1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <optional> 84 #include <set> 85 #include <string> 86 #include <system_error> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 93 static cl::opt<bool> PrintSummaryGUIDs( 94 "print-summary-global-ids", cl::init(false), cl::Hidden, 95 cl::desc( 96 "Print the global id for each value when reading the module summary")); 97 98 static cl::opt<bool> ExpandConstantExprs( 99 "expand-constant-exprs", cl::Hidden, 100 cl::desc( 101 "Expand constant expressions to instructions for testing purposes")); 102 103 namespace { 104 105 enum { 106 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 107 }; 108 109 } // end anonymous namespace 110 111 static Error error(const Twine &Message) { 112 return make_error<StringError>( 113 Message, make_error_code(BitcodeError::CorruptedBitcode)); 114 } 115 116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 117 if (!Stream.canSkipToPos(4)) 118 return createStringError(std::errc::illegal_byte_sequence, 119 "file too small to contain bitcode header"); 120 for (unsigned C : {'B', 'C'}) 121 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 122 if (Res.get() != C) 123 return createStringError(std::errc::illegal_byte_sequence, 124 "file doesn't start with bitcode header"); 125 } else 126 return Res.takeError(); 127 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 128 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 129 if (Res.get() != C) 130 return createStringError(std::errc::illegal_byte_sequence, 131 "file doesn't start with bitcode header"); 132 } else 133 return Res.takeError(); 134 return Error::success(); 135 } 136 137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 138 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 139 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 140 141 if (Buffer.getBufferSize() & 3) 142 return error("Invalid bitcode signature"); 143 144 // If we have a wrapper header, parse it and ignore the non-bc file contents. 145 // The magic number is 0x0B17C0DE stored in little endian. 146 if (isBitcodeWrapper(BufPtr, BufEnd)) 147 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 148 return error("Invalid bitcode wrapper header"); 149 150 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 151 if (Error Err = hasInvalidBitcodeHeader(Stream)) 152 return std::move(Err); 153 154 return std::move(Stream); 155 } 156 157 /// Convert a string from a record into an std::string, return true on failure. 158 template <typename StrTy> 159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 160 StrTy &Result) { 161 if (Idx > Record.size()) 162 return true; 163 164 Result.append(Record.begin() + Idx, Record.end()); 165 return false; 166 } 167 168 // Strip all the TBAA attachment for the module. 169 static void stripTBAA(Module *M) { 170 for (auto &F : *M) { 171 if (F.isMaterializable()) 172 continue; 173 for (auto &I : instructions(F)) 174 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 175 } 176 } 177 178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 179 /// "epoch" encoded in the bitcode, and return the producer name if any. 180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 181 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 182 return std::move(Err); 183 184 // Read all the records. 185 SmallVector<uint64_t, 64> Record; 186 187 std::string ProducerIdentification; 188 189 while (true) { 190 BitstreamEntry Entry; 191 if (Error E = Stream.advance().moveInto(Entry)) 192 return std::move(E); 193 194 switch (Entry.Kind) { 195 default: 196 case BitstreamEntry::Error: 197 return error("Malformed block"); 198 case BitstreamEntry::EndBlock: 199 return ProducerIdentification; 200 case BitstreamEntry::Record: 201 // The interesting case. 202 break; 203 } 204 205 // Read a record. 206 Record.clear(); 207 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 208 if (!MaybeBitCode) 209 return MaybeBitCode.takeError(); 210 switch (MaybeBitCode.get()) { 211 default: // Default behavior: reject 212 return error("Invalid value"); 213 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 214 convertToString(Record, 0, ProducerIdentification); 215 break; 216 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 217 unsigned epoch = (unsigned)Record[0]; 218 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 219 return error( 220 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 221 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 222 } 223 } 224 } 225 } 226 } 227 228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 229 // We expect a number of well-defined blocks, though we don't necessarily 230 // need to understand them all. 231 while (true) { 232 if (Stream.AtEndOfStream()) 233 return ""; 234 235 BitstreamEntry Entry; 236 if (Error E = Stream.advance().moveInto(Entry)) 237 return std::move(E); 238 239 switch (Entry.Kind) { 240 case BitstreamEntry::EndBlock: 241 case BitstreamEntry::Error: 242 return error("Malformed block"); 243 244 case BitstreamEntry::SubBlock: 245 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 246 return readIdentificationBlock(Stream); 247 248 // Ignore other sub-blocks. 249 if (Error Err = Stream.SkipBlock()) 250 return std::move(Err); 251 continue; 252 case BitstreamEntry::Record: 253 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 254 return std::move(E); 255 continue; 256 } 257 } 258 } 259 260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 261 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 262 return std::move(Err); 263 264 SmallVector<uint64_t, 64> Record; 265 // Read all the records for this module. 266 267 while (true) { 268 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 269 if (!MaybeEntry) 270 return MaybeEntry.takeError(); 271 BitstreamEntry Entry = MaybeEntry.get(); 272 273 switch (Entry.Kind) { 274 case BitstreamEntry::SubBlock: // Handled for us already. 275 case BitstreamEntry::Error: 276 return error("Malformed block"); 277 case BitstreamEntry::EndBlock: 278 return false; 279 case BitstreamEntry::Record: 280 // The interesting case. 281 break; 282 } 283 284 // Read a record. 285 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 286 if (!MaybeRecord) 287 return MaybeRecord.takeError(); 288 switch (MaybeRecord.get()) { 289 default: 290 break; // Default behavior, ignore unknown content. 291 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 292 std::string S; 293 if (convertToString(Record, 0, S)) 294 return error("Invalid section name record"); 295 // Check for the i386 and other (x86_64, ARM) conventions 296 if (S.find("__DATA,__objc_catlist") != std::string::npos || 297 S.find("__OBJC,__category") != std::string::npos) 298 return true; 299 break; 300 } 301 } 302 Record.clear(); 303 } 304 llvm_unreachable("Exit infinite loop"); 305 } 306 307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 308 // We expect a number of well-defined blocks, though we don't necessarily 309 // need to understand them all. 310 while (true) { 311 BitstreamEntry Entry; 312 if (Error E = Stream.advance().moveInto(Entry)) 313 return std::move(E); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 332 return std::move(E); 333 continue; 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid triple record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 Error readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid version record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 /// This represents a constant expression or constant aggregate using a custom 483 /// structure internal to the bitcode reader. Later, this structure will be 484 /// expanded by materializeValue() either into a constant expression/aggregate, 485 /// or into an instruction sequence at the point of use. This allows us to 486 /// upgrade bitcode using constant expressions even if this kind of constant 487 /// expression is no longer supported. 488 class BitcodeConstant final : public Value, 489 TrailingObjects<BitcodeConstant, unsigned> { 490 friend TrailingObjects; 491 492 // Value subclass ID: Pick largest possible value to avoid any clashes. 493 static constexpr uint8_t SubclassID = 255; 494 495 public: 496 // Opcodes used for non-expressions. This includes constant aggregates 497 // (struct, array, vector) that might need expansion, as well as non-leaf 498 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 499 // but still go through BitcodeConstant to avoid different uselist orders 500 // between the two cases. 501 static constexpr uint8_t ConstantStructOpcode = 255; 502 static constexpr uint8_t ConstantArrayOpcode = 254; 503 static constexpr uint8_t ConstantVectorOpcode = 253; 504 static constexpr uint8_t NoCFIOpcode = 252; 505 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 506 static constexpr uint8_t BlockAddressOpcode = 250; 507 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 508 509 // Separate struct to make passing different number of parameters to 510 // BitcodeConstant::create() more convenient. 511 struct ExtraInfo { 512 uint8_t Opcode; 513 uint8_t Flags; 514 unsigned Extra; 515 Type *SrcElemTy; 516 517 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 518 Type *SrcElemTy = nullptr) 519 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 520 }; 521 522 uint8_t Opcode; 523 uint8_t Flags; 524 unsigned NumOperands; 525 unsigned Extra; // GEP inrange index or blockaddress BB id. 526 Type *SrcElemTy; // GEP source element type. 527 528 private: 529 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 530 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 531 NumOperands(OpIDs.size()), Extra(Info.Extra), 532 SrcElemTy(Info.SrcElemTy) { 533 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 534 getTrailingObjects<unsigned>()); 535 } 536 537 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 538 539 public: 540 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 541 const ExtraInfo &Info, 542 ArrayRef<unsigned> OpIDs) { 543 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 544 alignof(BitcodeConstant)); 545 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 546 } 547 548 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 549 550 ArrayRef<unsigned> getOperandIDs() const { 551 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 552 } 553 554 std::optional<unsigned> getInRangeIndex() const { 555 assert(Opcode == Instruction::GetElementPtr); 556 if (Extra == (unsigned)-1) 557 return std::nullopt; 558 return Extra; 559 } 560 561 const char *getOpcodeName() const { 562 return Instruction::getOpcodeName(Opcode); 563 } 564 }; 565 566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 567 LLVMContext &Context; 568 Module *TheModule = nullptr; 569 // Next offset to start scanning for lazy parsing of function bodies. 570 uint64_t NextUnreadBit = 0; 571 // Last function offset found in the VST. 572 uint64_t LastFunctionBlockBit = 0; 573 bool SeenValueSymbolTable = false; 574 uint64_t VSTOffset = 0; 575 576 std::vector<std::string> SectionTable; 577 std::vector<std::string> GCTable; 578 579 std::vector<Type *> TypeList; 580 /// Track type IDs of contained types. Order is the same as the contained 581 /// types of a Type*. This is used during upgrades of typed pointer IR in 582 /// opaque pointer mode. 583 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 584 /// In some cases, we need to create a type ID for a type that was not 585 /// explicitly encoded in the bitcode, or we don't know about at the current 586 /// point. For example, a global may explicitly encode the value type ID, but 587 /// not have a type ID for the pointer to value type, for which we create a 588 /// virtual type ID instead. This map stores the new type ID that was created 589 /// for the given pair of Type and contained type ID. 590 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 591 DenseMap<Function *, unsigned> FunctionTypeIDs; 592 /// Allocator for BitcodeConstants. This should come before ValueList, 593 /// because the ValueList might hold ValueHandles to these constants, so 594 /// ValueList must be destroyed before Alloc. 595 BumpPtrAllocator Alloc; 596 BitcodeReaderValueList ValueList; 597 std::optional<MetadataLoader> MDLoader; 598 std::vector<Comdat *> ComdatList; 599 DenseSet<GlobalObject *> ImplicitComdatObjects; 600 SmallVector<Instruction *, 64> InstructionList; 601 602 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 603 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 604 605 struct FunctionOperandInfo { 606 Function *F; 607 unsigned PersonalityFn; 608 unsigned Prefix; 609 unsigned Prologue; 610 }; 611 std::vector<FunctionOperandInfo> FunctionOperands; 612 613 /// The set of attributes by index. Index zero in the file is for null, and 614 /// is thus not represented here. As such all indices are off by one. 615 std::vector<AttributeList> MAttributes; 616 617 /// The set of attribute groups. 618 std::map<unsigned, AttributeList> MAttributeGroups; 619 620 /// While parsing a function body, this is a list of the basic blocks for the 621 /// function. 622 std::vector<BasicBlock*> FunctionBBs; 623 624 // When reading the module header, this list is populated with functions that 625 // have bodies later in the file. 626 std::vector<Function*> FunctionsWithBodies; 627 628 // When intrinsic functions are encountered which require upgrading they are 629 // stored here with their replacement function. 630 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 631 UpdatedIntrinsicMap UpgradedIntrinsics; 632 633 // Several operations happen after the module header has been read, but 634 // before function bodies are processed. This keeps track of whether 635 // we've done this yet. 636 bool SeenFirstFunctionBody = false; 637 638 /// When function bodies are initially scanned, this map contains info about 639 /// where to find deferred function body in the stream. 640 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 641 642 /// When Metadata block is initially scanned when parsing the module, we may 643 /// choose to defer parsing of the metadata. This vector contains info about 644 /// which Metadata blocks are deferred. 645 std::vector<uint64_t> DeferredMetadataInfo; 646 647 /// These are basic blocks forward-referenced by block addresses. They are 648 /// inserted lazily into functions when they're loaded. The basic block ID is 649 /// its index into the vector. 650 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 651 std::deque<Function *> BasicBlockFwdRefQueue; 652 653 /// These are Functions that contain BlockAddresses which refer a different 654 /// Function. When parsing the different Function, queue Functions that refer 655 /// to the different Function. Those Functions must be materialized in order 656 /// to resolve their BlockAddress constants before the different Function 657 /// gets moved into another Module. 658 std::vector<Function *> BackwardRefFunctions; 659 660 /// Indicates that we are using a new encoding for instruction operands where 661 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 662 /// instruction number, for a more compact encoding. Some instruction 663 /// operands are not relative to the instruction ID: basic block numbers, and 664 /// types. Once the old style function blocks have been phased out, we would 665 /// not need this flag. 666 bool UseRelativeIDs = false; 667 668 /// True if all functions will be materialized, negating the need to process 669 /// (e.g.) blockaddress forward references. 670 bool WillMaterializeAllForwardRefs = false; 671 672 bool StripDebugInfo = false; 673 TBAAVerifier TBAAVerifyHelper; 674 675 std::vector<std::string> BundleTags; 676 SmallVector<SyncScope::ID, 8> SSIDs; 677 678 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 679 680 public: 681 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 682 StringRef ProducerIdentification, LLVMContext &Context); 683 684 Error materializeForwardReferencedFunctions(); 685 686 Error materialize(GlobalValue *GV) override; 687 Error materializeModule() override; 688 std::vector<StructType *> getIdentifiedStructTypes() const override; 689 690 /// Main interface to parsing a bitcode buffer. 691 /// \returns true if an error occurred. 692 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 693 bool IsImporting, ParserCallbacks Callbacks = {}); 694 695 static uint64_t decodeSignRotatedValue(uint64_t V); 696 697 /// Materialize any deferred Metadata block. 698 Error materializeMetadata() override; 699 700 void setStripDebugInfo() override; 701 702 private: 703 std::vector<StructType *> IdentifiedStructTypes; 704 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 705 StructType *createIdentifiedStructType(LLVMContext &Context); 706 707 static constexpr unsigned InvalidTypeID = ~0u; 708 709 Type *getTypeByID(unsigned ID); 710 Type *getPtrElementTypeByID(unsigned ID); 711 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 712 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 713 714 void callValueTypeCallback(Value *F, unsigned TypeID); 715 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 716 Expected<Constant *> getValueForInitializer(unsigned ID); 717 718 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 719 BasicBlock *ConstExprInsertBB) { 720 if (Ty && Ty->isMetadataTy()) 721 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 722 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 723 } 724 725 Metadata *getFnMetadataByID(unsigned ID) { 726 return MDLoader->getMetadataFwdRefOrLoad(ID); 727 } 728 729 BasicBlock *getBasicBlock(unsigned ID) const { 730 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 731 return FunctionBBs[ID]; 732 } 733 734 AttributeList getAttributes(unsigned i) const { 735 if (i-1 < MAttributes.size()) 736 return MAttributes[i-1]; 737 return AttributeList(); 738 } 739 740 /// Read a value/type pair out of the specified record from slot 'Slot'. 741 /// Increment Slot past the number of slots used in the record. Return true on 742 /// failure. 743 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 744 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Slot == Record.size()) return true; 747 unsigned ValNo = (unsigned)Record[Slot++]; 748 // Adjust the ValNo, if it was encoded relative to the InstNum. 749 if (UseRelativeIDs) 750 ValNo = InstNum - ValNo; 751 if (ValNo < InstNum) { 752 // If this is not a forward reference, just return the value we already 753 // have. 754 TypeID = ValueList.getTypeID(ValNo); 755 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 756 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 757 "Incorrect type ID stored for value"); 758 return ResVal == nullptr; 759 } 760 if (Slot == Record.size()) 761 return true; 762 763 TypeID = (unsigned)Record[Slot++]; 764 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 765 ConstExprInsertBB); 766 return ResVal == nullptr; 767 } 768 769 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 770 /// past the number of slots used by the value in the record. Return true if 771 /// there is an error. 772 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 773 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 774 BasicBlock *ConstExprInsertBB) { 775 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 776 return true; 777 // All values currently take a single record slot. 778 ++Slot; 779 return false; 780 } 781 782 /// Like popValue, but does not increment the Slot number. 783 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 784 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 785 BasicBlock *ConstExprInsertBB) { 786 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 787 return ResVal == nullptr; 788 } 789 790 /// Version of getValue that returns ResVal directly, or 0 if there is an 791 /// error. 792 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 793 unsigned InstNum, Type *Ty, unsigned TyID, 794 BasicBlock *ConstExprInsertBB) { 795 if (Slot == Record.size()) return nullptr; 796 unsigned ValNo = (unsigned)Record[Slot]; 797 // Adjust the ValNo, if it was encoded relative to the InstNum. 798 if (UseRelativeIDs) 799 ValNo = InstNum - ValNo; 800 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 801 } 802 803 /// Like getValue, but decodes signed VBRs. 804 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 805 unsigned InstNum, Type *Ty, unsigned TyID, 806 BasicBlock *ConstExprInsertBB) { 807 if (Slot == Record.size()) return nullptr; 808 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 809 // Adjust the ValNo, if it was encoded relative to the InstNum. 810 if (UseRelativeIDs) 811 ValNo = InstNum - ValNo; 812 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 813 } 814 815 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 816 /// corresponding argument's pointee type. Also upgrades intrinsics that now 817 /// require an elementtype attribute. 818 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 819 820 /// Converts alignment exponent (i.e. power of two (or zero)) to the 821 /// corresponding alignment to use. If alignment is too large, returns 822 /// a corresponding error code. 823 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 824 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 825 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 826 ParserCallbacks Callbacks = {}); 827 828 Error parseComdatRecord(ArrayRef<uint64_t> Record); 829 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 830 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 831 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 832 ArrayRef<uint64_t> Record); 833 834 Error parseAttributeBlock(); 835 Error parseAttributeGroupBlock(); 836 Error parseTypeTable(); 837 Error parseTypeTableBody(); 838 Error parseOperandBundleTags(); 839 Error parseSyncScopeNames(); 840 841 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 842 unsigned NameIndex, Triple &TT); 843 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 844 ArrayRef<uint64_t> Record); 845 Error parseValueSymbolTable(uint64_t Offset = 0); 846 Error parseGlobalValueSymbolTable(); 847 Error parseConstants(); 848 Error rememberAndSkipFunctionBodies(); 849 Error rememberAndSkipFunctionBody(); 850 /// Save the positions of the Metadata blocks and skip parsing the blocks. 851 Error rememberAndSkipMetadata(); 852 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 853 Error parseFunctionBody(Function *F); 854 Error globalCleanup(); 855 Error resolveGlobalAndIndirectSymbolInits(); 856 Error parseUseLists(); 857 Error findFunctionInStream( 858 Function *F, 859 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 860 861 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 862 }; 863 864 /// Class to manage reading and parsing function summary index bitcode 865 /// files/sections. 866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 867 /// The module index built during parsing. 868 ModuleSummaryIndex &TheIndex; 869 870 /// Indicates whether we have encountered a global value summary section 871 /// yet during parsing. 872 bool SeenGlobalValSummary = false; 873 874 /// Indicates whether we have already parsed the VST, used for error checking. 875 bool SeenValueSymbolTable = false; 876 877 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 878 /// Used to enable on-demand parsing of the VST. 879 uint64_t VSTOffset = 0; 880 881 // Map to save ValueId to ValueInfo association that was recorded in the 882 // ValueSymbolTable. It is used after the VST is parsed to convert 883 // call graph edges read from the function summary from referencing 884 // callees by their ValueId to using the ValueInfo instead, which is how 885 // they are recorded in the summary index being built. 886 // We save a GUID which refers to the same global as the ValueInfo, but 887 // ignoring the linkage, i.e. for values other than local linkage they are 888 // identical (this is the second tuple member). 889 // The third tuple member is the real GUID of the ValueInfo. 890 DenseMap<unsigned, 891 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 892 ValueIdToValueInfoMap; 893 894 /// Map populated during module path string table parsing, from the 895 /// module ID to a string reference owned by the index's module 896 /// path string table, used to correlate with combined index 897 /// summary records. 898 DenseMap<uint64_t, StringRef> ModuleIdMap; 899 900 /// Original source file name recorded in a bitcode record. 901 std::string SourceFileName; 902 903 /// The string identifier given to this module by the client, normally the 904 /// path to the bitcode file. 905 StringRef ModulePath; 906 907 /// Callback to ask whether a symbol is the prevailing copy when invoked 908 /// during combined index building. 909 std::function<bool(GlobalValue::GUID)> IsPrevailing; 910 911 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 912 /// ids from the lists in the callsite and alloc entries to the index. 913 std::vector<uint64_t> StackIds; 914 915 public: 916 ModuleSummaryIndexBitcodeReader( 917 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 918 StringRef ModulePath, 919 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 920 921 Error parseModule(); 922 923 private: 924 void setValueGUID(uint64_t ValueID, StringRef ValueName, 925 GlobalValue::LinkageTypes Linkage, 926 StringRef SourceFileName); 927 Error parseValueSymbolTable( 928 uint64_t Offset, 929 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 930 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 931 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 932 bool IsOldProfileFormat, 933 bool HasProfile, 934 bool HasRelBF); 935 Error parseEntireSummary(unsigned ID); 936 Error parseModuleStringTable(); 937 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 938 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 939 TypeIdCompatibleVtableInfo &TypeId); 940 std::vector<FunctionSummary::ParamAccess> 941 parseParamAccesses(ArrayRef<uint64_t> Record); 942 943 template <bool AllowNullValueInfo = false> 944 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 945 getValueInfoFromValueId(unsigned ValueId); 946 947 void addThisModule(); 948 ModuleSummaryIndex::ModuleInfo *getThisModule(); 949 }; 950 951 } // end anonymous namespace 952 953 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 954 Error Err) { 955 if (Err) { 956 std::error_code EC; 957 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 958 EC = EIB.convertToErrorCode(); 959 Ctx.emitError(EIB.message()); 960 }); 961 return EC; 962 } 963 return std::error_code(); 964 } 965 966 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 967 StringRef ProducerIdentification, 968 LLVMContext &Context) 969 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 970 ValueList(this->Stream.SizeInBytes(), 971 [this](unsigned ValID, BasicBlock *InsertBB) { 972 return materializeValue(ValID, InsertBB); 973 }) { 974 this->ProducerIdentification = std::string(ProducerIdentification); 975 } 976 977 Error BitcodeReader::materializeForwardReferencedFunctions() { 978 if (WillMaterializeAllForwardRefs) 979 return Error::success(); 980 981 // Prevent recursion. 982 WillMaterializeAllForwardRefs = true; 983 984 while (!BasicBlockFwdRefQueue.empty()) { 985 Function *F = BasicBlockFwdRefQueue.front(); 986 BasicBlockFwdRefQueue.pop_front(); 987 assert(F && "Expected valid function"); 988 if (!BasicBlockFwdRefs.count(F)) 989 // Already materialized. 990 continue; 991 992 // Check for a function that isn't materializable to prevent an infinite 993 // loop. When parsing a blockaddress stored in a global variable, there 994 // isn't a trivial way to check if a function will have a body without a 995 // linear search through FunctionsWithBodies, so just check it here. 996 if (!F->isMaterializable()) 997 return error("Never resolved function from blockaddress"); 998 999 // Try to materialize F. 1000 if (Error Err = materialize(F)) 1001 return Err; 1002 } 1003 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1004 1005 for (Function *F : BackwardRefFunctions) 1006 if (Error Err = materialize(F)) 1007 return Err; 1008 BackwardRefFunctions.clear(); 1009 1010 // Reset state. 1011 WillMaterializeAllForwardRefs = false; 1012 return Error::success(); 1013 } 1014 1015 //===----------------------------------------------------------------------===// 1016 // Helper functions to implement forward reference resolution, etc. 1017 //===----------------------------------------------------------------------===// 1018 1019 static bool hasImplicitComdat(size_t Val) { 1020 switch (Val) { 1021 default: 1022 return false; 1023 case 1: // Old WeakAnyLinkage 1024 case 4: // Old LinkOnceAnyLinkage 1025 case 10: // Old WeakODRLinkage 1026 case 11: // Old LinkOnceODRLinkage 1027 return true; 1028 } 1029 } 1030 1031 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1032 switch (Val) { 1033 default: // Map unknown/new linkages to external 1034 case 0: 1035 return GlobalValue::ExternalLinkage; 1036 case 2: 1037 return GlobalValue::AppendingLinkage; 1038 case 3: 1039 return GlobalValue::InternalLinkage; 1040 case 5: 1041 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1042 case 6: 1043 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1044 case 7: 1045 return GlobalValue::ExternalWeakLinkage; 1046 case 8: 1047 return GlobalValue::CommonLinkage; 1048 case 9: 1049 return GlobalValue::PrivateLinkage; 1050 case 12: 1051 return GlobalValue::AvailableExternallyLinkage; 1052 case 13: 1053 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1054 case 14: 1055 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1056 case 15: 1057 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1058 case 1: // Old value with implicit comdat. 1059 case 16: 1060 return GlobalValue::WeakAnyLinkage; 1061 case 10: // Old value with implicit comdat. 1062 case 17: 1063 return GlobalValue::WeakODRLinkage; 1064 case 4: // Old value with implicit comdat. 1065 case 18: 1066 return GlobalValue::LinkOnceAnyLinkage; 1067 case 11: // Old value with implicit comdat. 1068 case 19: 1069 return GlobalValue::LinkOnceODRLinkage; 1070 } 1071 } 1072 1073 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1074 FunctionSummary::FFlags Flags; 1075 Flags.ReadNone = RawFlags & 0x1; 1076 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1077 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1078 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1079 Flags.NoInline = (RawFlags >> 4) & 0x1; 1080 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1081 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1082 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1083 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1084 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1085 return Flags; 1086 } 1087 1088 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1089 // 1090 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1091 // visibility: [8, 10). 1092 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1093 uint64_t Version) { 1094 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1095 // like getDecodedLinkage() above. Any future change to the linkage enum and 1096 // to getDecodedLinkage() will need to be taken into account here as above. 1097 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1098 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1099 RawFlags = RawFlags >> 4; 1100 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1101 // The Live flag wasn't introduced until version 3. For dead stripping 1102 // to work correctly on earlier versions, we must conservatively treat all 1103 // values as live. 1104 bool Live = (RawFlags & 0x2) || Version < 3; 1105 bool Local = (RawFlags & 0x4); 1106 bool AutoHide = (RawFlags & 0x8); 1107 1108 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1109 Live, Local, AutoHide); 1110 } 1111 1112 // Decode the flags for GlobalVariable in the summary 1113 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1114 return GlobalVarSummary::GVarFlags( 1115 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1116 (RawFlags & 0x4) ? true : false, 1117 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1118 } 1119 1120 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1121 switch (Val) { 1122 default: // Map unknown visibilities to default. 1123 case 0: return GlobalValue::DefaultVisibility; 1124 case 1: return GlobalValue::HiddenVisibility; 1125 case 2: return GlobalValue::ProtectedVisibility; 1126 } 1127 } 1128 1129 static GlobalValue::DLLStorageClassTypes 1130 getDecodedDLLStorageClass(unsigned Val) { 1131 switch (Val) { 1132 default: // Map unknown values to default. 1133 case 0: return GlobalValue::DefaultStorageClass; 1134 case 1: return GlobalValue::DLLImportStorageClass; 1135 case 2: return GlobalValue::DLLExportStorageClass; 1136 } 1137 } 1138 1139 static bool getDecodedDSOLocal(unsigned Val) { 1140 switch(Val) { 1141 default: // Map unknown values to preemptable. 1142 case 0: return false; 1143 case 1: return true; 1144 } 1145 } 1146 1147 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1148 switch (Val) { 1149 case 0: return GlobalVariable::NotThreadLocal; 1150 default: // Map unknown non-zero value to general dynamic. 1151 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1152 case 2: return GlobalVariable::LocalDynamicTLSModel; 1153 case 3: return GlobalVariable::InitialExecTLSModel; 1154 case 4: return GlobalVariable::LocalExecTLSModel; 1155 } 1156 } 1157 1158 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1159 switch (Val) { 1160 default: // Map unknown to UnnamedAddr::None. 1161 case 0: return GlobalVariable::UnnamedAddr::None; 1162 case 1: return GlobalVariable::UnnamedAddr::Global; 1163 case 2: return GlobalVariable::UnnamedAddr::Local; 1164 } 1165 } 1166 1167 static int getDecodedCastOpcode(unsigned Val) { 1168 switch (Val) { 1169 default: return -1; 1170 case bitc::CAST_TRUNC : return Instruction::Trunc; 1171 case bitc::CAST_ZEXT : return Instruction::ZExt; 1172 case bitc::CAST_SEXT : return Instruction::SExt; 1173 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1174 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1175 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1176 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1177 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1178 case bitc::CAST_FPEXT : return Instruction::FPExt; 1179 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1180 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1181 case bitc::CAST_BITCAST : return Instruction::BitCast; 1182 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1183 } 1184 } 1185 1186 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1187 bool IsFP = Ty->isFPOrFPVectorTy(); 1188 // UnOps are only valid for int/fp or vector of int/fp types 1189 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1190 return -1; 1191 1192 switch (Val) { 1193 default: 1194 return -1; 1195 case bitc::UNOP_FNEG: 1196 return IsFP ? Instruction::FNeg : -1; 1197 } 1198 } 1199 1200 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1201 bool IsFP = Ty->isFPOrFPVectorTy(); 1202 // BinOps are only valid for int/fp or vector of int/fp types 1203 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1204 return -1; 1205 1206 switch (Val) { 1207 default: 1208 return -1; 1209 case bitc::BINOP_ADD: 1210 return IsFP ? Instruction::FAdd : Instruction::Add; 1211 case bitc::BINOP_SUB: 1212 return IsFP ? Instruction::FSub : Instruction::Sub; 1213 case bitc::BINOP_MUL: 1214 return IsFP ? Instruction::FMul : Instruction::Mul; 1215 case bitc::BINOP_UDIV: 1216 return IsFP ? -1 : Instruction::UDiv; 1217 case bitc::BINOP_SDIV: 1218 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1219 case bitc::BINOP_UREM: 1220 return IsFP ? -1 : Instruction::URem; 1221 case bitc::BINOP_SREM: 1222 return IsFP ? Instruction::FRem : Instruction::SRem; 1223 case bitc::BINOP_SHL: 1224 return IsFP ? -1 : Instruction::Shl; 1225 case bitc::BINOP_LSHR: 1226 return IsFP ? -1 : Instruction::LShr; 1227 case bitc::BINOP_ASHR: 1228 return IsFP ? -1 : Instruction::AShr; 1229 case bitc::BINOP_AND: 1230 return IsFP ? -1 : Instruction::And; 1231 case bitc::BINOP_OR: 1232 return IsFP ? -1 : Instruction::Or; 1233 case bitc::BINOP_XOR: 1234 return IsFP ? -1 : Instruction::Xor; 1235 } 1236 } 1237 1238 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1239 switch (Val) { 1240 default: return AtomicRMWInst::BAD_BINOP; 1241 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1242 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1243 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1244 case bitc::RMW_AND: return AtomicRMWInst::And; 1245 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1246 case bitc::RMW_OR: return AtomicRMWInst::Or; 1247 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1248 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1249 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1250 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1251 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1252 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1253 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1254 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1255 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1256 case bitc::RMW_UINC_WRAP: 1257 return AtomicRMWInst::UIncWrap; 1258 case bitc::RMW_UDEC_WRAP: 1259 return AtomicRMWInst::UDecWrap; 1260 } 1261 } 1262 1263 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1264 switch (Val) { 1265 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1266 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1267 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1268 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1269 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1270 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1271 default: // Map unknown orderings to sequentially-consistent. 1272 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1273 } 1274 } 1275 1276 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1277 switch (Val) { 1278 default: // Map unknown selection kinds to any. 1279 case bitc::COMDAT_SELECTION_KIND_ANY: 1280 return Comdat::Any; 1281 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1282 return Comdat::ExactMatch; 1283 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1284 return Comdat::Largest; 1285 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1286 return Comdat::NoDeduplicate; 1287 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1288 return Comdat::SameSize; 1289 } 1290 } 1291 1292 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1293 FastMathFlags FMF; 1294 if (0 != (Val & bitc::UnsafeAlgebra)) 1295 FMF.setFast(); 1296 if (0 != (Val & bitc::AllowReassoc)) 1297 FMF.setAllowReassoc(); 1298 if (0 != (Val & bitc::NoNaNs)) 1299 FMF.setNoNaNs(); 1300 if (0 != (Val & bitc::NoInfs)) 1301 FMF.setNoInfs(); 1302 if (0 != (Val & bitc::NoSignedZeros)) 1303 FMF.setNoSignedZeros(); 1304 if (0 != (Val & bitc::AllowReciprocal)) 1305 FMF.setAllowReciprocal(); 1306 if (0 != (Val & bitc::AllowContract)) 1307 FMF.setAllowContract(true); 1308 if (0 != (Val & bitc::ApproxFunc)) 1309 FMF.setApproxFunc(); 1310 return FMF; 1311 } 1312 1313 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1314 // A GlobalValue with local linkage cannot have a DLL storage class. 1315 if (GV->hasLocalLinkage()) 1316 return; 1317 switch (Val) { 1318 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1319 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1320 } 1321 } 1322 1323 Type *BitcodeReader::getTypeByID(unsigned ID) { 1324 // The type table size is always specified correctly. 1325 if (ID >= TypeList.size()) 1326 return nullptr; 1327 1328 if (Type *Ty = TypeList[ID]) 1329 return Ty; 1330 1331 // If we have a forward reference, the only possible case is when it is to a 1332 // named struct. Just create a placeholder for now. 1333 return TypeList[ID] = createIdentifiedStructType(Context); 1334 } 1335 1336 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1337 auto It = ContainedTypeIDs.find(ID); 1338 if (It == ContainedTypeIDs.end()) 1339 return InvalidTypeID; 1340 1341 if (Idx >= It->second.size()) 1342 return InvalidTypeID; 1343 1344 return It->second[Idx]; 1345 } 1346 1347 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1348 if (ID >= TypeList.size()) 1349 return nullptr; 1350 1351 Type *Ty = TypeList[ID]; 1352 if (!Ty->isPointerTy()) 1353 return nullptr; 1354 1355 return getTypeByID(getContainedTypeID(ID, 0)); 1356 } 1357 1358 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1359 ArrayRef<unsigned> ChildTypeIDs) { 1360 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1361 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1362 auto It = VirtualTypeIDs.find(CacheKey); 1363 if (It != VirtualTypeIDs.end()) { 1364 // The cmpxchg return value is the only place we need more than one 1365 // contained type ID, however the second one will always be the same (i1), 1366 // so we don't need to include it in the cache key. This asserts that the 1367 // contained types are indeed as expected and there are no collisions. 1368 assert((ChildTypeIDs.empty() || 1369 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1370 "Incorrect cached contained type IDs"); 1371 return It->second; 1372 } 1373 1374 unsigned TypeID = TypeList.size(); 1375 TypeList.push_back(Ty); 1376 if (!ChildTypeIDs.empty()) 1377 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1378 VirtualTypeIDs.insert({CacheKey, TypeID}); 1379 return TypeID; 1380 } 1381 1382 static bool isConstExprSupported(const BitcodeConstant *BC) { 1383 uint8_t Opcode = BC->Opcode; 1384 1385 // These are not real constant expressions, always consider them supported. 1386 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1387 return true; 1388 1389 // If -expand-constant-exprs is set, we want to consider all expressions 1390 // as unsupported. 1391 if (ExpandConstantExprs) 1392 return false; 1393 1394 if (Instruction::isBinaryOp(Opcode)) 1395 return ConstantExpr::isSupportedBinOp(Opcode); 1396 1397 if (Instruction::isCast(Opcode)) 1398 return ConstantExpr::isSupportedCastOp(Opcode); 1399 1400 if (Opcode == Instruction::GetElementPtr) 1401 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1402 1403 switch (Opcode) { 1404 case Instruction::FNeg: 1405 case Instruction::Select: 1406 return false; 1407 default: 1408 return true; 1409 } 1410 } 1411 1412 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1413 BasicBlock *InsertBB) { 1414 // Quickly handle the case where there is no BitcodeConstant to resolve. 1415 if (StartValID < ValueList.size() && ValueList[StartValID] && 1416 !isa<BitcodeConstant>(ValueList[StartValID])) 1417 return ValueList[StartValID]; 1418 1419 SmallDenseMap<unsigned, Value *> MaterializedValues; 1420 SmallVector<unsigned> Worklist; 1421 Worklist.push_back(StartValID); 1422 while (!Worklist.empty()) { 1423 unsigned ValID = Worklist.back(); 1424 if (MaterializedValues.count(ValID)) { 1425 // Duplicate expression that was already handled. 1426 Worklist.pop_back(); 1427 continue; 1428 } 1429 1430 if (ValID >= ValueList.size() || !ValueList[ValID]) 1431 return error("Invalid value ID"); 1432 1433 Value *V = ValueList[ValID]; 1434 auto *BC = dyn_cast<BitcodeConstant>(V); 1435 if (!BC) { 1436 MaterializedValues.insert({ValID, V}); 1437 Worklist.pop_back(); 1438 continue; 1439 } 1440 1441 // Iterate in reverse, so values will get popped from the worklist in 1442 // expected order. 1443 SmallVector<Value *> Ops; 1444 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1445 auto It = MaterializedValues.find(OpID); 1446 if (It != MaterializedValues.end()) 1447 Ops.push_back(It->second); 1448 else 1449 Worklist.push_back(OpID); 1450 } 1451 1452 // Some expressions have not been resolved yet, handle them first and then 1453 // revisit this one. 1454 if (Ops.size() != BC->getOperandIDs().size()) 1455 continue; 1456 std::reverse(Ops.begin(), Ops.end()); 1457 1458 SmallVector<Constant *> ConstOps; 1459 for (Value *Op : Ops) 1460 if (auto *C = dyn_cast<Constant>(Op)) 1461 ConstOps.push_back(C); 1462 1463 // Materialize as constant expression if possible. 1464 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1465 Constant *C; 1466 if (Instruction::isCast(BC->Opcode)) { 1467 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1468 if (!C) 1469 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1470 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1471 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1472 } else { 1473 switch (BC->Opcode) { 1474 case BitcodeConstant::NoCFIOpcode: { 1475 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1476 if (!GV) 1477 return error("no_cfi operand must be GlobalValue"); 1478 C = NoCFIValue::get(GV); 1479 break; 1480 } 1481 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1482 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1483 if (!GV) 1484 return error("dso_local operand must be GlobalValue"); 1485 C = DSOLocalEquivalent::get(GV); 1486 break; 1487 } 1488 case BitcodeConstant::BlockAddressOpcode: { 1489 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1490 if (!Fn) 1491 return error("blockaddress operand must be a function"); 1492 1493 // If the function is already parsed we can insert the block address 1494 // right away. 1495 BasicBlock *BB; 1496 unsigned BBID = BC->Extra; 1497 if (!BBID) 1498 // Invalid reference to entry block. 1499 return error("Invalid ID"); 1500 if (!Fn->empty()) { 1501 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1502 for (size_t I = 0, E = BBID; I != E; ++I) { 1503 if (BBI == BBE) 1504 return error("Invalid ID"); 1505 ++BBI; 1506 } 1507 BB = &*BBI; 1508 } else { 1509 // Otherwise insert a placeholder and remember it so it can be 1510 // inserted when the function is parsed. 1511 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1512 if (FwdBBs.empty()) 1513 BasicBlockFwdRefQueue.push_back(Fn); 1514 if (FwdBBs.size() < BBID + 1) 1515 FwdBBs.resize(BBID + 1); 1516 if (!FwdBBs[BBID]) 1517 FwdBBs[BBID] = BasicBlock::Create(Context); 1518 BB = FwdBBs[BBID]; 1519 } 1520 C = BlockAddress::get(Fn, BB); 1521 break; 1522 } 1523 case BitcodeConstant::ConstantStructOpcode: 1524 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1525 break; 1526 case BitcodeConstant::ConstantArrayOpcode: 1527 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1528 break; 1529 case BitcodeConstant::ConstantVectorOpcode: 1530 C = ConstantVector::get(ConstOps); 1531 break; 1532 case Instruction::ICmp: 1533 case Instruction::FCmp: 1534 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1535 break; 1536 case Instruction::GetElementPtr: 1537 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1538 ArrayRef(ConstOps).drop_front(), 1539 BC->Flags, BC->getInRangeIndex()); 1540 break; 1541 case Instruction::ExtractElement: 1542 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1543 break; 1544 case Instruction::InsertElement: 1545 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1546 ConstOps[2]); 1547 break; 1548 case Instruction::ShuffleVector: { 1549 SmallVector<int, 16> Mask; 1550 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1551 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1552 break; 1553 } 1554 default: 1555 llvm_unreachable("Unhandled bitcode constant"); 1556 } 1557 } 1558 1559 // Cache resolved constant. 1560 ValueList.replaceValueWithoutRAUW(ValID, C); 1561 MaterializedValues.insert({ValID, C}); 1562 Worklist.pop_back(); 1563 continue; 1564 } 1565 1566 if (!InsertBB) 1567 return error(Twine("Value referenced by initializer is an unsupported " 1568 "constant expression of type ") + 1569 BC->getOpcodeName()); 1570 1571 // Materialize as instructions if necessary. 1572 Instruction *I; 1573 if (Instruction::isCast(BC->Opcode)) { 1574 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1575 BC->getType(), "constexpr", InsertBB); 1576 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1577 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1578 "constexpr", InsertBB); 1579 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1580 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1581 Ops[1], "constexpr", InsertBB); 1582 if (isa<OverflowingBinaryOperator>(I)) { 1583 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1584 I->setHasNoSignedWrap(); 1585 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1586 I->setHasNoUnsignedWrap(); 1587 } 1588 if (isa<PossiblyExactOperator>(I) && 1589 (BC->Flags & PossiblyExactOperator::IsExact)) 1590 I->setIsExact(); 1591 } else { 1592 switch (BC->Opcode) { 1593 case BitcodeConstant::ConstantVectorOpcode: { 1594 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1595 Value *V = PoisonValue::get(BC->getType()); 1596 for (auto Pair : enumerate(Ops)) { 1597 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1598 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1599 InsertBB); 1600 } 1601 I = cast<Instruction>(V); 1602 break; 1603 } 1604 case BitcodeConstant::ConstantStructOpcode: 1605 case BitcodeConstant::ConstantArrayOpcode: { 1606 Value *V = PoisonValue::get(BC->getType()); 1607 for (auto Pair : enumerate(Ops)) 1608 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1609 "constexpr.ins", InsertBB); 1610 I = cast<Instruction>(V); 1611 break; 1612 } 1613 case Instruction::ICmp: 1614 case Instruction::FCmp: 1615 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1616 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1617 "constexpr", InsertBB); 1618 break; 1619 case Instruction::GetElementPtr: 1620 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1621 ArrayRef(Ops).drop_front(), "constexpr", 1622 InsertBB); 1623 if (BC->Flags) 1624 cast<GetElementPtrInst>(I)->setIsInBounds(); 1625 break; 1626 case Instruction::Select: 1627 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1628 break; 1629 case Instruction::ExtractElement: 1630 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1631 break; 1632 case Instruction::InsertElement: 1633 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1634 InsertBB); 1635 break; 1636 case Instruction::ShuffleVector: 1637 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1638 InsertBB); 1639 break; 1640 default: 1641 llvm_unreachable("Unhandled bitcode constant"); 1642 } 1643 } 1644 1645 MaterializedValues.insert({ValID, I}); 1646 Worklist.pop_back(); 1647 } 1648 1649 return MaterializedValues[StartValID]; 1650 } 1651 1652 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1653 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1654 if (!MaybeV) 1655 return MaybeV.takeError(); 1656 1657 // Result must be Constant if InsertBB is nullptr. 1658 return cast<Constant>(MaybeV.get()); 1659 } 1660 1661 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1662 StringRef Name) { 1663 auto *Ret = StructType::create(Context, Name); 1664 IdentifiedStructTypes.push_back(Ret); 1665 return Ret; 1666 } 1667 1668 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1669 auto *Ret = StructType::create(Context); 1670 IdentifiedStructTypes.push_back(Ret); 1671 return Ret; 1672 } 1673 1674 //===----------------------------------------------------------------------===// 1675 // Functions for parsing blocks from the bitcode file 1676 //===----------------------------------------------------------------------===// 1677 1678 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1679 switch (Val) { 1680 case Attribute::EndAttrKinds: 1681 case Attribute::EmptyKey: 1682 case Attribute::TombstoneKey: 1683 llvm_unreachable("Synthetic enumerators which should never get here"); 1684 1685 case Attribute::None: return 0; 1686 case Attribute::ZExt: return 1 << 0; 1687 case Attribute::SExt: return 1 << 1; 1688 case Attribute::NoReturn: return 1 << 2; 1689 case Attribute::InReg: return 1 << 3; 1690 case Attribute::StructRet: return 1 << 4; 1691 case Attribute::NoUnwind: return 1 << 5; 1692 case Attribute::NoAlias: return 1 << 6; 1693 case Attribute::ByVal: return 1 << 7; 1694 case Attribute::Nest: return 1 << 8; 1695 case Attribute::ReadNone: return 1 << 9; 1696 case Attribute::ReadOnly: return 1 << 10; 1697 case Attribute::NoInline: return 1 << 11; 1698 case Attribute::AlwaysInline: return 1 << 12; 1699 case Attribute::OptimizeForSize: return 1 << 13; 1700 case Attribute::StackProtect: return 1 << 14; 1701 case Attribute::StackProtectReq: return 1 << 15; 1702 case Attribute::Alignment: return 31 << 16; 1703 case Attribute::NoCapture: return 1 << 21; 1704 case Attribute::NoRedZone: return 1 << 22; 1705 case Attribute::NoImplicitFloat: return 1 << 23; 1706 case Attribute::Naked: return 1 << 24; 1707 case Attribute::InlineHint: return 1 << 25; 1708 case Attribute::StackAlignment: return 7 << 26; 1709 case Attribute::ReturnsTwice: return 1 << 29; 1710 case Attribute::UWTable: return 1 << 30; 1711 case Attribute::NonLazyBind: return 1U << 31; 1712 case Attribute::SanitizeAddress: return 1ULL << 32; 1713 case Attribute::MinSize: return 1ULL << 33; 1714 case Attribute::NoDuplicate: return 1ULL << 34; 1715 case Attribute::StackProtectStrong: return 1ULL << 35; 1716 case Attribute::SanitizeThread: return 1ULL << 36; 1717 case Attribute::SanitizeMemory: return 1ULL << 37; 1718 case Attribute::NoBuiltin: return 1ULL << 38; 1719 case Attribute::Returned: return 1ULL << 39; 1720 case Attribute::Cold: return 1ULL << 40; 1721 case Attribute::Builtin: return 1ULL << 41; 1722 case Attribute::OptimizeNone: return 1ULL << 42; 1723 case Attribute::InAlloca: return 1ULL << 43; 1724 case Attribute::NonNull: return 1ULL << 44; 1725 case Attribute::JumpTable: return 1ULL << 45; 1726 case Attribute::Convergent: return 1ULL << 46; 1727 case Attribute::SafeStack: return 1ULL << 47; 1728 case Attribute::NoRecurse: return 1ULL << 48; 1729 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1730 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1731 case Attribute::SwiftSelf: return 1ULL << 51; 1732 case Attribute::SwiftError: return 1ULL << 52; 1733 case Attribute::WriteOnly: return 1ULL << 53; 1734 case Attribute::Speculatable: return 1ULL << 54; 1735 case Attribute::StrictFP: return 1ULL << 55; 1736 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1737 case Attribute::NoCfCheck: return 1ULL << 57; 1738 case Attribute::OptForFuzzing: return 1ULL << 58; 1739 case Attribute::ShadowCallStack: return 1ULL << 59; 1740 case Attribute::SpeculativeLoadHardening: 1741 return 1ULL << 60; 1742 case Attribute::ImmArg: 1743 return 1ULL << 61; 1744 case Attribute::WillReturn: 1745 return 1ULL << 62; 1746 case Attribute::NoFree: 1747 return 1ULL << 63; 1748 default: 1749 // Other attributes are not supported in the raw format, 1750 // as we ran out of space. 1751 return 0; 1752 } 1753 llvm_unreachable("Unsupported attribute type"); 1754 } 1755 1756 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1757 if (!Val) return; 1758 1759 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1760 I = Attribute::AttrKind(I + 1)) { 1761 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1762 if (I == Attribute::Alignment) 1763 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1764 else if (I == Attribute::StackAlignment) 1765 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1766 else if (Attribute::isTypeAttrKind(I)) 1767 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1768 else 1769 B.addAttribute(I); 1770 } 1771 } 1772 } 1773 1774 /// This fills an AttrBuilder object with the LLVM attributes that have 1775 /// been decoded from the given integer. This function must stay in sync with 1776 /// 'encodeLLVMAttributesForBitcode'. 1777 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1778 uint64_t EncodedAttrs, 1779 uint64_t AttrIdx) { 1780 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1781 // the bits above 31 down by 11 bits. 1782 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1783 assert((!Alignment || isPowerOf2_32(Alignment)) && 1784 "Alignment must be a power of two."); 1785 1786 if (Alignment) 1787 B.addAlignmentAttr(Alignment); 1788 1789 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1790 (EncodedAttrs & 0xffff); 1791 1792 if (AttrIdx == AttributeList::FunctionIndex) { 1793 // Upgrade old memory attributes. 1794 MemoryEffects ME = MemoryEffects::unknown(); 1795 if (Attrs & (1ULL << 9)) { 1796 // ReadNone 1797 Attrs &= ~(1ULL << 9); 1798 ME &= MemoryEffects::none(); 1799 } 1800 if (Attrs & (1ULL << 10)) { 1801 // ReadOnly 1802 Attrs &= ~(1ULL << 10); 1803 ME &= MemoryEffects::readOnly(); 1804 } 1805 if (Attrs & (1ULL << 49)) { 1806 // InaccessibleMemOnly 1807 Attrs &= ~(1ULL << 49); 1808 ME &= MemoryEffects::inaccessibleMemOnly(); 1809 } 1810 if (Attrs & (1ULL << 50)) { 1811 // InaccessibleMemOrArgMemOnly 1812 Attrs &= ~(1ULL << 50); 1813 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1814 } 1815 if (Attrs & (1ULL << 53)) { 1816 // WriteOnly 1817 Attrs &= ~(1ULL << 53); 1818 ME &= MemoryEffects::writeOnly(); 1819 } 1820 if (ME != MemoryEffects::unknown()) 1821 B.addMemoryAttr(ME); 1822 } 1823 1824 addRawAttributeValue(B, Attrs); 1825 } 1826 1827 Error BitcodeReader::parseAttributeBlock() { 1828 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1829 return Err; 1830 1831 if (!MAttributes.empty()) 1832 return error("Invalid multiple blocks"); 1833 1834 SmallVector<uint64_t, 64> Record; 1835 1836 SmallVector<AttributeList, 8> Attrs; 1837 1838 // Read all the records. 1839 while (true) { 1840 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1841 if (!MaybeEntry) 1842 return MaybeEntry.takeError(); 1843 BitstreamEntry Entry = MaybeEntry.get(); 1844 1845 switch (Entry.Kind) { 1846 case BitstreamEntry::SubBlock: // Handled for us already. 1847 case BitstreamEntry::Error: 1848 return error("Malformed block"); 1849 case BitstreamEntry::EndBlock: 1850 return Error::success(); 1851 case BitstreamEntry::Record: 1852 // The interesting case. 1853 break; 1854 } 1855 1856 // Read a record. 1857 Record.clear(); 1858 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1859 if (!MaybeRecord) 1860 return MaybeRecord.takeError(); 1861 switch (MaybeRecord.get()) { 1862 default: // Default behavior: ignore. 1863 break; 1864 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1865 // Deprecated, but still needed to read old bitcode files. 1866 if (Record.size() & 1) 1867 return error("Invalid parameter attribute record"); 1868 1869 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1870 AttrBuilder B(Context); 1871 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1872 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1873 } 1874 1875 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1876 Attrs.clear(); 1877 break; 1878 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1879 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1880 Attrs.push_back(MAttributeGroups[Record[i]]); 1881 1882 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1883 Attrs.clear(); 1884 break; 1885 } 1886 } 1887 } 1888 1889 // Returns Attribute::None on unrecognized codes. 1890 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1891 switch (Code) { 1892 default: 1893 return Attribute::None; 1894 case bitc::ATTR_KIND_ALIGNMENT: 1895 return Attribute::Alignment; 1896 case bitc::ATTR_KIND_ALWAYS_INLINE: 1897 return Attribute::AlwaysInline; 1898 case bitc::ATTR_KIND_BUILTIN: 1899 return Attribute::Builtin; 1900 case bitc::ATTR_KIND_BY_VAL: 1901 return Attribute::ByVal; 1902 case bitc::ATTR_KIND_IN_ALLOCA: 1903 return Attribute::InAlloca; 1904 case bitc::ATTR_KIND_COLD: 1905 return Attribute::Cold; 1906 case bitc::ATTR_KIND_CONVERGENT: 1907 return Attribute::Convergent; 1908 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1909 return Attribute::DisableSanitizerInstrumentation; 1910 case bitc::ATTR_KIND_ELEMENTTYPE: 1911 return Attribute::ElementType; 1912 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1913 return Attribute::FnRetThunkExtern; 1914 case bitc::ATTR_KIND_INLINE_HINT: 1915 return Attribute::InlineHint; 1916 case bitc::ATTR_KIND_IN_REG: 1917 return Attribute::InReg; 1918 case bitc::ATTR_KIND_JUMP_TABLE: 1919 return Attribute::JumpTable; 1920 case bitc::ATTR_KIND_MEMORY: 1921 return Attribute::Memory; 1922 case bitc::ATTR_KIND_NOFPCLASS: 1923 return Attribute::NoFPClass; 1924 case bitc::ATTR_KIND_MIN_SIZE: 1925 return Attribute::MinSize; 1926 case bitc::ATTR_KIND_NAKED: 1927 return Attribute::Naked; 1928 case bitc::ATTR_KIND_NEST: 1929 return Attribute::Nest; 1930 case bitc::ATTR_KIND_NO_ALIAS: 1931 return Attribute::NoAlias; 1932 case bitc::ATTR_KIND_NO_BUILTIN: 1933 return Attribute::NoBuiltin; 1934 case bitc::ATTR_KIND_NO_CALLBACK: 1935 return Attribute::NoCallback; 1936 case bitc::ATTR_KIND_NO_CAPTURE: 1937 return Attribute::NoCapture; 1938 case bitc::ATTR_KIND_NO_DUPLICATE: 1939 return Attribute::NoDuplicate; 1940 case bitc::ATTR_KIND_NOFREE: 1941 return Attribute::NoFree; 1942 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1943 return Attribute::NoImplicitFloat; 1944 case bitc::ATTR_KIND_NO_INLINE: 1945 return Attribute::NoInline; 1946 case bitc::ATTR_KIND_NO_RECURSE: 1947 return Attribute::NoRecurse; 1948 case bitc::ATTR_KIND_NO_MERGE: 1949 return Attribute::NoMerge; 1950 case bitc::ATTR_KIND_NON_LAZY_BIND: 1951 return Attribute::NonLazyBind; 1952 case bitc::ATTR_KIND_NON_NULL: 1953 return Attribute::NonNull; 1954 case bitc::ATTR_KIND_DEREFERENCEABLE: 1955 return Attribute::Dereferenceable; 1956 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1957 return Attribute::DereferenceableOrNull; 1958 case bitc::ATTR_KIND_ALLOC_ALIGN: 1959 return Attribute::AllocAlign; 1960 case bitc::ATTR_KIND_ALLOC_KIND: 1961 return Attribute::AllocKind; 1962 case bitc::ATTR_KIND_ALLOC_SIZE: 1963 return Attribute::AllocSize; 1964 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1965 return Attribute::AllocatedPointer; 1966 case bitc::ATTR_KIND_NO_RED_ZONE: 1967 return Attribute::NoRedZone; 1968 case bitc::ATTR_KIND_NO_RETURN: 1969 return Attribute::NoReturn; 1970 case bitc::ATTR_KIND_NOSYNC: 1971 return Attribute::NoSync; 1972 case bitc::ATTR_KIND_NOCF_CHECK: 1973 return Attribute::NoCfCheck; 1974 case bitc::ATTR_KIND_NO_PROFILE: 1975 return Attribute::NoProfile; 1976 case bitc::ATTR_KIND_SKIP_PROFILE: 1977 return Attribute::SkipProfile; 1978 case bitc::ATTR_KIND_NO_UNWIND: 1979 return Attribute::NoUnwind; 1980 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1981 return Attribute::NoSanitizeBounds; 1982 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1983 return Attribute::NoSanitizeCoverage; 1984 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1985 return Attribute::NullPointerIsValid; 1986 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 1987 return Attribute::OptimizeForDebugging; 1988 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1989 return Attribute::OptForFuzzing; 1990 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1991 return Attribute::OptimizeForSize; 1992 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1993 return Attribute::OptimizeNone; 1994 case bitc::ATTR_KIND_READ_NONE: 1995 return Attribute::ReadNone; 1996 case bitc::ATTR_KIND_READ_ONLY: 1997 return Attribute::ReadOnly; 1998 case bitc::ATTR_KIND_RETURNED: 1999 return Attribute::Returned; 2000 case bitc::ATTR_KIND_RETURNS_TWICE: 2001 return Attribute::ReturnsTwice; 2002 case bitc::ATTR_KIND_S_EXT: 2003 return Attribute::SExt; 2004 case bitc::ATTR_KIND_SPECULATABLE: 2005 return Attribute::Speculatable; 2006 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2007 return Attribute::StackAlignment; 2008 case bitc::ATTR_KIND_STACK_PROTECT: 2009 return Attribute::StackProtect; 2010 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2011 return Attribute::StackProtectReq; 2012 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2013 return Attribute::StackProtectStrong; 2014 case bitc::ATTR_KIND_SAFESTACK: 2015 return Attribute::SafeStack; 2016 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2017 return Attribute::ShadowCallStack; 2018 case bitc::ATTR_KIND_STRICT_FP: 2019 return Attribute::StrictFP; 2020 case bitc::ATTR_KIND_STRUCT_RET: 2021 return Attribute::StructRet; 2022 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2023 return Attribute::SanitizeAddress; 2024 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2025 return Attribute::SanitizeHWAddress; 2026 case bitc::ATTR_KIND_SANITIZE_THREAD: 2027 return Attribute::SanitizeThread; 2028 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2029 return Attribute::SanitizeMemory; 2030 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2031 return Attribute::SpeculativeLoadHardening; 2032 case bitc::ATTR_KIND_SWIFT_ERROR: 2033 return Attribute::SwiftError; 2034 case bitc::ATTR_KIND_SWIFT_SELF: 2035 return Attribute::SwiftSelf; 2036 case bitc::ATTR_KIND_SWIFT_ASYNC: 2037 return Attribute::SwiftAsync; 2038 case bitc::ATTR_KIND_UW_TABLE: 2039 return Attribute::UWTable; 2040 case bitc::ATTR_KIND_VSCALE_RANGE: 2041 return Attribute::VScaleRange; 2042 case bitc::ATTR_KIND_WILLRETURN: 2043 return Attribute::WillReturn; 2044 case bitc::ATTR_KIND_WRITEONLY: 2045 return Attribute::WriteOnly; 2046 case bitc::ATTR_KIND_Z_EXT: 2047 return Attribute::ZExt; 2048 case bitc::ATTR_KIND_IMMARG: 2049 return Attribute::ImmArg; 2050 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2051 return Attribute::SanitizeMemTag; 2052 case bitc::ATTR_KIND_PREALLOCATED: 2053 return Attribute::Preallocated; 2054 case bitc::ATTR_KIND_NOUNDEF: 2055 return Attribute::NoUndef; 2056 case bitc::ATTR_KIND_BYREF: 2057 return Attribute::ByRef; 2058 case bitc::ATTR_KIND_MUSTPROGRESS: 2059 return Attribute::MustProgress; 2060 case bitc::ATTR_KIND_HOT: 2061 return Attribute::Hot; 2062 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2063 return Attribute::PresplitCoroutine; 2064 case bitc::ATTR_KIND_WRITABLE: 2065 return Attribute::Writable; 2066 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2067 return Attribute::CoroDestroyOnlyWhenComplete; 2068 } 2069 } 2070 2071 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2072 MaybeAlign &Alignment) { 2073 // Note: Alignment in bitcode files is incremented by 1, so that zero 2074 // can be used for default alignment. 2075 if (Exponent > Value::MaxAlignmentExponent + 1) 2076 return error("Invalid alignment value"); 2077 Alignment = decodeMaybeAlign(Exponent); 2078 return Error::success(); 2079 } 2080 2081 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2082 *Kind = getAttrFromCode(Code); 2083 if (*Kind == Attribute::None) 2084 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2085 return Error::success(); 2086 } 2087 2088 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2089 switch (EncodedKind) { 2090 case bitc::ATTR_KIND_READ_NONE: 2091 ME &= MemoryEffects::none(); 2092 return true; 2093 case bitc::ATTR_KIND_READ_ONLY: 2094 ME &= MemoryEffects::readOnly(); 2095 return true; 2096 case bitc::ATTR_KIND_WRITEONLY: 2097 ME &= MemoryEffects::writeOnly(); 2098 return true; 2099 case bitc::ATTR_KIND_ARGMEMONLY: 2100 ME &= MemoryEffects::argMemOnly(); 2101 return true; 2102 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2103 ME &= MemoryEffects::inaccessibleMemOnly(); 2104 return true; 2105 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2106 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2107 return true; 2108 default: 2109 return false; 2110 } 2111 } 2112 2113 Error BitcodeReader::parseAttributeGroupBlock() { 2114 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2115 return Err; 2116 2117 if (!MAttributeGroups.empty()) 2118 return error("Invalid multiple blocks"); 2119 2120 SmallVector<uint64_t, 64> Record; 2121 2122 // Read all the records. 2123 while (true) { 2124 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2125 if (!MaybeEntry) 2126 return MaybeEntry.takeError(); 2127 BitstreamEntry Entry = MaybeEntry.get(); 2128 2129 switch (Entry.Kind) { 2130 case BitstreamEntry::SubBlock: // Handled for us already. 2131 case BitstreamEntry::Error: 2132 return error("Malformed block"); 2133 case BitstreamEntry::EndBlock: 2134 return Error::success(); 2135 case BitstreamEntry::Record: 2136 // The interesting case. 2137 break; 2138 } 2139 2140 // Read a record. 2141 Record.clear(); 2142 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2143 if (!MaybeRecord) 2144 return MaybeRecord.takeError(); 2145 switch (MaybeRecord.get()) { 2146 default: // Default behavior: ignore. 2147 break; 2148 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2149 if (Record.size() < 3) 2150 return error("Invalid grp record"); 2151 2152 uint64_t GrpID = Record[0]; 2153 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2154 2155 AttrBuilder B(Context); 2156 MemoryEffects ME = MemoryEffects::unknown(); 2157 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2158 if (Record[i] == 0) { // Enum attribute 2159 Attribute::AttrKind Kind; 2160 uint64_t EncodedKind = Record[++i]; 2161 if (Idx == AttributeList::FunctionIndex && 2162 upgradeOldMemoryAttribute(ME, EncodedKind)) 2163 continue; 2164 2165 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2166 return Err; 2167 2168 // Upgrade old-style byval attribute to one with a type, even if it's 2169 // nullptr. We will have to insert the real type when we associate 2170 // this AttributeList with a function. 2171 if (Kind == Attribute::ByVal) 2172 B.addByValAttr(nullptr); 2173 else if (Kind == Attribute::StructRet) 2174 B.addStructRetAttr(nullptr); 2175 else if (Kind == Attribute::InAlloca) 2176 B.addInAllocaAttr(nullptr); 2177 else if (Kind == Attribute::UWTable) 2178 B.addUWTableAttr(UWTableKind::Default); 2179 else if (Attribute::isEnumAttrKind(Kind)) 2180 B.addAttribute(Kind); 2181 else 2182 return error("Not an enum attribute"); 2183 } else if (Record[i] == 1) { // Integer attribute 2184 Attribute::AttrKind Kind; 2185 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2186 return Err; 2187 if (!Attribute::isIntAttrKind(Kind)) 2188 return error("Not an int attribute"); 2189 if (Kind == Attribute::Alignment) 2190 B.addAlignmentAttr(Record[++i]); 2191 else if (Kind == Attribute::StackAlignment) 2192 B.addStackAlignmentAttr(Record[++i]); 2193 else if (Kind == Attribute::Dereferenceable) 2194 B.addDereferenceableAttr(Record[++i]); 2195 else if (Kind == Attribute::DereferenceableOrNull) 2196 B.addDereferenceableOrNullAttr(Record[++i]); 2197 else if (Kind == Attribute::AllocSize) 2198 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2199 else if (Kind == Attribute::VScaleRange) 2200 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2201 else if (Kind == Attribute::UWTable) 2202 B.addUWTableAttr(UWTableKind(Record[++i])); 2203 else if (Kind == Attribute::AllocKind) 2204 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2205 else if (Kind == Attribute::Memory) 2206 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2207 else if (Kind == Attribute::NoFPClass) 2208 B.addNoFPClassAttr( 2209 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2210 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2211 bool HasValue = (Record[i++] == 4); 2212 SmallString<64> KindStr; 2213 SmallString<64> ValStr; 2214 2215 while (Record[i] != 0 && i != e) 2216 KindStr += Record[i++]; 2217 assert(Record[i] == 0 && "Kind string not null terminated"); 2218 2219 if (HasValue) { 2220 // Has a value associated with it. 2221 ++i; // Skip the '0' that terminates the "kind" string. 2222 while (Record[i] != 0 && i != e) 2223 ValStr += Record[i++]; 2224 assert(Record[i] == 0 && "Value string not null terminated"); 2225 } 2226 2227 B.addAttribute(KindStr.str(), ValStr.str()); 2228 } else if (Record[i] == 5 || Record[i] == 6) { 2229 bool HasType = Record[i] == 6; 2230 Attribute::AttrKind Kind; 2231 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2232 return Err; 2233 if (!Attribute::isTypeAttrKind(Kind)) 2234 return error("Not a type attribute"); 2235 2236 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2237 } else { 2238 return error("Invalid attribute group entry"); 2239 } 2240 } 2241 2242 if (ME != MemoryEffects::unknown()) 2243 B.addMemoryAttr(ME); 2244 2245 UpgradeAttributes(B); 2246 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2247 break; 2248 } 2249 } 2250 } 2251 } 2252 2253 Error BitcodeReader::parseTypeTable() { 2254 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2255 return Err; 2256 2257 return parseTypeTableBody(); 2258 } 2259 2260 Error BitcodeReader::parseTypeTableBody() { 2261 if (!TypeList.empty()) 2262 return error("Invalid multiple blocks"); 2263 2264 SmallVector<uint64_t, 64> Record; 2265 unsigned NumRecords = 0; 2266 2267 SmallString<64> TypeName; 2268 2269 // Read all the records for this type table. 2270 while (true) { 2271 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2272 if (!MaybeEntry) 2273 return MaybeEntry.takeError(); 2274 BitstreamEntry Entry = MaybeEntry.get(); 2275 2276 switch (Entry.Kind) { 2277 case BitstreamEntry::SubBlock: // Handled for us already. 2278 case BitstreamEntry::Error: 2279 return error("Malformed block"); 2280 case BitstreamEntry::EndBlock: 2281 if (NumRecords != TypeList.size()) 2282 return error("Malformed block"); 2283 return Error::success(); 2284 case BitstreamEntry::Record: 2285 // The interesting case. 2286 break; 2287 } 2288 2289 // Read a record. 2290 Record.clear(); 2291 Type *ResultTy = nullptr; 2292 SmallVector<unsigned> ContainedIDs; 2293 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2294 if (!MaybeRecord) 2295 return MaybeRecord.takeError(); 2296 switch (MaybeRecord.get()) { 2297 default: 2298 return error("Invalid value"); 2299 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2300 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2301 // type list. This allows us to reserve space. 2302 if (Record.empty()) 2303 return error("Invalid numentry record"); 2304 TypeList.resize(Record[0]); 2305 continue; 2306 case bitc::TYPE_CODE_VOID: // VOID 2307 ResultTy = Type::getVoidTy(Context); 2308 break; 2309 case bitc::TYPE_CODE_HALF: // HALF 2310 ResultTy = Type::getHalfTy(Context); 2311 break; 2312 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2313 ResultTy = Type::getBFloatTy(Context); 2314 break; 2315 case bitc::TYPE_CODE_FLOAT: // FLOAT 2316 ResultTy = Type::getFloatTy(Context); 2317 break; 2318 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2319 ResultTy = Type::getDoubleTy(Context); 2320 break; 2321 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2322 ResultTy = Type::getX86_FP80Ty(Context); 2323 break; 2324 case bitc::TYPE_CODE_FP128: // FP128 2325 ResultTy = Type::getFP128Ty(Context); 2326 break; 2327 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2328 ResultTy = Type::getPPC_FP128Ty(Context); 2329 break; 2330 case bitc::TYPE_CODE_LABEL: // LABEL 2331 ResultTy = Type::getLabelTy(Context); 2332 break; 2333 case bitc::TYPE_CODE_METADATA: // METADATA 2334 ResultTy = Type::getMetadataTy(Context); 2335 break; 2336 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2337 ResultTy = Type::getX86_MMXTy(Context); 2338 break; 2339 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2340 ResultTy = Type::getX86_AMXTy(Context); 2341 break; 2342 case bitc::TYPE_CODE_TOKEN: // TOKEN 2343 ResultTy = Type::getTokenTy(Context); 2344 break; 2345 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2346 if (Record.empty()) 2347 return error("Invalid integer record"); 2348 2349 uint64_t NumBits = Record[0]; 2350 if (NumBits < IntegerType::MIN_INT_BITS || 2351 NumBits > IntegerType::MAX_INT_BITS) 2352 return error("Bitwidth for integer type out of range"); 2353 ResultTy = IntegerType::get(Context, NumBits); 2354 break; 2355 } 2356 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2357 // [pointee type, address space] 2358 if (Record.empty()) 2359 return error("Invalid pointer record"); 2360 unsigned AddressSpace = 0; 2361 if (Record.size() == 2) 2362 AddressSpace = Record[1]; 2363 ResultTy = getTypeByID(Record[0]); 2364 if (!ResultTy || 2365 !PointerType::isValidElementType(ResultTy)) 2366 return error("Invalid type"); 2367 ContainedIDs.push_back(Record[0]); 2368 ResultTy = PointerType::get(ResultTy, AddressSpace); 2369 break; 2370 } 2371 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2372 if (Record.size() != 1) 2373 return error("Invalid opaque pointer record"); 2374 unsigned AddressSpace = Record[0]; 2375 ResultTy = PointerType::get(Context, AddressSpace); 2376 break; 2377 } 2378 case bitc::TYPE_CODE_FUNCTION_OLD: { 2379 // Deprecated, but still needed to read old bitcode files. 2380 // FUNCTION: [vararg, attrid, retty, paramty x N] 2381 if (Record.size() < 3) 2382 return error("Invalid function record"); 2383 SmallVector<Type*, 8> ArgTys; 2384 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2385 if (Type *T = getTypeByID(Record[i])) 2386 ArgTys.push_back(T); 2387 else 2388 break; 2389 } 2390 2391 ResultTy = getTypeByID(Record[2]); 2392 if (!ResultTy || ArgTys.size() < Record.size()-3) 2393 return error("Invalid type"); 2394 2395 ContainedIDs.append(Record.begin() + 2, Record.end()); 2396 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2397 break; 2398 } 2399 case bitc::TYPE_CODE_FUNCTION: { 2400 // FUNCTION: [vararg, retty, paramty x N] 2401 if (Record.size() < 2) 2402 return error("Invalid function record"); 2403 SmallVector<Type*, 8> ArgTys; 2404 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2405 if (Type *T = getTypeByID(Record[i])) { 2406 if (!FunctionType::isValidArgumentType(T)) 2407 return error("Invalid function argument type"); 2408 ArgTys.push_back(T); 2409 } 2410 else 2411 break; 2412 } 2413 2414 ResultTy = getTypeByID(Record[1]); 2415 if (!ResultTy || ArgTys.size() < Record.size()-2) 2416 return error("Invalid type"); 2417 2418 ContainedIDs.append(Record.begin() + 1, Record.end()); 2419 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2420 break; 2421 } 2422 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2423 if (Record.empty()) 2424 return error("Invalid anon struct record"); 2425 SmallVector<Type*, 8> EltTys; 2426 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2427 if (Type *T = getTypeByID(Record[i])) 2428 EltTys.push_back(T); 2429 else 2430 break; 2431 } 2432 if (EltTys.size() != Record.size()-1) 2433 return error("Invalid type"); 2434 ContainedIDs.append(Record.begin() + 1, Record.end()); 2435 ResultTy = StructType::get(Context, EltTys, Record[0]); 2436 break; 2437 } 2438 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2439 if (convertToString(Record, 0, TypeName)) 2440 return error("Invalid struct name record"); 2441 continue; 2442 2443 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2444 if (Record.empty()) 2445 return error("Invalid named struct record"); 2446 2447 if (NumRecords >= TypeList.size()) 2448 return error("Invalid TYPE table"); 2449 2450 // Check to see if this was forward referenced, if so fill in the temp. 2451 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2452 if (Res) { 2453 Res->setName(TypeName); 2454 TypeList[NumRecords] = nullptr; 2455 } else // Otherwise, create a new struct. 2456 Res = createIdentifiedStructType(Context, TypeName); 2457 TypeName.clear(); 2458 2459 SmallVector<Type*, 8> EltTys; 2460 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2461 if (Type *T = getTypeByID(Record[i])) 2462 EltTys.push_back(T); 2463 else 2464 break; 2465 } 2466 if (EltTys.size() != Record.size()-1) 2467 return error("Invalid named struct record"); 2468 Res->setBody(EltTys, Record[0]); 2469 ContainedIDs.append(Record.begin() + 1, Record.end()); 2470 ResultTy = Res; 2471 break; 2472 } 2473 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2474 if (Record.size() != 1) 2475 return error("Invalid opaque type record"); 2476 2477 if (NumRecords >= TypeList.size()) 2478 return error("Invalid TYPE table"); 2479 2480 // Check to see if this was forward referenced, if so fill in the temp. 2481 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2482 if (Res) { 2483 Res->setName(TypeName); 2484 TypeList[NumRecords] = nullptr; 2485 } else // Otherwise, create a new struct with no body. 2486 Res = createIdentifiedStructType(Context, TypeName); 2487 TypeName.clear(); 2488 ResultTy = Res; 2489 break; 2490 } 2491 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2492 if (Record.size() < 1) 2493 return error("Invalid target extension type record"); 2494 2495 if (NumRecords >= TypeList.size()) 2496 return error("Invalid TYPE table"); 2497 2498 if (Record[0] >= Record.size()) 2499 return error("Too many type parameters"); 2500 2501 unsigned NumTys = Record[0]; 2502 SmallVector<Type *, 4> TypeParams; 2503 SmallVector<unsigned, 8> IntParams; 2504 for (unsigned i = 0; i < NumTys; i++) { 2505 if (Type *T = getTypeByID(Record[i + 1])) 2506 TypeParams.push_back(T); 2507 else 2508 return error("Invalid type"); 2509 } 2510 2511 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2512 if (Record[i] > UINT_MAX) 2513 return error("Integer parameter too large"); 2514 IntParams.push_back(Record[i]); 2515 } 2516 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2517 TypeName.clear(); 2518 break; 2519 } 2520 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2521 if (Record.size() < 2) 2522 return error("Invalid array type record"); 2523 ResultTy = getTypeByID(Record[1]); 2524 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2525 return error("Invalid type"); 2526 ContainedIDs.push_back(Record[1]); 2527 ResultTy = ArrayType::get(ResultTy, Record[0]); 2528 break; 2529 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2530 // [numelts, eltty, scalable] 2531 if (Record.size() < 2) 2532 return error("Invalid vector type record"); 2533 if (Record[0] == 0) 2534 return error("Invalid vector length"); 2535 ResultTy = getTypeByID(Record[1]); 2536 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2537 return error("Invalid type"); 2538 bool Scalable = Record.size() > 2 ? Record[2] : false; 2539 ContainedIDs.push_back(Record[1]); 2540 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2541 break; 2542 } 2543 2544 if (NumRecords >= TypeList.size()) 2545 return error("Invalid TYPE table"); 2546 if (TypeList[NumRecords]) 2547 return error( 2548 "Invalid TYPE table: Only named structs can be forward referenced"); 2549 assert(ResultTy && "Didn't read a type?"); 2550 TypeList[NumRecords] = ResultTy; 2551 if (!ContainedIDs.empty()) 2552 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2553 ++NumRecords; 2554 } 2555 } 2556 2557 Error BitcodeReader::parseOperandBundleTags() { 2558 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2559 return Err; 2560 2561 if (!BundleTags.empty()) 2562 return error("Invalid multiple blocks"); 2563 2564 SmallVector<uint64_t, 64> Record; 2565 2566 while (true) { 2567 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2568 if (!MaybeEntry) 2569 return MaybeEntry.takeError(); 2570 BitstreamEntry Entry = MaybeEntry.get(); 2571 2572 switch (Entry.Kind) { 2573 case BitstreamEntry::SubBlock: // Handled for us already. 2574 case BitstreamEntry::Error: 2575 return error("Malformed block"); 2576 case BitstreamEntry::EndBlock: 2577 return Error::success(); 2578 case BitstreamEntry::Record: 2579 // The interesting case. 2580 break; 2581 } 2582 2583 // Tags are implicitly mapped to integers by their order. 2584 2585 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2586 if (!MaybeRecord) 2587 return MaybeRecord.takeError(); 2588 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2589 return error("Invalid operand bundle record"); 2590 2591 // OPERAND_BUNDLE_TAG: [strchr x N] 2592 BundleTags.emplace_back(); 2593 if (convertToString(Record, 0, BundleTags.back())) 2594 return error("Invalid operand bundle record"); 2595 Record.clear(); 2596 } 2597 } 2598 2599 Error BitcodeReader::parseSyncScopeNames() { 2600 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2601 return Err; 2602 2603 if (!SSIDs.empty()) 2604 return error("Invalid multiple synchronization scope names blocks"); 2605 2606 SmallVector<uint64_t, 64> Record; 2607 while (true) { 2608 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2609 if (!MaybeEntry) 2610 return MaybeEntry.takeError(); 2611 BitstreamEntry Entry = MaybeEntry.get(); 2612 2613 switch (Entry.Kind) { 2614 case BitstreamEntry::SubBlock: // Handled for us already. 2615 case BitstreamEntry::Error: 2616 return error("Malformed block"); 2617 case BitstreamEntry::EndBlock: 2618 if (SSIDs.empty()) 2619 return error("Invalid empty synchronization scope names block"); 2620 return Error::success(); 2621 case BitstreamEntry::Record: 2622 // The interesting case. 2623 break; 2624 } 2625 2626 // Synchronization scope names are implicitly mapped to synchronization 2627 // scope IDs by their order. 2628 2629 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2630 if (!MaybeRecord) 2631 return MaybeRecord.takeError(); 2632 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2633 return error("Invalid sync scope record"); 2634 2635 SmallString<16> SSN; 2636 if (convertToString(Record, 0, SSN)) 2637 return error("Invalid sync scope record"); 2638 2639 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2640 Record.clear(); 2641 } 2642 } 2643 2644 /// Associate a value with its name from the given index in the provided record. 2645 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2646 unsigned NameIndex, Triple &TT) { 2647 SmallString<128> ValueName; 2648 if (convertToString(Record, NameIndex, ValueName)) 2649 return error("Invalid record"); 2650 unsigned ValueID = Record[0]; 2651 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2652 return error("Invalid record"); 2653 Value *V = ValueList[ValueID]; 2654 2655 StringRef NameStr(ValueName.data(), ValueName.size()); 2656 if (NameStr.contains(0)) 2657 return error("Invalid value name"); 2658 V->setName(NameStr); 2659 auto *GO = dyn_cast<GlobalObject>(V); 2660 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2661 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2662 return V; 2663 } 2664 2665 /// Helper to note and return the current location, and jump to the given 2666 /// offset. 2667 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2668 BitstreamCursor &Stream) { 2669 // Save the current parsing location so we can jump back at the end 2670 // of the VST read. 2671 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2672 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2673 return std::move(JumpFailed); 2674 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2675 if (!MaybeEntry) 2676 return MaybeEntry.takeError(); 2677 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2678 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2679 return error("Expected value symbol table subblock"); 2680 return CurrentBit; 2681 } 2682 2683 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2684 Function *F, 2685 ArrayRef<uint64_t> Record) { 2686 // Note that we subtract 1 here because the offset is relative to one word 2687 // before the start of the identification or module block, which was 2688 // historically always the start of the regular bitcode header. 2689 uint64_t FuncWordOffset = Record[1] - 1; 2690 uint64_t FuncBitOffset = FuncWordOffset * 32; 2691 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2692 // Set the LastFunctionBlockBit to point to the last function block. 2693 // Later when parsing is resumed after function materialization, 2694 // we can simply skip that last function block. 2695 if (FuncBitOffset > LastFunctionBlockBit) 2696 LastFunctionBlockBit = FuncBitOffset; 2697 } 2698 2699 /// Read a new-style GlobalValue symbol table. 2700 Error BitcodeReader::parseGlobalValueSymbolTable() { 2701 unsigned FuncBitcodeOffsetDelta = 2702 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2703 2704 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2705 return Err; 2706 2707 SmallVector<uint64_t, 64> Record; 2708 while (true) { 2709 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2710 if (!MaybeEntry) 2711 return MaybeEntry.takeError(); 2712 BitstreamEntry Entry = MaybeEntry.get(); 2713 2714 switch (Entry.Kind) { 2715 case BitstreamEntry::SubBlock: 2716 case BitstreamEntry::Error: 2717 return error("Malformed block"); 2718 case BitstreamEntry::EndBlock: 2719 return Error::success(); 2720 case BitstreamEntry::Record: 2721 break; 2722 } 2723 2724 Record.clear(); 2725 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2726 if (!MaybeRecord) 2727 return MaybeRecord.takeError(); 2728 switch (MaybeRecord.get()) { 2729 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2730 unsigned ValueID = Record[0]; 2731 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2732 return error("Invalid value reference in symbol table"); 2733 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2734 cast<Function>(ValueList[ValueID]), Record); 2735 break; 2736 } 2737 } 2738 } 2739 } 2740 2741 /// Parse the value symbol table at either the current parsing location or 2742 /// at the given bit offset if provided. 2743 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2744 uint64_t CurrentBit; 2745 // Pass in the Offset to distinguish between calling for the module-level 2746 // VST (where we want to jump to the VST offset) and the function-level 2747 // VST (where we don't). 2748 if (Offset > 0) { 2749 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2750 if (!MaybeCurrentBit) 2751 return MaybeCurrentBit.takeError(); 2752 CurrentBit = MaybeCurrentBit.get(); 2753 // If this module uses a string table, read this as a module-level VST. 2754 if (UseStrtab) { 2755 if (Error Err = parseGlobalValueSymbolTable()) 2756 return Err; 2757 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2758 return JumpFailed; 2759 return Error::success(); 2760 } 2761 // Otherwise, the VST will be in a similar format to a function-level VST, 2762 // and will contain symbol names. 2763 } 2764 2765 // Compute the delta between the bitcode indices in the VST (the word offset 2766 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2767 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2768 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2769 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2770 // just before entering the VST subblock because: 1) the EnterSubBlock 2771 // changes the AbbrevID width; 2) the VST block is nested within the same 2772 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2773 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2774 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2775 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2776 unsigned FuncBitcodeOffsetDelta = 2777 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2778 2779 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2780 return Err; 2781 2782 SmallVector<uint64_t, 64> Record; 2783 2784 Triple TT(TheModule->getTargetTriple()); 2785 2786 // Read all the records for this value table. 2787 SmallString<128> ValueName; 2788 2789 while (true) { 2790 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2791 if (!MaybeEntry) 2792 return MaybeEntry.takeError(); 2793 BitstreamEntry Entry = MaybeEntry.get(); 2794 2795 switch (Entry.Kind) { 2796 case BitstreamEntry::SubBlock: // Handled for us already. 2797 case BitstreamEntry::Error: 2798 return error("Malformed block"); 2799 case BitstreamEntry::EndBlock: 2800 if (Offset > 0) 2801 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2802 return JumpFailed; 2803 return Error::success(); 2804 case BitstreamEntry::Record: 2805 // The interesting case. 2806 break; 2807 } 2808 2809 // Read a record. 2810 Record.clear(); 2811 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2812 if (!MaybeRecord) 2813 return MaybeRecord.takeError(); 2814 switch (MaybeRecord.get()) { 2815 default: // Default behavior: unknown type. 2816 break; 2817 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2818 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2819 if (Error Err = ValOrErr.takeError()) 2820 return Err; 2821 ValOrErr.get(); 2822 break; 2823 } 2824 case bitc::VST_CODE_FNENTRY: { 2825 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2826 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2827 if (Error Err = ValOrErr.takeError()) 2828 return Err; 2829 Value *V = ValOrErr.get(); 2830 2831 // Ignore function offsets emitted for aliases of functions in older 2832 // versions of LLVM. 2833 if (auto *F = dyn_cast<Function>(V)) 2834 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2835 break; 2836 } 2837 case bitc::VST_CODE_BBENTRY: { 2838 if (convertToString(Record, 1, ValueName)) 2839 return error("Invalid bbentry record"); 2840 BasicBlock *BB = getBasicBlock(Record[0]); 2841 if (!BB) 2842 return error("Invalid bbentry record"); 2843 2844 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2845 ValueName.clear(); 2846 break; 2847 } 2848 } 2849 } 2850 } 2851 2852 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2853 /// encoding. 2854 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2855 if ((V & 1) == 0) 2856 return V >> 1; 2857 if (V != 1) 2858 return -(V >> 1); 2859 // There is no such thing as -0 with integers. "-0" really means MININT. 2860 return 1ULL << 63; 2861 } 2862 2863 /// Resolve all of the initializers for global values and aliases that we can. 2864 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2865 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2866 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2867 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2868 2869 GlobalInitWorklist.swap(GlobalInits); 2870 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2871 FunctionOperandWorklist.swap(FunctionOperands); 2872 2873 while (!GlobalInitWorklist.empty()) { 2874 unsigned ValID = GlobalInitWorklist.back().second; 2875 if (ValID >= ValueList.size()) { 2876 // Not ready to resolve this yet, it requires something later in the file. 2877 GlobalInits.push_back(GlobalInitWorklist.back()); 2878 } else { 2879 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2880 if (!MaybeC) 2881 return MaybeC.takeError(); 2882 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2883 } 2884 GlobalInitWorklist.pop_back(); 2885 } 2886 2887 while (!IndirectSymbolInitWorklist.empty()) { 2888 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2889 if (ValID >= ValueList.size()) { 2890 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2891 } else { 2892 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2893 if (!MaybeC) 2894 return MaybeC.takeError(); 2895 Constant *C = MaybeC.get(); 2896 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2897 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2898 if (C->getType() != GV->getType()) 2899 return error("Alias and aliasee types don't match"); 2900 GA->setAliasee(C); 2901 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2902 GI->setResolver(C); 2903 } else { 2904 return error("Expected an alias or an ifunc"); 2905 } 2906 } 2907 IndirectSymbolInitWorklist.pop_back(); 2908 } 2909 2910 while (!FunctionOperandWorklist.empty()) { 2911 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2912 if (Info.PersonalityFn) { 2913 unsigned ValID = Info.PersonalityFn - 1; 2914 if (ValID < ValueList.size()) { 2915 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2916 if (!MaybeC) 2917 return MaybeC.takeError(); 2918 Info.F->setPersonalityFn(MaybeC.get()); 2919 Info.PersonalityFn = 0; 2920 } 2921 } 2922 if (Info.Prefix) { 2923 unsigned ValID = Info.Prefix - 1; 2924 if (ValID < ValueList.size()) { 2925 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2926 if (!MaybeC) 2927 return MaybeC.takeError(); 2928 Info.F->setPrefixData(MaybeC.get()); 2929 Info.Prefix = 0; 2930 } 2931 } 2932 if (Info.Prologue) { 2933 unsigned ValID = Info.Prologue - 1; 2934 if (ValID < ValueList.size()) { 2935 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2936 if (!MaybeC) 2937 return MaybeC.takeError(); 2938 Info.F->setPrologueData(MaybeC.get()); 2939 Info.Prologue = 0; 2940 } 2941 } 2942 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2943 FunctionOperands.push_back(Info); 2944 FunctionOperandWorklist.pop_back(); 2945 } 2946 2947 return Error::success(); 2948 } 2949 2950 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2951 SmallVector<uint64_t, 8> Words(Vals.size()); 2952 transform(Vals, Words.begin(), 2953 BitcodeReader::decodeSignRotatedValue); 2954 2955 return APInt(TypeBits, Words); 2956 } 2957 2958 Error BitcodeReader::parseConstants() { 2959 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2960 return Err; 2961 2962 SmallVector<uint64_t, 64> Record; 2963 2964 // Read all the records for this value table. 2965 Type *CurTy = Type::getInt32Ty(Context); 2966 unsigned Int32TyID = getVirtualTypeID(CurTy); 2967 unsigned CurTyID = Int32TyID; 2968 Type *CurElemTy = nullptr; 2969 unsigned NextCstNo = ValueList.size(); 2970 2971 while (true) { 2972 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2973 if (!MaybeEntry) 2974 return MaybeEntry.takeError(); 2975 BitstreamEntry Entry = MaybeEntry.get(); 2976 2977 switch (Entry.Kind) { 2978 case BitstreamEntry::SubBlock: // Handled for us already. 2979 case BitstreamEntry::Error: 2980 return error("Malformed block"); 2981 case BitstreamEntry::EndBlock: 2982 if (NextCstNo != ValueList.size()) 2983 return error("Invalid constant reference"); 2984 return Error::success(); 2985 case BitstreamEntry::Record: 2986 // The interesting case. 2987 break; 2988 } 2989 2990 // Read a record. 2991 Record.clear(); 2992 Type *VoidType = Type::getVoidTy(Context); 2993 Value *V = nullptr; 2994 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2995 if (!MaybeBitCode) 2996 return MaybeBitCode.takeError(); 2997 switch (unsigned BitCode = MaybeBitCode.get()) { 2998 default: // Default behavior: unknown constant 2999 case bitc::CST_CODE_UNDEF: // UNDEF 3000 V = UndefValue::get(CurTy); 3001 break; 3002 case bitc::CST_CODE_POISON: // POISON 3003 V = PoisonValue::get(CurTy); 3004 break; 3005 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3006 if (Record.empty()) 3007 return error("Invalid settype record"); 3008 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3009 return error("Invalid settype record"); 3010 if (TypeList[Record[0]] == VoidType) 3011 return error("Invalid constant type"); 3012 CurTyID = Record[0]; 3013 CurTy = TypeList[CurTyID]; 3014 CurElemTy = getPtrElementTypeByID(CurTyID); 3015 continue; // Skip the ValueList manipulation. 3016 case bitc::CST_CODE_NULL: // NULL 3017 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3018 return error("Invalid type for a constant null value"); 3019 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3020 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3021 return error("Invalid type for a constant null value"); 3022 V = Constant::getNullValue(CurTy); 3023 break; 3024 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3025 if (!CurTy->isIntegerTy() || Record.empty()) 3026 return error("Invalid integer const record"); 3027 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3028 break; 3029 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3030 if (!CurTy->isIntegerTy() || Record.empty()) 3031 return error("Invalid wide integer const record"); 3032 3033 APInt VInt = 3034 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3035 V = ConstantInt::get(Context, VInt); 3036 3037 break; 3038 } 3039 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3040 if (Record.empty()) 3041 return error("Invalid float const record"); 3042 if (CurTy->isHalfTy()) 3043 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 3044 APInt(16, (uint16_t)Record[0]))); 3045 else if (CurTy->isBFloatTy()) 3046 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 3047 APInt(16, (uint32_t)Record[0]))); 3048 else if (CurTy->isFloatTy()) 3049 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 3050 APInt(32, (uint32_t)Record[0]))); 3051 else if (CurTy->isDoubleTy()) 3052 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 3053 APInt(64, Record[0]))); 3054 else if (CurTy->isX86_FP80Ty()) { 3055 // Bits are not stored the same way as a normal i80 APInt, compensate. 3056 uint64_t Rearrange[2]; 3057 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3058 Rearrange[1] = Record[0] >> 48; 3059 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 3060 APInt(80, Rearrange))); 3061 } else if (CurTy->isFP128Ty()) 3062 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 3063 APInt(128, Record))); 3064 else if (CurTy->isPPC_FP128Ty()) 3065 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 3066 APInt(128, Record))); 3067 else 3068 V = UndefValue::get(CurTy); 3069 break; 3070 } 3071 3072 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3073 if (Record.empty()) 3074 return error("Invalid aggregate record"); 3075 3076 unsigned Size = Record.size(); 3077 SmallVector<unsigned, 16> Elts; 3078 for (unsigned i = 0; i != Size; ++i) 3079 Elts.push_back(Record[i]); 3080 3081 if (isa<StructType>(CurTy)) { 3082 V = BitcodeConstant::create( 3083 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3084 } else if (isa<ArrayType>(CurTy)) { 3085 V = BitcodeConstant::create(Alloc, CurTy, 3086 BitcodeConstant::ConstantArrayOpcode, Elts); 3087 } else if (isa<VectorType>(CurTy)) { 3088 V = BitcodeConstant::create( 3089 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3090 } else { 3091 V = UndefValue::get(CurTy); 3092 } 3093 break; 3094 } 3095 case bitc::CST_CODE_STRING: // STRING: [values] 3096 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3097 if (Record.empty()) 3098 return error("Invalid string record"); 3099 3100 SmallString<16> Elts(Record.begin(), Record.end()); 3101 V = ConstantDataArray::getString(Context, Elts, 3102 BitCode == bitc::CST_CODE_CSTRING); 3103 break; 3104 } 3105 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3106 if (Record.empty()) 3107 return error("Invalid data record"); 3108 3109 Type *EltTy; 3110 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3111 EltTy = Array->getElementType(); 3112 else 3113 EltTy = cast<VectorType>(CurTy)->getElementType(); 3114 if (EltTy->isIntegerTy(8)) { 3115 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3116 if (isa<VectorType>(CurTy)) 3117 V = ConstantDataVector::get(Context, Elts); 3118 else 3119 V = ConstantDataArray::get(Context, Elts); 3120 } else if (EltTy->isIntegerTy(16)) { 3121 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3122 if (isa<VectorType>(CurTy)) 3123 V = ConstantDataVector::get(Context, Elts); 3124 else 3125 V = ConstantDataArray::get(Context, Elts); 3126 } else if (EltTy->isIntegerTy(32)) { 3127 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3128 if (isa<VectorType>(CurTy)) 3129 V = ConstantDataVector::get(Context, Elts); 3130 else 3131 V = ConstantDataArray::get(Context, Elts); 3132 } else if (EltTy->isIntegerTy(64)) { 3133 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3134 if (isa<VectorType>(CurTy)) 3135 V = ConstantDataVector::get(Context, Elts); 3136 else 3137 V = ConstantDataArray::get(Context, Elts); 3138 } else if (EltTy->isHalfTy()) { 3139 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3140 if (isa<VectorType>(CurTy)) 3141 V = ConstantDataVector::getFP(EltTy, Elts); 3142 else 3143 V = ConstantDataArray::getFP(EltTy, Elts); 3144 } else if (EltTy->isBFloatTy()) { 3145 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3146 if (isa<VectorType>(CurTy)) 3147 V = ConstantDataVector::getFP(EltTy, Elts); 3148 else 3149 V = ConstantDataArray::getFP(EltTy, Elts); 3150 } else if (EltTy->isFloatTy()) { 3151 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3152 if (isa<VectorType>(CurTy)) 3153 V = ConstantDataVector::getFP(EltTy, Elts); 3154 else 3155 V = ConstantDataArray::getFP(EltTy, Elts); 3156 } else if (EltTy->isDoubleTy()) { 3157 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3158 if (isa<VectorType>(CurTy)) 3159 V = ConstantDataVector::getFP(EltTy, Elts); 3160 else 3161 V = ConstantDataArray::getFP(EltTy, Elts); 3162 } else { 3163 return error("Invalid type for value"); 3164 } 3165 break; 3166 } 3167 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3168 if (Record.size() < 2) 3169 return error("Invalid unary op constexpr record"); 3170 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3171 if (Opc < 0) { 3172 V = UndefValue::get(CurTy); // Unknown unop. 3173 } else { 3174 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3175 } 3176 break; 3177 } 3178 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3179 if (Record.size() < 3) 3180 return error("Invalid binary op constexpr record"); 3181 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3182 if (Opc < 0) { 3183 V = UndefValue::get(CurTy); // Unknown binop. 3184 } else { 3185 uint8_t Flags = 0; 3186 if (Record.size() >= 4) { 3187 if (Opc == Instruction::Add || 3188 Opc == Instruction::Sub || 3189 Opc == Instruction::Mul || 3190 Opc == Instruction::Shl) { 3191 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3192 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3193 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3194 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3195 } else if (Opc == Instruction::SDiv || 3196 Opc == Instruction::UDiv || 3197 Opc == Instruction::LShr || 3198 Opc == Instruction::AShr) { 3199 if (Record[3] & (1 << bitc::PEO_EXACT)) 3200 Flags |= PossiblyExactOperator::IsExact; 3201 } 3202 } 3203 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3204 {(unsigned)Record[1], (unsigned)Record[2]}); 3205 } 3206 break; 3207 } 3208 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3209 if (Record.size() < 3) 3210 return error("Invalid cast constexpr record"); 3211 int Opc = getDecodedCastOpcode(Record[0]); 3212 if (Opc < 0) { 3213 V = UndefValue::get(CurTy); // Unknown cast. 3214 } else { 3215 unsigned OpTyID = Record[1]; 3216 Type *OpTy = getTypeByID(OpTyID); 3217 if (!OpTy) 3218 return error("Invalid cast constexpr record"); 3219 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3220 } 3221 break; 3222 } 3223 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3224 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3225 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3226 // operands] 3227 if (Record.size() < 2) 3228 return error("Constant GEP record must have at least two elements"); 3229 unsigned OpNum = 0; 3230 Type *PointeeType = nullptr; 3231 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3232 Record.size() % 2) 3233 PointeeType = getTypeByID(Record[OpNum++]); 3234 3235 bool InBounds = false; 3236 std::optional<unsigned> InRangeIndex; 3237 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3238 uint64_t Op = Record[OpNum++]; 3239 InBounds = Op & 1; 3240 InRangeIndex = Op >> 1; 3241 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3242 InBounds = true; 3243 3244 SmallVector<unsigned, 16> Elts; 3245 unsigned BaseTypeID = Record[OpNum]; 3246 while (OpNum != Record.size()) { 3247 unsigned ElTyID = Record[OpNum++]; 3248 Type *ElTy = getTypeByID(ElTyID); 3249 if (!ElTy) 3250 return error("Invalid getelementptr constexpr record"); 3251 Elts.push_back(Record[OpNum++]); 3252 } 3253 3254 if (Elts.size() < 1) 3255 return error("Invalid gep with no operands"); 3256 3257 Type *BaseType = getTypeByID(BaseTypeID); 3258 if (isa<VectorType>(BaseType)) { 3259 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3260 BaseType = getTypeByID(BaseTypeID); 3261 } 3262 3263 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3264 if (!OrigPtrTy) 3265 return error("GEP base operand must be pointer or vector of pointer"); 3266 3267 if (!PointeeType) { 3268 PointeeType = getPtrElementTypeByID(BaseTypeID); 3269 if (!PointeeType) 3270 return error("Missing element type for old-style constant GEP"); 3271 } 3272 3273 V = BitcodeConstant::create(Alloc, CurTy, 3274 {Instruction::GetElementPtr, InBounds, 3275 InRangeIndex.value_or(-1), PointeeType}, 3276 Elts); 3277 break; 3278 } 3279 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3280 if (Record.size() < 3) 3281 return error("Invalid select constexpr record"); 3282 3283 V = BitcodeConstant::create( 3284 Alloc, CurTy, Instruction::Select, 3285 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3286 break; 3287 } 3288 case bitc::CST_CODE_CE_EXTRACTELT 3289 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3290 if (Record.size() < 3) 3291 return error("Invalid extractelement constexpr record"); 3292 unsigned OpTyID = Record[0]; 3293 VectorType *OpTy = 3294 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3295 if (!OpTy) 3296 return error("Invalid extractelement constexpr record"); 3297 unsigned IdxRecord; 3298 if (Record.size() == 4) { 3299 unsigned IdxTyID = Record[2]; 3300 Type *IdxTy = getTypeByID(IdxTyID); 3301 if (!IdxTy) 3302 return error("Invalid extractelement constexpr record"); 3303 IdxRecord = Record[3]; 3304 } else { 3305 // Deprecated, but still needed to read old bitcode files. 3306 IdxRecord = Record[2]; 3307 } 3308 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3309 {(unsigned)Record[1], IdxRecord}); 3310 break; 3311 } 3312 case bitc::CST_CODE_CE_INSERTELT 3313 : { // CE_INSERTELT: [opval, opval, opty, opval] 3314 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3315 if (Record.size() < 3 || !OpTy) 3316 return error("Invalid insertelement constexpr record"); 3317 unsigned IdxRecord; 3318 if (Record.size() == 4) { 3319 unsigned IdxTyID = Record[2]; 3320 Type *IdxTy = getTypeByID(IdxTyID); 3321 if (!IdxTy) 3322 return error("Invalid insertelement constexpr record"); 3323 IdxRecord = Record[3]; 3324 } else { 3325 // Deprecated, but still needed to read old bitcode files. 3326 IdxRecord = Record[2]; 3327 } 3328 V = BitcodeConstant::create( 3329 Alloc, CurTy, Instruction::InsertElement, 3330 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3331 break; 3332 } 3333 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3334 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3335 if (Record.size() < 3 || !OpTy) 3336 return error("Invalid shufflevector constexpr record"); 3337 V = BitcodeConstant::create( 3338 Alloc, CurTy, Instruction::ShuffleVector, 3339 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3340 break; 3341 } 3342 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3343 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3344 VectorType *OpTy = 3345 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3346 if (Record.size() < 4 || !RTy || !OpTy) 3347 return error("Invalid shufflevector constexpr record"); 3348 V = BitcodeConstant::create( 3349 Alloc, CurTy, Instruction::ShuffleVector, 3350 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3351 break; 3352 } 3353 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3354 if (Record.size() < 4) 3355 return error("Invalid cmp constexpt record"); 3356 unsigned OpTyID = Record[0]; 3357 Type *OpTy = getTypeByID(OpTyID); 3358 if (!OpTy) 3359 return error("Invalid cmp constexpr record"); 3360 V = BitcodeConstant::create( 3361 Alloc, CurTy, 3362 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3363 : Instruction::ICmp), 3364 (uint8_t)Record[3]}, 3365 {(unsigned)Record[1], (unsigned)Record[2]}); 3366 break; 3367 } 3368 // This maintains backward compatibility, pre-asm dialect keywords. 3369 // Deprecated, but still needed to read old bitcode files. 3370 case bitc::CST_CODE_INLINEASM_OLD: { 3371 if (Record.size() < 2) 3372 return error("Invalid inlineasm record"); 3373 std::string AsmStr, ConstrStr; 3374 bool HasSideEffects = Record[0] & 1; 3375 bool IsAlignStack = Record[0] >> 1; 3376 unsigned AsmStrSize = Record[1]; 3377 if (2+AsmStrSize >= Record.size()) 3378 return error("Invalid inlineasm record"); 3379 unsigned ConstStrSize = Record[2+AsmStrSize]; 3380 if (3+AsmStrSize+ConstStrSize > Record.size()) 3381 return error("Invalid inlineasm record"); 3382 3383 for (unsigned i = 0; i != AsmStrSize; ++i) 3384 AsmStr += (char)Record[2+i]; 3385 for (unsigned i = 0; i != ConstStrSize; ++i) 3386 ConstrStr += (char)Record[3+AsmStrSize+i]; 3387 UpgradeInlineAsmString(&AsmStr); 3388 if (!CurElemTy) 3389 return error("Missing element type for old-style inlineasm"); 3390 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3391 HasSideEffects, IsAlignStack); 3392 break; 3393 } 3394 // This version adds support for the asm dialect keywords (e.g., 3395 // inteldialect). 3396 case bitc::CST_CODE_INLINEASM_OLD2: { 3397 if (Record.size() < 2) 3398 return error("Invalid inlineasm record"); 3399 std::string AsmStr, ConstrStr; 3400 bool HasSideEffects = Record[0] & 1; 3401 bool IsAlignStack = (Record[0] >> 1) & 1; 3402 unsigned AsmDialect = Record[0] >> 2; 3403 unsigned AsmStrSize = Record[1]; 3404 if (2+AsmStrSize >= Record.size()) 3405 return error("Invalid inlineasm record"); 3406 unsigned ConstStrSize = Record[2+AsmStrSize]; 3407 if (3+AsmStrSize+ConstStrSize > Record.size()) 3408 return error("Invalid inlineasm record"); 3409 3410 for (unsigned i = 0; i != AsmStrSize; ++i) 3411 AsmStr += (char)Record[2+i]; 3412 for (unsigned i = 0; i != ConstStrSize; ++i) 3413 ConstrStr += (char)Record[3+AsmStrSize+i]; 3414 UpgradeInlineAsmString(&AsmStr); 3415 if (!CurElemTy) 3416 return error("Missing element type for old-style inlineasm"); 3417 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3418 HasSideEffects, IsAlignStack, 3419 InlineAsm::AsmDialect(AsmDialect)); 3420 break; 3421 } 3422 // This version adds support for the unwind keyword. 3423 case bitc::CST_CODE_INLINEASM_OLD3: { 3424 if (Record.size() < 2) 3425 return error("Invalid inlineasm record"); 3426 unsigned OpNum = 0; 3427 std::string AsmStr, ConstrStr; 3428 bool HasSideEffects = Record[OpNum] & 1; 3429 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3430 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3431 bool CanThrow = (Record[OpNum] >> 3) & 1; 3432 ++OpNum; 3433 unsigned AsmStrSize = Record[OpNum]; 3434 ++OpNum; 3435 if (OpNum + AsmStrSize >= Record.size()) 3436 return error("Invalid inlineasm record"); 3437 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3438 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3439 return error("Invalid inlineasm record"); 3440 3441 for (unsigned i = 0; i != AsmStrSize; ++i) 3442 AsmStr += (char)Record[OpNum + i]; 3443 ++OpNum; 3444 for (unsigned i = 0; i != ConstStrSize; ++i) 3445 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3446 UpgradeInlineAsmString(&AsmStr); 3447 if (!CurElemTy) 3448 return error("Missing element type for old-style inlineasm"); 3449 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3450 HasSideEffects, IsAlignStack, 3451 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3452 break; 3453 } 3454 // This version adds explicit function type. 3455 case bitc::CST_CODE_INLINEASM: { 3456 if (Record.size() < 3) 3457 return error("Invalid inlineasm record"); 3458 unsigned OpNum = 0; 3459 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3460 ++OpNum; 3461 if (!FnTy) 3462 return error("Invalid inlineasm record"); 3463 std::string AsmStr, ConstrStr; 3464 bool HasSideEffects = Record[OpNum] & 1; 3465 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3466 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3467 bool CanThrow = (Record[OpNum] >> 3) & 1; 3468 ++OpNum; 3469 unsigned AsmStrSize = Record[OpNum]; 3470 ++OpNum; 3471 if (OpNum + AsmStrSize >= Record.size()) 3472 return error("Invalid inlineasm record"); 3473 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3474 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3475 return error("Invalid inlineasm record"); 3476 3477 for (unsigned i = 0; i != AsmStrSize; ++i) 3478 AsmStr += (char)Record[OpNum + i]; 3479 ++OpNum; 3480 for (unsigned i = 0; i != ConstStrSize; ++i) 3481 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3482 UpgradeInlineAsmString(&AsmStr); 3483 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3484 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3485 break; 3486 } 3487 case bitc::CST_CODE_BLOCKADDRESS:{ 3488 if (Record.size() < 3) 3489 return error("Invalid blockaddress record"); 3490 unsigned FnTyID = Record[0]; 3491 Type *FnTy = getTypeByID(FnTyID); 3492 if (!FnTy) 3493 return error("Invalid blockaddress record"); 3494 V = BitcodeConstant::create( 3495 Alloc, CurTy, 3496 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3497 Record[1]); 3498 break; 3499 } 3500 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3501 if (Record.size() < 2) 3502 return error("Invalid dso_local record"); 3503 unsigned GVTyID = Record[0]; 3504 Type *GVTy = getTypeByID(GVTyID); 3505 if (!GVTy) 3506 return error("Invalid dso_local record"); 3507 V = BitcodeConstant::create( 3508 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3509 break; 3510 } 3511 case bitc::CST_CODE_NO_CFI_VALUE: { 3512 if (Record.size() < 2) 3513 return error("Invalid no_cfi record"); 3514 unsigned GVTyID = Record[0]; 3515 Type *GVTy = getTypeByID(GVTyID); 3516 if (!GVTy) 3517 return error("Invalid no_cfi record"); 3518 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3519 Record[1]); 3520 break; 3521 } 3522 } 3523 3524 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3525 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3526 return Err; 3527 ++NextCstNo; 3528 } 3529 } 3530 3531 Error BitcodeReader::parseUseLists() { 3532 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3533 return Err; 3534 3535 // Read all the records. 3536 SmallVector<uint64_t, 64> Record; 3537 3538 while (true) { 3539 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3540 if (!MaybeEntry) 3541 return MaybeEntry.takeError(); 3542 BitstreamEntry Entry = MaybeEntry.get(); 3543 3544 switch (Entry.Kind) { 3545 case BitstreamEntry::SubBlock: // Handled for us already. 3546 case BitstreamEntry::Error: 3547 return error("Malformed block"); 3548 case BitstreamEntry::EndBlock: 3549 return Error::success(); 3550 case BitstreamEntry::Record: 3551 // The interesting case. 3552 break; 3553 } 3554 3555 // Read a use list record. 3556 Record.clear(); 3557 bool IsBB = false; 3558 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3559 if (!MaybeRecord) 3560 return MaybeRecord.takeError(); 3561 switch (MaybeRecord.get()) { 3562 default: // Default behavior: unknown type. 3563 break; 3564 case bitc::USELIST_CODE_BB: 3565 IsBB = true; 3566 [[fallthrough]]; 3567 case bitc::USELIST_CODE_DEFAULT: { 3568 unsigned RecordLength = Record.size(); 3569 if (RecordLength < 3) 3570 // Records should have at least an ID and two indexes. 3571 return error("Invalid record"); 3572 unsigned ID = Record.pop_back_val(); 3573 3574 Value *V; 3575 if (IsBB) { 3576 assert(ID < FunctionBBs.size() && "Basic block not found"); 3577 V = FunctionBBs[ID]; 3578 } else 3579 V = ValueList[ID]; 3580 unsigned NumUses = 0; 3581 SmallDenseMap<const Use *, unsigned, 16> Order; 3582 for (const Use &U : V->materialized_uses()) { 3583 if (++NumUses > Record.size()) 3584 break; 3585 Order[&U] = Record[NumUses - 1]; 3586 } 3587 if (Order.size() != Record.size() || NumUses > Record.size()) 3588 // Mismatches can happen if the functions are being materialized lazily 3589 // (out-of-order), or a value has been upgraded. 3590 break; 3591 3592 V->sortUseList([&](const Use &L, const Use &R) { 3593 return Order.lookup(&L) < Order.lookup(&R); 3594 }); 3595 break; 3596 } 3597 } 3598 } 3599 } 3600 3601 /// When we see the block for metadata, remember where it is and then skip it. 3602 /// This lets us lazily deserialize the metadata. 3603 Error BitcodeReader::rememberAndSkipMetadata() { 3604 // Save the current stream state. 3605 uint64_t CurBit = Stream.GetCurrentBitNo(); 3606 DeferredMetadataInfo.push_back(CurBit); 3607 3608 // Skip over the block for now. 3609 if (Error Err = Stream.SkipBlock()) 3610 return Err; 3611 return Error::success(); 3612 } 3613 3614 Error BitcodeReader::materializeMetadata() { 3615 for (uint64_t BitPos : DeferredMetadataInfo) { 3616 // Move the bit stream to the saved position. 3617 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3618 return JumpFailed; 3619 if (Error Err = MDLoader->parseModuleMetadata()) 3620 return Err; 3621 } 3622 3623 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3624 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3625 // multiple times. 3626 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3627 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3628 NamedMDNode *LinkerOpts = 3629 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3630 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3631 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3632 } 3633 } 3634 3635 DeferredMetadataInfo.clear(); 3636 return Error::success(); 3637 } 3638 3639 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3640 3641 /// When we see the block for a function body, remember where it is and then 3642 /// skip it. This lets us lazily deserialize the functions. 3643 Error BitcodeReader::rememberAndSkipFunctionBody() { 3644 // Get the function we are talking about. 3645 if (FunctionsWithBodies.empty()) 3646 return error("Insufficient function protos"); 3647 3648 Function *Fn = FunctionsWithBodies.back(); 3649 FunctionsWithBodies.pop_back(); 3650 3651 // Save the current stream state. 3652 uint64_t CurBit = Stream.GetCurrentBitNo(); 3653 assert( 3654 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3655 "Mismatch between VST and scanned function offsets"); 3656 DeferredFunctionInfo[Fn] = CurBit; 3657 3658 // Skip over the function block for now. 3659 if (Error Err = Stream.SkipBlock()) 3660 return Err; 3661 return Error::success(); 3662 } 3663 3664 Error BitcodeReader::globalCleanup() { 3665 // Patch the initializers for globals and aliases up. 3666 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3667 return Err; 3668 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3669 return error("Malformed global initializer set"); 3670 3671 // Look for intrinsic functions which need to be upgraded at some point 3672 // and functions that need to have their function attributes upgraded. 3673 for (Function &F : *TheModule) { 3674 MDLoader->upgradeDebugIntrinsics(F); 3675 Function *NewFn; 3676 if (UpgradeIntrinsicFunction(&F, NewFn)) 3677 UpgradedIntrinsics[&F] = NewFn; 3678 // Look for functions that rely on old function attribute behavior. 3679 UpgradeFunctionAttributes(F); 3680 } 3681 3682 // Look for global variables which need to be renamed. 3683 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3684 for (GlobalVariable &GV : TheModule->globals()) 3685 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3686 UpgradedVariables.emplace_back(&GV, Upgraded); 3687 for (auto &Pair : UpgradedVariables) { 3688 Pair.first->eraseFromParent(); 3689 TheModule->insertGlobalVariable(Pair.second); 3690 } 3691 3692 // Force deallocation of memory for these vectors to favor the client that 3693 // want lazy deserialization. 3694 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3695 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3696 return Error::success(); 3697 } 3698 3699 /// Support for lazy parsing of function bodies. This is required if we 3700 /// either have an old bitcode file without a VST forward declaration record, 3701 /// or if we have an anonymous function being materialized, since anonymous 3702 /// functions do not have a name and are therefore not in the VST. 3703 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3704 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3705 return JumpFailed; 3706 3707 if (Stream.AtEndOfStream()) 3708 return error("Could not find function in stream"); 3709 3710 if (!SeenFirstFunctionBody) 3711 return error("Trying to materialize functions before seeing function blocks"); 3712 3713 // An old bitcode file with the symbol table at the end would have 3714 // finished the parse greedily. 3715 assert(SeenValueSymbolTable); 3716 3717 SmallVector<uint64_t, 64> Record; 3718 3719 while (true) { 3720 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3721 if (!MaybeEntry) 3722 return MaybeEntry.takeError(); 3723 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3724 3725 switch (Entry.Kind) { 3726 default: 3727 return error("Expect SubBlock"); 3728 case BitstreamEntry::SubBlock: 3729 switch (Entry.ID) { 3730 default: 3731 return error("Expect function block"); 3732 case bitc::FUNCTION_BLOCK_ID: 3733 if (Error Err = rememberAndSkipFunctionBody()) 3734 return Err; 3735 NextUnreadBit = Stream.GetCurrentBitNo(); 3736 return Error::success(); 3737 } 3738 } 3739 } 3740 } 3741 3742 Error BitcodeReaderBase::readBlockInfo() { 3743 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3744 Stream.ReadBlockInfoBlock(); 3745 if (!MaybeNewBlockInfo) 3746 return MaybeNewBlockInfo.takeError(); 3747 std::optional<BitstreamBlockInfo> NewBlockInfo = 3748 std::move(MaybeNewBlockInfo.get()); 3749 if (!NewBlockInfo) 3750 return error("Malformed block"); 3751 BlockInfo = std::move(*NewBlockInfo); 3752 return Error::success(); 3753 } 3754 3755 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3756 // v1: [selection_kind, name] 3757 // v2: [strtab_offset, strtab_size, selection_kind] 3758 StringRef Name; 3759 std::tie(Name, Record) = readNameFromStrtab(Record); 3760 3761 if (Record.empty()) 3762 return error("Invalid record"); 3763 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3764 std::string OldFormatName; 3765 if (!UseStrtab) { 3766 if (Record.size() < 2) 3767 return error("Invalid record"); 3768 unsigned ComdatNameSize = Record[1]; 3769 if (ComdatNameSize > Record.size() - 2) 3770 return error("Comdat name size too large"); 3771 OldFormatName.reserve(ComdatNameSize); 3772 for (unsigned i = 0; i != ComdatNameSize; ++i) 3773 OldFormatName += (char)Record[2 + i]; 3774 Name = OldFormatName; 3775 } 3776 Comdat *C = TheModule->getOrInsertComdat(Name); 3777 C->setSelectionKind(SK); 3778 ComdatList.push_back(C); 3779 return Error::success(); 3780 } 3781 3782 static void inferDSOLocal(GlobalValue *GV) { 3783 // infer dso_local from linkage and visibility if it is not encoded. 3784 if (GV->hasLocalLinkage() || 3785 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3786 GV->setDSOLocal(true); 3787 } 3788 3789 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3790 GlobalValue::SanitizerMetadata Meta; 3791 if (V & (1 << 0)) 3792 Meta.NoAddress = true; 3793 if (V & (1 << 1)) 3794 Meta.NoHWAddress = true; 3795 if (V & (1 << 2)) 3796 Meta.Memtag = true; 3797 if (V & (1 << 3)) 3798 Meta.IsDynInit = true; 3799 return Meta; 3800 } 3801 3802 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3803 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3804 // visibility, threadlocal, unnamed_addr, externally_initialized, 3805 // dllstorageclass, comdat, attributes, preemption specifier, 3806 // partition strtab offset, partition strtab size] (name in VST) 3807 // v2: [strtab_offset, strtab_size, v1] 3808 StringRef Name; 3809 std::tie(Name, Record) = readNameFromStrtab(Record); 3810 3811 if (Record.size() < 6) 3812 return error("Invalid record"); 3813 unsigned TyID = Record[0]; 3814 Type *Ty = getTypeByID(TyID); 3815 if (!Ty) 3816 return error("Invalid record"); 3817 bool isConstant = Record[1] & 1; 3818 bool explicitType = Record[1] & 2; 3819 unsigned AddressSpace; 3820 if (explicitType) { 3821 AddressSpace = Record[1] >> 2; 3822 } else { 3823 if (!Ty->isPointerTy()) 3824 return error("Invalid type for value"); 3825 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3826 TyID = getContainedTypeID(TyID); 3827 Ty = getTypeByID(TyID); 3828 if (!Ty) 3829 return error("Missing element type for old-style global"); 3830 } 3831 3832 uint64_t RawLinkage = Record[3]; 3833 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3834 MaybeAlign Alignment; 3835 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3836 return Err; 3837 std::string Section; 3838 if (Record[5]) { 3839 if (Record[5] - 1 >= SectionTable.size()) 3840 return error("Invalid ID"); 3841 Section = SectionTable[Record[5] - 1]; 3842 } 3843 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3844 // Local linkage must have default visibility. 3845 // auto-upgrade `hidden` and `protected` for old bitcode. 3846 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3847 Visibility = getDecodedVisibility(Record[6]); 3848 3849 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3850 if (Record.size() > 7) 3851 TLM = getDecodedThreadLocalMode(Record[7]); 3852 3853 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3854 if (Record.size() > 8) 3855 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3856 3857 bool ExternallyInitialized = false; 3858 if (Record.size() > 9) 3859 ExternallyInitialized = Record[9]; 3860 3861 GlobalVariable *NewGV = 3862 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3863 nullptr, TLM, AddressSpace, ExternallyInitialized); 3864 if (Alignment) 3865 NewGV->setAlignment(*Alignment); 3866 if (!Section.empty()) 3867 NewGV->setSection(Section); 3868 NewGV->setVisibility(Visibility); 3869 NewGV->setUnnamedAddr(UnnamedAddr); 3870 3871 if (Record.size() > 10) { 3872 // A GlobalValue with local linkage cannot have a DLL storage class. 3873 if (!NewGV->hasLocalLinkage()) { 3874 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3875 } 3876 } else { 3877 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3878 } 3879 3880 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3881 3882 // Remember which value to use for the global initializer. 3883 if (unsigned InitID = Record[2]) 3884 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3885 3886 if (Record.size() > 11) { 3887 if (unsigned ComdatID = Record[11]) { 3888 if (ComdatID > ComdatList.size()) 3889 return error("Invalid global variable comdat ID"); 3890 NewGV->setComdat(ComdatList[ComdatID - 1]); 3891 } 3892 } else if (hasImplicitComdat(RawLinkage)) { 3893 ImplicitComdatObjects.insert(NewGV); 3894 } 3895 3896 if (Record.size() > 12) { 3897 auto AS = getAttributes(Record[12]).getFnAttrs(); 3898 NewGV->setAttributes(AS); 3899 } 3900 3901 if (Record.size() > 13) { 3902 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3903 } 3904 inferDSOLocal(NewGV); 3905 3906 // Check whether we have enough values to read a partition name. 3907 if (Record.size() > 15) 3908 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3909 3910 if (Record.size() > 16 && Record[16]) { 3911 llvm::GlobalValue::SanitizerMetadata Meta = 3912 deserializeSanitizerMetadata(Record[16]); 3913 NewGV->setSanitizerMetadata(Meta); 3914 } 3915 3916 return Error::success(); 3917 } 3918 3919 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 3920 if (ValueTypeCallback) { 3921 (*ValueTypeCallback)( 3922 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 3923 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 3924 } 3925 } 3926 3927 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3928 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3929 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3930 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3931 // v2: [strtab_offset, strtab_size, v1] 3932 StringRef Name; 3933 std::tie(Name, Record) = readNameFromStrtab(Record); 3934 3935 if (Record.size() < 8) 3936 return error("Invalid record"); 3937 unsigned FTyID = Record[0]; 3938 Type *FTy = getTypeByID(FTyID); 3939 if (!FTy) 3940 return error("Invalid record"); 3941 if (isa<PointerType>(FTy)) { 3942 FTyID = getContainedTypeID(FTyID, 0); 3943 FTy = getTypeByID(FTyID); 3944 if (!FTy) 3945 return error("Missing element type for old-style function"); 3946 } 3947 3948 if (!isa<FunctionType>(FTy)) 3949 return error("Invalid type for value"); 3950 auto CC = static_cast<CallingConv::ID>(Record[1]); 3951 if (CC & ~CallingConv::MaxID) 3952 return error("Invalid calling convention ID"); 3953 3954 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3955 if (Record.size() > 16) 3956 AddrSpace = Record[16]; 3957 3958 Function *Func = 3959 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3960 AddrSpace, Name, TheModule); 3961 3962 assert(Func->getFunctionType() == FTy && 3963 "Incorrect fully specified type provided for function"); 3964 FunctionTypeIDs[Func] = FTyID; 3965 3966 Func->setCallingConv(CC); 3967 bool isProto = Record[2]; 3968 uint64_t RawLinkage = Record[3]; 3969 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3970 Func->setAttributes(getAttributes(Record[4])); 3971 callValueTypeCallback(Func, FTyID); 3972 3973 // Upgrade any old-style byval or sret without a type by propagating the 3974 // argument's pointee type. There should be no opaque pointers where the byval 3975 // type is implicit. 3976 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3977 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3978 Attribute::InAlloca}) { 3979 if (!Func->hasParamAttribute(i, Kind)) 3980 continue; 3981 3982 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3983 continue; 3984 3985 Func->removeParamAttr(i, Kind); 3986 3987 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 3988 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 3989 if (!PtrEltTy) 3990 return error("Missing param element type for attribute upgrade"); 3991 3992 Attribute NewAttr; 3993 switch (Kind) { 3994 case Attribute::ByVal: 3995 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3996 break; 3997 case Attribute::StructRet: 3998 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3999 break; 4000 case Attribute::InAlloca: 4001 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4002 break; 4003 default: 4004 llvm_unreachable("not an upgraded type attribute"); 4005 } 4006 4007 Func->addParamAttr(i, NewAttr); 4008 } 4009 } 4010 4011 if (Func->getCallingConv() == CallingConv::X86_INTR && 4012 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4013 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4014 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4015 if (!ByValTy) 4016 return error("Missing param element type for x86_intrcc upgrade"); 4017 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4018 Func->addParamAttr(0, NewAttr); 4019 } 4020 4021 MaybeAlign Alignment; 4022 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4023 return Err; 4024 if (Alignment) 4025 Func->setAlignment(*Alignment); 4026 if (Record[6]) { 4027 if (Record[6] - 1 >= SectionTable.size()) 4028 return error("Invalid ID"); 4029 Func->setSection(SectionTable[Record[6] - 1]); 4030 } 4031 // Local linkage must have default visibility. 4032 // auto-upgrade `hidden` and `protected` for old bitcode. 4033 if (!Func->hasLocalLinkage()) 4034 Func->setVisibility(getDecodedVisibility(Record[7])); 4035 if (Record.size() > 8 && Record[8]) { 4036 if (Record[8] - 1 >= GCTable.size()) 4037 return error("Invalid ID"); 4038 Func->setGC(GCTable[Record[8] - 1]); 4039 } 4040 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4041 if (Record.size() > 9) 4042 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4043 Func->setUnnamedAddr(UnnamedAddr); 4044 4045 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4046 if (Record.size() > 10) 4047 OperandInfo.Prologue = Record[10]; 4048 4049 if (Record.size() > 11) { 4050 // A GlobalValue with local linkage cannot have a DLL storage class. 4051 if (!Func->hasLocalLinkage()) { 4052 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4053 } 4054 } else { 4055 upgradeDLLImportExportLinkage(Func, RawLinkage); 4056 } 4057 4058 if (Record.size() > 12) { 4059 if (unsigned ComdatID = Record[12]) { 4060 if (ComdatID > ComdatList.size()) 4061 return error("Invalid function comdat ID"); 4062 Func->setComdat(ComdatList[ComdatID - 1]); 4063 } 4064 } else if (hasImplicitComdat(RawLinkage)) { 4065 ImplicitComdatObjects.insert(Func); 4066 } 4067 4068 if (Record.size() > 13) 4069 OperandInfo.Prefix = Record[13]; 4070 4071 if (Record.size() > 14) 4072 OperandInfo.PersonalityFn = Record[14]; 4073 4074 if (Record.size() > 15) { 4075 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4076 } 4077 inferDSOLocal(Func); 4078 4079 // Record[16] is the address space number. 4080 4081 // Check whether we have enough values to read a partition name. Also make 4082 // sure Strtab has enough values. 4083 if (Record.size() > 18 && Strtab.data() && 4084 Record[17] + Record[18] <= Strtab.size()) { 4085 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4086 } 4087 4088 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4089 4090 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4091 FunctionOperands.push_back(OperandInfo); 4092 4093 // If this is a function with a body, remember the prototype we are 4094 // creating now, so that we can match up the body with them later. 4095 if (!isProto) { 4096 Func->setIsMaterializable(true); 4097 FunctionsWithBodies.push_back(Func); 4098 DeferredFunctionInfo[Func] = 0; 4099 } 4100 return Error::success(); 4101 } 4102 4103 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4104 unsigned BitCode, ArrayRef<uint64_t> Record) { 4105 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4106 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4107 // dllstorageclass, threadlocal, unnamed_addr, 4108 // preemption specifier] (name in VST) 4109 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4110 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4111 // preemption specifier] (name in VST) 4112 // v2: [strtab_offset, strtab_size, v1] 4113 StringRef Name; 4114 std::tie(Name, Record) = readNameFromStrtab(Record); 4115 4116 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4117 if (Record.size() < (3 + (unsigned)NewRecord)) 4118 return error("Invalid record"); 4119 unsigned OpNum = 0; 4120 unsigned TypeID = Record[OpNum++]; 4121 Type *Ty = getTypeByID(TypeID); 4122 if (!Ty) 4123 return error("Invalid record"); 4124 4125 unsigned AddrSpace; 4126 if (!NewRecord) { 4127 auto *PTy = dyn_cast<PointerType>(Ty); 4128 if (!PTy) 4129 return error("Invalid type for value"); 4130 AddrSpace = PTy->getAddressSpace(); 4131 TypeID = getContainedTypeID(TypeID); 4132 Ty = getTypeByID(TypeID); 4133 if (!Ty) 4134 return error("Missing element type for old-style indirect symbol"); 4135 } else { 4136 AddrSpace = Record[OpNum++]; 4137 } 4138 4139 auto Val = Record[OpNum++]; 4140 auto Linkage = Record[OpNum++]; 4141 GlobalValue *NewGA; 4142 if (BitCode == bitc::MODULE_CODE_ALIAS || 4143 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4144 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4145 TheModule); 4146 else 4147 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4148 nullptr, TheModule); 4149 4150 // Local linkage must have default visibility. 4151 // auto-upgrade `hidden` and `protected` for old bitcode. 4152 if (OpNum != Record.size()) { 4153 auto VisInd = OpNum++; 4154 if (!NewGA->hasLocalLinkage()) 4155 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4156 } 4157 if (BitCode == bitc::MODULE_CODE_ALIAS || 4158 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4159 if (OpNum != Record.size()) { 4160 auto S = Record[OpNum++]; 4161 // A GlobalValue with local linkage cannot have a DLL storage class. 4162 if (!NewGA->hasLocalLinkage()) 4163 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4164 } 4165 else 4166 upgradeDLLImportExportLinkage(NewGA, Linkage); 4167 if (OpNum != Record.size()) 4168 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4169 if (OpNum != Record.size()) 4170 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4171 } 4172 if (OpNum != Record.size()) 4173 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4174 inferDSOLocal(NewGA); 4175 4176 // Check whether we have enough values to read a partition name. 4177 if (OpNum + 1 < Record.size()) { 4178 NewGA->setPartition( 4179 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4180 OpNum += 2; 4181 } 4182 4183 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4184 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4185 return Error::success(); 4186 } 4187 4188 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4189 bool ShouldLazyLoadMetadata, 4190 ParserCallbacks Callbacks) { 4191 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4192 if (ResumeBit) { 4193 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4194 return JumpFailed; 4195 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4196 return Err; 4197 4198 SmallVector<uint64_t, 64> Record; 4199 4200 // Parts of bitcode parsing depend on the datalayout. Make sure we 4201 // finalize the datalayout before we run any of that code. 4202 bool ResolvedDataLayout = false; 4203 // In order to support importing modules with illegal data layout strings, 4204 // delay parsing the data layout string until after upgrades and overrides 4205 // have been applied, allowing to fix illegal data layout strings. 4206 // Initialize to the current module's layout string in case none is specified. 4207 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4208 4209 auto ResolveDataLayout = [&]() -> Error { 4210 if (ResolvedDataLayout) 4211 return Error::success(); 4212 4213 // Datalayout and triple can't be parsed after this point. 4214 ResolvedDataLayout = true; 4215 4216 // Auto-upgrade the layout string 4217 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4218 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4219 4220 // Apply override 4221 if (Callbacks.DataLayout) { 4222 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4223 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4224 TentativeDataLayoutStr = *LayoutOverride; 4225 } 4226 4227 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4228 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4229 if (!MaybeDL) 4230 return MaybeDL.takeError(); 4231 4232 TheModule->setDataLayout(MaybeDL.get()); 4233 return Error::success(); 4234 }; 4235 4236 // Read all the records for this module. 4237 while (true) { 4238 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4239 if (!MaybeEntry) 4240 return MaybeEntry.takeError(); 4241 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4242 4243 switch (Entry.Kind) { 4244 case BitstreamEntry::Error: 4245 return error("Malformed block"); 4246 case BitstreamEntry::EndBlock: 4247 if (Error Err = ResolveDataLayout()) 4248 return Err; 4249 return globalCleanup(); 4250 4251 case BitstreamEntry::SubBlock: 4252 switch (Entry.ID) { 4253 default: // Skip unknown content. 4254 if (Error Err = Stream.SkipBlock()) 4255 return Err; 4256 break; 4257 case bitc::BLOCKINFO_BLOCK_ID: 4258 if (Error Err = readBlockInfo()) 4259 return Err; 4260 break; 4261 case bitc::PARAMATTR_BLOCK_ID: 4262 if (Error Err = parseAttributeBlock()) 4263 return Err; 4264 break; 4265 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4266 if (Error Err = parseAttributeGroupBlock()) 4267 return Err; 4268 break; 4269 case bitc::TYPE_BLOCK_ID_NEW: 4270 if (Error Err = parseTypeTable()) 4271 return Err; 4272 break; 4273 case bitc::VALUE_SYMTAB_BLOCK_ID: 4274 if (!SeenValueSymbolTable) { 4275 // Either this is an old form VST without function index and an 4276 // associated VST forward declaration record (which would have caused 4277 // the VST to be jumped to and parsed before it was encountered 4278 // normally in the stream), or there were no function blocks to 4279 // trigger an earlier parsing of the VST. 4280 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4281 if (Error Err = parseValueSymbolTable()) 4282 return Err; 4283 SeenValueSymbolTable = true; 4284 } else { 4285 // We must have had a VST forward declaration record, which caused 4286 // the parser to jump to and parse the VST earlier. 4287 assert(VSTOffset > 0); 4288 if (Error Err = Stream.SkipBlock()) 4289 return Err; 4290 } 4291 break; 4292 case bitc::CONSTANTS_BLOCK_ID: 4293 if (Error Err = parseConstants()) 4294 return Err; 4295 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4296 return Err; 4297 break; 4298 case bitc::METADATA_BLOCK_ID: 4299 if (ShouldLazyLoadMetadata) { 4300 if (Error Err = rememberAndSkipMetadata()) 4301 return Err; 4302 break; 4303 } 4304 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4305 if (Error Err = MDLoader->parseModuleMetadata()) 4306 return Err; 4307 break; 4308 case bitc::METADATA_KIND_BLOCK_ID: 4309 if (Error Err = MDLoader->parseMetadataKinds()) 4310 return Err; 4311 break; 4312 case bitc::FUNCTION_BLOCK_ID: 4313 if (Error Err = ResolveDataLayout()) 4314 return Err; 4315 4316 // If this is the first function body we've seen, reverse the 4317 // FunctionsWithBodies list. 4318 if (!SeenFirstFunctionBody) { 4319 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4320 if (Error Err = globalCleanup()) 4321 return Err; 4322 SeenFirstFunctionBody = true; 4323 } 4324 4325 if (VSTOffset > 0) { 4326 // If we have a VST forward declaration record, make sure we 4327 // parse the VST now if we haven't already. It is needed to 4328 // set up the DeferredFunctionInfo vector for lazy reading. 4329 if (!SeenValueSymbolTable) { 4330 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4331 return Err; 4332 SeenValueSymbolTable = true; 4333 // Fall through so that we record the NextUnreadBit below. 4334 // This is necessary in case we have an anonymous function that 4335 // is later materialized. Since it will not have a VST entry we 4336 // need to fall back to the lazy parse to find its offset. 4337 } else { 4338 // If we have a VST forward declaration record, but have already 4339 // parsed the VST (just above, when the first function body was 4340 // encountered here), then we are resuming the parse after 4341 // materializing functions. The ResumeBit points to the 4342 // start of the last function block recorded in the 4343 // DeferredFunctionInfo map. Skip it. 4344 if (Error Err = Stream.SkipBlock()) 4345 return Err; 4346 continue; 4347 } 4348 } 4349 4350 // Support older bitcode files that did not have the function 4351 // index in the VST, nor a VST forward declaration record, as 4352 // well as anonymous functions that do not have VST entries. 4353 // Build the DeferredFunctionInfo vector on the fly. 4354 if (Error Err = rememberAndSkipFunctionBody()) 4355 return Err; 4356 4357 // Suspend parsing when we reach the function bodies. Subsequent 4358 // materialization calls will resume it when necessary. If the bitcode 4359 // file is old, the symbol table will be at the end instead and will not 4360 // have been seen yet. In this case, just finish the parse now. 4361 if (SeenValueSymbolTable) { 4362 NextUnreadBit = Stream.GetCurrentBitNo(); 4363 // After the VST has been parsed, we need to make sure intrinsic name 4364 // are auto-upgraded. 4365 return globalCleanup(); 4366 } 4367 break; 4368 case bitc::USELIST_BLOCK_ID: 4369 if (Error Err = parseUseLists()) 4370 return Err; 4371 break; 4372 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4373 if (Error Err = parseOperandBundleTags()) 4374 return Err; 4375 break; 4376 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4377 if (Error Err = parseSyncScopeNames()) 4378 return Err; 4379 break; 4380 } 4381 continue; 4382 4383 case BitstreamEntry::Record: 4384 // The interesting case. 4385 break; 4386 } 4387 4388 // Read a record. 4389 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4390 if (!MaybeBitCode) 4391 return MaybeBitCode.takeError(); 4392 switch (unsigned BitCode = MaybeBitCode.get()) { 4393 default: break; // Default behavior, ignore unknown content. 4394 case bitc::MODULE_CODE_VERSION: { 4395 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4396 if (!VersionOrErr) 4397 return VersionOrErr.takeError(); 4398 UseRelativeIDs = *VersionOrErr >= 1; 4399 break; 4400 } 4401 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4402 if (ResolvedDataLayout) 4403 return error("target triple too late in module"); 4404 std::string S; 4405 if (convertToString(Record, 0, S)) 4406 return error("Invalid record"); 4407 TheModule->setTargetTriple(S); 4408 break; 4409 } 4410 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4411 if (ResolvedDataLayout) 4412 return error("datalayout too late in module"); 4413 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4414 return error("Invalid record"); 4415 break; 4416 } 4417 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4418 std::string S; 4419 if (convertToString(Record, 0, S)) 4420 return error("Invalid record"); 4421 TheModule->setModuleInlineAsm(S); 4422 break; 4423 } 4424 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4425 // Deprecated, but still needed to read old bitcode files. 4426 std::string S; 4427 if (convertToString(Record, 0, S)) 4428 return error("Invalid record"); 4429 // Ignore value. 4430 break; 4431 } 4432 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4433 std::string S; 4434 if (convertToString(Record, 0, S)) 4435 return error("Invalid record"); 4436 SectionTable.push_back(S); 4437 break; 4438 } 4439 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4440 std::string S; 4441 if (convertToString(Record, 0, S)) 4442 return error("Invalid record"); 4443 GCTable.push_back(S); 4444 break; 4445 } 4446 case bitc::MODULE_CODE_COMDAT: 4447 if (Error Err = parseComdatRecord(Record)) 4448 return Err; 4449 break; 4450 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4451 // written by ThinLinkBitcodeWriter. See 4452 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4453 // record 4454 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4455 case bitc::MODULE_CODE_GLOBALVAR: 4456 if (Error Err = parseGlobalVarRecord(Record)) 4457 return Err; 4458 break; 4459 case bitc::MODULE_CODE_FUNCTION: 4460 if (Error Err = ResolveDataLayout()) 4461 return Err; 4462 if (Error Err = parseFunctionRecord(Record)) 4463 return Err; 4464 break; 4465 case bitc::MODULE_CODE_IFUNC: 4466 case bitc::MODULE_CODE_ALIAS: 4467 case bitc::MODULE_CODE_ALIAS_OLD: 4468 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4469 return Err; 4470 break; 4471 /// MODULE_CODE_VSTOFFSET: [offset] 4472 case bitc::MODULE_CODE_VSTOFFSET: 4473 if (Record.empty()) 4474 return error("Invalid record"); 4475 // Note that we subtract 1 here because the offset is relative to one word 4476 // before the start of the identification or module block, which was 4477 // historically always the start of the regular bitcode header. 4478 VSTOffset = Record[0] - 1; 4479 break; 4480 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4481 case bitc::MODULE_CODE_SOURCE_FILENAME: 4482 SmallString<128> ValueName; 4483 if (convertToString(Record, 0, ValueName)) 4484 return error("Invalid record"); 4485 TheModule->setSourceFileName(ValueName); 4486 break; 4487 } 4488 Record.clear(); 4489 } 4490 this->ValueTypeCallback = std::nullopt; 4491 return Error::success(); 4492 } 4493 4494 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4495 bool IsImporting, 4496 ParserCallbacks Callbacks) { 4497 TheModule = M; 4498 MetadataLoaderCallbacks MDCallbacks; 4499 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4500 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4501 return getContainedTypeID(I, J); 4502 }; 4503 MDCallbacks.MDType = Callbacks.MDType; 4504 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4505 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4506 } 4507 4508 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4509 if (!isa<PointerType>(PtrType)) 4510 return error("Load/Store operand is not a pointer type"); 4511 if (!PointerType::isLoadableOrStorableType(ValType)) 4512 return error("Cannot load/store from pointer"); 4513 return Error::success(); 4514 } 4515 4516 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4517 ArrayRef<unsigned> ArgTyIDs) { 4518 AttributeList Attrs = CB->getAttributes(); 4519 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4520 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4521 Attribute::InAlloca}) { 4522 if (!Attrs.hasParamAttr(i, Kind) || 4523 Attrs.getParamAttr(i, Kind).getValueAsType()) 4524 continue; 4525 4526 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4527 if (!PtrEltTy) 4528 return error("Missing element type for typed attribute upgrade"); 4529 4530 Attribute NewAttr; 4531 switch (Kind) { 4532 case Attribute::ByVal: 4533 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4534 break; 4535 case Attribute::StructRet: 4536 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4537 break; 4538 case Attribute::InAlloca: 4539 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4540 break; 4541 default: 4542 llvm_unreachable("not an upgraded type attribute"); 4543 } 4544 4545 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4546 } 4547 } 4548 4549 if (CB->isInlineAsm()) { 4550 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4551 unsigned ArgNo = 0; 4552 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4553 if (!CI.hasArg()) 4554 continue; 4555 4556 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4557 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4558 if (!ElemTy) 4559 return error("Missing element type for inline asm upgrade"); 4560 Attrs = Attrs.addParamAttribute( 4561 Context, ArgNo, 4562 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4563 } 4564 4565 ArgNo++; 4566 } 4567 } 4568 4569 switch (CB->getIntrinsicID()) { 4570 case Intrinsic::preserve_array_access_index: 4571 case Intrinsic::preserve_struct_access_index: 4572 case Intrinsic::aarch64_ldaxr: 4573 case Intrinsic::aarch64_ldxr: 4574 case Intrinsic::aarch64_stlxr: 4575 case Intrinsic::aarch64_stxr: 4576 case Intrinsic::arm_ldaex: 4577 case Intrinsic::arm_ldrex: 4578 case Intrinsic::arm_stlex: 4579 case Intrinsic::arm_strex: { 4580 unsigned ArgNo; 4581 switch (CB->getIntrinsicID()) { 4582 case Intrinsic::aarch64_stlxr: 4583 case Intrinsic::aarch64_stxr: 4584 case Intrinsic::arm_stlex: 4585 case Intrinsic::arm_strex: 4586 ArgNo = 1; 4587 break; 4588 default: 4589 ArgNo = 0; 4590 break; 4591 } 4592 if (!Attrs.getParamElementType(ArgNo)) { 4593 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4594 if (!ElTy) 4595 return error("Missing element type for elementtype upgrade"); 4596 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4597 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4598 } 4599 break; 4600 } 4601 default: 4602 break; 4603 } 4604 4605 CB->setAttributes(Attrs); 4606 return Error::success(); 4607 } 4608 4609 /// Lazily parse the specified function body block. 4610 Error BitcodeReader::parseFunctionBody(Function *F) { 4611 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4612 return Err; 4613 4614 // Unexpected unresolved metadata when parsing function. 4615 if (MDLoader->hasFwdRefs()) 4616 return error("Invalid function metadata: incoming forward references"); 4617 4618 InstructionList.clear(); 4619 unsigned ModuleValueListSize = ValueList.size(); 4620 unsigned ModuleMDLoaderSize = MDLoader->size(); 4621 4622 // Add all the function arguments to the value table. 4623 unsigned ArgNo = 0; 4624 unsigned FTyID = FunctionTypeIDs[F]; 4625 for (Argument &I : F->args()) { 4626 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4627 assert(I.getType() == getTypeByID(ArgTyID) && 4628 "Incorrect fully specified type for Function Argument"); 4629 ValueList.push_back(&I, ArgTyID); 4630 ++ArgNo; 4631 } 4632 unsigned NextValueNo = ValueList.size(); 4633 BasicBlock *CurBB = nullptr; 4634 unsigned CurBBNo = 0; 4635 // Block into which constant expressions from phi nodes are materialized. 4636 BasicBlock *PhiConstExprBB = nullptr; 4637 // Edge blocks for phi nodes into which constant expressions have been 4638 // expanded. 4639 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4640 ConstExprEdgeBBs; 4641 4642 DebugLoc LastLoc; 4643 auto getLastInstruction = [&]() -> Instruction * { 4644 if (CurBB && !CurBB->empty()) 4645 return &CurBB->back(); 4646 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4647 !FunctionBBs[CurBBNo - 1]->empty()) 4648 return &FunctionBBs[CurBBNo - 1]->back(); 4649 return nullptr; 4650 }; 4651 4652 std::vector<OperandBundleDef> OperandBundles; 4653 4654 // Read all the records. 4655 SmallVector<uint64_t, 64> Record; 4656 4657 while (true) { 4658 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4659 if (!MaybeEntry) 4660 return MaybeEntry.takeError(); 4661 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4662 4663 switch (Entry.Kind) { 4664 case BitstreamEntry::Error: 4665 return error("Malformed block"); 4666 case BitstreamEntry::EndBlock: 4667 goto OutOfRecordLoop; 4668 4669 case BitstreamEntry::SubBlock: 4670 switch (Entry.ID) { 4671 default: // Skip unknown content. 4672 if (Error Err = Stream.SkipBlock()) 4673 return Err; 4674 break; 4675 case bitc::CONSTANTS_BLOCK_ID: 4676 if (Error Err = parseConstants()) 4677 return Err; 4678 NextValueNo = ValueList.size(); 4679 break; 4680 case bitc::VALUE_SYMTAB_BLOCK_ID: 4681 if (Error Err = parseValueSymbolTable()) 4682 return Err; 4683 break; 4684 case bitc::METADATA_ATTACHMENT_ID: 4685 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4686 return Err; 4687 break; 4688 case bitc::METADATA_BLOCK_ID: 4689 assert(DeferredMetadataInfo.empty() && 4690 "Must read all module-level metadata before function-level"); 4691 if (Error Err = MDLoader->parseFunctionMetadata()) 4692 return Err; 4693 break; 4694 case bitc::USELIST_BLOCK_ID: 4695 if (Error Err = parseUseLists()) 4696 return Err; 4697 break; 4698 } 4699 continue; 4700 4701 case BitstreamEntry::Record: 4702 // The interesting case. 4703 break; 4704 } 4705 4706 // Read a record. 4707 Record.clear(); 4708 Instruction *I = nullptr; 4709 unsigned ResTypeID = InvalidTypeID; 4710 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4711 if (!MaybeBitCode) 4712 return MaybeBitCode.takeError(); 4713 switch (unsigned BitCode = MaybeBitCode.get()) { 4714 default: // Default behavior: reject 4715 return error("Invalid value"); 4716 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4717 if (Record.empty() || Record[0] == 0) 4718 return error("Invalid record"); 4719 // Create all the basic blocks for the function. 4720 FunctionBBs.resize(Record[0]); 4721 4722 // See if anything took the address of blocks in this function. 4723 auto BBFRI = BasicBlockFwdRefs.find(F); 4724 if (BBFRI == BasicBlockFwdRefs.end()) { 4725 for (BasicBlock *&BB : FunctionBBs) 4726 BB = BasicBlock::Create(Context, "", F); 4727 } else { 4728 auto &BBRefs = BBFRI->second; 4729 // Check for invalid basic block references. 4730 if (BBRefs.size() > FunctionBBs.size()) 4731 return error("Invalid ID"); 4732 assert(!BBRefs.empty() && "Unexpected empty array"); 4733 assert(!BBRefs.front() && "Invalid reference to entry block"); 4734 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4735 ++I) 4736 if (I < RE && BBRefs[I]) { 4737 BBRefs[I]->insertInto(F); 4738 FunctionBBs[I] = BBRefs[I]; 4739 } else { 4740 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4741 } 4742 4743 // Erase from the table. 4744 BasicBlockFwdRefs.erase(BBFRI); 4745 } 4746 4747 CurBB = FunctionBBs[0]; 4748 continue; 4749 } 4750 4751 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4752 // The record should not be emitted if it's an empty list. 4753 if (Record.empty()) 4754 return error("Invalid record"); 4755 // When we have the RARE case of a BlockAddress Constant that is not 4756 // scoped to the Function it refers to, we need to conservatively 4757 // materialize the referred to Function, regardless of whether or not 4758 // that Function will ultimately be linked, otherwise users of 4759 // BitcodeReader might start splicing out Function bodies such that we 4760 // might no longer be able to materialize the BlockAddress since the 4761 // BasicBlock (and entire body of the Function) the BlockAddress refers 4762 // to may have been moved. In the case that the user of BitcodeReader 4763 // decides ultimately not to link the Function body, materializing here 4764 // could be considered wasteful, but it's better than a deserialization 4765 // failure as described. This keeps BitcodeReader unaware of complex 4766 // linkage policy decisions such as those use by LTO, leaving those 4767 // decisions "one layer up." 4768 for (uint64_t ValID : Record) 4769 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4770 BackwardRefFunctions.push_back(F); 4771 else 4772 return error("Invalid record"); 4773 4774 continue; 4775 4776 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4777 // This record indicates that the last instruction is at the same 4778 // location as the previous instruction with a location. 4779 I = getLastInstruction(); 4780 4781 if (!I) 4782 return error("Invalid record"); 4783 I->setDebugLoc(LastLoc); 4784 I = nullptr; 4785 continue; 4786 4787 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4788 I = getLastInstruction(); 4789 if (!I || Record.size() < 4) 4790 return error("Invalid record"); 4791 4792 unsigned Line = Record[0], Col = Record[1]; 4793 unsigned ScopeID = Record[2], IAID = Record[3]; 4794 bool isImplicitCode = Record.size() == 5 && Record[4]; 4795 4796 MDNode *Scope = nullptr, *IA = nullptr; 4797 if (ScopeID) { 4798 Scope = dyn_cast_or_null<MDNode>( 4799 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4800 if (!Scope) 4801 return error("Invalid record"); 4802 } 4803 if (IAID) { 4804 IA = dyn_cast_or_null<MDNode>( 4805 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4806 if (!IA) 4807 return error("Invalid record"); 4808 } 4809 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4810 isImplicitCode); 4811 I->setDebugLoc(LastLoc); 4812 I = nullptr; 4813 continue; 4814 } 4815 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4816 unsigned OpNum = 0; 4817 Value *LHS; 4818 unsigned TypeID; 4819 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4820 OpNum+1 > Record.size()) 4821 return error("Invalid record"); 4822 4823 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4824 if (Opc == -1) 4825 return error("Invalid record"); 4826 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4827 ResTypeID = TypeID; 4828 InstructionList.push_back(I); 4829 if (OpNum < Record.size()) { 4830 if (isa<FPMathOperator>(I)) { 4831 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4832 if (FMF.any()) 4833 I->setFastMathFlags(FMF); 4834 } 4835 } 4836 break; 4837 } 4838 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4839 unsigned OpNum = 0; 4840 Value *LHS, *RHS; 4841 unsigned TypeID; 4842 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4843 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4844 CurBB) || 4845 OpNum+1 > Record.size()) 4846 return error("Invalid record"); 4847 4848 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4849 if (Opc == -1) 4850 return error("Invalid record"); 4851 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4852 ResTypeID = TypeID; 4853 InstructionList.push_back(I); 4854 if (OpNum < Record.size()) { 4855 if (Opc == Instruction::Add || 4856 Opc == Instruction::Sub || 4857 Opc == Instruction::Mul || 4858 Opc == Instruction::Shl) { 4859 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4860 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4861 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4862 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4863 } else if (Opc == Instruction::SDiv || 4864 Opc == Instruction::UDiv || 4865 Opc == Instruction::LShr || 4866 Opc == Instruction::AShr) { 4867 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4868 cast<BinaryOperator>(I)->setIsExact(true); 4869 } else if (isa<FPMathOperator>(I)) { 4870 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4871 if (FMF.any()) 4872 I->setFastMathFlags(FMF); 4873 } 4874 4875 } 4876 break; 4877 } 4878 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4879 unsigned OpNum = 0; 4880 Value *Op; 4881 unsigned OpTypeID; 4882 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4883 OpNum + 1 > Record.size()) 4884 return error("Invalid record"); 4885 4886 ResTypeID = Record[OpNum++]; 4887 Type *ResTy = getTypeByID(ResTypeID); 4888 int Opc = getDecodedCastOpcode(Record[OpNum++]); 4889 4890 if (Opc == -1 || !ResTy) 4891 return error("Invalid record"); 4892 Instruction *Temp = nullptr; 4893 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4894 if (Temp) { 4895 InstructionList.push_back(Temp); 4896 assert(CurBB && "No current BB?"); 4897 Temp->insertInto(CurBB, CurBB->end()); 4898 } 4899 } else { 4900 auto CastOp = (Instruction::CastOps)Opc; 4901 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4902 return error("Invalid cast"); 4903 I = CastInst::Create(CastOp, Op, ResTy); 4904 } 4905 if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) && 4906 (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))) 4907 I->setNonNeg(true); 4908 InstructionList.push_back(I); 4909 break; 4910 } 4911 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4912 case bitc::FUNC_CODE_INST_GEP_OLD: 4913 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4914 unsigned OpNum = 0; 4915 4916 unsigned TyID; 4917 Type *Ty; 4918 bool InBounds; 4919 4920 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4921 InBounds = Record[OpNum++]; 4922 TyID = Record[OpNum++]; 4923 Ty = getTypeByID(TyID); 4924 } else { 4925 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4926 TyID = InvalidTypeID; 4927 Ty = nullptr; 4928 } 4929 4930 Value *BasePtr; 4931 unsigned BasePtrTypeID; 4932 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4933 CurBB)) 4934 return error("Invalid record"); 4935 4936 if (!Ty) { 4937 TyID = getContainedTypeID(BasePtrTypeID); 4938 if (BasePtr->getType()->isVectorTy()) 4939 TyID = getContainedTypeID(TyID); 4940 Ty = getTypeByID(TyID); 4941 } 4942 4943 SmallVector<Value*, 16> GEPIdx; 4944 while (OpNum != Record.size()) { 4945 Value *Op; 4946 unsigned OpTypeID; 4947 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4948 return error("Invalid record"); 4949 GEPIdx.push_back(Op); 4950 } 4951 4952 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4953 4954 ResTypeID = TyID; 4955 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4956 auto GTI = std::next(gep_type_begin(I)); 4957 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4958 unsigned SubType = 0; 4959 if (GTI.isStruct()) { 4960 ConstantInt *IdxC = 4961 Idx->getType()->isVectorTy() 4962 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4963 : cast<ConstantInt>(Idx); 4964 SubType = IdxC->getZExtValue(); 4965 } 4966 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4967 ++GTI; 4968 } 4969 } 4970 4971 // At this point ResTypeID is the result element type. We need a pointer 4972 // or vector of pointer to it. 4973 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4974 if (I->getType()->isVectorTy()) 4975 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4976 4977 InstructionList.push_back(I); 4978 if (InBounds) 4979 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4980 break; 4981 } 4982 4983 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4984 // EXTRACTVAL: [opty, opval, n x indices] 4985 unsigned OpNum = 0; 4986 Value *Agg; 4987 unsigned AggTypeID; 4988 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 4989 return error("Invalid record"); 4990 Type *Ty = Agg->getType(); 4991 4992 unsigned RecSize = Record.size(); 4993 if (OpNum == RecSize) 4994 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4995 4996 SmallVector<unsigned, 4> EXTRACTVALIdx; 4997 ResTypeID = AggTypeID; 4998 for (; OpNum != RecSize; ++OpNum) { 4999 bool IsArray = Ty->isArrayTy(); 5000 bool IsStruct = Ty->isStructTy(); 5001 uint64_t Index = Record[OpNum]; 5002 5003 if (!IsStruct && !IsArray) 5004 return error("EXTRACTVAL: Invalid type"); 5005 if ((unsigned)Index != Index) 5006 return error("Invalid value"); 5007 if (IsStruct && Index >= Ty->getStructNumElements()) 5008 return error("EXTRACTVAL: Invalid struct index"); 5009 if (IsArray && Index >= Ty->getArrayNumElements()) 5010 return error("EXTRACTVAL: Invalid array index"); 5011 EXTRACTVALIdx.push_back((unsigned)Index); 5012 5013 if (IsStruct) { 5014 Ty = Ty->getStructElementType(Index); 5015 ResTypeID = getContainedTypeID(ResTypeID, Index); 5016 } else { 5017 Ty = Ty->getArrayElementType(); 5018 ResTypeID = getContainedTypeID(ResTypeID); 5019 } 5020 } 5021 5022 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5023 InstructionList.push_back(I); 5024 break; 5025 } 5026 5027 case bitc::FUNC_CODE_INST_INSERTVAL: { 5028 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5029 unsigned OpNum = 0; 5030 Value *Agg; 5031 unsigned AggTypeID; 5032 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5033 return error("Invalid record"); 5034 Value *Val; 5035 unsigned ValTypeID; 5036 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5037 return error("Invalid record"); 5038 5039 unsigned RecSize = Record.size(); 5040 if (OpNum == RecSize) 5041 return error("INSERTVAL: Invalid instruction with 0 indices"); 5042 5043 SmallVector<unsigned, 4> INSERTVALIdx; 5044 Type *CurTy = Agg->getType(); 5045 for (; OpNum != RecSize; ++OpNum) { 5046 bool IsArray = CurTy->isArrayTy(); 5047 bool IsStruct = CurTy->isStructTy(); 5048 uint64_t Index = Record[OpNum]; 5049 5050 if (!IsStruct && !IsArray) 5051 return error("INSERTVAL: Invalid type"); 5052 if ((unsigned)Index != Index) 5053 return error("Invalid value"); 5054 if (IsStruct && Index >= CurTy->getStructNumElements()) 5055 return error("INSERTVAL: Invalid struct index"); 5056 if (IsArray && Index >= CurTy->getArrayNumElements()) 5057 return error("INSERTVAL: Invalid array index"); 5058 5059 INSERTVALIdx.push_back((unsigned)Index); 5060 if (IsStruct) 5061 CurTy = CurTy->getStructElementType(Index); 5062 else 5063 CurTy = CurTy->getArrayElementType(); 5064 } 5065 5066 if (CurTy != Val->getType()) 5067 return error("Inserted value type doesn't match aggregate type"); 5068 5069 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5070 ResTypeID = AggTypeID; 5071 InstructionList.push_back(I); 5072 break; 5073 } 5074 5075 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5076 // obsolete form of select 5077 // handles select i1 ... in old bitcode 5078 unsigned OpNum = 0; 5079 Value *TrueVal, *FalseVal, *Cond; 5080 unsigned TypeID; 5081 Type *CondType = Type::getInt1Ty(Context); 5082 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5083 CurBB) || 5084 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5085 FalseVal, CurBB) || 5086 popValue(Record, OpNum, NextValueNo, CondType, 5087 getVirtualTypeID(CondType), Cond, CurBB)) 5088 return error("Invalid record"); 5089 5090 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5091 ResTypeID = TypeID; 5092 InstructionList.push_back(I); 5093 break; 5094 } 5095 5096 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5097 // new form of select 5098 // handles select i1 or select [N x i1] 5099 unsigned OpNum = 0; 5100 Value *TrueVal, *FalseVal, *Cond; 5101 unsigned ValTypeID, CondTypeID; 5102 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5103 CurBB) || 5104 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5105 FalseVal, CurBB) || 5106 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5107 return error("Invalid record"); 5108 5109 // select condition can be either i1 or [N x i1] 5110 if (VectorType* vector_type = 5111 dyn_cast<VectorType>(Cond->getType())) { 5112 // expect <n x i1> 5113 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5114 return error("Invalid type for value"); 5115 } else { 5116 // expect i1 5117 if (Cond->getType() != Type::getInt1Ty(Context)) 5118 return error("Invalid type for value"); 5119 } 5120 5121 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5122 ResTypeID = ValTypeID; 5123 InstructionList.push_back(I); 5124 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5125 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5126 if (FMF.any()) 5127 I->setFastMathFlags(FMF); 5128 } 5129 break; 5130 } 5131 5132 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5133 unsigned OpNum = 0; 5134 Value *Vec, *Idx; 5135 unsigned VecTypeID, IdxTypeID; 5136 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5137 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5138 return error("Invalid record"); 5139 if (!Vec->getType()->isVectorTy()) 5140 return error("Invalid type for value"); 5141 I = ExtractElementInst::Create(Vec, Idx); 5142 ResTypeID = getContainedTypeID(VecTypeID); 5143 InstructionList.push_back(I); 5144 break; 5145 } 5146 5147 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5148 unsigned OpNum = 0; 5149 Value *Vec, *Elt, *Idx; 5150 unsigned VecTypeID, IdxTypeID; 5151 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5152 return error("Invalid record"); 5153 if (!Vec->getType()->isVectorTy()) 5154 return error("Invalid type for value"); 5155 if (popValue(Record, OpNum, NextValueNo, 5156 cast<VectorType>(Vec->getType())->getElementType(), 5157 getContainedTypeID(VecTypeID), Elt, CurBB) || 5158 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5159 return error("Invalid record"); 5160 I = InsertElementInst::Create(Vec, Elt, Idx); 5161 ResTypeID = VecTypeID; 5162 InstructionList.push_back(I); 5163 break; 5164 } 5165 5166 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5167 unsigned OpNum = 0; 5168 Value *Vec1, *Vec2, *Mask; 5169 unsigned Vec1TypeID; 5170 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5171 CurBB) || 5172 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5173 Vec2, CurBB)) 5174 return error("Invalid record"); 5175 5176 unsigned MaskTypeID; 5177 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5178 return error("Invalid record"); 5179 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5180 return error("Invalid type for value"); 5181 5182 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5183 ResTypeID = 5184 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5185 InstructionList.push_back(I); 5186 break; 5187 } 5188 5189 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5190 // Old form of ICmp/FCmp returning bool 5191 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5192 // both legal on vectors but had different behaviour. 5193 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5194 // FCmp/ICmp returning bool or vector of bool 5195 5196 unsigned OpNum = 0; 5197 Value *LHS, *RHS; 5198 unsigned LHSTypeID; 5199 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5200 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5201 CurBB)) 5202 return error("Invalid record"); 5203 5204 if (OpNum >= Record.size()) 5205 return error( 5206 "Invalid record: operand number exceeded available operands"); 5207 5208 unsigned PredVal = Record[OpNum]; 5209 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5210 FastMathFlags FMF; 5211 if (IsFP && Record.size() > OpNum+1) 5212 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5213 5214 if (OpNum+1 != Record.size()) 5215 return error("Invalid record"); 5216 5217 if (LHS->getType()->isFPOrFPVectorTy()) 5218 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5219 else 5220 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5221 5222 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5223 if (LHS->getType()->isVectorTy()) 5224 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5225 5226 if (FMF.any()) 5227 I->setFastMathFlags(FMF); 5228 InstructionList.push_back(I); 5229 break; 5230 } 5231 5232 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5233 { 5234 unsigned Size = Record.size(); 5235 if (Size == 0) { 5236 I = ReturnInst::Create(Context); 5237 InstructionList.push_back(I); 5238 break; 5239 } 5240 5241 unsigned OpNum = 0; 5242 Value *Op = nullptr; 5243 unsigned OpTypeID; 5244 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5245 return error("Invalid record"); 5246 if (OpNum != Record.size()) 5247 return error("Invalid record"); 5248 5249 I = ReturnInst::Create(Context, Op); 5250 InstructionList.push_back(I); 5251 break; 5252 } 5253 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5254 if (Record.size() != 1 && Record.size() != 3) 5255 return error("Invalid record"); 5256 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5257 if (!TrueDest) 5258 return error("Invalid record"); 5259 5260 if (Record.size() == 1) { 5261 I = BranchInst::Create(TrueDest); 5262 InstructionList.push_back(I); 5263 } 5264 else { 5265 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5266 Type *CondType = Type::getInt1Ty(Context); 5267 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5268 getVirtualTypeID(CondType), CurBB); 5269 if (!FalseDest || !Cond) 5270 return error("Invalid record"); 5271 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5272 InstructionList.push_back(I); 5273 } 5274 break; 5275 } 5276 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5277 if (Record.size() != 1 && Record.size() != 2) 5278 return error("Invalid record"); 5279 unsigned Idx = 0; 5280 Type *TokenTy = Type::getTokenTy(Context); 5281 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5282 getVirtualTypeID(TokenTy), CurBB); 5283 if (!CleanupPad) 5284 return error("Invalid record"); 5285 BasicBlock *UnwindDest = nullptr; 5286 if (Record.size() == 2) { 5287 UnwindDest = getBasicBlock(Record[Idx++]); 5288 if (!UnwindDest) 5289 return error("Invalid record"); 5290 } 5291 5292 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5293 InstructionList.push_back(I); 5294 break; 5295 } 5296 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5297 if (Record.size() != 2) 5298 return error("Invalid record"); 5299 unsigned Idx = 0; 5300 Type *TokenTy = Type::getTokenTy(Context); 5301 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5302 getVirtualTypeID(TokenTy), CurBB); 5303 if (!CatchPad) 5304 return error("Invalid record"); 5305 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5306 if (!BB) 5307 return error("Invalid record"); 5308 5309 I = CatchReturnInst::Create(CatchPad, BB); 5310 InstructionList.push_back(I); 5311 break; 5312 } 5313 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5314 // We must have, at minimum, the outer scope and the number of arguments. 5315 if (Record.size() < 2) 5316 return error("Invalid record"); 5317 5318 unsigned Idx = 0; 5319 5320 Type *TokenTy = Type::getTokenTy(Context); 5321 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5322 getVirtualTypeID(TokenTy), CurBB); 5323 5324 unsigned NumHandlers = Record[Idx++]; 5325 5326 SmallVector<BasicBlock *, 2> Handlers; 5327 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5328 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5329 if (!BB) 5330 return error("Invalid record"); 5331 Handlers.push_back(BB); 5332 } 5333 5334 BasicBlock *UnwindDest = nullptr; 5335 if (Idx + 1 == Record.size()) { 5336 UnwindDest = getBasicBlock(Record[Idx++]); 5337 if (!UnwindDest) 5338 return error("Invalid record"); 5339 } 5340 5341 if (Record.size() != Idx) 5342 return error("Invalid record"); 5343 5344 auto *CatchSwitch = 5345 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5346 for (BasicBlock *Handler : Handlers) 5347 CatchSwitch->addHandler(Handler); 5348 I = CatchSwitch; 5349 ResTypeID = getVirtualTypeID(I->getType()); 5350 InstructionList.push_back(I); 5351 break; 5352 } 5353 case bitc::FUNC_CODE_INST_CATCHPAD: 5354 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5355 // We must have, at minimum, the outer scope and the number of arguments. 5356 if (Record.size() < 2) 5357 return error("Invalid record"); 5358 5359 unsigned Idx = 0; 5360 5361 Type *TokenTy = Type::getTokenTy(Context); 5362 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5363 getVirtualTypeID(TokenTy), CurBB); 5364 5365 unsigned NumArgOperands = Record[Idx++]; 5366 5367 SmallVector<Value *, 2> Args; 5368 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5369 Value *Val; 5370 unsigned ValTypeID; 5371 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5372 return error("Invalid record"); 5373 Args.push_back(Val); 5374 } 5375 5376 if (Record.size() != Idx) 5377 return error("Invalid record"); 5378 5379 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5380 I = CleanupPadInst::Create(ParentPad, Args); 5381 else 5382 I = CatchPadInst::Create(ParentPad, Args); 5383 ResTypeID = getVirtualTypeID(I->getType()); 5384 InstructionList.push_back(I); 5385 break; 5386 } 5387 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5388 // Check magic 5389 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5390 // "New" SwitchInst format with case ranges. The changes to write this 5391 // format were reverted but we still recognize bitcode that uses it. 5392 // Hopefully someday we will have support for case ranges and can use 5393 // this format again. 5394 5395 unsigned OpTyID = Record[1]; 5396 Type *OpTy = getTypeByID(OpTyID); 5397 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5398 5399 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5400 BasicBlock *Default = getBasicBlock(Record[3]); 5401 if (!OpTy || !Cond || !Default) 5402 return error("Invalid record"); 5403 5404 unsigned NumCases = Record[4]; 5405 5406 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5407 InstructionList.push_back(SI); 5408 5409 unsigned CurIdx = 5; 5410 for (unsigned i = 0; i != NumCases; ++i) { 5411 SmallVector<ConstantInt*, 1> CaseVals; 5412 unsigned NumItems = Record[CurIdx++]; 5413 for (unsigned ci = 0; ci != NumItems; ++ci) { 5414 bool isSingleNumber = Record[CurIdx++]; 5415 5416 APInt Low; 5417 unsigned ActiveWords = 1; 5418 if (ValueBitWidth > 64) 5419 ActiveWords = Record[CurIdx++]; 5420 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5421 ValueBitWidth); 5422 CurIdx += ActiveWords; 5423 5424 if (!isSingleNumber) { 5425 ActiveWords = 1; 5426 if (ValueBitWidth > 64) 5427 ActiveWords = Record[CurIdx++]; 5428 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5429 ValueBitWidth); 5430 CurIdx += ActiveWords; 5431 5432 // FIXME: It is not clear whether values in the range should be 5433 // compared as signed or unsigned values. The partially 5434 // implemented changes that used this format in the past used 5435 // unsigned comparisons. 5436 for ( ; Low.ule(High); ++Low) 5437 CaseVals.push_back(ConstantInt::get(Context, Low)); 5438 } else 5439 CaseVals.push_back(ConstantInt::get(Context, Low)); 5440 } 5441 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5442 for (ConstantInt *Cst : CaseVals) 5443 SI->addCase(Cst, DestBB); 5444 } 5445 I = SI; 5446 break; 5447 } 5448 5449 // Old SwitchInst format without case ranges. 5450 5451 if (Record.size() < 3 || (Record.size() & 1) == 0) 5452 return error("Invalid record"); 5453 unsigned OpTyID = Record[0]; 5454 Type *OpTy = getTypeByID(OpTyID); 5455 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5456 BasicBlock *Default = getBasicBlock(Record[2]); 5457 if (!OpTy || !Cond || !Default) 5458 return error("Invalid record"); 5459 unsigned NumCases = (Record.size()-3)/2; 5460 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5461 InstructionList.push_back(SI); 5462 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5463 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5464 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5465 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5466 if (!CaseVal || !DestBB) { 5467 delete SI; 5468 return error("Invalid record"); 5469 } 5470 SI->addCase(CaseVal, DestBB); 5471 } 5472 I = SI; 5473 break; 5474 } 5475 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5476 if (Record.size() < 2) 5477 return error("Invalid record"); 5478 unsigned OpTyID = Record[0]; 5479 Type *OpTy = getTypeByID(OpTyID); 5480 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5481 if (!OpTy || !Address) 5482 return error("Invalid record"); 5483 unsigned NumDests = Record.size()-2; 5484 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5485 InstructionList.push_back(IBI); 5486 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5487 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5488 IBI->addDestination(DestBB); 5489 } else { 5490 delete IBI; 5491 return error("Invalid record"); 5492 } 5493 } 5494 I = IBI; 5495 break; 5496 } 5497 5498 case bitc::FUNC_CODE_INST_INVOKE: { 5499 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5500 if (Record.size() < 4) 5501 return error("Invalid record"); 5502 unsigned OpNum = 0; 5503 AttributeList PAL = getAttributes(Record[OpNum++]); 5504 unsigned CCInfo = Record[OpNum++]; 5505 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5506 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5507 5508 unsigned FTyID = InvalidTypeID; 5509 FunctionType *FTy = nullptr; 5510 if ((CCInfo >> 13) & 1) { 5511 FTyID = Record[OpNum++]; 5512 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5513 if (!FTy) 5514 return error("Explicit invoke type is not a function type"); 5515 } 5516 5517 Value *Callee; 5518 unsigned CalleeTypeID; 5519 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5520 CurBB)) 5521 return error("Invalid record"); 5522 5523 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5524 if (!CalleeTy) 5525 return error("Callee is not a pointer"); 5526 if (!FTy) { 5527 FTyID = getContainedTypeID(CalleeTypeID); 5528 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5529 if (!FTy) 5530 return error("Callee is not of pointer to function type"); 5531 } 5532 if (Record.size() < FTy->getNumParams() + OpNum) 5533 return error("Insufficient operands to call"); 5534 5535 SmallVector<Value*, 16> Ops; 5536 SmallVector<unsigned, 16> ArgTyIDs; 5537 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5538 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5539 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5540 ArgTyID, CurBB)); 5541 ArgTyIDs.push_back(ArgTyID); 5542 if (!Ops.back()) 5543 return error("Invalid record"); 5544 } 5545 5546 if (!FTy->isVarArg()) { 5547 if (Record.size() != OpNum) 5548 return error("Invalid record"); 5549 } else { 5550 // Read type/value pairs for varargs params. 5551 while (OpNum != Record.size()) { 5552 Value *Op; 5553 unsigned OpTypeID; 5554 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5555 return error("Invalid record"); 5556 Ops.push_back(Op); 5557 ArgTyIDs.push_back(OpTypeID); 5558 } 5559 } 5560 5561 // Upgrade the bundles if needed. 5562 if (!OperandBundles.empty()) 5563 UpgradeOperandBundles(OperandBundles); 5564 5565 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5566 OperandBundles); 5567 ResTypeID = getContainedTypeID(FTyID); 5568 OperandBundles.clear(); 5569 InstructionList.push_back(I); 5570 cast<InvokeInst>(I)->setCallingConv( 5571 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5572 cast<InvokeInst>(I)->setAttributes(PAL); 5573 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5574 I->deleteValue(); 5575 return Err; 5576 } 5577 5578 break; 5579 } 5580 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5581 unsigned Idx = 0; 5582 Value *Val = nullptr; 5583 unsigned ValTypeID; 5584 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5585 return error("Invalid record"); 5586 I = ResumeInst::Create(Val); 5587 InstructionList.push_back(I); 5588 break; 5589 } 5590 case bitc::FUNC_CODE_INST_CALLBR: { 5591 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5592 unsigned OpNum = 0; 5593 AttributeList PAL = getAttributes(Record[OpNum++]); 5594 unsigned CCInfo = Record[OpNum++]; 5595 5596 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5597 unsigned NumIndirectDests = Record[OpNum++]; 5598 SmallVector<BasicBlock *, 16> IndirectDests; 5599 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5600 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5601 5602 unsigned FTyID = InvalidTypeID; 5603 FunctionType *FTy = nullptr; 5604 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5605 FTyID = Record[OpNum++]; 5606 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5607 if (!FTy) 5608 return error("Explicit call type is not a function type"); 5609 } 5610 5611 Value *Callee; 5612 unsigned CalleeTypeID; 5613 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5614 CurBB)) 5615 return error("Invalid record"); 5616 5617 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5618 if (!OpTy) 5619 return error("Callee is not a pointer type"); 5620 if (!FTy) { 5621 FTyID = getContainedTypeID(CalleeTypeID); 5622 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5623 if (!FTy) 5624 return error("Callee is not of pointer to function type"); 5625 } 5626 if (Record.size() < FTy->getNumParams() + OpNum) 5627 return error("Insufficient operands to call"); 5628 5629 SmallVector<Value*, 16> Args; 5630 SmallVector<unsigned, 16> ArgTyIDs; 5631 // Read the fixed params. 5632 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5633 Value *Arg; 5634 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5635 if (FTy->getParamType(i)->isLabelTy()) 5636 Arg = getBasicBlock(Record[OpNum]); 5637 else 5638 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5639 ArgTyID, CurBB); 5640 if (!Arg) 5641 return error("Invalid record"); 5642 Args.push_back(Arg); 5643 ArgTyIDs.push_back(ArgTyID); 5644 } 5645 5646 // Read type/value pairs for varargs params. 5647 if (!FTy->isVarArg()) { 5648 if (OpNum != Record.size()) 5649 return error("Invalid record"); 5650 } else { 5651 while (OpNum != Record.size()) { 5652 Value *Op; 5653 unsigned OpTypeID; 5654 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5655 return error("Invalid record"); 5656 Args.push_back(Op); 5657 ArgTyIDs.push_back(OpTypeID); 5658 } 5659 } 5660 5661 // Upgrade the bundles if needed. 5662 if (!OperandBundles.empty()) 5663 UpgradeOperandBundles(OperandBundles); 5664 5665 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5666 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5667 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5668 return CI.Type == InlineAsm::isLabel; 5669 }; 5670 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5671 // Upgrade explicit blockaddress arguments to label constraints. 5672 // Verify that the last arguments are blockaddress arguments that 5673 // match the indirect destinations. Clang always generates callbr 5674 // in this form. We could support reordering with more effort. 5675 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5676 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5677 unsigned LabelNo = ArgNo - FirstBlockArg; 5678 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5679 if (!BA || BA->getFunction() != F || 5680 LabelNo > IndirectDests.size() || 5681 BA->getBasicBlock() != IndirectDests[LabelNo]) 5682 return error("callbr argument does not match indirect dest"); 5683 } 5684 5685 // Remove blockaddress arguments. 5686 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5687 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5688 5689 // Recreate the function type with less arguments. 5690 SmallVector<Type *> ArgTys; 5691 for (Value *Arg : Args) 5692 ArgTys.push_back(Arg->getType()); 5693 FTy = 5694 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5695 5696 // Update constraint string to use label constraints. 5697 std::string Constraints = IA->getConstraintString(); 5698 unsigned ArgNo = 0; 5699 size_t Pos = 0; 5700 for (const auto &CI : ConstraintInfo) { 5701 if (CI.hasArg()) { 5702 if (ArgNo >= FirstBlockArg) 5703 Constraints.insert(Pos, "!"); 5704 ++ArgNo; 5705 } 5706 5707 // Go to next constraint in string. 5708 Pos = Constraints.find(',', Pos); 5709 if (Pos == std::string::npos) 5710 break; 5711 ++Pos; 5712 } 5713 5714 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5715 IA->hasSideEffects(), IA->isAlignStack(), 5716 IA->getDialect(), IA->canThrow()); 5717 } 5718 } 5719 5720 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5721 OperandBundles); 5722 ResTypeID = getContainedTypeID(FTyID); 5723 OperandBundles.clear(); 5724 InstructionList.push_back(I); 5725 cast<CallBrInst>(I)->setCallingConv( 5726 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5727 cast<CallBrInst>(I)->setAttributes(PAL); 5728 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5729 I->deleteValue(); 5730 return Err; 5731 } 5732 break; 5733 } 5734 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5735 I = new UnreachableInst(Context); 5736 InstructionList.push_back(I); 5737 break; 5738 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5739 if (Record.empty()) 5740 return error("Invalid phi record"); 5741 // The first record specifies the type. 5742 unsigned TyID = Record[0]; 5743 Type *Ty = getTypeByID(TyID); 5744 if (!Ty) 5745 return error("Invalid phi record"); 5746 5747 // Phi arguments are pairs of records of [value, basic block]. 5748 // There is an optional final record for fast-math-flags if this phi has a 5749 // floating-point type. 5750 size_t NumArgs = (Record.size() - 1) / 2; 5751 PHINode *PN = PHINode::Create(Ty, NumArgs); 5752 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5753 PN->deleteValue(); 5754 return error("Invalid phi record"); 5755 } 5756 InstructionList.push_back(PN); 5757 5758 SmallDenseMap<BasicBlock *, Value *> Args; 5759 for (unsigned i = 0; i != NumArgs; i++) { 5760 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5761 if (!BB) { 5762 PN->deleteValue(); 5763 return error("Invalid phi BB"); 5764 } 5765 5766 // Phi nodes may contain the same predecessor multiple times, in which 5767 // case the incoming value must be identical. Directly reuse the already 5768 // seen value here, to avoid expanding a constant expression multiple 5769 // times. 5770 auto It = Args.find(BB); 5771 if (It != Args.end()) { 5772 PN->addIncoming(It->second, BB); 5773 continue; 5774 } 5775 5776 // If there already is a block for this edge (from a different phi), 5777 // use it. 5778 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5779 if (!EdgeBB) { 5780 // Otherwise, use a temporary block (that we will discard if it 5781 // turns out to be unnecessary). 5782 if (!PhiConstExprBB) 5783 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5784 EdgeBB = PhiConstExprBB; 5785 } 5786 5787 // With the new function encoding, it is possible that operands have 5788 // negative IDs (for forward references). Use a signed VBR 5789 // representation to keep the encoding small. 5790 Value *V; 5791 if (UseRelativeIDs) 5792 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5793 else 5794 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5795 if (!V) { 5796 PN->deleteValue(); 5797 PhiConstExprBB->eraseFromParent(); 5798 return error("Invalid phi record"); 5799 } 5800 5801 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5802 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5803 PhiConstExprBB = nullptr; 5804 } 5805 PN->addIncoming(V, BB); 5806 Args.insert({BB, V}); 5807 } 5808 I = PN; 5809 ResTypeID = TyID; 5810 5811 // If there are an even number of records, the final record must be FMF. 5812 if (Record.size() % 2 == 0) { 5813 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5814 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5815 if (FMF.any()) 5816 I->setFastMathFlags(FMF); 5817 } 5818 5819 break; 5820 } 5821 5822 case bitc::FUNC_CODE_INST_LANDINGPAD: 5823 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5824 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5825 unsigned Idx = 0; 5826 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5827 if (Record.size() < 3) 5828 return error("Invalid record"); 5829 } else { 5830 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5831 if (Record.size() < 4) 5832 return error("Invalid record"); 5833 } 5834 ResTypeID = Record[Idx++]; 5835 Type *Ty = getTypeByID(ResTypeID); 5836 if (!Ty) 5837 return error("Invalid record"); 5838 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5839 Value *PersFn = nullptr; 5840 unsigned PersFnTypeID; 5841 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5842 nullptr)) 5843 return error("Invalid record"); 5844 5845 if (!F->hasPersonalityFn()) 5846 F->setPersonalityFn(cast<Constant>(PersFn)); 5847 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5848 return error("Personality function mismatch"); 5849 } 5850 5851 bool IsCleanup = !!Record[Idx++]; 5852 unsigned NumClauses = Record[Idx++]; 5853 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5854 LP->setCleanup(IsCleanup); 5855 for (unsigned J = 0; J != NumClauses; ++J) { 5856 LandingPadInst::ClauseType CT = 5857 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5858 Value *Val; 5859 unsigned ValTypeID; 5860 5861 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5862 nullptr)) { 5863 delete LP; 5864 return error("Invalid record"); 5865 } 5866 5867 assert((CT != LandingPadInst::Catch || 5868 !isa<ArrayType>(Val->getType())) && 5869 "Catch clause has a invalid type!"); 5870 assert((CT != LandingPadInst::Filter || 5871 isa<ArrayType>(Val->getType())) && 5872 "Filter clause has invalid type!"); 5873 LP->addClause(cast<Constant>(Val)); 5874 } 5875 5876 I = LP; 5877 InstructionList.push_back(I); 5878 break; 5879 } 5880 5881 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5882 if (Record.size() != 4 && Record.size() != 5) 5883 return error("Invalid record"); 5884 using APV = AllocaPackedValues; 5885 const uint64_t Rec = Record[3]; 5886 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5887 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5888 unsigned TyID = Record[0]; 5889 Type *Ty = getTypeByID(TyID); 5890 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5891 TyID = getContainedTypeID(TyID); 5892 Ty = getTypeByID(TyID); 5893 if (!Ty) 5894 return error("Missing element type for old-style alloca"); 5895 } 5896 unsigned OpTyID = Record[1]; 5897 Type *OpTy = getTypeByID(OpTyID); 5898 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5899 MaybeAlign Align; 5900 uint64_t AlignExp = 5901 Bitfield::get<APV::AlignLower>(Rec) | 5902 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5903 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5904 return Err; 5905 } 5906 if (!Ty || !Size) 5907 return error("Invalid record"); 5908 5909 const DataLayout &DL = TheModule->getDataLayout(); 5910 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5911 5912 SmallPtrSet<Type *, 4> Visited; 5913 if (!Align && !Ty->isSized(&Visited)) 5914 return error("alloca of unsized type"); 5915 if (!Align) 5916 Align = DL.getPrefTypeAlign(Ty); 5917 5918 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5919 AI->setUsedWithInAlloca(InAlloca); 5920 AI->setSwiftError(SwiftError); 5921 I = AI; 5922 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5923 InstructionList.push_back(I); 5924 break; 5925 } 5926 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5927 unsigned OpNum = 0; 5928 Value *Op; 5929 unsigned OpTypeID; 5930 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5931 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5932 return error("Invalid record"); 5933 5934 if (!isa<PointerType>(Op->getType())) 5935 return error("Load operand is not a pointer type"); 5936 5937 Type *Ty = nullptr; 5938 if (OpNum + 3 == Record.size()) { 5939 ResTypeID = Record[OpNum++]; 5940 Ty = getTypeByID(ResTypeID); 5941 } else { 5942 ResTypeID = getContainedTypeID(OpTypeID); 5943 Ty = getTypeByID(ResTypeID); 5944 if (!Ty) 5945 return error("Missing element type for old-style load"); 5946 } 5947 5948 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5949 return Err; 5950 5951 MaybeAlign Align; 5952 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5953 return Err; 5954 SmallPtrSet<Type *, 4> Visited; 5955 if (!Align && !Ty->isSized(&Visited)) 5956 return error("load of unsized type"); 5957 if (!Align) 5958 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5959 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5960 InstructionList.push_back(I); 5961 break; 5962 } 5963 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5964 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5965 unsigned OpNum = 0; 5966 Value *Op; 5967 unsigned OpTypeID; 5968 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5969 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5970 return error("Invalid record"); 5971 5972 if (!isa<PointerType>(Op->getType())) 5973 return error("Load operand is not a pointer type"); 5974 5975 Type *Ty = nullptr; 5976 if (OpNum + 5 == Record.size()) { 5977 ResTypeID = Record[OpNum++]; 5978 Ty = getTypeByID(ResTypeID); 5979 } else { 5980 ResTypeID = getContainedTypeID(OpTypeID); 5981 Ty = getTypeByID(ResTypeID); 5982 if (!Ty) 5983 return error("Missing element type for old style atomic load"); 5984 } 5985 5986 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5987 return Err; 5988 5989 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5990 if (Ordering == AtomicOrdering::NotAtomic || 5991 Ordering == AtomicOrdering::Release || 5992 Ordering == AtomicOrdering::AcquireRelease) 5993 return error("Invalid record"); 5994 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5995 return error("Invalid record"); 5996 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5997 5998 MaybeAlign Align; 5999 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6000 return Err; 6001 if (!Align) 6002 return error("Alignment missing from atomic load"); 6003 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6004 InstructionList.push_back(I); 6005 break; 6006 } 6007 case bitc::FUNC_CODE_INST_STORE: 6008 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6009 unsigned OpNum = 0; 6010 Value *Val, *Ptr; 6011 unsigned PtrTypeID, ValTypeID; 6012 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6013 return error("Invalid record"); 6014 6015 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6016 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6017 return error("Invalid record"); 6018 } else { 6019 ValTypeID = getContainedTypeID(PtrTypeID); 6020 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6021 ValTypeID, Val, CurBB)) 6022 return error("Invalid record"); 6023 } 6024 6025 if (OpNum + 2 != Record.size()) 6026 return error("Invalid record"); 6027 6028 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6029 return Err; 6030 MaybeAlign Align; 6031 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6032 return Err; 6033 SmallPtrSet<Type *, 4> Visited; 6034 if (!Align && !Val->getType()->isSized(&Visited)) 6035 return error("store of unsized type"); 6036 if (!Align) 6037 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6038 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6039 InstructionList.push_back(I); 6040 break; 6041 } 6042 case bitc::FUNC_CODE_INST_STOREATOMIC: 6043 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6044 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6045 unsigned OpNum = 0; 6046 Value *Val, *Ptr; 6047 unsigned PtrTypeID, ValTypeID; 6048 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6049 !isa<PointerType>(Ptr->getType())) 6050 return error("Invalid record"); 6051 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6052 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6053 return error("Invalid record"); 6054 } else { 6055 ValTypeID = getContainedTypeID(PtrTypeID); 6056 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6057 ValTypeID, Val, CurBB)) 6058 return error("Invalid record"); 6059 } 6060 6061 if (OpNum + 4 != Record.size()) 6062 return error("Invalid record"); 6063 6064 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6065 return Err; 6066 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6067 if (Ordering == AtomicOrdering::NotAtomic || 6068 Ordering == AtomicOrdering::Acquire || 6069 Ordering == AtomicOrdering::AcquireRelease) 6070 return error("Invalid record"); 6071 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6072 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6073 return error("Invalid record"); 6074 6075 MaybeAlign Align; 6076 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6077 return Err; 6078 if (!Align) 6079 return error("Alignment missing from atomic store"); 6080 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6081 InstructionList.push_back(I); 6082 break; 6083 } 6084 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6085 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6086 // failure_ordering?, weak?] 6087 const size_t NumRecords = Record.size(); 6088 unsigned OpNum = 0; 6089 Value *Ptr = nullptr; 6090 unsigned PtrTypeID; 6091 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6092 return error("Invalid record"); 6093 6094 if (!isa<PointerType>(Ptr->getType())) 6095 return error("Cmpxchg operand is not a pointer type"); 6096 6097 Value *Cmp = nullptr; 6098 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6099 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6100 CmpTypeID, Cmp, CurBB)) 6101 return error("Invalid record"); 6102 6103 Value *New = nullptr; 6104 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6105 New, CurBB) || 6106 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6107 return error("Invalid record"); 6108 6109 const AtomicOrdering SuccessOrdering = 6110 getDecodedOrdering(Record[OpNum + 1]); 6111 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6112 SuccessOrdering == AtomicOrdering::Unordered) 6113 return error("Invalid record"); 6114 6115 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6116 6117 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6118 return Err; 6119 6120 const AtomicOrdering FailureOrdering = 6121 NumRecords < 7 6122 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6123 : getDecodedOrdering(Record[OpNum + 3]); 6124 6125 if (FailureOrdering == AtomicOrdering::NotAtomic || 6126 FailureOrdering == AtomicOrdering::Unordered) 6127 return error("Invalid record"); 6128 6129 const Align Alignment( 6130 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6131 6132 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6133 FailureOrdering, SSID); 6134 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6135 6136 if (NumRecords < 8) { 6137 // Before weak cmpxchgs existed, the instruction simply returned the 6138 // value loaded from memory, so bitcode files from that era will be 6139 // expecting the first component of a modern cmpxchg. 6140 I->insertInto(CurBB, CurBB->end()); 6141 I = ExtractValueInst::Create(I, 0); 6142 ResTypeID = CmpTypeID; 6143 } else { 6144 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6145 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6146 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6147 } 6148 6149 InstructionList.push_back(I); 6150 break; 6151 } 6152 case bitc::FUNC_CODE_INST_CMPXCHG: { 6153 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6154 // failure_ordering, weak, align?] 6155 const size_t NumRecords = Record.size(); 6156 unsigned OpNum = 0; 6157 Value *Ptr = nullptr; 6158 unsigned PtrTypeID; 6159 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6160 return error("Invalid record"); 6161 6162 if (!isa<PointerType>(Ptr->getType())) 6163 return error("Cmpxchg operand is not a pointer type"); 6164 6165 Value *Cmp = nullptr; 6166 unsigned CmpTypeID; 6167 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6168 return error("Invalid record"); 6169 6170 Value *Val = nullptr; 6171 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6172 CurBB)) 6173 return error("Invalid record"); 6174 6175 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6176 return error("Invalid record"); 6177 6178 const bool IsVol = Record[OpNum]; 6179 6180 const AtomicOrdering SuccessOrdering = 6181 getDecodedOrdering(Record[OpNum + 1]); 6182 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6183 return error("Invalid cmpxchg success ordering"); 6184 6185 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6186 6187 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6188 return Err; 6189 6190 const AtomicOrdering FailureOrdering = 6191 getDecodedOrdering(Record[OpNum + 3]); 6192 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6193 return error("Invalid cmpxchg failure ordering"); 6194 6195 const bool IsWeak = Record[OpNum + 4]; 6196 6197 MaybeAlign Alignment; 6198 6199 if (NumRecords == (OpNum + 6)) { 6200 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6201 return Err; 6202 } 6203 if (!Alignment) 6204 Alignment = 6205 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6206 6207 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6208 FailureOrdering, SSID); 6209 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6210 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6211 6212 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6213 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6214 6215 InstructionList.push_back(I); 6216 break; 6217 } 6218 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6219 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6220 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6221 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6222 const size_t NumRecords = Record.size(); 6223 unsigned OpNum = 0; 6224 6225 Value *Ptr = nullptr; 6226 unsigned PtrTypeID; 6227 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6228 return error("Invalid record"); 6229 6230 if (!isa<PointerType>(Ptr->getType())) 6231 return error("Invalid record"); 6232 6233 Value *Val = nullptr; 6234 unsigned ValTypeID = InvalidTypeID; 6235 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6236 ValTypeID = getContainedTypeID(PtrTypeID); 6237 if (popValue(Record, OpNum, NextValueNo, 6238 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6239 return error("Invalid record"); 6240 } else { 6241 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6242 return error("Invalid record"); 6243 } 6244 6245 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6246 return error("Invalid record"); 6247 6248 const AtomicRMWInst::BinOp Operation = 6249 getDecodedRMWOperation(Record[OpNum]); 6250 if (Operation < AtomicRMWInst::FIRST_BINOP || 6251 Operation > AtomicRMWInst::LAST_BINOP) 6252 return error("Invalid record"); 6253 6254 const bool IsVol = Record[OpNum + 1]; 6255 6256 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6257 if (Ordering == AtomicOrdering::NotAtomic || 6258 Ordering == AtomicOrdering::Unordered) 6259 return error("Invalid record"); 6260 6261 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6262 6263 MaybeAlign Alignment; 6264 6265 if (NumRecords == (OpNum + 5)) { 6266 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6267 return Err; 6268 } 6269 6270 if (!Alignment) 6271 Alignment = 6272 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6273 6274 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6275 ResTypeID = ValTypeID; 6276 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6277 6278 InstructionList.push_back(I); 6279 break; 6280 } 6281 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6282 if (2 != Record.size()) 6283 return error("Invalid record"); 6284 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6285 if (Ordering == AtomicOrdering::NotAtomic || 6286 Ordering == AtomicOrdering::Unordered || 6287 Ordering == AtomicOrdering::Monotonic) 6288 return error("Invalid record"); 6289 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6290 I = new FenceInst(Context, Ordering, SSID); 6291 InstructionList.push_back(I); 6292 break; 6293 } 6294 case bitc::FUNC_CODE_INST_CALL: { 6295 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6296 if (Record.size() < 3) 6297 return error("Invalid record"); 6298 6299 unsigned OpNum = 0; 6300 AttributeList PAL = getAttributes(Record[OpNum++]); 6301 unsigned CCInfo = Record[OpNum++]; 6302 6303 FastMathFlags FMF; 6304 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6305 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6306 if (!FMF.any()) 6307 return error("Fast math flags indicator set for call with no FMF"); 6308 } 6309 6310 unsigned FTyID = InvalidTypeID; 6311 FunctionType *FTy = nullptr; 6312 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6313 FTyID = Record[OpNum++]; 6314 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6315 if (!FTy) 6316 return error("Explicit call type is not a function type"); 6317 } 6318 6319 Value *Callee; 6320 unsigned CalleeTypeID; 6321 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6322 CurBB)) 6323 return error("Invalid record"); 6324 6325 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6326 if (!OpTy) 6327 return error("Callee is not a pointer type"); 6328 if (!FTy) { 6329 FTyID = getContainedTypeID(CalleeTypeID); 6330 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6331 if (!FTy) 6332 return error("Callee is not of pointer to function type"); 6333 } 6334 if (Record.size() < FTy->getNumParams() + OpNum) 6335 return error("Insufficient operands to call"); 6336 6337 SmallVector<Value*, 16> Args; 6338 SmallVector<unsigned, 16> ArgTyIDs; 6339 // Read the fixed params. 6340 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6341 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6342 if (FTy->getParamType(i)->isLabelTy()) 6343 Args.push_back(getBasicBlock(Record[OpNum])); 6344 else 6345 Args.push_back(getValue(Record, OpNum, NextValueNo, 6346 FTy->getParamType(i), ArgTyID, CurBB)); 6347 ArgTyIDs.push_back(ArgTyID); 6348 if (!Args.back()) 6349 return error("Invalid record"); 6350 } 6351 6352 // Read type/value pairs for varargs params. 6353 if (!FTy->isVarArg()) { 6354 if (OpNum != Record.size()) 6355 return error("Invalid record"); 6356 } else { 6357 while (OpNum != Record.size()) { 6358 Value *Op; 6359 unsigned OpTypeID; 6360 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6361 return error("Invalid record"); 6362 Args.push_back(Op); 6363 ArgTyIDs.push_back(OpTypeID); 6364 } 6365 } 6366 6367 // Upgrade the bundles if needed. 6368 if (!OperandBundles.empty()) 6369 UpgradeOperandBundles(OperandBundles); 6370 6371 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6372 ResTypeID = getContainedTypeID(FTyID); 6373 OperandBundles.clear(); 6374 InstructionList.push_back(I); 6375 cast<CallInst>(I)->setCallingConv( 6376 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6377 CallInst::TailCallKind TCK = CallInst::TCK_None; 6378 if (CCInfo & (1 << bitc::CALL_TAIL)) 6379 TCK = CallInst::TCK_Tail; 6380 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6381 TCK = CallInst::TCK_MustTail; 6382 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6383 TCK = CallInst::TCK_NoTail; 6384 cast<CallInst>(I)->setTailCallKind(TCK); 6385 cast<CallInst>(I)->setAttributes(PAL); 6386 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6387 I->deleteValue(); 6388 return Err; 6389 } 6390 if (FMF.any()) { 6391 if (!isa<FPMathOperator>(I)) 6392 return error("Fast-math-flags specified for call without " 6393 "floating-point scalar or vector return type"); 6394 I->setFastMathFlags(FMF); 6395 } 6396 break; 6397 } 6398 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6399 if (Record.size() < 3) 6400 return error("Invalid record"); 6401 unsigned OpTyID = Record[0]; 6402 Type *OpTy = getTypeByID(OpTyID); 6403 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6404 ResTypeID = Record[2]; 6405 Type *ResTy = getTypeByID(ResTypeID); 6406 if (!OpTy || !Op || !ResTy) 6407 return error("Invalid record"); 6408 I = new VAArgInst(Op, ResTy); 6409 InstructionList.push_back(I); 6410 break; 6411 } 6412 6413 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6414 // A call or an invoke can be optionally prefixed with some variable 6415 // number of operand bundle blocks. These blocks are read into 6416 // OperandBundles and consumed at the next call or invoke instruction. 6417 6418 if (Record.empty() || Record[0] >= BundleTags.size()) 6419 return error("Invalid record"); 6420 6421 std::vector<Value *> Inputs; 6422 6423 unsigned OpNum = 1; 6424 while (OpNum != Record.size()) { 6425 Value *Op; 6426 unsigned OpTypeID; 6427 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6428 return error("Invalid record"); 6429 Inputs.push_back(Op); 6430 } 6431 6432 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6433 continue; 6434 } 6435 6436 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6437 unsigned OpNum = 0; 6438 Value *Op = nullptr; 6439 unsigned OpTypeID; 6440 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6441 return error("Invalid record"); 6442 if (OpNum != Record.size()) 6443 return error("Invalid record"); 6444 6445 I = new FreezeInst(Op); 6446 ResTypeID = OpTypeID; 6447 InstructionList.push_back(I); 6448 break; 6449 } 6450 } 6451 6452 // Add instruction to end of current BB. If there is no current BB, reject 6453 // this file. 6454 if (!CurBB) { 6455 I->deleteValue(); 6456 return error("Invalid instruction with no BB"); 6457 } 6458 if (!OperandBundles.empty()) { 6459 I->deleteValue(); 6460 return error("Operand bundles found with no consumer"); 6461 } 6462 I->insertInto(CurBB, CurBB->end()); 6463 6464 // If this was a terminator instruction, move to the next block. 6465 if (I->isTerminator()) { 6466 ++CurBBNo; 6467 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6468 } 6469 6470 // Non-void values get registered in the value table for future use. 6471 if (!I->getType()->isVoidTy()) { 6472 assert(I->getType() == getTypeByID(ResTypeID) && 6473 "Incorrect result type ID"); 6474 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6475 return Err; 6476 } 6477 } 6478 6479 OutOfRecordLoop: 6480 6481 if (!OperandBundles.empty()) 6482 return error("Operand bundles found with no consumer"); 6483 6484 // Check the function list for unresolved values. 6485 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6486 if (!A->getParent()) { 6487 // We found at least one unresolved value. Nuke them all to avoid leaks. 6488 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6489 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6490 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6491 delete A; 6492 } 6493 } 6494 return error("Never resolved value found in function"); 6495 } 6496 } 6497 6498 // Unexpected unresolved metadata about to be dropped. 6499 if (MDLoader->hasFwdRefs()) 6500 return error("Invalid function metadata: outgoing forward refs"); 6501 6502 if (PhiConstExprBB) 6503 PhiConstExprBB->eraseFromParent(); 6504 6505 for (const auto &Pair : ConstExprEdgeBBs) { 6506 BasicBlock *From = Pair.first.first; 6507 BasicBlock *To = Pair.first.second; 6508 BasicBlock *EdgeBB = Pair.second; 6509 BranchInst::Create(To, EdgeBB); 6510 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6511 To->replacePhiUsesWith(From, EdgeBB); 6512 EdgeBB->moveBefore(To); 6513 } 6514 6515 // Trim the value list down to the size it was before we parsed this function. 6516 ValueList.shrinkTo(ModuleValueListSize); 6517 MDLoader->shrinkTo(ModuleMDLoaderSize); 6518 std::vector<BasicBlock*>().swap(FunctionBBs); 6519 return Error::success(); 6520 } 6521 6522 /// Find the function body in the bitcode stream 6523 Error BitcodeReader::findFunctionInStream( 6524 Function *F, 6525 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6526 while (DeferredFunctionInfoIterator->second == 0) { 6527 // This is the fallback handling for the old format bitcode that 6528 // didn't contain the function index in the VST, or when we have 6529 // an anonymous function which would not have a VST entry. 6530 // Assert that we have one of those two cases. 6531 assert(VSTOffset == 0 || !F->hasName()); 6532 // Parse the next body in the stream and set its position in the 6533 // DeferredFunctionInfo map. 6534 if (Error Err = rememberAndSkipFunctionBodies()) 6535 return Err; 6536 } 6537 return Error::success(); 6538 } 6539 6540 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6541 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6542 return SyncScope::ID(Val); 6543 if (Val >= SSIDs.size()) 6544 return SyncScope::System; // Map unknown synchronization scopes to system. 6545 return SSIDs[Val]; 6546 } 6547 6548 //===----------------------------------------------------------------------===// 6549 // GVMaterializer implementation 6550 //===----------------------------------------------------------------------===// 6551 6552 Error BitcodeReader::materialize(GlobalValue *GV) { 6553 Function *F = dyn_cast<Function>(GV); 6554 // If it's not a function or is already material, ignore the request. 6555 if (!F || !F->isMaterializable()) 6556 return Error::success(); 6557 6558 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6559 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6560 // If its position is recorded as 0, its body is somewhere in the stream 6561 // but we haven't seen it yet. 6562 if (DFII->second == 0) 6563 if (Error Err = findFunctionInStream(F, DFII)) 6564 return Err; 6565 6566 // Materialize metadata before parsing any function bodies. 6567 if (Error Err = materializeMetadata()) 6568 return Err; 6569 6570 // Move the bit stream to the saved position of the deferred function body. 6571 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6572 return JumpFailed; 6573 if (Error Err = parseFunctionBody(F)) 6574 return Err; 6575 F->setIsMaterializable(false); 6576 6577 if (StripDebugInfo) 6578 stripDebugInfo(*F); 6579 6580 // Upgrade any old intrinsic calls in the function. 6581 for (auto &I : UpgradedIntrinsics) { 6582 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6583 if (CallInst *CI = dyn_cast<CallInst>(U)) 6584 UpgradeIntrinsicCall(CI, I.second); 6585 } 6586 6587 // Finish fn->subprogram upgrade for materialized functions. 6588 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6589 F->setSubprogram(SP); 6590 6591 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6592 if (!MDLoader->isStrippingTBAA()) { 6593 for (auto &I : instructions(F)) { 6594 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6595 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6596 continue; 6597 MDLoader->setStripTBAA(true); 6598 stripTBAA(F->getParent()); 6599 } 6600 } 6601 6602 for (auto &I : instructions(F)) { 6603 // "Upgrade" older incorrect branch weights by dropping them. 6604 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6605 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6606 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6607 StringRef ProfName = MDS->getString(); 6608 // Check consistency of !prof branch_weights metadata. 6609 if (!ProfName.equals("branch_weights")) 6610 continue; 6611 unsigned ExpectedNumOperands = 0; 6612 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6613 ExpectedNumOperands = BI->getNumSuccessors(); 6614 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6615 ExpectedNumOperands = SI->getNumSuccessors(); 6616 else if (isa<CallInst>(&I)) 6617 ExpectedNumOperands = 1; 6618 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6619 ExpectedNumOperands = IBI->getNumDestinations(); 6620 else if (isa<SelectInst>(&I)) 6621 ExpectedNumOperands = 2; 6622 else 6623 continue; // ignore and continue. 6624 6625 // If branch weight doesn't match, just strip branch weight. 6626 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6627 I.setMetadata(LLVMContext::MD_prof, nullptr); 6628 } 6629 } 6630 6631 // Remove incompatible attributes on function calls. 6632 if (auto *CI = dyn_cast<CallBase>(&I)) { 6633 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6634 CI->getFunctionType()->getReturnType())); 6635 6636 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6637 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6638 CI->getArgOperand(ArgNo)->getType())); 6639 } 6640 } 6641 6642 // Look for functions that rely on old function attribute behavior. 6643 UpgradeFunctionAttributes(*F); 6644 6645 // Bring in any functions that this function forward-referenced via 6646 // blockaddresses. 6647 return materializeForwardReferencedFunctions(); 6648 } 6649 6650 Error BitcodeReader::materializeModule() { 6651 if (Error Err = materializeMetadata()) 6652 return Err; 6653 6654 // Promise to materialize all forward references. 6655 WillMaterializeAllForwardRefs = true; 6656 6657 // Iterate over the module, deserializing any functions that are still on 6658 // disk. 6659 for (Function &F : *TheModule) { 6660 if (Error Err = materialize(&F)) 6661 return Err; 6662 } 6663 // At this point, if there are any function bodies, parse the rest of 6664 // the bits in the module past the last function block we have recorded 6665 // through either lazy scanning or the VST. 6666 if (LastFunctionBlockBit || NextUnreadBit) 6667 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6668 ? LastFunctionBlockBit 6669 : NextUnreadBit)) 6670 return Err; 6671 6672 // Check that all block address forward references got resolved (as we 6673 // promised above). 6674 if (!BasicBlockFwdRefs.empty()) 6675 return error("Never resolved function from blockaddress"); 6676 6677 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6678 // delete the old functions to clean up. We can't do this unless the entire 6679 // module is materialized because there could always be another function body 6680 // with calls to the old function. 6681 for (auto &I : UpgradedIntrinsics) { 6682 for (auto *U : I.first->users()) { 6683 if (CallInst *CI = dyn_cast<CallInst>(U)) 6684 UpgradeIntrinsicCall(CI, I.second); 6685 } 6686 if (!I.first->use_empty()) 6687 I.first->replaceAllUsesWith(I.second); 6688 I.first->eraseFromParent(); 6689 } 6690 UpgradedIntrinsics.clear(); 6691 6692 UpgradeDebugInfo(*TheModule); 6693 6694 UpgradeModuleFlags(*TheModule); 6695 6696 UpgradeARCRuntime(*TheModule); 6697 6698 return Error::success(); 6699 } 6700 6701 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6702 return IdentifiedStructTypes; 6703 } 6704 6705 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6706 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6707 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 6708 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6709 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 6710 6711 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6712 TheIndex.addModule(ModulePath); 6713 } 6714 6715 ModuleSummaryIndex::ModuleInfo * 6716 ModuleSummaryIndexBitcodeReader::getThisModule() { 6717 return TheIndex.getModule(ModulePath); 6718 } 6719 6720 template <bool AllowNullValueInfo> 6721 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6722 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6723 auto VGI = ValueIdToValueInfoMap[ValueId]; 6724 // We can have a null value info for memprof callsite info records in 6725 // distributed ThinLTO index files when the callee function summary is not 6726 // included in the index. The bitcode writer records 0 in that case, 6727 // and the caller of this helper will set AllowNullValueInfo to true. 6728 assert(AllowNullValueInfo || std::get<0>(VGI)); 6729 return VGI; 6730 } 6731 6732 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6733 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6734 StringRef SourceFileName) { 6735 std::string GlobalId = 6736 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6737 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6738 auto OriginalNameID = ValueGUID; 6739 if (GlobalValue::isLocalLinkage(Linkage)) 6740 OriginalNameID = GlobalValue::getGUID(ValueName); 6741 if (PrintSummaryGUIDs) 6742 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6743 << ValueName << "\n"; 6744 6745 // UseStrtab is false for legacy summary formats and value names are 6746 // created on stack. In that case we save the name in a string saver in 6747 // the index so that the value name can be recorded. 6748 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6749 TheIndex.getOrInsertValueInfo( 6750 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6751 OriginalNameID, ValueGUID); 6752 } 6753 6754 // Specialized value symbol table parser used when reading module index 6755 // blocks where we don't actually create global values. The parsed information 6756 // is saved in the bitcode reader for use when later parsing summaries. 6757 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6758 uint64_t Offset, 6759 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6760 // With a strtab the VST is not required to parse the summary. 6761 if (UseStrtab) 6762 return Error::success(); 6763 6764 assert(Offset > 0 && "Expected non-zero VST offset"); 6765 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6766 if (!MaybeCurrentBit) 6767 return MaybeCurrentBit.takeError(); 6768 uint64_t CurrentBit = MaybeCurrentBit.get(); 6769 6770 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6771 return Err; 6772 6773 SmallVector<uint64_t, 64> Record; 6774 6775 // Read all the records for this value table. 6776 SmallString<128> ValueName; 6777 6778 while (true) { 6779 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6780 if (!MaybeEntry) 6781 return MaybeEntry.takeError(); 6782 BitstreamEntry Entry = MaybeEntry.get(); 6783 6784 switch (Entry.Kind) { 6785 case BitstreamEntry::SubBlock: // Handled for us already. 6786 case BitstreamEntry::Error: 6787 return error("Malformed block"); 6788 case BitstreamEntry::EndBlock: 6789 // Done parsing VST, jump back to wherever we came from. 6790 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6791 return JumpFailed; 6792 return Error::success(); 6793 case BitstreamEntry::Record: 6794 // The interesting case. 6795 break; 6796 } 6797 6798 // Read a record. 6799 Record.clear(); 6800 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6801 if (!MaybeRecord) 6802 return MaybeRecord.takeError(); 6803 switch (MaybeRecord.get()) { 6804 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6805 break; 6806 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6807 if (convertToString(Record, 1, ValueName)) 6808 return error("Invalid record"); 6809 unsigned ValueID = Record[0]; 6810 assert(!SourceFileName.empty()); 6811 auto VLI = ValueIdToLinkageMap.find(ValueID); 6812 assert(VLI != ValueIdToLinkageMap.end() && 6813 "No linkage found for VST entry?"); 6814 auto Linkage = VLI->second; 6815 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6816 ValueName.clear(); 6817 break; 6818 } 6819 case bitc::VST_CODE_FNENTRY: { 6820 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6821 if (convertToString(Record, 2, ValueName)) 6822 return error("Invalid record"); 6823 unsigned ValueID = Record[0]; 6824 assert(!SourceFileName.empty()); 6825 auto VLI = ValueIdToLinkageMap.find(ValueID); 6826 assert(VLI != ValueIdToLinkageMap.end() && 6827 "No linkage found for VST entry?"); 6828 auto Linkage = VLI->second; 6829 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6830 ValueName.clear(); 6831 break; 6832 } 6833 case bitc::VST_CODE_COMBINED_ENTRY: { 6834 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6835 unsigned ValueID = Record[0]; 6836 GlobalValue::GUID RefGUID = Record[1]; 6837 // The "original name", which is the second value of the pair will be 6838 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6839 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6840 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 6841 break; 6842 } 6843 } 6844 } 6845 } 6846 6847 // Parse just the blocks needed for building the index out of the module. 6848 // At the end of this routine the module Index is populated with a map 6849 // from global value id to GlobalValueSummary objects. 6850 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6851 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6852 return Err; 6853 6854 SmallVector<uint64_t, 64> Record; 6855 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6856 unsigned ValueId = 0; 6857 6858 // Read the index for this module. 6859 while (true) { 6860 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6861 if (!MaybeEntry) 6862 return MaybeEntry.takeError(); 6863 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6864 6865 switch (Entry.Kind) { 6866 case BitstreamEntry::Error: 6867 return error("Malformed block"); 6868 case BitstreamEntry::EndBlock: 6869 return Error::success(); 6870 6871 case BitstreamEntry::SubBlock: 6872 switch (Entry.ID) { 6873 default: // Skip unknown content. 6874 if (Error Err = Stream.SkipBlock()) 6875 return Err; 6876 break; 6877 case bitc::BLOCKINFO_BLOCK_ID: 6878 // Need to parse these to get abbrev ids (e.g. for VST) 6879 if (Error Err = readBlockInfo()) 6880 return Err; 6881 break; 6882 case bitc::VALUE_SYMTAB_BLOCK_ID: 6883 // Should have been parsed earlier via VSTOffset, unless there 6884 // is no summary section. 6885 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6886 !SeenGlobalValSummary) && 6887 "Expected early VST parse via VSTOffset record"); 6888 if (Error Err = Stream.SkipBlock()) 6889 return Err; 6890 break; 6891 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6892 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6893 // Add the module if it is a per-module index (has a source file name). 6894 if (!SourceFileName.empty()) 6895 addThisModule(); 6896 assert(!SeenValueSymbolTable && 6897 "Already read VST when parsing summary block?"); 6898 // We might not have a VST if there were no values in the 6899 // summary. An empty summary block generated when we are 6900 // performing ThinLTO compiles so we don't later invoke 6901 // the regular LTO process on them. 6902 if (VSTOffset > 0) { 6903 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6904 return Err; 6905 SeenValueSymbolTable = true; 6906 } 6907 SeenGlobalValSummary = true; 6908 if (Error Err = parseEntireSummary(Entry.ID)) 6909 return Err; 6910 break; 6911 case bitc::MODULE_STRTAB_BLOCK_ID: 6912 if (Error Err = parseModuleStringTable()) 6913 return Err; 6914 break; 6915 } 6916 continue; 6917 6918 case BitstreamEntry::Record: { 6919 Record.clear(); 6920 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6921 if (!MaybeBitCode) 6922 return MaybeBitCode.takeError(); 6923 switch (MaybeBitCode.get()) { 6924 default: 6925 break; // Default behavior, ignore unknown content. 6926 case bitc::MODULE_CODE_VERSION: { 6927 if (Error Err = parseVersionRecord(Record).takeError()) 6928 return Err; 6929 break; 6930 } 6931 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6932 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6933 SmallString<128> ValueName; 6934 if (convertToString(Record, 0, ValueName)) 6935 return error("Invalid record"); 6936 SourceFileName = ValueName.c_str(); 6937 break; 6938 } 6939 /// MODULE_CODE_HASH: [5*i32] 6940 case bitc::MODULE_CODE_HASH: { 6941 if (Record.size() != 5) 6942 return error("Invalid hash length " + Twine(Record.size()).str()); 6943 auto &Hash = getThisModule()->second; 6944 int Pos = 0; 6945 for (auto &Val : Record) { 6946 assert(!(Val >> 32) && "Unexpected high bits set"); 6947 Hash[Pos++] = Val; 6948 } 6949 break; 6950 } 6951 /// MODULE_CODE_VSTOFFSET: [offset] 6952 case bitc::MODULE_CODE_VSTOFFSET: 6953 if (Record.empty()) 6954 return error("Invalid record"); 6955 // Note that we subtract 1 here because the offset is relative to one 6956 // word before the start of the identification or module block, which 6957 // was historically always the start of the regular bitcode header. 6958 VSTOffset = Record[0] - 1; 6959 break; 6960 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6961 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6962 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6963 // v2: [strtab offset, strtab size, v1] 6964 case bitc::MODULE_CODE_GLOBALVAR: 6965 case bitc::MODULE_CODE_FUNCTION: 6966 case bitc::MODULE_CODE_ALIAS: { 6967 StringRef Name; 6968 ArrayRef<uint64_t> GVRecord; 6969 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6970 if (GVRecord.size() <= 3) 6971 return error("Invalid record"); 6972 uint64_t RawLinkage = GVRecord[3]; 6973 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6974 if (!UseStrtab) { 6975 ValueIdToLinkageMap[ValueId++] = Linkage; 6976 break; 6977 } 6978 6979 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6980 break; 6981 } 6982 } 6983 } 6984 continue; 6985 } 6986 } 6987 } 6988 6989 std::vector<ValueInfo> 6990 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6991 std::vector<ValueInfo> Ret; 6992 Ret.reserve(Record.size()); 6993 for (uint64_t RefValueId : Record) 6994 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 6995 return Ret; 6996 } 6997 6998 std::vector<FunctionSummary::EdgeTy> 6999 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7000 bool IsOldProfileFormat, 7001 bool HasProfile, bool HasRelBF) { 7002 std::vector<FunctionSummary::EdgeTy> Ret; 7003 Ret.reserve(Record.size()); 7004 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7005 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7006 uint64_t RelBF = 0; 7007 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7008 if (IsOldProfileFormat) { 7009 I += 1; // Skip old callsitecount field 7010 if (HasProfile) 7011 I += 1; // Skip old profilecount field 7012 } else if (HasProfile) 7013 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 7014 else if (HasRelBF) 7015 RelBF = Record[++I]; 7016 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 7017 } 7018 return Ret; 7019 } 7020 7021 static void 7022 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7023 WholeProgramDevirtResolution &Wpd) { 7024 uint64_t ArgNum = Record[Slot++]; 7025 WholeProgramDevirtResolution::ByArg &B = 7026 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7027 Slot += ArgNum; 7028 7029 B.TheKind = 7030 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7031 B.Info = Record[Slot++]; 7032 B.Byte = Record[Slot++]; 7033 B.Bit = Record[Slot++]; 7034 } 7035 7036 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7037 StringRef Strtab, size_t &Slot, 7038 TypeIdSummary &TypeId) { 7039 uint64_t Id = Record[Slot++]; 7040 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7041 7042 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7043 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7044 static_cast<size_t>(Record[Slot + 1])}; 7045 Slot += 2; 7046 7047 uint64_t ResByArgNum = Record[Slot++]; 7048 for (uint64_t I = 0; I != ResByArgNum; ++I) 7049 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7050 } 7051 7052 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7053 StringRef Strtab, 7054 ModuleSummaryIndex &TheIndex) { 7055 size_t Slot = 0; 7056 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7057 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7058 Slot += 2; 7059 7060 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7061 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7062 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7063 TypeId.TTRes.SizeM1 = Record[Slot++]; 7064 TypeId.TTRes.BitMask = Record[Slot++]; 7065 TypeId.TTRes.InlineBits = Record[Slot++]; 7066 7067 while (Slot < Record.size()) 7068 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7069 } 7070 7071 std::vector<FunctionSummary::ParamAccess> 7072 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7073 auto ReadRange = [&]() { 7074 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7075 BitcodeReader::decodeSignRotatedValue(Record.front())); 7076 Record = Record.drop_front(); 7077 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7078 BitcodeReader::decodeSignRotatedValue(Record.front())); 7079 Record = Record.drop_front(); 7080 ConstantRange Range{Lower, Upper}; 7081 assert(!Range.isFullSet()); 7082 assert(!Range.isUpperSignWrapped()); 7083 return Range; 7084 }; 7085 7086 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7087 while (!Record.empty()) { 7088 PendingParamAccesses.emplace_back(); 7089 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7090 ParamAccess.ParamNo = Record.front(); 7091 Record = Record.drop_front(); 7092 ParamAccess.Use = ReadRange(); 7093 ParamAccess.Calls.resize(Record.front()); 7094 Record = Record.drop_front(); 7095 for (auto &Call : ParamAccess.Calls) { 7096 Call.ParamNo = Record.front(); 7097 Record = Record.drop_front(); 7098 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7099 Record = Record.drop_front(); 7100 Call.Offsets = ReadRange(); 7101 } 7102 } 7103 return PendingParamAccesses; 7104 } 7105 7106 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7107 ArrayRef<uint64_t> Record, size_t &Slot, 7108 TypeIdCompatibleVtableInfo &TypeId) { 7109 uint64_t Offset = Record[Slot++]; 7110 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7111 TypeId.push_back({Offset, Callee}); 7112 } 7113 7114 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7115 ArrayRef<uint64_t> Record) { 7116 size_t Slot = 0; 7117 TypeIdCompatibleVtableInfo &TypeId = 7118 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7119 {Strtab.data() + Record[Slot], 7120 static_cast<size_t>(Record[Slot + 1])}); 7121 Slot += 2; 7122 7123 while (Slot < Record.size()) 7124 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7125 } 7126 7127 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7128 unsigned WOCnt) { 7129 // Readonly and writeonly refs are in the end of the refs list. 7130 assert(ROCnt + WOCnt <= Refs.size()); 7131 unsigned FirstWORef = Refs.size() - WOCnt; 7132 unsigned RefNo = FirstWORef - ROCnt; 7133 for (; RefNo < FirstWORef; ++RefNo) 7134 Refs[RefNo].setReadOnly(); 7135 for (; RefNo < Refs.size(); ++RefNo) 7136 Refs[RefNo].setWriteOnly(); 7137 } 7138 7139 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7140 // objects in the index. 7141 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7142 if (Error Err = Stream.EnterSubBlock(ID)) 7143 return Err; 7144 SmallVector<uint64_t, 64> Record; 7145 7146 // Parse version 7147 { 7148 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7149 if (!MaybeEntry) 7150 return MaybeEntry.takeError(); 7151 BitstreamEntry Entry = MaybeEntry.get(); 7152 7153 if (Entry.Kind != BitstreamEntry::Record) 7154 return error("Invalid Summary Block: record for version expected"); 7155 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7156 if (!MaybeRecord) 7157 return MaybeRecord.takeError(); 7158 if (MaybeRecord.get() != bitc::FS_VERSION) 7159 return error("Invalid Summary Block: version expected"); 7160 } 7161 const uint64_t Version = Record[0]; 7162 const bool IsOldProfileFormat = Version == 1; 7163 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7164 return error("Invalid summary version " + Twine(Version) + 7165 ". Version should be in the range [1-" + 7166 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7167 "]."); 7168 Record.clear(); 7169 7170 // Keep around the last seen summary to be used when we see an optional 7171 // "OriginalName" attachement. 7172 GlobalValueSummary *LastSeenSummary = nullptr; 7173 GlobalValue::GUID LastSeenGUID = 0; 7174 7175 // We can expect to see any number of type ID information records before 7176 // each function summary records; these variables store the information 7177 // collected so far so that it can be used to create the summary object. 7178 std::vector<GlobalValue::GUID> PendingTypeTests; 7179 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7180 PendingTypeCheckedLoadVCalls; 7181 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7182 PendingTypeCheckedLoadConstVCalls; 7183 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7184 7185 std::vector<CallsiteInfo> PendingCallsites; 7186 std::vector<AllocInfo> PendingAllocs; 7187 7188 while (true) { 7189 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7190 if (!MaybeEntry) 7191 return MaybeEntry.takeError(); 7192 BitstreamEntry Entry = MaybeEntry.get(); 7193 7194 switch (Entry.Kind) { 7195 case BitstreamEntry::SubBlock: // Handled for us already. 7196 case BitstreamEntry::Error: 7197 return error("Malformed block"); 7198 case BitstreamEntry::EndBlock: 7199 return Error::success(); 7200 case BitstreamEntry::Record: 7201 // The interesting case. 7202 break; 7203 } 7204 7205 // Read a record. The record format depends on whether this 7206 // is a per-module index or a combined index file. In the per-module 7207 // case the records contain the associated value's ID for correlation 7208 // with VST entries. In the combined index the correlation is done 7209 // via the bitcode offset of the summary records (which were saved 7210 // in the combined index VST entries). The records also contain 7211 // information used for ThinLTO renaming and importing. 7212 Record.clear(); 7213 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7214 if (!MaybeBitCode) 7215 return MaybeBitCode.takeError(); 7216 switch (unsigned BitCode = MaybeBitCode.get()) { 7217 default: // Default behavior: ignore. 7218 break; 7219 case bitc::FS_FLAGS: { // [flags] 7220 TheIndex.setFlags(Record[0]); 7221 break; 7222 } 7223 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7224 uint64_t ValueID = Record[0]; 7225 GlobalValue::GUID RefGUID = Record[1]; 7226 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7227 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7228 break; 7229 } 7230 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7231 // numrefs x valueid, n x (valueid)] 7232 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7233 // numrefs x valueid, 7234 // n x (valueid, hotness)] 7235 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7236 // numrefs x valueid, 7237 // n x (valueid, relblockfreq)] 7238 case bitc::FS_PERMODULE: 7239 case bitc::FS_PERMODULE_RELBF: 7240 case bitc::FS_PERMODULE_PROFILE: { 7241 unsigned ValueID = Record[0]; 7242 uint64_t RawFlags = Record[1]; 7243 unsigned InstCount = Record[2]; 7244 uint64_t RawFunFlags = 0; 7245 unsigned NumRefs = Record[3]; 7246 unsigned NumRORefs = 0, NumWORefs = 0; 7247 int RefListStartIndex = 4; 7248 if (Version >= 4) { 7249 RawFunFlags = Record[3]; 7250 NumRefs = Record[4]; 7251 RefListStartIndex = 5; 7252 if (Version >= 5) { 7253 NumRORefs = Record[5]; 7254 RefListStartIndex = 6; 7255 if (Version >= 7) { 7256 NumWORefs = Record[6]; 7257 RefListStartIndex = 7; 7258 } 7259 } 7260 } 7261 7262 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7263 // The module path string ref set in the summary must be owned by the 7264 // index's module string table. Since we don't have a module path 7265 // string table section in the per-module index, we create a single 7266 // module path string table entry with an empty (0) ID to take 7267 // ownership. 7268 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7269 assert(Record.size() >= RefListStartIndex + NumRefs && 7270 "Record size inconsistent with number of references"); 7271 std::vector<ValueInfo> Refs = makeRefList( 7272 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7273 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7274 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7275 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7276 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7277 IsOldProfileFormat, HasProfile, HasRelBF); 7278 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7279 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7280 // In order to save memory, only record the memprof summaries if this is 7281 // the prevailing copy of a symbol. The linker doesn't resolve local 7282 // linkage values so don't check whether those are prevailing. 7283 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7284 if (IsPrevailing && 7285 !GlobalValue::isLocalLinkage(LT) && 7286 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7287 PendingCallsites.clear(); 7288 PendingAllocs.clear(); 7289 } 7290 auto FS = std::make_unique<FunctionSummary>( 7291 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7292 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7293 std::move(PendingTypeTestAssumeVCalls), 7294 std::move(PendingTypeCheckedLoadVCalls), 7295 std::move(PendingTypeTestAssumeConstVCalls), 7296 std::move(PendingTypeCheckedLoadConstVCalls), 7297 std::move(PendingParamAccesses), std::move(PendingCallsites), 7298 std::move(PendingAllocs)); 7299 FS->setModulePath(getThisModule()->first()); 7300 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7301 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7302 std::move(FS)); 7303 break; 7304 } 7305 // FS_ALIAS: [valueid, flags, valueid] 7306 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7307 // they expect all aliasee summaries to be available. 7308 case bitc::FS_ALIAS: { 7309 unsigned ValueID = Record[0]; 7310 uint64_t RawFlags = Record[1]; 7311 unsigned AliaseeID = Record[2]; 7312 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7313 auto AS = std::make_unique<AliasSummary>(Flags); 7314 // The module path string ref set in the summary must be owned by the 7315 // index's module string table. Since we don't have a module path 7316 // string table section in the per-module index, we create a single 7317 // module path string table entry with an empty (0) ID to take 7318 // ownership. 7319 AS->setModulePath(getThisModule()->first()); 7320 7321 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7322 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7323 if (!AliaseeInModule) 7324 return error("Alias expects aliasee summary to be parsed"); 7325 AS->setAliasee(AliaseeVI, AliaseeInModule); 7326 7327 auto GUID = getValueInfoFromValueId(ValueID); 7328 AS->setOriginalName(std::get<1>(GUID)); 7329 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7330 break; 7331 } 7332 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7333 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7334 unsigned ValueID = Record[0]; 7335 uint64_t RawFlags = Record[1]; 7336 unsigned RefArrayStart = 2; 7337 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7338 /* WriteOnly */ false, 7339 /* Constant */ false, 7340 GlobalObject::VCallVisibilityPublic); 7341 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7342 if (Version >= 5) { 7343 GVF = getDecodedGVarFlags(Record[2]); 7344 RefArrayStart = 3; 7345 } 7346 std::vector<ValueInfo> Refs = 7347 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7348 auto FS = 7349 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7350 FS->setModulePath(getThisModule()->first()); 7351 auto GUID = getValueInfoFromValueId(ValueID); 7352 FS->setOriginalName(std::get<1>(GUID)); 7353 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7354 break; 7355 } 7356 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7357 // numrefs, numrefs x valueid, 7358 // n x (valueid, offset)] 7359 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7360 unsigned ValueID = Record[0]; 7361 uint64_t RawFlags = Record[1]; 7362 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7363 unsigned NumRefs = Record[3]; 7364 unsigned RefListStartIndex = 4; 7365 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7366 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7367 std::vector<ValueInfo> Refs = makeRefList( 7368 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7369 VTableFuncList VTableFuncs; 7370 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7371 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7372 uint64_t Offset = Record[++I]; 7373 VTableFuncs.push_back({Callee, Offset}); 7374 } 7375 auto VS = 7376 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7377 VS->setModulePath(getThisModule()->first()); 7378 VS->setVTableFuncs(VTableFuncs); 7379 auto GUID = getValueInfoFromValueId(ValueID); 7380 VS->setOriginalName(std::get<1>(GUID)); 7381 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7382 break; 7383 } 7384 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7385 // numrefs x valueid, n x (valueid)] 7386 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7387 // numrefs x valueid, n x (valueid, hotness)] 7388 case bitc::FS_COMBINED: 7389 case bitc::FS_COMBINED_PROFILE: { 7390 unsigned ValueID = Record[0]; 7391 uint64_t ModuleId = Record[1]; 7392 uint64_t RawFlags = Record[2]; 7393 unsigned InstCount = Record[3]; 7394 uint64_t RawFunFlags = 0; 7395 uint64_t EntryCount = 0; 7396 unsigned NumRefs = Record[4]; 7397 unsigned NumRORefs = 0, NumWORefs = 0; 7398 int RefListStartIndex = 5; 7399 7400 if (Version >= 4) { 7401 RawFunFlags = Record[4]; 7402 RefListStartIndex = 6; 7403 size_t NumRefsIndex = 5; 7404 if (Version >= 5) { 7405 unsigned NumRORefsOffset = 1; 7406 RefListStartIndex = 7; 7407 if (Version >= 6) { 7408 NumRefsIndex = 6; 7409 EntryCount = Record[5]; 7410 RefListStartIndex = 8; 7411 if (Version >= 7) { 7412 RefListStartIndex = 9; 7413 NumWORefs = Record[8]; 7414 NumRORefsOffset = 2; 7415 } 7416 } 7417 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7418 } 7419 NumRefs = Record[NumRefsIndex]; 7420 } 7421 7422 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7423 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7424 assert(Record.size() >= RefListStartIndex + NumRefs && 7425 "Record size inconsistent with number of references"); 7426 std::vector<ValueInfo> Refs = makeRefList( 7427 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7428 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7429 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7430 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7431 IsOldProfileFormat, HasProfile, false); 7432 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7433 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7434 auto FS = std::make_unique<FunctionSummary>( 7435 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7436 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7437 std::move(PendingTypeTestAssumeVCalls), 7438 std::move(PendingTypeCheckedLoadVCalls), 7439 std::move(PendingTypeTestAssumeConstVCalls), 7440 std::move(PendingTypeCheckedLoadConstVCalls), 7441 std::move(PendingParamAccesses), std::move(PendingCallsites), 7442 std::move(PendingAllocs)); 7443 LastSeenSummary = FS.get(); 7444 LastSeenGUID = VI.getGUID(); 7445 FS->setModulePath(ModuleIdMap[ModuleId]); 7446 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7447 break; 7448 } 7449 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7450 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7451 // they expect all aliasee summaries to be available. 7452 case bitc::FS_COMBINED_ALIAS: { 7453 unsigned ValueID = Record[0]; 7454 uint64_t ModuleId = Record[1]; 7455 uint64_t RawFlags = Record[2]; 7456 unsigned AliaseeValueId = Record[3]; 7457 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7458 auto AS = std::make_unique<AliasSummary>(Flags); 7459 LastSeenSummary = AS.get(); 7460 AS->setModulePath(ModuleIdMap[ModuleId]); 7461 7462 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7463 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7464 AS->setAliasee(AliaseeVI, AliaseeInModule); 7465 7466 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7467 LastSeenGUID = VI.getGUID(); 7468 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7469 break; 7470 } 7471 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7472 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7473 unsigned ValueID = Record[0]; 7474 uint64_t ModuleId = Record[1]; 7475 uint64_t RawFlags = Record[2]; 7476 unsigned RefArrayStart = 3; 7477 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7478 /* WriteOnly */ false, 7479 /* Constant */ false, 7480 GlobalObject::VCallVisibilityPublic); 7481 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7482 if (Version >= 5) { 7483 GVF = getDecodedGVarFlags(Record[3]); 7484 RefArrayStart = 4; 7485 } 7486 std::vector<ValueInfo> Refs = 7487 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7488 auto FS = 7489 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7490 LastSeenSummary = FS.get(); 7491 FS->setModulePath(ModuleIdMap[ModuleId]); 7492 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7493 LastSeenGUID = VI.getGUID(); 7494 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7495 break; 7496 } 7497 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7498 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7499 uint64_t OriginalName = Record[0]; 7500 if (!LastSeenSummary) 7501 return error("Name attachment that does not follow a combined record"); 7502 LastSeenSummary->setOriginalName(OriginalName); 7503 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7504 // Reset the LastSeenSummary 7505 LastSeenSummary = nullptr; 7506 LastSeenGUID = 0; 7507 break; 7508 } 7509 case bitc::FS_TYPE_TESTS: 7510 assert(PendingTypeTests.empty()); 7511 llvm::append_range(PendingTypeTests, Record); 7512 break; 7513 7514 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7515 assert(PendingTypeTestAssumeVCalls.empty()); 7516 for (unsigned I = 0; I != Record.size(); I += 2) 7517 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7518 break; 7519 7520 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7521 assert(PendingTypeCheckedLoadVCalls.empty()); 7522 for (unsigned I = 0; I != Record.size(); I += 2) 7523 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7524 break; 7525 7526 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7527 PendingTypeTestAssumeConstVCalls.push_back( 7528 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7529 break; 7530 7531 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7532 PendingTypeCheckedLoadConstVCalls.push_back( 7533 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7534 break; 7535 7536 case bitc::FS_CFI_FUNCTION_DEFS: { 7537 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7538 for (unsigned I = 0; I != Record.size(); I += 2) 7539 CfiFunctionDefs.insert( 7540 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7541 break; 7542 } 7543 7544 case bitc::FS_CFI_FUNCTION_DECLS: { 7545 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7546 for (unsigned I = 0; I != Record.size(); I += 2) 7547 CfiFunctionDecls.insert( 7548 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7549 break; 7550 } 7551 7552 case bitc::FS_TYPE_ID: 7553 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7554 break; 7555 7556 case bitc::FS_TYPE_ID_METADATA: 7557 parseTypeIdCompatibleVtableSummaryRecord(Record); 7558 break; 7559 7560 case bitc::FS_BLOCK_COUNT: 7561 TheIndex.addBlockCount(Record[0]); 7562 break; 7563 7564 case bitc::FS_PARAM_ACCESS: { 7565 PendingParamAccesses = parseParamAccesses(Record); 7566 break; 7567 } 7568 7569 case bitc::FS_STACK_IDS: { // [n x stackid] 7570 // Save stack ids in the reader to consult when adding stack ids from the 7571 // lists in the stack node and alloc node entries. 7572 StackIds = ArrayRef<uint64_t>(Record); 7573 break; 7574 } 7575 7576 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7577 unsigned ValueID = Record[0]; 7578 SmallVector<unsigned> StackIdList; 7579 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7580 assert(*R < StackIds.size()); 7581 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7582 } 7583 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7584 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7585 break; 7586 } 7587 7588 case bitc::FS_COMBINED_CALLSITE_INFO: { 7589 auto RecordIter = Record.begin(); 7590 unsigned ValueID = *RecordIter++; 7591 unsigned NumStackIds = *RecordIter++; 7592 unsigned NumVersions = *RecordIter++; 7593 assert(Record.size() == 3 + NumStackIds + NumVersions); 7594 SmallVector<unsigned> StackIdList; 7595 for (unsigned J = 0; J < NumStackIds; J++) { 7596 assert(*RecordIter < StackIds.size()); 7597 StackIdList.push_back( 7598 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7599 } 7600 SmallVector<unsigned> Versions; 7601 for (unsigned J = 0; J < NumVersions; J++) 7602 Versions.push_back(*RecordIter++); 7603 ValueInfo VI = std::get<0>( 7604 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7605 PendingCallsites.push_back( 7606 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7607 break; 7608 } 7609 7610 case bitc::FS_PERMODULE_ALLOC_INFO: { 7611 unsigned I = 0; 7612 std::vector<MIBInfo> MIBs; 7613 while (I < Record.size()) { 7614 assert(Record.size() - I >= 2); 7615 AllocationType AllocType = (AllocationType)Record[I++]; 7616 unsigned NumStackEntries = Record[I++]; 7617 assert(Record.size() - I >= NumStackEntries); 7618 SmallVector<unsigned> StackIdList; 7619 for (unsigned J = 0; J < NumStackEntries; J++) { 7620 assert(Record[I] < StackIds.size()); 7621 StackIdList.push_back( 7622 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7623 } 7624 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7625 } 7626 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7627 break; 7628 } 7629 7630 case bitc::FS_COMBINED_ALLOC_INFO: { 7631 unsigned I = 0; 7632 std::vector<MIBInfo> MIBs; 7633 unsigned NumMIBs = Record[I++]; 7634 unsigned NumVersions = Record[I++]; 7635 unsigned MIBsRead = 0; 7636 while (MIBsRead++ < NumMIBs) { 7637 assert(Record.size() - I >= 2); 7638 AllocationType AllocType = (AllocationType)Record[I++]; 7639 unsigned NumStackEntries = Record[I++]; 7640 assert(Record.size() - I >= NumStackEntries); 7641 SmallVector<unsigned> StackIdList; 7642 for (unsigned J = 0; J < NumStackEntries; J++) { 7643 assert(Record[I] < StackIds.size()); 7644 StackIdList.push_back( 7645 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7646 } 7647 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7648 } 7649 assert(Record.size() - I >= NumVersions); 7650 SmallVector<uint8_t> Versions; 7651 for (unsigned J = 0; J < NumVersions; J++) 7652 Versions.push_back(Record[I++]); 7653 PendingAllocs.push_back( 7654 AllocInfo(std::move(Versions), std::move(MIBs))); 7655 break; 7656 } 7657 } 7658 } 7659 llvm_unreachable("Exit infinite loop"); 7660 } 7661 7662 // Parse the module string table block into the Index. 7663 // This populates the ModulePathStringTable map in the index. 7664 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7665 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7666 return Err; 7667 7668 SmallVector<uint64_t, 64> Record; 7669 7670 SmallString<128> ModulePath; 7671 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7672 7673 while (true) { 7674 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7675 if (!MaybeEntry) 7676 return MaybeEntry.takeError(); 7677 BitstreamEntry Entry = MaybeEntry.get(); 7678 7679 switch (Entry.Kind) { 7680 case BitstreamEntry::SubBlock: // Handled for us already. 7681 case BitstreamEntry::Error: 7682 return error("Malformed block"); 7683 case BitstreamEntry::EndBlock: 7684 return Error::success(); 7685 case BitstreamEntry::Record: 7686 // The interesting case. 7687 break; 7688 } 7689 7690 Record.clear(); 7691 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7692 if (!MaybeRecord) 7693 return MaybeRecord.takeError(); 7694 switch (MaybeRecord.get()) { 7695 default: // Default behavior: ignore. 7696 break; 7697 case bitc::MST_CODE_ENTRY: { 7698 // MST_ENTRY: [modid, namechar x N] 7699 uint64_t ModuleId = Record[0]; 7700 7701 if (convertToString(Record, 1, ModulePath)) 7702 return error("Invalid record"); 7703 7704 LastSeenModule = TheIndex.addModule(ModulePath); 7705 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7706 7707 ModulePath.clear(); 7708 break; 7709 } 7710 /// MST_CODE_HASH: [5*i32] 7711 case bitc::MST_CODE_HASH: { 7712 if (Record.size() != 5) 7713 return error("Invalid hash length " + Twine(Record.size()).str()); 7714 if (!LastSeenModule) 7715 return error("Invalid hash that does not follow a module path"); 7716 int Pos = 0; 7717 for (auto &Val : Record) { 7718 assert(!(Val >> 32) && "Unexpected high bits set"); 7719 LastSeenModule->second[Pos++] = Val; 7720 } 7721 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7722 LastSeenModule = nullptr; 7723 break; 7724 } 7725 } 7726 } 7727 llvm_unreachable("Exit infinite loop"); 7728 } 7729 7730 namespace { 7731 7732 // FIXME: This class is only here to support the transition to llvm::Error. It 7733 // will be removed once this transition is complete. Clients should prefer to 7734 // deal with the Error value directly, rather than converting to error_code. 7735 class BitcodeErrorCategoryType : public std::error_category { 7736 const char *name() const noexcept override { 7737 return "llvm.bitcode"; 7738 } 7739 7740 std::string message(int IE) const override { 7741 BitcodeError E = static_cast<BitcodeError>(IE); 7742 switch (E) { 7743 case BitcodeError::CorruptedBitcode: 7744 return "Corrupted bitcode"; 7745 } 7746 llvm_unreachable("Unknown error type!"); 7747 } 7748 }; 7749 7750 } // end anonymous namespace 7751 7752 const std::error_category &llvm::BitcodeErrorCategory() { 7753 static BitcodeErrorCategoryType ErrorCategory; 7754 return ErrorCategory; 7755 } 7756 7757 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7758 unsigned Block, unsigned RecordID) { 7759 if (Error Err = Stream.EnterSubBlock(Block)) 7760 return std::move(Err); 7761 7762 StringRef Strtab; 7763 while (true) { 7764 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7765 if (!MaybeEntry) 7766 return MaybeEntry.takeError(); 7767 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7768 7769 switch (Entry.Kind) { 7770 case BitstreamEntry::EndBlock: 7771 return Strtab; 7772 7773 case BitstreamEntry::Error: 7774 return error("Malformed block"); 7775 7776 case BitstreamEntry::SubBlock: 7777 if (Error Err = Stream.SkipBlock()) 7778 return std::move(Err); 7779 break; 7780 7781 case BitstreamEntry::Record: 7782 StringRef Blob; 7783 SmallVector<uint64_t, 1> Record; 7784 Expected<unsigned> MaybeRecord = 7785 Stream.readRecord(Entry.ID, Record, &Blob); 7786 if (!MaybeRecord) 7787 return MaybeRecord.takeError(); 7788 if (MaybeRecord.get() == RecordID) 7789 Strtab = Blob; 7790 break; 7791 } 7792 } 7793 } 7794 7795 //===----------------------------------------------------------------------===// 7796 // External interface 7797 //===----------------------------------------------------------------------===// 7798 7799 Expected<std::vector<BitcodeModule>> 7800 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7801 auto FOrErr = getBitcodeFileContents(Buffer); 7802 if (!FOrErr) 7803 return FOrErr.takeError(); 7804 return std::move(FOrErr->Mods); 7805 } 7806 7807 Expected<BitcodeFileContents> 7808 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7809 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7810 if (!StreamOrErr) 7811 return StreamOrErr.takeError(); 7812 BitstreamCursor &Stream = *StreamOrErr; 7813 7814 BitcodeFileContents F; 7815 while (true) { 7816 uint64_t BCBegin = Stream.getCurrentByteNo(); 7817 7818 // We may be consuming bitcode from a client that leaves garbage at the end 7819 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7820 // the end that there cannot possibly be another module, stop looking. 7821 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7822 return F; 7823 7824 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7825 if (!MaybeEntry) 7826 return MaybeEntry.takeError(); 7827 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7828 7829 switch (Entry.Kind) { 7830 case BitstreamEntry::EndBlock: 7831 case BitstreamEntry::Error: 7832 return error("Malformed block"); 7833 7834 case BitstreamEntry::SubBlock: { 7835 uint64_t IdentificationBit = -1ull; 7836 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7837 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7838 if (Error Err = Stream.SkipBlock()) 7839 return std::move(Err); 7840 7841 { 7842 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7843 if (!MaybeEntry) 7844 return MaybeEntry.takeError(); 7845 Entry = MaybeEntry.get(); 7846 } 7847 7848 if (Entry.Kind != BitstreamEntry::SubBlock || 7849 Entry.ID != bitc::MODULE_BLOCK_ID) 7850 return error("Malformed block"); 7851 } 7852 7853 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7854 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7855 if (Error Err = Stream.SkipBlock()) 7856 return std::move(Err); 7857 7858 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7859 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7860 Buffer.getBufferIdentifier(), IdentificationBit, 7861 ModuleBit}); 7862 continue; 7863 } 7864 7865 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7866 Expected<StringRef> Strtab = 7867 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7868 if (!Strtab) 7869 return Strtab.takeError(); 7870 // This string table is used by every preceding bitcode module that does 7871 // not have its own string table. A bitcode file may have multiple 7872 // string tables if it was created by binary concatenation, for example 7873 // with "llvm-cat -b". 7874 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7875 if (!I.Strtab.empty()) 7876 break; 7877 I.Strtab = *Strtab; 7878 } 7879 // Similarly, the string table is used by every preceding symbol table; 7880 // normally there will be just one unless the bitcode file was created 7881 // by binary concatenation. 7882 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7883 F.StrtabForSymtab = *Strtab; 7884 continue; 7885 } 7886 7887 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7888 Expected<StringRef> SymtabOrErr = 7889 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7890 if (!SymtabOrErr) 7891 return SymtabOrErr.takeError(); 7892 7893 // We can expect the bitcode file to have multiple symbol tables if it 7894 // was created by binary concatenation. In that case we silently 7895 // ignore any subsequent symbol tables, which is fine because this is a 7896 // low level function. The client is expected to notice that the number 7897 // of modules in the symbol table does not match the number of modules 7898 // in the input file and regenerate the symbol table. 7899 if (F.Symtab.empty()) 7900 F.Symtab = *SymtabOrErr; 7901 continue; 7902 } 7903 7904 if (Error Err = Stream.SkipBlock()) 7905 return std::move(Err); 7906 continue; 7907 } 7908 case BitstreamEntry::Record: 7909 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7910 return std::move(E); 7911 continue; 7912 } 7913 } 7914 } 7915 7916 /// Get a lazy one-at-time loading module from bitcode. 7917 /// 7918 /// This isn't always used in a lazy context. In particular, it's also used by 7919 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7920 /// in forward-referenced functions from block address references. 7921 /// 7922 /// \param[in] MaterializeAll Set to \c true if we should materialize 7923 /// everything. 7924 Expected<std::unique_ptr<Module>> 7925 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7926 bool ShouldLazyLoadMetadata, bool IsImporting, 7927 ParserCallbacks Callbacks) { 7928 BitstreamCursor Stream(Buffer); 7929 7930 std::string ProducerIdentification; 7931 if (IdentificationBit != -1ull) { 7932 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7933 return std::move(JumpFailed); 7934 if (Error E = 7935 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7936 return std::move(E); 7937 } 7938 7939 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7940 return std::move(JumpFailed); 7941 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7942 Context); 7943 7944 std::unique_ptr<Module> M = 7945 std::make_unique<Module>(ModuleIdentifier, Context); 7946 M->setMaterializer(R); 7947 7948 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7949 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7950 IsImporting, Callbacks)) 7951 return std::move(Err); 7952 7953 if (MaterializeAll) { 7954 // Read in the entire module, and destroy the BitcodeReader. 7955 if (Error Err = M->materializeAll()) 7956 return std::move(Err); 7957 } else { 7958 // Resolve forward references from blockaddresses. 7959 if (Error Err = R->materializeForwardReferencedFunctions()) 7960 return std::move(Err); 7961 } 7962 return std::move(M); 7963 } 7964 7965 Expected<std::unique_ptr<Module>> 7966 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7967 bool IsImporting, ParserCallbacks Callbacks) { 7968 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7969 Callbacks); 7970 } 7971 7972 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7973 // We don't use ModuleIdentifier here because the client may need to control the 7974 // module path used in the combined summary (e.g. when reading summaries for 7975 // regular LTO modules). 7976 Error BitcodeModule::readSummary( 7977 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 7978 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 7979 BitstreamCursor Stream(Buffer); 7980 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7981 return JumpFailed; 7982 7983 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 7984 ModulePath, IsPrevailing); 7985 return R.parseModule(); 7986 } 7987 7988 // Parse the specified bitcode buffer, returning the function info index. 7989 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 7990 BitstreamCursor Stream(Buffer); 7991 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7992 return std::move(JumpFailed); 7993 7994 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 7995 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 7996 ModuleIdentifier, 0); 7997 7998 if (Error Err = R.parseModule()) 7999 return std::move(Err); 8000 8001 return std::move(Index); 8002 } 8003 8004 static Expected<std::pair<bool, bool>> 8005 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8006 unsigned ID, 8007 BitcodeLTOInfo <OInfo) { 8008 if (Error Err = Stream.EnterSubBlock(ID)) 8009 return std::move(Err); 8010 SmallVector<uint64_t, 64> Record; 8011 8012 while (true) { 8013 BitstreamEntry Entry; 8014 std::pair<bool, bool> Result = {false,false}; 8015 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8016 return std::move(E); 8017 8018 switch (Entry.Kind) { 8019 case BitstreamEntry::SubBlock: // Handled for us already. 8020 case BitstreamEntry::Error: 8021 return error("Malformed block"); 8022 case BitstreamEntry::EndBlock: { 8023 // If no flags record found, set both flags to false. 8024 return Result; 8025 } 8026 case BitstreamEntry::Record: 8027 // The interesting case. 8028 break; 8029 } 8030 8031 // Look for the FS_FLAGS record. 8032 Record.clear(); 8033 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8034 if (!MaybeBitCode) 8035 return MaybeBitCode.takeError(); 8036 switch (MaybeBitCode.get()) { 8037 default: // Default behavior: ignore. 8038 break; 8039 case bitc::FS_FLAGS: { // [flags] 8040 uint64_t Flags = Record[0]; 8041 // Scan flags. 8042 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8043 8044 bool EnableSplitLTOUnit = Flags & 0x8; 8045 bool UnifiedLTO = Flags & 0x200; 8046 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8047 8048 return Result; 8049 } 8050 } 8051 } 8052 llvm_unreachable("Exit infinite loop"); 8053 } 8054 8055 // Check if the given bitcode buffer contains a global value summary block. 8056 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8057 BitstreamCursor Stream(Buffer); 8058 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8059 return std::move(JumpFailed); 8060 8061 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8062 return std::move(Err); 8063 8064 while (true) { 8065 llvm::BitstreamEntry Entry; 8066 if (Error E = Stream.advance().moveInto(Entry)) 8067 return std::move(E); 8068 8069 switch (Entry.Kind) { 8070 case BitstreamEntry::Error: 8071 return error("Malformed block"); 8072 case BitstreamEntry::EndBlock: 8073 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8074 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8075 8076 case BitstreamEntry::SubBlock: 8077 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8078 BitcodeLTOInfo LTOInfo; 8079 Expected<std::pair<bool, bool>> Flags = 8080 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8081 if (!Flags) 8082 return Flags.takeError(); 8083 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8084 LTOInfo.IsThinLTO = true; 8085 LTOInfo.HasSummary = true; 8086 return LTOInfo; 8087 } 8088 8089 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8090 BitcodeLTOInfo LTOInfo; 8091 Expected<std::pair<bool, bool>> Flags = 8092 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8093 if (!Flags) 8094 return Flags.takeError(); 8095 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8096 LTOInfo.IsThinLTO = false; 8097 LTOInfo.HasSummary = true; 8098 return LTOInfo; 8099 } 8100 8101 // Ignore other sub-blocks. 8102 if (Error Err = Stream.SkipBlock()) 8103 return std::move(Err); 8104 continue; 8105 8106 case BitstreamEntry::Record: 8107 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8108 continue; 8109 else 8110 return StreamFailed.takeError(); 8111 } 8112 } 8113 } 8114 8115 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8116 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8117 if (!MsOrErr) 8118 return MsOrErr.takeError(); 8119 8120 if (MsOrErr->size() != 1) 8121 return error("Expected a single module"); 8122 8123 return (*MsOrErr)[0]; 8124 } 8125 8126 Expected<std::unique_ptr<Module>> 8127 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8128 bool ShouldLazyLoadMetadata, bool IsImporting, 8129 ParserCallbacks Callbacks) { 8130 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8131 if (!BM) 8132 return BM.takeError(); 8133 8134 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8135 Callbacks); 8136 } 8137 8138 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8139 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8140 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8141 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8142 IsImporting, Callbacks); 8143 if (MOrErr) 8144 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8145 return MOrErr; 8146 } 8147 8148 Expected<std::unique_ptr<Module>> 8149 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8150 return getModuleImpl(Context, true, false, false, Callbacks); 8151 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8152 // written. We must defer until the Module has been fully materialized. 8153 } 8154 8155 Expected<std::unique_ptr<Module>> 8156 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8157 ParserCallbacks Callbacks) { 8158 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8159 if (!BM) 8160 return BM.takeError(); 8161 8162 return BM->parseModule(Context, Callbacks); 8163 } 8164 8165 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8166 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8167 if (!StreamOrErr) 8168 return StreamOrErr.takeError(); 8169 8170 return readTriple(*StreamOrErr); 8171 } 8172 8173 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8174 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8175 if (!StreamOrErr) 8176 return StreamOrErr.takeError(); 8177 8178 return hasObjCCategory(*StreamOrErr); 8179 } 8180 8181 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8182 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8183 if (!StreamOrErr) 8184 return StreamOrErr.takeError(); 8185 8186 return readIdentificationCode(*StreamOrErr); 8187 } 8188 8189 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8190 ModuleSummaryIndex &CombinedIndex) { 8191 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8192 if (!BM) 8193 return BM.takeError(); 8194 8195 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8196 } 8197 8198 Expected<std::unique_ptr<ModuleSummaryIndex>> 8199 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8200 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8201 if (!BM) 8202 return BM.takeError(); 8203 8204 return BM->getSummary(); 8205 } 8206 8207 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8208 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8209 if (!BM) 8210 return BM.takeError(); 8211 8212 return BM->getLTOInfo(); 8213 } 8214 8215 Expected<std::unique_ptr<ModuleSummaryIndex>> 8216 llvm::getModuleSummaryIndexForFile(StringRef Path, 8217 bool IgnoreEmptyThinLTOIndexFile) { 8218 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8219 MemoryBuffer::getFileOrSTDIN(Path); 8220 if (!FileOrErr) 8221 return errorCodeToError(FileOrErr.getError()); 8222 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8223 return nullptr; 8224 return getModuleSummaryIndex(**FileOrErr); 8225 } 8226