ArrayRef(Ops).drop_front(), "constexpr",
1735                                       InsertBB);
1736         cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags));
1737         break;
1738       case Instruction::Select:
1739         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1740         break;
1741       case Instruction::ExtractElement:
1742         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1743         break;
1744       case Instruction::InsertElement:
1745         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1746                                       InsertBB);
1747         break;
1748       case Instruction::ShuffleVector:
1749         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1750                                   InsertBB);
1751         break;
1752       default:
1753         llvm_unreachable("Unhandled bitcode constant");
1754       }
1755     }
1756 
1757     MaterializedValues.insert({ValID, I});
1758     Worklist.pop_back();
1759   }
1760 
1761   return MaterializedValues[StartValID];
1762 }
1763 
1764 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1765   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1766   if (!MaybeV)
1767     return MaybeV.takeError();
1768 
1769   // Result must be Constant if InsertBB is nullptr.
1770   return cast<Constant>(MaybeV.get());
1771 }
1772 
1773 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1774                                                       StringRef Name) {
1775   auto *Ret = StructType::create(Context, Name);
1776   IdentifiedStructTypes.push_back(Ret);
1777   return Ret;
1778 }
1779 
1780 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1781   auto *Ret = StructType::create(Context);
1782   IdentifiedStructTypes.push_back(Ret);
1783   return Ret;
1784 }
1785 
1786 //===----------------------------------------------------------------------===//
1787 //  Functions for parsing blocks from the bitcode file
1788 //===----------------------------------------------------------------------===//
1789 
1790 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1791   switch (Val) {
1792   case Attribute::EndAttrKinds:
1793   case Attribute::EmptyKey:
1794   case Attribute::TombstoneKey:
1795     llvm_unreachable("Synthetic enumerators which should never get here");
1796 
1797   case Attribute::None:            return 0;
1798   case Attribute::ZExt:            return 1 << 0;
1799   case Attribute::SExt:            return 1 << 1;
1800   case Attribute::NoReturn:        return 1 << 2;
1801   case Attribute::InReg:           return 1 << 3;
1802   case Attribute::StructRet:       return 1 << 4;
1803   case Attribute::NoUnwind:        return 1 << 5;
1804   case Attribute::NoAlias:         return 1 << 6;
1805   case Attribute::ByVal:           return 1 << 7;
1806   case Attribute::Nest:            return 1 << 8;
1807   case Attribute::ReadNone:        return 1 << 9;
1808   case Attribute::ReadOnly:        return 1 << 10;
1809   case Attribute::NoInline:        return 1 << 11;
1810   case Attribute::AlwaysInline:    return 1 << 12;
1811   case Attribute::OptimizeForSize: return 1 << 13;
1812   case Attribute::StackProtect:    return 1 << 14;
1813   case Attribute::StackProtectReq: return 1 << 15;
1814   case Attribute::Alignment:       return 31 << 16;
1815   case Attribute::NoCapture:       return 1 << 21;
1816   case Attribute::NoRedZone:       return 1 << 22;
1817   case Attribute::NoImplicitFloat: return 1 << 23;
1818   case Attribute::Naked:           return 1 << 24;
1819   case Attribute::InlineHint:      return 1 << 25;
1820   case Attribute::StackAlignment:  return 7 << 26;
1821   case Attribute::ReturnsTwice:    return 1 << 29;
1822   case Attribute::UWTable:         return 1 << 30;
1823   case Attribute::NonLazyBind:     return 1U << 31;
1824   case Attribute::SanitizeAddress: return 1ULL << 32;
1825   case Attribute::MinSize:         return 1ULL << 33;
1826   case Attribute::NoDuplicate:     return 1ULL << 34;
1827   case Attribute::StackProtectStrong: return 1ULL << 35;
1828   case Attribute::SanitizeThread:  return 1ULL << 36;
1829   case Attribute::SanitizeMemory:  return 1ULL << 37;
1830   case Attribute::NoBuiltin:       return 1ULL << 38;
1831   case Attribute::Returned:        return 1ULL << 39;
1832   case Attribute::Cold:            return 1ULL << 40;
1833   case Attribute::Builtin:         return 1ULL << 41;
1834   case Attribute::OptimizeNone:    return 1ULL << 42;
1835   case Attribute::InAlloca:        return 1ULL << 43;
1836   case Attribute::NonNull:         return 1ULL << 44;
1837   case Attribute::JumpTable:       return 1ULL << 45;
1838   case Attribute::Convergent:      return 1ULL << 46;
1839   case Attribute::SafeStack:       return 1ULL << 47;
1840   case Attribute::NoRecurse:       return 1ULL << 48;
1841   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1842   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1843   case Attribute::SwiftSelf:       return 1ULL << 51;
1844   case Attribute::SwiftError:      return 1ULL << 52;
1845   case Attribute::WriteOnly:       return 1ULL << 53;
1846   case Attribute::Speculatable:    return 1ULL << 54;
1847   case Attribute::StrictFP:        return 1ULL << 55;
1848   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1849   case Attribute::NoCfCheck:       return 1ULL << 57;
1850   case Attribute::OptForFuzzing:   return 1ULL << 58;
1851   case Attribute::ShadowCallStack: return 1ULL << 59;
1852   case Attribute::SpeculativeLoadHardening:
1853     return 1ULL << 60;
1854   case Attribute::ImmArg:
1855     return 1ULL << 61;
1856   case Attribute::WillReturn:
1857     return 1ULL << 62;
1858   case Attribute::NoFree:
1859     return 1ULL << 63;
1860   default:
1861     // Other attributes are not supported in the raw format,
1862     // as we ran out of space.
1863     return 0;
1864   }
1865   llvm_unreachable("Unsupported attribute type");
1866 }
1867 
1868 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1869   if (!Val) return;
1870 
1871   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1872        I = Attribute::AttrKind(I + 1)) {
1873     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1874       if (I == Attribute::Alignment)
1875         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1876       else if (I == Attribute::StackAlignment)
1877         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1878       else if (Attribute::isTypeAttrKind(I))
1879         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1880       else
1881         B.addAttribute(I);
1882     }
1883   }
1884 }
1885 
1886 /// This fills an AttrBuilder object with the LLVM attributes that have
1887 /// been decoded from the given integer. This function must stay in sync with
1888 /// 'encodeLLVMAttributesForBitcode'.
1889 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1890                                            uint64_t EncodedAttrs,
1891                                            uint64_t AttrIdx) {
1892   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1893   // the bits above 31 down by 11 bits.
1894   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1895   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1896          "Alignment must be a power of two.");
1897 
1898   if (Alignment)
1899     B.addAlignmentAttr(Alignment);
1900 
1901   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1902                    (EncodedAttrs & 0xffff);
1903 
1904   if (AttrIdx == AttributeList::FunctionIndex) {
1905     // Upgrade old memory attributes.
1906     MemoryEffects ME = MemoryEffects::unknown();
1907     if (Attrs & (1ULL << 9)) {
1908       // ReadNone
1909       Attrs &= ~(1ULL << 9);
1910       ME &= MemoryEffects::none();
1911     }
1912     if (Attrs & (1ULL << 10)) {
1913       // ReadOnly
1914       Attrs &= ~(1ULL << 10);
1915       ME &= MemoryEffects::readOnly();
1916     }
1917     if (Attrs & (1ULL << 49)) {
1918       // InaccessibleMemOnly
1919       Attrs &= ~(1ULL << 49);
1920       ME &= MemoryEffects::inaccessibleMemOnly();
1921     }
1922     if (Attrs & (1ULL << 50)) {
1923       // InaccessibleMemOrArgMemOnly
1924       Attrs &= ~(1ULL << 50);
1925       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1926     }
1927     if (Attrs & (1ULL << 53)) {
1928       // WriteOnly
1929       Attrs &= ~(1ULL << 53);
1930       ME &= MemoryEffects::writeOnly();
1931     }
1932     if (ME != MemoryEffects::unknown())
1933       B.addMemoryAttr(ME);
1934   }
1935 
1936   addRawAttributeValue(B, Attrs);
1937 }
1938 
1939 Error BitcodeReader::parseAttributeBlock() {
1940   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1941     return Err;
1942 
1943   if (!MAttributes.empty())
1944     return error("Invalid multiple blocks");
1945 
1946   SmallVector<uint64_t, 64> Record;
1947 
1948   SmallVector<AttributeList, 8> Attrs;
1949 
1950   // Read all the records.
1951   while (true) {
1952     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1953     if (!MaybeEntry)
1954       return MaybeEntry.takeError();
1955     BitstreamEntry Entry = MaybeEntry.get();
1956 
1957     switch (Entry.Kind) {
1958     case BitstreamEntry::SubBlock: // Handled for us already.
1959     case BitstreamEntry::Error:
1960       return error("Malformed block");
1961     case BitstreamEntry::EndBlock:
1962       return Error::success();
1963     case BitstreamEntry::Record:
1964       // The interesting case.
1965       break;
1966     }
1967 
1968     // Read a record.
1969     Record.clear();
1970     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1971     if (!MaybeRecord)
1972       return MaybeRecord.takeError();
1973     switch (MaybeRecord.get()) {
1974     default:  // Default behavior: ignore.
1975       break;
1976     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1977       // Deprecated, but still needed to read old bitcode files.
1978       if (Record.size() & 1)
1979         return error("Invalid parameter attribute record");
1980 
1981       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1982         AttrBuilder B(Context);
1983         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1984         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1985       }
1986 
1987       MAttributes.push_back(AttributeList::get(Context, Attrs));
1988       Attrs.clear();
1989       break;
1990     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1991       for (uint64_t Val : Record)
1992         Attrs.push_back(MAttributeGroups[Val]);
1993 
1994       MAttributes.push_back(AttributeList::get(Context, Attrs));
1995       Attrs.clear();
1996       break;
1997     }
1998   }
1999 }
2000 
2001 // Returns Attribute::None on unrecognized codes.
2002 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
2003   switch (Code) {
2004   default:
2005     return Attribute::None;
2006   case bitc::ATTR_KIND_ALIGNMENT:
2007     return Attribute::Alignment;
2008   case bitc::ATTR_KIND_ALWAYS_INLINE:
2009     return Attribute::AlwaysInline;
2010   case bitc::ATTR_KIND_BUILTIN:
2011     return Attribute::Builtin;
2012   case bitc::ATTR_KIND_BY_VAL:
2013     return Attribute::ByVal;
2014   case bitc::ATTR_KIND_IN_ALLOCA:
2015     return Attribute::InAlloca;
2016   case bitc::ATTR_KIND_COLD:
2017     return Attribute::Cold;
2018   case bitc::ATTR_KIND_CONVERGENT:
2019     return Attribute::Convergent;
2020   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
2021     return Attribute::DisableSanitizerInstrumentation;
2022   case bitc::ATTR_KIND_ELEMENTTYPE:
2023     return Attribute::ElementType;
2024   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
2025     return Attribute::FnRetThunkExtern;
2026   case bitc::ATTR_KIND_INLINE_HINT:
2027     return Attribute::InlineHint;
2028   case bitc::ATTR_KIND_IN_REG:
2029     return Attribute::InReg;
2030   case bitc::ATTR_KIND_JUMP_TABLE:
2031     return Attribute::JumpTable;
2032   case bitc::ATTR_KIND_MEMORY:
2033     return Attribute::Memory;
2034   case bitc::ATTR_KIND_NOFPCLASS:
2035     return Attribute::NoFPClass;
2036   case bitc::ATTR_KIND_MIN_SIZE:
2037     return Attribute::MinSize;
2038   case bitc::ATTR_KIND_NAKED:
2039     return Attribute::Naked;
2040   case bitc::ATTR_KIND_NEST:
2041     return Attribute::Nest;
2042   case bitc::ATTR_KIND_NO_ALIAS:
2043     return Attribute::NoAlias;
2044   case bitc::ATTR_KIND_NO_BUILTIN:
2045     return Attribute::NoBuiltin;
2046   case bitc::ATTR_KIND_NO_CALLBACK:
2047     return Attribute::NoCallback;
2048   case bitc::ATTR_KIND_NO_CAPTURE:
2049     return Attribute::NoCapture;
2050   case bitc::ATTR_KIND_NO_DUPLICATE:
2051     return Attribute::NoDuplicate;
2052   case bitc::ATTR_KIND_NOFREE:
2053     return Attribute::NoFree;
2054   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2055     return Attribute::NoImplicitFloat;
2056   case bitc::ATTR_KIND_NO_INLINE:
2057     return Attribute::NoInline;
2058   case bitc::ATTR_KIND_NO_RECURSE:
2059     return Attribute::NoRecurse;
2060   case bitc::ATTR_KIND_NO_MERGE:
2061     return Attribute::NoMerge;
2062   case bitc::ATTR_KIND_NON_LAZY_BIND:
2063     return Attribute::NonLazyBind;
2064   case bitc::ATTR_KIND_NON_NULL:
2065     return Attribute::NonNull;
2066   case bitc::ATTR_KIND_DEREFERENCEABLE:
2067     return Attribute::Dereferenceable;
2068   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2069     return Attribute::DereferenceableOrNull;
2070   case bitc::ATTR_KIND_ALLOC_ALIGN:
2071     return Attribute::AllocAlign;
2072   case bitc::ATTR_KIND_ALLOC_KIND:
2073     return Attribute::AllocKind;
2074   case bitc::ATTR_KIND_ALLOC_SIZE:
2075     return Attribute::AllocSize;
2076   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2077     return Attribute::AllocatedPointer;
2078   case bitc::ATTR_KIND_NO_RED_ZONE:
2079     return Attribute::NoRedZone;
2080   case bitc::ATTR_KIND_NO_RETURN:
2081     return Attribute::NoReturn;
2082   case bitc::ATTR_KIND_NOSYNC:
2083     return Attribute::NoSync;
2084   case bitc::ATTR_KIND_NOCF_CHECK:
2085     return Attribute::NoCfCheck;
2086   case bitc::ATTR_KIND_NO_PROFILE:
2087     return Attribute::NoProfile;
2088   case bitc::ATTR_KIND_SKIP_PROFILE:
2089     return Attribute::SkipProfile;
2090   case bitc::ATTR_KIND_NO_UNWIND:
2091     return Attribute::NoUnwind;
2092   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2093     return Attribute::NoSanitizeBounds;
2094   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2095     return Attribute::NoSanitizeCoverage;
2096   case bitc::ATTR_KIND_NO_SANITIZE_REALTIME:
2097     return Attribute::NoSanitizeRealtime;
2098   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2099     return Attribute::NullPointerIsValid;
2100   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2101     return Attribute::OptimizeForDebugging;
2102   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2103     return Attribute::OptForFuzzing;
2104   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2105     return Attribute::OptimizeForSize;
2106   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2107     return Attribute::OptimizeNone;
2108   case bitc::ATTR_KIND_READ_NONE:
2109     return Attribute::ReadNone;
2110   case bitc::ATTR_KIND_READ_ONLY:
2111     return Attribute::ReadOnly;
2112   case bitc::ATTR_KIND_RETURNED:
2113     return Attribute::Returned;
2114   case bitc::ATTR_KIND_RETURNS_TWICE:
2115     return Attribute::ReturnsTwice;
2116   case bitc::ATTR_KIND_S_EXT:
2117     return Attribute::SExt;
2118   case bitc::ATTR_KIND_SPECULATABLE:
2119     return Attribute::Speculatable;
2120   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2121     return Attribute::StackAlignment;
2122   case bitc::ATTR_KIND_STACK_PROTECT:
2123     return Attribute::StackProtect;
2124   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2125     return Attribute::StackProtectReq;
2126   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2127     return Attribute::StackProtectStrong;
2128   case bitc::ATTR_KIND_SAFESTACK:
2129     return Attribute::SafeStack;
2130   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2131     return Attribute::ShadowCallStack;
2132   case bitc::ATTR_KIND_STRICT_FP:
2133     return Attribute::StrictFP;
2134   case bitc::ATTR_KIND_STRUCT_RET:
2135     return Attribute::StructRet;
2136   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2137     return Attribute::SanitizeAddress;
2138   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2139     return Attribute::SanitizeHWAddress;
2140   case bitc::ATTR_KIND_SANITIZE_THREAD:
2141     return Attribute::SanitizeThread;
2142   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2143     return Attribute::SanitizeMemory;
2144   case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY:
2145     return Attribute::SanitizeNumericalStability;
2146   case bitc::ATTR_KIND_SANITIZE_REALTIME:
2147     return Attribute::SanitizeRealtime;
2148   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2149     return Attribute::SpeculativeLoadHardening;
2150   case bitc::ATTR_KIND_SWIFT_ERROR:
2151     return Attribute::SwiftError;
2152   case bitc::ATTR_KIND_SWIFT_SELF:
2153     return Attribute::SwiftSelf;
2154   case bitc::ATTR_KIND_SWIFT_ASYNC:
2155     return Attribute::SwiftAsync;
2156   case bitc::ATTR_KIND_UW_TABLE:
2157     return Attribute::UWTable;
2158   case bitc::ATTR_KIND_VSCALE_RANGE:
2159     return Attribute::VScaleRange;
2160   case bitc::ATTR_KIND_WILLRETURN:
2161     return Attribute::WillReturn;
2162   case bitc::ATTR_KIND_WRITEONLY:
2163     return Attribute::WriteOnly;
2164   case bitc::ATTR_KIND_Z_EXT:
2165     return Attribute::ZExt;
2166   case bitc::ATTR_KIND_IMMARG:
2167     return Attribute::ImmArg;
2168   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2169     return Attribute::SanitizeMemTag;
2170   case bitc::ATTR_KIND_PREALLOCATED:
2171     return Attribute::Preallocated;
2172   case bitc::ATTR_KIND_NOUNDEF:
2173     return Attribute::NoUndef;
2174   case bitc::ATTR_KIND_BYREF:
2175     return Attribute::ByRef;
2176   case bitc::ATTR_KIND_MUSTPROGRESS:
2177     return Attribute::MustProgress;
2178   case bitc::ATTR_KIND_HOT:
2179     return Attribute::Hot;
2180   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2181     return Attribute::PresplitCoroutine;
2182   case bitc::ATTR_KIND_WRITABLE:
2183     return Attribute::Writable;
2184   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2185     return Attribute::CoroDestroyOnlyWhenComplete;
2186   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2187     return Attribute::DeadOnUnwind;
2188   case bitc::ATTR_KIND_RANGE:
2189     return Attribute::Range;
2190   case bitc::ATTR_KIND_INITIALIZES:
2191     return Attribute::Initializes;
2192   }
2193 }
2194 
2195 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2196                                          MaybeAlign &Alignment) {
2197   // Note: Alignment in bitcode files is incremented by 1, so that zero
2198   // can be used for default alignment.
2199   if (Exponent > Value::MaxAlignmentExponent + 1)
2200     return error("Invalid alignment value");
2201   Alignment = decodeMaybeAlign(Exponent);
2202   return Error::success();
2203 }
2204 
2205 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2206   *Kind = getAttrFromCode(Code);
2207   if (*Kind == Attribute::None)
2208     return error("Unknown attribute kind (" + Twine(Code) + ")");
2209   return Error::success();
2210 }
2211 
2212 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2213   switch (EncodedKind) {
2214   case bitc::ATTR_KIND_READ_NONE:
2215     ME &= MemoryEffects::none();
2216     return true;
2217   case bitc::ATTR_KIND_READ_ONLY:
2218     ME &= MemoryEffects::readOnly();
2219     return true;
2220   case bitc::ATTR_KIND_WRITEONLY:
2221     ME &= MemoryEffects::writeOnly();
2222     return true;
2223   case bitc::ATTR_KIND_ARGMEMONLY:
2224     ME &= MemoryEffects::argMemOnly();
2225     return true;
2226   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2227     ME &= MemoryEffects::inaccessibleMemOnly();
2228     return true;
2229   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2230     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2231     return true;
2232   default:
2233     return false;
2234   }
2235 }
2236 
2237 Error BitcodeReader::parseAttributeGroupBlock() {
2238   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2239     return Err;
2240 
2241   if (!MAttributeGroups.empty())
2242     return error("Invalid multiple blocks");
2243 
2244   SmallVector<uint64_t, 64> Record;
2245 
2246   // Read all the records.
2247   while (true) {
2248     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2249     if (!MaybeEntry)
2250       return MaybeEntry.takeError();
2251     BitstreamEntry Entry = MaybeEntry.get();
2252 
2253     switch (Entry.Kind) {
2254     case BitstreamEntry::SubBlock: // Handled for us already.
2255     case BitstreamEntry::Error:
2256       return error("Malformed block");
2257     case BitstreamEntry::EndBlock:
2258       return Error::success();
2259     case BitstreamEntry::Record:
2260       // The interesting case.
2261       break;
2262     }
2263 
2264     // Read a record.
2265     Record.clear();
2266     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2267     if (!MaybeRecord)
2268       return MaybeRecord.takeError();
2269     switch (MaybeRecord.get()) {
2270     default:  // Default behavior: ignore.
2271       break;
2272     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2273       if (Record.size() < 3)
2274         return error("Invalid grp record");
2275 
2276       uint64_t GrpID = Record[0];
2277       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2278 
2279       AttrBuilder B(Context);
2280       MemoryEffects ME = MemoryEffects::unknown();
2281       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2282         if (Record[i] == 0) {        // Enum attribute
2283           Attribute::AttrKind Kind;
2284           uint64_t EncodedKind = Record[++i];
2285           if (Idx == AttributeList::FunctionIndex &&
2286               upgradeOldMemoryAttribute(ME, EncodedKind))
2287             continue;
2288 
2289           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2290             return Err;
2291 
2292           // Upgrade old-style byval attribute to one with a type, even if it's
2293           // nullptr. We will have to insert the real type when we associate
2294           // this AttributeList with a function.
2295           if (Kind == Attribute::ByVal)
2296             B.addByValAttr(nullptr);
2297           else if (Kind == Attribute::StructRet)
2298             B.addStructRetAttr(nullptr);
2299           else if (Kind == Attribute::InAlloca)
2300             B.addInAllocaAttr(nullptr);
2301           else if (Kind == Attribute::UWTable)
2302             B.addUWTableAttr(UWTableKind::Default);
2303           else if (Attribute::isEnumAttrKind(Kind))
2304             B.addAttribute(Kind);
2305           else
2306             return error("Not an enum attribute");
2307         } else if (Record[i] == 1) { // Integer attribute
2308           Attribute::AttrKind Kind;
2309           if (Error Err = parseAttrKind(Record[++i], &Kind))
2310             return Err;
2311           if (!Attribute::isIntAttrKind(Kind))
2312             return error("Not an int attribute");
2313           if (Kind == Attribute::Alignment)
2314             B.addAlignmentAttr(Record[++i]);
2315           else if (Kind == Attribute::StackAlignment)
2316             B.addStackAlignmentAttr(Record[++i]);
2317           else if (Kind == Attribute::Dereferenceable)
2318             B.addDereferenceableAttr(Record[++i]);
2319           else if (Kind == Attribute::DereferenceableOrNull)
2320             B.addDereferenceableOrNullAttr(Record[++i]);
2321           else if (Kind == Attribute::AllocSize)
2322             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2323           else if (Kind == Attribute::VScaleRange)
2324             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2325           else if (Kind == Attribute::UWTable)
2326             B.addUWTableAttr(UWTableKind(Record[++i]));
2327           else if (Kind == Attribute::AllocKind)
2328             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2329           else if (Kind == Attribute::Memory)
2330             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2331           else if (Kind == Attribute::NoFPClass)
2332             B.addNoFPClassAttr(
2333                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2334         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2335           bool HasValue = (Record[i++] == 4);
2336           SmallString<64> KindStr;
2337           SmallString<64> ValStr;
2338 
2339           while (Record[i] != 0 && i != e)
2340             KindStr += Record[i++];
2341           assert(Record[i] == 0 && "Kind string not null terminated");
2342 
2343           if (HasValue) {
2344             // Has a value associated with it.
2345             ++i; // Skip the '0' that terminates the "kind" string.
2346             while (Record[i] != 0 && i != e)
2347               ValStr += Record[i++];
2348             assert(Record[i] == 0 && "Value string not null terminated");
2349           }
2350 
2351           B.addAttribute(KindStr.str(), ValStr.str());
2352         } else if (Record[i] == 5 || Record[i] == 6) {
2353           bool HasType = Record[i] == 6;
2354           Attribute::AttrKind Kind;
2355           if (Error Err = parseAttrKind(Record[++i], &Kind))
2356             return Err;
2357           if (!Attribute::isTypeAttrKind(Kind))
2358             return error("Not a type attribute");
2359 
2360           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2361         } else if (Record[i] == 7) {
2362           Attribute::AttrKind Kind;
2363 
2364           i++;
2365           if (Error Err = parseAttrKind(Record[i++], &Kind))
2366             return Err;
2367           if (!Attribute::isConstantRangeAttrKind(Kind))
2368             return error("Not a ConstantRange attribute");
2369 
2370           Expected<ConstantRange> MaybeCR =
2371               readBitWidthAndConstantRange(Record, i);
2372           if (!MaybeCR)
2373             return MaybeCR.takeError();
2374           i--;
2375 
2376           B.addConstantRangeAttr(Kind, MaybeCR.get());
2377         } else if (Record[i] == 8) {
2378           Attribute::AttrKind Kind;
2379 
2380           i++;
2381           if (Error Err = parseAttrKind(Record[i++], &Kind))
2382             return Err;
2383           if (!Attribute::isConstantRangeListAttrKind(Kind))
2384             return error("Not a constant range list attribute");
2385 
2386           SmallVector<ConstantRange, 2> Val;
2387           if (i + 2 > e)
2388             return error("Too few records for constant range list");
2389           unsigned RangeSize = Record[i++];
2390           unsigned BitWidth = Record[i++];
2391           for (unsigned Idx = 0; Idx < RangeSize; ++Idx) {
2392             Expected<ConstantRange> MaybeCR =
2393                 readConstantRange(Record, i, BitWidth);
2394             if (!MaybeCR)
2395               return MaybeCR.takeError();
2396             Val.push_back(MaybeCR.get());
2397           }
2398           i--;
2399 
2400           if (!ConstantRangeList::isOrderedRanges(Val))
2401             return error("Invalid (unordered or overlapping) range list");
2402           B.addConstantRangeListAttr(Kind, Val);
2403         } else {
2404           return error("Invalid attribute group entry");
2405         }
2406       }
2407 
2408       if (ME != MemoryEffects::unknown())
2409         B.addMemoryAttr(ME);
2410 
2411       UpgradeAttributes(B);
2412       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2413       break;
2414     }
2415     }
2416   }
2417 }
2418 
2419 Error BitcodeReader::parseTypeTable() {
2420   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2421     return Err;
2422 
2423   return parseTypeTableBody();
2424 }
2425 
2426 Error BitcodeReader::parseTypeTableBody() {
2427   if (!TypeList.empty())
2428     return error("Invalid multiple blocks");
2429 
2430   SmallVector<uint64_t, 64> Record;
2431   unsigned NumRecords = 0;
2432 
2433   SmallString<64> TypeName;
2434 
2435   // Read all the records for this type table.
2436   while (true) {
2437     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2438     if (!MaybeEntry)
2439       return MaybeEntry.takeError();
2440     BitstreamEntry Entry = MaybeEntry.get();
2441 
2442     switch (Entry.Kind) {
2443     case BitstreamEntry::SubBlock: // Handled for us already.
2444     case BitstreamEntry::Error:
2445       return error("Malformed block");
2446     case BitstreamEntry::EndBlock:
2447       if (NumRecords != TypeList.size())
2448         return error("Malformed block");
2449       return Error::success();
2450     case BitstreamEntry::Record:
2451       // The interesting case.
2452       break;
2453     }
2454 
2455     // Read a record.
2456     Record.clear();
2457     Type *ResultTy = nullptr;
2458     SmallVector<unsigned> ContainedIDs;
2459     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2460     if (!MaybeRecord)
2461       return MaybeRecord.takeError();
2462     switch (MaybeRecord.get()) {
2463     default:
2464       return error("Invalid value");
2465     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2466       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2467       // type list.  This allows us to reserve space.
2468       if (Record.empty())
2469         return error("Invalid numentry record");
2470       TypeList.resize(Record[0]);
2471       continue;
2472     case bitc::TYPE_CODE_VOID:      // VOID
2473       ResultTy = Type::getVoidTy(Context);
2474       break;
2475     case bitc::TYPE_CODE_HALF:     // HALF
2476       ResultTy = Type::getHalfTy(Context);
2477       break;
2478     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2479       ResultTy = Type::getBFloatTy(Context);
2480       break;
2481     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2482       ResultTy = Type::getFloatTy(Context);
2483       break;
2484     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2485       ResultTy = Type::getDoubleTy(Context);
2486       break;
2487     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2488       ResultTy = Type::getX86_FP80Ty(Context);
2489       break;
2490     case bitc::TYPE_CODE_FP128:     // FP128
2491       ResultTy = Type::getFP128Ty(Context);
2492       break;
2493     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2494       ResultTy = Type::getPPC_FP128Ty(Context);
2495       break;
2496     case bitc::TYPE_CODE_LABEL:     // LABEL
2497       ResultTy = Type::getLabelTy(Context);
2498       break;
2499     case bitc::TYPE_CODE_METADATA:  // METADATA
2500       ResultTy = Type::getMetadataTy(Context);
2501       break;
2502     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2503       // Deprecated: decodes as <1 x i64>
2504       ResultTy =
2505           llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1);
2506       break;
2507     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2508       ResultTy = Type::getX86_AMXTy(Context);
2509       break;
2510     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2511       ResultTy = Type::getTokenTy(Context);
2512       break;
2513     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2514       if (Record.empty())
2515         return error("Invalid integer record");
2516 
2517       uint64_t NumBits = Record[0];
2518       if (NumBits < IntegerType::MIN_INT_BITS ||
2519           NumBits > IntegerType::MAX_INT_BITS)
2520         return error("Bitwidth for integer type out of range");
2521       ResultTy = IntegerType::get(Context, NumBits);
2522       break;
2523     }
2524     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2525                                     //          [pointee type, address space]
2526       if (Record.empty())
2527         return error("Invalid pointer record");
2528       unsigned AddressSpace = 0;
2529       if (Record.size() == 2)
2530         AddressSpace = Record[1];
2531       ResultTy = getTypeByID(Record[0]);
2532       if (!ResultTy ||
2533           !PointerType::isValidElementType(ResultTy))
2534         return error("Invalid type");
2535       ContainedIDs.push_back(Record[0]);
2536       ResultTy = PointerType::get(ResultTy, AddressSpace);
2537       break;
2538     }
2539     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2540       if (Record.size() != 1)
2541         return error("Invalid opaque pointer record");
2542       unsigned AddressSpace = Record[0];
2543       ResultTy = PointerType::get(Context, AddressSpace);
2544       break;
2545     }
2546     case bitc::TYPE_CODE_FUNCTION_OLD: {
2547       // Deprecated, but still needed to read old bitcode files.
2548       // FUNCTION: [vararg, attrid, retty, paramty x N]
2549       if (Record.size() < 3)
2550         return error("Invalid function record");
2551       SmallVector<Type*, 8> ArgTys;
2552       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2553         if (Type *T = getTypeByID(Record[i]))
2554           ArgTys.push_back(T);
2555         else
2556           break;
2557       }
2558 
2559       ResultTy = getTypeByID(Record[2]);
2560       if (!ResultTy || ArgTys.size() < Record.size()-3)
2561         return error("Invalid type");
2562 
2563       ContainedIDs.append(Record.begin() + 2, Record.end());
2564       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2565       break;
2566     }
2567     case bitc::TYPE_CODE_FUNCTION: {
2568       // FUNCTION: [vararg, retty, paramty x N]
2569       if (Record.size() < 2)
2570         return error("Invalid function record");
2571       SmallVector<Type*, 8> ArgTys;
2572       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2573         if (Type *T = getTypeByID(Record[i])) {
2574           if (!FunctionType::isValidArgumentType(T))
2575             return error("Invalid function argument type");
2576           ArgTys.push_back(T);
2577         }
2578         else
2579           break;
2580       }
2581 
2582       ResultTy = getTypeByID(Record[1]);
2583       if (!ResultTy || ArgTys.size() < Record.size()-2)
2584         return error("Invalid type");
2585 
2586       ContainedIDs.append(Record.begin() + 1, Record.end());
2587       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2588       break;
2589     }
2590     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2591       if (Record.empty())
2592         return error("Invalid anon struct record");
2593       SmallVector<Type*, 8> EltTys;
2594       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2595         if (Type *T = getTypeByID(Record[i]))
2596           EltTys.push_back(T);
2597         else
2598           break;
2599       }
2600       if (EltTys.size() != Record.size()-1)
2601         return error("Invalid type");
2602       ContainedIDs.append(Record.begin() + 1, Record.end());
2603       ResultTy = StructType::get(Context, EltTys, Record[0]);
2604       break;
2605     }
2606     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2607       if (convertToString(Record, 0, TypeName))
2608         return error("Invalid struct name record");
2609       continue;
2610 
2611     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2612       if (Record.empty())
2613         return error("Invalid named struct record");
2614 
2615       if (NumRecords >= TypeList.size())
2616         return error("Invalid TYPE table");
2617 
2618       // Check to see if this was forward referenced, if so fill in the temp.
2619       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2620       if (Res) {
2621         Res->setName(TypeName);
2622         TypeList[NumRecords] = nullptr;
2623       } else  // Otherwise, create a new struct.
2624         Res = createIdentifiedStructType(Context, TypeName);
2625       TypeName.clear();
2626 
2627       SmallVector<Type*, 8> EltTys;
2628       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2629         if (Type *T = getTypeByID(Record[i]))
2630           EltTys.push_back(T);
2631         else
2632           break;
2633       }
2634       if (EltTys.size() != Record.size()-1)
2635         return error("Invalid named struct record");
2636       Res->setBody(EltTys, Record[0]);
2637       ContainedIDs.append(Record.begin() + 1, Record.end());
2638       ResultTy = Res;
2639       break;
2640     }
2641     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2642       if (Record.size() != 1)
2643         return error("Invalid opaque type record");
2644 
2645       if (NumRecords >= TypeList.size())
2646         return error("Invalid TYPE table");
2647 
2648       // Check to see if this was forward referenced, if so fill in the temp.
2649       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2650       if (Res) {
2651         Res->setName(TypeName);
2652         TypeList[NumRecords] = nullptr;
2653       } else  // Otherwise, create a new struct with no body.
2654         Res = createIdentifiedStructType(Context, TypeName);
2655       TypeName.clear();
2656       ResultTy = Res;
2657       break;
2658     }
2659     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2660       if (Record.size() < 1)
2661         return error("Invalid target extension type record");
2662 
2663       if (NumRecords >= TypeList.size())
2664         return error("Invalid TYPE table");
2665 
2666       if (Record[0] >= Record.size())
2667         return error("Too many type parameters");
2668 
2669       unsigned NumTys = Record[0];
2670       SmallVector<Type *, 4> TypeParams;
2671       SmallVector<unsigned, 8> IntParams;
2672       for (unsigned i = 0; i < NumTys; i++) {
2673         if (Type *T = getTypeByID(Record[i + 1]))
2674           TypeParams.push_back(T);
2675         else
2676           return error("Invalid type");
2677       }
2678 
2679       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2680         if (Record[i] > UINT_MAX)
2681           return error("Integer parameter too large");
2682         IntParams.push_back(Record[i]);
2683       }
2684       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2685       TypeName.clear();
2686       break;
2687     }
2688     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2689       if (Record.size() < 2)
2690         return error("Invalid array type record");
2691       ResultTy = getTypeByID(Record[1]);
2692       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2693         return error("Invalid type");
2694       ContainedIDs.push_back(Record[1]);
2695       ResultTy = ArrayType::get(ResultTy, Record[0]);
2696       break;
2697     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2698                                     //         [numelts, eltty, scalable]
2699       if (Record.size() < 2)
2700         return error("Invalid vector type record");
2701       if (Record[0] == 0)
2702         return error("Invalid vector length");
2703       ResultTy = getTypeByID(Record[1]);
2704       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2705         return error("Invalid type");
2706       bool Scalable = Record.size() > 2 ? Record[2] : false;
2707       ContainedIDs.push_back(Record[1]);
2708       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2709       break;
2710     }
2711 
2712     if (NumRecords >= TypeList.size())
2713       return error("Invalid TYPE table");
2714     if (TypeList[NumRecords])
2715       return error(
2716           "Invalid TYPE table: Only named structs can be forward referenced");
2717     assert(ResultTy && "Didn't read a type?");
2718     TypeList[NumRecords] = ResultTy;
2719     if (!ContainedIDs.empty())
2720       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2721     ++NumRecords;
2722   }
2723 }
2724 
2725 Error BitcodeReader::parseOperandBundleTags() {
2726   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2727     return Err;
2728 
2729   if (!BundleTags.empty())
2730     return error("Invalid multiple blocks");
2731 
2732   SmallVector<uint64_t, 64> Record;
2733 
2734   while (true) {
2735     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2736     if (!MaybeEntry)
2737       return MaybeEntry.takeError();
2738     BitstreamEntry Entry = MaybeEntry.get();
2739 
2740     switch (Entry.Kind) {
2741     case BitstreamEntry::SubBlock: // Handled for us already.
2742     case BitstreamEntry::Error:
2743       return error("Malformed block");
2744     case BitstreamEntry::EndBlock:
2745       return Error::success();
2746     case BitstreamEntry::Record:
2747       // The interesting case.
2748       break;
2749     }
2750 
2751     // Tags are implicitly mapped to integers by their order.
2752 
2753     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2754     if (!MaybeRecord)
2755       return MaybeRecord.takeError();
2756     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2757       return error("Invalid operand bundle record");
2758 
2759     // OPERAND_BUNDLE_TAG: [strchr x N]
2760     BundleTags.emplace_back();
2761     if (convertToString(Record, 0, BundleTags.back()))
2762       return error("Invalid operand bundle record");
2763     Record.clear();
2764   }
2765 }
2766 
2767 Error BitcodeReader::parseSyncScopeNames() {
2768   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2769     return Err;
2770 
2771   if (!SSIDs.empty())
2772     return error("Invalid multiple synchronization scope names blocks");
2773 
2774   SmallVector<uint64_t, 64> Record;
2775   while (true) {
2776     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2777     if (!MaybeEntry)
2778       return MaybeEntry.takeError();
2779     BitstreamEntry Entry = MaybeEntry.get();
2780 
2781     switch (Entry.Kind) {
2782     case BitstreamEntry::SubBlock: // Handled for us already.
2783     case BitstreamEntry::Error:
2784       return error("Malformed block");
2785     case BitstreamEntry::EndBlock:
2786       if (SSIDs.empty())
2787         return error("Invalid empty synchronization scope names block");
2788       return Error::success();
2789     case BitstreamEntry::Record:
2790       // The interesting case.
2791       break;
2792     }
2793 
2794     // Synchronization scope names are implicitly mapped to synchronization
2795     // scope IDs by their order.
2796 
2797     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2798     if (!MaybeRecord)
2799       return MaybeRecord.takeError();
2800     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2801       return error("Invalid sync scope record");
2802 
2803     SmallString<16> SSN;
2804     if (convertToString(Record, 0, SSN))
2805       return error("Invalid sync scope record");
2806 
2807     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2808     Record.clear();
2809   }
2810 }
2811 
2812 /// Associate a value with its name from the given index in the provided record.
2813 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2814                                              unsigned NameIndex, Triple &TT) {
2815   SmallString<128> ValueName;
2816   if (convertToString(Record, NameIndex, ValueName))
2817     return error("Invalid record");
2818   unsigned ValueID = Record[0];
2819   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2820     return error("Invalid record");
2821   Value *V = ValueList[ValueID];
2822 
2823   StringRef NameStr(ValueName.data(), ValueName.size());
2824   if (NameStr.contains(0))
2825     return error("Invalid value name");
2826   V->setName(NameStr);
2827   auto *GO = dyn_cast<GlobalObject>(V);
2828   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2829     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2830   return V;
2831 }
2832 
2833 /// Helper to note and return the current location, and jump to the given
2834 /// offset.
2835 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2836                                                  BitstreamCursor &Stream) {
2837   // Save the current parsing location so we can jump back at the end
2838   // of the VST read.
2839   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2840   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2841     return std::move(JumpFailed);
2842   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2843   if (!MaybeEntry)
2844     return MaybeEntry.takeError();
2845   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2846       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2847     return error("Expected value symbol table subblock");
2848   return CurrentBit;
2849 }
2850 
2851 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2852                                             Function *F,
2853                                             ArrayRef<uint64_t> Record) {
2854   // Note that we subtract 1 here because the offset is relative to one word
2855   // before the start of the identification or module block, which was
2856   // historically always the start of the regular bitcode header.
2857   uint64_t FuncWordOffset = Record[1] - 1;
2858   uint64_t FuncBitOffset = FuncWordOffset * 32;
2859   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2860   // Set the LastFunctionBlockBit to point to the last function block.
2861   // Later when parsing is resumed after function materialization,
2862   // we can simply skip that last function block.
2863   if (FuncBitOffset > LastFunctionBlockBit)
2864     LastFunctionBlockBit = FuncBitOffset;
2865 }
2866 
2867 /// Read a new-style GlobalValue symbol table.
2868 Error BitcodeReader::parseGlobalValueSymbolTable() {
2869   unsigned FuncBitcodeOffsetDelta =
2870       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2871 
2872   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2873     return Err;
2874 
2875   SmallVector<uint64_t, 64> Record;
2876   while (true) {
2877     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2878     if (!MaybeEntry)
2879       return MaybeEntry.takeError();
2880     BitstreamEntry Entry = MaybeEntry.get();
2881 
2882     switch (Entry.Kind) {
2883     case BitstreamEntry::SubBlock:
2884     case BitstreamEntry::Error:
2885       return error("Malformed block");
2886     case BitstreamEntry::EndBlock:
2887       return Error::success();
2888     case BitstreamEntry::Record:
2889       break;
2890     }
2891 
2892     Record.clear();
2893     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2894     if (!MaybeRecord)
2895       return MaybeRecord.takeError();
2896     switch (MaybeRecord.get()) {
2897     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2898       unsigned ValueID = Record[0];
2899       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2900         return error("Invalid value reference in symbol table");
2901       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2902                               cast<Function>(ValueList[ValueID]), Record);
2903       break;
2904     }
2905     }
2906   }
2907 }
2908 
2909 /// Parse the value symbol table at either the current parsing location or
2910 /// at the given bit offset if provided.
2911 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2912   uint64_t CurrentBit;
2913   // Pass in the Offset to distinguish between calling for the module-level
2914   // VST (where we want to jump to the VST offset) and the function-level
2915   // VST (where we don't).
2916   if (Offset > 0) {
2917     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2918     if (!MaybeCurrentBit)
2919       return MaybeCurrentBit.takeError();
2920     CurrentBit = MaybeCurrentBit.get();
2921     // If this module uses a string table, read this as a module-level VST.
2922     if (UseStrtab) {
2923       if (Error Err = parseGlobalValueSymbolTable())
2924         return Err;
2925       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2926         return JumpFailed;
2927       return Error::success();
2928     }
2929     // Otherwise, the VST will be in a similar format to a function-level VST,
2930     // and will contain symbol names.
2931   }
2932 
2933   // Compute the delta between the bitcode indices in the VST (the word offset
2934   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2935   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2936   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2937   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2938   // just before entering the VST subblock because: 1) the EnterSubBlock
2939   // changes the AbbrevID width; 2) the VST block is nested within the same
2940   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2941   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2942   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2943   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2944   unsigned FuncBitcodeOffsetDelta =
2945       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2946 
2947   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2948     return Err;
2949 
2950   SmallVector<uint64_t, 64> Record;
2951 
2952   Triple TT(TheModule->getTargetTriple());
2953 
2954   // Read all the records for this value table.
2955   SmallString<128> ValueName;
2956 
2957   while (true) {
2958     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2959     if (!MaybeEntry)
2960       return MaybeEntry.takeError();
2961     BitstreamEntry Entry = MaybeEntry.get();
2962 
2963     switch (Entry.Kind) {
2964     case BitstreamEntry::SubBlock: // Handled for us already.
2965     case BitstreamEntry::Error:
2966       return error("Malformed block");
2967     case BitstreamEntry::EndBlock:
2968       if (Offset > 0)
2969         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2970           return JumpFailed;
2971       return Error::success();
2972     case BitstreamEntry::Record:
2973       // The interesting case.
2974       break;
2975     }
2976 
2977     // Read a record.
2978     Record.clear();
2979     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2980     if (!MaybeRecord)
2981       return MaybeRecord.takeError();
2982     switch (MaybeRecord.get()) {
2983     default:  // Default behavior: unknown type.
2984       break;
2985     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2986       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2987       if (Error Err = ValOrErr.takeError())
2988         return Err;
2989       ValOrErr.get();
2990       break;
2991     }
2992     case bitc::VST_CODE_FNENTRY: {
2993       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2994       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2995       if (Error Err = ValOrErr.takeError())
2996         return Err;
2997       Value *V = ValOrErr.get();
2998 
2999       // Ignore function offsets emitted for aliases of functions in older
3000       // versions of LLVM.
3001       if (auto *F = dyn_cast<Function>(V))
3002         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
3003       break;
3004     }
3005     case bitc::VST_CODE_BBENTRY: {
3006       if (convertToString(Record, 1, ValueName))
3007         return error("Invalid bbentry record");
3008       BasicBlock *BB = getBasicBlock(Record[0]);
3009       if (!BB)
3010         return error("Invalid bbentry record");
3011 
3012       BB->setName(ValueName.str());
3013       ValueName.clear();
3014       break;
3015     }
3016     }
3017   }
3018 }
3019 
3020 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
3021 /// encoding.
3022 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
3023   if ((V & 1) == 0)
3024     return V >> 1;
3025   if (V != 1)
3026     return -(V >> 1);
3027   // There is no such thing as -0 with integers.  "-0" really means MININT.
3028   return 1ULL << 63;
3029 }
3030 
3031 /// Resolve all of the initializers for global values and aliases that we can.
3032 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
3033   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
3034   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
3035   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
3036 
3037   GlobalInitWorklist.swap(GlobalInits);
3038   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
3039   FunctionOperandWorklist.swap(FunctionOperands);
3040 
3041   while (!GlobalInitWorklist.empty()) {
3042     unsigned ValID = GlobalInitWorklist.back().second;
3043     if (ValID >= ValueList.size()) {
3044       // Not ready to resolve this yet, it requires something later in the file.
3045       GlobalInits.push_back(GlobalInitWorklist.back());
3046     } else {
3047       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3048       if (!MaybeC)
3049         return MaybeC.takeError();
3050       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
3051     }
3052     GlobalInitWorklist.pop_back();
3053   }
3054 
3055   while (!IndirectSymbolInitWorklist.empty()) {
3056     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3057     if (ValID >= ValueList.size()) {
3058       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3059     } else {
3060       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3061       if (!MaybeC)
3062         return MaybeC.takeError();
3063       Constant *C = MaybeC.get();
3064       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
3065       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
3066         if (C->getType() != GV->getType())
3067           return error("Alias and aliasee types don't match");
3068         GA->setAliasee(C);
3069       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
3070         GI->setResolver(C);
3071       } else {
3072         return error("Expected an alias or an ifunc");
3073       }
3074     }
3075     IndirectSymbolInitWorklist.pop_back();
3076   }
3077 
3078   while (!FunctionOperandWorklist.empty()) {
3079     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3080     if (Info.PersonalityFn) {
3081       unsigned ValID = Info.PersonalityFn - 1;
3082       if (ValID < ValueList.size()) {
3083         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3084         if (!MaybeC)
3085           return MaybeC.takeError();
3086         Info.F->setPersonalityFn(MaybeC.get());
3087         Info.PersonalityFn = 0;
3088       }
3089     }
3090     if (Info.Prefix) {
3091       unsigned ValID = Info.Prefix - 1;
3092       if (ValID < ValueList.size()) {
3093         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3094         if (!MaybeC)
3095           return MaybeC.takeError();
3096         Info.F->setPrefixData(MaybeC.get());
3097         Info.Prefix = 0;
3098       }
3099     }
3100     if (Info.Prologue) {
3101       unsigned ValID = Info.Prologue - 1;
3102       if (ValID < ValueList.size()) {
3103         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3104         if (!MaybeC)
3105           return MaybeC.takeError();
3106         Info.F->setPrologueData(MaybeC.get());
3107         Info.Prologue = 0;
3108       }
3109     }
3110     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3111       FunctionOperands.push_back(Info);
3112     FunctionOperandWorklist.pop_back();
3113   }
3114 
3115   return Error::success();
3116 }
3117 
3118 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3119   SmallVector<uint64_t, 8> Words(Vals.size());
3120   transform(Vals, Words.begin(),
3121                  BitcodeReader::decodeSignRotatedValue);
3122 
3123   return APInt(TypeBits, Words);
3124 }
3125 
3126 Error BitcodeReader::parseConstants() {
3127   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3128     return Err;
3129 
3130   SmallVector<uint64_t, 64> Record;
3131 
3132   // Read all the records for this value table.
3133   Type *CurTy = Type::getInt32Ty(Context);
3134   unsigned Int32TyID = getVirtualTypeID(CurTy);
3135   unsigned CurTyID = Int32TyID;
3136   Type *CurElemTy = nullptr;
3137   unsigned NextCstNo = ValueList.size();
3138 
3139   while (true) {
3140     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3141     if (!MaybeEntry)
3142       return MaybeEntry.takeError();
3143     BitstreamEntry Entry = MaybeEntry.get();
3144 
3145     switch (Entry.Kind) {
3146     case BitstreamEntry::SubBlock: // Handled for us already.
3147     case BitstreamEntry::Error:
3148       return error("Malformed block");
3149     case BitstreamEntry::EndBlock:
3150       if (NextCstNo != ValueList.size())
3151         return error("Invalid constant reference");
3152       return Error::success();
3153     case BitstreamEntry::Record:
3154       // The interesting case.
3155       break;
3156     }
3157 
3158     // Read a record.
3159     Record.clear();
3160     Type *VoidType = Type::getVoidTy(Context);
3161     Value *V = nullptr;
3162     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3163     if (!MaybeBitCode)
3164       return MaybeBitCode.takeError();
3165     switch (unsigned BitCode = MaybeBitCode.get()) {
3166     default:  // Default behavior: unknown constant
3167     case bitc::CST_CODE_UNDEF:     // UNDEF
3168       V = UndefValue::get(CurTy);
3169       break;
3170     case bitc::CST_CODE_POISON:    // POISON
3171       V = PoisonValue::get(CurTy);
3172       break;
3173     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3174       if (Record.empty())
3175         return error("Invalid settype record");
3176       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3177         return error("Invalid settype record");
3178       if (TypeList[Record[0]] == VoidType)
3179         return error("Invalid constant type");
3180       CurTyID = Record[0];
3181       CurTy = TypeList[CurTyID];
3182       CurElemTy = getPtrElementTypeByID(CurTyID);
3183       continue;  // Skip the ValueList manipulation.
3184     case bitc::CST_CODE_NULL:      // NULL
3185       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3186         return error("Invalid type for a constant null value");
3187       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3188         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3189           return error("Invalid type for a constant null value");
3190       V = Constant::getNullValue(CurTy);
3191       break;
3192     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3193       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3194         return error("Invalid integer const record");
3195       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3196       break;
3197     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3198       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3199         return error("Invalid wide integer const record");
3200 
3201       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3202       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3203       V = ConstantInt::get(CurTy, VInt);
3204       break;
3205     }
3206     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3207       if (Record.empty())
3208         return error("Invalid float const record");
3209 
3210       auto *ScalarTy = CurTy->getScalarType();
3211       if (ScalarTy->isHalfTy())
3212         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3213                                            APInt(16, (uint16_t)Record[0])));
3214       else if (ScalarTy->isBFloatTy())
3215         V = ConstantFP::get(
3216             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3217       else if (ScalarTy->isFloatTy())
3218         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3219                                            APInt(32, (uint32_t)Record[0])));
3220       else if (ScalarTy->isDoubleTy())
3221         V = ConstantFP::get(
3222             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3223       else if (ScalarTy->isX86_FP80Ty()) {
3224         // Bits are not stored the same way as a normal i80 APInt, compensate.
3225         uint64_t Rearrange[2];
3226         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3227         Rearrange[1] = Record[0] >> 48;
3228         V = ConstantFP::get(
3229             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3230       } else if (ScalarTy->isFP128Ty())
3231         V = ConstantFP::get(CurTy,
3232                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3233       else if (ScalarTy->isPPC_FP128Ty())
3234         V = ConstantFP::get(
3235             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3236       else
3237         V = PoisonValue::get(CurTy);
3238       break;
3239     }
3240 
3241     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3242       if (Record.empty())
3243         return error("Invalid aggregate record");
3244 
3245       unsigned Size = Record.size();
3246       SmallVector<unsigned, 16> Elts;
3247       for (unsigned i = 0; i != Size; ++i)
3248         Elts.push_back(Record[i]);
3249 
3250       if (isa<StructType>(CurTy)) {
3251         V = BitcodeConstant::create(
3252             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3253       } else if (isa<ArrayType>(CurTy)) {
3254         V = BitcodeConstant::create(Alloc, CurTy,
3255                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3256       } else if (isa<VectorType>(CurTy)) {
3257         V = BitcodeConstant::create(
3258             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3259       } else {
3260         V = PoisonValue::get(CurTy);
3261       }
3262       break;
3263     }
3264     case bitc::CST_CODE_STRING:    // STRING: [values]
3265     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3266       if (Record.empty())
3267         return error("Invalid string record");
3268 
3269       SmallString<16> Elts(Record.begin(), Record.end());
3270       V = ConstantDataArray::getString(Context, Elts,
3271                                        BitCode == bitc::CST_CODE_CSTRING);
3272       break;
3273     }
3274     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3275       if (Record.empty())
3276         return error("Invalid data record");
3277 
3278       Type *EltTy;
3279       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3280         EltTy = Array->getElementType();
3281       else
3282         EltTy = cast<VectorType>(CurTy)->getElementType();
3283       if (EltTy->isIntegerTy(8)) {
3284         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3285         if (isa<VectorType>(CurTy))
3286           V = ConstantDataVector::get(Context, Elts);
3287         else
3288           V = ConstantDataArray::get(Context, Elts);
3289       } else if (EltTy->isIntegerTy(16)) {
3290         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3291         if (isa<VectorType>(CurTy))
3292           V = ConstantDataVector::get(Context, Elts);
3293         else
3294           V = ConstantDataArray::get(Context, Elts);
3295       } else if (EltTy->isIntegerTy(32)) {
3296         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3297         if (isa<VectorType>(CurTy))
3298           V = ConstantDataVector::get(Context, Elts);
3299         else
3300           V = ConstantDataArray::get(Context, Elts);
3301       } else if (EltTy->isIntegerTy(64)) {
3302         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3303         if (isa<VectorType>(CurTy))
3304           V = ConstantDataVector::get(Context, Elts);
3305         else
3306           V = ConstantDataArray::get(Context, Elts);
3307       } else if (EltTy->isHalfTy()) {
3308         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3309         if (isa<VectorType>(CurTy))
3310           V = ConstantDataVector::getFP(EltTy, Elts);
3311         else
3312           V = ConstantDataArray::getFP(EltTy, Elts);
3313       } else if (EltTy->isBFloatTy()) {
3314         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3315         if (isa<VectorType>(CurTy))
3316           V = ConstantDataVector::getFP(EltTy, Elts);
3317         else
3318           V = ConstantDataArray::getFP(EltTy, Elts);
3319       } else if (EltTy->isFloatTy()) {
3320         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3321         if (isa<VectorType>(CurTy))
3322           V = ConstantDataVector::getFP(EltTy, Elts);
3323         else
3324           V = ConstantDataArray::getFP(EltTy, Elts);
3325       } else if (EltTy->isDoubleTy()) {
3326         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3327         if (isa<VectorType>(CurTy))
3328           V = ConstantDataVector::getFP(EltTy, Elts);
3329         else
3330           V = ConstantDataArray::getFP(EltTy, Elts);
3331       } else {
3332         return error("Invalid type for value");
3333       }
3334       break;
3335     }
3336     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3337       if (Record.size() < 2)
3338         return error("Invalid unary op constexpr record");
3339       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3340       if (Opc < 0) {
3341         V = PoisonValue::get(CurTy);  // Unknown unop.
3342       } else {
3343         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3344       }
3345       break;
3346     }
3347     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3348       if (Record.size() < 3)
3349         return error("Invalid binary op constexpr record");
3350       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3351       if (Opc < 0) {
3352         V = PoisonValue::get(CurTy);  // Unknown binop.
3353       } else {
3354         uint8_t Flags = 0;
3355         if (Record.size() >= 4) {
3356           if (Opc == Instruction::Add ||
3357               Opc == Instruction::Sub ||
3358               Opc == Instruction::Mul ||
3359               Opc == Instruction::Shl) {
3360             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3361               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3362             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3363               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3364           } else if (Opc == Instruction::SDiv ||
3365                      Opc == Instruction::UDiv ||
3366                      Opc == Instruction::LShr ||
3367                      Opc == Instruction::AShr) {
3368             if (Record[3] & (1 << bitc::PEO_EXACT))
3369               Flags |= PossiblyExactOperator::IsExact;
3370           }
3371         }
3372         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3373                                     {(unsigned)Record[1], (unsigned)Record[2]});
3374       }
3375       break;
3376     }
3377     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3378       if (Record.size() < 3)
3379         return error("Invalid cast constexpr record");
3380       int Opc = getDecodedCastOpcode(Record[0]);
3381       if (Opc < 0) {
3382         V = PoisonValue::get(CurTy);  // Unknown cast.
3383       } else {
3384         unsigned OpTyID = Record[1];
3385         Type *OpTy = getTypeByID(OpTyID);
3386         if (!OpTy)
3387           return error("Invalid cast constexpr record");
3388         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3389       }
3390       break;
3391     }
3392     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3393     case bitc::CST_CODE_CE_GEP_OLD:      // [ty, n x operands]
3394     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3395                                                        // operands]
3396     case bitc::CST_CODE_CE_GEP:                // [ty, flags, n x operands]
3397     case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3398                                                // operands]
3399       if (Record.size() < 2)
3400         return error("Constant GEP record must have at least two elements");
3401       unsigned OpNum = 0;
3402       Type *PointeeType = nullptr;
3403       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3404           BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE ||
3405           BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2)
3406         PointeeType = getTypeByID(Record[OpNum++]);
3407 
3408       uint64_t Flags = 0;
3409       std::optional<ConstantRange> InRange;
3410       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3411         uint64_t Op = Record[OpNum++];
3412         Flags = Op & 1; // inbounds
3413         unsigned InRangeIndex = Op >> 1;
3414         // "Upgrade" inrange by dropping it. The feature is too niche to
3415         // bother.
3416         (void)InRangeIndex;
3417       } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3418         Flags = Record[OpNum++];
3419         Expected<ConstantRange> MaybeInRange =
3420             readBitWidthAndConstantRange(Record, OpNum);
3421         if (!MaybeInRange)
3422           return MaybeInRange.takeError();
3423         InRange = MaybeInRange.get();
3424       } else if (BitCode == bitc::CST_CODE_CE_GEP) {
3425         Flags = Record[OpNum++];
3426       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3427         Flags = (1 << bitc::GEP_INBOUNDS);
3428 
3429       SmallVector<unsigned, 16> Elts;
3430       unsigned BaseTypeID = Record[OpNum];
3431       while (OpNum != Record.size()) {
3432         unsigned ElTyID = Record[OpNum++];
3433         Type *ElTy = getTypeByID(ElTyID);
3434         if (!ElTy)
3435           return error("Invalid getelementptr constexpr record");
3436         Elts.push_back(Record[OpNum++]);
3437       }
3438 
3439       if (Elts.size() < 1)
3440         return error("Invalid gep with no operands");
3441 
3442       Type *BaseType = getTypeByID(BaseTypeID);
3443       if (isa<VectorType>(BaseType)) {
3444         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3445         BaseType = getTypeByID(BaseTypeID);
3446       }
3447 
3448       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3449       if (!OrigPtrTy)
3450         return error("GEP base operand must be pointer or vector of pointer");
3451 
3452       if (!PointeeType) {
3453         PointeeType = getPtrElementTypeByID(BaseTypeID);
3454         if (!PointeeType)
3455           return error("Missing element type for old-style constant GEP");
3456       }
3457 
3458       V = BitcodeConstant::create(
3459           Alloc, CurTy,
3460           {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange},
3461           Elts);
3462       break;
3463     }
3464     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3465       if (Record.size() < 3)
3466         return error("Invalid select constexpr record");
3467 
3468       V = BitcodeConstant::create(
3469           Alloc, CurTy, Instruction::Select,
3470           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3471       break;
3472     }
3473     case bitc::CST_CODE_CE_EXTRACTELT
3474         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3475       if (Record.size() < 3)
3476         return error("Invalid extractelement constexpr record");
3477       unsigned OpTyID = Record[0];
3478       VectorType *OpTy =
3479         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3480       if (!OpTy)
3481         return error("Invalid extractelement constexpr record");
3482       unsigned IdxRecord;
3483       if (Record.size() == 4) {
3484         unsigned IdxTyID = Record[2];
3485         Type *IdxTy = getTypeByID(IdxTyID);
3486         if (!IdxTy)
3487           return error("Invalid extractelement constexpr record");
3488         IdxRecord = Record[3];
3489       } else {
3490         // Deprecated, but still needed to read old bitcode files.
3491         IdxRecord = Record[2];
3492       }
3493       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3494                                   {(unsigned)Record[1], IdxRecord});
3495       break;
3496     }
3497     case bitc::CST_CODE_CE_INSERTELT
3498         : { // CE_INSERTELT: [opval, opval, opty, opval]
3499       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3500       if (Record.size() < 3 || !OpTy)
3501         return error("Invalid insertelement constexpr record");
3502       unsigned IdxRecord;
3503       if (Record.size() == 4) {
3504         unsigned IdxTyID = Record[2];
3505         Type *IdxTy = getTypeByID(IdxTyID);
3506         if (!IdxTy)
3507           return error("Invalid insertelement constexpr record");
3508         IdxRecord = Record[3];
3509       } else {
3510         // Deprecated, but still needed to read old bitcode files.
3511         IdxRecord = Record[2];
3512       }
3513       V = BitcodeConstant::create(
3514           Alloc, CurTy, Instruction::InsertElement,
3515           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3516       break;
3517     }
3518     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3519       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3520       if (Record.size() < 3 || !OpTy)
3521         return error("Invalid shufflevector constexpr record");
3522       V = BitcodeConstant::create(
3523           Alloc, CurTy, Instruction::ShuffleVector,
3524           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3525       break;
3526     }
3527     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3528       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3529       VectorType *OpTy =
3530         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3531       if (Record.size() < 4 || !RTy || !OpTy)
3532         return error("Invalid shufflevector constexpr record");
3533       V = BitcodeConstant::create(
3534           Alloc, CurTy, Instruction::ShuffleVector,
3535           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3536       break;
3537     }
3538     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3539       if (Record.size() < 4)
3540         return error("Invalid cmp constexpt record");
3541       unsigned OpTyID = Record[0];
3542       Type *OpTy = getTypeByID(OpTyID);
3543       if (!OpTy)
3544         return error("Invalid cmp constexpr record");
3545       V = BitcodeConstant::create(
3546           Alloc, CurTy,
3547           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3548                                               : Instruction::ICmp),
3549            (uint8_t)Record[3]},
3550           {(unsigned)Record[1], (unsigned)Record[2]});
3551       break;
3552     }
3553     // This maintains backward compatibility, pre-asm dialect keywords.
3554     // Deprecated, but still needed to read old bitcode files.
3555     case bitc::CST_CODE_INLINEASM_OLD: {
3556       if (Record.size() < 2)
3557         return error("Invalid inlineasm record");
3558       std::string AsmStr, ConstrStr;
3559       bool HasSideEffects = Record[0] & 1;
3560       bool IsAlignStack = Record[0] >> 1;
3561       unsigned AsmStrSize = Record[1];
3562       if (2+AsmStrSize >= Record.size())
3563         return error("Invalid inlineasm record");
3564       unsigned ConstStrSize = Record[2+AsmStrSize];
3565       if (3+AsmStrSize+ConstStrSize > Record.size())
3566         return error("Invalid inlineasm record");
3567 
3568       for (unsigned i = 0; i != AsmStrSize; ++i)
3569         AsmStr += (char)Record[2+i];
3570       for (unsigned i = 0; i != ConstStrSize; ++i)
3571         ConstrStr += (char)Record[3+AsmStrSize+i];
3572       UpgradeInlineAsmString(&AsmStr);
3573       if (!CurElemTy)
3574         return error("Missing element type for old-style inlineasm");
3575       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3576                          HasSideEffects, IsAlignStack);
3577       break;
3578     }
3579     // This version adds support for the asm dialect keywords (e.g.,
3580     // inteldialect).
3581     case bitc::CST_CODE_INLINEASM_OLD2: {
3582       if (Record.size() < 2)
3583         return error("Invalid inlineasm record");
3584       std::string AsmStr, ConstrStr;
3585       bool HasSideEffects = Record[0] & 1;
3586       bool IsAlignStack = (Record[0] >> 1) & 1;
3587       unsigned AsmDialect = Record[0] >> 2;
3588       unsigned AsmStrSize = Record[1];
3589       if (2+AsmStrSize >= Record.size())
3590         return error("Invalid inlineasm record");
3591       unsigned ConstStrSize = Record[2+AsmStrSize];
3592       if (3+AsmStrSize+ConstStrSize > Record.size())
3593         return error("Invalid inlineasm record");
3594 
3595       for (unsigned i = 0; i != AsmStrSize; ++i)
3596         AsmStr += (char)Record[2+i];
3597       for (unsigned i = 0; i != ConstStrSize; ++i)
3598         ConstrStr += (char)Record[3+AsmStrSize+i];
3599       UpgradeInlineAsmString(&AsmStr);
3600       if (!CurElemTy)
3601         return error("Missing element type for old-style inlineasm");
3602       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3603                          HasSideEffects, IsAlignStack,
3604                          InlineAsm::AsmDialect(AsmDialect));
3605       break;
3606     }
3607     // This version adds support for the unwind keyword.
3608     case bitc::CST_CODE_INLINEASM_OLD3: {
3609       if (Record.size() < 2)
3610         return error("Invalid inlineasm record");
3611       unsigned OpNum = 0;
3612       std::string AsmStr, ConstrStr;
3613       bool HasSideEffects = Record[OpNum] & 1;
3614       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3615       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3616       bool CanThrow = (Record[OpNum] >> 3) & 1;
3617       ++OpNum;
3618       unsigned AsmStrSize = Record[OpNum];
3619       ++OpNum;
3620       if (OpNum + AsmStrSize >= Record.size())
3621         return error("Invalid inlineasm record");
3622       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3623       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3624         return error("Invalid inlineasm record");
3625 
3626       for (unsigned i = 0; i != AsmStrSize; ++i)
3627         AsmStr += (char)Record[OpNum + i];
3628       ++OpNum;
3629       for (unsigned i = 0; i != ConstStrSize; ++i)
3630         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3631       UpgradeInlineAsmString(&AsmStr);
3632       if (!CurElemTy)
3633         return error("Missing element type for old-style inlineasm");
3634       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3635                          HasSideEffects, IsAlignStack,
3636                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3637       break;
3638     }
3639     // This version adds explicit function type.
3640     case bitc::CST_CODE_INLINEASM: {
3641       if (Record.size() < 3)
3642         return error("Invalid inlineasm record");
3643       unsigned OpNum = 0;
3644       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3645       ++OpNum;
3646       if (!FnTy)
3647         return error("Invalid inlineasm record");
3648       std::string AsmStr, ConstrStr;
3649       bool HasSideEffects = Record[OpNum] & 1;
3650       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3651       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3652       bool CanThrow = (Record[OpNum] >> 3) & 1;
3653       ++OpNum;
3654       unsigned AsmStrSize = Record[OpNum];
3655       ++OpNum;
3656       if (OpNum + AsmStrSize >= Record.size())
3657         return error("Invalid inlineasm record");
3658       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3659       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3660         return error("Invalid inlineasm record");
3661 
3662       for (unsigned i = 0; i != AsmStrSize; ++i)
3663         AsmStr += (char)Record[OpNum + i];
3664       ++OpNum;
3665       for (unsigned i = 0; i != ConstStrSize; ++i)
3666         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3667       UpgradeInlineAsmString(&AsmStr);
3668       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3669                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3670       break;
3671     }
3672     case bitc::CST_CODE_BLOCKADDRESS:{
3673       if (Record.size() < 3)
3674         return error("Invalid blockaddress record");
3675       unsigned FnTyID = Record[0];
3676       Type *FnTy = getTypeByID(FnTyID);
3677       if (!FnTy)
3678         return error("Invalid blockaddress record");
3679       V = BitcodeConstant::create(
3680           Alloc, CurTy,
3681           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3682           Record[1]);
3683       break;
3684     }
3685     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3686       if (Record.size() < 2)
3687         return error("Invalid dso_local record");
3688       unsigned GVTyID = Record[0];
3689       Type *GVTy = getTypeByID(GVTyID);
3690       if (!GVTy)
3691         return error("Invalid dso_local record");
3692       V = BitcodeConstant::create(
3693           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3694       break;
3695     }
3696     case bitc::CST_CODE_NO_CFI_VALUE: {
3697       if (Record.size() < 2)
3698         return error("Invalid no_cfi record");
3699       unsigned GVTyID = Record[0];
3700       Type *GVTy = getTypeByID(GVTyID);
3701       if (!GVTy)
3702         return error("Invalid no_cfi record");
3703       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3704                                   Record[1]);
3705       break;
3706     }
3707     case bitc::CST_CODE_PTRAUTH: {
3708       if (Record.size() < 4)
3709         return error("Invalid ptrauth record");
3710       // Ptr, Key, Disc, AddrDisc
3711       V = BitcodeConstant::create(Alloc, CurTy,
3712                                   BitcodeConstant::ConstantPtrAuthOpcode,
3713                                   {(unsigned)Record[0], (unsigned)Record[1],
3714                                    (unsigned)Record[2], (unsigned)Record[3]});
3715       break;
3716     }
3717     }
3718 
3719     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3720     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3721       return Err;
3722     ++NextCstNo;
3723   }
3724 }
3725 
3726 Error BitcodeReader::parseUseLists() {
3727   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3728     return Err;
3729 
3730   // Read all the records.
3731   SmallVector<uint64_t, 64> Record;
3732 
3733   while (true) {
3734     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3735     if (!MaybeEntry)
3736       return MaybeEntry.takeError();
3737     BitstreamEntry Entry = MaybeEntry.get();
3738 
3739     switch (Entry.Kind) {
3740     case BitstreamEntry::SubBlock: // Handled for us already.
3741     case BitstreamEntry::Error:
3742       return error("Malformed block");
3743     case BitstreamEntry::EndBlock:
3744       return Error::success();
3745     case BitstreamEntry::Record:
3746       // The interesting case.
3747       break;
3748     }
3749 
3750     // Read a use list record.
3751     Record.clear();
3752     bool IsBB = false;
3753     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3754     if (!MaybeRecord)
3755       return MaybeRecord.takeError();
3756     switch (MaybeRecord.get()) {
3757     default:  // Default behavior: unknown type.
3758       break;
3759     case bitc::USELIST_CODE_BB:
3760       IsBB = true;
3761       [[fallthrough]];
3762     case bitc::USELIST_CODE_DEFAULT: {
3763       unsigned RecordLength = Record.size();
3764       if (RecordLength < 3)
3765         // Records should have at least an ID and two indexes.
3766         return error("Invalid record");
3767       unsigned ID = Record.pop_back_val();
3768 
3769       Value *V;
3770       if (IsBB) {
3771         assert(ID < FunctionBBs.size() && "Basic block not found");
3772         V = FunctionBBs[ID];
3773       } else
3774         V = ValueList[ID];
3775       unsigned NumUses = 0;
3776       SmallDenseMap<const Use *, unsigned, 16> Order;
3777       for (const Use &U : V->materialized_uses()) {
3778         if (++NumUses > Record.size())
3779           break;
3780         Order[&U] = Record[NumUses - 1];
3781       }
3782       if (Order.size() != Record.size() || NumUses > Record.size())
3783         // Mismatches can happen if the functions are being materialized lazily
3784         // (out-of-order), or a value has been upgraded.
3785         break;
3786 
3787       V->sortUseList([&](const Use &L, const Use &R) {
3788         return Order.lookup(&L) < Order.lookup(&R);
3789       });
3790       break;
3791     }
3792     }
3793   }
3794 }
3795 
3796 /// When we see the block for metadata, remember where it is and then skip it.
3797 /// This lets us lazily deserialize the metadata.
3798 Error BitcodeReader::rememberAndSkipMetadata() {
3799   // Save the current stream state.
3800   uint64_t CurBit = Stream.GetCurrentBitNo();
3801   DeferredMetadataInfo.push_back(CurBit);
3802 
3803   // Skip over the block for now.
3804   if (Error Err = Stream.SkipBlock())
3805     return Err;
3806   return Error::success();
3807 }
3808 
3809 Error BitcodeReader::materializeMetadata() {
3810   for (uint64_t BitPos : DeferredMetadataInfo) {
3811     // Move the bit stream to the saved position.
3812     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3813       return JumpFailed;
3814     if (Error Err = MDLoader->parseModuleMetadata())
3815       return Err;
3816   }
3817 
3818   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3819   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3820   // multiple times.
3821   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3822     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3823       NamedMDNode *LinkerOpts =
3824           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3825       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3826         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3827     }
3828   }
3829 
3830   DeferredMetadataInfo.clear();
3831   return Error::success();
3832 }
3833 
3834 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3835 
3836 /// When we see the block for a function body, remember where it is and then
3837 /// skip it.  This lets us lazily deserialize the functions.
3838 Error BitcodeReader::rememberAndSkipFunctionBody() {
3839   // Get the function we are talking about.
3840   if (FunctionsWithBodies.empty())
3841     return error("Insufficient function protos");
3842 
3843   Function *Fn = FunctionsWithBodies.back();
3844   FunctionsWithBodies.pop_back();
3845 
3846   // Save the current stream state.
3847   uint64_t CurBit = Stream.GetCurrentBitNo();
3848   assert(
3849       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3850       "Mismatch between VST and scanned function offsets");
3851   DeferredFunctionInfo[Fn] = CurBit;
3852 
3853   // Skip over the function block for now.
3854   if (Error Err = Stream.SkipBlock())
3855     return Err;
3856   return Error::success();
3857 }
3858 
3859 Error BitcodeReader::globalCleanup() {
3860   // Patch the initializers for globals and aliases up.
3861   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3862     return Err;
3863   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3864     return error("Malformed global initializer set");
3865 
3866   // Look for intrinsic functions which need to be upgraded at some point
3867   // and functions that need to have their function attributes upgraded.
3868   for (Function &F : *TheModule) {
3869     MDLoader->upgradeDebugIntrinsics(F);
3870     Function *NewFn;
3871     // If PreserveInputDbgFormat=true, then we don't know whether we want
3872     // intrinsics or records, and we won't perform any conversions in either
3873     // case, so don't upgrade intrinsics to records.
3874     if (UpgradeIntrinsicFunction(
3875             &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
3876       UpgradedIntrinsics[&F] = NewFn;
3877     // Look for functions that rely on old function attribute behavior.
3878     UpgradeFunctionAttributes(F);
3879   }
3880 
3881   // Look for global variables which need to be renamed.
3882   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3883   for (GlobalVariable &GV : TheModule->globals())
3884     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3885       UpgradedVariables.emplace_back(&GV, Upgraded);
3886   for (auto &Pair : UpgradedVariables) {
3887     Pair.first->eraseFromParent();
3888     TheModule->insertGlobalVariable(Pair.second);
3889   }
3890 
3891   // Force deallocation of memory for these vectors to favor the client that
3892   // want lazy deserialization.
3893   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3894   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3895   return Error::success();
3896 }
3897 
3898 /// Support for lazy parsing of function bodies. This is required if we
3899 /// either have an old bitcode file without a VST forward declaration record,
3900 /// or if we have an anonymous function being materialized, since anonymous
3901 /// functions do not have a name and are therefore not in the VST.
3902 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3903   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3904     return JumpFailed;
3905 
3906   if (Stream.AtEndOfStream())
3907     return error("Could not find function in stream");
3908 
3909   if (!SeenFirstFunctionBody)
3910     return error("Trying to materialize functions before seeing function blocks");
3911 
3912   // An old bitcode file with the symbol table at the end would have
3913   // finished the parse greedily.
3914   assert(SeenValueSymbolTable);
3915 
3916   SmallVector<uint64_t, 64> Record;
3917 
3918   while (true) {
3919     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3920     if (!MaybeEntry)
3921       return MaybeEntry.takeError();
3922     llvm::BitstreamEntry Entry = MaybeEntry.get();
3923 
3924     switch (Entry.Kind) {
3925     default:
3926       return error("Expect SubBlock");
3927     case BitstreamEntry::SubBlock:
3928       switch (Entry.ID) {
3929       default:
3930         return error("Expect function block");
3931       case bitc::FUNCTION_BLOCK_ID:
3932         if (Error Err = rememberAndSkipFunctionBody())
3933           return Err;
3934         NextUnreadBit = Stream.GetCurrentBitNo();
3935         return Error::success();
3936       }
3937     }
3938   }
3939 }
3940 
3941 Error BitcodeReaderBase::readBlockInfo() {
3942   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3943       Stream.ReadBlockInfoBlock();
3944   if (!MaybeNewBlockInfo)
3945     return MaybeNewBlockInfo.takeError();
3946   std::optional<BitstreamBlockInfo> NewBlockInfo =
3947       std::move(MaybeNewBlockInfo.get());
3948   if (!NewBlockInfo)
3949     return error("Malformed block");
3950   BlockInfo = std::move(*NewBlockInfo);
3951   return Error::success();
3952 }
3953 
3954 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3955   // v1: [selection_kind, name]
3956   // v2: [strtab_offset, strtab_size, selection_kind]
3957   StringRef Name;
3958   std::tie(Name, Record) = readNameFromStrtab(Record);
3959 
3960   if (Record.empty())
3961     return error("Invalid record");
3962   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3963   std::string OldFormatName;
3964   if (!UseStrtab) {
3965     if (Record.size() < 2)
3966       return error("Invalid record");
3967     unsigned ComdatNameSize = Record[1];
3968     if (ComdatNameSize > Record.size() - 2)
3969       return error("Comdat name size too large");
3970     OldFormatName.reserve(ComdatNameSize);
3971     for (unsigned i = 0; i != ComdatNameSize; ++i)
3972       OldFormatName += (char)Record[2 + i];
3973     Name = OldFormatName;
3974   }
3975   Comdat *C = TheModule->getOrInsertComdat(Name);
3976   C->setSelectionKind(SK);
3977   ComdatList.push_back(C);
3978   return Error::success();
3979 }
3980 
3981 static void inferDSOLocal(GlobalValue *GV) {
3982   // infer dso_local from linkage and visibility if it is not encoded.
3983   if (GV->hasLocalLinkage() ||
3984       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3985     GV->setDSOLocal(true);
3986 }
3987 
3988 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3989   GlobalValue::SanitizerMetadata Meta;
3990   if (V & (1 << 0))
3991     Meta.NoAddress = true;
3992   if (V & (1 << 1))
3993     Meta.NoHWAddress = true;
3994   if (V & (1 << 2))
3995     Meta.Memtag = true;
3996   if (V & (1 << 3))
3997     Meta.IsDynInit = true;
3998   return Meta;
3999 }
4000 
4001 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
4002   // v1: [pointer type, isconst, initid, linkage, alignment, section,
4003   // visibility, threadlocal, unnamed_addr, externally_initialized,
4004   // dllstorageclass, comdat, attributes, preemption specifier,
4005   // partition strtab offset, partition strtab size] (name in VST)
4006   // v2: [strtab_offset, strtab_size, v1]
4007   // v3: [v2, code_model]
4008   StringRef Name;
4009   std::tie(Name, Record) = readNameFromStrtab(Record);
4010 
4011   if (Record.size() < 6)
4012     return error("Invalid record");
4013   unsigned TyID = Record[0];
4014   Type *Ty = getTypeByID(TyID);
4015   if (!Ty)
4016     return error("Invalid record");
4017   bool isConstant = Record[1] & 1;
4018   bool explicitType = Record[1] & 2;
4019   unsigned AddressSpace;
4020   if (explicitType) {
4021     AddressSpace = Record[1] >> 2;
4022   } else {
4023     if (!Ty->isPointerTy())
4024       return error("Invalid type for value");
4025     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
4026     TyID = getContainedTypeID(TyID);
4027     Ty = getTypeByID(TyID);
4028     if (!Ty)
4029       return error("Missing element type for old-style global");
4030   }
4031 
4032   uint64_t RawLinkage = Record[3];
4033   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4034   MaybeAlign Alignment;
4035   if (Error Err = parseAlignmentValue(Record[4], Alignment))
4036     return Err;
4037   std::string Section;
4038   if (Record[5]) {
4039     if (Record[5] - 1 >= SectionTable.size())
4040       return error("Invalid ID");
4041     Section = SectionTable[Record[5] - 1];
4042   }
4043   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4044   // Local linkage must have default visibility.
4045   // auto-upgrade `hidden` and `protected` for old bitcode.
4046   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4047     Visibility = getDecodedVisibility(Record[6]);
4048 
4049   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4050   if (Record.size() > 7)
4051     TLM = getDecodedThreadLocalMode(Record[7]);
4052 
4053   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4054   if (Record.size() > 8)
4055     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4056 
4057   bool ExternallyInitialized = false;
4058   if (Record.size() > 9)
4059     ExternallyInitialized = Record[9];
4060 
4061   GlobalVariable *NewGV =
4062       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
4063                          nullptr, TLM, AddressSpace, ExternallyInitialized);
4064   if (Alignment)
4065     NewGV->setAlignment(*Alignment);
4066   if (!Section.empty())
4067     NewGV->setSection(Section);
4068   NewGV->setVisibility(Visibility);
4069   NewGV->setUnnamedAddr(UnnamedAddr);
4070 
4071   if (Record.size() > 10) {
4072     // A GlobalValue with local linkage cannot have a DLL storage class.
4073     if (!NewGV->hasLocalLinkage()) {
4074       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4075     }
4076   } else {
4077     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4078   }
4079 
4080   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
4081 
4082   // Remember which value to use for the global initializer.
4083   if (unsigned InitID = Record[2])
4084     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
4085 
4086   if (Record.size() > 11) {
4087     if (unsigned ComdatID = Record[11]) {
4088       if (ComdatID > ComdatList.size())
4089         return error("Invalid global variable comdat ID");
4090       NewGV->setComdat(ComdatList[ComdatID - 1]);
4091     }
4092   } else if (hasImplicitComdat(RawLinkage)) {
4093     ImplicitComdatObjects.insert(NewGV);
4094   }
4095 
4096   if (Record.size() > 12) {
4097     auto AS = getAttributes(Record[12]).getFnAttrs();
4098     NewGV->setAttributes(AS);
4099   }
4100 
4101   if (Record.size() > 13) {
4102     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
4103   }
4104   inferDSOLocal(NewGV);
4105 
4106   // Check whether we have enough values to read a partition name.
4107   if (Record.size() > 15)
4108     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4109 
4110   if (Record.size() > 16 && Record[16]) {
4111     llvm::GlobalValue::SanitizerMetadata Meta =
4112         deserializeSanitizerMetadata(Record[16]);
4113     NewGV->setSanitizerMetadata(Meta);
4114   }
4115 
4116   if (Record.size() > 17 && Record[17]) {
4117     if (auto CM = getDecodedCodeModel(Record[17]))
4118       NewGV->setCodeModel(*CM);
4119     else
4120       return error("Invalid global variable code model");
4121   }
4122 
4123   return Error::success();
4124 }
4125 
4126 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4127   if (ValueTypeCallback) {
4128     (*ValueTypeCallback)(
4129         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4130         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4131   }
4132 }
4133 
4134 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4135   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4136   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4137   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
4138   // v2: [strtab_offset, strtab_size, v1]
4139   StringRef Name;
4140   std::tie(Name, Record) = readNameFromStrtab(Record);
4141 
4142   if (Record.size() < 8)
4143     return error("Invalid record");
4144   unsigned FTyID = Record[0];
4145   Type *FTy = getTypeByID(FTyID);
4146   if (!FTy)
4147     return error("Invalid record");
4148   if (isa<PointerType>(FTy)) {
4149     FTyID = getContainedTypeID(FTyID, 0);
4150     FTy = getTypeByID(FTyID);
4151     if (!FTy)
4152       return error("Missing element type for old-style function");
4153   }
4154 
4155   if (!isa<FunctionType>(FTy))
4156     return error("Invalid type for value");
4157   auto CC = static_cast<CallingConv::ID>(Record[1]);
4158   if (CC & ~CallingConv::MaxID)
4159     return error("Invalid calling convention ID");
4160 
4161   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4162   if (Record.size() > 16)
4163     AddrSpace = Record[16];
4164 
4165   Function *Func =
4166       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4167                        AddrSpace, Name, TheModule);
4168 
4169   assert(Func->getFunctionType() == FTy &&
4170          "Incorrect fully specified type provided for function");
4171   FunctionTypeIDs[Func] = FTyID;
4172 
4173   Func->setCallingConv(CC);
4174   bool isProto = Record[2];
4175   uint64_t RawLinkage = Record[3];
4176   Func->setLinkage(getDecodedLinkage(RawLinkage));
4177   Func->setAttributes(getAttributes(Record[4]));
4178   callValueTypeCallback(Func, FTyID);
4179 
4180   // Upgrade any old-style byval or sret without a type by propagating the
4181   // argument's pointee type. There should be no opaque pointers where the byval
4182   // type is implicit.
4183   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4184     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4185                                      Attribute::InAlloca}) {
4186       if (!Func->hasParamAttribute(i, Kind))
4187         continue;
4188 
4189       if (Func->getParamAttribute(i, Kind).getValueAsType())
4190         continue;
4191 
4192       Func->removeParamAttr(i, Kind);
4193 
4194       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4195       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4196       if (!PtrEltTy)
4197         return error("Missing param element type for attribute upgrade");
4198 
4199       Attribute NewAttr;
4200       switch (Kind) {
4201       case Attribute::ByVal:
4202         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4203         break;
4204       case Attribute::StructRet:
4205         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4206         break;
4207       case Attribute::InAlloca:
4208         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4209         break;
4210       default:
4211         llvm_unreachable("not an upgraded type attribute");
4212       }
4213 
4214       Func->addParamAttr(i, NewAttr);
4215     }
4216   }
4217 
4218   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4219       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4220     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4221     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4222     if (!ByValTy)
4223       return error("Missing param element type for x86_intrcc upgrade");
4224     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4225     Func->addParamAttr(0, NewAttr);
4226   }
4227 
4228   MaybeAlign Alignment;
4229   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4230     return Err;
4231   if (Alignment)
4232     Func->setAlignment(*Alignment);
4233   if (Record[6]) {
4234     if (Record[6] - 1 >= SectionTable.size())
4235       return error("Invalid ID");
4236     Func->setSection(SectionTable[Record[6] - 1]);
4237   }
4238   // Local linkage must have default visibility.
4239   // auto-upgrade `hidden` and `protected` for old bitcode.
4240   if (!Func->hasLocalLinkage())
4241     Func->setVisibility(getDecodedVisibility(Record[7]));
4242   if (Record.size() > 8 && Record[8]) {
4243     if (Record[8] - 1 >= GCTable.size())
4244       return error("Invalid ID");
4245     Func->setGC(GCTable[Record[8] - 1]);
4246   }
4247   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4248   if (Record.size() > 9)
4249     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4250   Func->setUnnamedAddr(UnnamedAddr);
4251 
4252   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4253   if (Record.size() > 10)
4254     OperandInfo.Prologue = Record[10];
4255 
4256   if (Record.size() > 11) {
4257     // A GlobalValue with local linkage cannot have a DLL storage class.
4258     if (!Func->hasLocalLinkage()) {
4259       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4260     }
4261   } else {
4262     upgradeDLLImportExportLinkage(Func, RawLinkage);
4263   }
4264 
4265   if (Record.size() > 12) {
4266     if (unsigned ComdatID = Record[12]) {
4267       if (ComdatID > ComdatList.size())
4268         return error("Invalid function comdat ID");
4269       Func->setComdat(ComdatList[ComdatID - 1]);
4270     }
4271   } else if (hasImplicitComdat(RawLinkage)) {
4272     ImplicitComdatObjects.insert(Func);
4273   }
4274 
4275   if (Record.size() > 13)
4276     OperandInfo.Prefix = Record[13];
4277 
4278   if (Record.size() > 14)
4279     OperandInfo.PersonalityFn = Record[14];
4280 
4281   if (Record.size() > 15) {
4282     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4283   }
4284   inferDSOLocal(Func);
4285 
4286   // Record[16] is the address space number.
4287 
4288   // Check whether we have enough values to read a partition name. Also make
4289   // sure Strtab has enough values.
4290   if (Record.size() > 18 && Strtab.data() &&
4291       Record[17] + Record[18] <= Strtab.size()) {
4292     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4293   }
4294 
4295   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4296 
4297   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4298     FunctionOperands.push_back(OperandInfo);
4299 
4300   // If this is a function with a body, remember the prototype we are
4301   // creating now, so that we can match up the body with them later.
4302   if (!isProto) {
4303     Func->setIsMaterializable(true);
4304     FunctionsWithBodies.push_back(Func);
4305     DeferredFunctionInfo[Func] = 0;
4306   }
4307   return Error::success();
4308 }
4309 
4310 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4311     unsigned BitCode, ArrayRef<uint64_t> Record) {
4312   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4313   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4314   // dllstorageclass, threadlocal, unnamed_addr,
4315   // preemption specifier] (name in VST)
4316   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4317   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4318   // preemption specifier] (name in VST)
4319   // v2: [strtab_offset, strtab_size, v1]
4320   StringRef Name;
4321   std::tie(Name, Record) = readNameFromStrtab(Record);
4322 
4323   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4324   if (Record.size() < (3 + (unsigned)NewRecord))
4325     return error("Invalid record");
4326   unsigned OpNum = 0;
4327   unsigned TypeID = Record[OpNum++];
4328   Type *Ty = getTypeByID(TypeID);
4329   if (!Ty)
4330     return error("Invalid record");
4331 
4332   unsigned AddrSpace;
4333   if (!NewRecord) {
4334     auto *PTy = dyn_cast<PointerType>(Ty);
4335     if (!PTy)
4336       return error("Invalid type for value");
4337     AddrSpace = PTy->getAddressSpace();
4338     TypeID = getContainedTypeID(TypeID);
4339     Ty = getTypeByID(TypeID);
4340     if (!Ty)
4341       return error("Missing element type for old-style indirect symbol");
4342   } else {
4343     AddrSpace = Record[OpNum++];
4344   }
4345 
4346   auto Val = Record[OpNum++];
4347   auto Linkage = Record[OpNum++];
4348   GlobalValue *NewGA;
4349   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4350       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4351     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4352                                 TheModule);
4353   else
4354     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4355                                 nullptr, TheModule);
4356 
4357   // Local linkage must have default visibility.
4358   // auto-upgrade `hidden` and `protected` for old bitcode.
4359   if (OpNum != Record.size()) {
4360     auto VisInd = OpNum++;
4361     if (!NewGA->hasLocalLinkage())
4362       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4363   }
4364   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4365       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4366     if (OpNum != Record.size()) {
4367       auto S = Record[OpNum++];
4368       // A GlobalValue with local linkage cannot have a DLL storage class.
4369       if (!NewGA->hasLocalLinkage())
4370         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4371     }
4372     else
4373       upgradeDLLImportExportLinkage(NewGA, Linkage);
4374     if (OpNum != Record.size())
4375       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4376     if (OpNum != Record.size())
4377       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4378   }
4379   if (OpNum != Record.size())
4380     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4381   inferDSOLocal(NewGA);
4382 
4383   // Check whether we have enough values to read a partition name.
4384   if (OpNum + 1 < Record.size()) {
4385     // Check Strtab has enough values for the partition.
4386     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4387       return error("Malformed partition, too large.");
4388     NewGA->setPartition(
4389         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4390   }
4391 
4392   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4393   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4394   return Error::success();
4395 }
4396 
4397 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4398                                  bool ShouldLazyLoadMetadata,
4399                                  ParserCallbacks Callbacks) {
4400   // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4401   // has been set to true and we aren't attempting to preserve the existing
4402   // format in the bitcode (default action: load into the old debug format).
4403   if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
4404     TheModule->IsNewDbgInfoFormat =
4405         UseNewDbgInfoFormat &&
4406         LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE;
4407   }
4408 
4409   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4410   if (ResumeBit) {
4411     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4412       return JumpFailed;
4413   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4414     return Err;
4415 
4416   SmallVector<uint64_t, 64> Record;
4417 
4418   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4419   // finalize the datalayout before we run any of that code.
4420   bool ResolvedDataLayout = false;
4421   // In order to support importing modules with illegal data layout strings,
4422   // delay parsing the data layout string until after upgrades and overrides
4423   // have been applied, allowing to fix illegal data layout strings.
4424   // Initialize to the current module's layout string in case none is specified.
4425   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4426 
4427   auto ResolveDataLayout = [&]() -> Error {
4428     if (ResolvedDataLayout)
4429       return Error::success();
4430 
4431     // Datalayout and triple can't be parsed after this point.
4432     ResolvedDataLayout = true;
4433 
4434     // Auto-upgrade the layout string
4435     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4436         TentativeDataLayoutStr, TheModule->getTargetTriple());
4437 
4438     // Apply override
4439     if (Callbacks.DataLayout) {
4440       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4441               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4442         TentativeDataLayoutStr = *LayoutOverride;
4443     }
4444 
4445     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4446     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4447     if (!MaybeDL)
4448       return MaybeDL.takeError();
4449 
4450     TheModule->setDataLayout(MaybeDL.get());
4451     return Error::success();
4452   };
4453 
4454   // Read all the records for this module.
4455   while (true) {
4456     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4457     if (!MaybeEntry)
4458       return MaybeEntry.takeError();
4459     llvm::BitstreamEntry Entry = MaybeEntry.get();
4460 
4461     switch (Entry.Kind) {
4462     case BitstreamEntry::Error:
4463       return error("Malformed block");
4464     case BitstreamEntry::EndBlock:
4465       if (Error Err = ResolveDataLayout())
4466         return Err;
4467       return globalCleanup();
4468 
4469     case BitstreamEntry::SubBlock:
4470       switch (Entry.ID) {
4471       default:  // Skip unknown content.
4472         if (Error Err = Stream.SkipBlock())
4473           return Err;
4474         break;
4475       case bitc::BLOCKINFO_BLOCK_ID:
4476         if (Error Err = readBlockInfo())
4477           return Err;
4478         break;
4479       case bitc::PARAMATTR_BLOCK_ID:
4480         if (Error Err = parseAttributeBlock())
4481           return Err;
4482         break;
4483       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4484         if (Error Err = parseAttributeGroupBlock())
4485           return Err;
4486         break;
4487       case bitc::TYPE_BLOCK_ID_NEW:
4488         if (Error Err = parseTypeTable())
4489           return Err;
4490         break;
4491       case bitc::VALUE_SYMTAB_BLOCK_ID:
4492         if (!SeenValueSymbolTable) {
4493           // Either this is an old form VST without function index and an
4494           // associated VST forward declaration record (which would have caused
4495           // the VST to be jumped to and parsed before it was encountered
4496           // normally in the stream), or there were no function blocks to
4497           // trigger an earlier parsing of the VST.
4498           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4499           if (Error Err = parseValueSymbolTable())
4500             return Err;
4501           SeenValueSymbolTable = true;
4502         } else {
4503           // We must have had a VST forward declaration record, which caused
4504           // the parser to jump to and parse the VST earlier.
4505           assert(VSTOffset > 0);
4506           if (Error Err = Stream.SkipBlock())
4507             return Err;
4508         }
4509         break;
4510       case bitc::CONSTANTS_BLOCK_ID:
4511         if (Error Err = parseConstants())
4512           return Err;
4513         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4514           return Err;
4515         break;
4516       case bitc::METADATA_BLOCK_ID:
4517         if (ShouldLazyLoadMetadata) {
4518           if (Error Err = rememberAndSkipMetadata())
4519             return Err;
4520           break;
4521         }
4522         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4523         if (Error Err = MDLoader->parseModuleMetadata())
4524           return Err;
4525         break;
4526       case bitc::METADATA_KIND_BLOCK_ID:
4527         if (Error Err = MDLoader->parseMetadataKinds())
4528           return Err;
4529         break;
4530       case bitc::FUNCTION_BLOCK_ID:
4531         if (Error Err = ResolveDataLayout())
4532           return Err;
4533 
4534         // If this is the first function body we've seen, reverse the
4535         // FunctionsWithBodies list.
4536         if (!SeenFirstFunctionBody) {
4537           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4538           if (Error Err = globalCleanup())
4539             return Err;
4540           SeenFirstFunctionBody = true;
4541         }
4542 
4543         if (VSTOffset > 0) {
4544           // If we have a VST forward declaration record, make sure we
4545           // parse the VST now if we haven't already. It is needed to
4546           // set up the DeferredFunctionInfo vector for lazy reading.
4547           if (!SeenValueSymbolTable) {
4548             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4549               return Err;
4550             SeenValueSymbolTable = true;
4551             // Fall through so that we record the NextUnreadBit below.
4552             // This is necessary in case we have an anonymous function that
4553             // is later materialized. Since it will not have a VST entry we
4554             // need to fall back to the lazy parse to find its offset.
4555           } else {
4556             // If we have a VST forward declaration record, but have already
4557             // parsed the VST (just above, when the first function body was
4558             // encountered here), then we are resuming the parse after
4559             // materializing functions. The ResumeBit points to the
4560             // start of the last function block recorded in the
4561             // DeferredFunctionInfo map. Skip it.
4562             if (Error Err = Stream.SkipBlock())
4563               return Err;
4564             continue;
4565           }
4566         }
4567 
4568         // Support older bitcode files that did not have the function
4569         // index in the VST, nor a VST forward declaration record, as
4570         // well as anonymous functions that do not have VST entries.
4571         // Build the DeferredFunctionInfo vector on the fly.
4572         if (Error Err = rememberAndSkipFunctionBody())
4573           return Err;
4574 
4575         // Suspend parsing when we reach the function bodies. Subsequent
4576         // materialization calls will resume it when necessary. If the bitcode
4577         // file is old, the symbol table will be at the end instead and will not
4578         // have been seen yet. In this case, just finish the parse now.
4579         if (SeenValueSymbolTable) {
4580           NextUnreadBit = Stream.GetCurrentBitNo();
4581           // After the VST has been parsed, we need to make sure intrinsic name
4582           // are auto-upgraded.
4583           return globalCleanup();
4584         }
4585         break;
4586       case bitc::USELIST_BLOCK_ID:
4587         if (Error Err = parseUseLists())
4588           return Err;
4589         break;
4590       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4591         if (Error Err = parseOperandBundleTags())
4592           return Err;
4593         break;
4594       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4595         if (Error Err = parseSyncScopeNames())
4596           return Err;
4597         break;
4598       }
4599       continue;
4600 
4601     case BitstreamEntry::Record:
4602       // The interesting case.
4603       break;
4604     }
4605 
4606     // Read a record.
4607     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4608     if (!MaybeBitCode)
4609       return MaybeBitCode.takeError();
4610     switch (unsigned BitCode = MaybeBitCode.get()) {
4611     default: break;  // Default behavior, ignore unknown content.
4612     case bitc::MODULE_CODE_VERSION: {
4613       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4614       if (!VersionOrErr)
4615         return VersionOrErr.takeError();
4616       UseRelativeIDs = *VersionOrErr >= 1;
4617       break;
4618     }
4619     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4620       if (ResolvedDataLayout)
4621         return error("target triple too late in module");
4622       std::string S;
4623       if (convertToString(Record, 0, S))
4624         return error("Invalid record");
4625       TheModule->setTargetTriple(S);
4626       break;
4627     }
4628     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4629       if (ResolvedDataLayout)
4630         return error("datalayout too late in module");
4631       if (convertToString(Record, 0, TentativeDataLayoutStr))
4632         return error("Invalid record");
4633       break;
4634     }
4635     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4636       std::string S;
4637       if (convertToString(Record, 0, S))
4638         return error("Invalid record");
4639       TheModule->setModuleInlineAsm(S);
4640       break;
4641     }
4642     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4643       // Deprecated, but still needed to read old bitcode files.
4644       std::string S;
4645       if (convertToString(Record, 0, S))
4646         return error("Invalid record");
4647       // Ignore value.
4648       break;
4649     }
4650     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4651       std::string S;
4652       if (convertToString(Record, 0, S))
4653         return error("Invalid record");
4654       SectionTable.push_back(S);
4655       break;
4656     }
4657     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4658       std::string S;
4659       if (convertToString(Record, 0, S))
4660         return error("Invalid record");
4661       GCTable.push_back(S);
4662       break;
4663     }
4664     case bitc::MODULE_CODE_COMDAT:
4665       if (Error Err = parseComdatRecord(Record))
4666         return Err;
4667       break;
4668     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4669     // written by ThinLinkBitcodeWriter. See
4670     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4671     // record
4672     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4673     case bitc::MODULE_CODE_GLOBALVAR:
4674       if (Error Err = parseGlobalVarRecord(Record))
4675         return Err;
4676       break;
4677     case bitc::MODULE_CODE_FUNCTION:
4678       if (Error Err = ResolveDataLayout())
4679         return Err;
4680       if (Error Err = parseFunctionRecord(Record))
4681         return Err;
4682       break;
4683     case bitc::MODULE_CODE_IFUNC:
4684     case bitc::MODULE_CODE_ALIAS:
4685     case bitc::MODULE_CODE_ALIAS_OLD:
4686       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4687         return Err;
4688       break;
4689     /// MODULE_CODE_VSTOFFSET: [offset]
4690     case bitc::MODULE_CODE_VSTOFFSET:
4691       if (Record.empty())
4692         return error("Invalid record");
4693       // Note that we subtract 1 here because the offset is relative to one word
4694       // before the start of the identification or module block, which was
4695       // historically always the start of the regular bitcode header.
4696       VSTOffset = Record[0] - 1;
4697       break;
4698     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4699     case bitc::MODULE_CODE_SOURCE_FILENAME:
4700       SmallString<128> ValueName;
4701       if (convertToString(Record, 0, ValueName))
4702         return error("Invalid record");
4703       TheModule->setSourceFileName(ValueName);
4704       break;
4705     }
4706     Record.clear();
4707   }
4708   this->ValueTypeCallback = std::nullopt;
4709   return Error::success();
4710 }
4711 
4712 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4713                                       bool IsImporting,
4714                                       ParserCallbacks Callbacks) {
4715   TheModule = M;
4716   MetadataLoaderCallbacks MDCallbacks;
4717   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4718   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4719     return getContainedTypeID(I, J);
4720   };
4721   MDCallbacks.MDType = Callbacks.MDType;
4722   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4723   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4724 }
4725 
4726 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4727   if (!isa<PointerType>(PtrType))
4728     return error("Load/Store operand is not a pointer type");
4729   if (!PointerType::isLoadableOrStorableType(ValType))
4730     return error("Cannot load/store from pointer");
4731   return Error::success();
4732 }
4733 
4734 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4735                                              ArrayRef<unsigned> ArgTyIDs) {
4736   AttributeList Attrs = CB->getAttributes();
4737   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4738     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4739                                      Attribute::InAlloca}) {
4740       if (!Attrs.hasParamAttr(i, Kind) ||
4741           Attrs.getParamAttr(i, Kind).getValueAsType())
4742         continue;
4743 
4744       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4745       if (!PtrEltTy)
4746         return error("Missing element type for typed attribute upgrade");
4747 
4748       Attribute NewAttr;
4749       switch (Kind) {
4750       case Attribute::ByVal:
4751         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4752         break;
4753       case Attribute::StructRet:
4754         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4755         break;
4756       case Attribute::InAlloca:
4757         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4758         break;
4759       default:
4760         llvm_unreachable("not an upgraded type attribute");
4761       }
4762 
4763       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4764     }
4765   }
4766 
4767   if (CB->isInlineAsm()) {
4768     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4769     unsigned ArgNo = 0;
4770     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4771       if (!CI.hasArg())
4772         continue;
4773 
4774       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4775         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4776         if (!ElemTy)
4777           return error("Missing element type for inline asm upgrade");
4778         Attrs = Attrs.addParamAttribute(
4779             Context, ArgNo,
4780             Attribute::get(Context, Attribute::ElementType, ElemTy));
4781       }
4782 
4783       ArgNo++;
4784     }
4785   }
4786 
4787   switch (CB->getIntrinsicID()) {
4788   case Intrinsic::preserve_array_access_index:
4789   case Intrinsic::preserve_struct_access_index:
4790   case Intrinsic::aarch64_ldaxr:
4791   case Intrinsic::aarch64_ldxr:
4792   case Intrinsic::aarch64_stlxr:
4793   case Intrinsic::aarch64_stxr:
4794   case Intrinsic::arm_ldaex:
4795   case Intrinsic::arm_ldrex:
4796   case Intrinsic::arm_stlex:
4797   case Intrinsic::arm_strex: {
4798     unsigned ArgNo;
4799     switch (CB->getIntrinsicID()) {
4800     case Intrinsic::aarch64_stlxr:
4801     case Intrinsic::aarch64_stxr:
4802     case Intrinsic::arm_stlex:
4803     case Intrinsic::arm_strex:
4804       ArgNo = 1;
4805       break;
4806     default:
4807       ArgNo = 0;
4808       break;
4809     }
4810     if (!Attrs.getParamElementType(ArgNo)) {
4811       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4812       if (!ElTy)
4813         return error("Missing element type for elementtype upgrade");
4814       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4815       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4816     }
4817     break;
4818   }
4819   default:
4820     break;
4821   }
4822 
4823   CB->setAttributes(Attrs);
4824   return Error::success();
4825 }
4826 
4827 /// Lazily parse the specified function body block.
4828 Error BitcodeReader::parseFunctionBody(Function *F) {
4829   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4830     return Err;
4831 
4832   // Unexpected unresolved metadata when parsing function.
4833   if (MDLoader->hasFwdRefs())
4834     return error("Invalid function metadata: incoming forward references");
4835 
4836   InstructionList.clear();
4837   unsigned ModuleValueListSize = ValueList.size();
4838   unsigned ModuleMDLoaderSize = MDLoader->size();
4839 
4840   // Add all the function arguments to the value table.
4841   unsigned ArgNo = 0;
4842   unsigned FTyID = FunctionTypeIDs[F];
4843   for (Argument &I : F->args()) {
4844     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4845     assert(I.getType() == getTypeByID(ArgTyID) &&
4846            "Incorrect fully specified type for Function Argument");
4847     ValueList.push_back(&I, ArgTyID);
4848     ++ArgNo;
4849   }
4850   unsigned NextValueNo = ValueList.size();
4851   BasicBlock *CurBB = nullptr;
4852   unsigned CurBBNo = 0;
4853   // Block into which constant expressions from phi nodes are materialized.
4854   BasicBlock *PhiConstExprBB = nullptr;
4855   // Edge blocks for phi nodes into which constant expressions have been
4856   // expanded.
4857   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4858     ConstExprEdgeBBs;
4859 
4860   DebugLoc LastLoc;
4861   auto getLastInstruction = [&]() -> Instruction * {
4862     if (CurBB && !CurBB->empty())
4863       return &CurBB->back();
4864     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4865              !FunctionBBs[CurBBNo - 1]->empty())
4866       return &FunctionBBs[CurBBNo - 1]->back();
4867     return nullptr;
4868   };
4869 
4870   std::vector<OperandBundleDef> OperandBundles;
4871 
4872   // Read all the records.
4873   SmallVector<uint64_t, 64> Record;
4874 
4875   while (true) {
4876     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4877     if (!MaybeEntry)
4878       return MaybeEntry.takeError();
4879     llvm::BitstreamEntry Entry = MaybeEntry.get();
4880 
4881     switch (Entry.Kind) {
4882     case BitstreamEntry::Error:
4883       return error("Malformed block");
4884     case BitstreamEntry::EndBlock:
4885       goto OutOfRecordLoop;
4886 
4887     case BitstreamEntry::SubBlock:
4888       switch (Entry.ID) {
4889       default:  // Skip unknown content.
4890         if (Error Err = Stream.SkipBlock())
4891           return Err;
4892         break;
4893       case bitc::CONSTANTS_BLOCK_ID:
4894         if (Error Err = parseConstants())
4895           return Err;
4896         NextValueNo = ValueList.size();
4897         break;
4898       case bitc::VALUE_SYMTAB_BLOCK_ID:
4899         if (Error Err = parseValueSymbolTable())
4900           return Err;
4901         break;
4902       case bitc::METADATA_ATTACHMENT_ID:
4903         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4904           return Err;
4905         break;
4906       case bitc::METADATA_BLOCK_ID:
4907         assert(DeferredMetadataInfo.empty() &&
4908                "Must read all module-level metadata before function-level");
4909         if (Error Err = MDLoader->parseFunctionMetadata())
4910           return Err;
4911         break;
4912       case bitc::USELIST_BLOCK_ID:
4913         if (Error Err = parseUseLists())
4914           return Err;
4915         break;
4916       }
4917       continue;
4918 
4919     case BitstreamEntry::Record:
4920       // The interesting case.
4921       break;
4922     }
4923 
4924     // Read a record.
4925     Record.clear();
4926     Instruction *I = nullptr;
4927     unsigned ResTypeID = InvalidTypeID;
4928     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4929     if (!MaybeBitCode)
4930       return MaybeBitCode.takeError();
4931     switch (unsigned BitCode = MaybeBitCode.get()) {
4932     default: // Default behavior: reject
4933       return error("Invalid value");
4934     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4935       if (Record.empty() || Record[0] == 0)
4936         return error("Invalid record");
4937       // Create all the basic blocks for the function.
4938       FunctionBBs.resize(Record[0]);
4939 
4940       // See if anything took the address of blocks in this function.
4941       auto BBFRI = BasicBlockFwdRefs.find(F);
4942       if (BBFRI == BasicBlockFwdRefs.end()) {
4943         for (BasicBlock *&BB : FunctionBBs)
4944           BB = BasicBlock::Create(Context, "", F);
4945       } else {
4946         auto &BBRefs = BBFRI->second;
4947         // Check for invalid basic block references.
4948         if (BBRefs.size() > FunctionBBs.size())
4949           return error("Invalid ID");
4950         assert(!BBRefs.empty() && "Unexpected empty array");
4951         assert(!BBRefs.front() && "Invalid reference to entry block");
4952         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4953              ++I)
4954           if (I < RE && BBRefs[I]) {
4955             BBRefs[I]->insertInto(F);
4956             FunctionBBs[I] = BBRefs[I];
4957           } else {
4958             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4959           }
4960 
4961         // Erase from the table.
4962         BasicBlockFwdRefs.erase(BBFRI);
4963       }
4964 
4965       CurBB = FunctionBBs[0];
4966       continue;
4967     }
4968 
4969     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4970       // The record should not be emitted if it's an empty list.
4971       if (Record.empty())
4972         return error("Invalid record");
4973       // When we have the RARE case of a BlockAddress Constant that is not
4974       // scoped to the Function it refers to, we need to conservatively
4975       // materialize the referred to Function, regardless of whether or not
4976       // that Function will ultimately be linked, otherwise users of
4977       // BitcodeReader might start splicing out Function bodies such that we
4978       // might no longer be able to materialize the BlockAddress since the
4979       // BasicBlock (and entire body of the Function) the BlockAddress refers
4980       // to may have been moved. In the case that the user of BitcodeReader
4981       // decides ultimately not to link the Function body, materializing here
4982       // could be considered wasteful, but it's better than a deserialization
4983       // failure as described. This keeps BitcodeReader unaware of complex
4984       // linkage policy decisions such as those use by LTO, leaving those
4985       // decisions "one layer up."
4986       for (uint64_t ValID : Record)
4987         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4988           BackwardRefFunctions.push_back(F);
4989         else
4990           return error("Invalid record");
4991 
4992       continue;
4993 
4994     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4995       // This record indicates that the last instruction is at the same
4996       // location as the previous instruction with a location.
4997       I = getLastInstruction();
4998 
4999       if (!I)
5000         return error("Invalid record");
5001       I->setDebugLoc(LastLoc);
5002       I = nullptr;
5003       continue;
5004 
5005     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
5006       I = getLastInstruction();
5007       if (!I || Record.size() < 4)
5008         return error("Invalid record");
5009 
5010       unsigned Line = Record[0], Col = Record[1];
5011       unsigned ScopeID = Record[2], IAID = Record[3];
5012       bool isImplicitCode = Record.size() == 5 && Record[4];
5013 
5014       MDNode *Scope = nullptr, *IA = nullptr;
5015       if (ScopeID) {
5016         Scope = dyn_cast_or_null<MDNode>(
5017             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
5018         if (!Scope)
5019           return error("Invalid record");
5020       }
5021       if (IAID) {
5022         IA = dyn_cast_or_null<MDNode>(
5023             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
5024         if (!IA)
5025           return error("Invalid record");
5026       }
5027       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
5028                                 isImplicitCode);
5029       I->setDebugLoc(LastLoc);
5030       I = nullptr;
5031       continue;
5032     }
5033     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
5034       unsigned OpNum = 0;
5035       Value *LHS;
5036       unsigned TypeID;
5037       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5038           OpNum+1 > Record.size())
5039         return error("Invalid record");
5040 
5041       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
5042       if (Opc == -1)
5043         return error("Invalid record");
5044       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
5045       ResTypeID = TypeID;
5046       InstructionList.push_back(I);
5047       if (OpNum < Record.size()) {
5048         if (isa<FPMathOperator>(I)) {
5049           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5050           if (FMF.any())
5051             I->setFastMathFlags(FMF);
5052         }
5053       }
5054       break;
5055     }
5056     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
5057       unsigned OpNum = 0;
5058       Value *LHS, *RHS;
5059       unsigned TypeID;
5060       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5061           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
5062                    CurBB) ||
5063           OpNum+1 > Record.size())
5064         return error("Invalid record");
5065 
5066       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
5067       if (Opc == -1)
5068         return error("Invalid record");
5069       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5070       ResTypeID = TypeID;
5071       InstructionList.push_back(I);
5072       if (OpNum < Record.size()) {
5073         if (Opc == Instruction::Add ||
5074             Opc == Instruction::Sub ||
5075             Opc == Instruction::Mul ||
5076             Opc == Instruction::Shl) {
5077           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
5078             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
5079           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
5080             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
5081         } else if (Opc == Instruction::SDiv ||
5082                    Opc == Instruction::UDiv ||
5083                    Opc == Instruction::LShr ||
5084                    Opc == Instruction::AShr) {
5085           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5086             cast<BinaryOperator>(I)->setIsExact(true);
5087         } else if (Opc == Instruction::Or) {
5088           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5089             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
5090         } else if (isa<FPMathOperator>(I)) {
5091           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5092           if (FMF.any())
5093             I->setFastMathFlags(FMF);
5094         }
5095       }
5096       break;
5097     }
5098     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
5099       unsigned OpNum = 0;
5100       Value *Op;
5101       unsigned OpTypeID;
5102       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5103           OpNum + 1 > Record.size())
5104         return error("Invalid record");
5105 
5106       ResTypeID = Record[OpNum++];
5107       Type *ResTy = getTypeByID(ResTypeID);
5108       int Opc = getDecodedCastOpcode(Record[OpNum++]);
5109 
5110       if (Opc == -1 || !ResTy)
5111         return error("Invalid record");
5112       Instruction *Temp = nullptr;
5113       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
5114         if (Temp) {
5115           InstructionList.push_back(Temp);
5116           assert(CurBB && "No current BB?");
5117           Temp->insertInto(CurBB, CurBB->end());
5118         }
5119       } else {
5120         auto CastOp = (Instruction::CastOps)Opc;
5121         if (!CastInst::castIsValid(CastOp, Op, ResTy))
5122           return error("Invalid cast");
5123         I = CastInst::Create(CastOp, Op, ResTy);
5124       }
5125 
5126       if (OpNum < Record.size()) {
5127         if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5128           if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5129             cast<PossiblyNonNegInst>(I)->setNonNeg(true);
5130         } else if (Opc == Instruction::Trunc) {
5131           if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5132             cast<TruncInst>(I)->setHasNoUnsignedWrap(true);
5133           if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5134             cast<TruncInst>(I)->setHasNoSignedWrap(true);
5135         }
5136       }
5137 
5138       InstructionList.push_back(I);
5139       break;
5140     }
5141     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5142     case bitc::FUNC_CODE_INST_GEP_OLD:
5143     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5144       unsigned OpNum = 0;
5145 
5146       unsigned TyID;
5147       Type *Ty;
5148       GEPNoWrapFlags NW;
5149 
5150       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5151         NW = toGEPNoWrapFlags(Record[OpNum++]);
5152         TyID = Record[OpNum++];
5153         Ty = getTypeByID(TyID);
5154       } else {
5155         if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD)
5156           NW = GEPNoWrapFlags::inBounds();
5157         TyID = InvalidTypeID;
5158         Ty = nullptr;
5159       }
5160 
5161       Value *BasePtr;
5162       unsigned BasePtrTypeID;
5163       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5164                            CurBB))
5165         return error("Invalid record");
5166 
5167       if (!Ty) {
5168         TyID = getContainedTypeID(BasePtrTypeID);
5169         if (BasePtr->getType()->isVectorTy())
5170           TyID = getContainedTypeID(TyID);
5171         Ty = getTypeByID(TyID);
5172       }
5173 
5174       SmallVector<Value*, 16> GEPIdx;
5175       while (OpNum != Record.size()) {
5176         Value *Op;
5177         unsigned OpTypeID;
5178         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5179           return error("Invalid record");
5180         GEPIdx.push_back(Op);
5181       }
5182 
5183       auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5184       I = GEP;
5185 
5186       ResTypeID = TyID;
5187       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5188         auto GTI = std::next(gep_type_begin(I));
5189         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5190           unsigned SubType = 0;
5191           if (GTI.isStruct()) {
5192             ConstantInt *IdxC =
5193                 Idx->getType()->isVectorTy()
5194                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5195                     : cast<ConstantInt>(Idx);
5196             SubType = IdxC->getZExtValue();
5197           }
5198           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5199           ++GTI;
5200         }
5201       }
5202 
5203       // At this point ResTypeID is the result element type. We need a pointer
5204       // or vector of pointer to it.
5205       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5206       if (I->getType()->isVectorTy())
5207         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5208 
5209       InstructionList.push_back(I);
5210       GEP->setNoWrapFlags(NW);
5211       break;
5212     }
5213 
5214     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5215                                        // EXTRACTVAL: [opty, opval, n x indices]
5216       unsigned OpNum = 0;
5217       Value *Agg;
5218       unsigned AggTypeID;
5219       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5220         return error("Invalid record");
5221       Type *Ty = Agg->getType();
5222 
5223       unsigned RecSize = Record.size();
5224       if (OpNum == RecSize)
5225         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5226 
5227       SmallVector<unsigned, 4> EXTRACTVALIdx;
5228       ResTypeID = AggTypeID;
5229       for (; OpNum != RecSize; ++OpNum) {
5230         bool IsArray = Ty->isArrayTy();
5231         bool IsStruct = Ty->isStructTy();
5232         uint64_t Index = Record[OpNum];
5233 
5234         if (!IsStruct && !IsArray)
5235           return error("EXTRACTVAL: Invalid type");
5236         if ((unsigned)Index != Index)
5237           return error("Invalid value");
5238         if (IsStruct && Index >= Ty->getStructNumElements())
5239           return error("EXTRACTVAL: Invalid struct index");
5240         if (IsArray && Index >= Ty->getArrayNumElements())
5241           return error("EXTRACTVAL: Invalid array index");
5242         EXTRACTVALIdx.push_back((unsigned)Index);
5243 
5244         if (IsStruct) {
5245           Ty = Ty->getStructElementType(Index);
5246           ResTypeID = getContainedTypeID(ResTypeID, Index);
5247         } else {
5248           Ty = Ty->getArrayElementType();
5249           ResTypeID = getContainedTypeID(ResTypeID);
5250         }
5251       }
5252 
5253       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5254       InstructionList.push_back(I);
5255       break;
5256     }
5257 
5258     case bitc::FUNC_CODE_INST_INSERTVAL: {
5259                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5260       unsigned OpNum = 0;
5261       Value *Agg;
5262       unsigned AggTypeID;
5263       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5264         return error("Invalid record");
5265       Value *Val;
5266       unsigned ValTypeID;
5267       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5268         return error("Invalid record");
5269 
5270       unsigned RecSize = Record.size();
5271       if (OpNum == RecSize)
5272         return error("INSERTVAL: Invalid instruction with 0 indices");
5273 
5274       SmallVector<unsigned, 4> INSERTVALIdx;
5275       Type *CurTy = Agg->getType();
5276       for (; OpNum != RecSize; ++OpNum) {
5277         bool IsArray = CurTy->isArrayTy();
5278         bool IsStruct = CurTy->isStructTy();
5279         uint64_t Index = Record[OpNum];
5280 
5281         if (!IsStruct && !IsArray)
5282           return error("INSERTVAL: Invalid type");
5283         if ((unsigned)Index != Index)
5284           return error("Invalid value");
5285         if (IsStruct && Index >= CurTy->getStructNumElements())
5286           return error("INSERTVAL: Invalid struct index");
5287         if (IsArray && Index >= CurTy->getArrayNumElements())
5288           return error("INSERTVAL: Invalid array index");
5289 
5290         INSERTVALIdx.push_back((unsigned)Index);
5291         if (IsStruct)
5292           CurTy = CurTy->getStructElementType(Index);
5293         else
5294           CurTy = CurTy->getArrayElementType();
5295       }
5296 
5297       if (CurTy != Val->getType())
5298         return error("Inserted value type doesn't match aggregate type");
5299 
5300       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5301       ResTypeID = AggTypeID;
5302       InstructionList.push_back(I);
5303       break;
5304     }
5305 
5306     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5307       // obsolete form of select
5308       // handles select i1 ... in old bitcode
5309       unsigned OpNum = 0;
5310       Value *TrueVal, *FalseVal, *Cond;
5311       unsigned TypeID;
5312       Type *CondType = Type::getInt1Ty(Context);
5313       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5314                            CurBB) ||
5315           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5316                    FalseVal, CurBB) ||
5317           popValue(Record, OpNum, NextValueNo, CondType,
5318                    getVirtualTypeID(CondType), Cond, CurBB))
5319         return error("Invalid record");
5320 
5321       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5322       ResTypeID = TypeID;
5323       InstructionList.push_back(I);
5324       break;
5325     }
5326 
5327     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5328       // new form of select
5329       // handles select i1 or select [N x i1]
5330       unsigned OpNum = 0;
5331       Value *TrueVal, *FalseVal, *Cond;
5332       unsigned ValTypeID, CondTypeID;
5333       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5334                            CurBB) ||
5335           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5336                    FalseVal, CurBB) ||
5337           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5338         return error("Invalid record");
5339 
5340       // select condition can be either i1 or [N x i1]
5341       if (VectorType* vector_type =
5342           dyn_cast<VectorType>(Cond->getType())) {
5343         // expect <n x i1>
5344         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5345           return error("Invalid type for value");
5346       } else {
5347         // expect i1
5348         if (Cond->getType() != Type::getInt1Ty(Context))
5349           return error("Invalid type for value");
5350       }
5351 
5352       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5353       ResTypeID = ValTypeID;
5354       InstructionList.push_back(I);
5355       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5356         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5357         if (FMF.any())
5358           I->setFastMathFlags(FMF);
5359       }
5360       break;
5361     }
5362 
5363     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5364       unsigned OpNum = 0;
5365       Value *Vec, *Idx;
5366       unsigned VecTypeID, IdxTypeID;
5367       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5368           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5369         return error("Invalid record");
5370       if (!Vec->getType()->isVectorTy())
5371         return error("Invalid type for value");
5372       I = ExtractElementInst::Create(Vec, Idx);
5373       ResTypeID = getContainedTypeID(VecTypeID);
5374       InstructionList.push_back(I);
5375       break;
5376     }
5377 
5378     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5379       unsigned OpNum = 0;
5380       Value *Vec, *Elt, *Idx;
5381       unsigned VecTypeID, IdxTypeID;
5382       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5383         return error("Invalid record");
5384       if (!Vec->getType()->isVectorTy())
5385         return error("Invalid type for value");
5386       if (popValue(Record, OpNum, NextValueNo,
5387                    cast<VectorType>(Vec->getType())->getElementType(),
5388                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5389           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5390         return error("Invalid record");
5391       I = InsertElementInst::Create(Vec, Elt, Idx);
5392       ResTypeID = VecTypeID;
5393       InstructionList.push_back(I);
5394       break;
5395     }
5396 
5397     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5398       unsigned OpNum = 0;
5399       Value *Vec1, *Vec2, *Mask;
5400       unsigned Vec1TypeID;
5401       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5402                            CurBB) ||
5403           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5404                    Vec2, CurBB))
5405         return error("Invalid record");
5406 
5407       unsigned MaskTypeID;
5408       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5409         return error("Invalid record");
5410       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5411         return error("Invalid type for value");
5412 
5413       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5414       ResTypeID =
5415           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5416       InstructionList.push_back(I);
5417       break;
5418     }
5419 
5420     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5421       // Old form of ICmp/FCmp returning bool
5422       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5423       // both legal on vectors but had different behaviour.
5424     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5425       // FCmp/ICmp returning bool or vector of bool
5426 
5427       unsigned OpNum = 0;
5428       Value *LHS, *RHS;
5429       unsigned LHSTypeID;
5430       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5431           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5432                    CurBB))
5433         return error("Invalid record");
5434 
5435       if (OpNum >= Record.size())
5436         return error(
5437             "Invalid record: operand number exceeded available operands");
5438 
5439       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5440       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5441       FastMathFlags FMF;
5442       if (IsFP && Record.size() > OpNum+1)
5443         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5444 
5445       if (OpNum+1 != Record.size())
5446         return error("Invalid record");
5447 
5448       if (IsFP) {
5449         if (!CmpInst::isFPPredicate(PredVal))
5450           return error("Invalid fcmp predicate");
5451         I = new FCmpInst(PredVal, LHS, RHS);
5452       } else {
5453         if (!CmpInst::isIntPredicate(PredVal))
5454           return error("Invalid icmp predicate");
5455         I = new ICmpInst(PredVal, LHS, RHS);
5456       }
5457 
5458       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5459       if (LHS->getType()->isVectorTy())
5460         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5461 
5462       if (FMF.any())
5463         I->setFastMathFlags(FMF);
5464       InstructionList.push_back(I);
5465       break;
5466     }
5467 
5468     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5469       {
5470         unsigned Size = Record.size();
5471         if (Size == 0) {
5472           I = ReturnInst::Create(Context);
5473           InstructionList.push_back(I);
5474           break;
5475         }
5476 
5477         unsigned OpNum = 0;
5478         Value *Op = nullptr;
5479         unsigned OpTypeID;
5480         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5481           return error("Invalid record");
5482         if (OpNum != Record.size())
5483           return error("Invalid record");
5484 
5485         I = ReturnInst::Create(Context, Op);
5486         InstructionList.push_back(I);
5487         break;
5488       }
5489     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5490       if (Record.size() != 1 && Record.size() != 3)
5491         return error("Invalid record");
5492       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5493       if (!TrueDest)
5494         return error("Invalid record");
5495 
5496       if (Record.size() == 1) {
5497         I = BranchInst::Create(TrueDest);
5498         InstructionList.push_back(I);
5499       }
5500       else {
5501         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5502         Type *CondType = Type::getInt1Ty(Context);
5503         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5504                                getVirtualTypeID(CondType), CurBB);
5505         if (!FalseDest || !Cond)
5506           return error("Invalid record");
5507         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5508         InstructionList.push_back(I);
5509       }
5510       break;
5511     }
5512     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5513       if (Record.size() != 1 && Record.size() != 2)
5514         return error("Invalid record");
5515       unsigned Idx = 0;
5516       Type *TokenTy = Type::getTokenTy(Context);
5517       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5518                                    getVirtualTypeID(TokenTy), CurBB);
5519       if (!CleanupPad)
5520         return error("Invalid record");
5521       BasicBlock *UnwindDest = nullptr;
5522       if (Record.size() == 2) {
5523         UnwindDest = getBasicBlock(Record[Idx++]);
5524         if (!UnwindDest)
5525           return error("Invalid record");
5526       }
5527 
5528       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5529       InstructionList.push_back(I);
5530       break;
5531     }
5532     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5533       if (Record.size() != 2)
5534         return error("Invalid record");
5535       unsigned Idx = 0;
5536       Type *TokenTy = Type::getTokenTy(Context);
5537       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5538                                  getVirtualTypeID(TokenTy), CurBB);
5539       if (!CatchPad)
5540         return error("Invalid record");
5541       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5542       if (!BB)
5543         return error("Invalid record");
5544 
5545       I = CatchReturnInst::Create(CatchPad, BB);
5546       InstructionList.push_back(I);
5547       break;
5548     }
5549     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5550       // We must have, at minimum, the outer scope and the number of arguments.
5551       if (Record.size() < 2)
5552         return error("Invalid record");
5553 
5554       unsigned Idx = 0;
5555 
5556       Type *TokenTy = Type::getTokenTy(Context);
5557       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5558                                   getVirtualTypeID(TokenTy), CurBB);
5559       if (!ParentPad)
5560         return error("Invalid record");
5561 
5562       unsigned NumHandlers = Record[Idx++];
5563 
5564       SmallVector<BasicBlock *, 2> Handlers;
5565       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5566         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5567         if (!BB)
5568           return error("Invalid record");
5569         Handlers.push_back(BB);
5570       }
5571 
5572       BasicBlock *UnwindDest = nullptr;
5573       if (Idx + 1 == Record.size()) {
5574         UnwindDest = getBasicBlock(Record[Idx++]);
5575         if (!UnwindDest)
5576           return error("Invalid record");
5577       }
5578 
5579       if (Record.size() != Idx)
5580         return error("Invalid record");
5581 
5582       auto *CatchSwitch =
5583           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5584       for (BasicBlock *Handler : Handlers)
5585         CatchSwitch->addHandler(Handler);
5586       I = CatchSwitch;
5587       ResTypeID = getVirtualTypeID(I->getType());
5588       InstructionList.push_back(I);
5589       break;
5590     }
5591     case bitc::FUNC_CODE_INST_CATCHPAD:
5592     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5593       // We must have, at minimum, the outer scope and the number of arguments.
5594       if (Record.size() < 2)
5595         return error("Invalid record");
5596 
5597       unsigned Idx = 0;
5598 
5599       Type *TokenTy = Type::getTokenTy(Context);
5600       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5601                                   getVirtualTypeID(TokenTy), CurBB);
5602       if (!ParentPad)
5603         return error("Invald record");
5604 
5605       unsigned NumArgOperands = Record[Idx++];
5606 
5607       SmallVector<Value *, 2> Args;
5608       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5609         Value *Val;
5610         unsigned ValTypeID;
5611         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5612           return error("Invalid record");
5613         Args.push_back(Val);
5614       }
5615 
5616       if (Record.size() != Idx)
5617         return error("Invalid record");
5618 
5619       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5620         I = CleanupPadInst::Create(ParentPad, Args);
5621       else
5622         I = CatchPadInst::Create(ParentPad, Args);
5623       ResTypeID = getVirtualTypeID(I->getType());
5624       InstructionList.push_back(I);
5625       break;
5626     }
5627     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5628       // Check magic
5629       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5630         // "New" SwitchInst format with case ranges. The changes to write this
5631         // format were reverted but we still recognize bitcode that uses it.
5632         // Hopefully someday we will have support for case ranges and can use
5633         // this format again.
5634 
5635         unsigned OpTyID = Record[1];
5636         Type *OpTy = getTypeByID(OpTyID);
5637         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5638 
5639         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5640         BasicBlock *Default = getBasicBlock(Record[3]);
5641         if (!OpTy || !Cond || !Default)
5642           return error("Invalid record");
5643 
5644         unsigned NumCases = Record[4];
5645 
5646         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5647         InstructionList.push_back(SI);
5648 
5649         unsigned CurIdx = 5;
5650         for (unsigned i = 0; i != NumCases; ++i) {
5651           SmallVector<ConstantInt*, 1> CaseVals;
5652           unsigned NumItems = Record[CurIdx++];
5653           for (unsigned ci = 0; ci != NumItems; ++ci) {
5654             bool isSingleNumber = Record[CurIdx++];
5655 
5656             APInt Low;
5657             unsigned ActiveWords = 1;
5658             if (ValueBitWidth > 64)
5659               ActiveWords = Record[CurIdx++];
5660             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5661                                 ValueBitWidth);
5662             CurIdx += ActiveWords;
5663 
5664             if (!isSingleNumber) {
5665               ActiveWords = 1;
5666               if (ValueBitWidth > 64)
5667                 ActiveWords = Record[CurIdx++];
5668               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5669                                          ValueBitWidth);
5670               CurIdx += ActiveWords;
5671 
5672               // FIXME: It is not clear whether values in the range should be
5673               // compared as signed or unsigned values. The partially
5674               // implemented changes that used this format in the past used
5675               // unsigned comparisons.
5676               for ( ; Low.ule(High); ++Low)
5677                 CaseVals.push_back(ConstantInt::get(Context, Low));
5678             } else
5679               CaseVals.push_back(ConstantInt::get(Context, Low));
5680           }
5681           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5682           for (ConstantInt *Cst : CaseVals)
5683             SI->addCase(Cst, DestBB);
5684         }
5685         I = SI;
5686         break;
5687       }
5688 
5689       // Old SwitchInst format without case ranges.
5690 
5691       if (Record.size() < 3 || (Record.size() & 1) == 0)
5692         return error("Invalid record");
5693       unsigned OpTyID = Record[0];
5694       Type *OpTy = getTypeByID(OpTyID);
5695       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5696       BasicBlock *Default = getBasicBlock(Record[2]);
5697       if (!OpTy || !Cond || !Default)
5698         return error("Invalid record");
5699       unsigned NumCases = (Record.size()-3)/2;
5700       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5701       InstructionList.push_back(SI);
5702       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5703         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5704             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5705         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5706         if (!CaseVal || !DestBB) {
5707           delete SI;
5708           return error("Invalid record");
5709         }
5710         SI->addCase(CaseVal, DestBB);
5711       }
5712       I = SI;
5713       break;
5714     }
5715     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5716       if (Record.size() < 2)
5717         return error("Invalid record");
5718       unsigned OpTyID = Record[0];
5719       Type *OpTy = getTypeByID(OpTyID);
5720       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5721       if (!OpTy || !Address)
5722         return error("Invalid record");
5723       unsigned NumDests = Record.size()-2;
5724       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5725       InstructionList.push_back(IBI);
5726       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5727         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5728           IBI->addDestination(DestBB);
5729         } else {
5730           delete IBI;
5731           return error("Invalid record");
5732         }
5733       }
5734       I = IBI;
5735       break;
5736     }
5737 
5738     case bitc::FUNC_CODE_INST_INVOKE: {
5739       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5740       if (Record.size() < 4)
5741         return error("Invalid record");
5742       unsigned OpNum = 0;
5743       AttributeList PAL = getAttributes(Record[OpNum++]);
5744       unsigned CCInfo = Record[OpNum++];
5745       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5746       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5747 
5748       unsigned FTyID = InvalidTypeID;
5749       FunctionType *FTy = nullptr;
5750       if ((CCInfo >> 13) & 1) {
5751         FTyID = Record[OpNum++];
5752         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5753         if (!FTy)
5754           return error("Explicit invoke type is not a function type");
5755       }
5756 
5757       Value *Callee;
5758       unsigned CalleeTypeID;
5759       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5760                            CurBB))
5761         return error("Invalid record");
5762 
5763       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5764       if (!CalleeTy)
5765         return error("Callee is not a pointer");
5766       if (!FTy) {
5767         FTyID = getContainedTypeID(CalleeTypeID);
5768         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5769         if (!FTy)
5770           return error("Callee is not of pointer to function type");
5771       }
5772       if (Record.size() < FTy->getNumParams() + OpNum)
5773         return error("Insufficient operands to call");
5774 
5775       SmallVector<Value*, 16> Ops;
5776       SmallVector<unsigned, 16> ArgTyIDs;
5777       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5778         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5779         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5780                                ArgTyID, CurBB));
5781         ArgTyIDs.push_back(ArgTyID);
5782         if (!Ops.back())
5783           return error("Invalid record");
5784       }
5785 
5786       if (!FTy->isVarArg()) {
5787         if (Record.size() != OpNum)
5788           return error("Invalid record");
5789       } else {
5790         // Read type/value pairs for varargs params.
5791         while (OpNum != Record.size()) {
5792           Value *Op;
5793           unsigned OpTypeID;
5794           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5795             return error("Invalid record");
5796           Ops.push_back(Op);
5797           ArgTyIDs.push_back(OpTypeID);
5798         }
5799       }
5800 
5801       // Upgrade the bundles if needed.
5802       if (!OperandBundles.empty())
5803         UpgradeOperandBundles(OperandBundles);
5804 
5805       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5806                              OperandBundles);
5807       ResTypeID = getContainedTypeID(FTyID);
5808       OperandBundles.clear();
5809       InstructionList.push_back(I);
5810       cast<InvokeInst>(I)->setCallingConv(
5811           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5812       cast<InvokeInst>(I)->setAttributes(PAL);
5813       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5814         I->deleteValue();
5815         return Err;
5816       }
5817 
5818       break;
5819     }
5820     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5821       unsigned Idx = 0;
5822       Value *Val = nullptr;
5823       unsigned ValTypeID;
5824       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5825         return error("Invalid record");
5826       I = ResumeInst::Create(Val);
5827       InstructionList.push_back(I);
5828       break;
5829     }
5830     case bitc::FUNC_CODE_INST_CALLBR: {
5831       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5832       unsigned OpNum = 0;
5833       AttributeList PAL = getAttributes(Record[OpNum++]);
5834       unsigned CCInfo = Record[OpNum++];
5835 
5836       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5837       unsigned NumIndirectDests = Record[OpNum++];
5838       SmallVector<BasicBlock *, 16> IndirectDests;
5839       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5840         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5841 
5842       unsigned FTyID = InvalidTypeID;
5843       FunctionType *FTy = nullptr;
5844       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5845         FTyID = Record[OpNum++];
5846         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5847         if (!FTy)
5848           return error("Explicit call type is not a function type");
5849       }
5850 
5851       Value *Callee;
5852       unsigned CalleeTypeID;
5853       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5854                            CurBB))
5855         return error("Invalid record");
5856 
5857       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5858       if (!OpTy)
5859         return error("Callee is not a pointer type");
5860       if (!FTy) {
5861         FTyID = getContainedTypeID(CalleeTypeID);
5862         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5863         if (!FTy)
5864           return error("Callee is not of pointer to function type");
5865       }
5866       if (Record.size() < FTy->getNumParams() + OpNum)
5867         return error("Insufficient operands to call");
5868 
5869       SmallVector<Value*, 16> Args;
5870       SmallVector<unsigned, 16> ArgTyIDs;
5871       // Read the fixed params.
5872       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5873         Value *Arg;
5874         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5875         if (FTy->getParamType(i)->isLabelTy())
5876           Arg = getBasicBlock(Record[OpNum]);
5877         else
5878           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5879                          ArgTyID, CurBB);
5880         if (!Arg)
5881           return error("Invalid record");
5882         Args.push_back(Arg);
5883         ArgTyIDs.push_back(ArgTyID);
5884       }
5885 
5886       // Read type/value pairs for varargs params.
5887       if (!FTy->isVarArg()) {
5888         if (OpNum != Record.size())
5889           return error("Invalid record");
5890       } else {
5891         while (OpNum != Record.size()) {
5892           Value *Op;
5893           unsigned OpTypeID;
5894           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5895             return error("Invalid record");
5896           Args.push_back(Op);
5897           ArgTyIDs.push_back(OpTypeID);
5898         }
5899       }
5900 
5901       // Upgrade the bundles if needed.
5902       if (!OperandBundles.empty())
5903         UpgradeOperandBundles(OperandBundles);
5904 
5905       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5906         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5907         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5908           return CI.Type == InlineAsm::isLabel;
5909         };
5910         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5911           // Upgrade explicit blockaddress arguments to label constraints.
5912           // Verify that the last arguments are blockaddress arguments that
5913           // match the indirect destinations. Clang always generates callbr
5914           // in this form. We could support reordering with more effort.
5915           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5916           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5917             unsigned LabelNo = ArgNo - FirstBlockArg;
5918             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5919             if (!BA || BA->getFunction() != F ||
5920                 LabelNo > IndirectDests.size() ||
5921                 BA->getBasicBlock() != IndirectDests[LabelNo])
5922               return error("callbr argument does not match indirect dest");
5923           }
5924 
5925           // Remove blockaddress arguments.
5926           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5927           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5928 
5929           // Recreate the function type with less arguments.
5930           SmallVector<Type *> ArgTys;
5931           for (Value *Arg : Args)
5932             ArgTys.push_back(Arg->getType());
5933           FTy =
5934               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5935 
5936           // Update constraint string to use label constraints.
5937           std::string Constraints = IA->getConstraintString();
5938           unsigned ArgNo = 0;
5939           size_t Pos = 0;
5940           for (const auto &CI : ConstraintInfo) {
5941             if (CI.hasArg()) {
5942               if (ArgNo >= FirstBlockArg)
5943                 Constraints.insert(Pos, "!");
5944               ++ArgNo;
5945             }
5946 
5947             // Go to next constraint in string.
5948             Pos = Constraints.find(',', Pos);
5949             if (Pos == std::string::npos)
5950               break;
5951             ++Pos;
5952           }
5953 
5954           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5955                                   IA->hasSideEffects(), IA->isAlignStack(),
5956                                   IA->getDialect(), IA->canThrow());
5957         }
5958       }
5959 
5960       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5961                              OperandBundles);
5962       ResTypeID = getContainedTypeID(FTyID);
5963       OperandBundles.clear();
5964       InstructionList.push_back(I);
5965       cast<CallBrInst>(I)->setCallingConv(
5966           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5967       cast<CallBrInst>(I)->setAttributes(PAL);
5968       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5969         I->deleteValue();
5970         return Err;
5971       }
5972       break;
5973     }
5974     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5975       I = new UnreachableInst(Context);
5976       InstructionList.push_back(I);
5977       break;
5978     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5979       if (Record.empty())
5980         return error("Invalid phi record");
5981       // The first record specifies the type.
5982       unsigned TyID = Record[0];
5983       Type *Ty = getTypeByID(TyID);
5984       if (!Ty)
5985         return error("Invalid phi record");
5986 
5987       // Phi arguments are pairs of records of [value, basic block].
5988       // There is an optional final record for fast-math-flags if this phi has a
5989       // floating-point type.
5990       size_t NumArgs = (Record.size() - 1) / 2;
5991       PHINode *PN = PHINode::Create(Ty, NumArgs);
5992       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5993         PN->deleteValue();
5994         return error("Invalid phi record");
5995       }
5996       InstructionList.push_back(PN);
5997 
5998       SmallDenseMap<BasicBlock *, Value *> Args;
5999       for (unsigned i = 0; i != NumArgs; i++) {
6000         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
6001         if (!BB) {
6002           PN->deleteValue();
6003           return error("Invalid phi BB");
6004         }
6005 
6006         // Phi nodes may contain the same predecessor multiple times, in which
6007         // case the incoming value must be identical. Directly reuse the already
6008         // seen value here, to avoid expanding a constant expression multiple
6009         // times.
6010         auto It = Args.find(BB);
6011         if (It != Args.end()) {
6012           PN->addIncoming(It->second, BB);
6013           continue;
6014         }
6015 
6016         // If there already is a block for this edge (from a different phi),
6017         // use it.
6018         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
6019         if (!EdgeBB) {
6020           // Otherwise, use a temporary block (that we will discard if it
6021           // turns out to be unnecessary).
6022           if (!PhiConstExprBB)
6023             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
6024           EdgeBB = PhiConstExprBB;
6025         }
6026 
6027         // With the new function encoding, it is possible that operands have
6028         // negative IDs (for forward references).  Use a signed VBR
6029         // representation to keep the encoding small.
6030         Value *V;
6031         if (UseRelativeIDs)
6032           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6033         else
6034           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6035         if (!V) {
6036           PN->deleteValue();
6037           PhiConstExprBB->eraseFromParent();
6038           return error("Invalid phi record");
6039         }
6040 
6041         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
6042           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
6043           PhiConstExprBB = nullptr;
6044         }
6045         PN->addIncoming(V, BB);
6046         Args.insert({BB, V});
6047       }
6048       I = PN;
6049       ResTypeID = TyID;
6050 
6051       // If there are an even number of records, the final record must be FMF.
6052       if (Record.size() % 2 == 0) {
6053         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
6054         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
6055         if (FMF.any())
6056           I->setFastMathFlags(FMF);
6057       }
6058 
6059       break;
6060     }
6061 
6062     case bitc::FUNC_CODE_INST_LANDINGPAD:
6063     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
6064       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
6065       unsigned Idx = 0;
6066       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
6067         if (Record.size() < 3)
6068           return error("Invalid record");
6069       } else {
6070         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
6071         if (Record.size() < 4)
6072           return error("Invalid record");
6073       }
6074       ResTypeID = Record[Idx++];
6075       Type *Ty = getTypeByID(ResTypeID);
6076       if (!Ty)
6077         return error("Invalid record");
6078       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
6079         Value *PersFn = nullptr;
6080         unsigned PersFnTypeID;
6081         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
6082                              nullptr))
6083           return error("Invalid record");
6084 
6085         if (!F->hasPersonalityFn())
6086           F->setPersonalityFn(cast<Constant>(PersFn));
6087         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
6088           return error("Personality function mismatch");
6089       }
6090 
6091       bool IsCleanup = !!Record[Idx++];
6092       unsigned NumClauses = Record[Idx++];
6093       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
6094       LP->setCleanup(IsCleanup);
6095       for (unsigned J = 0; J != NumClauses; ++J) {
6096         LandingPadInst::ClauseType CT =
6097           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6098         Value *Val;
6099         unsigned ValTypeID;
6100 
6101         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
6102                              nullptr)) {
6103           delete LP;
6104           return error("Invalid record");
6105         }
6106 
6107         assert((CT != LandingPadInst::Catch ||
6108                 !isa<ArrayType>(Val->getType())) &&
6109                "Catch clause has a invalid type!");
6110         assert((CT != LandingPadInst::Filter ||
6111                 isa<ArrayType>(Val->getType())) &&
6112                "Filter clause has invalid type!");
6113         LP->addClause(cast<Constant>(Val));
6114       }
6115 
6116       I = LP;
6117       InstructionList.push_back(I);
6118       break;
6119     }
6120 
6121     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6122       if (Record.size() != 4 && Record.size() != 5)
6123         return error("Invalid record");
6124       using APV = AllocaPackedValues;
6125       const uint64_t Rec = Record[3];
6126       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
6127       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
6128       unsigned TyID = Record[0];
6129       Type *Ty = getTypeByID(TyID);
6130       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
6131         TyID = getContainedTypeID(TyID);
6132         Ty = getTypeByID(TyID);
6133         if (!Ty)
6134           return error("Missing element type for old-style alloca");
6135       }
6136       unsigned OpTyID = Record[1];
6137       Type *OpTy = getTypeByID(OpTyID);
6138       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6139       MaybeAlign Align;
6140       uint64_t AlignExp =
6141           Bitfield::get<APV::AlignLower>(Rec) |
6142           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6143       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6144         return Err;
6145       }
6146       if (!Ty || !Size)
6147         return error("Invalid record");
6148 
6149       const DataLayout &DL = TheModule->getDataLayout();
6150       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6151 
6152       SmallPtrSet<Type *, 4> Visited;
6153       if (!Align && !Ty->isSized(&Visited))
6154         return error("alloca of unsized type");
6155       if (!Align)
6156         Align = DL.getPrefTypeAlign(Ty);
6157 
6158       if (!Size->getType()->isIntegerTy())
6159         return error("alloca element count must have integer type");
6160 
6161       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6162       AI->setUsedWithInAlloca(InAlloca);
6163       AI->setSwiftError(SwiftError);
6164       I = AI;
6165       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6166       InstructionList.push_back(I);
6167       break;
6168     }
6169     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6170       unsigned OpNum = 0;
6171       Value *Op;
6172       unsigned OpTypeID;
6173       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6174           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6175         return error("Invalid record");
6176 
6177       if (!isa<PointerType>(Op->getType()))
6178         return error("Load operand is not a pointer type");
6179 
6180       Type *Ty = nullptr;
6181       if (OpNum + 3 == Record.size()) {
6182         ResTypeID = Record[OpNum++];
6183         Ty = getTypeByID(ResTypeID);
6184       } else {
6185         ResTypeID = getContainedTypeID(OpTypeID);
6186         Ty = getTypeByID(ResTypeID);
6187       }
6188 
6189       if (!Ty)
6190         return error("Missing load type");
6191 
6192       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6193         return Err;
6194 
6195       MaybeAlign Align;
6196       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6197         return Err;
6198       SmallPtrSet<Type *, 4> Visited;
6199       if (!Align && !Ty->isSized(&Visited))
6200         return error("load of unsized type");
6201       if (!Align)
6202         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6203       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6204       InstructionList.push_back(I);
6205       break;
6206     }
6207     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6208        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6209       unsigned OpNum = 0;
6210       Value *Op;
6211       unsigned OpTypeID;
6212       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6213           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6214         return error("Invalid record");
6215 
6216       if (!isa<PointerType>(Op->getType()))
6217         return error("Load operand is not a pointer type");
6218 
6219       Type *Ty = nullptr;
6220       if (OpNum + 5 == Record.size()) {
6221         ResTypeID = Record[OpNum++];
6222         Ty = getTypeByID(ResTypeID);
6223       } else {
6224         ResTypeID = getContainedTypeID(OpTypeID);
6225         Ty = getTypeByID(ResTypeID);
6226       }
6227 
6228       if (!Ty)
6229         return error("Missing atomic load type");
6230 
6231       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6232         return Err;
6233 
6234       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6235       if (Ordering == AtomicOrdering::NotAtomic ||
6236           Ordering == AtomicOrdering::Release ||
6237           Ordering == AtomicOrdering::AcquireRelease)
6238         return error("Invalid record");
6239       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6240         return error("Invalid record");
6241       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6242 
6243       MaybeAlign Align;
6244       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6245         return Err;
6246       if (!Align)
6247         return error("Alignment missing from atomic load");
6248       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6249       InstructionList.push_back(I);
6250       break;
6251     }
6252     case bitc::FUNC_CODE_INST_STORE:
6253     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6254       unsigned OpNum = 0;
6255       Value *Val, *Ptr;
6256       unsigned PtrTypeID, ValTypeID;
6257       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6258         return error("Invalid record");
6259 
6260       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6261         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6262           return error("Invalid record");
6263       } else {
6264         ValTypeID = getContainedTypeID(PtrTypeID);
6265         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6266                      ValTypeID, Val, CurBB))
6267           return error("Invalid record");
6268       }
6269 
6270       if (OpNum + 2 != Record.size())
6271         return error("Invalid record");
6272 
6273       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6274         return Err;
6275       MaybeAlign Align;
6276       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6277         return Err;
6278       SmallPtrSet<Type *, 4> Visited;
6279       if (!Align && !Val->getType()->isSized(&Visited))
6280         return error("store of unsized type");
6281       if (!Align)
6282         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6283       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6284       InstructionList.push_back(I);
6285       break;
6286     }
6287     case bitc::FUNC_CODE_INST_STOREATOMIC:
6288     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6289       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6290       unsigned OpNum = 0;
6291       Value *Val, *Ptr;
6292       unsigned PtrTypeID, ValTypeID;
6293       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6294           !isa<PointerType>(Ptr->getType()))
6295         return error("Invalid record");
6296       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6297         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6298           return error("Invalid record");
6299       } else {
6300         ValTypeID = getContainedTypeID(PtrTypeID);
6301         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6302                      ValTypeID, Val, CurBB))
6303           return error("Invalid record");
6304       }
6305 
6306       if (OpNum + 4 != Record.size())
6307         return error("Invalid record");
6308 
6309       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6310         return Err;
6311       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6312       if (Ordering == AtomicOrdering::NotAtomic ||
6313           Ordering == AtomicOrdering::Acquire ||
6314           Ordering == AtomicOrdering::AcquireRelease)
6315         return error("Invalid record");
6316       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6317       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6318         return error("Invalid record");
6319 
6320       MaybeAlign Align;
6321       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6322         return Err;
6323       if (!Align)
6324         return error("Alignment missing from atomic store");
6325       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6326       InstructionList.push_back(I);
6327       break;
6328     }
6329     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6330       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6331       // failure_ordering?, weak?]
6332       const size_t NumRecords = Record.size();
6333       unsigned OpNum = 0;
6334       Value *Ptr = nullptr;
6335       unsigned PtrTypeID;
6336       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6337         return error("Invalid record");
6338 
6339       if (!isa<PointerType>(Ptr->getType()))
6340         return error("Cmpxchg operand is not a pointer type");
6341 
6342       Value *Cmp = nullptr;
6343       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6344       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6345                    CmpTypeID, Cmp, CurBB))
6346         return error("Invalid record");
6347 
6348       Value *New = nullptr;
6349       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6350                    New, CurBB) ||
6351           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6352         return error("Invalid record");
6353 
6354       const AtomicOrdering SuccessOrdering =
6355           getDecodedOrdering(Record[OpNum + 1]);
6356       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6357           SuccessOrdering == AtomicOrdering::Unordered)
6358         return error("Invalid record");
6359 
6360       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6361 
6362       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6363         return Err;
6364 
6365       const AtomicOrdering FailureOrdering =
6366           NumRecords < 7
6367               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6368               : getDecodedOrdering(Record[OpNum + 3]);
6369 
6370       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6371           FailureOrdering == AtomicOrdering::Unordered)
6372         return error("Invalid record");
6373 
6374       const Align Alignment(
6375           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6376 
6377       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6378                                 FailureOrdering, SSID);
6379       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6380 
6381       if (NumRecords < 8) {
6382         // Before weak cmpxchgs existed, the instruction simply returned the
6383         // value loaded from memory, so bitcode files from that era will be
6384         // expecting the first component of a modern cmpxchg.
6385         I->insertInto(CurBB, CurBB->end());
6386         I = ExtractValueInst::Create(I, 0);
6387         ResTypeID = CmpTypeID;
6388       } else {
6389         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6390         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6391         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6392       }
6393 
6394       InstructionList.push_back(I);
6395       break;
6396     }
6397     case bitc::FUNC_CODE_INST_CMPXCHG: {
6398       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6399       // failure_ordering, weak, align?]
6400       const size_t NumRecords = Record.size();
6401       unsigned OpNum = 0;
6402       Value *Ptr = nullptr;
6403       unsigned PtrTypeID;
6404       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6405         return error("Invalid record");
6406 
6407       if (!isa<PointerType>(Ptr->getType()))
6408         return error("Cmpxchg operand is not a pointer type");
6409 
6410       Value *Cmp = nullptr;
6411       unsigned CmpTypeID;
6412       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6413         return error("Invalid record");
6414 
6415       Value *Val = nullptr;
6416       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6417                    CurBB))
6418         return error("Invalid record");
6419 
6420       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6421         return error("Invalid record");
6422 
6423       const bool IsVol = Record[OpNum];
6424 
6425       const AtomicOrdering SuccessOrdering =
6426           getDecodedOrdering(Record[OpNum + 1]);
6427       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6428         return error("Invalid cmpxchg success ordering");
6429 
6430       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6431 
6432       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6433         return Err;
6434 
6435       const AtomicOrdering FailureOrdering =
6436           getDecodedOrdering(Record[OpNum + 3]);
6437       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6438         return error("Invalid cmpxchg failure ordering");
6439 
6440       const bool IsWeak = Record[OpNum + 4];
6441 
6442       MaybeAlign Alignment;
6443 
6444       if (NumRecords == (OpNum + 6)) {
6445         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6446           return Err;
6447       }
6448       if (!Alignment)
6449         Alignment =
6450             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6451 
6452       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6453                                 FailureOrdering, SSID);
6454       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6455       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6456 
6457       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6458       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6459 
6460       InstructionList.push_back(I);
6461       break;
6462     }
6463     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6464     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6465       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6466       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6467       const size_t NumRecords = Record.size();
6468       unsigned OpNum = 0;
6469 
6470       Value *Ptr = nullptr;
6471       unsigned PtrTypeID;
6472       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6473         return error("Invalid record");
6474 
6475       if (!isa<PointerType>(Ptr->getType()))
6476         return error("Invalid record");
6477 
6478       Value *Val = nullptr;
6479       unsigned ValTypeID = InvalidTypeID;
6480       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6481         ValTypeID = getContainedTypeID(PtrTypeID);
6482         if (popValue(Record, OpNum, NextValueNo,
6483                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6484           return error("Invalid record");
6485       } else {
6486         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6487           return error("Invalid record");
6488       }
6489 
6490       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6491         return error("Invalid record");
6492 
6493       const AtomicRMWInst::BinOp Operation =
6494           getDecodedRMWOperation(Record[OpNum]);
6495       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6496           Operation > AtomicRMWInst::LAST_BINOP)
6497         return error("Invalid record");
6498 
6499       const bool IsVol = Record[OpNum + 1];
6500 
6501       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6502       if (Ordering == AtomicOrdering::NotAtomic ||
6503           Ordering == AtomicOrdering::Unordered)
6504         return error("Invalid record");
6505 
6506       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6507 
6508       MaybeAlign Alignment;
6509 
6510       if (NumRecords == (OpNum + 5)) {
6511         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6512           return Err;
6513       }
6514 
6515       if (!Alignment)
6516         Alignment =
6517             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6518 
6519       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6520       ResTypeID = ValTypeID;
6521       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6522 
6523       InstructionList.push_back(I);
6524       break;
6525     }
6526     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6527       if (2 != Record.size())
6528         return error("Invalid record");
6529       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6530       if (Ordering == AtomicOrdering::NotAtomic ||
6531           Ordering == AtomicOrdering::Unordered ||
6532           Ordering == AtomicOrdering::Monotonic)
6533         return error("Invalid record");
6534       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6535       I = new FenceInst(Context, Ordering, SSID);
6536       InstructionList.push_back(I);
6537       break;
6538     }
6539     case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6540       // DbgLabelRecords are placed after the Instructions that they are
6541       // attached to.
6542       SeenDebugRecord = true;
6543       Instruction *Inst = getLastInstruction();
6544       if (!Inst)
6545         return error("Invalid dbg record: missing instruction");
6546       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6547       DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6548       Inst->getParent()->insertDbgRecordBefore(
6549           new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
6550       continue; // This isn't an instruction.
6551     }
6552     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6553     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6554     case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6555     case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6556       // DbgVariableRecords are placed after the Instructions that they are
6557       // attached to.
6558       SeenDebugRecord = true;
6559       Instruction *Inst = getLastInstruction();
6560       if (!Inst)
6561         return error("Invalid dbg record: missing instruction");
6562 
6563       // First 3 fields are common to all kinds:
6564       //   DILocation, DILocalVariable, DIExpression
6565       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6566       //   ..., LocationMetadata
6567       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6568       //   ..., Value
6569       // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6570       //   ..., LocationMetadata
6571       // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6572       //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6573       unsigned Slot = 0;
6574       // Common fields (0-2).
6575       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6576       DILocalVariable *Var =
6577           cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6578       DIExpression *Expr =
6579           cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6580 
6581       // Union field (3: LocationMetadata | Value).
6582       Metadata *RawLocation = nullptr;
6583       if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6584         Value *V = nullptr;
6585         unsigned TyID = 0;
6586         // We never expect to see a fwd reference value here because
6587         // use-before-defs are encoded with the standard non-abbrev record
6588         // type (they'd require encoding the type too, and they're rare). As a
6589         // result, getValueTypePair only ever increments Slot by one here (once
6590         // for the value, never twice for value and type).
6591         unsigned SlotBefore = Slot;
6592         if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6593           return error("Invalid dbg record: invalid value");
6594         (void)SlotBefore;
6595         assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6596         RawLocation = ValueAsMetadata::get(V);
6597       } else {
6598         RawLocation = getFnMetadataByID(Record[Slot++]);
6599       }
6600 
6601       DbgVariableRecord *DVR = nullptr;
6602       switch (BitCode) {
6603       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6604       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6605         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6606                                     DbgVariableRecord::LocationType::Value);
6607         break;
6608       case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6609         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6610                                     DbgVariableRecord::LocationType::Declare);
6611         break;
6612       case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6613         DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6614         DIExpression *AddrExpr =
6615             cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6616         Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6617         DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6618                                     DIL);
6619         break;
6620       }
6621       default:
6622         llvm_unreachable("Unknown DbgVariableRecord bitcode");
6623       }
6624       Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
6625       continue; // This isn't an instruction.
6626     }
6627     case bitc::FUNC_CODE_INST_CALL: {
6628       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6629       if (Record.size() < 3)
6630         return error("Invalid record");
6631 
6632       unsigned OpNum = 0;
6633       AttributeList PAL = getAttributes(Record[OpNum++]);
6634       unsigned CCInfo = Record[OpNum++];
6635 
6636       FastMathFlags FMF;
6637       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6638         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6639         if (!FMF.any())
6640           return error("Fast math flags indicator set for call with no FMF");
6641       }
6642 
6643       unsigned FTyID = InvalidTypeID;
6644       FunctionType *FTy = nullptr;
6645       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6646         FTyID = Record[OpNum++];
6647         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6648         if (!FTy)
6649           return error("Explicit call type is not a function type");
6650       }
6651 
6652       Value *Callee;
6653       unsigned CalleeTypeID;
6654       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6655                            CurBB))
6656         return error("Invalid record");
6657 
6658       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6659       if (!OpTy)
6660         return error("Callee is not a pointer type");
6661       if (!FTy) {
6662         FTyID = getContainedTypeID(CalleeTypeID);
6663         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6664         if (!FTy)
6665           return error("Callee is not of pointer to function type");
6666       }
6667       if (Record.size() < FTy->getNumParams() + OpNum)
6668         return error("Insufficient operands to call");
6669 
6670       SmallVector<Value*, 16> Args;
6671       SmallVector<unsigned, 16> ArgTyIDs;
6672       // Read the fixed params.
6673       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6674         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6675         if (FTy->getParamType(i)->isLabelTy())
6676           Args.push_back(getBasicBlock(Record[OpNum]));
6677         else
6678           Args.push_back(getValue(Record, OpNum, NextValueNo,
6679                                   FTy->getParamType(i), ArgTyID, CurBB));
6680         ArgTyIDs.push_back(ArgTyID);
6681         if (!Args.back())
6682           return error("Invalid record");
6683       }
6684 
6685       // Read type/value pairs for varargs params.
6686       if (!FTy->isVarArg()) {
6687         if (OpNum != Record.size())
6688           return error("Invalid record");
6689       } else {
6690         while (OpNum != Record.size()) {
6691           Value *Op;
6692           unsigned OpTypeID;
6693           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6694             return error("Invalid record");
6695           Args.push_back(Op);
6696           ArgTyIDs.push_back(OpTypeID);
6697         }
6698       }
6699 
6700       // Upgrade the bundles if needed.
6701       if (!OperandBundles.empty())
6702         UpgradeOperandBundles(OperandBundles);
6703 
6704       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6705       ResTypeID = getContainedTypeID(FTyID);
6706       OperandBundles.clear();
6707       InstructionList.push_back(I);
6708       cast<CallInst>(I)->setCallingConv(
6709           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6710       CallInst::TailCallKind TCK = CallInst::TCK_None;
6711       if (CCInfo & (1 << bitc::CALL_TAIL))
6712         TCK = CallInst::TCK_Tail;
6713       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6714         TCK = CallInst::TCK_MustTail;
6715       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6716         TCK = CallInst::TCK_NoTail;
6717       cast<CallInst>(I)->setTailCallKind(TCK);
6718       cast<CallInst>(I)->setAttributes(PAL);
6719       if (isa<DbgInfoIntrinsic>(I))
6720         SeenDebugIntrinsic = true;
6721       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6722         I->deleteValue();
6723         return Err;
6724       }
6725       if (FMF.any()) {
6726         if (!isa<FPMathOperator>(I))
6727           return error("Fast-math-flags specified for call without "
6728                        "floating-point scalar or vector return type");
6729         I->setFastMathFlags(FMF);
6730       }
6731       break;
6732     }
6733     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6734       if (Record.size() < 3)
6735         return error("Invalid record");
6736       unsigned OpTyID = Record[0];
6737       Type *OpTy = getTypeByID(OpTyID);
6738       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6739       ResTypeID = Record[2];
6740       Type *ResTy = getTypeByID(ResTypeID);
6741       if (!OpTy || !Op || !ResTy)
6742         return error("Invalid record");
6743       I = new VAArgInst(Op, ResTy);
6744       InstructionList.push_back(I);
6745       break;
6746     }
6747 
6748     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6749       // A call or an invoke can be optionally prefixed with some variable
6750       // number of operand bundle blocks.  These blocks are read into
6751       // OperandBundles and consumed at the next call or invoke instruction.
6752 
6753       if (Record.empty() || Record[0] >= BundleTags.size())
6754         return error("Invalid record");
6755 
6756       std::vector<Value *> Inputs;
6757 
6758       unsigned OpNum = 1;
6759       while (OpNum != Record.size()) {
6760         Value *Op;
6761         unsigned OpTypeID;
6762         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6763           return error("Invalid record");
6764         Inputs.push_back(Op);
6765       }
6766 
6767       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6768       continue;
6769     }
6770 
6771     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6772       unsigned OpNum = 0;
6773       Value *Op = nullptr;
6774       unsigned OpTypeID;
6775       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6776         return error("Invalid record");
6777       if (OpNum != Record.size())
6778         return error("Invalid record");
6779 
6780       I = new FreezeInst(Op);
6781       ResTypeID = OpTypeID;
6782       InstructionList.push_back(I);
6783       break;
6784     }
6785     }
6786 
6787     // Add instruction to end of current BB.  If there is no current BB, reject
6788     // this file.
6789     if (!CurBB) {
6790       I->deleteValue();
6791       return error("Invalid instruction with no BB");
6792     }
6793     if (!OperandBundles.empty()) {
6794       I->deleteValue();
6795       return error("Operand bundles found with no consumer");
6796     }
6797     I->insertInto(CurBB, CurBB->end());
6798 
6799     // If this was a terminator instruction, move to the next block.
6800     if (I->isTerminator()) {
6801       ++CurBBNo;
6802       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6803     }
6804 
6805     // Non-void values get registered in the value table for future use.
6806     if (!I->getType()->isVoidTy()) {
6807       assert(I->getType() == getTypeByID(ResTypeID) &&
6808              "Incorrect result type ID");
6809       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6810         return Err;
6811     }
6812   }
6813 
6814 OutOfRecordLoop:
6815 
6816   if (!OperandBundles.empty())
6817     return error("Operand bundles found with no consumer");
6818 
6819   // Check the function list for unresolved values.
6820   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6821     if (!A->getParent()) {
6822       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6823       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6824         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6825           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6826           delete A;
6827         }
6828       }
6829       return error("Never resolved value found in function");
6830     }
6831   }
6832 
6833   // Unexpected unresolved metadata about to be dropped.
6834   if (MDLoader->hasFwdRefs())
6835     return error("Invalid function metadata: outgoing forward refs");
6836 
6837   if (PhiConstExprBB)
6838     PhiConstExprBB->eraseFromParent();
6839 
6840   for (const auto &Pair : ConstExprEdgeBBs) {
6841     BasicBlock *From = Pair.first.first;
6842     BasicBlock *To = Pair.first.second;
6843     BasicBlock *EdgeBB = Pair.second;
6844     BranchInst::Create(To, EdgeBB);
6845     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6846     To->replacePhiUsesWith(From, EdgeBB);
6847     EdgeBB->moveBefore(To);
6848   }
6849 
6850   // Trim the value list down to the size it was before we parsed this function.
6851   ValueList.shrinkTo(ModuleValueListSize);
6852   MDLoader->shrinkTo(ModuleMDLoaderSize);
6853   std::vector<BasicBlock*>().swap(FunctionBBs);
6854   return Error::success();
6855 }
6856 
6857 /// Find the function body in the bitcode stream
6858 Error BitcodeReader::findFunctionInStream(
6859     Function *F,
6860     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6861   while (DeferredFunctionInfoIterator->second == 0) {
6862     // This is the fallback handling for the old format bitcode that
6863     // didn't contain the function index in the VST, or when we have
6864     // an anonymous function which would not have a VST entry.
6865     // Assert that we have one of those two cases.
6866     assert(VSTOffset == 0 || !F->hasName());
6867     // Parse the next body in the stream and set its position in the
6868     // DeferredFunctionInfo map.
6869     if (Error Err = rememberAndSkipFunctionBodies())
6870       return Err;
6871   }
6872   return Error::success();
6873 }
6874 
6875 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6876   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6877     return SyncScope::ID(Val);
6878   if (Val >= SSIDs.size())
6879     return SyncScope::System; // Map unknown synchronization scopes to system.
6880   return SSIDs[Val];
6881 }
6882 
6883 //===----------------------------------------------------------------------===//
6884 // GVMaterializer implementation
6885 //===----------------------------------------------------------------------===//
6886 
6887 Error BitcodeReader::materialize(GlobalValue *GV) {
6888   Function *F = dyn_cast<Function>(GV);
6889   // If it's not a function or is already material, ignore the request.
6890   if (!F || !F->isMaterializable())
6891     return Error::success();
6892 
6893   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6894   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6895   // If its position is recorded as 0, its body is somewhere in the stream
6896   // but we haven't seen it yet.
6897   if (DFII->second == 0)
6898     if (Error Err = findFunctionInStream(F, DFII))
6899       return Err;
6900 
6901   // Materialize metadata before parsing any function bodies.
6902   if (Error Err = materializeMetadata())
6903     return Err;
6904 
6905   // Move the bit stream to the saved position of the deferred function body.
6906   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6907     return JumpFailed;
6908 
6909   // Regardless of the debug info format we want to end up in, we need
6910   // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
6911   F->IsNewDbgInfoFormat = true;
6912 
6913   if (Error Err = parseFunctionBody(F))
6914     return Err;
6915   F->setIsMaterializable(false);
6916 
6917   // All parsed Functions should load into the debug info format dictated by the
6918   // Module, unless we're attempting to preserve the input debug info format.
6919   if (SeenDebugIntrinsic && SeenDebugRecord)
6920     return error("Mixed debug intrinsics and debug records in bitcode module!");
6921   if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
6922     bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
6923     bool NewDbgInfoFormatDesired =
6924         SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
6925     if (SeenAnyDebugInfo) {
6926       UseNewDbgInfoFormat = SeenDebugRecord;
6927       WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
6928       WriteNewDbgInfoFormat = SeenDebugRecord;
6929     }
6930     // If the module's debug info format doesn't match the observed input
6931     // format, then set its format now; we don't need to call the conversion
6932     // function because there must be no existing intrinsics to convert.
6933     // Otherwise, just set the format on this function now.
6934     if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
6935       F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6936     else
6937       F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6938   } else {
6939     // If we aren't preserving formats, we use the Module flag to get our
6940     // desired format instead of reading flags, in case we are lazy-loading and
6941     // the format of the module has been changed since it was set by the flags.
6942     // We only need to convert debug info here if we have debug records but
6943     // desire the intrinsic format; everything else is a no-op or handled by the
6944     // autoupgrader.
6945     bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
6946     if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
6947       F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
6948     else
6949       F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
6950   }
6951 
6952   if (StripDebugInfo)
6953     stripDebugInfo(*F);
6954 
6955   // Upgrade any old intrinsic calls in the function.
6956   for (auto &I : UpgradedIntrinsics) {
6957     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6958       if (CallInst *CI = dyn_cast<CallInst>(U))
6959         UpgradeIntrinsicCall(CI, I.second);
6960   }
6961 
6962   // Finish fn->subprogram upgrade for materialized functions.
6963   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6964     F->setSubprogram(SP);
6965 
6966   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6967   if (!MDLoader->isStrippingTBAA()) {
6968     for (auto &I : instructions(F)) {
6969       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6970       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6971         continue;
6972       MDLoader->setStripTBAA(true);
6973       stripTBAA(F->getParent());
6974     }
6975   }
6976 
6977   for (auto &I : instructions(F)) {
6978     // "Upgrade" older incorrect branch weights by dropping them.
6979     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6980       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6981         MDString *MDS = cast<MDString>(MD->getOperand(0));
6982         StringRef ProfName = MDS->getString();
6983         // Check consistency of !prof branch_weights metadata.
6984         if (ProfName != "branch_weights")
6985           continue;
6986         unsigned ExpectedNumOperands = 0;
6987         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6988           ExpectedNumOperands = BI->getNumSuccessors();
6989         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6990           ExpectedNumOperands = SI->getNumSuccessors();
6991         else if (isa<CallInst>(&I))
6992           ExpectedNumOperands = 1;
6993         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6994           ExpectedNumOperands = IBI->getNumDestinations();
6995         else if (isa<SelectInst>(&I))
6996           ExpectedNumOperands = 2;
6997         else
6998           continue; // ignore and continue.
6999 
7000         unsigned Offset = getBranchWeightOffset(MD);
7001 
7002         // If branch weight doesn't match, just strip branch weight.
7003         if (MD->getNumOperands() != Offset + ExpectedNumOperands)
7004           I.setMetadata(LLVMContext::MD_prof, nullptr);
7005       }
7006     }
7007 
7008     // Remove incompatible attributes on function calls.
7009     if (auto *CI = dyn_cast<CallBase>(&I)) {
7010       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
7011           CI->getFunctionType()->getReturnType()));
7012 
7013       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
7014         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
7015                                         CI->getArgOperand(ArgNo)->getType()));
7016     }
7017   }
7018 
7019   // Look for functions that rely on old function attribute behavior.
7020   UpgradeFunctionAttributes(*F);
7021 
7022   // Bring in any functions that this function forward-referenced via
7023   // blockaddresses.
7024   return materializeForwardReferencedFunctions();
7025 }
7026 
7027 Error BitcodeReader::materializeModule() {
7028   if (Error Err = materializeMetadata())
7029     return Err;
7030 
7031   // Promise to materialize all forward references.
7032   WillMaterializeAllForwardRefs = true;
7033 
7034   // Iterate over the module, deserializing any functions that are still on
7035   // disk.
7036   for (Function &F : *TheModule) {
7037     if (Error Err = materialize(&F))
7038       return Err;
7039   }
7040   // At this point, if there are any function bodies, parse the rest of
7041   // the bits in the module past the last function block we have recorded
7042   // through either lazy scanning or the VST.
7043   if (LastFunctionBlockBit || NextUnreadBit)
7044     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
7045                                     ? LastFunctionBlockBit
7046                                     : NextUnreadBit))
7047       return Err;
7048 
7049   // Check that all block address forward references got resolved (as we
7050   // promised above).
7051   if (!BasicBlockFwdRefs.empty())
7052     return error("Never resolved function from blockaddress");
7053 
7054   // Upgrade any intrinsic calls that slipped through (should not happen!) and
7055   // delete the old functions to clean up. We can't do this unless the entire
7056   // module is materialized because there could always be another function body
7057   // with calls to the old function.
7058   for (auto &I : UpgradedIntrinsics) {
7059     for (auto *U : I.first->users()) {
7060       if (CallInst *CI = dyn_cast<CallInst>(U))
7061         UpgradeIntrinsicCall(CI, I.second);
7062     }
7063     if (!I.first->use_empty())
7064       I.first->replaceAllUsesWith(I.second);
7065     I.first->eraseFromParent();
7066   }
7067   UpgradedIntrinsics.clear();
7068 
7069   UpgradeDebugInfo(*TheModule);
7070 
7071   UpgradeModuleFlags(*TheModule);
7072 
7073   UpgradeARCRuntime(*TheModule);
7074 
7075   return Error::success();
7076 }
7077 
7078 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
7079   return IdentifiedStructTypes;
7080 }
7081 
7082 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
7083     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
7084     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
7085     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
7086       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7087 
7088 void ModuleSummaryIndexBitcodeReader::addThisModule() {
7089   TheIndex.addModule(ModulePath);
7090 }
7091 
7092 ModuleSummaryIndex::ModuleInfo *
7093 ModuleSummaryIndexBitcodeReader::getThisModule() {
7094   return TheIndex.getModule(ModulePath);
7095 }
7096 
7097 template <bool AllowNullValueInfo>
7098 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
7099 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7100   auto VGI = ValueIdToValueInfoMap[ValueId];
7101   // We can have a null value info for memprof callsite info records in
7102   // distributed ThinLTO index files when the callee function summary is not
7103   // included in the index. The bitcode writer records 0 in that case,
7104   // and the caller of this helper will set AllowNullValueInfo to true.
7105   assert(AllowNullValueInfo || std::get<0>(VGI));
7106   return VGI;
7107 }
7108 
7109 void ModuleSummaryIndexBitcodeReader::setValueGUID(
7110     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7111     StringRef SourceFileName) {
7112   std::string GlobalId =
7113       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
7114   auto ValueGUID = GlobalValue::getGUID(GlobalId);
7115   auto OriginalNameID = ValueGUID;
7116   if (GlobalValue::isLocalLinkage(Linkage))
7117     OriginalNameID = GlobalValue::getGUID(ValueName);
7118   if (PrintSummaryGUIDs)
7119     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7120            << ValueName << "\n";
7121 
7122   // UseStrtab is false for legacy summary formats and value names are
7123   // created on stack. In that case we save the name in a string saver in
7124   // the index so that the value name can be recorded.
7125   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7126       TheIndex.getOrInsertValueInfo(
7127           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
7128       OriginalNameID, ValueGUID);
7129 }
7130 
7131 // Specialized value symbol table parser used when reading module index
7132 // blocks where we don't actually create global values. The parsed information
7133 // is saved in the bitcode reader for use when later parsing summaries.
7134 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7135     uint64_t Offset,
7136     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7137   // With a strtab the VST is not required to parse the summary.
7138   if (UseStrtab)
7139     return Error::success();
7140 
7141   assert(Offset > 0 && "Expected non-zero VST offset");
7142   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7143   if (!MaybeCurrentBit)
7144     return MaybeCurrentBit.takeError();
7145   uint64_t CurrentBit = MaybeCurrentBit.get();
7146 
7147   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
7148     return Err;
7149 
7150   SmallVector<uint64_t, 64> Record;
7151 
7152   // Read all the records for this value table.
7153   SmallString<128> ValueName;
7154 
7155   while (true) {
7156     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7157     if (!MaybeEntry)
7158       return MaybeEntry.takeError();
7159     BitstreamEntry Entry = MaybeEntry.get();
7160 
7161     switch (Entry.Kind) {
7162     case BitstreamEntry::SubBlock: // Handled for us already.
7163     case BitstreamEntry::Error:
7164       return error("Malformed block");
7165     case BitstreamEntry::EndBlock:
7166       // Done parsing VST, jump back to wherever we came from.
7167       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
7168         return JumpFailed;
7169       return Error::success();
7170     case BitstreamEntry::Record:
7171       // The interesting case.
7172       break;
7173     }
7174 
7175     // Read a record.
7176     Record.clear();
7177     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7178     if (!MaybeRecord)
7179       return MaybeRecord.takeError();
7180     switch (MaybeRecord.get()) {
7181     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7182       break;
7183     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7184       if (convertToString(Record, 1, ValueName))
7185         return error("Invalid record");
7186       unsigned ValueID = Record[0];
7187       assert(!SourceFileName.empty());
7188       auto VLI = ValueIdToLinkageMap.find(ValueID);
7189       assert(VLI != ValueIdToLinkageMap.end() &&
7190              "No linkage found for VST entry?");
7191       auto Linkage = VLI->second;
7192       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7193       ValueName.clear();
7194       break;
7195     }
7196     case bitc::VST_CODE_FNENTRY: {
7197       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7198       if (convertToString(Record, 2, ValueName))
7199         return error("Invalid record");
7200       unsigned ValueID = Record[0];
7201       assert(!SourceFileName.empty());
7202       auto VLI = ValueIdToLinkageMap.find(ValueID);
7203       assert(VLI != ValueIdToLinkageMap.end() &&
7204              "No linkage found for VST entry?");
7205       auto Linkage = VLI->second;
7206       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7207       ValueName.clear();
7208       break;
7209     }
7210     case bitc::VST_CODE_COMBINED_ENTRY: {
7211       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7212       unsigned ValueID = Record[0];
7213       GlobalValue::GUID RefGUID = Record[1];
7214       // The "original name", which is the second value of the pair will be
7215       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7216       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7217           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7218       break;
7219     }
7220     }
7221   }
7222 }
7223 
7224 // Parse just the blocks needed for building the index out of the module.
7225 // At the end of this routine the module Index is populated with a map
7226 // from global value id to GlobalValueSummary objects.
7227 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7228   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7229     return Err;
7230 
7231   SmallVector<uint64_t, 64> Record;
7232   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7233   unsigned ValueId = 0;
7234 
7235   // Read the index for this module.
7236   while (true) {
7237     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7238     if (!MaybeEntry)
7239       return MaybeEntry.takeError();
7240     llvm::BitstreamEntry Entry = MaybeEntry.get();
7241 
7242     switch (Entry.Kind) {
7243     case BitstreamEntry::Error:
7244       return error("Malformed block");
7245     case BitstreamEntry::EndBlock:
7246       return Error::success();
7247 
7248     case BitstreamEntry::SubBlock:
7249       switch (Entry.ID) {
7250       default: // Skip unknown content.
7251         if (Error Err = Stream.SkipBlock())
7252           return Err;
7253         break;
7254       case bitc::BLOCKINFO_BLOCK_ID:
7255         // Need to parse these to get abbrev ids (e.g. for VST)
7256         if (Error Err = readBlockInfo())
7257           return Err;
7258         break;
7259       case bitc::VALUE_SYMTAB_BLOCK_ID:
7260         // Should have been parsed earlier via VSTOffset, unless there
7261         // is no summary section.
7262         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7263                 !SeenGlobalValSummary) &&
7264                "Expected early VST parse via VSTOffset record");
7265         if (Error Err = Stream.SkipBlock())
7266           return Err;
7267         break;
7268       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7269       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7270         // Add the module if it is a per-module index (has a source file name).
7271         if (!SourceFileName.empty())
7272           addThisModule();
7273         assert(!SeenValueSymbolTable &&
7274                "Already read VST when parsing summary block?");
7275         // We might not have a VST if there were no values in the
7276         // summary. An empty summary block generated when we are
7277         // performing ThinLTO compiles so we don't later invoke
7278         // the regular LTO process on them.
7279         if (VSTOffset > 0) {
7280           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7281             return Err;
7282           SeenValueSymbolTable = true;
7283         }
7284         SeenGlobalValSummary = true;
7285         if (Error Err = parseEntireSummary(Entry.ID))
7286           return Err;
7287         break;
7288       case bitc::MODULE_STRTAB_BLOCK_ID:
7289         if (Error Err = parseModuleStringTable())
7290           return Err;
7291         break;
7292       }
7293       continue;
7294 
7295     case BitstreamEntry::Record: {
7296         Record.clear();
7297         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7298         if (!MaybeBitCode)
7299           return MaybeBitCode.takeError();
7300         switch (MaybeBitCode.get()) {
7301         default:
7302           break; // Default behavior, ignore unknown content.
7303         case bitc::MODULE_CODE_VERSION: {
7304           if (Error Err = parseVersionRecord(Record).takeError())
7305             return Err;
7306           break;
7307         }
7308         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7309         case bitc::MODULE_CODE_SOURCE_FILENAME: {
7310           SmallString<128> ValueName;
7311           if (convertToString(Record, 0, ValueName))
7312             return error("Invalid record");
7313           SourceFileName = ValueName.c_str();
7314           break;
7315         }
7316         /// MODULE_CODE_HASH: [5*i32]
7317         case bitc::MODULE_CODE_HASH: {
7318           if (Record.size() != 5)
7319             return error("Invalid hash length " + Twine(Record.size()).str());
7320           auto &Hash = getThisModule()->second;
7321           int Pos = 0;
7322           for (auto &Val : Record) {
7323             assert(!(Val >> 32) && "Unexpected high bits set");
7324             Hash[Pos++] = Val;
7325           }
7326           break;
7327         }
7328         /// MODULE_CODE_VSTOFFSET: [offset]
7329         case bitc::MODULE_CODE_VSTOFFSET:
7330           if (Record.empty())
7331             return error("Invalid record");
7332           // Note that we subtract 1 here because the offset is relative to one
7333           // word before the start of the identification or module block, which
7334           // was historically always the start of the regular bitcode header.
7335           VSTOffset = Record[0] - 1;
7336           break;
7337         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7338         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7339         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7340         // v2: [strtab offset, strtab size, v1]
7341         case bitc::MODULE_CODE_GLOBALVAR:
7342         case bitc::MODULE_CODE_FUNCTION:
7343         case bitc::MODULE_CODE_ALIAS: {
7344           StringRef Name;
7345           ArrayRef<uint64_t> GVRecord;
7346           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7347           if (GVRecord.size() <= 3)
7348             return error("Invalid record");
7349           uint64_t RawLinkage = GVRecord[3];
7350           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7351           if (!UseStrtab) {
7352             ValueIdToLinkageMap[ValueId++] = Linkage;
7353             break;
7354           }
7355 
7356           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7357           break;
7358         }
7359         }
7360       }
7361       continue;
7362     }
7363   }
7364 }
7365 
7366 std::vector<ValueInfo>
7367 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7368   std::vector<ValueInfo> Ret;
7369   Ret.reserve(Record.size());
7370   for (uint64_t RefValueId : Record)
7371     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7372   return Ret;
7373 }
7374 
7375 std::vector<FunctionSummary::EdgeTy>
7376 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7377                                               bool IsOldProfileFormat,
7378                                               bool HasProfile, bool HasRelBF) {
7379   std::vector<FunctionSummary::EdgeTy> Ret;
7380   // In the case of new profile formats, there are two Record entries per
7381   // Edge. Otherwise, conservatively reserve up to Record.size.
7382   if (!IsOldProfileFormat && (HasProfile || HasRelBF))
7383     Ret.reserve(Record.size() / 2);
7384   else
7385     Ret.reserve(Record.size());
7386 
7387   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7388     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7389     bool HasTailCall = false;
7390     uint64_t RelBF = 0;
7391     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7392     if (IsOldProfileFormat) {
7393       I += 1; // Skip old callsitecount field
7394       if (HasProfile)
7395         I += 1; // Skip old profilecount field
7396     } else if (HasProfile)
7397       std::tie(Hotness, HasTailCall) =
7398           getDecodedHotnessCallEdgeInfo(Record[++I]);
7399     else if (HasRelBF)
7400       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7401     Ret.push_back(FunctionSummary::EdgeTy{
7402         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7403   }
7404   return Ret;
7405 }
7406 
7407 static void
7408 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7409                                        WholeProgramDevirtResolution &Wpd) {
7410   uint64_t ArgNum = Record[Slot++];
7411   WholeProgramDevirtResolution::ByArg &B =
7412       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7413   Slot += ArgNum;
7414 
7415   B.TheKind =
7416       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7417   B.Info = Record[Slot++];
7418   B.Byte = Record[Slot++];
7419   B.Bit = Record[Slot++];
7420 }
7421 
7422 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7423                                               StringRef Strtab, size_t &Slot,
7424                                               TypeIdSummary &TypeId) {
7425   uint64_t Id = Record[Slot++];
7426   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7427 
7428   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7429   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7430                         static_cast<size_t>(Record[Slot + 1])};
7431   Slot += 2;
7432 
7433   uint64_t ResByArgNum = Record[Slot++];
7434   for (uint64_t I = 0; I != ResByArgNum; ++I)
7435     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7436 }
7437 
7438 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7439                                      StringRef Strtab,
7440                                      ModuleSummaryIndex &TheIndex) {
7441   size_t Slot = 0;
7442   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7443       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7444   Slot += 2;
7445 
7446   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7447   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7448   TypeId.TTRes.AlignLog2 = Record[Slot++];
7449   TypeId.TTRes.SizeM1 = Record[Slot++];
7450   TypeId.TTRes.BitMask = Record[Slot++];
7451   TypeId.TTRes.InlineBits = Record[Slot++];
7452 
7453   while (Slot < Record.size())
7454     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7455 }
7456 
7457 std::vector<FunctionSummary::ParamAccess>
7458 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7459   auto ReadRange = [&]() {
7460     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7461                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7462     Record = Record.drop_front();
7463     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7464                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7465     Record = Record.drop_front();
7466     ConstantRange Range{Lower, Upper};
7467     assert(!Range.isFullSet());
7468     assert(!Range.isUpperSignWrapped());
7469     return Range;
7470   };
7471 
7472   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7473   while (!Record.empty()) {
7474     PendingParamAccesses.emplace_back();
7475     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7476     ParamAccess.ParamNo = Record.front();
7477     Record = Record.drop_front();
7478     ParamAccess.Use = ReadRange();
7479     ParamAccess.Calls.resize(Record.front());
7480     Record = Record.drop_front();
7481     for (auto &Call : ParamAccess.Calls) {
7482       Call.ParamNo = Record.front();
7483       Record = Record.drop_front();
7484       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7485       Record = Record.drop_front();
7486       Call.Offsets = ReadRange();
7487     }
7488   }
7489   return PendingParamAccesses;
7490 }
7491 
7492 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7493     ArrayRef<uint64_t> Record, size_t &Slot,
7494     TypeIdCompatibleVtableInfo &TypeId) {
7495   uint64_t Offset = Record[Slot++];
7496   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7497   TypeId.push_back({Offset, Callee});
7498 }
7499 
7500 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7501     ArrayRef<uint64_t> Record) {
7502   size_t Slot = 0;
7503   TypeIdCompatibleVtableInfo &TypeId =
7504       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7505           {Strtab.data() + Record[Slot],
7506            static_cast<size_t>(Record[Slot + 1])});
7507   Slot += 2;
7508 
7509   while (Slot < Record.size())
7510     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7511 }
7512 
7513 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7514                            unsigned WOCnt) {
7515   // Readonly and writeonly refs are in the end of the refs list.
7516   assert(ROCnt + WOCnt <= Refs.size());
7517   unsigned FirstWORef = Refs.size() - WOCnt;
7518   unsigned RefNo = FirstWORef - ROCnt;
7519   for (; RefNo < FirstWORef; ++RefNo)
7520     Refs[RefNo].setReadOnly();
7521   for (; RefNo < Refs.size(); ++RefNo)
7522     Refs[RefNo].setWriteOnly();
7523 }
7524 
7525 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7526 // objects in the index.
7527 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7528   if (Error Err = Stream.EnterSubBlock(ID))
7529     return Err;
7530   SmallVector<uint64_t, 64> Record;
7531 
7532   // Parse version
7533   {
7534     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7535     if (!MaybeEntry)
7536       return MaybeEntry.takeError();
7537     BitstreamEntry Entry = MaybeEntry.get();
7538 
7539     if (Entry.Kind != BitstreamEntry::Record)
7540       return error("Invalid Summary Block: record for version expected");
7541     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7542     if (!MaybeRecord)
7543       return MaybeRecord.takeError();
7544     if (MaybeRecord.get() != bitc::FS_VERSION)
7545       return error("Invalid Summary Block: version expected");
7546   }
7547   const uint64_t Version = Record[0];
7548   const bool IsOldProfileFormat = Version == 1;
7549   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7550     return error("Invalid summary version " + Twine(Version) +
7551                  ". Version should be in the range [1-" +
7552                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7553                  "].");
7554   Record.clear();
7555 
7556   // Keep around the last seen summary to be used when we see an optional
7557   // "OriginalName" attachement.
7558   GlobalValueSummary *LastSeenSummary = nullptr;
7559   GlobalValue::GUID LastSeenGUID = 0;
7560 
7561   // We can expect to see any number of type ID information records before
7562   // each function summary records; these variables store the information
7563   // collected so far so that it can be used to create the summary object.
7564   std::vector<GlobalValue::GUID> PendingTypeTests;
7565   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7566       PendingTypeCheckedLoadVCalls;
7567   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7568       PendingTypeCheckedLoadConstVCalls;
7569   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7570 
7571   std::vector<CallsiteInfo> PendingCallsites;
7572   std::vector<AllocInfo> PendingAllocs;
7573 
7574   while (true) {
7575     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7576     if (!MaybeEntry)
7577       return MaybeEntry.takeError();
7578     BitstreamEntry Entry = MaybeEntry.get();
7579 
7580     switch (Entry.Kind) {
7581     case BitstreamEntry::SubBlock: // Handled for us already.
7582     case BitstreamEntry::Error:
7583       return error("Malformed block");
7584     case BitstreamEntry::EndBlock:
7585       return Error::success();
7586     case BitstreamEntry::Record:
7587       // The interesting case.
7588       break;
7589     }
7590 
7591     // Read a record. The record format depends on whether this
7592     // is a per-module index or a combined index file. In the per-module
7593     // case the records contain the associated value's ID for correlation
7594     // with VST entries. In the combined index the correlation is done
7595     // via the bitcode offset of the summary records (which were saved
7596     // in the combined index VST entries). The records also contain
7597     // information used for ThinLTO renaming and importing.
7598     Record.clear();
7599     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7600     if (!MaybeBitCode)
7601       return MaybeBitCode.takeError();
7602     switch (unsigned BitCode = MaybeBitCode.get()) {
7603     default: // Default behavior: ignore.
7604       break;
7605     case bitc::FS_FLAGS: {  // [flags]
7606       TheIndex.setFlags(Record[0]);
7607       break;
7608     }
7609     case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32]
7610       uint64_t ValueID = Record[0];
7611       GlobalValue::GUID RefGUID;
7612       if (Version >= 11) {
7613         RefGUID = Record[1] << 32 | Record[2];
7614       } else {
7615         RefGUID = Record[1];
7616       }
7617       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7618           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7619       break;
7620     }
7621     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7622     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7623     //                numrefs x valueid, n x (valueid)]
7624     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7625     //                        numrefs x valueid,
7626     //                        n x (valueid, hotness+tailcall flags)]
7627     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7628     //                      numrefs x valueid,
7629     //                      n x (valueid, relblockfreq+tailcall)]
7630     case bitc::FS_PERMODULE:
7631     case bitc::FS_PERMODULE_RELBF:
7632     case bitc::FS_PERMODULE_PROFILE: {
7633       unsigned ValueID = Record[0];
7634       uint64_t RawFlags = Record[1];
7635       unsigned InstCount = Record[2];
7636       uint64_t RawFunFlags = 0;
7637       unsigned NumRefs = Record[3];
7638       unsigned NumRORefs = 0, NumWORefs = 0;
7639       int RefListStartIndex = 4;
7640       if (Version >= 4) {
7641         RawFunFlags = Record[3];
7642         NumRefs = Record[4];
7643         RefListStartIndex = 5;
7644         if (Version >= 5) {
7645           NumRORefs = Record[5];
7646           RefListStartIndex = 6;
7647           if (Version >= 7) {
7648             NumWORefs = Record[6];
7649             RefListStartIndex = 7;
7650           }
7651         }
7652       }
7653 
7654       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7655       // The module path string ref set in the summary must be owned by the
7656       // index's module string table. Since we don't have a module path
7657       // string table section in the per-module index, we create a single
7658       // module path string table entry with an empty (0) ID to take
7659       // ownership.
7660       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7661       assert(Record.size() >= RefListStartIndex + NumRefs &&
7662              "Record size inconsistent with number of references");
7663       std::vector<ValueInfo> Refs = makeRefList(
7664           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7665       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7666       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7667       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7668           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7669           IsOldProfileFormat, HasProfile, HasRelBF);
7670       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7671       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7672       // In order to save memory, only record the memprof summaries if this is
7673       // the prevailing copy of a symbol. The linker doesn't resolve local
7674       // linkage values so don't check whether those are prevailing.
7675       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7676       if (IsPrevailing &&
7677           !GlobalValue::isLocalLinkage(LT) &&
7678           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7679         PendingCallsites.clear();
7680         PendingAllocs.clear();
7681       }
7682       auto FS = std::make_unique<FunctionSummary>(
7683           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7684           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7685           std::move(PendingTypeTestAssumeVCalls),
7686           std::move(PendingTypeCheckedLoadVCalls),
7687           std::move(PendingTypeTestAssumeConstVCalls),
7688           std::move(PendingTypeCheckedLoadConstVCalls),
7689           std::move(PendingParamAccesses), std::move(PendingCallsites),
7690           std::move(PendingAllocs));
7691       FS->setModulePath(getThisModule()->first());
7692       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7693       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7694                                      std::move(FS));
7695       break;
7696     }
7697     // FS_ALIAS: [valueid, flags, valueid]
7698     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7699     // they expect all aliasee summaries to be available.
7700     case bitc::FS_ALIAS: {
7701       unsigned ValueID = Record[0];
7702       uint64_t RawFlags = Record[1];
7703       unsigned AliaseeID = Record[2];
7704       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7705       auto AS = std::make_unique<AliasSummary>(Flags);
7706       // The module path string ref set in the summary must be owned by the
7707       // index's module string table. Since we don't have a module path
7708       // string table section in the per-module index, we create a single
7709       // module path string table entry with an empty (0) ID to take
7710       // ownership.
7711       AS->setModulePath(getThisModule()->first());
7712 
7713       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7714       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7715       if (!AliaseeInModule)
7716         return error("Alias expects aliasee summary to be parsed");
7717       AS->setAliasee(AliaseeVI, AliaseeInModule);
7718 
7719       auto GUID = getValueInfoFromValueId(ValueID);
7720       AS->setOriginalName(std::get<1>(GUID));
7721       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7722       break;
7723     }
7724     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7725     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7726       unsigned ValueID = Record[0];
7727       uint64_t RawFlags = Record[1];
7728       unsigned RefArrayStart = 2;
7729       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7730                                       /* WriteOnly */ false,
7731                                       /* Constant */ false,
7732                                       GlobalObject::VCallVisibilityPublic);
7733       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7734       if (Version >= 5) {
7735         GVF = getDecodedGVarFlags(Record[2]);
7736         RefArrayStart = 3;
7737       }
7738       std::vector<ValueInfo> Refs =
7739           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7740       auto FS =
7741           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7742       FS->setModulePath(getThisModule()->first());
7743       auto GUID = getValueInfoFromValueId(ValueID);
7744       FS->setOriginalName(std::get<1>(GUID));
7745       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7746       break;
7747     }
7748     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7749     //                        numrefs, numrefs x valueid,
7750     //                        n x (valueid, offset)]
7751     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7752       unsigned ValueID = Record[0];
7753       uint64_t RawFlags = Record[1];
7754       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7755       unsigned NumRefs = Record[3];
7756       unsigned RefListStartIndex = 4;
7757       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7758       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7759       std::vector<ValueInfo> Refs = makeRefList(
7760           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7761       VTableFuncList VTableFuncs;
7762       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7763         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7764         uint64_t Offset = Record[++I];
7765         VTableFuncs.push_back({Callee, Offset});
7766       }
7767       auto VS =
7768           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7769       VS->setModulePath(getThisModule()->first());
7770       VS->setVTableFuncs(VTableFuncs);
7771       auto GUID = getValueInfoFromValueId(ValueID);
7772       VS->setOriginalName(std::get<1>(GUID));
7773       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7774       break;
7775     }
7776     // FS_COMBINED is legacy and does not have support for the tail call flag.
7777     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7778     //               numrefs x valueid, n x (valueid)]
7779     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7780     //                       numrefs x valueid,
7781     //                       n x (valueid, hotness+tailcall flags)]
7782     case bitc::FS_COMBINED:
7783     case bitc::FS_COMBINED_PROFILE: {
7784       unsigned ValueID = Record[0];
7785       uint64_t ModuleId = Record[1];
7786       uint64_t RawFlags = Record[2];
7787       unsigned InstCount = Record[3];
7788       uint64_t RawFunFlags = 0;
7789       uint64_t EntryCount = 0;
7790       unsigned NumRefs = Record[4];
7791       unsigned NumRORefs = 0, NumWORefs = 0;
7792       int RefListStartIndex = 5;
7793 
7794       if (Version >= 4) {
7795         RawFunFlags = Record[4];
7796         RefListStartIndex = 6;
7797         size_t NumRefsIndex = 5;
7798         if (Version >= 5) {
7799           unsigned NumRORefsOffset = 1;
7800           RefListStartIndex = 7;
7801           if (Version >= 6) {
7802             NumRefsIndex = 6;
7803             EntryCount = Record[5];
7804             RefListStartIndex = 8;
7805             if (Version >= 7) {
7806               RefListStartIndex = 9;
7807               NumWORefs = Record[8];
7808               NumRORefsOffset = 2;
7809             }
7810           }
7811           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7812         }
7813         NumRefs = Record[NumRefsIndex];
7814       }
7815 
7816       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7817       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7818       assert(Record.size() >= RefListStartIndex + NumRefs &&
7819              "Record size inconsistent with number of references");
7820       std::vector<ValueInfo> Refs = makeRefList(
7821           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7822       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7823       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7824           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7825           IsOldProfileFormat, HasProfile, false);
7826       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7827       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7828       auto FS = std::make_unique<FunctionSummary>(
7829           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7830           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7831           std::move(PendingTypeTestAssumeVCalls),
7832           std::move(PendingTypeCheckedLoadVCalls),
7833           std::move(PendingTypeTestAssumeConstVCalls),
7834           std::move(PendingTypeCheckedLoadConstVCalls),
7835           std::move(PendingParamAccesses), std::move(PendingCallsites),
7836           std::move(PendingAllocs));
7837       LastSeenSummary = FS.get();
7838       LastSeenGUID = VI.getGUID();
7839       FS->setModulePath(ModuleIdMap[ModuleId]);
7840       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7841       break;
7842     }
7843     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7844     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7845     // they expect all aliasee summaries to be available.
7846     case bitc::FS_COMBINED_ALIAS: {
7847       unsigned ValueID = Record[0];
7848       uint64_t ModuleId = Record[1];
7849       uint64_t RawFlags = Record[2];
7850       unsigned AliaseeValueId = Record[3];
7851       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7852       auto AS = std::make_unique<AliasSummary>(Flags);
7853       LastSeenSummary = AS.get();
7854       AS->setModulePath(ModuleIdMap[ModuleId]);
7855 
7856       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7857       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7858       AS->setAliasee(AliaseeVI, AliaseeInModule);
7859 
7860       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7861       LastSeenGUID = VI.getGUID();
7862       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7863       break;
7864     }
7865     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7866     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7867       unsigned ValueID = Record[0];
7868       uint64_t ModuleId = Record[1];
7869       uint64_t RawFlags = Record[2];
7870       unsigned RefArrayStart = 3;
7871       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7872                                       /* WriteOnly */ false,
7873                                       /* Constant */ false,
7874                                       GlobalObject::VCallVisibilityPublic);
7875       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7876       if (Version >= 5) {
7877         GVF = getDecodedGVarFlags(Record[3]);
7878         RefArrayStart = 4;
7879       }
7880       std::vector<ValueInfo> Refs =
7881           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7882       auto FS =
7883           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7884       LastSeenSummary = FS.get();
7885       FS->setModulePath(ModuleIdMap[ModuleId]);
7886       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7887       LastSeenGUID = VI.getGUID();
7888       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7889       break;
7890     }
7891     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7892     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7893       uint64_t OriginalName = Record[0];
7894       if (!LastSeenSummary)
7895         return error("Name attachment that does not follow a combined record");
7896       LastSeenSummary->setOriginalName(OriginalName);
7897       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7898       // Reset the LastSeenSummary
7899       LastSeenSummary = nullptr;
7900       LastSeenGUID = 0;
7901       break;
7902     }
7903     case bitc::FS_TYPE_TESTS:
7904       assert(PendingTypeTests.empty());
7905       llvm::append_range(PendingTypeTests, Record);
7906       break;
7907 
7908     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7909       assert(PendingTypeTestAssumeVCalls.empty());
7910       for (unsigned I = 0; I != Record.size(); I += 2)
7911         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7912       break;
7913 
7914     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7915       assert(PendingTypeCheckedLoadVCalls.empty());
7916       for (unsigned I = 0; I != Record.size(); I += 2)
7917         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7918       break;
7919 
7920     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7921       PendingTypeTestAssumeConstVCalls.push_back(
7922           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7923       break;
7924 
7925     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7926       PendingTypeCheckedLoadConstVCalls.push_back(
7927           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7928       break;
7929 
7930     case bitc::FS_CFI_FUNCTION_DEFS: {
7931       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7932       for (unsigned I = 0; I != Record.size(); I += 2)
7933         CfiFunctionDefs.insert(
7934             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7935       break;
7936     }
7937 
7938     case bitc::FS_CFI_FUNCTION_DECLS: {
7939       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7940       for (unsigned I = 0; I != Record.size(); I += 2)
7941         CfiFunctionDecls.insert(
7942             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7943       break;
7944     }
7945 
7946     case bitc::FS_TYPE_ID:
7947       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7948       break;
7949 
7950     case bitc::FS_TYPE_ID_METADATA:
7951       parseTypeIdCompatibleVtableSummaryRecord(Record);
7952       break;
7953 
7954     case bitc::FS_BLOCK_COUNT:
7955       TheIndex.addBlockCount(Record[0]);
7956       break;
7957 
7958     case bitc::FS_PARAM_ACCESS: {
7959       PendingParamAccesses = parseParamAccesses(Record);
7960       break;
7961     }
7962 
7963     case bitc::FS_STACK_IDS: { // [n x stackid]
7964       // Save stack ids in the reader to consult when adding stack ids from the
7965       // lists in the stack node and alloc node entries.
7966       StackIds = ArrayRef<uint64_t>(Record);
7967       break;
7968     }
7969 
7970     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7971       unsigned ValueID = Record[0];
7972       SmallVector<unsigned> StackIdList;
7973       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7974         assert(*R < StackIds.size());
7975         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7976       }
7977       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7978       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7979       break;
7980     }
7981 
7982     case bitc::FS_COMBINED_CALLSITE_INFO: {
7983       auto RecordIter = Record.begin();
7984       unsigned ValueID = *RecordIter++;
7985       unsigned NumStackIds = *RecordIter++;
7986       unsigned NumVersions = *RecordIter++;
7987       assert(Record.size() == 3 + NumStackIds + NumVersions);
7988       SmallVector<unsigned> StackIdList;
7989       for (unsigned J = 0; J < NumStackIds; J++) {
7990         assert(*RecordIter < StackIds.size());
7991         StackIdList.push_back(
7992             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7993       }
7994       SmallVector<unsigned> Versions;
7995       for (unsigned J = 0; J < NumVersions; J++)
7996         Versions.push_back(*RecordIter++);
7997       ValueInfo VI = std::get<0>(
7998           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7999       PendingCallsites.push_back(
8000           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
8001       break;
8002     }
8003 
8004     case bitc::FS_PERMODULE_ALLOC_INFO: {
8005       unsigned I = 0;
8006       std::vector<MIBInfo> MIBs;
8007       unsigned NumMIBs = 0;
8008       if (Version >= 10)
8009         NumMIBs = Record[I++];
8010       unsigned MIBsRead = 0;
8011       while ((Version >= 10 && MIBsRead++ < NumMIBs) ||
8012              (Version < 10 && I < Record.size())) {
8013         assert(Record.size() - I >= 2);
8014         AllocationType AllocType = (AllocationType)Record[I++];
8015         unsigned NumStackEntries = Record[I++];
8016         assert(Record.size() - I >= NumStackEntries);
8017         SmallVector<unsigned> StackIdList;
8018         for (unsigned J = 0; J < NumStackEntries; J++) {
8019           assert(Record[I] < StackIds.size());
8020           StackIdList.push_back(
8021               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
8022         }
8023         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8024       }
8025       std::vector<uint64_t> TotalSizes;
8026       // We either have no sizes or NumMIBs of them.
8027       assert(I == Record.size() || Record.size() - I == NumMIBs);
8028       if (I < Record.size()) {
8029         MIBsRead = 0;
8030         while (MIBsRead++ < NumMIBs)
8031           TotalSizes.push_back(Record[I++]);
8032       }
8033       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
8034       if (!TotalSizes.empty()) {
8035         assert(PendingAllocs.back().MIBs.size() == TotalSizes.size());
8036         PendingAllocs.back().TotalSizes = std::move(TotalSizes);
8037       }
8038       break;
8039     }
8040 
8041     case bitc::FS_COMBINED_ALLOC_INFO: {
8042       unsigned I = 0;
8043       std::vector<MIBInfo> MIBs;
8044       unsigned NumMIBs = Record[I++];
8045       unsigned NumVersions = Record[I++];
8046       unsigned MIBsRead = 0;
8047       while (MIBsRead++ < NumMIBs) {
8048         assert(Record.size() - I >= 2);
8049         AllocationType AllocType = (AllocationType)Record[I++];
8050         unsigned NumStackEntries = Record[I++];
8051         assert(Record.size() - I >= NumStackEntries);
8052         SmallVector<unsigned> StackIdList;
8053         for (unsigned J = 0; J < NumStackEntries; J++) {
8054           assert(Record[I] < StackIds.size());
8055           StackIdList.push_back(
8056               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
8057         }
8058         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8059       }
8060       assert(Record.size() - I >= NumVersions);
8061       SmallVector<uint8_t> Versions;
8062       for (unsigned J = 0; J < NumVersions; J++)
8063         Versions.push_back(Record[I++]);
8064       std::vector<uint64_t> TotalSizes;
8065       // We either have no sizes or NumMIBs of them.
8066       assert(I == Record.size() || Record.size() - I == NumMIBs);
8067       if (I < Record.size()) {
8068         MIBsRead = 0;
8069         while (MIBsRead++ < NumMIBs) {
8070           TotalSizes.push_back(Record[I++]);
8071         }
8072       }
8073       PendingAllocs.push_back(
8074           AllocInfo(std::move(Versions), std::move(MIBs)));
8075       if (!TotalSizes.empty()) {
8076         assert(PendingAllocs.back().MIBs.size() == TotalSizes.size());
8077         PendingAllocs.back().TotalSizes = std::move(TotalSizes);
8078       }
8079       break;
8080     }
8081     }
8082   }
8083   llvm_unreachable("Exit infinite loop");
8084 }
8085 
8086 // Parse the  module string table block into the Index.
8087 // This populates the ModulePathStringTable map in the index.
8088 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
8089   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
8090     return Err;
8091 
8092   SmallVector<uint64_t, 64> Record;
8093 
8094   SmallString<128> ModulePath;
8095   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
8096 
8097   while (true) {
8098     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
8099     if (!MaybeEntry)
8100       return MaybeEntry.takeError();
8101     BitstreamEntry Entry = MaybeEntry.get();
8102 
8103     switch (Entry.Kind) {
8104     case BitstreamEntry::SubBlock: // Handled for us already.
8105     case BitstreamEntry::Error:
8106       return error("Malformed block");
8107     case BitstreamEntry::EndBlock:
8108       return Error::success();
8109     case BitstreamEntry::Record:
8110       // The interesting case.
8111       break;
8112     }
8113 
8114     Record.clear();
8115     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
8116     if (!MaybeRecord)
8117       return MaybeRecord.takeError();
8118     switch (MaybeRecord.get()) {
8119     default: // Default behavior: ignore.
8120       break;
8121     case bitc::MST_CODE_ENTRY: {
8122       // MST_ENTRY: [modid, namechar x N]
8123       uint64_t ModuleId = Record[0];
8124 
8125       if (convertToString(Record, 1, ModulePath))
8126         return error("Invalid record");
8127 
8128       LastSeenModule = TheIndex.addModule(ModulePath);
8129       ModuleIdMap[ModuleId] = LastSeenModule->first();
8130 
8131       ModulePath.clear();
8132       break;
8133     }
8134     /// MST_CODE_HASH: [5*i32]
8135     case bitc::MST_CODE_HASH: {
8136       if (Record.size() != 5)
8137         return error("Invalid hash length " + Twine(Record.size()).str());
8138       if (!LastSeenModule)
8139         return error("Invalid hash that does not follow a module path");
8140       int Pos = 0;
8141       for (auto &Val : Record) {
8142         assert(!(Val >> 32) && "Unexpected high bits set");
8143         LastSeenModule->second[Pos++] = Val;
8144       }
8145       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8146       LastSeenModule = nullptr;
8147       break;
8148     }
8149     }
8150   }
8151   llvm_unreachable("Exit infinite loop");
8152 }
8153 
8154 namespace {
8155 
8156 // FIXME: This class is only here to support the transition to llvm::Error. It
8157 // will be removed once this transition is complete. Clients should prefer to
8158 // deal with the Error value directly, rather than converting to error_code.
8159 class BitcodeErrorCategoryType : public std::error_category {
8160   const char *name() const noexcept override {
8161     return "llvm.bitcode";
8162   }
8163 
8164   std::string message(int IE) const override {
8165     BitcodeError E = static_cast<BitcodeError>(IE);
8166     switch (E) {
8167     case BitcodeError::CorruptedBitcode:
8168       return "Corrupted bitcode";
8169     }
8170     llvm_unreachable("Unknown error type!");
8171   }
8172 };
8173 
8174 } // end anonymous namespace
8175 
8176 const std::error_category &llvm::BitcodeErrorCategory() {
8177   static BitcodeErrorCategoryType ErrorCategory;
8178   return ErrorCategory;
8179 }
8180 
8181 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8182                                             unsigned Block, unsigned RecordID) {
8183   if (Error Err = Stream.EnterSubBlock(Block))
8184     return std::move(Err);
8185 
8186   StringRef Strtab;
8187   while (true) {
8188     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8189     if (!MaybeEntry)
8190       return MaybeEntry.takeError();
8191     llvm::BitstreamEntry Entry = MaybeEntry.get();
8192 
8193     switch (Entry.Kind) {
8194     case BitstreamEntry::EndBlock:
8195       return Strtab;
8196 
8197     case BitstreamEntry::Error:
8198       return error("Malformed block");
8199 
8200     case BitstreamEntry::SubBlock:
8201       if (Error Err = Stream.SkipBlock())
8202         return std::move(Err);
8203       break;
8204 
8205     case BitstreamEntry::Record:
8206       StringRef Blob;
8207       SmallVector<uint64_t, 1> Record;
8208       Expected<unsigned> MaybeRecord =
8209           Stream.readRecord(Entry.ID, Record, &Blob);
8210       if (!MaybeRecord)
8211         return MaybeRecord.takeError();
8212       if (MaybeRecord.get() == RecordID)
8213         Strtab = Blob;
8214       break;
8215     }
8216   }
8217 }
8218 
8219 //===----------------------------------------------------------------------===//
8220 // External interface
8221 //===----------------------------------------------------------------------===//
8222 
8223 Expected<std::vector<BitcodeModule>>
8224 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8225   auto FOrErr = getBitcodeFileContents(Buffer);
8226   if (!FOrErr)
8227     return FOrErr.takeError();
8228   return std::move(FOrErr->Mods);
8229 }
8230 
8231 Expected<BitcodeFileContents>
8232 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8233   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8234   if (!StreamOrErr)
8235     return StreamOrErr.takeError();
8236   BitstreamCursor &Stream = *StreamOrErr;
8237 
8238   BitcodeFileContents F;
8239   while (true) {
8240     uint64_t BCBegin = Stream.getCurrentByteNo();
8241 
8242     // We may be consuming bitcode from a client that leaves garbage at the end
8243     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8244     // the end that there cannot possibly be another module, stop looking.
8245     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8246       return F;
8247 
8248     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8249     if (!MaybeEntry)
8250       return MaybeEntry.takeError();
8251     llvm::BitstreamEntry Entry = MaybeEntry.get();
8252 
8253     switch (Entry.Kind) {
8254     case BitstreamEntry::EndBlock:
8255     case BitstreamEntry::Error:
8256       return error("Malformed block");
8257 
8258     case BitstreamEntry::SubBlock: {
8259       uint64_t IdentificationBit = -1ull;
8260       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8261         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8262         if (Error Err = Stream.SkipBlock())
8263           return std::move(Err);
8264 
8265         {
8266           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8267           if (!MaybeEntry)
8268             return MaybeEntry.takeError();
8269           Entry = MaybeEntry.get();
8270         }
8271 
8272         if (Entry.Kind != BitstreamEntry::SubBlock ||
8273             Entry.ID != bitc::MODULE_BLOCK_ID)
8274           return error("Malformed block");
8275       }
8276 
8277       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8278         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8279         if (Error Err = Stream.SkipBlock())
8280           return std::move(Err);
8281 
8282         F.Mods.push_back({Stream.getBitcodeBytes().slice(
8283                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
8284                           Buffer.getBufferIdentifier(), IdentificationBit,
8285                           ModuleBit});
8286         continue;
8287       }
8288 
8289       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8290         Expected<StringRef> Strtab =
8291             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8292         if (!Strtab)
8293           return Strtab.takeError();
8294         // This string table is used by every preceding bitcode module that does
8295         // not have its own string table. A bitcode file may have multiple
8296         // string tables if it was created by binary concatenation, for example
8297         // with "llvm-cat -b".
8298         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8299           if (!I.Strtab.empty())
8300             break;
8301           I.Strtab = *Strtab;
8302         }
8303         // Similarly, the string table is used by every preceding symbol table;
8304         // normally there will be just one unless the bitcode file was created
8305         // by binary concatenation.
8306         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8307           F.StrtabForSymtab = *Strtab;
8308         continue;
8309       }
8310 
8311       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8312         Expected<StringRef> SymtabOrErr =
8313             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8314         if (!SymtabOrErr)
8315           return SymtabOrErr.takeError();
8316 
8317         // We can expect the bitcode file to have multiple symbol tables if it
8318         // was created by binary concatenation. In that case we silently
8319         // ignore any subsequent symbol tables, which is fine because this is a
8320         // low level function. The client is expected to notice that the number
8321         // of modules in the symbol table does not match the number of modules
8322         // in the input file and regenerate the symbol table.
8323         if (F.Symtab.empty())
8324           F.Symtab = *SymtabOrErr;
8325         continue;
8326       }
8327 
8328       if (Error Err = Stream.SkipBlock())
8329         return std::move(Err);
8330       continue;
8331     }
8332     case BitstreamEntry::Record:
8333       if (Error E = Stream.skipRecord(Entry.ID).takeError())
8334         return std::move(E);
8335       continue;
8336     }
8337   }
8338 }
8339 
8340 /// Get a lazy one-at-time loading module from bitcode.
8341 ///
8342 /// This isn't always used in a lazy context.  In particular, it's also used by
8343 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
8344 /// in forward-referenced functions from block address references.
8345 ///
8346 /// \param[in] MaterializeAll Set to \c true if we should materialize
8347 /// everything.
8348 Expected<std::unique_ptr<Module>>
8349 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8350                              bool ShouldLazyLoadMetadata, bool IsImporting,
8351                              ParserCallbacks Callbacks) {
8352   BitstreamCursor Stream(Buffer);
8353 
8354   std::string ProducerIdentification;
8355   if (IdentificationBit != -1ull) {
8356     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8357       return std::move(JumpFailed);
8358     if (Error E =
8359             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8360       return std::move(E);
8361   }
8362 
8363   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8364     return std::move(JumpFailed);
8365   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8366                               Context);
8367 
8368   std::unique_ptr<Module> M =
8369       std::make_unique<Module>(ModuleIdentifier, Context);
8370   M->setMaterializer(R);
8371 
8372   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8373   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8374                                       IsImporting, Callbacks))
8375     return std::move(Err);
8376 
8377   if (MaterializeAll) {
8378     // Read in the entire module, and destroy the BitcodeReader.
8379     if (Error Err = M->materializeAll())
8380       return std::move(Err);
8381   } else {
8382     // Resolve forward references from blockaddresses.
8383     if (Error Err = R->materializeForwardReferencedFunctions())
8384       return std::move(Err);
8385   }
8386 
8387   return std::move(M);
8388 }
8389 
8390 Expected<std::unique_ptr<Module>>
8391 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8392                              bool IsImporting, ParserCallbacks Callbacks) {
8393   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8394                        Callbacks);
8395 }
8396 
8397 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8398 // We don't use ModuleIdentifier here because the client may need to control the
8399 // module path used in the combined summary (e.g. when reading summaries for
8400 // regular LTO modules).
8401 Error BitcodeModule::readSummary(
8402     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8403     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8404   BitstreamCursor Stream(Buffer);
8405   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8406     return JumpFailed;
8407 
8408   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8409                                     ModulePath, IsPrevailing);
8410   return R.parseModule();
8411 }
8412 
8413 // Parse the specified bitcode buffer, returning the function info index.
8414 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8415   BitstreamCursor Stream(Buffer);
8416   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8417     return std::move(JumpFailed);
8418 
8419   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8420   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8421                                     ModuleIdentifier, 0);
8422 
8423   if (Error Err = R.parseModule())
8424     return std::move(Err);
8425 
8426   return std::move(Index);
8427 }
8428 
8429 static Expected<std::pair<bool, bool>>
8430 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8431                                                  unsigned ID,
8432                                                  BitcodeLTOInfo &LTOInfo) {
8433   if (Error Err = Stream.EnterSubBlock(ID))
8434     return std::move(Err);
8435   SmallVector<uint64_t, 64> Record;
8436 
8437   while (true) {
8438     BitstreamEntry Entry;
8439     std::pair<bool, bool> Result = {false,false};
8440     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8441       return std::move(E);
8442 
8443     switch (Entry.Kind) {
8444     case BitstreamEntry::SubBlock: // Handled for us already.
8445     case BitstreamEntry::Error:
8446       return error("Malformed block");
8447     case BitstreamEntry::EndBlock: {
8448       // If no flags record found, set both flags to false.
8449       return Result;
8450     }
8451     case BitstreamEntry::Record:
8452       // The interesting case.
8453       break;
8454     }
8455 
8456     // Look for the FS_FLAGS record.
8457     Record.clear();
8458     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8459     if (!MaybeBitCode)
8460       return MaybeBitCode.takeError();
8461     switch (MaybeBitCode.get()) {
8462     default: // Default behavior: ignore.
8463       break;
8464     case bitc::FS_FLAGS: { // [flags]
8465       uint64_t Flags = Record[0];
8466       // Scan flags.
8467       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8468 
8469       bool EnableSplitLTOUnit = Flags & 0x8;
8470       bool UnifiedLTO = Flags & 0x200;
8471       Result = {EnableSplitLTOUnit, UnifiedLTO};
8472 
8473       return Result;
8474     }
8475     }
8476   }
8477   llvm_unreachable("Exit infinite loop");
8478 }
8479 
8480 // Check if the given bitcode buffer contains a global value summary block.
8481 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8482   BitstreamCursor Stream(Buffer);
8483   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8484     return std::move(JumpFailed);
8485 
8486   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8487     return std::move(Err);
8488 
8489   while (true) {
8490     llvm::BitstreamEntry Entry;
8491     if (Error E = Stream.advance().moveInto(Entry))
8492       return std::move(E);
8493 
8494     switch (Entry.Kind) {
8495     case BitstreamEntry::Error:
8496       return error("Malformed block");
8497     case BitstreamEntry::EndBlock:
8498       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8499                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8500 
8501     case BitstreamEntry::SubBlock:
8502       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8503         BitcodeLTOInfo LTOInfo;
8504         Expected<std::pair<bool, bool>> Flags =
8505             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8506         if (!Flags)
8507           return Flags.takeError();
8508         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8509         LTOInfo.IsThinLTO = true;
8510         LTOInfo.HasSummary = true;
8511         return LTOInfo;
8512       }
8513 
8514       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8515         BitcodeLTOInfo LTOInfo;
8516         Expected<std::pair<bool, bool>> Flags =
8517             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8518         if (!Flags)
8519           return Flags.takeError();
8520         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8521         LTOInfo.IsThinLTO = false;
8522         LTOInfo.HasSummary = true;
8523         return LTOInfo;
8524       }
8525 
8526       // Ignore other sub-blocks.
8527       if (Error Err = Stream.SkipBlock())
8528         return std::move(Err);
8529       continue;
8530 
8531     case BitstreamEntry::Record:
8532       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8533         continue;
8534       else
8535         return StreamFailed.takeError();
8536     }
8537   }
8538 }
8539 
8540 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8541   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8542   if (!MsOrErr)
8543     return MsOrErr.takeError();
8544 
8545   if (MsOrErr->size() != 1)
8546     return error("Expected a single module");
8547 
8548   return (*MsOrErr)[0];
8549 }
8550 
8551 Expected<std::unique_ptr<Module>>
8552 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8553                            bool ShouldLazyLoadMetadata, bool IsImporting,
8554                            ParserCallbacks Callbacks) {
8555   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8556   if (!BM)
8557     return BM.takeError();
8558 
8559   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8560                            Callbacks);
8561 }
8562 
8563 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8564     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8565     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8566   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8567                                      IsImporting, Callbacks);
8568   if (MOrErr)
8569     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8570   return MOrErr;
8571 }
8572 
8573 Expected<std::unique_ptr<Module>>
8574 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8575   return getModuleImpl(Context, true, false, false, Callbacks);
8576   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8577   // written.  We must defer until the Module has been fully materialized.
8578 }
8579 
8580 Expected<std::unique_ptr<Module>>
8581 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8582                        ParserCallbacks Callbacks) {
8583   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8584   if (!BM)
8585     return BM.takeError();
8586 
8587   return BM->parseModule(Context, Callbacks);
8588 }
8589 
8590 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8591   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8592   if (!StreamOrErr)
8593     return StreamOrErr.takeError();
8594 
8595   return readTriple(*StreamOrErr);
8596 }
8597 
8598 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8599   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8600   if (!StreamOrErr)
8601     return StreamOrErr.takeError();
8602 
8603   return hasObjCCategory(*StreamOrErr);
8604 }
8605 
8606 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8607   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8608   if (!StreamOrErr)
8609     return StreamOrErr.takeError();
8610 
8611   return readIdentificationCode(*StreamOrErr);
8612 }
8613 
8614 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8615                                    ModuleSummaryIndex &CombinedIndex) {
8616   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8617   if (!BM)
8618     return BM.takeError();
8619 
8620   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8621 }
8622 
8623 Expected<std::unique_ptr<ModuleSummaryIndex>>
8624 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8625   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8626   if (!BM)
8627     return BM.takeError();
8628 
8629   return BM->getSummary();
8630 }
8631 
8632 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8633   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8634   if (!BM)
8635     return BM.takeError();
8636 
8637   return BM->getLTOInfo();
8638 }
8639 
8640 Expected<std::unique_ptr<ModuleSummaryIndex>>
8641 llvm::getModuleSummaryIndexForFile(StringRef Path,
8642                                    bool IgnoreEmptyThinLTOIndexFile) {
8643   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8644       MemoryBuffer::getFileOrSTDIN(Path);
8645   if (!FileOrErr)
8646     return errorCodeToError(FileOrErr.getError());
8647   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8648     return nullptr;
8649   return getModuleSummaryIndex(**FileOrErr);
8650 }
8651