1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <optional> 84 #include <set> 85 #include <string> 86 #include <system_error> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 93 static cl::opt<bool> PrintSummaryGUIDs( 94 "print-summary-global-ids", cl::init(false), cl::Hidden, 95 cl::desc( 96 "Print the global id for each value when reading the module summary")); 97 98 static cl::opt<bool> ExpandConstantExprs( 99 "expand-constant-exprs", cl::Hidden, 100 cl::desc( 101 "Expand constant expressions to instructions for testing purposes")); 102 103 namespace { 104 105 enum { 106 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 107 }; 108 109 } // end anonymous namespace 110 111 static Error error(const Twine &Message) { 112 return make_error<StringError>( 113 Message, make_error_code(BitcodeError::CorruptedBitcode)); 114 } 115 116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 117 if (!Stream.canSkipToPos(4)) 118 return createStringError(std::errc::illegal_byte_sequence, 119 "file too small to contain bitcode header"); 120 for (unsigned C : {'B', 'C'}) 121 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 122 if (Res.get() != C) 123 return createStringError(std::errc::illegal_byte_sequence, 124 "file doesn't start with bitcode header"); 125 } else 126 return Res.takeError(); 127 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 128 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 129 if (Res.get() != C) 130 return createStringError(std::errc::illegal_byte_sequence, 131 "file doesn't start with bitcode header"); 132 } else 133 return Res.takeError(); 134 return Error::success(); 135 } 136 137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 138 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 139 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 140 141 if (Buffer.getBufferSize() & 3) 142 return error("Invalid bitcode signature"); 143 144 // If we have a wrapper header, parse it and ignore the non-bc file contents. 145 // The magic number is 0x0B17C0DE stored in little endian. 146 if (isBitcodeWrapper(BufPtr, BufEnd)) 147 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 148 return error("Invalid bitcode wrapper header"); 149 150 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 151 if (Error Err = hasInvalidBitcodeHeader(Stream)) 152 return std::move(Err); 153 154 return std::move(Stream); 155 } 156 157 /// Convert a string from a record into an std::string, return true on failure. 158 template <typename StrTy> 159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 160 StrTy &Result) { 161 if (Idx > Record.size()) 162 return true; 163 164 Result.append(Record.begin() + Idx, Record.end()); 165 return false; 166 } 167 168 // Strip all the TBAA attachment for the module. 169 static void stripTBAA(Module *M) { 170 for (auto &F : *M) { 171 if (F.isMaterializable()) 172 continue; 173 for (auto &I : instructions(F)) 174 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 175 } 176 } 177 178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 179 /// "epoch" encoded in the bitcode, and return the producer name if any. 180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 181 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 182 return std::move(Err); 183 184 // Read all the records. 185 SmallVector<uint64_t, 64> Record; 186 187 std::string ProducerIdentification; 188 189 while (true) { 190 BitstreamEntry Entry; 191 if (Error E = Stream.advance().moveInto(Entry)) 192 return std::move(E); 193 194 switch (Entry.Kind) { 195 default: 196 case BitstreamEntry::Error: 197 return error("Malformed block"); 198 case BitstreamEntry::EndBlock: 199 return ProducerIdentification; 200 case BitstreamEntry::Record: 201 // The interesting case. 202 break; 203 } 204 205 // Read a record. 206 Record.clear(); 207 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 208 if (!MaybeBitCode) 209 return MaybeBitCode.takeError(); 210 switch (MaybeBitCode.get()) { 211 default: // Default behavior: reject 212 return error("Invalid value"); 213 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 214 convertToString(Record, 0, ProducerIdentification); 215 break; 216 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 217 unsigned epoch = (unsigned)Record[0]; 218 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 219 return error( 220 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 221 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 222 } 223 } 224 } 225 } 226 } 227 228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 229 // We expect a number of well-defined blocks, though we don't necessarily 230 // need to understand them all. 231 while (true) { 232 if (Stream.AtEndOfStream()) 233 return ""; 234 235 BitstreamEntry Entry; 236 if (Error E = Stream.advance().moveInto(Entry)) 237 return std::move(E); 238 239 switch (Entry.Kind) { 240 case BitstreamEntry::EndBlock: 241 case BitstreamEntry::Error: 242 return error("Malformed block"); 243 244 case BitstreamEntry::SubBlock: 245 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 246 return readIdentificationBlock(Stream); 247 248 // Ignore other sub-blocks. 249 if (Error Err = Stream.SkipBlock()) 250 return std::move(Err); 251 continue; 252 case BitstreamEntry::Record: 253 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 254 return std::move(E); 255 continue; 256 } 257 } 258 } 259 260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 261 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 262 return std::move(Err); 263 264 SmallVector<uint64_t, 64> Record; 265 // Read all the records for this module. 266 267 while (true) { 268 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 269 if (!MaybeEntry) 270 return MaybeEntry.takeError(); 271 BitstreamEntry Entry = MaybeEntry.get(); 272 273 switch (Entry.Kind) { 274 case BitstreamEntry::SubBlock: // Handled for us already. 275 case BitstreamEntry::Error: 276 return error("Malformed block"); 277 case BitstreamEntry::EndBlock: 278 return false; 279 case BitstreamEntry::Record: 280 // The interesting case. 281 break; 282 } 283 284 // Read a record. 285 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 286 if (!MaybeRecord) 287 return MaybeRecord.takeError(); 288 switch (MaybeRecord.get()) { 289 default: 290 break; // Default behavior, ignore unknown content. 291 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 292 std::string S; 293 if (convertToString(Record, 0, S)) 294 return error("Invalid section name record"); 295 // Check for the i386 and other (x86_64, ARM) conventions 296 if (S.find("__DATA,__objc_catlist") != std::string::npos || 297 S.find("__OBJC,__category") != std::string::npos) 298 return true; 299 break; 300 } 301 } 302 Record.clear(); 303 } 304 llvm_unreachable("Exit infinite loop"); 305 } 306 307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 308 // We expect a number of well-defined blocks, though we don't necessarily 309 // need to understand them all. 310 while (true) { 311 BitstreamEntry Entry; 312 if (Error E = Stream.advance().moveInto(Entry)) 313 return std::move(E); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 332 return std::move(E); 333 continue; 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid triple record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 Error readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid version record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 /// This represents a constant expression or constant aggregate using a custom 483 /// structure internal to the bitcode reader. Later, this structure will be 484 /// expanded by materializeValue() either into a constant expression/aggregate, 485 /// or into an instruction sequence at the point of use. This allows us to 486 /// upgrade bitcode using constant expressions even if this kind of constant 487 /// expression is no longer supported. 488 class BitcodeConstant final : public Value, 489 TrailingObjects<BitcodeConstant, unsigned> { 490 friend TrailingObjects; 491 492 // Value subclass ID: Pick largest possible value to avoid any clashes. 493 static constexpr uint8_t SubclassID = 255; 494 495 public: 496 // Opcodes used for non-expressions. This includes constant aggregates 497 // (struct, array, vector) that might need expansion, as well as non-leaf 498 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 499 // but still go through BitcodeConstant to avoid different uselist orders 500 // between the two cases. 501 static constexpr uint8_t ConstantStructOpcode = 255; 502 static constexpr uint8_t ConstantArrayOpcode = 254; 503 static constexpr uint8_t ConstantVectorOpcode = 253; 504 static constexpr uint8_t NoCFIOpcode = 252; 505 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 506 static constexpr uint8_t BlockAddressOpcode = 250; 507 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 508 509 // Separate struct to make passing different number of parameters to 510 // BitcodeConstant::create() more convenient. 511 struct ExtraInfo { 512 uint8_t Opcode; 513 uint8_t Flags; 514 unsigned Extra; 515 Type *SrcElemTy; 516 517 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 518 Type *SrcElemTy = nullptr) 519 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 520 }; 521 522 uint8_t Opcode; 523 uint8_t Flags; 524 unsigned NumOperands; 525 unsigned Extra; // GEP inrange index or blockaddress BB id. 526 Type *SrcElemTy; // GEP source element type. 527 528 private: 529 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 530 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 531 NumOperands(OpIDs.size()), Extra(Info.Extra), 532 SrcElemTy(Info.SrcElemTy) { 533 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 534 getTrailingObjects<unsigned>()); 535 } 536 537 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 538 539 public: 540 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 541 const ExtraInfo &Info, 542 ArrayRef<unsigned> OpIDs) { 543 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 544 alignof(BitcodeConstant)); 545 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 546 } 547 548 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 549 550 ArrayRef<unsigned> getOperandIDs() const { 551 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 552 } 553 554 std::optional<unsigned> getInRangeIndex() const { 555 assert(Opcode == Instruction::GetElementPtr); 556 if (Extra == (unsigned)-1) 557 return std::nullopt; 558 return Extra; 559 } 560 561 const char *getOpcodeName() const { 562 return Instruction::getOpcodeName(Opcode); 563 } 564 }; 565 566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 567 LLVMContext &Context; 568 Module *TheModule = nullptr; 569 // Next offset to start scanning for lazy parsing of function bodies. 570 uint64_t NextUnreadBit = 0; 571 // Last function offset found in the VST. 572 uint64_t LastFunctionBlockBit = 0; 573 bool SeenValueSymbolTable = false; 574 uint64_t VSTOffset = 0; 575 576 std::vector<std::string> SectionTable; 577 std::vector<std::string> GCTable; 578 579 std::vector<Type *> TypeList; 580 /// Track type IDs of contained types. Order is the same as the contained 581 /// types of a Type*. This is used during upgrades of typed pointer IR in 582 /// opaque pointer mode. 583 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 584 /// In some cases, we need to create a type ID for a type that was not 585 /// explicitly encoded in the bitcode, or we don't know about at the current 586 /// point. For example, a global may explicitly encode the value type ID, but 587 /// not have a type ID for the pointer to value type, for which we create a 588 /// virtual type ID instead. This map stores the new type ID that was created 589 /// for the given pair of Type and contained type ID. 590 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 591 DenseMap<Function *, unsigned> FunctionTypeIDs; 592 /// Allocator for BitcodeConstants. This should come before ValueList, 593 /// because the ValueList might hold ValueHandles to these constants, so 594 /// ValueList must be destroyed before Alloc. 595 BumpPtrAllocator Alloc; 596 BitcodeReaderValueList ValueList; 597 std::optional<MetadataLoader> MDLoader; 598 std::vector<Comdat *> ComdatList; 599 DenseSet<GlobalObject *> ImplicitComdatObjects; 600 SmallVector<Instruction *, 64> InstructionList; 601 602 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 603 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 604 605 struct FunctionOperandInfo { 606 Function *F; 607 unsigned PersonalityFn; 608 unsigned Prefix; 609 unsigned Prologue; 610 }; 611 std::vector<FunctionOperandInfo> FunctionOperands; 612 613 /// The set of attributes by index. Index zero in the file is for null, and 614 /// is thus not represented here. As such all indices are off by one. 615 std::vector<AttributeList> MAttributes; 616 617 /// The set of attribute groups. 618 std::map<unsigned, AttributeList> MAttributeGroups; 619 620 /// While parsing a function body, this is a list of the basic blocks for the 621 /// function. 622 std::vector<BasicBlock*> FunctionBBs; 623 624 // When reading the module header, this list is populated with functions that 625 // have bodies later in the file. 626 std::vector<Function*> FunctionsWithBodies; 627 628 // When intrinsic functions are encountered which require upgrading they are 629 // stored here with their replacement function. 630 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 631 UpdatedIntrinsicMap UpgradedIntrinsics; 632 633 // Several operations happen after the module header has been read, but 634 // before function bodies are processed. This keeps track of whether 635 // we've done this yet. 636 bool SeenFirstFunctionBody = false; 637 638 /// When function bodies are initially scanned, this map contains info about 639 /// where to find deferred function body in the stream. 640 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 641 642 /// When Metadata block is initially scanned when parsing the module, we may 643 /// choose to defer parsing of the metadata. This vector contains info about 644 /// which Metadata blocks are deferred. 645 std::vector<uint64_t> DeferredMetadataInfo; 646 647 /// These are basic blocks forward-referenced by block addresses. They are 648 /// inserted lazily into functions when they're loaded. The basic block ID is 649 /// its index into the vector. 650 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 651 std::deque<Function *> BasicBlockFwdRefQueue; 652 653 /// These are Functions that contain BlockAddresses which refer a different 654 /// Function. When parsing the different Function, queue Functions that refer 655 /// to the different Function. Those Functions must be materialized in order 656 /// to resolve their BlockAddress constants before the different Function 657 /// gets moved into another Module. 658 std::vector<Function *> BackwardRefFunctions; 659 660 /// Indicates that we are using a new encoding for instruction operands where 661 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 662 /// instruction number, for a more compact encoding. Some instruction 663 /// operands are not relative to the instruction ID: basic block numbers, and 664 /// types. Once the old style function blocks have been phased out, we would 665 /// not need this flag. 666 bool UseRelativeIDs = false; 667 668 /// True if all functions will be materialized, negating the need to process 669 /// (e.g.) blockaddress forward references. 670 bool WillMaterializeAllForwardRefs = false; 671 672 bool StripDebugInfo = false; 673 TBAAVerifier TBAAVerifyHelper; 674 675 std::vector<std::string> BundleTags; 676 SmallVector<SyncScope::ID, 8> SSIDs; 677 678 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 679 680 public: 681 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 682 StringRef ProducerIdentification, LLVMContext &Context); 683 684 Error materializeForwardReferencedFunctions(); 685 686 Error materialize(GlobalValue *GV) override; 687 Error materializeModule() override; 688 std::vector<StructType *> getIdentifiedStructTypes() const override; 689 690 /// Main interface to parsing a bitcode buffer. 691 /// \returns true if an error occurred. 692 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 693 bool IsImporting, ParserCallbacks Callbacks = {}); 694 695 static uint64_t decodeSignRotatedValue(uint64_t V); 696 697 /// Materialize any deferred Metadata block. 698 Error materializeMetadata() override; 699 700 void setStripDebugInfo() override; 701 702 private: 703 std::vector<StructType *> IdentifiedStructTypes; 704 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 705 StructType *createIdentifiedStructType(LLVMContext &Context); 706 707 static constexpr unsigned InvalidTypeID = ~0u; 708 709 Type *getTypeByID(unsigned ID); 710 Type *getPtrElementTypeByID(unsigned ID); 711 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 712 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 713 714 void callValueTypeCallback(Value *F, unsigned TypeID); 715 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 716 Expected<Constant *> getValueForInitializer(unsigned ID); 717 718 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 719 BasicBlock *ConstExprInsertBB) { 720 if (Ty && Ty->isMetadataTy()) 721 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 722 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 723 } 724 725 Metadata *getFnMetadataByID(unsigned ID) { 726 return MDLoader->getMetadataFwdRefOrLoad(ID); 727 } 728 729 BasicBlock *getBasicBlock(unsigned ID) const { 730 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 731 return FunctionBBs[ID]; 732 } 733 734 AttributeList getAttributes(unsigned i) const { 735 if (i-1 < MAttributes.size()) 736 return MAttributes[i-1]; 737 return AttributeList(); 738 } 739 740 /// Read a value/type pair out of the specified record from slot 'Slot'. 741 /// Increment Slot past the number of slots used in the record. Return true on 742 /// failure. 743 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 744 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Slot == Record.size()) return true; 747 unsigned ValNo = (unsigned)Record[Slot++]; 748 // Adjust the ValNo, if it was encoded relative to the InstNum. 749 if (UseRelativeIDs) 750 ValNo = InstNum - ValNo; 751 if (ValNo < InstNum) { 752 // If this is not a forward reference, just return the value we already 753 // have. 754 TypeID = ValueList.getTypeID(ValNo); 755 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 756 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 757 "Incorrect type ID stored for value"); 758 return ResVal == nullptr; 759 } 760 if (Slot == Record.size()) 761 return true; 762 763 TypeID = (unsigned)Record[Slot++]; 764 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 765 ConstExprInsertBB); 766 return ResVal == nullptr; 767 } 768 769 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 770 /// past the number of slots used by the value in the record. Return true if 771 /// there is an error. 772 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 773 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 774 BasicBlock *ConstExprInsertBB) { 775 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 776 return true; 777 // All values currently take a single record slot. 778 ++Slot; 779 return false; 780 } 781 782 /// Like popValue, but does not increment the Slot number. 783 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 784 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 785 BasicBlock *ConstExprInsertBB) { 786 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 787 return ResVal == nullptr; 788 } 789 790 /// Version of getValue that returns ResVal directly, or 0 if there is an 791 /// error. 792 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 793 unsigned InstNum, Type *Ty, unsigned TyID, 794 BasicBlock *ConstExprInsertBB) { 795 if (Slot == Record.size()) return nullptr; 796 unsigned ValNo = (unsigned)Record[Slot]; 797 // Adjust the ValNo, if it was encoded relative to the InstNum. 798 if (UseRelativeIDs) 799 ValNo = InstNum - ValNo; 800 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 801 } 802 803 /// Like getValue, but decodes signed VBRs. 804 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 805 unsigned InstNum, Type *Ty, unsigned TyID, 806 BasicBlock *ConstExprInsertBB) { 807 if (Slot == Record.size()) return nullptr; 808 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 809 // Adjust the ValNo, if it was encoded relative to the InstNum. 810 if (UseRelativeIDs) 811 ValNo = InstNum - ValNo; 812 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 813 } 814 815 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 816 /// corresponding argument's pointee type. Also upgrades intrinsics that now 817 /// require an elementtype attribute. 818 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 819 820 /// Converts alignment exponent (i.e. power of two (or zero)) to the 821 /// corresponding alignment to use. If alignment is too large, returns 822 /// a corresponding error code. 823 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 824 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 825 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 826 ParserCallbacks Callbacks = {}); 827 828 Error parseComdatRecord(ArrayRef<uint64_t> Record); 829 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 830 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 831 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 832 ArrayRef<uint64_t> Record); 833 834 Error parseAttributeBlock(); 835 Error parseAttributeGroupBlock(); 836 Error parseTypeTable(); 837 Error parseTypeTableBody(); 838 Error parseOperandBundleTags(); 839 Error parseSyncScopeNames(); 840 841 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 842 unsigned NameIndex, Triple &TT); 843 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 844 ArrayRef<uint64_t> Record); 845 Error parseValueSymbolTable(uint64_t Offset = 0); 846 Error parseGlobalValueSymbolTable(); 847 Error parseConstants(); 848 Error rememberAndSkipFunctionBodies(); 849 Error rememberAndSkipFunctionBody(); 850 /// Save the positions of the Metadata blocks and skip parsing the blocks. 851 Error rememberAndSkipMetadata(); 852 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 853 Error parseFunctionBody(Function *F); 854 Error globalCleanup(); 855 Error resolveGlobalAndIndirectSymbolInits(); 856 Error parseUseLists(); 857 Error findFunctionInStream( 858 Function *F, 859 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 860 861 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 862 }; 863 864 /// Class to manage reading and parsing function summary index bitcode 865 /// files/sections. 866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 867 /// The module index built during parsing. 868 ModuleSummaryIndex &TheIndex; 869 870 /// Indicates whether we have encountered a global value summary section 871 /// yet during parsing. 872 bool SeenGlobalValSummary = false; 873 874 /// Indicates whether we have already parsed the VST, used for error checking. 875 bool SeenValueSymbolTable = false; 876 877 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 878 /// Used to enable on-demand parsing of the VST. 879 uint64_t VSTOffset = 0; 880 881 // Map to save ValueId to ValueInfo association that was recorded in the 882 // ValueSymbolTable. It is used after the VST is parsed to convert 883 // call graph edges read from the function summary from referencing 884 // callees by their ValueId to using the ValueInfo instead, which is how 885 // they are recorded in the summary index being built. 886 // We save a GUID which refers to the same global as the ValueInfo, but 887 // ignoring the linkage, i.e. for values other than local linkage they are 888 // identical (this is the second tuple member). 889 // The third tuple member is the real GUID of the ValueInfo. 890 DenseMap<unsigned, 891 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 892 ValueIdToValueInfoMap; 893 894 /// Map populated during module path string table parsing, from the 895 /// module ID to a string reference owned by the index's module 896 /// path string table, used to correlate with combined index 897 /// summary records. 898 DenseMap<uint64_t, StringRef> ModuleIdMap; 899 900 /// Original source file name recorded in a bitcode record. 901 std::string SourceFileName; 902 903 /// The string identifier given to this module by the client, normally the 904 /// path to the bitcode file. 905 StringRef ModulePath; 906 907 /// Callback to ask whether a symbol is the prevailing copy when invoked 908 /// during combined index building. 909 std::function<bool(GlobalValue::GUID)> IsPrevailing; 910 911 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 912 /// ids from the lists in the callsite and alloc entries to the index. 913 std::vector<uint64_t> StackIds; 914 915 public: 916 ModuleSummaryIndexBitcodeReader( 917 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 918 StringRef ModulePath, 919 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 920 921 Error parseModule(); 922 923 private: 924 void setValueGUID(uint64_t ValueID, StringRef ValueName, 925 GlobalValue::LinkageTypes Linkage, 926 StringRef SourceFileName); 927 Error parseValueSymbolTable( 928 uint64_t Offset, 929 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 930 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 931 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 932 bool IsOldProfileFormat, 933 bool HasProfile, 934 bool HasRelBF); 935 Error parseEntireSummary(unsigned ID); 936 Error parseModuleStringTable(); 937 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 938 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 939 TypeIdCompatibleVtableInfo &TypeId); 940 std::vector<FunctionSummary::ParamAccess> 941 parseParamAccesses(ArrayRef<uint64_t> Record); 942 943 template <bool AllowNullValueInfo = false> 944 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 945 getValueInfoFromValueId(unsigned ValueId); 946 947 void addThisModule(); 948 ModuleSummaryIndex::ModuleInfo *getThisModule(); 949 }; 950 951 } // end anonymous namespace 952 953 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 954 Error Err) { 955 if (Err) { 956 std::error_code EC; 957 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 958 EC = EIB.convertToErrorCode(); 959 Ctx.emitError(EIB.message()); 960 }); 961 return EC; 962 } 963 return std::error_code(); 964 } 965 966 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 967 StringRef ProducerIdentification, 968 LLVMContext &Context) 969 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 970 ValueList(this->Stream.SizeInBytes(), 971 [this](unsigned ValID, BasicBlock *InsertBB) { 972 return materializeValue(ValID, InsertBB); 973 }) { 974 this->ProducerIdentification = std::string(ProducerIdentification); 975 } 976 977 Error BitcodeReader::materializeForwardReferencedFunctions() { 978 if (WillMaterializeAllForwardRefs) 979 return Error::success(); 980 981 // Prevent recursion. 982 WillMaterializeAllForwardRefs = true; 983 984 while (!BasicBlockFwdRefQueue.empty()) { 985 Function *F = BasicBlockFwdRefQueue.front(); 986 BasicBlockFwdRefQueue.pop_front(); 987 assert(F && "Expected valid function"); 988 if (!BasicBlockFwdRefs.count(F)) 989 // Already materialized. 990 continue; 991 992 // Check for a function that isn't materializable to prevent an infinite 993 // loop. When parsing a blockaddress stored in a global variable, there 994 // isn't a trivial way to check if a function will have a body without a 995 // linear search through FunctionsWithBodies, so just check it here. 996 if (!F->isMaterializable()) 997 return error("Never resolved function from blockaddress"); 998 999 // Try to materialize F. 1000 if (Error Err = materialize(F)) 1001 return Err; 1002 } 1003 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1004 1005 for (Function *F : BackwardRefFunctions) 1006 if (Error Err = materialize(F)) 1007 return Err; 1008 BackwardRefFunctions.clear(); 1009 1010 // Reset state. 1011 WillMaterializeAllForwardRefs = false; 1012 return Error::success(); 1013 } 1014 1015 //===----------------------------------------------------------------------===// 1016 // Helper functions to implement forward reference resolution, etc. 1017 //===----------------------------------------------------------------------===// 1018 1019 static bool hasImplicitComdat(size_t Val) { 1020 switch (Val) { 1021 default: 1022 return false; 1023 case 1: // Old WeakAnyLinkage 1024 case 4: // Old LinkOnceAnyLinkage 1025 case 10: // Old WeakODRLinkage 1026 case 11: // Old LinkOnceODRLinkage 1027 return true; 1028 } 1029 } 1030 1031 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1032 switch (Val) { 1033 default: // Map unknown/new linkages to external 1034 case 0: 1035 return GlobalValue::ExternalLinkage; 1036 case 2: 1037 return GlobalValue::AppendingLinkage; 1038 case 3: 1039 return GlobalValue::InternalLinkage; 1040 case 5: 1041 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1042 case 6: 1043 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1044 case 7: 1045 return GlobalValue::ExternalWeakLinkage; 1046 case 8: 1047 return GlobalValue::CommonLinkage; 1048 case 9: 1049 return GlobalValue::PrivateLinkage; 1050 case 12: 1051 return GlobalValue::AvailableExternallyLinkage; 1052 case 13: 1053 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1054 case 14: 1055 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1056 case 15: 1057 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1058 case 1: // Old value with implicit comdat. 1059 case 16: 1060 return GlobalValue::WeakAnyLinkage; 1061 case 10: // Old value with implicit comdat. 1062 case 17: 1063 return GlobalValue::WeakODRLinkage; 1064 case 4: // Old value with implicit comdat. 1065 case 18: 1066 return GlobalValue::LinkOnceAnyLinkage; 1067 case 11: // Old value with implicit comdat. 1068 case 19: 1069 return GlobalValue::LinkOnceODRLinkage; 1070 } 1071 } 1072 1073 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1074 FunctionSummary::FFlags Flags; 1075 Flags.ReadNone = RawFlags & 0x1; 1076 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1077 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1078 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1079 Flags.NoInline = (RawFlags >> 4) & 0x1; 1080 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1081 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1082 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1083 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1084 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1085 return Flags; 1086 } 1087 1088 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1089 // 1090 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1091 // visibility: [8, 10). 1092 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1093 uint64_t Version) { 1094 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1095 // like getDecodedLinkage() above. Any future change to the linkage enum and 1096 // to getDecodedLinkage() will need to be taken into account here as above. 1097 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1098 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1099 RawFlags = RawFlags >> 4; 1100 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1101 // The Live flag wasn't introduced until version 3. For dead stripping 1102 // to work correctly on earlier versions, we must conservatively treat all 1103 // values as live. 1104 bool Live = (RawFlags & 0x2) || Version < 3; 1105 bool Local = (RawFlags & 0x4); 1106 bool AutoHide = (RawFlags & 0x8); 1107 1108 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1109 Live, Local, AutoHide); 1110 } 1111 1112 // Decode the flags for GlobalVariable in the summary 1113 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1114 return GlobalVarSummary::GVarFlags( 1115 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1116 (RawFlags & 0x4) ? true : false, 1117 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1118 } 1119 1120 static std::pair<CalleeInfo::HotnessType, bool> 1121 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1122 CalleeInfo::HotnessType Hotness = 1123 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1124 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1125 return {Hotness, HasTailCall}; 1126 } 1127 1128 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1129 bool &HasTailCall) { 1130 static constexpr uint64_t RelBlockFreqMask = 1131 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1132 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1133 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1134 } 1135 1136 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1137 switch (Val) { 1138 default: // Map unknown visibilities to default. 1139 case 0: return GlobalValue::DefaultVisibility; 1140 case 1: return GlobalValue::HiddenVisibility; 1141 case 2: return GlobalValue::ProtectedVisibility; 1142 } 1143 } 1144 1145 static GlobalValue::DLLStorageClassTypes 1146 getDecodedDLLStorageClass(unsigned Val) { 1147 switch (Val) { 1148 default: // Map unknown values to default. 1149 case 0: return GlobalValue::DefaultStorageClass; 1150 case 1: return GlobalValue::DLLImportStorageClass; 1151 case 2: return GlobalValue::DLLExportStorageClass; 1152 } 1153 } 1154 1155 static bool getDecodedDSOLocal(unsigned Val) { 1156 switch(Val) { 1157 default: // Map unknown values to preemptable. 1158 case 0: return false; 1159 case 1: return true; 1160 } 1161 } 1162 1163 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1164 switch (Val) { 1165 case 1: 1166 return CodeModel::Tiny; 1167 case 2: 1168 return CodeModel::Small; 1169 case 3: 1170 return CodeModel::Kernel; 1171 case 4: 1172 return CodeModel::Medium; 1173 case 5: 1174 return CodeModel::Large; 1175 } 1176 1177 return {}; 1178 } 1179 1180 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1181 switch (Val) { 1182 case 0: return GlobalVariable::NotThreadLocal; 1183 default: // Map unknown non-zero value to general dynamic. 1184 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1185 case 2: return GlobalVariable::LocalDynamicTLSModel; 1186 case 3: return GlobalVariable::InitialExecTLSModel; 1187 case 4: return GlobalVariable::LocalExecTLSModel; 1188 } 1189 } 1190 1191 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1192 switch (Val) { 1193 default: // Map unknown to UnnamedAddr::None. 1194 case 0: return GlobalVariable::UnnamedAddr::None; 1195 case 1: return GlobalVariable::UnnamedAddr::Global; 1196 case 2: return GlobalVariable::UnnamedAddr::Local; 1197 } 1198 } 1199 1200 static int getDecodedCastOpcode(unsigned Val) { 1201 switch (Val) { 1202 default: return -1; 1203 case bitc::CAST_TRUNC : return Instruction::Trunc; 1204 case bitc::CAST_ZEXT : return Instruction::ZExt; 1205 case bitc::CAST_SEXT : return Instruction::SExt; 1206 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1207 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1208 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1209 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1210 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1211 case bitc::CAST_FPEXT : return Instruction::FPExt; 1212 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1213 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1214 case bitc::CAST_BITCAST : return Instruction::BitCast; 1215 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1216 } 1217 } 1218 1219 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1220 bool IsFP = Ty->isFPOrFPVectorTy(); 1221 // UnOps are only valid for int/fp or vector of int/fp types 1222 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1223 return -1; 1224 1225 switch (Val) { 1226 default: 1227 return -1; 1228 case bitc::UNOP_FNEG: 1229 return IsFP ? Instruction::FNeg : -1; 1230 } 1231 } 1232 1233 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1234 bool IsFP = Ty->isFPOrFPVectorTy(); 1235 // BinOps are only valid for int/fp or vector of int/fp types 1236 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1237 return -1; 1238 1239 switch (Val) { 1240 default: 1241 return -1; 1242 case bitc::BINOP_ADD: 1243 return IsFP ? Instruction::FAdd : Instruction::Add; 1244 case bitc::BINOP_SUB: 1245 return IsFP ? Instruction::FSub : Instruction::Sub; 1246 case bitc::BINOP_MUL: 1247 return IsFP ? Instruction::FMul : Instruction::Mul; 1248 case bitc::BINOP_UDIV: 1249 return IsFP ? -1 : Instruction::UDiv; 1250 case bitc::BINOP_SDIV: 1251 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1252 case bitc::BINOP_UREM: 1253 return IsFP ? -1 : Instruction::URem; 1254 case bitc::BINOP_SREM: 1255 return IsFP ? Instruction::FRem : Instruction::SRem; 1256 case bitc::BINOP_SHL: 1257 return IsFP ? -1 : Instruction::Shl; 1258 case bitc::BINOP_LSHR: 1259 return IsFP ? -1 : Instruction::LShr; 1260 case bitc::BINOP_ASHR: 1261 return IsFP ? -1 : Instruction::AShr; 1262 case bitc::BINOP_AND: 1263 return IsFP ? -1 : Instruction::And; 1264 case bitc::BINOP_OR: 1265 return IsFP ? -1 : Instruction::Or; 1266 case bitc::BINOP_XOR: 1267 return IsFP ? -1 : Instruction::Xor; 1268 } 1269 } 1270 1271 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1272 switch (Val) { 1273 default: return AtomicRMWInst::BAD_BINOP; 1274 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1275 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1276 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1277 case bitc::RMW_AND: return AtomicRMWInst::And; 1278 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1279 case bitc::RMW_OR: return AtomicRMWInst::Or; 1280 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1281 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1282 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1283 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1284 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1285 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1286 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1287 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1288 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1289 case bitc::RMW_UINC_WRAP: 1290 return AtomicRMWInst::UIncWrap; 1291 case bitc::RMW_UDEC_WRAP: 1292 return AtomicRMWInst::UDecWrap; 1293 } 1294 } 1295 1296 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1297 switch (Val) { 1298 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1299 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1300 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1301 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1302 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1303 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1304 default: // Map unknown orderings to sequentially-consistent. 1305 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1306 } 1307 } 1308 1309 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1310 switch (Val) { 1311 default: // Map unknown selection kinds to any. 1312 case bitc::COMDAT_SELECTION_KIND_ANY: 1313 return Comdat::Any; 1314 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1315 return Comdat::ExactMatch; 1316 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1317 return Comdat::Largest; 1318 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1319 return Comdat::NoDeduplicate; 1320 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1321 return Comdat::SameSize; 1322 } 1323 } 1324 1325 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1326 FastMathFlags FMF; 1327 if (0 != (Val & bitc::UnsafeAlgebra)) 1328 FMF.setFast(); 1329 if (0 != (Val & bitc::AllowReassoc)) 1330 FMF.setAllowReassoc(); 1331 if (0 != (Val & bitc::NoNaNs)) 1332 FMF.setNoNaNs(); 1333 if (0 != (Val & bitc::NoInfs)) 1334 FMF.setNoInfs(); 1335 if (0 != (Val & bitc::NoSignedZeros)) 1336 FMF.setNoSignedZeros(); 1337 if (0 != (Val & bitc::AllowReciprocal)) 1338 FMF.setAllowReciprocal(); 1339 if (0 != (Val & bitc::AllowContract)) 1340 FMF.setAllowContract(true); 1341 if (0 != (Val & bitc::ApproxFunc)) 1342 FMF.setApproxFunc(); 1343 return FMF; 1344 } 1345 1346 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1347 // A GlobalValue with local linkage cannot have a DLL storage class. 1348 if (GV->hasLocalLinkage()) 1349 return; 1350 switch (Val) { 1351 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1352 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1353 } 1354 } 1355 1356 Type *BitcodeReader::getTypeByID(unsigned ID) { 1357 // The type table size is always specified correctly. 1358 if (ID >= TypeList.size()) 1359 return nullptr; 1360 1361 if (Type *Ty = TypeList[ID]) 1362 return Ty; 1363 1364 // If we have a forward reference, the only possible case is when it is to a 1365 // named struct. Just create a placeholder for now. 1366 return TypeList[ID] = createIdentifiedStructType(Context); 1367 } 1368 1369 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1370 auto It = ContainedTypeIDs.find(ID); 1371 if (It == ContainedTypeIDs.end()) 1372 return InvalidTypeID; 1373 1374 if (Idx >= It->second.size()) 1375 return InvalidTypeID; 1376 1377 return It->second[Idx]; 1378 } 1379 1380 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1381 if (ID >= TypeList.size()) 1382 return nullptr; 1383 1384 Type *Ty = TypeList[ID]; 1385 if (!Ty->isPointerTy()) 1386 return nullptr; 1387 1388 return getTypeByID(getContainedTypeID(ID, 0)); 1389 } 1390 1391 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1392 ArrayRef<unsigned> ChildTypeIDs) { 1393 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1394 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1395 auto It = VirtualTypeIDs.find(CacheKey); 1396 if (It != VirtualTypeIDs.end()) { 1397 // The cmpxchg return value is the only place we need more than one 1398 // contained type ID, however the second one will always be the same (i1), 1399 // so we don't need to include it in the cache key. This asserts that the 1400 // contained types are indeed as expected and there are no collisions. 1401 assert((ChildTypeIDs.empty() || 1402 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1403 "Incorrect cached contained type IDs"); 1404 return It->second; 1405 } 1406 1407 unsigned TypeID = TypeList.size(); 1408 TypeList.push_back(Ty); 1409 if (!ChildTypeIDs.empty()) 1410 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1411 VirtualTypeIDs.insert({CacheKey, TypeID}); 1412 return TypeID; 1413 } 1414 1415 static bool isConstExprSupported(const BitcodeConstant *BC) { 1416 uint8_t Opcode = BC->Opcode; 1417 1418 // These are not real constant expressions, always consider them supported. 1419 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1420 return true; 1421 1422 // If -expand-constant-exprs is set, we want to consider all expressions 1423 // as unsupported. 1424 if (ExpandConstantExprs) 1425 return false; 1426 1427 if (Instruction::isBinaryOp(Opcode)) 1428 return ConstantExpr::isSupportedBinOp(Opcode); 1429 1430 if (Instruction::isCast(Opcode)) 1431 return ConstantExpr::isSupportedCastOp(Opcode); 1432 1433 if (Opcode == Instruction::GetElementPtr) 1434 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1435 1436 switch (Opcode) { 1437 case Instruction::FNeg: 1438 case Instruction::Select: 1439 return false; 1440 default: 1441 return true; 1442 } 1443 } 1444 1445 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1446 BasicBlock *InsertBB) { 1447 // Quickly handle the case where there is no BitcodeConstant to resolve. 1448 if (StartValID < ValueList.size() && ValueList[StartValID] && 1449 !isa<BitcodeConstant>(ValueList[StartValID])) 1450 return ValueList[StartValID]; 1451 1452 SmallDenseMap<unsigned, Value *> MaterializedValues; 1453 SmallVector<unsigned> Worklist; 1454 Worklist.push_back(StartValID); 1455 while (!Worklist.empty()) { 1456 unsigned ValID = Worklist.back(); 1457 if (MaterializedValues.count(ValID)) { 1458 // Duplicate expression that was already handled. 1459 Worklist.pop_back(); 1460 continue; 1461 } 1462 1463 if (ValID >= ValueList.size() || !ValueList[ValID]) 1464 return error("Invalid value ID"); 1465 1466 Value *V = ValueList[ValID]; 1467 auto *BC = dyn_cast<BitcodeConstant>(V); 1468 if (!BC) { 1469 MaterializedValues.insert({ValID, V}); 1470 Worklist.pop_back(); 1471 continue; 1472 } 1473 1474 // Iterate in reverse, so values will get popped from the worklist in 1475 // expected order. 1476 SmallVector<Value *> Ops; 1477 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1478 auto It = MaterializedValues.find(OpID); 1479 if (It != MaterializedValues.end()) 1480 Ops.push_back(It->second); 1481 else 1482 Worklist.push_back(OpID); 1483 } 1484 1485 // Some expressions have not been resolved yet, handle them first and then 1486 // revisit this one. 1487 if (Ops.size() != BC->getOperandIDs().size()) 1488 continue; 1489 std::reverse(Ops.begin(), Ops.end()); 1490 1491 SmallVector<Constant *> ConstOps; 1492 for (Value *Op : Ops) 1493 if (auto *C = dyn_cast<Constant>(Op)) 1494 ConstOps.push_back(C); 1495 1496 // Materialize as constant expression if possible. 1497 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1498 Constant *C; 1499 if (Instruction::isCast(BC->Opcode)) { 1500 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1501 if (!C) 1502 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1503 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1504 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1505 } else { 1506 switch (BC->Opcode) { 1507 case BitcodeConstant::NoCFIOpcode: { 1508 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1509 if (!GV) 1510 return error("no_cfi operand must be GlobalValue"); 1511 C = NoCFIValue::get(GV); 1512 break; 1513 } 1514 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1515 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1516 if (!GV) 1517 return error("dso_local operand must be GlobalValue"); 1518 C = DSOLocalEquivalent::get(GV); 1519 break; 1520 } 1521 case BitcodeConstant::BlockAddressOpcode: { 1522 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1523 if (!Fn) 1524 return error("blockaddress operand must be a function"); 1525 1526 // If the function is already parsed we can insert the block address 1527 // right away. 1528 BasicBlock *BB; 1529 unsigned BBID = BC->Extra; 1530 if (!BBID) 1531 // Invalid reference to entry block. 1532 return error("Invalid ID"); 1533 if (!Fn->empty()) { 1534 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1535 for (size_t I = 0, E = BBID; I != E; ++I) { 1536 if (BBI == BBE) 1537 return error("Invalid ID"); 1538 ++BBI; 1539 } 1540 BB = &*BBI; 1541 } else { 1542 // Otherwise insert a placeholder and remember it so it can be 1543 // inserted when the function is parsed. 1544 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1545 if (FwdBBs.empty()) 1546 BasicBlockFwdRefQueue.push_back(Fn); 1547 if (FwdBBs.size() < BBID + 1) 1548 FwdBBs.resize(BBID + 1); 1549 if (!FwdBBs[BBID]) 1550 FwdBBs[BBID] = BasicBlock::Create(Context); 1551 BB = FwdBBs[BBID]; 1552 } 1553 C = BlockAddress::get(Fn, BB); 1554 break; 1555 } 1556 case BitcodeConstant::ConstantStructOpcode: 1557 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1558 break; 1559 case BitcodeConstant::ConstantArrayOpcode: 1560 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1561 break; 1562 case BitcodeConstant::ConstantVectorOpcode: 1563 C = ConstantVector::get(ConstOps); 1564 break; 1565 case Instruction::ICmp: 1566 case Instruction::FCmp: 1567 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1568 break; 1569 case Instruction::GetElementPtr: 1570 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1571 ArrayRef(ConstOps).drop_front(), 1572 BC->Flags, BC->getInRangeIndex()); 1573 break; 1574 case Instruction::ExtractElement: 1575 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1576 break; 1577 case Instruction::InsertElement: 1578 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1579 ConstOps[2]); 1580 break; 1581 case Instruction::ShuffleVector: { 1582 SmallVector<int, 16> Mask; 1583 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1584 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1585 break; 1586 } 1587 default: 1588 llvm_unreachable("Unhandled bitcode constant"); 1589 } 1590 } 1591 1592 // Cache resolved constant. 1593 ValueList.replaceValueWithoutRAUW(ValID, C); 1594 MaterializedValues.insert({ValID, C}); 1595 Worklist.pop_back(); 1596 continue; 1597 } 1598 1599 if (!InsertBB) 1600 return error(Twine("Value referenced by initializer is an unsupported " 1601 "constant expression of type ") + 1602 BC->getOpcodeName()); 1603 1604 // Materialize as instructions if necessary. 1605 Instruction *I; 1606 if (Instruction::isCast(BC->Opcode)) { 1607 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1608 BC->getType(), "constexpr", InsertBB); 1609 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1610 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1611 "constexpr", InsertBB); 1612 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1613 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1614 Ops[1], "constexpr", InsertBB); 1615 if (isa<OverflowingBinaryOperator>(I)) { 1616 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1617 I->setHasNoSignedWrap(); 1618 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1619 I->setHasNoUnsignedWrap(); 1620 } 1621 if (isa<PossiblyExactOperator>(I) && 1622 (BC->Flags & PossiblyExactOperator::IsExact)) 1623 I->setIsExact(); 1624 } else { 1625 switch (BC->Opcode) { 1626 case BitcodeConstant::ConstantVectorOpcode: { 1627 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1628 Value *V = PoisonValue::get(BC->getType()); 1629 for (auto Pair : enumerate(Ops)) { 1630 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1631 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1632 InsertBB); 1633 } 1634 I = cast<Instruction>(V); 1635 break; 1636 } 1637 case BitcodeConstant::ConstantStructOpcode: 1638 case BitcodeConstant::ConstantArrayOpcode: { 1639 Value *V = PoisonValue::get(BC->getType()); 1640 for (auto Pair : enumerate(Ops)) 1641 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1642 "constexpr.ins", InsertBB); 1643 I = cast<Instruction>(V); 1644 break; 1645 } 1646 case Instruction::ICmp: 1647 case Instruction::FCmp: 1648 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1649 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1650 "constexpr", InsertBB); 1651 break; 1652 case Instruction::GetElementPtr: 1653 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1654 ArrayRef(Ops).drop_front(), "constexpr", 1655 InsertBB); 1656 if (BC->Flags) 1657 cast<GetElementPtrInst>(I)->setIsInBounds(); 1658 break; 1659 case Instruction::Select: 1660 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1661 break; 1662 case Instruction::ExtractElement: 1663 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1664 break; 1665 case Instruction::InsertElement: 1666 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1667 InsertBB); 1668 break; 1669 case Instruction::ShuffleVector: 1670 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1671 InsertBB); 1672 break; 1673 default: 1674 llvm_unreachable("Unhandled bitcode constant"); 1675 } 1676 } 1677 1678 MaterializedValues.insert({ValID, I}); 1679 Worklist.pop_back(); 1680 } 1681 1682 return MaterializedValues[StartValID]; 1683 } 1684 1685 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1686 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1687 if (!MaybeV) 1688 return MaybeV.takeError(); 1689 1690 // Result must be Constant if InsertBB is nullptr. 1691 return cast<Constant>(MaybeV.get()); 1692 } 1693 1694 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1695 StringRef Name) { 1696 auto *Ret = StructType::create(Context, Name); 1697 IdentifiedStructTypes.push_back(Ret); 1698 return Ret; 1699 } 1700 1701 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1702 auto *Ret = StructType::create(Context); 1703 IdentifiedStructTypes.push_back(Ret); 1704 return Ret; 1705 } 1706 1707 //===----------------------------------------------------------------------===// 1708 // Functions for parsing blocks from the bitcode file 1709 //===----------------------------------------------------------------------===// 1710 1711 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1712 switch (Val) { 1713 case Attribute::EndAttrKinds: 1714 case Attribute::EmptyKey: 1715 case Attribute::TombstoneKey: 1716 llvm_unreachable("Synthetic enumerators which should never get here"); 1717 1718 case Attribute::None: return 0; 1719 case Attribute::ZExt: return 1 << 0; 1720 case Attribute::SExt: return 1 << 1; 1721 case Attribute::NoReturn: return 1 << 2; 1722 case Attribute::InReg: return 1 << 3; 1723 case Attribute::StructRet: return 1 << 4; 1724 case Attribute::NoUnwind: return 1 << 5; 1725 case Attribute::NoAlias: return 1 << 6; 1726 case Attribute::ByVal: return 1 << 7; 1727 case Attribute::Nest: return 1 << 8; 1728 case Attribute::ReadNone: return 1 << 9; 1729 case Attribute::ReadOnly: return 1 << 10; 1730 case Attribute::NoInline: return 1 << 11; 1731 case Attribute::AlwaysInline: return 1 << 12; 1732 case Attribute::OptimizeForSize: return 1 << 13; 1733 case Attribute::StackProtect: return 1 << 14; 1734 case Attribute::StackProtectReq: return 1 << 15; 1735 case Attribute::Alignment: return 31 << 16; 1736 case Attribute::NoCapture: return 1 << 21; 1737 case Attribute::NoRedZone: return 1 << 22; 1738 case Attribute::NoImplicitFloat: return 1 << 23; 1739 case Attribute::Naked: return 1 << 24; 1740 case Attribute::InlineHint: return 1 << 25; 1741 case Attribute::StackAlignment: return 7 << 26; 1742 case Attribute::ReturnsTwice: return 1 << 29; 1743 case Attribute::UWTable: return 1 << 30; 1744 case Attribute::NonLazyBind: return 1U << 31; 1745 case Attribute::SanitizeAddress: return 1ULL << 32; 1746 case Attribute::MinSize: return 1ULL << 33; 1747 case Attribute::NoDuplicate: return 1ULL << 34; 1748 case Attribute::StackProtectStrong: return 1ULL << 35; 1749 case Attribute::SanitizeThread: return 1ULL << 36; 1750 case Attribute::SanitizeMemory: return 1ULL << 37; 1751 case Attribute::NoBuiltin: return 1ULL << 38; 1752 case Attribute::Returned: return 1ULL << 39; 1753 case Attribute::Cold: return 1ULL << 40; 1754 case Attribute::Builtin: return 1ULL << 41; 1755 case Attribute::OptimizeNone: return 1ULL << 42; 1756 case Attribute::InAlloca: return 1ULL << 43; 1757 case Attribute::NonNull: return 1ULL << 44; 1758 case Attribute::JumpTable: return 1ULL << 45; 1759 case Attribute::Convergent: return 1ULL << 46; 1760 case Attribute::SafeStack: return 1ULL << 47; 1761 case Attribute::NoRecurse: return 1ULL << 48; 1762 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1763 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1764 case Attribute::SwiftSelf: return 1ULL << 51; 1765 case Attribute::SwiftError: return 1ULL << 52; 1766 case Attribute::WriteOnly: return 1ULL << 53; 1767 case Attribute::Speculatable: return 1ULL << 54; 1768 case Attribute::StrictFP: return 1ULL << 55; 1769 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1770 case Attribute::NoCfCheck: return 1ULL << 57; 1771 case Attribute::OptForFuzzing: return 1ULL << 58; 1772 case Attribute::ShadowCallStack: return 1ULL << 59; 1773 case Attribute::SpeculativeLoadHardening: 1774 return 1ULL << 60; 1775 case Attribute::ImmArg: 1776 return 1ULL << 61; 1777 case Attribute::WillReturn: 1778 return 1ULL << 62; 1779 case Attribute::NoFree: 1780 return 1ULL << 63; 1781 default: 1782 // Other attributes are not supported in the raw format, 1783 // as we ran out of space. 1784 return 0; 1785 } 1786 llvm_unreachable("Unsupported attribute type"); 1787 } 1788 1789 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1790 if (!Val) return; 1791 1792 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1793 I = Attribute::AttrKind(I + 1)) { 1794 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1795 if (I == Attribute::Alignment) 1796 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1797 else if (I == Attribute::StackAlignment) 1798 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1799 else if (Attribute::isTypeAttrKind(I)) 1800 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1801 else 1802 B.addAttribute(I); 1803 } 1804 } 1805 } 1806 1807 /// This fills an AttrBuilder object with the LLVM attributes that have 1808 /// been decoded from the given integer. This function must stay in sync with 1809 /// 'encodeLLVMAttributesForBitcode'. 1810 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1811 uint64_t EncodedAttrs, 1812 uint64_t AttrIdx) { 1813 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1814 // the bits above 31 down by 11 bits. 1815 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1816 assert((!Alignment || isPowerOf2_32(Alignment)) && 1817 "Alignment must be a power of two."); 1818 1819 if (Alignment) 1820 B.addAlignmentAttr(Alignment); 1821 1822 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1823 (EncodedAttrs & 0xffff); 1824 1825 if (AttrIdx == AttributeList::FunctionIndex) { 1826 // Upgrade old memory attributes. 1827 MemoryEffects ME = MemoryEffects::unknown(); 1828 if (Attrs & (1ULL << 9)) { 1829 // ReadNone 1830 Attrs &= ~(1ULL << 9); 1831 ME &= MemoryEffects::none(); 1832 } 1833 if (Attrs & (1ULL << 10)) { 1834 // ReadOnly 1835 Attrs &= ~(1ULL << 10); 1836 ME &= MemoryEffects::readOnly(); 1837 } 1838 if (Attrs & (1ULL << 49)) { 1839 // InaccessibleMemOnly 1840 Attrs &= ~(1ULL << 49); 1841 ME &= MemoryEffects::inaccessibleMemOnly(); 1842 } 1843 if (Attrs & (1ULL << 50)) { 1844 // InaccessibleMemOrArgMemOnly 1845 Attrs &= ~(1ULL << 50); 1846 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1847 } 1848 if (Attrs & (1ULL << 53)) { 1849 // WriteOnly 1850 Attrs &= ~(1ULL << 53); 1851 ME &= MemoryEffects::writeOnly(); 1852 } 1853 if (ME != MemoryEffects::unknown()) 1854 B.addMemoryAttr(ME); 1855 } 1856 1857 addRawAttributeValue(B, Attrs); 1858 } 1859 1860 Error BitcodeReader::parseAttributeBlock() { 1861 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1862 return Err; 1863 1864 if (!MAttributes.empty()) 1865 return error("Invalid multiple blocks"); 1866 1867 SmallVector<uint64_t, 64> Record; 1868 1869 SmallVector<AttributeList, 8> Attrs; 1870 1871 // Read all the records. 1872 while (true) { 1873 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1874 if (!MaybeEntry) 1875 return MaybeEntry.takeError(); 1876 BitstreamEntry Entry = MaybeEntry.get(); 1877 1878 switch (Entry.Kind) { 1879 case BitstreamEntry::SubBlock: // Handled for us already. 1880 case BitstreamEntry::Error: 1881 return error("Malformed block"); 1882 case BitstreamEntry::EndBlock: 1883 return Error::success(); 1884 case BitstreamEntry::Record: 1885 // The interesting case. 1886 break; 1887 } 1888 1889 // Read a record. 1890 Record.clear(); 1891 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1892 if (!MaybeRecord) 1893 return MaybeRecord.takeError(); 1894 switch (MaybeRecord.get()) { 1895 default: // Default behavior: ignore. 1896 break; 1897 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1898 // Deprecated, but still needed to read old bitcode files. 1899 if (Record.size() & 1) 1900 return error("Invalid parameter attribute record"); 1901 1902 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1903 AttrBuilder B(Context); 1904 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1905 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1906 } 1907 1908 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1909 Attrs.clear(); 1910 break; 1911 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1912 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1913 Attrs.push_back(MAttributeGroups[Record[i]]); 1914 1915 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1916 Attrs.clear(); 1917 break; 1918 } 1919 } 1920 } 1921 1922 // Returns Attribute::None on unrecognized codes. 1923 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1924 switch (Code) { 1925 default: 1926 return Attribute::None; 1927 case bitc::ATTR_KIND_ALIGNMENT: 1928 return Attribute::Alignment; 1929 case bitc::ATTR_KIND_ALWAYS_INLINE: 1930 return Attribute::AlwaysInline; 1931 case bitc::ATTR_KIND_BUILTIN: 1932 return Attribute::Builtin; 1933 case bitc::ATTR_KIND_BY_VAL: 1934 return Attribute::ByVal; 1935 case bitc::ATTR_KIND_IN_ALLOCA: 1936 return Attribute::InAlloca; 1937 case bitc::ATTR_KIND_COLD: 1938 return Attribute::Cold; 1939 case bitc::ATTR_KIND_CONVERGENT: 1940 return Attribute::Convergent; 1941 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1942 return Attribute::DisableSanitizerInstrumentation; 1943 case bitc::ATTR_KIND_ELEMENTTYPE: 1944 return Attribute::ElementType; 1945 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1946 return Attribute::FnRetThunkExtern; 1947 case bitc::ATTR_KIND_INLINE_HINT: 1948 return Attribute::InlineHint; 1949 case bitc::ATTR_KIND_IN_REG: 1950 return Attribute::InReg; 1951 case bitc::ATTR_KIND_JUMP_TABLE: 1952 return Attribute::JumpTable; 1953 case bitc::ATTR_KIND_MEMORY: 1954 return Attribute::Memory; 1955 case bitc::ATTR_KIND_NOFPCLASS: 1956 return Attribute::NoFPClass; 1957 case bitc::ATTR_KIND_MIN_SIZE: 1958 return Attribute::MinSize; 1959 case bitc::ATTR_KIND_NAKED: 1960 return Attribute::Naked; 1961 case bitc::ATTR_KIND_NEST: 1962 return Attribute::Nest; 1963 case bitc::ATTR_KIND_NO_ALIAS: 1964 return Attribute::NoAlias; 1965 case bitc::ATTR_KIND_NO_BUILTIN: 1966 return Attribute::NoBuiltin; 1967 case bitc::ATTR_KIND_NO_CALLBACK: 1968 return Attribute::NoCallback; 1969 case bitc::ATTR_KIND_NO_CAPTURE: 1970 return Attribute::NoCapture; 1971 case bitc::ATTR_KIND_NO_DUPLICATE: 1972 return Attribute::NoDuplicate; 1973 case bitc::ATTR_KIND_NOFREE: 1974 return Attribute::NoFree; 1975 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1976 return Attribute::NoImplicitFloat; 1977 case bitc::ATTR_KIND_NO_INLINE: 1978 return Attribute::NoInline; 1979 case bitc::ATTR_KIND_NO_RECURSE: 1980 return Attribute::NoRecurse; 1981 case bitc::ATTR_KIND_NO_MERGE: 1982 return Attribute::NoMerge; 1983 case bitc::ATTR_KIND_NON_LAZY_BIND: 1984 return Attribute::NonLazyBind; 1985 case bitc::ATTR_KIND_NON_NULL: 1986 return Attribute::NonNull; 1987 case bitc::ATTR_KIND_DEREFERENCEABLE: 1988 return Attribute::Dereferenceable; 1989 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1990 return Attribute::DereferenceableOrNull; 1991 case bitc::ATTR_KIND_ALLOC_ALIGN: 1992 return Attribute::AllocAlign; 1993 case bitc::ATTR_KIND_ALLOC_KIND: 1994 return Attribute::AllocKind; 1995 case bitc::ATTR_KIND_ALLOC_SIZE: 1996 return Attribute::AllocSize; 1997 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1998 return Attribute::AllocatedPointer; 1999 case bitc::ATTR_KIND_NO_RED_ZONE: 2000 return Attribute::NoRedZone; 2001 case bitc::ATTR_KIND_NO_RETURN: 2002 return Attribute::NoReturn; 2003 case bitc::ATTR_KIND_NOSYNC: 2004 return Attribute::NoSync; 2005 case bitc::ATTR_KIND_NOCF_CHECK: 2006 return Attribute::NoCfCheck; 2007 case bitc::ATTR_KIND_NO_PROFILE: 2008 return Attribute::NoProfile; 2009 case bitc::ATTR_KIND_SKIP_PROFILE: 2010 return Attribute::SkipProfile; 2011 case bitc::ATTR_KIND_NO_UNWIND: 2012 return Attribute::NoUnwind; 2013 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2014 return Attribute::NoSanitizeBounds; 2015 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2016 return Attribute::NoSanitizeCoverage; 2017 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2018 return Attribute::NullPointerIsValid; 2019 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2020 return Attribute::OptimizeForDebugging; 2021 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2022 return Attribute::OptForFuzzing; 2023 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2024 return Attribute::OptimizeForSize; 2025 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2026 return Attribute::OptimizeNone; 2027 case bitc::ATTR_KIND_READ_NONE: 2028 return Attribute::ReadNone; 2029 case bitc::ATTR_KIND_READ_ONLY: 2030 return Attribute::ReadOnly; 2031 case bitc::ATTR_KIND_RETURNED: 2032 return Attribute::Returned; 2033 case bitc::ATTR_KIND_RETURNS_TWICE: 2034 return Attribute::ReturnsTwice; 2035 case bitc::ATTR_KIND_S_EXT: 2036 return Attribute::SExt; 2037 case bitc::ATTR_KIND_SPECULATABLE: 2038 return Attribute::Speculatable; 2039 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2040 return Attribute::StackAlignment; 2041 case bitc::ATTR_KIND_STACK_PROTECT: 2042 return Attribute::StackProtect; 2043 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2044 return Attribute::StackProtectReq; 2045 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2046 return Attribute::StackProtectStrong; 2047 case bitc::ATTR_KIND_SAFESTACK: 2048 return Attribute::SafeStack; 2049 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2050 return Attribute::ShadowCallStack; 2051 case bitc::ATTR_KIND_STRICT_FP: 2052 return Attribute::StrictFP; 2053 case bitc::ATTR_KIND_STRUCT_RET: 2054 return Attribute::StructRet; 2055 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2056 return Attribute::SanitizeAddress; 2057 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2058 return Attribute::SanitizeHWAddress; 2059 case bitc::ATTR_KIND_SANITIZE_THREAD: 2060 return Attribute::SanitizeThread; 2061 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2062 return Attribute::SanitizeMemory; 2063 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2064 return Attribute::SpeculativeLoadHardening; 2065 case bitc::ATTR_KIND_SWIFT_ERROR: 2066 return Attribute::SwiftError; 2067 case bitc::ATTR_KIND_SWIFT_SELF: 2068 return Attribute::SwiftSelf; 2069 case bitc::ATTR_KIND_SWIFT_ASYNC: 2070 return Attribute::SwiftAsync; 2071 case bitc::ATTR_KIND_UW_TABLE: 2072 return Attribute::UWTable; 2073 case bitc::ATTR_KIND_VSCALE_RANGE: 2074 return Attribute::VScaleRange; 2075 case bitc::ATTR_KIND_WILLRETURN: 2076 return Attribute::WillReturn; 2077 case bitc::ATTR_KIND_WRITEONLY: 2078 return Attribute::WriteOnly; 2079 case bitc::ATTR_KIND_Z_EXT: 2080 return Attribute::ZExt; 2081 case bitc::ATTR_KIND_IMMARG: 2082 return Attribute::ImmArg; 2083 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2084 return Attribute::SanitizeMemTag; 2085 case bitc::ATTR_KIND_PREALLOCATED: 2086 return Attribute::Preallocated; 2087 case bitc::ATTR_KIND_NOUNDEF: 2088 return Attribute::NoUndef; 2089 case bitc::ATTR_KIND_BYREF: 2090 return Attribute::ByRef; 2091 case bitc::ATTR_KIND_MUSTPROGRESS: 2092 return Attribute::MustProgress; 2093 case bitc::ATTR_KIND_HOT: 2094 return Attribute::Hot; 2095 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2096 return Attribute::PresplitCoroutine; 2097 case bitc::ATTR_KIND_WRITABLE: 2098 return Attribute::Writable; 2099 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2100 return Attribute::CoroDestroyOnlyWhenComplete; 2101 } 2102 } 2103 2104 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2105 MaybeAlign &Alignment) { 2106 // Note: Alignment in bitcode files is incremented by 1, so that zero 2107 // can be used for default alignment. 2108 if (Exponent > Value::MaxAlignmentExponent + 1) 2109 return error("Invalid alignment value"); 2110 Alignment = decodeMaybeAlign(Exponent); 2111 return Error::success(); 2112 } 2113 2114 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2115 *Kind = getAttrFromCode(Code); 2116 if (*Kind == Attribute::None) 2117 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2118 return Error::success(); 2119 } 2120 2121 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2122 switch (EncodedKind) { 2123 case bitc::ATTR_KIND_READ_NONE: 2124 ME &= MemoryEffects::none(); 2125 return true; 2126 case bitc::ATTR_KIND_READ_ONLY: 2127 ME &= MemoryEffects::readOnly(); 2128 return true; 2129 case bitc::ATTR_KIND_WRITEONLY: 2130 ME &= MemoryEffects::writeOnly(); 2131 return true; 2132 case bitc::ATTR_KIND_ARGMEMONLY: 2133 ME &= MemoryEffects::argMemOnly(); 2134 return true; 2135 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2136 ME &= MemoryEffects::inaccessibleMemOnly(); 2137 return true; 2138 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2139 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2140 return true; 2141 default: 2142 return false; 2143 } 2144 } 2145 2146 Error BitcodeReader::parseAttributeGroupBlock() { 2147 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2148 return Err; 2149 2150 if (!MAttributeGroups.empty()) 2151 return error("Invalid multiple blocks"); 2152 2153 SmallVector<uint64_t, 64> Record; 2154 2155 // Read all the records. 2156 while (true) { 2157 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2158 if (!MaybeEntry) 2159 return MaybeEntry.takeError(); 2160 BitstreamEntry Entry = MaybeEntry.get(); 2161 2162 switch (Entry.Kind) { 2163 case BitstreamEntry::SubBlock: // Handled for us already. 2164 case BitstreamEntry::Error: 2165 return error("Malformed block"); 2166 case BitstreamEntry::EndBlock: 2167 return Error::success(); 2168 case BitstreamEntry::Record: 2169 // The interesting case. 2170 break; 2171 } 2172 2173 // Read a record. 2174 Record.clear(); 2175 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2176 if (!MaybeRecord) 2177 return MaybeRecord.takeError(); 2178 switch (MaybeRecord.get()) { 2179 default: // Default behavior: ignore. 2180 break; 2181 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2182 if (Record.size() < 3) 2183 return error("Invalid grp record"); 2184 2185 uint64_t GrpID = Record[0]; 2186 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2187 2188 AttrBuilder B(Context); 2189 MemoryEffects ME = MemoryEffects::unknown(); 2190 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2191 if (Record[i] == 0) { // Enum attribute 2192 Attribute::AttrKind Kind; 2193 uint64_t EncodedKind = Record[++i]; 2194 if (Idx == AttributeList::FunctionIndex && 2195 upgradeOldMemoryAttribute(ME, EncodedKind)) 2196 continue; 2197 2198 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2199 return Err; 2200 2201 // Upgrade old-style byval attribute to one with a type, even if it's 2202 // nullptr. We will have to insert the real type when we associate 2203 // this AttributeList with a function. 2204 if (Kind == Attribute::ByVal) 2205 B.addByValAttr(nullptr); 2206 else if (Kind == Attribute::StructRet) 2207 B.addStructRetAttr(nullptr); 2208 else if (Kind == Attribute::InAlloca) 2209 B.addInAllocaAttr(nullptr); 2210 else if (Kind == Attribute::UWTable) 2211 B.addUWTableAttr(UWTableKind::Default); 2212 else if (Attribute::isEnumAttrKind(Kind)) 2213 B.addAttribute(Kind); 2214 else 2215 return error("Not an enum attribute"); 2216 } else if (Record[i] == 1) { // Integer attribute 2217 Attribute::AttrKind Kind; 2218 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2219 return Err; 2220 if (!Attribute::isIntAttrKind(Kind)) 2221 return error("Not an int attribute"); 2222 if (Kind == Attribute::Alignment) 2223 B.addAlignmentAttr(Record[++i]); 2224 else if (Kind == Attribute::StackAlignment) 2225 B.addStackAlignmentAttr(Record[++i]); 2226 else if (Kind == Attribute::Dereferenceable) 2227 B.addDereferenceableAttr(Record[++i]); 2228 else if (Kind == Attribute::DereferenceableOrNull) 2229 B.addDereferenceableOrNullAttr(Record[++i]); 2230 else if (Kind == Attribute::AllocSize) 2231 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2232 else if (Kind == Attribute::VScaleRange) 2233 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2234 else if (Kind == Attribute::UWTable) 2235 B.addUWTableAttr(UWTableKind(Record[++i])); 2236 else if (Kind == Attribute::AllocKind) 2237 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2238 else if (Kind == Attribute::Memory) 2239 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2240 else if (Kind == Attribute::NoFPClass) 2241 B.addNoFPClassAttr( 2242 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2243 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2244 bool HasValue = (Record[i++] == 4); 2245 SmallString<64> KindStr; 2246 SmallString<64> ValStr; 2247 2248 while (Record[i] != 0 && i != e) 2249 KindStr += Record[i++]; 2250 assert(Record[i] == 0 && "Kind string not null terminated"); 2251 2252 if (HasValue) { 2253 // Has a value associated with it. 2254 ++i; // Skip the '0' that terminates the "kind" string. 2255 while (Record[i] != 0 && i != e) 2256 ValStr += Record[i++]; 2257 assert(Record[i] == 0 && "Value string not null terminated"); 2258 } 2259 2260 B.addAttribute(KindStr.str(), ValStr.str()); 2261 } else if (Record[i] == 5 || Record[i] == 6) { 2262 bool HasType = Record[i] == 6; 2263 Attribute::AttrKind Kind; 2264 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2265 return Err; 2266 if (!Attribute::isTypeAttrKind(Kind)) 2267 return error("Not a type attribute"); 2268 2269 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2270 } else { 2271 return error("Invalid attribute group entry"); 2272 } 2273 } 2274 2275 if (ME != MemoryEffects::unknown()) 2276 B.addMemoryAttr(ME); 2277 2278 UpgradeAttributes(B); 2279 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2280 break; 2281 } 2282 } 2283 } 2284 } 2285 2286 Error BitcodeReader::parseTypeTable() { 2287 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2288 return Err; 2289 2290 return parseTypeTableBody(); 2291 } 2292 2293 Error BitcodeReader::parseTypeTableBody() { 2294 if (!TypeList.empty()) 2295 return error("Invalid multiple blocks"); 2296 2297 SmallVector<uint64_t, 64> Record; 2298 unsigned NumRecords = 0; 2299 2300 SmallString<64> TypeName; 2301 2302 // Read all the records for this type table. 2303 while (true) { 2304 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2305 if (!MaybeEntry) 2306 return MaybeEntry.takeError(); 2307 BitstreamEntry Entry = MaybeEntry.get(); 2308 2309 switch (Entry.Kind) { 2310 case BitstreamEntry::SubBlock: // Handled for us already. 2311 case BitstreamEntry::Error: 2312 return error("Malformed block"); 2313 case BitstreamEntry::EndBlock: 2314 if (NumRecords != TypeList.size()) 2315 return error("Malformed block"); 2316 return Error::success(); 2317 case BitstreamEntry::Record: 2318 // The interesting case. 2319 break; 2320 } 2321 2322 // Read a record. 2323 Record.clear(); 2324 Type *ResultTy = nullptr; 2325 SmallVector<unsigned> ContainedIDs; 2326 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2327 if (!MaybeRecord) 2328 return MaybeRecord.takeError(); 2329 switch (MaybeRecord.get()) { 2330 default: 2331 return error("Invalid value"); 2332 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2333 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2334 // type list. This allows us to reserve space. 2335 if (Record.empty()) 2336 return error("Invalid numentry record"); 2337 TypeList.resize(Record[0]); 2338 continue; 2339 case bitc::TYPE_CODE_VOID: // VOID 2340 ResultTy = Type::getVoidTy(Context); 2341 break; 2342 case bitc::TYPE_CODE_HALF: // HALF 2343 ResultTy = Type::getHalfTy(Context); 2344 break; 2345 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2346 ResultTy = Type::getBFloatTy(Context); 2347 break; 2348 case bitc::TYPE_CODE_FLOAT: // FLOAT 2349 ResultTy = Type::getFloatTy(Context); 2350 break; 2351 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2352 ResultTy = Type::getDoubleTy(Context); 2353 break; 2354 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2355 ResultTy = Type::getX86_FP80Ty(Context); 2356 break; 2357 case bitc::TYPE_CODE_FP128: // FP128 2358 ResultTy = Type::getFP128Ty(Context); 2359 break; 2360 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2361 ResultTy = Type::getPPC_FP128Ty(Context); 2362 break; 2363 case bitc::TYPE_CODE_LABEL: // LABEL 2364 ResultTy = Type::getLabelTy(Context); 2365 break; 2366 case bitc::TYPE_CODE_METADATA: // METADATA 2367 ResultTy = Type::getMetadataTy(Context); 2368 break; 2369 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2370 ResultTy = Type::getX86_MMXTy(Context); 2371 break; 2372 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2373 ResultTy = Type::getX86_AMXTy(Context); 2374 break; 2375 case bitc::TYPE_CODE_TOKEN: // TOKEN 2376 ResultTy = Type::getTokenTy(Context); 2377 break; 2378 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2379 if (Record.empty()) 2380 return error("Invalid integer record"); 2381 2382 uint64_t NumBits = Record[0]; 2383 if (NumBits < IntegerType::MIN_INT_BITS || 2384 NumBits > IntegerType::MAX_INT_BITS) 2385 return error("Bitwidth for integer type out of range"); 2386 ResultTy = IntegerType::get(Context, NumBits); 2387 break; 2388 } 2389 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2390 // [pointee type, address space] 2391 if (Record.empty()) 2392 return error("Invalid pointer record"); 2393 unsigned AddressSpace = 0; 2394 if (Record.size() == 2) 2395 AddressSpace = Record[1]; 2396 ResultTy = getTypeByID(Record[0]); 2397 if (!ResultTy || 2398 !PointerType::isValidElementType(ResultTy)) 2399 return error("Invalid type"); 2400 ContainedIDs.push_back(Record[0]); 2401 ResultTy = PointerType::get(ResultTy, AddressSpace); 2402 break; 2403 } 2404 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2405 if (Record.size() != 1) 2406 return error("Invalid opaque pointer record"); 2407 unsigned AddressSpace = Record[0]; 2408 ResultTy = PointerType::get(Context, AddressSpace); 2409 break; 2410 } 2411 case bitc::TYPE_CODE_FUNCTION_OLD: { 2412 // Deprecated, but still needed to read old bitcode files. 2413 // FUNCTION: [vararg, attrid, retty, paramty x N] 2414 if (Record.size() < 3) 2415 return error("Invalid function record"); 2416 SmallVector<Type*, 8> ArgTys; 2417 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2418 if (Type *T = getTypeByID(Record[i])) 2419 ArgTys.push_back(T); 2420 else 2421 break; 2422 } 2423 2424 ResultTy = getTypeByID(Record[2]); 2425 if (!ResultTy || ArgTys.size() < Record.size()-3) 2426 return error("Invalid type"); 2427 2428 ContainedIDs.append(Record.begin() + 2, Record.end()); 2429 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2430 break; 2431 } 2432 case bitc::TYPE_CODE_FUNCTION: { 2433 // FUNCTION: [vararg, retty, paramty x N] 2434 if (Record.size() < 2) 2435 return error("Invalid function record"); 2436 SmallVector<Type*, 8> ArgTys; 2437 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2438 if (Type *T = getTypeByID(Record[i])) { 2439 if (!FunctionType::isValidArgumentType(T)) 2440 return error("Invalid function argument type"); 2441 ArgTys.push_back(T); 2442 } 2443 else 2444 break; 2445 } 2446 2447 ResultTy = getTypeByID(Record[1]); 2448 if (!ResultTy || ArgTys.size() < Record.size()-2) 2449 return error("Invalid type"); 2450 2451 ContainedIDs.append(Record.begin() + 1, Record.end()); 2452 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2453 break; 2454 } 2455 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2456 if (Record.empty()) 2457 return error("Invalid anon struct record"); 2458 SmallVector<Type*, 8> EltTys; 2459 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2460 if (Type *T = getTypeByID(Record[i])) 2461 EltTys.push_back(T); 2462 else 2463 break; 2464 } 2465 if (EltTys.size() != Record.size()-1) 2466 return error("Invalid type"); 2467 ContainedIDs.append(Record.begin() + 1, Record.end()); 2468 ResultTy = StructType::get(Context, EltTys, Record[0]); 2469 break; 2470 } 2471 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2472 if (convertToString(Record, 0, TypeName)) 2473 return error("Invalid struct name record"); 2474 continue; 2475 2476 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2477 if (Record.empty()) 2478 return error("Invalid named struct record"); 2479 2480 if (NumRecords >= TypeList.size()) 2481 return error("Invalid TYPE table"); 2482 2483 // Check to see if this was forward referenced, if so fill in the temp. 2484 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2485 if (Res) { 2486 Res->setName(TypeName); 2487 TypeList[NumRecords] = nullptr; 2488 } else // Otherwise, create a new struct. 2489 Res = createIdentifiedStructType(Context, TypeName); 2490 TypeName.clear(); 2491 2492 SmallVector<Type*, 8> EltTys; 2493 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2494 if (Type *T = getTypeByID(Record[i])) 2495 EltTys.push_back(T); 2496 else 2497 break; 2498 } 2499 if (EltTys.size() != Record.size()-1) 2500 return error("Invalid named struct record"); 2501 Res->setBody(EltTys, Record[0]); 2502 ContainedIDs.append(Record.begin() + 1, Record.end()); 2503 ResultTy = Res; 2504 break; 2505 } 2506 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2507 if (Record.size() != 1) 2508 return error("Invalid opaque type record"); 2509 2510 if (NumRecords >= TypeList.size()) 2511 return error("Invalid TYPE table"); 2512 2513 // Check to see if this was forward referenced, if so fill in the temp. 2514 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2515 if (Res) { 2516 Res->setName(TypeName); 2517 TypeList[NumRecords] = nullptr; 2518 } else // Otherwise, create a new struct with no body. 2519 Res = createIdentifiedStructType(Context, TypeName); 2520 TypeName.clear(); 2521 ResultTy = Res; 2522 break; 2523 } 2524 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2525 if (Record.size() < 1) 2526 return error("Invalid target extension type record"); 2527 2528 if (NumRecords >= TypeList.size()) 2529 return error("Invalid TYPE table"); 2530 2531 if (Record[0] >= Record.size()) 2532 return error("Too many type parameters"); 2533 2534 unsigned NumTys = Record[0]; 2535 SmallVector<Type *, 4> TypeParams; 2536 SmallVector<unsigned, 8> IntParams; 2537 for (unsigned i = 0; i < NumTys; i++) { 2538 if (Type *T = getTypeByID(Record[i + 1])) 2539 TypeParams.push_back(T); 2540 else 2541 return error("Invalid type"); 2542 } 2543 2544 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2545 if (Record[i] > UINT_MAX) 2546 return error("Integer parameter too large"); 2547 IntParams.push_back(Record[i]); 2548 } 2549 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2550 TypeName.clear(); 2551 break; 2552 } 2553 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2554 if (Record.size() < 2) 2555 return error("Invalid array type record"); 2556 ResultTy = getTypeByID(Record[1]); 2557 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2558 return error("Invalid type"); 2559 ContainedIDs.push_back(Record[1]); 2560 ResultTy = ArrayType::get(ResultTy, Record[0]); 2561 break; 2562 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2563 // [numelts, eltty, scalable] 2564 if (Record.size() < 2) 2565 return error("Invalid vector type record"); 2566 if (Record[0] == 0) 2567 return error("Invalid vector length"); 2568 ResultTy = getTypeByID(Record[1]); 2569 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2570 return error("Invalid type"); 2571 bool Scalable = Record.size() > 2 ? Record[2] : false; 2572 ContainedIDs.push_back(Record[1]); 2573 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2574 break; 2575 } 2576 2577 if (NumRecords >= TypeList.size()) 2578 return error("Invalid TYPE table"); 2579 if (TypeList[NumRecords]) 2580 return error( 2581 "Invalid TYPE table: Only named structs can be forward referenced"); 2582 assert(ResultTy && "Didn't read a type?"); 2583 TypeList[NumRecords] = ResultTy; 2584 if (!ContainedIDs.empty()) 2585 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2586 ++NumRecords; 2587 } 2588 } 2589 2590 Error BitcodeReader::parseOperandBundleTags() { 2591 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2592 return Err; 2593 2594 if (!BundleTags.empty()) 2595 return error("Invalid multiple blocks"); 2596 2597 SmallVector<uint64_t, 64> Record; 2598 2599 while (true) { 2600 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2601 if (!MaybeEntry) 2602 return MaybeEntry.takeError(); 2603 BitstreamEntry Entry = MaybeEntry.get(); 2604 2605 switch (Entry.Kind) { 2606 case BitstreamEntry::SubBlock: // Handled for us already. 2607 case BitstreamEntry::Error: 2608 return error("Malformed block"); 2609 case BitstreamEntry::EndBlock: 2610 return Error::success(); 2611 case BitstreamEntry::Record: 2612 // The interesting case. 2613 break; 2614 } 2615 2616 // Tags are implicitly mapped to integers by their order. 2617 2618 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2619 if (!MaybeRecord) 2620 return MaybeRecord.takeError(); 2621 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2622 return error("Invalid operand bundle record"); 2623 2624 // OPERAND_BUNDLE_TAG: [strchr x N] 2625 BundleTags.emplace_back(); 2626 if (convertToString(Record, 0, BundleTags.back())) 2627 return error("Invalid operand bundle record"); 2628 Record.clear(); 2629 } 2630 } 2631 2632 Error BitcodeReader::parseSyncScopeNames() { 2633 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2634 return Err; 2635 2636 if (!SSIDs.empty()) 2637 return error("Invalid multiple synchronization scope names blocks"); 2638 2639 SmallVector<uint64_t, 64> Record; 2640 while (true) { 2641 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2642 if (!MaybeEntry) 2643 return MaybeEntry.takeError(); 2644 BitstreamEntry Entry = MaybeEntry.get(); 2645 2646 switch (Entry.Kind) { 2647 case BitstreamEntry::SubBlock: // Handled for us already. 2648 case BitstreamEntry::Error: 2649 return error("Malformed block"); 2650 case BitstreamEntry::EndBlock: 2651 if (SSIDs.empty()) 2652 return error("Invalid empty synchronization scope names block"); 2653 return Error::success(); 2654 case BitstreamEntry::Record: 2655 // The interesting case. 2656 break; 2657 } 2658 2659 // Synchronization scope names are implicitly mapped to synchronization 2660 // scope IDs by their order. 2661 2662 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2663 if (!MaybeRecord) 2664 return MaybeRecord.takeError(); 2665 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2666 return error("Invalid sync scope record"); 2667 2668 SmallString<16> SSN; 2669 if (convertToString(Record, 0, SSN)) 2670 return error("Invalid sync scope record"); 2671 2672 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2673 Record.clear(); 2674 } 2675 } 2676 2677 /// Associate a value with its name from the given index in the provided record. 2678 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2679 unsigned NameIndex, Triple &TT) { 2680 SmallString<128> ValueName; 2681 if (convertToString(Record, NameIndex, ValueName)) 2682 return error("Invalid record"); 2683 unsigned ValueID = Record[0]; 2684 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2685 return error("Invalid record"); 2686 Value *V = ValueList[ValueID]; 2687 2688 StringRef NameStr(ValueName.data(), ValueName.size()); 2689 if (NameStr.contains(0)) 2690 return error("Invalid value name"); 2691 V->setName(NameStr); 2692 auto *GO = dyn_cast<GlobalObject>(V); 2693 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2694 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2695 return V; 2696 } 2697 2698 /// Helper to note and return the current location, and jump to the given 2699 /// offset. 2700 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2701 BitstreamCursor &Stream) { 2702 // Save the current parsing location so we can jump back at the end 2703 // of the VST read. 2704 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2705 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2706 return std::move(JumpFailed); 2707 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2708 if (!MaybeEntry) 2709 return MaybeEntry.takeError(); 2710 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2711 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2712 return error("Expected value symbol table subblock"); 2713 return CurrentBit; 2714 } 2715 2716 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2717 Function *F, 2718 ArrayRef<uint64_t> Record) { 2719 // Note that we subtract 1 here because the offset is relative to one word 2720 // before the start of the identification or module block, which was 2721 // historically always the start of the regular bitcode header. 2722 uint64_t FuncWordOffset = Record[1] - 1; 2723 uint64_t FuncBitOffset = FuncWordOffset * 32; 2724 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2725 // Set the LastFunctionBlockBit to point to the last function block. 2726 // Later when parsing is resumed after function materialization, 2727 // we can simply skip that last function block. 2728 if (FuncBitOffset > LastFunctionBlockBit) 2729 LastFunctionBlockBit = FuncBitOffset; 2730 } 2731 2732 /// Read a new-style GlobalValue symbol table. 2733 Error BitcodeReader::parseGlobalValueSymbolTable() { 2734 unsigned FuncBitcodeOffsetDelta = 2735 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2736 2737 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2738 return Err; 2739 2740 SmallVector<uint64_t, 64> Record; 2741 while (true) { 2742 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2743 if (!MaybeEntry) 2744 return MaybeEntry.takeError(); 2745 BitstreamEntry Entry = MaybeEntry.get(); 2746 2747 switch (Entry.Kind) { 2748 case BitstreamEntry::SubBlock: 2749 case BitstreamEntry::Error: 2750 return error("Malformed block"); 2751 case BitstreamEntry::EndBlock: 2752 return Error::success(); 2753 case BitstreamEntry::Record: 2754 break; 2755 } 2756 2757 Record.clear(); 2758 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2759 if (!MaybeRecord) 2760 return MaybeRecord.takeError(); 2761 switch (MaybeRecord.get()) { 2762 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2763 unsigned ValueID = Record[0]; 2764 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2765 return error("Invalid value reference in symbol table"); 2766 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2767 cast<Function>(ValueList[ValueID]), Record); 2768 break; 2769 } 2770 } 2771 } 2772 } 2773 2774 /// Parse the value symbol table at either the current parsing location or 2775 /// at the given bit offset if provided. 2776 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2777 uint64_t CurrentBit; 2778 // Pass in the Offset to distinguish between calling for the module-level 2779 // VST (where we want to jump to the VST offset) and the function-level 2780 // VST (where we don't). 2781 if (Offset > 0) { 2782 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2783 if (!MaybeCurrentBit) 2784 return MaybeCurrentBit.takeError(); 2785 CurrentBit = MaybeCurrentBit.get(); 2786 // If this module uses a string table, read this as a module-level VST. 2787 if (UseStrtab) { 2788 if (Error Err = parseGlobalValueSymbolTable()) 2789 return Err; 2790 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2791 return JumpFailed; 2792 return Error::success(); 2793 } 2794 // Otherwise, the VST will be in a similar format to a function-level VST, 2795 // and will contain symbol names. 2796 } 2797 2798 // Compute the delta between the bitcode indices in the VST (the word offset 2799 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2800 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2801 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2802 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2803 // just before entering the VST subblock because: 1) the EnterSubBlock 2804 // changes the AbbrevID width; 2) the VST block is nested within the same 2805 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2806 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2807 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2808 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2809 unsigned FuncBitcodeOffsetDelta = 2810 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2811 2812 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2813 return Err; 2814 2815 SmallVector<uint64_t, 64> Record; 2816 2817 Triple TT(TheModule->getTargetTriple()); 2818 2819 // Read all the records for this value table. 2820 SmallString<128> ValueName; 2821 2822 while (true) { 2823 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2824 if (!MaybeEntry) 2825 return MaybeEntry.takeError(); 2826 BitstreamEntry Entry = MaybeEntry.get(); 2827 2828 switch (Entry.Kind) { 2829 case BitstreamEntry::SubBlock: // Handled for us already. 2830 case BitstreamEntry::Error: 2831 return error("Malformed block"); 2832 case BitstreamEntry::EndBlock: 2833 if (Offset > 0) 2834 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2835 return JumpFailed; 2836 return Error::success(); 2837 case BitstreamEntry::Record: 2838 // The interesting case. 2839 break; 2840 } 2841 2842 // Read a record. 2843 Record.clear(); 2844 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2845 if (!MaybeRecord) 2846 return MaybeRecord.takeError(); 2847 switch (MaybeRecord.get()) { 2848 default: // Default behavior: unknown type. 2849 break; 2850 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2851 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2852 if (Error Err = ValOrErr.takeError()) 2853 return Err; 2854 ValOrErr.get(); 2855 break; 2856 } 2857 case bitc::VST_CODE_FNENTRY: { 2858 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2859 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2860 if (Error Err = ValOrErr.takeError()) 2861 return Err; 2862 Value *V = ValOrErr.get(); 2863 2864 // Ignore function offsets emitted for aliases of functions in older 2865 // versions of LLVM. 2866 if (auto *F = dyn_cast<Function>(V)) 2867 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2868 break; 2869 } 2870 case bitc::VST_CODE_BBENTRY: { 2871 if (convertToString(Record, 1, ValueName)) 2872 return error("Invalid bbentry record"); 2873 BasicBlock *BB = getBasicBlock(Record[0]); 2874 if (!BB) 2875 return error("Invalid bbentry record"); 2876 2877 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2878 ValueName.clear(); 2879 break; 2880 } 2881 } 2882 } 2883 } 2884 2885 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2886 /// encoding. 2887 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2888 if ((V & 1) == 0) 2889 return V >> 1; 2890 if (V != 1) 2891 return -(V >> 1); 2892 // There is no such thing as -0 with integers. "-0" really means MININT. 2893 return 1ULL << 63; 2894 } 2895 2896 /// Resolve all of the initializers for global values and aliases that we can. 2897 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2898 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2899 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2900 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2901 2902 GlobalInitWorklist.swap(GlobalInits); 2903 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2904 FunctionOperandWorklist.swap(FunctionOperands); 2905 2906 while (!GlobalInitWorklist.empty()) { 2907 unsigned ValID = GlobalInitWorklist.back().second; 2908 if (ValID >= ValueList.size()) { 2909 // Not ready to resolve this yet, it requires something later in the file. 2910 GlobalInits.push_back(GlobalInitWorklist.back()); 2911 } else { 2912 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2913 if (!MaybeC) 2914 return MaybeC.takeError(); 2915 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2916 } 2917 GlobalInitWorklist.pop_back(); 2918 } 2919 2920 while (!IndirectSymbolInitWorklist.empty()) { 2921 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2922 if (ValID >= ValueList.size()) { 2923 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2924 } else { 2925 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2926 if (!MaybeC) 2927 return MaybeC.takeError(); 2928 Constant *C = MaybeC.get(); 2929 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2930 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2931 if (C->getType() != GV->getType()) 2932 return error("Alias and aliasee types don't match"); 2933 GA->setAliasee(C); 2934 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2935 GI->setResolver(C); 2936 } else { 2937 return error("Expected an alias or an ifunc"); 2938 } 2939 } 2940 IndirectSymbolInitWorklist.pop_back(); 2941 } 2942 2943 while (!FunctionOperandWorklist.empty()) { 2944 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2945 if (Info.PersonalityFn) { 2946 unsigned ValID = Info.PersonalityFn - 1; 2947 if (ValID < ValueList.size()) { 2948 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2949 if (!MaybeC) 2950 return MaybeC.takeError(); 2951 Info.F->setPersonalityFn(MaybeC.get()); 2952 Info.PersonalityFn = 0; 2953 } 2954 } 2955 if (Info.Prefix) { 2956 unsigned ValID = Info.Prefix - 1; 2957 if (ValID < ValueList.size()) { 2958 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2959 if (!MaybeC) 2960 return MaybeC.takeError(); 2961 Info.F->setPrefixData(MaybeC.get()); 2962 Info.Prefix = 0; 2963 } 2964 } 2965 if (Info.Prologue) { 2966 unsigned ValID = Info.Prologue - 1; 2967 if (ValID < ValueList.size()) { 2968 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2969 if (!MaybeC) 2970 return MaybeC.takeError(); 2971 Info.F->setPrologueData(MaybeC.get()); 2972 Info.Prologue = 0; 2973 } 2974 } 2975 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2976 FunctionOperands.push_back(Info); 2977 FunctionOperandWorklist.pop_back(); 2978 } 2979 2980 return Error::success(); 2981 } 2982 2983 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2984 SmallVector<uint64_t, 8> Words(Vals.size()); 2985 transform(Vals, Words.begin(), 2986 BitcodeReader::decodeSignRotatedValue); 2987 2988 return APInt(TypeBits, Words); 2989 } 2990 2991 Error BitcodeReader::parseConstants() { 2992 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2993 return Err; 2994 2995 SmallVector<uint64_t, 64> Record; 2996 2997 // Read all the records for this value table. 2998 Type *CurTy = Type::getInt32Ty(Context); 2999 unsigned Int32TyID = getVirtualTypeID(CurTy); 3000 unsigned CurTyID = Int32TyID; 3001 Type *CurElemTy = nullptr; 3002 unsigned NextCstNo = ValueList.size(); 3003 3004 while (true) { 3005 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3006 if (!MaybeEntry) 3007 return MaybeEntry.takeError(); 3008 BitstreamEntry Entry = MaybeEntry.get(); 3009 3010 switch (Entry.Kind) { 3011 case BitstreamEntry::SubBlock: // Handled for us already. 3012 case BitstreamEntry::Error: 3013 return error("Malformed block"); 3014 case BitstreamEntry::EndBlock: 3015 if (NextCstNo != ValueList.size()) 3016 return error("Invalid constant reference"); 3017 return Error::success(); 3018 case BitstreamEntry::Record: 3019 // The interesting case. 3020 break; 3021 } 3022 3023 // Read a record. 3024 Record.clear(); 3025 Type *VoidType = Type::getVoidTy(Context); 3026 Value *V = nullptr; 3027 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3028 if (!MaybeBitCode) 3029 return MaybeBitCode.takeError(); 3030 switch (unsigned BitCode = MaybeBitCode.get()) { 3031 default: // Default behavior: unknown constant 3032 case bitc::CST_CODE_UNDEF: // UNDEF 3033 V = UndefValue::get(CurTy); 3034 break; 3035 case bitc::CST_CODE_POISON: // POISON 3036 V = PoisonValue::get(CurTy); 3037 break; 3038 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3039 if (Record.empty()) 3040 return error("Invalid settype record"); 3041 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3042 return error("Invalid settype record"); 3043 if (TypeList[Record[0]] == VoidType) 3044 return error("Invalid constant type"); 3045 CurTyID = Record[0]; 3046 CurTy = TypeList[CurTyID]; 3047 CurElemTy = getPtrElementTypeByID(CurTyID); 3048 continue; // Skip the ValueList manipulation. 3049 case bitc::CST_CODE_NULL: // NULL 3050 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3051 return error("Invalid type for a constant null value"); 3052 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3053 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3054 return error("Invalid type for a constant null value"); 3055 V = Constant::getNullValue(CurTy); 3056 break; 3057 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3058 if (!CurTy->isIntegerTy() || Record.empty()) 3059 return error("Invalid integer const record"); 3060 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3061 break; 3062 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3063 if (!CurTy->isIntegerTy() || Record.empty()) 3064 return error("Invalid wide integer const record"); 3065 3066 APInt VInt = 3067 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3068 V = ConstantInt::get(Context, VInt); 3069 3070 break; 3071 } 3072 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3073 if (Record.empty()) 3074 return error("Invalid float const record"); 3075 if (CurTy->isHalfTy()) 3076 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 3077 APInt(16, (uint16_t)Record[0]))); 3078 else if (CurTy->isBFloatTy()) 3079 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 3080 APInt(16, (uint32_t)Record[0]))); 3081 else if (CurTy->isFloatTy()) 3082 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 3083 APInt(32, (uint32_t)Record[0]))); 3084 else if (CurTy->isDoubleTy()) 3085 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 3086 APInt(64, Record[0]))); 3087 else if (CurTy->isX86_FP80Ty()) { 3088 // Bits are not stored the same way as a normal i80 APInt, compensate. 3089 uint64_t Rearrange[2]; 3090 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3091 Rearrange[1] = Record[0] >> 48; 3092 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 3093 APInt(80, Rearrange))); 3094 } else if (CurTy->isFP128Ty()) 3095 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 3096 APInt(128, Record))); 3097 else if (CurTy->isPPC_FP128Ty()) 3098 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 3099 APInt(128, Record))); 3100 else 3101 V = UndefValue::get(CurTy); 3102 break; 3103 } 3104 3105 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3106 if (Record.empty()) 3107 return error("Invalid aggregate record"); 3108 3109 unsigned Size = Record.size(); 3110 SmallVector<unsigned, 16> Elts; 3111 for (unsigned i = 0; i != Size; ++i) 3112 Elts.push_back(Record[i]); 3113 3114 if (isa<StructType>(CurTy)) { 3115 V = BitcodeConstant::create( 3116 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3117 } else if (isa<ArrayType>(CurTy)) { 3118 V = BitcodeConstant::create(Alloc, CurTy, 3119 BitcodeConstant::ConstantArrayOpcode, Elts); 3120 } else if (isa<VectorType>(CurTy)) { 3121 V = BitcodeConstant::create( 3122 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3123 } else { 3124 V = UndefValue::get(CurTy); 3125 } 3126 break; 3127 } 3128 case bitc::CST_CODE_STRING: // STRING: [values] 3129 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3130 if (Record.empty()) 3131 return error("Invalid string record"); 3132 3133 SmallString<16> Elts(Record.begin(), Record.end()); 3134 V = ConstantDataArray::getString(Context, Elts, 3135 BitCode == bitc::CST_CODE_CSTRING); 3136 break; 3137 } 3138 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3139 if (Record.empty()) 3140 return error("Invalid data record"); 3141 3142 Type *EltTy; 3143 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3144 EltTy = Array->getElementType(); 3145 else 3146 EltTy = cast<VectorType>(CurTy)->getElementType(); 3147 if (EltTy->isIntegerTy(8)) { 3148 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3149 if (isa<VectorType>(CurTy)) 3150 V = ConstantDataVector::get(Context, Elts); 3151 else 3152 V = ConstantDataArray::get(Context, Elts); 3153 } else if (EltTy->isIntegerTy(16)) { 3154 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3155 if (isa<VectorType>(CurTy)) 3156 V = ConstantDataVector::get(Context, Elts); 3157 else 3158 V = ConstantDataArray::get(Context, Elts); 3159 } else if (EltTy->isIntegerTy(32)) { 3160 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3161 if (isa<VectorType>(CurTy)) 3162 V = ConstantDataVector::get(Context, Elts); 3163 else 3164 V = ConstantDataArray::get(Context, Elts); 3165 } else if (EltTy->isIntegerTy(64)) { 3166 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3167 if (isa<VectorType>(CurTy)) 3168 V = ConstantDataVector::get(Context, Elts); 3169 else 3170 V = ConstantDataArray::get(Context, Elts); 3171 } else if (EltTy->isHalfTy()) { 3172 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3173 if (isa<VectorType>(CurTy)) 3174 V = ConstantDataVector::getFP(EltTy, Elts); 3175 else 3176 V = ConstantDataArray::getFP(EltTy, Elts); 3177 } else if (EltTy->isBFloatTy()) { 3178 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3179 if (isa<VectorType>(CurTy)) 3180 V = ConstantDataVector::getFP(EltTy, Elts); 3181 else 3182 V = ConstantDataArray::getFP(EltTy, Elts); 3183 } else if (EltTy->isFloatTy()) { 3184 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3185 if (isa<VectorType>(CurTy)) 3186 V = ConstantDataVector::getFP(EltTy, Elts); 3187 else 3188 V = ConstantDataArray::getFP(EltTy, Elts); 3189 } else if (EltTy->isDoubleTy()) { 3190 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3191 if (isa<VectorType>(CurTy)) 3192 V = ConstantDataVector::getFP(EltTy, Elts); 3193 else 3194 V = ConstantDataArray::getFP(EltTy, Elts); 3195 } else { 3196 return error("Invalid type for value"); 3197 } 3198 break; 3199 } 3200 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3201 if (Record.size() < 2) 3202 return error("Invalid unary op constexpr record"); 3203 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3204 if (Opc < 0) { 3205 V = UndefValue::get(CurTy); // Unknown unop. 3206 } else { 3207 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3208 } 3209 break; 3210 } 3211 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3212 if (Record.size() < 3) 3213 return error("Invalid binary op constexpr record"); 3214 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3215 if (Opc < 0) { 3216 V = UndefValue::get(CurTy); // Unknown binop. 3217 } else { 3218 uint8_t Flags = 0; 3219 if (Record.size() >= 4) { 3220 if (Opc == Instruction::Add || 3221 Opc == Instruction::Sub || 3222 Opc == Instruction::Mul || 3223 Opc == Instruction::Shl) { 3224 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3225 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3226 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3227 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3228 } else if (Opc == Instruction::SDiv || 3229 Opc == Instruction::UDiv || 3230 Opc == Instruction::LShr || 3231 Opc == Instruction::AShr) { 3232 if (Record[3] & (1 << bitc::PEO_EXACT)) 3233 Flags |= PossiblyExactOperator::IsExact; 3234 } 3235 } 3236 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3237 {(unsigned)Record[1], (unsigned)Record[2]}); 3238 } 3239 break; 3240 } 3241 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3242 if (Record.size() < 3) 3243 return error("Invalid cast constexpr record"); 3244 int Opc = getDecodedCastOpcode(Record[0]); 3245 if (Opc < 0) { 3246 V = UndefValue::get(CurTy); // Unknown cast. 3247 } else { 3248 unsigned OpTyID = Record[1]; 3249 Type *OpTy = getTypeByID(OpTyID); 3250 if (!OpTy) 3251 return error("Invalid cast constexpr record"); 3252 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3253 } 3254 break; 3255 } 3256 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3257 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3258 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3259 // operands] 3260 if (Record.size() < 2) 3261 return error("Constant GEP record must have at least two elements"); 3262 unsigned OpNum = 0; 3263 Type *PointeeType = nullptr; 3264 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3265 Record.size() % 2) 3266 PointeeType = getTypeByID(Record[OpNum++]); 3267 3268 bool InBounds = false; 3269 std::optional<unsigned> InRangeIndex; 3270 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3271 uint64_t Op = Record[OpNum++]; 3272 InBounds = Op & 1; 3273 InRangeIndex = Op >> 1; 3274 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3275 InBounds = true; 3276 3277 SmallVector<unsigned, 16> Elts; 3278 unsigned BaseTypeID = Record[OpNum]; 3279 while (OpNum != Record.size()) { 3280 unsigned ElTyID = Record[OpNum++]; 3281 Type *ElTy = getTypeByID(ElTyID); 3282 if (!ElTy) 3283 return error("Invalid getelementptr constexpr record"); 3284 Elts.push_back(Record[OpNum++]); 3285 } 3286 3287 if (Elts.size() < 1) 3288 return error("Invalid gep with no operands"); 3289 3290 Type *BaseType = getTypeByID(BaseTypeID); 3291 if (isa<VectorType>(BaseType)) { 3292 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3293 BaseType = getTypeByID(BaseTypeID); 3294 } 3295 3296 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3297 if (!OrigPtrTy) 3298 return error("GEP base operand must be pointer or vector of pointer"); 3299 3300 if (!PointeeType) { 3301 PointeeType = getPtrElementTypeByID(BaseTypeID); 3302 if (!PointeeType) 3303 return error("Missing element type for old-style constant GEP"); 3304 } 3305 3306 V = BitcodeConstant::create(Alloc, CurTy, 3307 {Instruction::GetElementPtr, InBounds, 3308 InRangeIndex.value_or(-1), PointeeType}, 3309 Elts); 3310 break; 3311 } 3312 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3313 if (Record.size() < 3) 3314 return error("Invalid select constexpr record"); 3315 3316 V = BitcodeConstant::create( 3317 Alloc, CurTy, Instruction::Select, 3318 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3319 break; 3320 } 3321 case bitc::CST_CODE_CE_EXTRACTELT 3322 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3323 if (Record.size() < 3) 3324 return error("Invalid extractelement constexpr record"); 3325 unsigned OpTyID = Record[0]; 3326 VectorType *OpTy = 3327 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3328 if (!OpTy) 3329 return error("Invalid extractelement constexpr record"); 3330 unsigned IdxRecord; 3331 if (Record.size() == 4) { 3332 unsigned IdxTyID = Record[2]; 3333 Type *IdxTy = getTypeByID(IdxTyID); 3334 if (!IdxTy) 3335 return error("Invalid extractelement constexpr record"); 3336 IdxRecord = Record[3]; 3337 } else { 3338 // Deprecated, but still needed to read old bitcode files. 3339 IdxRecord = Record[2]; 3340 } 3341 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3342 {(unsigned)Record[1], IdxRecord}); 3343 break; 3344 } 3345 case bitc::CST_CODE_CE_INSERTELT 3346 : { // CE_INSERTELT: [opval, opval, opty, opval] 3347 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3348 if (Record.size() < 3 || !OpTy) 3349 return error("Invalid insertelement constexpr record"); 3350 unsigned IdxRecord; 3351 if (Record.size() == 4) { 3352 unsigned IdxTyID = Record[2]; 3353 Type *IdxTy = getTypeByID(IdxTyID); 3354 if (!IdxTy) 3355 return error("Invalid insertelement constexpr record"); 3356 IdxRecord = Record[3]; 3357 } else { 3358 // Deprecated, but still needed to read old bitcode files. 3359 IdxRecord = Record[2]; 3360 } 3361 V = BitcodeConstant::create( 3362 Alloc, CurTy, Instruction::InsertElement, 3363 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3364 break; 3365 } 3366 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3367 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3368 if (Record.size() < 3 || !OpTy) 3369 return error("Invalid shufflevector constexpr record"); 3370 V = BitcodeConstant::create( 3371 Alloc, CurTy, Instruction::ShuffleVector, 3372 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3373 break; 3374 } 3375 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3376 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3377 VectorType *OpTy = 3378 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3379 if (Record.size() < 4 || !RTy || !OpTy) 3380 return error("Invalid shufflevector constexpr record"); 3381 V = BitcodeConstant::create( 3382 Alloc, CurTy, Instruction::ShuffleVector, 3383 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3384 break; 3385 } 3386 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3387 if (Record.size() < 4) 3388 return error("Invalid cmp constexpt record"); 3389 unsigned OpTyID = Record[0]; 3390 Type *OpTy = getTypeByID(OpTyID); 3391 if (!OpTy) 3392 return error("Invalid cmp constexpr record"); 3393 V = BitcodeConstant::create( 3394 Alloc, CurTy, 3395 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3396 : Instruction::ICmp), 3397 (uint8_t)Record[3]}, 3398 {(unsigned)Record[1], (unsigned)Record[2]}); 3399 break; 3400 } 3401 // This maintains backward compatibility, pre-asm dialect keywords. 3402 // Deprecated, but still needed to read old bitcode files. 3403 case bitc::CST_CODE_INLINEASM_OLD: { 3404 if (Record.size() < 2) 3405 return error("Invalid inlineasm record"); 3406 std::string AsmStr, ConstrStr; 3407 bool HasSideEffects = Record[0] & 1; 3408 bool IsAlignStack = Record[0] >> 1; 3409 unsigned AsmStrSize = Record[1]; 3410 if (2+AsmStrSize >= Record.size()) 3411 return error("Invalid inlineasm record"); 3412 unsigned ConstStrSize = Record[2+AsmStrSize]; 3413 if (3+AsmStrSize+ConstStrSize > Record.size()) 3414 return error("Invalid inlineasm record"); 3415 3416 for (unsigned i = 0; i != AsmStrSize; ++i) 3417 AsmStr += (char)Record[2+i]; 3418 for (unsigned i = 0; i != ConstStrSize; ++i) 3419 ConstrStr += (char)Record[3+AsmStrSize+i]; 3420 UpgradeInlineAsmString(&AsmStr); 3421 if (!CurElemTy) 3422 return error("Missing element type for old-style inlineasm"); 3423 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3424 HasSideEffects, IsAlignStack); 3425 break; 3426 } 3427 // This version adds support for the asm dialect keywords (e.g., 3428 // inteldialect). 3429 case bitc::CST_CODE_INLINEASM_OLD2: { 3430 if (Record.size() < 2) 3431 return error("Invalid inlineasm record"); 3432 std::string AsmStr, ConstrStr; 3433 bool HasSideEffects = Record[0] & 1; 3434 bool IsAlignStack = (Record[0] >> 1) & 1; 3435 unsigned AsmDialect = Record[0] >> 2; 3436 unsigned AsmStrSize = Record[1]; 3437 if (2+AsmStrSize >= Record.size()) 3438 return error("Invalid inlineasm record"); 3439 unsigned ConstStrSize = Record[2+AsmStrSize]; 3440 if (3+AsmStrSize+ConstStrSize > Record.size()) 3441 return error("Invalid inlineasm record"); 3442 3443 for (unsigned i = 0; i != AsmStrSize; ++i) 3444 AsmStr += (char)Record[2+i]; 3445 for (unsigned i = 0; i != ConstStrSize; ++i) 3446 ConstrStr += (char)Record[3+AsmStrSize+i]; 3447 UpgradeInlineAsmString(&AsmStr); 3448 if (!CurElemTy) 3449 return error("Missing element type for old-style inlineasm"); 3450 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3451 HasSideEffects, IsAlignStack, 3452 InlineAsm::AsmDialect(AsmDialect)); 3453 break; 3454 } 3455 // This version adds support for the unwind keyword. 3456 case bitc::CST_CODE_INLINEASM_OLD3: { 3457 if (Record.size() < 2) 3458 return error("Invalid inlineasm record"); 3459 unsigned OpNum = 0; 3460 std::string AsmStr, ConstrStr; 3461 bool HasSideEffects = Record[OpNum] & 1; 3462 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3463 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3464 bool CanThrow = (Record[OpNum] >> 3) & 1; 3465 ++OpNum; 3466 unsigned AsmStrSize = Record[OpNum]; 3467 ++OpNum; 3468 if (OpNum + AsmStrSize >= Record.size()) 3469 return error("Invalid inlineasm record"); 3470 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3471 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3472 return error("Invalid inlineasm record"); 3473 3474 for (unsigned i = 0; i != AsmStrSize; ++i) 3475 AsmStr += (char)Record[OpNum + i]; 3476 ++OpNum; 3477 for (unsigned i = 0; i != ConstStrSize; ++i) 3478 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3479 UpgradeInlineAsmString(&AsmStr); 3480 if (!CurElemTy) 3481 return error("Missing element type for old-style inlineasm"); 3482 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3483 HasSideEffects, IsAlignStack, 3484 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3485 break; 3486 } 3487 // This version adds explicit function type. 3488 case bitc::CST_CODE_INLINEASM: { 3489 if (Record.size() < 3) 3490 return error("Invalid inlineasm record"); 3491 unsigned OpNum = 0; 3492 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3493 ++OpNum; 3494 if (!FnTy) 3495 return error("Invalid inlineasm record"); 3496 std::string AsmStr, ConstrStr; 3497 bool HasSideEffects = Record[OpNum] & 1; 3498 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3499 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3500 bool CanThrow = (Record[OpNum] >> 3) & 1; 3501 ++OpNum; 3502 unsigned AsmStrSize = Record[OpNum]; 3503 ++OpNum; 3504 if (OpNum + AsmStrSize >= Record.size()) 3505 return error("Invalid inlineasm record"); 3506 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3507 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3508 return error("Invalid inlineasm record"); 3509 3510 for (unsigned i = 0; i != AsmStrSize; ++i) 3511 AsmStr += (char)Record[OpNum + i]; 3512 ++OpNum; 3513 for (unsigned i = 0; i != ConstStrSize; ++i) 3514 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3515 UpgradeInlineAsmString(&AsmStr); 3516 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3517 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3518 break; 3519 } 3520 case bitc::CST_CODE_BLOCKADDRESS:{ 3521 if (Record.size() < 3) 3522 return error("Invalid blockaddress record"); 3523 unsigned FnTyID = Record[0]; 3524 Type *FnTy = getTypeByID(FnTyID); 3525 if (!FnTy) 3526 return error("Invalid blockaddress record"); 3527 V = BitcodeConstant::create( 3528 Alloc, CurTy, 3529 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3530 Record[1]); 3531 break; 3532 } 3533 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3534 if (Record.size() < 2) 3535 return error("Invalid dso_local record"); 3536 unsigned GVTyID = Record[0]; 3537 Type *GVTy = getTypeByID(GVTyID); 3538 if (!GVTy) 3539 return error("Invalid dso_local record"); 3540 V = BitcodeConstant::create( 3541 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3542 break; 3543 } 3544 case bitc::CST_CODE_NO_CFI_VALUE: { 3545 if (Record.size() < 2) 3546 return error("Invalid no_cfi record"); 3547 unsigned GVTyID = Record[0]; 3548 Type *GVTy = getTypeByID(GVTyID); 3549 if (!GVTy) 3550 return error("Invalid no_cfi record"); 3551 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3552 Record[1]); 3553 break; 3554 } 3555 } 3556 3557 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3558 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3559 return Err; 3560 ++NextCstNo; 3561 } 3562 } 3563 3564 Error BitcodeReader::parseUseLists() { 3565 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3566 return Err; 3567 3568 // Read all the records. 3569 SmallVector<uint64_t, 64> Record; 3570 3571 while (true) { 3572 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3573 if (!MaybeEntry) 3574 return MaybeEntry.takeError(); 3575 BitstreamEntry Entry = MaybeEntry.get(); 3576 3577 switch (Entry.Kind) { 3578 case BitstreamEntry::SubBlock: // Handled for us already. 3579 case BitstreamEntry::Error: 3580 return error("Malformed block"); 3581 case BitstreamEntry::EndBlock: 3582 return Error::success(); 3583 case BitstreamEntry::Record: 3584 // The interesting case. 3585 break; 3586 } 3587 3588 // Read a use list record. 3589 Record.clear(); 3590 bool IsBB = false; 3591 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3592 if (!MaybeRecord) 3593 return MaybeRecord.takeError(); 3594 switch (MaybeRecord.get()) { 3595 default: // Default behavior: unknown type. 3596 break; 3597 case bitc::USELIST_CODE_BB: 3598 IsBB = true; 3599 [[fallthrough]]; 3600 case bitc::USELIST_CODE_DEFAULT: { 3601 unsigned RecordLength = Record.size(); 3602 if (RecordLength < 3) 3603 // Records should have at least an ID and two indexes. 3604 return error("Invalid record"); 3605 unsigned ID = Record.pop_back_val(); 3606 3607 Value *V; 3608 if (IsBB) { 3609 assert(ID < FunctionBBs.size() && "Basic block not found"); 3610 V = FunctionBBs[ID]; 3611 } else 3612 V = ValueList[ID]; 3613 unsigned NumUses = 0; 3614 SmallDenseMap<const Use *, unsigned, 16> Order; 3615 for (const Use &U : V->materialized_uses()) { 3616 if (++NumUses > Record.size()) 3617 break; 3618 Order[&U] = Record[NumUses - 1]; 3619 } 3620 if (Order.size() != Record.size() || NumUses > Record.size()) 3621 // Mismatches can happen if the functions are being materialized lazily 3622 // (out-of-order), or a value has been upgraded. 3623 break; 3624 3625 V->sortUseList([&](const Use &L, const Use &R) { 3626 return Order.lookup(&L) < Order.lookup(&R); 3627 }); 3628 break; 3629 } 3630 } 3631 } 3632 } 3633 3634 /// When we see the block for metadata, remember where it is and then skip it. 3635 /// This lets us lazily deserialize the metadata. 3636 Error BitcodeReader::rememberAndSkipMetadata() { 3637 // Save the current stream state. 3638 uint64_t CurBit = Stream.GetCurrentBitNo(); 3639 DeferredMetadataInfo.push_back(CurBit); 3640 3641 // Skip over the block for now. 3642 if (Error Err = Stream.SkipBlock()) 3643 return Err; 3644 return Error::success(); 3645 } 3646 3647 Error BitcodeReader::materializeMetadata() { 3648 for (uint64_t BitPos : DeferredMetadataInfo) { 3649 // Move the bit stream to the saved position. 3650 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3651 return JumpFailed; 3652 if (Error Err = MDLoader->parseModuleMetadata()) 3653 return Err; 3654 } 3655 3656 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3657 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3658 // multiple times. 3659 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3660 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3661 NamedMDNode *LinkerOpts = 3662 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3663 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3664 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3665 } 3666 } 3667 3668 DeferredMetadataInfo.clear(); 3669 return Error::success(); 3670 } 3671 3672 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3673 3674 /// When we see the block for a function body, remember where it is and then 3675 /// skip it. This lets us lazily deserialize the functions. 3676 Error BitcodeReader::rememberAndSkipFunctionBody() { 3677 // Get the function we are talking about. 3678 if (FunctionsWithBodies.empty()) 3679 return error("Insufficient function protos"); 3680 3681 Function *Fn = FunctionsWithBodies.back(); 3682 FunctionsWithBodies.pop_back(); 3683 3684 // Save the current stream state. 3685 uint64_t CurBit = Stream.GetCurrentBitNo(); 3686 assert( 3687 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3688 "Mismatch between VST and scanned function offsets"); 3689 DeferredFunctionInfo[Fn] = CurBit; 3690 3691 // Skip over the function block for now. 3692 if (Error Err = Stream.SkipBlock()) 3693 return Err; 3694 return Error::success(); 3695 } 3696 3697 Error BitcodeReader::globalCleanup() { 3698 // Patch the initializers for globals and aliases up. 3699 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3700 return Err; 3701 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3702 return error("Malformed global initializer set"); 3703 3704 // Look for intrinsic functions which need to be upgraded at some point 3705 // and functions that need to have their function attributes upgraded. 3706 for (Function &F : *TheModule) { 3707 MDLoader->upgradeDebugIntrinsics(F); 3708 Function *NewFn; 3709 if (UpgradeIntrinsicFunction(&F, NewFn)) 3710 UpgradedIntrinsics[&F] = NewFn; 3711 // Look for functions that rely on old function attribute behavior. 3712 UpgradeFunctionAttributes(F); 3713 } 3714 3715 // Look for global variables which need to be renamed. 3716 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3717 for (GlobalVariable &GV : TheModule->globals()) 3718 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3719 UpgradedVariables.emplace_back(&GV, Upgraded); 3720 for (auto &Pair : UpgradedVariables) { 3721 Pair.first->eraseFromParent(); 3722 TheModule->insertGlobalVariable(Pair.second); 3723 } 3724 3725 // Force deallocation of memory for these vectors to favor the client that 3726 // want lazy deserialization. 3727 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3728 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3729 return Error::success(); 3730 } 3731 3732 /// Support for lazy parsing of function bodies. This is required if we 3733 /// either have an old bitcode file without a VST forward declaration record, 3734 /// or if we have an anonymous function being materialized, since anonymous 3735 /// functions do not have a name and are therefore not in the VST. 3736 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3737 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3738 return JumpFailed; 3739 3740 if (Stream.AtEndOfStream()) 3741 return error("Could not find function in stream"); 3742 3743 if (!SeenFirstFunctionBody) 3744 return error("Trying to materialize functions before seeing function blocks"); 3745 3746 // An old bitcode file with the symbol table at the end would have 3747 // finished the parse greedily. 3748 assert(SeenValueSymbolTable); 3749 3750 SmallVector<uint64_t, 64> Record; 3751 3752 while (true) { 3753 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3754 if (!MaybeEntry) 3755 return MaybeEntry.takeError(); 3756 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3757 3758 switch (Entry.Kind) { 3759 default: 3760 return error("Expect SubBlock"); 3761 case BitstreamEntry::SubBlock: 3762 switch (Entry.ID) { 3763 default: 3764 return error("Expect function block"); 3765 case bitc::FUNCTION_BLOCK_ID: 3766 if (Error Err = rememberAndSkipFunctionBody()) 3767 return Err; 3768 NextUnreadBit = Stream.GetCurrentBitNo(); 3769 return Error::success(); 3770 } 3771 } 3772 } 3773 } 3774 3775 Error BitcodeReaderBase::readBlockInfo() { 3776 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3777 Stream.ReadBlockInfoBlock(); 3778 if (!MaybeNewBlockInfo) 3779 return MaybeNewBlockInfo.takeError(); 3780 std::optional<BitstreamBlockInfo> NewBlockInfo = 3781 std::move(MaybeNewBlockInfo.get()); 3782 if (!NewBlockInfo) 3783 return error("Malformed block"); 3784 BlockInfo = std::move(*NewBlockInfo); 3785 return Error::success(); 3786 } 3787 3788 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3789 // v1: [selection_kind, name] 3790 // v2: [strtab_offset, strtab_size, selection_kind] 3791 StringRef Name; 3792 std::tie(Name, Record) = readNameFromStrtab(Record); 3793 3794 if (Record.empty()) 3795 return error("Invalid record"); 3796 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3797 std::string OldFormatName; 3798 if (!UseStrtab) { 3799 if (Record.size() < 2) 3800 return error("Invalid record"); 3801 unsigned ComdatNameSize = Record[1]; 3802 if (ComdatNameSize > Record.size() - 2) 3803 return error("Comdat name size too large"); 3804 OldFormatName.reserve(ComdatNameSize); 3805 for (unsigned i = 0; i != ComdatNameSize; ++i) 3806 OldFormatName += (char)Record[2 + i]; 3807 Name = OldFormatName; 3808 } 3809 Comdat *C = TheModule->getOrInsertComdat(Name); 3810 C->setSelectionKind(SK); 3811 ComdatList.push_back(C); 3812 return Error::success(); 3813 } 3814 3815 static void inferDSOLocal(GlobalValue *GV) { 3816 // infer dso_local from linkage and visibility if it is not encoded. 3817 if (GV->hasLocalLinkage() || 3818 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3819 GV->setDSOLocal(true); 3820 } 3821 3822 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3823 GlobalValue::SanitizerMetadata Meta; 3824 if (V & (1 << 0)) 3825 Meta.NoAddress = true; 3826 if (V & (1 << 1)) 3827 Meta.NoHWAddress = true; 3828 if (V & (1 << 2)) 3829 Meta.Memtag = true; 3830 if (V & (1 << 3)) 3831 Meta.IsDynInit = true; 3832 return Meta; 3833 } 3834 3835 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3836 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3837 // visibility, threadlocal, unnamed_addr, externally_initialized, 3838 // dllstorageclass, comdat, attributes, preemption specifier, 3839 // partition strtab offset, partition strtab size] (name in VST) 3840 // v2: [strtab_offset, strtab_size, v1] 3841 // v3: [v2, code_model] 3842 StringRef Name; 3843 std::tie(Name, Record) = readNameFromStrtab(Record); 3844 3845 if (Record.size() < 6) 3846 return error("Invalid record"); 3847 unsigned TyID = Record[0]; 3848 Type *Ty = getTypeByID(TyID); 3849 if (!Ty) 3850 return error("Invalid record"); 3851 bool isConstant = Record[1] & 1; 3852 bool explicitType = Record[1] & 2; 3853 unsigned AddressSpace; 3854 if (explicitType) { 3855 AddressSpace = Record[1] >> 2; 3856 } else { 3857 if (!Ty->isPointerTy()) 3858 return error("Invalid type for value"); 3859 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3860 TyID = getContainedTypeID(TyID); 3861 Ty = getTypeByID(TyID); 3862 if (!Ty) 3863 return error("Missing element type for old-style global"); 3864 } 3865 3866 uint64_t RawLinkage = Record[3]; 3867 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3868 MaybeAlign Alignment; 3869 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3870 return Err; 3871 std::string Section; 3872 if (Record[5]) { 3873 if (Record[5] - 1 >= SectionTable.size()) 3874 return error("Invalid ID"); 3875 Section = SectionTable[Record[5] - 1]; 3876 } 3877 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3878 // Local linkage must have default visibility. 3879 // auto-upgrade `hidden` and `protected` for old bitcode. 3880 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3881 Visibility = getDecodedVisibility(Record[6]); 3882 3883 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3884 if (Record.size() > 7) 3885 TLM = getDecodedThreadLocalMode(Record[7]); 3886 3887 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3888 if (Record.size() > 8) 3889 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3890 3891 bool ExternallyInitialized = false; 3892 if (Record.size() > 9) 3893 ExternallyInitialized = Record[9]; 3894 3895 GlobalVariable *NewGV = 3896 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3897 nullptr, TLM, AddressSpace, ExternallyInitialized); 3898 if (Alignment) 3899 NewGV->setAlignment(*Alignment); 3900 if (!Section.empty()) 3901 NewGV->setSection(Section); 3902 NewGV->setVisibility(Visibility); 3903 NewGV->setUnnamedAddr(UnnamedAddr); 3904 3905 if (Record.size() > 10) { 3906 // A GlobalValue with local linkage cannot have a DLL storage class. 3907 if (!NewGV->hasLocalLinkage()) { 3908 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3909 } 3910 } else { 3911 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3912 } 3913 3914 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3915 3916 // Remember which value to use for the global initializer. 3917 if (unsigned InitID = Record[2]) 3918 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3919 3920 if (Record.size() > 11) { 3921 if (unsigned ComdatID = Record[11]) { 3922 if (ComdatID > ComdatList.size()) 3923 return error("Invalid global variable comdat ID"); 3924 NewGV->setComdat(ComdatList[ComdatID - 1]); 3925 } 3926 } else if (hasImplicitComdat(RawLinkage)) { 3927 ImplicitComdatObjects.insert(NewGV); 3928 } 3929 3930 if (Record.size() > 12) { 3931 auto AS = getAttributes(Record[12]).getFnAttrs(); 3932 NewGV->setAttributes(AS); 3933 } 3934 3935 if (Record.size() > 13) { 3936 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3937 } 3938 inferDSOLocal(NewGV); 3939 3940 // Check whether we have enough values to read a partition name. 3941 if (Record.size() > 15) 3942 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3943 3944 if (Record.size() > 16 && Record[16]) { 3945 llvm::GlobalValue::SanitizerMetadata Meta = 3946 deserializeSanitizerMetadata(Record[16]); 3947 NewGV->setSanitizerMetadata(Meta); 3948 } 3949 3950 if (Record.size() > 17 && Record[17]) { 3951 if (auto CM = getDecodedCodeModel(Record[17])) 3952 NewGV->setCodeModel(*CM); 3953 else 3954 return error("Invalid global variable code model"); 3955 } 3956 3957 return Error::success(); 3958 } 3959 3960 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 3961 if (ValueTypeCallback) { 3962 (*ValueTypeCallback)( 3963 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 3964 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 3965 } 3966 } 3967 3968 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3969 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3970 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3971 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3972 // v2: [strtab_offset, strtab_size, v1] 3973 StringRef Name; 3974 std::tie(Name, Record) = readNameFromStrtab(Record); 3975 3976 if (Record.size() < 8) 3977 return error("Invalid record"); 3978 unsigned FTyID = Record[0]; 3979 Type *FTy = getTypeByID(FTyID); 3980 if (!FTy) 3981 return error("Invalid record"); 3982 if (isa<PointerType>(FTy)) { 3983 FTyID = getContainedTypeID(FTyID, 0); 3984 FTy = getTypeByID(FTyID); 3985 if (!FTy) 3986 return error("Missing element type for old-style function"); 3987 } 3988 3989 if (!isa<FunctionType>(FTy)) 3990 return error("Invalid type for value"); 3991 auto CC = static_cast<CallingConv::ID>(Record[1]); 3992 if (CC & ~CallingConv::MaxID) 3993 return error("Invalid calling convention ID"); 3994 3995 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3996 if (Record.size() > 16) 3997 AddrSpace = Record[16]; 3998 3999 Function *Func = 4000 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4001 AddrSpace, Name, TheModule); 4002 4003 assert(Func->getFunctionType() == FTy && 4004 "Incorrect fully specified type provided for function"); 4005 FunctionTypeIDs[Func] = FTyID; 4006 4007 Func->setCallingConv(CC); 4008 bool isProto = Record[2]; 4009 uint64_t RawLinkage = Record[3]; 4010 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4011 Func->setAttributes(getAttributes(Record[4])); 4012 callValueTypeCallback(Func, FTyID); 4013 4014 // Upgrade any old-style byval or sret without a type by propagating the 4015 // argument's pointee type. There should be no opaque pointers where the byval 4016 // type is implicit. 4017 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4018 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4019 Attribute::InAlloca}) { 4020 if (!Func->hasParamAttribute(i, Kind)) 4021 continue; 4022 4023 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4024 continue; 4025 4026 Func->removeParamAttr(i, Kind); 4027 4028 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4029 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4030 if (!PtrEltTy) 4031 return error("Missing param element type for attribute upgrade"); 4032 4033 Attribute NewAttr; 4034 switch (Kind) { 4035 case Attribute::ByVal: 4036 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4037 break; 4038 case Attribute::StructRet: 4039 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4040 break; 4041 case Attribute::InAlloca: 4042 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4043 break; 4044 default: 4045 llvm_unreachable("not an upgraded type attribute"); 4046 } 4047 4048 Func->addParamAttr(i, NewAttr); 4049 } 4050 } 4051 4052 if (Func->getCallingConv() == CallingConv::X86_INTR && 4053 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4054 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4055 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4056 if (!ByValTy) 4057 return error("Missing param element type for x86_intrcc upgrade"); 4058 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4059 Func->addParamAttr(0, NewAttr); 4060 } 4061 4062 MaybeAlign Alignment; 4063 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4064 return Err; 4065 if (Alignment) 4066 Func->setAlignment(*Alignment); 4067 if (Record[6]) { 4068 if (Record[6] - 1 >= SectionTable.size()) 4069 return error("Invalid ID"); 4070 Func->setSection(SectionTable[Record[6] - 1]); 4071 } 4072 // Local linkage must have default visibility. 4073 // auto-upgrade `hidden` and `protected` for old bitcode. 4074 if (!Func->hasLocalLinkage()) 4075 Func->setVisibility(getDecodedVisibility(Record[7])); 4076 if (Record.size() > 8 && Record[8]) { 4077 if (Record[8] - 1 >= GCTable.size()) 4078 return error("Invalid ID"); 4079 Func->setGC(GCTable[Record[8] - 1]); 4080 } 4081 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4082 if (Record.size() > 9) 4083 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4084 Func->setUnnamedAddr(UnnamedAddr); 4085 4086 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4087 if (Record.size() > 10) 4088 OperandInfo.Prologue = Record[10]; 4089 4090 if (Record.size() > 11) { 4091 // A GlobalValue with local linkage cannot have a DLL storage class. 4092 if (!Func->hasLocalLinkage()) { 4093 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4094 } 4095 } else { 4096 upgradeDLLImportExportLinkage(Func, RawLinkage); 4097 } 4098 4099 if (Record.size() > 12) { 4100 if (unsigned ComdatID = Record[12]) { 4101 if (ComdatID > ComdatList.size()) 4102 return error("Invalid function comdat ID"); 4103 Func->setComdat(ComdatList[ComdatID - 1]); 4104 } 4105 } else if (hasImplicitComdat(RawLinkage)) { 4106 ImplicitComdatObjects.insert(Func); 4107 } 4108 4109 if (Record.size() > 13) 4110 OperandInfo.Prefix = Record[13]; 4111 4112 if (Record.size() > 14) 4113 OperandInfo.PersonalityFn = Record[14]; 4114 4115 if (Record.size() > 15) { 4116 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4117 } 4118 inferDSOLocal(Func); 4119 4120 // Record[16] is the address space number. 4121 4122 // Check whether we have enough values to read a partition name. Also make 4123 // sure Strtab has enough values. 4124 if (Record.size() > 18 && Strtab.data() && 4125 Record[17] + Record[18] <= Strtab.size()) { 4126 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4127 } 4128 4129 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4130 4131 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4132 FunctionOperands.push_back(OperandInfo); 4133 4134 // If this is a function with a body, remember the prototype we are 4135 // creating now, so that we can match up the body with them later. 4136 if (!isProto) { 4137 Func->setIsMaterializable(true); 4138 FunctionsWithBodies.push_back(Func); 4139 DeferredFunctionInfo[Func] = 0; 4140 } 4141 return Error::success(); 4142 } 4143 4144 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4145 unsigned BitCode, ArrayRef<uint64_t> Record) { 4146 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4147 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4148 // dllstorageclass, threadlocal, unnamed_addr, 4149 // preemption specifier] (name in VST) 4150 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4151 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4152 // preemption specifier] (name in VST) 4153 // v2: [strtab_offset, strtab_size, v1] 4154 StringRef Name; 4155 std::tie(Name, Record) = readNameFromStrtab(Record); 4156 4157 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4158 if (Record.size() < (3 + (unsigned)NewRecord)) 4159 return error("Invalid record"); 4160 unsigned OpNum = 0; 4161 unsigned TypeID = Record[OpNum++]; 4162 Type *Ty = getTypeByID(TypeID); 4163 if (!Ty) 4164 return error("Invalid record"); 4165 4166 unsigned AddrSpace; 4167 if (!NewRecord) { 4168 auto *PTy = dyn_cast<PointerType>(Ty); 4169 if (!PTy) 4170 return error("Invalid type for value"); 4171 AddrSpace = PTy->getAddressSpace(); 4172 TypeID = getContainedTypeID(TypeID); 4173 Ty = getTypeByID(TypeID); 4174 if (!Ty) 4175 return error("Missing element type for old-style indirect symbol"); 4176 } else { 4177 AddrSpace = Record[OpNum++]; 4178 } 4179 4180 auto Val = Record[OpNum++]; 4181 auto Linkage = Record[OpNum++]; 4182 GlobalValue *NewGA; 4183 if (BitCode == bitc::MODULE_CODE_ALIAS || 4184 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4185 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4186 TheModule); 4187 else 4188 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4189 nullptr, TheModule); 4190 4191 // Local linkage must have default visibility. 4192 // auto-upgrade `hidden` and `protected` for old bitcode. 4193 if (OpNum != Record.size()) { 4194 auto VisInd = OpNum++; 4195 if (!NewGA->hasLocalLinkage()) 4196 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4197 } 4198 if (BitCode == bitc::MODULE_CODE_ALIAS || 4199 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4200 if (OpNum != Record.size()) { 4201 auto S = Record[OpNum++]; 4202 // A GlobalValue with local linkage cannot have a DLL storage class. 4203 if (!NewGA->hasLocalLinkage()) 4204 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4205 } 4206 else 4207 upgradeDLLImportExportLinkage(NewGA, Linkage); 4208 if (OpNum != Record.size()) 4209 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4210 if (OpNum != Record.size()) 4211 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4212 } 4213 if (OpNum != Record.size()) 4214 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4215 inferDSOLocal(NewGA); 4216 4217 // Check whether we have enough values to read a partition name. 4218 if (OpNum + 1 < Record.size()) { 4219 NewGA->setPartition( 4220 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4221 OpNum += 2; 4222 } 4223 4224 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4225 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4226 return Error::success(); 4227 } 4228 4229 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4230 bool ShouldLazyLoadMetadata, 4231 ParserCallbacks Callbacks) { 4232 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4233 if (ResumeBit) { 4234 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4235 return JumpFailed; 4236 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4237 return Err; 4238 4239 SmallVector<uint64_t, 64> Record; 4240 4241 // Parts of bitcode parsing depend on the datalayout. Make sure we 4242 // finalize the datalayout before we run any of that code. 4243 bool ResolvedDataLayout = false; 4244 // In order to support importing modules with illegal data layout strings, 4245 // delay parsing the data layout string until after upgrades and overrides 4246 // have been applied, allowing to fix illegal data layout strings. 4247 // Initialize to the current module's layout string in case none is specified. 4248 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4249 4250 auto ResolveDataLayout = [&]() -> Error { 4251 if (ResolvedDataLayout) 4252 return Error::success(); 4253 4254 // Datalayout and triple can't be parsed after this point. 4255 ResolvedDataLayout = true; 4256 4257 // Auto-upgrade the layout string 4258 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4259 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4260 4261 // Apply override 4262 if (Callbacks.DataLayout) { 4263 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4264 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4265 TentativeDataLayoutStr = *LayoutOverride; 4266 } 4267 4268 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4269 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4270 if (!MaybeDL) 4271 return MaybeDL.takeError(); 4272 4273 TheModule->setDataLayout(MaybeDL.get()); 4274 return Error::success(); 4275 }; 4276 4277 // Read all the records for this module. 4278 while (true) { 4279 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4280 if (!MaybeEntry) 4281 return MaybeEntry.takeError(); 4282 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4283 4284 switch (Entry.Kind) { 4285 case BitstreamEntry::Error: 4286 return error("Malformed block"); 4287 case BitstreamEntry::EndBlock: 4288 if (Error Err = ResolveDataLayout()) 4289 return Err; 4290 return globalCleanup(); 4291 4292 case BitstreamEntry::SubBlock: 4293 switch (Entry.ID) { 4294 default: // Skip unknown content. 4295 if (Error Err = Stream.SkipBlock()) 4296 return Err; 4297 break; 4298 case bitc::BLOCKINFO_BLOCK_ID: 4299 if (Error Err = readBlockInfo()) 4300 return Err; 4301 break; 4302 case bitc::PARAMATTR_BLOCK_ID: 4303 if (Error Err = parseAttributeBlock()) 4304 return Err; 4305 break; 4306 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4307 if (Error Err = parseAttributeGroupBlock()) 4308 return Err; 4309 break; 4310 case bitc::TYPE_BLOCK_ID_NEW: 4311 if (Error Err = parseTypeTable()) 4312 return Err; 4313 break; 4314 case bitc::VALUE_SYMTAB_BLOCK_ID: 4315 if (!SeenValueSymbolTable) { 4316 // Either this is an old form VST without function index and an 4317 // associated VST forward declaration record (which would have caused 4318 // the VST to be jumped to and parsed before it was encountered 4319 // normally in the stream), or there were no function blocks to 4320 // trigger an earlier parsing of the VST. 4321 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4322 if (Error Err = parseValueSymbolTable()) 4323 return Err; 4324 SeenValueSymbolTable = true; 4325 } else { 4326 // We must have had a VST forward declaration record, which caused 4327 // the parser to jump to and parse the VST earlier. 4328 assert(VSTOffset > 0); 4329 if (Error Err = Stream.SkipBlock()) 4330 return Err; 4331 } 4332 break; 4333 case bitc::CONSTANTS_BLOCK_ID: 4334 if (Error Err = parseConstants()) 4335 return Err; 4336 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4337 return Err; 4338 break; 4339 case bitc::METADATA_BLOCK_ID: 4340 if (ShouldLazyLoadMetadata) { 4341 if (Error Err = rememberAndSkipMetadata()) 4342 return Err; 4343 break; 4344 } 4345 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4346 if (Error Err = MDLoader->parseModuleMetadata()) 4347 return Err; 4348 break; 4349 case bitc::METADATA_KIND_BLOCK_ID: 4350 if (Error Err = MDLoader->parseMetadataKinds()) 4351 return Err; 4352 break; 4353 case bitc::FUNCTION_BLOCK_ID: 4354 if (Error Err = ResolveDataLayout()) 4355 return Err; 4356 4357 // If this is the first function body we've seen, reverse the 4358 // FunctionsWithBodies list. 4359 if (!SeenFirstFunctionBody) { 4360 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4361 if (Error Err = globalCleanup()) 4362 return Err; 4363 SeenFirstFunctionBody = true; 4364 } 4365 4366 if (VSTOffset > 0) { 4367 // If we have a VST forward declaration record, make sure we 4368 // parse the VST now if we haven't already. It is needed to 4369 // set up the DeferredFunctionInfo vector for lazy reading. 4370 if (!SeenValueSymbolTable) { 4371 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4372 return Err; 4373 SeenValueSymbolTable = true; 4374 // Fall through so that we record the NextUnreadBit below. 4375 // This is necessary in case we have an anonymous function that 4376 // is later materialized. Since it will not have a VST entry we 4377 // need to fall back to the lazy parse to find its offset. 4378 } else { 4379 // If we have a VST forward declaration record, but have already 4380 // parsed the VST (just above, when the first function body was 4381 // encountered here), then we are resuming the parse after 4382 // materializing functions. The ResumeBit points to the 4383 // start of the last function block recorded in the 4384 // DeferredFunctionInfo map. Skip it. 4385 if (Error Err = Stream.SkipBlock()) 4386 return Err; 4387 continue; 4388 } 4389 } 4390 4391 // Support older bitcode files that did not have the function 4392 // index in the VST, nor a VST forward declaration record, as 4393 // well as anonymous functions that do not have VST entries. 4394 // Build the DeferredFunctionInfo vector on the fly. 4395 if (Error Err = rememberAndSkipFunctionBody()) 4396 return Err; 4397 4398 // Suspend parsing when we reach the function bodies. Subsequent 4399 // materialization calls will resume it when necessary. If the bitcode 4400 // file is old, the symbol table will be at the end instead and will not 4401 // have been seen yet. In this case, just finish the parse now. 4402 if (SeenValueSymbolTable) { 4403 NextUnreadBit = Stream.GetCurrentBitNo(); 4404 // After the VST has been parsed, we need to make sure intrinsic name 4405 // are auto-upgraded. 4406 return globalCleanup(); 4407 } 4408 break; 4409 case bitc::USELIST_BLOCK_ID: 4410 if (Error Err = parseUseLists()) 4411 return Err; 4412 break; 4413 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4414 if (Error Err = parseOperandBundleTags()) 4415 return Err; 4416 break; 4417 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4418 if (Error Err = parseSyncScopeNames()) 4419 return Err; 4420 break; 4421 } 4422 continue; 4423 4424 case BitstreamEntry::Record: 4425 // The interesting case. 4426 break; 4427 } 4428 4429 // Read a record. 4430 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4431 if (!MaybeBitCode) 4432 return MaybeBitCode.takeError(); 4433 switch (unsigned BitCode = MaybeBitCode.get()) { 4434 default: break; // Default behavior, ignore unknown content. 4435 case bitc::MODULE_CODE_VERSION: { 4436 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4437 if (!VersionOrErr) 4438 return VersionOrErr.takeError(); 4439 UseRelativeIDs = *VersionOrErr >= 1; 4440 break; 4441 } 4442 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4443 if (ResolvedDataLayout) 4444 return error("target triple too late in module"); 4445 std::string S; 4446 if (convertToString(Record, 0, S)) 4447 return error("Invalid record"); 4448 TheModule->setTargetTriple(S); 4449 break; 4450 } 4451 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4452 if (ResolvedDataLayout) 4453 return error("datalayout too late in module"); 4454 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4455 return error("Invalid record"); 4456 break; 4457 } 4458 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4459 std::string S; 4460 if (convertToString(Record, 0, S)) 4461 return error("Invalid record"); 4462 TheModule->setModuleInlineAsm(S); 4463 break; 4464 } 4465 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4466 // Deprecated, but still needed to read old bitcode files. 4467 std::string S; 4468 if (convertToString(Record, 0, S)) 4469 return error("Invalid record"); 4470 // Ignore value. 4471 break; 4472 } 4473 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4474 std::string S; 4475 if (convertToString(Record, 0, S)) 4476 return error("Invalid record"); 4477 SectionTable.push_back(S); 4478 break; 4479 } 4480 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4481 std::string S; 4482 if (convertToString(Record, 0, S)) 4483 return error("Invalid record"); 4484 GCTable.push_back(S); 4485 break; 4486 } 4487 case bitc::MODULE_CODE_COMDAT: 4488 if (Error Err = parseComdatRecord(Record)) 4489 return Err; 4490 break; 4491 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4492 // written by ThinLinkBitcodeWriter. See 4493 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4494 // record 4495 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4496 case bitc::MODULE_CODE_GLOBALVAR: 4497 if (Error Err = parseGlobalVarRecord(Record)) 4498 return Err; 4499 break; 4500 case bitc::MODULE_CODE_FUNCTION: 4501 if (Error Err = ResolveDataLayout()) 4502 return Err; 4503 if (Error Err = parseFunctionRecord(Record)) 4504 return Err; 4505 break; 4506 case bitc::MODULE_CODE_IFUNC: 4507 case bitc::MODULE_CODE_ALIAS: 4508 case bitc::MODULE_CODE_ALIAS_OLD: 4509 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4510 return Err; 4511 break; 4512 /// MODULE_CODE_VSTOFFSET: [offset] 4513 case bitc::MODULE_CODE_VSTOFFSET: 4514 if (Record.empty()) 4515 return error("Invalid record"); 4516 // Note that we subtract 1 here because the offset is relative to one word 4517 // before the start of the identification or module block, which was 4518 // historically always the start of the regular bitcode header. 4519 VSTOffset = Record[0] - 1; 4520 break; 4521 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4522 case bitc::MODULE_CODE_SOURCE_FILENAME: 4523 SmallString<128> ValueName; 4524 if (convertToString(Record, 0, ValueName)) 4525 return error("Invalid record"); 4526 TheModule->setSourceFileName(ValueName); 4527 break; 4528 } 4529 Record.clear(); 4530 } 4531 this->ValueTypeCallback = std::nullopt; 4532 return Error::success(); 4533 } 4534 4535 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4536 bool IsImporting, 4537 ParserCallbacks Callbacks) { 4538 TheModule = M; 4539 MetadataLoaderCallbacks MDCallbacks; 4540 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4541 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4542 return getContainedTypeID(I, J); 4543 }; 4544 MDCallbacks.MDType = Callbacks.MDType; 4545 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4546 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4547 } 4548 4549 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4550 if (!isa<PointerType>(PtrType)) 4551 return error("Load/Store operand is not a pointer type"); 4552 if (!PointerType::isLoadableOrStorableType(ValType)) 4553 return error("Cannot load/store from pointer"); 4554 return Error::success(); 4555 } 4556 4557 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4558 ArrayRef<unsigned> ArgTyIDs) { 4559 AttributeList Attrs = CB->getAttributes(); 4560 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4561 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4562 Attribute::InAlloca}) { 4563 if (!Attrs.hasParamAttr(i, Kind) || 4564 Attrs.getParamAttr(i, Kind).getValueAsType()) 4565 continue; 4566 4567 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4568 if (!PtrEltTy) 4569 return error("Missing element type for typed attribute upgrade"); 4570 4571 Attribute NewAttr; 4572 switch (Kind) { 4573 case Attribute::ByVal: 4574 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4575 break; 4576 case Attribute::StructRet: 4577 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4578 break; 4579 case Attribute::InAlloca: 4580 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4581 break; 4582 default: 4583 llvm_unreachable("not an upgraded type attribute"); 4584 } 4585 4586 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4587 } 4588 } 4589 4590 if (CB->isInlineAsm()) { 4591 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4592 unsigned ArgNo = 0; 4593 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4594 if (!CI.hasArg()) 4595 continue; 4596 4597 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4598 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4599 if (!ElemTy) 4600 return error("Missing element type for inline asm upgrade"); 4601 Attrs = Attrs.addParamAttribute( 4602 Context, ArgNo, 4603 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4604 } 4605 4606 ArgNo++; 4607 } 4608 } 4609 4610 switch (CB->getIntrinsicID()) { 4611 case Intrinsic::preserve_array_access_index: 4612 case Intrinsic::preserve_struct_access_index: 4613 case Intrinsic::aarch64_ldaxr: 4614 case Intrinsic::aarch64_ldxr: 4615 case Intrinsic::aarch64_stlxr: 4616 case Intrinsic::aarch64_stxr: 4617 case Intrinsic::arm_ldaex: 4618 case Intrinsic::arm_ldrex: 4619 case Intrinsic::arm_stlex: 4620 case Intrinsic::arm_strex: { 4621 unsigned ArgNo; 4622 switch (CB->getIntrinsicID()) { 4623 case Intrinsic::aarch64_stlxr: 4624 case Intrinsic::aarch64_stxr: 4625 case Intrinsic::arm_stlex: 4626 case Intrinsic::arm_strex: 4627 ArgNo = 1; 4628 break; 4629 default: 4630 ArgNo = 0; 4631 break; 4632 } 4633 if (!Attrs.getParamElementType(ArgNo)) { 4634 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4635 if (!ElTy) 4636 return error("Missing element type for elementtype upgrade"); 4637 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4638 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4639 } 4640 break; 4641 } 4642 default: 4643 break; 4644 } 4645 4646 CB->setAttributes(Attrs); 4647 return Error::success(); 4648 } 4649 4650 /// Lazily parse the specified function body block. 4651 Error BitcodeReader::parseFunctionBody(Function *F) { 4652 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4653 return Err; 4654 4655 // Unexpected unresolved metadata when parsing function. 4656 if (MDLoader->hasFwdRefs()) 4657 return error("Invalid function metadata: incoming forward references"); 4658 4659 InstructionList.clear(); 4660 unsigned ModuleValueListSize = ValueList.size(); 4661 unsigned ModuleMDLoaderSize = MDLoader->size(); 4662 4663 // Add all the function arguments to the value table. 4664 unsigned ArgNo = 0; 4665 unsigned FTyID = FunctionTypeIDs[F]; 4666 for (Argument &I : F->args()) { 4667 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4668 assert(I.getType() == getTypeByID(ArgTyID) && 4669 "Incorrect fully specified type for Function Argument"); 4670 ValueList.push_back(&I, ArgTyID); 4671 ++ArgNo; 4672 } 4673 unsigned NextValueNo = ValueList.size(); 4674 BasicBlock *CurBB = nullptr; 4675 unsigned CurBBNo = 0; 4676 // Block into which constant expressions from phi nodes are materialized. 4677 BasicBlock *PhiConstExprBB = nullptr; 4678 // Edge blocks for phi nodes into which constant expressions have been 4679 // expanded. 4680 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4681 ConstExprEdgeBBs; 4682 4683 DebugLoc LastLoc; 4684 auto getLastInstruction = [&]() -> Instruction * { 4685 if (CurBB && !CurBB->empty()) 4686 return &CurBB->back(); 4687 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4688 !FunctionBBs[CurBBNo - 1]->empty()) 4689 return &FunctionBBs[CurBBNo - 1]->back(); 4690 return nullptr; 4691 }; 4692 4693 std::vector<OperandBundleDef> OperandBundles; 4694 4695 // Read all the records. 4696 SmallVector<uint64_t, 64> Record; 4697 4698 while (true) { 4699 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4700 if (!MaybeEntry) 4701 return MaybeEntry.takeError(); 4702 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4703 4704 switch (Entry.Kind) { 4705 case BitstreamEntry::Error: 4706 return error("Malformed block"); 4707 case BitstreamEntry::EndBlock: 4708 goto OutOfRecordLoop; 4709 4710 case BitstreamEntry::SubBlock: 4711 switch (Entry.ID) { 4712 default: // Skip unknown content. 4713 if (Error Err = Stream.SkipBlock()) 4714 return Err; 4715 break; 4716 case bitc::CONSTANTS_BLOCK_ID: 4717 if (Error Err = parseConstants()) 4718 return Err; 4719 NextValueNo = ValueList.size(); 4720 break; 4721 case bitc::VALUE_SYMTAB_BLOCK_ID: 4722 if (Error Err = parseValueSymbolTable()) 4723 return Err; 4724 break; 4725 case bitc::METADATA_ATTACHMENT_ID: 4726 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4727 return Err; 4728 break; 4729 case bitc::METADATA_BLOCK_ID: 4730 assert(DeferredMetadataInfo.empty() && 4731 "Must read all module-level metadata before function-level"); 4732 if (Error Err = MDLoader->parseFunctionMetadata()) 4733 return Err; 4734 break; 4735 case bitc::USELIST_BLOCK_ID: 4736 if (Error Err = parseUseLists()) 4737 return Err; 4738 break; 4739 } 4740 continue; 4741 4742 case BitstreamEntry::Record: 4743 // The interesting case. 4744 break; 4745 } 4746 4747 // Read a record. 4748 Record.clear(); 4749 Instruction *I = nullptr; 4750 unsigned ResTypeID = InvalidTypeID; 4751 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4752 if (!MaybeBitCode) 4753 return MaybeBitCode.takeError(); 4754 switch (unsigned BitCode = MaybeBitCode.get()) { 4755 default: // Default behavior: reject 4756 return error("Invalid value"); 4757 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4758 if (Record.empty() || Record[0] == 0) 4759 return error("Invalid record"); 4760 // Create all the basic blocks for the function. 4761 FunctionBBs.resize(Record[0]); 4762 4763 // See if anything took the address of blocks in this function. 4764 auto BBFRI = BasicBlockFwdRefs.find(F); 4765 if (BBFRI == BasicBlockFwdRefs.end()) { 4766 for (BasicBlock *&BB : FunctionBBs) 4767 BB = BasicBlock::Create(Context, "", F); 4768 } else { 4769 auto &BBRefs = BBFRI->second; 4770 // Check for invalid basic block references. 4771 if (BBRefs.size() > FunctionBBs.size()) 4772 return error("Invalid ID"); 4773 assert(!BBRefs.empty() && "Unexpected empty array"); 4774 assert(!BBRefs.front() && "Invalid reference to entry block"); 4775 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4776 ++I) 4777 if (I < RE && BBRefs[I]) { 4778 BBRefs[I]->insertInto(F); 4779 FunctionBBs[I] = BBRefs[I]; 4780 } else { 4781 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4782 } 4783 4784 // Erase from the table. 4785 BasicBlockFwdRefs.erase(BBFRI); 4786 } 4787 4788 CurBB = FunctionBBs[0]; 4789 continue; 4790 } 4791 4792 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4793 // The record should not be emitted if it's an empty list. 4794 if (Record.empty()) 4795 return error("Invalid record"); 4796 // When we have the RARE case of a BlockAddress Constant that is not 4797 // scoped to the Function it refers to, we need to conservatively 4798 // materialize the referred to Function, regardless of whether or not 4799 // that Function will ultimately be linked, otherwise users of 4800 // BitcodeReader might start splicing out Function bodies such that we 4801 // might no longer be able to materialize the BlockAddress since the 4802 // BasicBlock (and entire body of the Function) the BlockAddress refers 4803 // to may have been moved. In the case that the user of BitcodeReader 4804 // decides ultimately not to link the Function body, materializing here 4805 // could be considered wasteful, but it's better than a deserialization 4806 // failure as described. This keeps BitcodeReader unaware of complex 4807 // linkage policy decisions such as those use by LTO, leaving those 4808 // decisions "one layer up." 4809 for (uint64_t ValID : Record) 4810 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4811 BackwardRefFunctions.push_back(F); 4812 else 4813 return error("Invalid record"); 4814 4815 continue; 4816 4817 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4818 // This record indicates that the last instruction is at the same 4819 // location as the previous instruction with a location. 4820 I = getLastInstruction(); 4821 4822 if (!I) 4823 return error("Invalid record"); 4824 I->setDebugLoc(LastLoc); 4825 I = nullptr; 4826 continue; 4827 4828 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4829 I = getLastInstruction(); 4830 if (!I || Record.size() < 4) 4831 return error("Invalid record"); 4832 4833 unsigned Line = Record[0], Col = Record[1]; 4834 unsigned ScopeID = Record[2], IAID = Record[3]; 4835 bool isImplicitCode = Record.size() == 5 && Record[4]; 4836 4837 MDNode *Scope = nullptr, *IA = nullptr; 4838 if (ScopeID) { 4839 Scope = dyn_cast_or_null<MDNode>( 4840 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4841 if (!Scope) 4842 return error("Invalid record"); 4843 } 4844 if (IAID) { 4845 IA = dyn_cast_or_null<MDNode>( 4846 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4847 if (!IA) 4848 return error("Invalid record"); 4849 } 4850 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4851 isImplicitCode); 4852 I->setDebugLoc(LastLoc); 4853 I = nullptr; 4854 continue; 4855 } 4856 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4857 unsigned OpNum = 0; 4858 Value *LHS; 4859 unsigned TypeID; 4860 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4861 OpNum+1 > Record.size()) 4862 return error("Invalid record"); 4863 4864 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4865 if (Opc == -1) 4866 return error("Invalid record"); 4867 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4868 ResTypeID = TypeID; 4869 InstructionList.push_back(I); 4870 if (OpNum < Record.size()) { 4871 if (isa<FPMathOperator>(I)) { 4872 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4873 if (FMF.any()) 4874 I->setFastMathFlags(FMF); 4875 } 4876 } 4877 break; 4878 } 4879 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4880 unsigned OpNum = 0; 4881 Value *LHS, *RHS; 4882 unsigned TypeID; 4883 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4884 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4885 CurBB) || 4886 OpNum+1 > Record.size()) 4887 return error("Invalid record"); 4888 4889 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4890 if (Opc == -1) 4891 return error("Invalid record"); 4892 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4893 ResTypeID = TypeID; 4894 InstructionList.push_back(I); 4895 if (OpNum < Record.size()) { 4896 if (Opc == Instruction::Add || 4897 Opc == Instruction::Sub || 4898 Opc == Instruction::Mul || 4899 Opc == Instruction::Shl) { 4900 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4901 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4902 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4903 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4904 } else if (Opc == Instruction::SDiv || 4905 Opc == Instruction::UDiv || 4906 Opc == Instruction::LShr || 4907 Opc == Instruction::AShr) { 4908 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4909 cast<BinaryOperator>(I)->setIsExact(true); 4910 } else if (Opc == Instruction::Or) { 4911 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 4912 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 4913 } else if (isa<FPMathOperator>(I)) { 4914 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4915 if (FMF.any()) 4916 I->setFastMathFlags(FMF); 4917 } 4918 } 4919 break; 4920 } 4921 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4922 unsigned OpNum = 0; 4923 Value *Op; 4924 unsigned OpTypeID; 4925 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4926 OpNum + 1 > Record.size()) 4927 return error("Invalid record"); 4928 4929 ResTypeID = Record[OpNum++]; 4930 Type *ResTy = getTypeByID(ResTypeID); 4931 int Opc = getDecodedCastOpcode(Record[OpNum++]); 4932 4933 if (Opc == -1 || !ResTy) 4934 return error("Invalid record"); 4935 Instruction *Temp = nullptr; 4936 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4937 if (Temp) { 4938 InstructionList.push_back(Temp); 4939 assert(CurBB && "No current BB?"); 4940 Temp->insertInto(CurBB, CurBB->end()); 4941 } 4942 } else { 4943 auto CastOp = (Instruction::CastOps)Opc; 4944 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4945 return error("Invalid cast"); 4946 I = CastInst::Create(CastOp, Op, ResTy); 4947 } 4948 if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) && 4949 (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))) 4950 I->setNonNeg(true); 4951 InstructionList.push_back(I); 4952 break; 4953 } 4954 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4955 case bitc::FUNC_CODE_INST_GEP_OLD: 4956 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4957 unsigned OpNum = 0; 4958 4959 unsigned TyID; 4960 Type *Ty; 4961 bool InBounds; 4962 4963 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4964 InBounds = Record[OpNum++]; 4965 TyID = Record[OpNum++]; 4966 Ty = getTypeByID(TyID); 4967 } else { 4968 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4969 TyID = InvalidTypeID; 4970 Ty = nullptr; 4971 } 4972 4973 Value *BasePtr; 4974 unsigned BasePtrTypeID; 4975 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4976 CurBB)) 4977 return error("Invalid record"); 4978 4979 if (!Ty) { 4980 TyID = getContainedTypeID(BasePtrTypeID); 4981 if (BasePtr->getType()->isVectorTy()) 4982 TyID = getContainedTypeID(TyID); 4983 Ty = getTypeByID(TyID); 4984 } 4985 4986 SmallVector<Value*, 16> GEPIdx; 4987 while (OpNum != Record.size()) { 4988 Value *Op; 4989 unsigned OpTypeID; 4990 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4991 return error("Invalid record"); 4992 GEPIdx.push_back(Op); 4993 } 4994 4995 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4996 4997 ResTypeID = TyID; 4998 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4999 auto GTI = std::next(gep_type_begin(I)); 5000 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5001 unsigned SubType = 0; 5002 if (GTI.isStruct()) { 5003 ConstantInt *IdxC = 5004 Idx->getType()->isVectorTy() 5005 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5006 : cast<ConstantInt>(Idx); 5007 SubType = IdxC->getZExtValue(); 5008 } 5009 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5010 ++GTI; 5011 } 5012 } 5013 5014 // At this point ResTypeID is the result element type. We need a pointer 5015 // or vector of pointer to it. 5016 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5017 if (I->getType()->isVectorTy()) 5018 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5019 5020 InstructionList.push_back(I); 5021 if (InBounds) 5022 cast<GetElementPtrInst>(I)->setIsInBounds(true); 5023 break; 5024 } 5025 5026 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5027 // EXTRACTVAL: [opty, opval, n x indices] 5028 unsigned OpNum = 0; 5029 Value *Agg; 5030 unsigned AggTypeID; 5031 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5032 return error("Invalid record"); 5033 Type *Ty = Agg->getType(); 5034 5035 unsigned RecSize = Record.size(); 5036 if (OpNum == RecSize) 5037 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5038 5039 SmallVector<unsigned, 4> EXTRACTVALIdx; 5040 ResTypeID = AggTypeID; 5041 for (; OpNum != RecSize; ++OpNum) { 5042 bool IsArray = Ty->isArrayTy(); 5043 bool IsStruct = Ty->isStructTy(); 5044 uint64_t Index = Record[OpNum]; 5045 5046 if (!IsStruct && !IsArray) 5047 return error("EXTRACTVAL: Invalid type"); 5048 if ((unsigned)Index != Index) 5049 return error("Invalid value"); 5050 if (IsStruct && Index >= Ty->getStructNumElements()) 5051 return error("EXTRACTVAL: Invalid struct index"); 5052 if (IsArray && Index >= Ty->getArrayNumElements()) 5053 return error("EXTRACTVAL: Invalid array index"); 5054 EXTRACTVALIdx.push_back((unsigned)Index); 5055 5056 if (IsStruct) { 5057 Ty = Ty->getStructElementType(Index); 5058 ResTypeID = getContainedTypeID(ResTypeID, Index); 5059 } else { 5060 Ty = Ty->getArrayElementType(); 5061 ResTypeID = getContainedTypeID(ResTypeID); 5062 } 5063 } 5064 5065 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5066 InstructionList.push_back(I); 5067 break; 5068 } 5069 5070 case bitc::FUNC_CODE_INST_INSERTVAL: { 5071 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5072 unsigned OpNum = 0; 5073 Value *Agg; 5074 unsigned AggTypeID; 5075 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5076 return error("Invalid record"); 5077 Value *Val; 5078 unsigned ValTypeID; 5079 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5080 return error("Invalid record"); 5081 5082 unsigned RecSize = Record.size(); 5083 if (OpNum == RecSize) 5084 return error("INSERTVAL: Invalid instruction with 0 indices"); 5085 5086 SmallVector<unsigned, 4> INSERTVALIdx; 5087 Type *CurTy = Agg->getType(); 5088 for (; OpNum != RecSize; ++OpNum) { 5089 bool IsArray = CurTy->isArrayTy(); 5090 bool IsStruct = CurTy->isStructTy(); 5091 uint64_t Index = Record[OpNum]; 5092 5093 if (!IsStruct && !IsArray) 5094 return error("INSERTVAL: Invalid type"); 5095 if ((unsigned)Index != Index) 5096 return error("Invalid value"); 5097 if (IsStruct && Index >= CurTy->getStructNumElements()) 5098 return error("INSERTVAL: Invalid struct index"); 5099 if (IsArray && Index >= CurTy->getArrayNumElements()) 5100 return error("INSERTVAL: Invalid array index"); 5101 5102 INSERTVALIdx.push_back((unsigned)Index); 5103 if (IsStruct) 5104 CurTy = CurTy->getStructElementType(Index); 5105 else 5106 CurTy = CurTy->getArrayElementType(); 5107 } 5108 5109 if (CurTy != Val->getType()) 5110 return error("Inserted value type doesn't match aggregate type"); 5111 5112 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5113 ResTypeID = AggTypeID; 5114 InstructionList.push_back(I); 5115 break; 5116 } 5117 5118 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5119 // obsolete form of select 5120 // handles select i1 ... in old bitcode 5121 unsigned OpNum = 0; 5122 Value *TrueVal, *FalseVal, *Cond; 5123 unsigned TypeID; 5124 Type *CondType = Type::getInt1Ty(Context); 5125 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5126 CurBB) || 5127 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5128 FalseVal, CurBB) || 5129 popValue(Record, OpNum, NextValueNo, CondType, 5130 getVirtualTypeID(CondType), Cond, CurBB)) 5131 return error("Invalid record"); 5132 5133 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5134 ResTypeID = TypeID; 5135 InstructionList.push_back(I); 5136 break; 5137 } 5138 5139 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5140 // new form of select 5141 // handles select i1 or select [N x i1] 5142 unsigned OpNum = 0; 5143 Value *TrueVal, *FalseVal, *Cond; 5144 unsigned ValTypeID, CondTypeID; 5145 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5146 CurBB) || 5147 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5148 FalseVal, CurBB) || 5149 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5150 return error("Invalid record"); 5151 5152 // select condition can be either i1 or [N x i1] 5153 if (VectorType* vector_type = 5154 dyn_cast<VectorType>(Cond->getType())) { 5155 // expect <n x i1> 5156 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5157 return error("Invalid type for value"); 5158 } else { 5159 // expect i1 5160 if (Cond->getType() != Type::getInt1Ty(Context)) 5161 return error("Invalid type for value"); 5162 } 5163 5164 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5165 ResTypeID = ValTypeID; 5166 InstructionList.push_back(I); 5167 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5168 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5169 if (FMF.any()) 5170 I->setFastMathFlags(FMF); 5171 } 5172 break; 5173 } 5174 5175 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5176 unsigned OpNum = 0; 5177 Value *Vec, *Idx; 5178 unsigned VecTypeID, IdxTypeID; 5179 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5180 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5181 return error("Invalid record"); 5182 if (!Vec->getType()->isVectorTy()) 5183 return error("Invalid type for value"); 5184 I = ExtractElementInst::Create(Vec, Idx); 5185 ResTypeID = getContainedTypeID(VecTypeID); 5186 InstructionList.push_back(I); 5187 break; 5188 } 5189 5190 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5191 unsigned OpNum = 0; 5192 Value *Vec, *Elt, *Idx; 5193 unsigned VecTypeID, IdxTypeID; 5194 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5195 return error("Invalid record"); 5196 if (!Vec->getType()->isVectorTy()) 5197 return error("Invalid type for value"); 5198 if (popValue(Record, OpNum, NextValueNo, 5199 cast<VectorType>(Vec->getType())->getElementType(), 5200 getContainedTypeID(VecTypeID), Elt, CurBB) || 5201 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5202 return error("Invalid record"); 5203 I = InsertElementInst::Create(Vec, Elt, Idx); 5204 ResTypeID = VecTypeID; 5205 InstructionList.push_back(I); 5206 break; 5207 } 5208 5209 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5210 unsigned OpNum = 0; 5211 Value *Vec1, *Vec2, *Mask; 5212 unsigned Vec1TypeID; 5213 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5214 CurBB) || 5215 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5216 Vec2, CurBB)) 5217 return error("Invalid record"); 5218 5219 unsigned MaskTypeID; 5220 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5221 return error("Invalid record"); 5222 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5223 return error("Invalid type for value"); 5224 5225 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5226 ResTypeID = 5227 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5228 InstructionList.push_back(I); 5229 break; 5230 } 5231 5232 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5233 // Old form of ICmp/FCmp returning bool 5234 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5235 // both legal on vectors but had different behaviour. 5236 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5237 // FCmp/ICmp returning bool or vector of bool 5238 5239 unsigned OpNum = 0; 5240 Value *LHS, *RHS; 5241 unsigned LHSTypeID; 5242 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5243 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5244 CurBB)) 5245 return error("Invalid record"); 5246 5247 if (OpNum >= Record.size()) 5248 return error( 5249 "Invalid record: operand number exceeded available operands"); 5250 5251 unsigned PredVal = Record[OpNum]; 5252 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5253 FastMathFlags FMF; 5254 if (IsFP && Record.size() > OpNum+1) 5255 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5256 5257 if (OpNum+1 != Record.size()) 5258 return error("Invalid record"); 5259 5260 if (LHS->getType()->isFPOrFPVectorTy()) 5261 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5262 else 5263 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5264 5265 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5266 if (LHS->getType()->isVectorTy()) 5267 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5268 5269 if (FMF.any()) 5270 I->setFastMathFlags(FMF); 5271 InstructionList.push_back(I); 5272 break; 5273 } 5274 5275 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5276 { 5277 unsigned Size = Record.size(); 5278 if (Size == 0) { 5279 I = ReturnInst::Create(Context); 5280 InstructionList.push_back(I); 5281 break; 5282 } 5283 5284 unsigned OpNum = 0; 5285 Value *Op = nullptr; 5286 unsigned OpTypeID; 5287 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5288 return error("Invalid record"); 5289 if (OpNum != Record.size()) 5290 return error("Invalid record"); 5291 5292 I = ReturnInst::Create(Context, Op); 5293 InstructionList.push_back(I); 5294 break; 5295 } 5296 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5297 if (Record.size() != 1 && Record.size() != 3) 5298 return error("Invalid record"); 5299 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5300 if (!TrueDest) 5301 return error("Invalid record"); 5302 5303 if (Record.size() == 1) { 5304 I = BranchInst::Create(TrueDest); 5305 InstructionList.push_back(I); 5306 } 5307 else { 5308 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5309 Type *CondType = Type::getInt1Ty(Context); 5310 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5311 getVirtualTypeID(CondType), CurBB); 5312 if (!FalseDest || !Cond) 5313 return error("Invalid record"); 5314 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5315 InstructionList.push_back(I); 5316 } 5317 break; 5318 } 5319 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5320 if (Record.size() != 1 && Record.size() != 2) 5321 return error("Invalid record"); 5322 unsigned Idx = 0; 5323 Type *TokenTy = Type::getTokenTy(Context); 5324 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5325 getVirtualTypeID(TokenTy), CurBB); 5326 if (!CleanupPad) 5327 return error("Invalid record"); 5328 BasicBlock *UnwindDest = nullptr; 5329 if (Record.size() == 2) { 5330 UnwindDest = getBasicBlock(Record[Idx++]); 5331 if (!UnwindDest) 5332 return error("Invalid record"); 5333 } 5334 5335 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5336 InstructionList.push_back(I); 5337 break; 5338 } 5339 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5340 if (Record.size() != 2) 5341 return error("Invalid record"); 5342 unsigned Idx = 0; 5343 Type *TokenTy = Type::getTokenTy(Context); 5344 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5345 getVirtualTypeID(TokenTy), CurBB); 5346 if (!CatchPad) 5347 return error("Invalid record"); 5348 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5349 if (!BB) 5350 return error("Invalid record"); 5351 5352 I = CatchReturnInst::Create(CatchPad, BB); 5353 InstructionList.push_back(I); 5354 break; 5355 } 5356 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5357 // We must have, at minimum, the outer scope and the number of arguments. 5358 if (Record.size() < 2) 5359 return error("Invalid record"); 5360 5361 unsigned Idx = 0; 5362 5363 Type *TokenTy = Type::getTokenTy(Context); 5364 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5365 getVirtualTypeID(TokenTy), CurBB); 5366 if (!ParentPad) 5367 return error("Invalid record"); 5368 5369 unsigned NumHandlers = Record[Idx++]; 5370 5371 SmallVector<BasicBlock *, 2> Handlers; 5372 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5373 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5374 if (!BB) 5375 return error("Invalid record"); 5376 Handlers.push_back(BB); 5377 } 5378 5379 BasicBlock *UnwindDest = nullptr; 5380 if (Idx + 1 == Record.size()) { 5381 UnwindDest = getBasicBlock(Record[Idx++]); 5382 if (!UnwindDest) 5383 return error("Invalid record"); 5384 } 5385 5386 if (Record.size() != Idx) 5387 return error("Invalid record"); 5388 5389 auto *CatchSwitch = 5390 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5391 for (BasicBlock *Handler : Handlers) 5392 CatchSwitch->addHandler(Handler); 5393 I = CatchSwitch; 5394 ResTypeID = getVirtualTypeID(I->getType()); 5395 InstructionList.push_back(I); 5396 break; 5397 } 5398 case bitc::FUNC_CODE_INST_CATCHPAD: 5399 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5400 // We must have, at minimum, the outer scope and the number of arguments. 5401 if (Record.size() < 2) 5402 return error("Invalid record"); 5403 5404 unsigned Idx = 0; 5405 5406 Type *TokenTy = Type::getTokenTy(Context); 5407 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5408 getVirtualTypeID(TokenTy), CurBB); 5409 if (!ParentPad) 5410 return error("Invald record"); 5411 5412 unsigned NumArgOperands = Record[Idx++]; 5413 5414 SmallVector<Value *, 2> Args; 5415 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5416 Value *Val; 5417 unsigned ValTypeID; 5418 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5419 return error("Invalid record"); 5420 Args.push_back(Val); 5421 } 5422 5423 if (Record.size() != Idx) 5424 return error("Invalid record"); 5425 5426 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5427 I = CleanupPadInst::Create(ParentPad, Args); 5428 else 5429 I = CatchPadInst::Create(ParentPad, Args); 5430 ResTypeID = getVirtualTypeID(I->getType()); 5431 InstructionList.push_back(I); 5432 break; 5433 } 5434 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5435 // Check magic 5436 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5437 // "New" SwitchInst format with case ranges. The changes to write this 5438 // format were reverted but we still recognize bitcode that uses it. 5439 // Hopefully someday we will have support for case ranges and can use 5440 // this format again. 5441 5442 unsigned OpTyID = Record[1]; 5443 Type *OpTy = getTypeByID(OpTyID); 5444 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5445 5446 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5447 BasicBlock *Default = getBasicBlock(Record[3]); 5448 if (!OpTy || !Cond || !Default) 5449 return error("Invalid record"); 5450 5451 unsigned NumCases = Record[4]; 5452 5453 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5454 InstructionList.push_back(SI); 5455 5456 unsigned CurIdx = 5; 5457 for (unsigned i = 0; i != NumCases; ++i) { 5458 SmallVector<ConstantInt*, 1> CaseVals; 5459 unsigned NumItems = Record[CurIdx++]; 5460 for (unsigned ci = 0; ci != NumItems; ++ci) { 5461 bool isSingleNumber = Record[CurIdx++]; 5462 5463 APInt Low; 5464 unsigned ActiveWords = 1; 5465 if (ValueBitWidth > 64) 5466 ActiveWords = Record[CurIdx++]; 5467 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5468 ValueBitWidth); 5469 CurIdx += ActiveWords; 5470 5471 if (!isSingleNumber) { 5472 ActiveWords = 1; 5473 if (ValueBitWidth > 64) 5474 ActiveWords = Record[CurIdx++]; 5475 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5476 ValueBitWidth); 5477 CurIdx += ActiveWords; 5478 5479 // FIXME: It is not clear whether values in the range should be 5480 // compared as signed or unsigned values. The partially 5481 // implemented changes that used this format in the past used 5482 // unsigned comparisons. 5483 for ( ; Low.ule(High); ++Low) 5484 CaseVals.push_back(ConstantInt::get(Context, Low)); 5485 } else 5486 CaseVals.push_back(ConstantInt::get(Context, Low)); 5487 } 5488 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5489 for (ConstantInt *Cst : CaseVals) 5490 SI->addCase(Cst, DestBB); 5491 } 5492 I = SI; 5493 break; 5494 } 5495 5496 // Old SwitchInst format without case ranges. 5497 5498 if (Record.size() < 3 || (Record.size() & 1) == 0) 5499 return error("Invalid record"); 5500 unsigned OpTyID = Record[0]; 5501 Type *OpTy = getTypeByID(OpTyID); 5502 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5503 BasicBlock *Default = getBasicBlock(Record[2]); 5504 if (!OpTy || !Cond || !Default) 5505 return error("Invalid record"); 5506 unsigned NumCases = (Record.size()-3)/2; 5507 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5508 InstructionList.push_back(SI); 5509 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5510 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5511 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5512 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5513 if (!CaseVal || !DestBB) { 5514 delete SI; 5515 return error("Invalid record"); 5516 } 5517 SI->addCase(CaseVal, DestBB); 5518 } 5519 I = SI; 5520 break; 5521 } 5522 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5523 if (Record.size() < 2) 5524 return error("Invalid record"); 5525 unsigned OpTyID = Record[0]; 5526 Type *OpTy = getTypeByID(OpTyID); 5527 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5528 if (!OpTy || !Address) 5529 return error("Invalid record"); 5530 unsigned NumDests = Record.size()-2; 5531 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5532 InstructionList.push_back(IBI); 5533 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5534 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5535 IBI->addDestination(DestBB); 5536 } else { 5537 delete IBI; 5538 return error("Invalid record"); 5539 } 5540 } 5541 I = IBI; 5542 break; 5543 } 5544 5545 case bitc::FUNC_CODE_INST_INVOKE: { 5546 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5547 if (Record.size() < 4) 5548 return error("Invalid record"); 5549 unsigned OpNum = 0; 5550 AttributeList PAL = getAttributes(Record[OpNum++]); 5551 unsigned CCInfo = Record[OpNum++]; 5552 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5553 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5554 5555 unsigned FTyID = InvalidTypeID; 5556 FunctionType *FTy = nullptr; 5557 if ((CCInfo >> 13) & 1) { 5558 FTyID = Record[OpNum++]; 5559 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5560 if (!FTy) 5561 return error("Explicit invoke type is not a function type"); 5562 } 5563 5564 Value *Callee; 5565 unsigned CalleeTypeID; 5566 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5567 CurBB)) 5568 return error("Invalid record"); 5569 5570 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5571 if (!CalleeTy) 5572 return error("Callee is not a pointer"); 5573 if (!FTy) { 5574 FTyID = getContainedTypeID(CalleeTypeID); 5575 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5576 if (!FTy) 5577 return error("Callee is not of pointer to function type"); 5578 } 5579 if (Record.size() < FTy->getNumParams() + OpNum) 5580 return error("Insufficient operands to call"); 5581 5582 SmallVector<Value*, 16> Ops; 5583 SmallVector<unsigned, 16> ArgTyIDs; 5584 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5585 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5586 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5587 ArgTyID, CurBB)); 5588 ArgTyIDs.push_back(ArgTyID); 5589 if (!Ops.back()) 5590 return error("Invalid record"); 5591 } 5592 5593 if (!FTy->isVarArg()) { 5594 if (Record.size() != OpNum) 5595 return error("Invalid record"); 5596 } else { 5597 // Read type/value pairs for varargs params. 5598 while (OpNum != Record.size()) { 5599 Value *Op; 5600 unsigned OpTypeID; 5601 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5602 return error("Invalid record"); 5603 Ops.push_back(Op); 5604 ArgTyIDs.push_back(OpTypeID); 5605 } 5606 } 5607 5608 // Upgrade the bundles if needed. 5609 if (!OperandBundles.empty()) 5610 UpgradeOperandBundles(OperandBundles); 5611 5612 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5613 OperandBundles); 5614 ResTypeID = getContainedTypeID(FTyID); 5615 OperandBundles.clear(); 5616 InstructionList.push_back(I); 5617 cast<InvokeInst>(I)->setCallingConv( 5618 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5619 cast<InvokeInst>(I)->setAttributes(PAL); 5620 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5621 I->deleteValue(); 5622 return Err; 5623 } 5624 5625 break; 5626 } 5627 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5628 unsigned Idx = 0; 5629 Value *Val = nullptr; 5630 unsigned ValTypeID; 5631 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5632 return error("Invalid record"); 5633 I = ResumeInst::Create(Val); 5634 InstructionList.push_back(I); 5635 break; 5636 } 5637 case bitc::FUNC_CODE_INST_CALLBR: { 5638 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5639 unsigned OpNum = 0; 5640 AttributeList PAL = getAttributes(Record[OpNum++]); 5641 unsigned CCInfo = Record[OpNum++]; 5642 5643 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5644 unsigned NumIndirectDests = Record[OpNum++]; 5645 SmallVector<BasicBlock *, 16> IndirectDests; 5646 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5647 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5648 5649 unsigned FTyID = InvalidTypeID; 5650 FunctionType *FTy = nullptr; 5651 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5652 FTyID = Record[OpNum++]; 5653 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5654 if (!FTy) 5655 return error("Explicit call type is not a function type"); 5656 } 5657 5658 Value *Callee; 5659 unsigned CalleeTypeID; 5660 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5661 CurBB)) 5662 return error("Invalid record"); 5663 5664 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5665 if (!OpTy) 5666 return error("Callee is not a pointer type"); 5667 if (!FTy) { 5668 FTyID = getContainedTypeID(CalleeTypeID); 5669 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5670 if (!FTy) 5671 return error("Callee is not of pointer to function type"); 5672 } 5673 if (Record.size() < FTy->getNumParams() + OpNum) 5674 return error("Insufficient operands to call"); 5675 5676 SmallVector<Value*, 16> Args; 5677 SmallVector<unsigned, 16> ArgTyIDs; 5678 // Read the fixed params. 5679 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5680 Value *Arg; 5681 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5682 if (FTy->getParamType(i)->isLabelTy()) 5683 Arg = getBasicBlock(Record[OpNum]); 5684 else 5685 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5686 ArgTyID, CurBB); 5687 if (!Arg) 5688 return error("Invalid record"); 5689 Args.push_back(Arg); 5690 ArgTyIDs.push_back(ArgTyID); 5691 } 5692 5693 // Read type/value pairs for varargs params. 5694 if (!FTy->isVarArg()) { 5695 if (OpNum != Record.size()) 5696 return error("Invalid record"); 5697 } else { 5698 while (OpNum != Record.size()) { 5699 Value *Op; 5700 unsigned OpTypeID; 5701 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5702 return error("Invalid record"); 5703 Args.push_back(Op); 5704 ArgTyIDs.push_back(OpTypeID); 5705 } 5706 } 5707 5708 // Upgrade the bundles if needed. 5709 if (!OperandBundles.empty()) 5710 UpgradeOperandBundles(OperandBundles); 5711 5712 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5713 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5714 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5715 return CI.Type == InlineAsm::isLabel; 5716 }; 5717 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5718 // Upgrade explicit blockaddress arguments to label constraints. 5719 // Verify that the last arguments are blockaddress arguments that 5720 // match the indirect destinations. Clang always generates callbr 5721 // in this form. We could support reordering with more effort. 5722 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5723 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5724 unsigned LabelNo = ArgNo - FirstBlockArg; 5725 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5726 if (!BA || BA->getFunction() != F || 5727 LabelNo > IndirectDests.size() || 5728 BA->getBasicBlock() != IndirectDests[LabelNo]) 5729 return error("callbr argument does not match indirect dest"); 5730 } 5731 5732 // Remove blockaddress arguments. 5733 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5734 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5735 5736 // Recreate the function type with less arguments. 5737 SmallVector<Type *> ArgTys; 5738 for (Value *Arg : Args) 5739 ArgTys.push_back(Arg->getType()); 5740 FTy = 5741 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5742 5743 // Update constraint string to use label constraints. 5744 std::string Constraints = IA->getConstraintString(); 5745 unsigned ArgNo = 0; 5746 size_t Pos = 0; 5747 for (const auto &CI : ConstraintInfo) { 5748 if (CI.hasArg()) { 5749 if (ArgNo >= FirstBlockArg) 5750 Constraints.insert(Pos, "!"); 5751 ++ArgNo; 5752 } 5753 5754 // Go to next constraint in string. 5755 Pos = Constraints.find(',', Pos); 5756 if (Pos == std::string::npos) 5757 break; 5758 ++Pos; 5759 } 5760 5761 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5762 IA->hasSideEffects(), IA->isAlignStack(), 5763 IA->getDialect(), IA->canThrow()); 5764 } 5765 } 5766 5767 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5768 OperandBundles); 5769 ResTypeID = getContainedTypeID(FTyID); 5770 OperandBundles.clear(); 5771 InstructionList.push_back(I); 5772 cast<CallBrInst>(I)->setCallingConv( 5773 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5774 cast<CallBrInst>(I)->setAttributes(PAL); 5775 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5776 I->deleteValue(); 5777 return Err; 5778 } 5779 break; 5780 } 5781 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5782 I = new UnreachableInst(Context); 5783 InstructionList.push_back(I); 5784 break; 5785 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5786 if (Record.empty()) 5787 return error("Invalid phi record"); 5788 // The first record specifies the type. 5789 unsigned TyID = Record[0]; 5790 Type *Ty = getTypeByID(TyID); 5791 if (!Ty) 5792 return error("Invalid phi record"); 5793 5794 // Phi arguments are pairs of records of [value, basic block]. 5795 // There is an optional final record for fast-math-flags if this phi has a 5796 // floating-point type. 5797 size_t NumArgs = (Record.size() - 1) / 2; 5798 PHINode *PN = PHINode::Create(Ty, NumArgs); 5799 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5800 PN->deleteValue(); 5801 return error("Invalid phi record"); 5802 } 5803 InstructionList.push_back(PN); 5804 5805 SmallDenseMap<BasicBlock *, Value *> Args; 5806 for (unsigned i = 0; i != NumArgs; i++) { 5807 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5808 if (!BB) { 5809 PN->deleteValue(); 5810 return error("Invalid phi BB"); 5811 } 5812 5813 // Phi nodes may contain the same predecessor multiple times, in which 5814 // case the incoming value must be identical. Directly reuse the already 5815 // seen value here, to avoid expanding a constant expression multiple 5816 // times. 5817 auto It = Args.find(BB); 5818 if (It != Args.end()) { 5819 PN->addIncoming(It->second, BB); 5820 continue; 5821 } 5822 5823 // If there already is a block for this edge (from a different phi), 5824 // use it. 5825 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5826 if (!EdgeBB) { 5827 // Otherwise, use a temporary block (that we will discard if it 5828 // turns out to be unnecessary). 5829 if (!PhiConstExprBB) 5830 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5831 EdgeBB = PhiConstExprBB; 5832 } 5833 5834 // With the new function encoding, it is possible that operands have 5835 // negative IDs (for forward references). Use a signed VBR 5836 // representation to keep the encoding small. 5837 Value *V; 5838 if (UseRelativeIDs) 5839 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5840 else 5841 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5842 if (!V) { 5843 PN->deleteValue(); 5844 PhiConstExprBB->eraseFromParent(); 5845 return error("Invalid phi record"); 5846 } 5847 5848 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5849 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5850 PhiConstExprBB = nullptr; 5851 } 5852 PN->addIncoming(V, BB); 5853 Args.insert({BB, V}); 5854 } 5855 I = PN; 5856 ResTypeID = TyID; 5857 5858 // If there are an even number of records, the final record must be FMF. 5859 if (Record.size() % 2 == 0) { 5860 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5861 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5862 if (FMF.any()) 5863 I->setFastMathFlags(FMF); 5864 } 5865 5866 break; 5867 } 5868 5869 case bitc::FUNC_CODE_INST_LANDINGPAD: 5870 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5871 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5872 unsigned Idx = 0; 5873 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5874 if (Record.size() < 3) 5875 return error("Invalid record"); 5876 } else { 5877 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5878 if (Record.size() < 4) 5879 return error("Invalid record"); 5880 } 5881 ResTypeID = Record[Idx++]; 5882 Type *Ty = getTypeByID(ResTypeID); 5883 if (!Ty) 5884 return error("Invalid record"); 5885 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5886 Value *PersFn = nullptr; 5887 unsigned PersFnTypeID; 5888 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5889 nullptr)) 5890 return error("Invalid record"); 5891 5892 if (!F->hasPersonalityFn()) 5893 F->setPersonalityFn(cast<Constant>(PersFn)); 5894 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5895 return error("Personality function mismatch"); 5896 } 5897 5898 bool IsCleanup = !!Record[Idx++]; 5899 unsigned NumClauses = Record[Idx++]; 5900 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5901 LP->setCleanup(IsCleanup); 5902 for (unsigned J = 0; J != NumClauses; ++J) { 5903 LandingPadInst::ClauseType CT = 5904 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5905 Value *Val; 5906 unsigned ValTypeID; 5907 5908 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5909 nullptr)) { 5910 delete LP; 5911 return error("Invalid record"); 5912 } 5913 5914 assert((CT != LandingPadInst::Catch || 5915 !isa<ArrayType>(Val->getType())) && 5916 "Catch clause has a invalid type!"); 5917 assert((CT != LandingPadInst::Filter || 5918 isa<ArrayType>(Val->getType())) && 5919 "Filter clause has invalid type!"); 5920 LP->addClause(cast<Constant>(Val)); 5921 } 5922 5923 I = LP; 5924 InstructionList.push_back(I); 5925 break; 5926 } 5927 5928 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5929 if (Record.size() != 4 && Record.size() != 5) 5930 return error("Invalid record"); 5931 using APV = AllocaPackedValues; 5932 const uint64_t Rec = Record[3]; 5933 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5934 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5935 unsigned TyID = Record[0]; 5936 Type *Ty = getTypeByID(TyID); 5937 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5938 TyID = getContainedTypeID(TyID); 5939 Ty = getTypeByID(TyID); 5940 if (!Ty) 5941 return error("Missing element type for old-style alloca"); 5942 } 5943 unsigned OpTyID = Record[1]; 5944 Type *OpTy = getTypeByID(OpTyID); 5945 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5946 MaybeAlign Align; 5947 uint64_t AlignExp = 5948 Bitfield::get<APV::AlignLower>(Rec) | 5949 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5950 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5951 return Err; 5952 } 5953 if (!Ty || !Size) 5954 return error("Invalid record"); 5955 5956 const DataLayout &DL = TheModule->getDataLayout(); 5957 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5958 5959 SmallPtrSet<Type *, 4> Visited; 5960 if (!Align && !Ty->isSized(&Visited)) 5961 return error("alloca of unsized type"); 5962 if (!Align) 5963 Align = DL.getPrefTypeAlign(Ty); 5964 5965 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5966 AI->setUsedWithInAlloca(InAlloca); 5967 AI->setSwiftError(SwiftError); 5968 I = AI; 5969 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5970 InstructionList.push_back(I); 5971 break; 5972 } 5973 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5974 unsigned OpNum = 0; 5975 Value *Op; 5976 unsigned OpTypeID; 5977 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5978 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5979 return error("Invalid record"); 5980 5981 if (!isa<PointerType>(Op->getType())) 5982 return error("Load operand is not a pointer type"); 5983 5984 Type *Ty = nullptr; 5985 if (OpNum + 3 == Record.size()) { 5986 ResTypeID = Record[OpNum++]; 5987 Ty = getTypeByID(ResTypeID); 5988 } else { 5989 ResTypeID = getContainedTypeID(OpTypeID); 5990 Ty = getTypeByID(ResTypeID); 5991 } 5992 5993 if (!Ty) 5994 return error("Missing load type"); 5995 5996 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5997 return Err; 5998 5999 MaybeAlign Align; 6000 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6001 return Err; 6002 SmallPtrSet<Type *, 4> Visited; 6003 if (!Align && !Ty->isSized(&Visited)) 6004 return error("load of unsized type"); 6005 if (!Align) 6006 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6007 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6008 InstructionList.push_back(I); 6009 break; 6010 } 6011 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6012 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6013 unsigned OpNum = 0; 6014 Value *Op; 6015 unsigned OpTypeID; 6016 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6017 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6018 return error("Invalid record"); 6019 6020 if (!isa<PointerType>(Op->getType())) 6021 return error("Load operand is not a pointer type"); 6022 6023 Type *Ty = nullptr; 6024 if (OpNum + 5 == Record.size()) { 6025 ResTypeID = Record[OpNum++]; 6026 Ty = getTypeByID(ResTypeID); 6027 } else { 6028 ResTypeID = getContainedTypeID(OpTypeID); 6029 Ty = getTypeByID(ResTypeID); 6030 } 6031 6032 if (!Ty) 6033 return error("Missing atomic load type"); 6034 6035 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6036 return Err; 6037 6038 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6039 if (Ordering == AtomicOrdering::NotAtomic || 6040 Ordering == AtomicOrdering::Release || 6041 Ordering == AtomicOrdering::AcquireRelease) 6042 return error("Invalid record"); 6043 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6044 return error("Invalid record"); 6045 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6046 6047 MaybeAlign Align; 6048 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6049 return Err; 6050 if (!Align) 6051 return error("Alignment missing from atomic load"); 6052 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6053 InstructionList.push_back(I); 6054 break; 6055 } 6056 case bitc::FUNC_CODE_INST_STORE: 6057 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6058 unsigned OpNum = 0; 6059 Value *Val, *Ptr; 6060 unsigned PtrTypeID, ValTypeID; 6061 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6062 return error("Invalid record"); 6063 6064 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6065 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6066 return error("Invalid record"); 6067 } else { 6068 ValTypeID = getContainedTypeID(PtrTypeID); 6069 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6070 ValTypeID, Val, CurBB)) 6071 return error("Invalid record"); 6072 } 6073 6074 if (OpNum + 2 != Record.size()) 6075 return error("Invalid record"); 6076 6077 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6078 return Err; 6079 MaybeAlign Align; 6080 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6081 return Err; 6082 SmallPtrSet<Type *, 4> Visited; 6083 if (!Align && !Val->getType()->isSized(&Visited)) 6084 return error("store of unsized type"); 6085 if (!Align) 6086 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6087 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6088 InstructionList.push_back(I); 6089 break; 6090 } 6091 case bitc::FUNC_CODE_INST_STOREATOMIC: 6092 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6093 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6094 unsigned OpNum = 0; 6095 Value *Val, *Ptr; 6096 unsigned PtrTypeID, ValTypeID; 6097 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6098 !isa<PointerType>(Ptr->getType())) 6099 return error("Invalid record"); 6100 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6101 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6102 return error("Invalid record"); 6103 } else { 6104 ValTypeID = getContainedTypeID(PtrTypeID); 6105 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6106 ValTypeID, Val, CurBB)) 6107 return error("Invalid record"); 6108 } 6109 6110 if (OpNum + 4 != Record.size()) 6111 return error("Invalid record"); 6112 6113 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6114 return Err; 6115 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6116 if (Ordering == AtomicOrdering::NotAtomic || 6117 Ordering == AtomicOrdering::Acquire || 6118 Ordering == AtomicOrdering::AcquireRelease) 6119 return error("Invalid record"); 6120 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6121 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6122 return error("Invalid record"); 6123 6124 MaybeAlign Align; 6125 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6126 return Err; 6127 if (!Align) 6128 return error("Alignment missing from atomic store"); 6129 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6130 InstructionList.push_back(I); 6131 break; 6132 } 6133 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6134 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6135 // failure_ordering?, weak?] 6136 const size_t NumRecords = Record.size(); 6137 unsigned OpNum = 0; 6138 Value *Ptr = nullptr; 6139 unsigned PtrTypeID; 6140 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6141 return error("Invalid record"); 6142 6143 if (!isa<PointerType>(Ptr->getType())) 6144 return error("Cmpxchg operand is not a pointer type"); 6145 6146 Value *Cmp = nullptr; 6147 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6148 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6149 CmpTypeID, Cmp, CurBB)) 6150 return error("Invalid record"); 6151 6152 Value *New = nullptr; 6153 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6154 New, CurBB) || 6155 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6156 return error("Invalid record"); 6157 6158 const AtomicOrdering SuccessOrdering = 6159 getDecodedOrdering(Record[OpNum + 1]); 6160 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6161 SuccessOrdering == AtomicOrdering::Unordered) 6162 return error("Invalid record"); 6163 6164 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6165 6166 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6167 return Err; 6168 6169 const AtomicOrdering FailureOrdering = 6170 NumRecords < 7 6171 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6172 : getDecodedOrdering(Record[OpNum + 3]); 6173 6174 if (FailureOrdering == AtomicOrdering::NotAtomic || 6175 FailureOrdering == AtomicOrdering::Unordered) 6176 return error("Invalid record"); 6177 6178 const Align Alignment( 6179 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6180 6181 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6182 FailureOrdering, SSID); 6183 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6184 6185 if (NumRecords < 8) { 6186 // Before weak cmpxchgs existed, the instruction simply returned the 6187 // value loaded from memory, so bitcode files from that era will be 6188 // expecting the first component of a modern cmpxchg. 6189 I->insertInto(CurBB, CurBB->end()); 6190 I = ExtractValueInst::Create(I, 0); 6191 ResTypeID = CmpTypeID; 6192 } else { 6193 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6194 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6195 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6196 } 6197 6198 InstructionList.push_back(I); 6199 break; 6200 } 6201 case bitc::FUNC_CODE_INST_CMPXCHG: { 6202 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6203 // failure_ordering, weak, align?] 6204 const size_t NumRecords = Record.size(); 6205 unsigned OpNum = 0; 6206 Value *Ptr = nullptr; 6207 unsigned PtrTypeID; 6208 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6209 return error("Invalid record"); 6210 6211 if (!isa<PointerType>(Ptr->getType())) 6212 return error("Cmpxchg operand is not a pointer type"); 6213 6214 Value *Cmp = nullptr; 6215 unsigned CmpTypeID; 6216 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6217 return error("Invalid record"); 6218 6219 Value *Val = nullptr; 6220 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6221 CurBB)) 6222 return error("Invalid record"); 6223 6224 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6225 return error("Invalid record"); 6226 6227 const bool IsVol = Record[OpNum]; 6228 6229 const AtomicOrdering SuccessOrdering = 6230 getDecodedOrdering(Record[OpNum + 1]); 6231 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6232 return error("Invalid cmpxchg success ordering"); 6233 6234 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6235 6236 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6237 return Err; 6238 6239 const AtomicOrdering FailureOrdering = 6240 getDecodedOrdering(Record[OpNum + 3]); 6241 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6242 return error("Invalid cmpxchg failure ordering"); 6243 6244 const bool IsWeak = Record[OpNum + 4]; 6245 6246 MaybeAlign Alignment; 6247 6248 if (NumRecords == (OpNum + 6)) { 6249 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6250 return Err; 6251 } 6252 if (!Alignment) 6253 Alignment = 6254 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6255 6256 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6257 FailureOrdering, SSID); 6258 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6259 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6260 6261 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6262 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6263 6264 InstructionList.push_back(I); 6265 break; 6266 } 6267 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6268 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6269 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6270 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6271 const size_t NumRecords = Record.size(); 6272 unsigned OpNum = 0; 6273 6274 Value *Ptr = nullptr; 6275 unsigned PtrTypeID; 6276 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6277 return error("Invalid record"); 6278 6279 if (!isa<PointerType>(Ptr->getType())) 6280 return error("Invalid record"); 6281 6282 Value *Val = nullptr; 6283 unsigned ValTypeID = InvalidTypeID; 6284 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6285 ValTypeID = getContainedTypeID(PtrTypeID); 6286 if (popValue(Record, OpNum, NextValueNo, 6287 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6288 return error("Invalid record"); 6289 } else { 6290 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6291 return error("Invalid record"); 6292 } 6293 6294 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6295 return error("Invalid record"); 6296 6297 const AtomicRMWInst::BinOp Operation = 6298 getDecodedRMWOperation(Record[OpNum]); 6299 if (Operation < AtomicRMWInst::FIRST_BINOP || 6300 Operation > AtomicRMWInst::LAST_BINOP) 6301 return error("Invalid record"); 6302 6303 const bool IsVol = Record[OpNum + 1]; 6304 6305 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6306 if (Ordering == AtomicOrdering::NotAtomic || 6307 Ordering == AtomicOrdering::Unordered) 6308 return error("Invalid record"); 6309 6310 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6311 6312 MaybeAlign Alignment; 6313 6314 if (NumRecords == (OpNum + 5)) { 6315 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6316 return Err; 6317 } 6318 6319 if (!Alignment) 6320 Alignment = 6321 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6322 6323 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6324 ResTypeID = ValTypeID; 6325 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6326 6327 InstructionList.push_back(I); 6328 break; 6329 } 6330 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6331 if (2 != Record.size()) 6332 return error("Invalid record"); 6333 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6334 if (Ordering == AtomicOrdering::NotAtomic || 6335 Ordering == AtomicOrdering::Unordered || 6336 Ordering == AtomicOrdering::Monotonic) 6337 return error("Invalid record"); 6338 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6339 I = new FenceInst(Context, Ordering, SSID); 6340 InstructionList.push_back(I); 6341 break; 6342 } 6343 case bitc::FUNC_CODE_INST_CALL: { 6344 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6345 if (Record.size() < 3) 6346 return error("Invalid record"); 6347 6348 unsigned OpNum = 0; 6349 AttributeList PAL = getAttributes(Record[OpNum++]); 6350 unsigned CCInfo = Record[OpNum++]; 6351 6352 FastMathFlags FMF; 6353 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6354 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6355 if (!FMF.any()) 6356 return error("Fast math flags indicator set for call with no FMF"); 6357 } 6358 6359 unsigned FTyID = InvalidTypeID; 6360 FunctionType *FTy = nullptr; 6361 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6362 FTyID = Record[OpNum++]; 6363 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6364 if (!FTy) 6365 return error("Explicit call type is not a function type"); 6366 } 6367 6368 Value *Callee; 6369 unsigned CalleeTypeID; 6370 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6371 CurBB)) 6372 return error("Invalid record"); 6373 6374 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6375 if (!OpTy) 6376 return error("Callee is not a pointer type"); 6377 if (!FTy) { 6378 FTyID = getContainedTypeID(CalleeTypeID); 6379 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6380 if (!FTy) 6381 return error("Callee is not of pointer to function type"); 6382 } 6383 if (Record.size() < FTy->getNumParams() + OpNum) 6384 return error("Insufficient operands to call"); 6385 6386 SmallVector<Value*, 16> Args; 6387 SmallVector<unsigned, 16> ArgTyIDs; 6388 // Read the fixed params. 6389 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6390 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6391 if (FTy->getParamType(i)->isLabelTy()) 6392 Args.push_back(getBasicBlock(Record[OpNum])); 6393 else 6394 Args.push_back(getValue(Record, OpNum, NextValueNo, 6395 FTy->getParamType(i), ArgTyID, CurBB)); 6396 ArgTyIDs.push_back(ArgTyID); 6397 if (!Args.back()) 6398 return error("Invalid record"); 6399 } 6400 6401 // Read type/value pairs for varargs params. 6402 if (!FTy->isVarArg()) { 6403 if (OpNum != Record.size()) 6404 return error("Invalid record"); 6405 } else { 6406 while (OpNum != Record.size()) { 6407 Value *Op; 6408 unsigned OpTypeID; 6409 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6410 return error("Invalid record"); 6411 Args.push_back(Op); 6412 ArgTyIDs.push_back(OpTypeID); 6413 } 6414 } 6415 6416 // Upgrade the bundles if needed. 6417 if (!OperandBundles.empty()) 6418 UpgradeOperandBundles(OperandBundles); 6419 6420 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6421 ResTypeID = getContainedTypeID(FTyID); 6422 OperandBundles.clear(); 6423 InstructionList.push_back(I); 6424 cast<CallInst>(I)->setCallingConv( 6425 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6426 CallInst::TailCallKind TCK = CallInst::TCK_None; 6427 if (CCInfo & (1 << bitc::CALL_TAIL)) 6428 TCK = CallInst::TCK_Tail; 6429 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6430 TCK = CallInst::TCK_MustTail; 6431 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6432 TCK = CallInst::TCK_NoTail; 6433 cast<CallInst>(I)->setTailCallKind(TCK); 6434 cast<CallInst>(I)->setAttributes(PAL); 6435 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6436 I->deleteValue(); 6437 return Err; 6438 } 6439 if (FMF.any()) { 6440 if (!isa<FPMathOperator>(I)) 6441 return error("Fast-math-flags specified for call without " 6442 "floating-point scalar or vector return type"); 6443 I->setFastMathFlags(FMF); 6444 } 6445 break; 6446 } 6447 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6448 if (Record.size() < 3) 6449 return error("Invalid record"); 6450 unsigned OpTyID = Record[0]; 6451 Type *OpTy = getTypeByID(OpTyID); 6452 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6453 ResTypeID = Record[2]; 6454 Type *ResTy = getTypeByID(ResTypeID); 6455 if (!OpTy || !Op || !ResTy) 6456 return error("Invalid record"); 6457 I = new VAArgInst(Op, ResTy); 6458 InstructionList.push_back(I); 6459 break; 6460 } 6461 6462 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6463 // A call or an invoke can be optionally prefixed with some variable 6464 // number of operand bundle blocks. These blocks are read into 6465 // OperandBundles and consumed at the next call or invoke instruction. 6466 6467 if (Record.empty() || Record[0] >= BundleTags.size()) 6468 return error("Invalid record"); 6469 6470 std::vector<Value *> Inputs; 6471 6472 unsigned OpNum = 1; 6473 while (OpNum != Record.size()) { 6474 Value *Op; 6475 unsigned OpTypeID; 6476 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6477 return error("Invalid record"); 6478 Inputs.push_back(Op); 6479 } 6480 6481 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6482 continue; 6483 } 6484 6485 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6486 unsigned OpNum = 0; 6487 Value *Op = nullptr; 6488 unsigned OpTypeID; 6489 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6490 return error("Invalid record"); 6491 if (OpNum != Record.size()) 6492 return error("Invalid record"); 6493 6494 I = new FreezeInst(Op); 6495 ResTypeID = OpTypeID; 6496 InstructionList.push_back(I); 6497 break; 6498 } 6499 } 6500 6501 // Add instruction to end of current BB. If there is no current BB, reject 6502 // this file. 6503 if (!CurBB) { 6504 I->deleteValue(); 6505 return error("Invalid instruction with no BB"); 6506 } 6507 if (!OperandBundles.empty()) { 6508 I->deleteValue(); 6509 return error("Operand bundles found with no consumer"); 6510 } 6511 I->insertInto(CurBB, CurBB->end()); 6512 6513 // If this was a terminator instruction, move to the next block. 6514 if (I->isTerminator()) { 6515 ++CurBBNo; 6516 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6517 } 6518 6519 // Non-void values get registered in the value table for future use. 6520 if (!I->getType()->isVoidTy()) { 6521 assert(I->getType() == getTypeByID(ResTypeID) && 6522 "Incorrect result type ID"); 6523 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6524 return Err; 6525 } 6526 } 6527 6528 OutOfRecordLoop: 6529 6530 if (!OperandBundles.empty()) 6531 return error("Operand bundles found with no consumer"); 6532 6533 // Check the function list for unresolved values. 6534 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6535 if (!A->getParent()) { 6536 // We found at least one unresolved value. Nuke them all to avoid leaks. 6537 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6538 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6539 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6540 delete A; 6541 } 6542 } 6543 return error("Never resolved value found in function"); 6544 } 6545 } 6546 6547 // Unexpected unresolved metadata about to be dropped. 6548 if (MDLoader->hasFwdRefs()) 6549 return error("Invalid function metadata: outgoing forward refs"); 6550 6551 if (PhiConstExprBB) 6552 PhiConstExprBB->eraseFromParent(); 6553 6554 for (const auto &Pair : ConstExprEdgeBBs) { 6555 BasicBlock *From = Pair.first.first; 6556 BasicBlock *To = Pair.first.second; 6557 BasicBlock *EdgeBB = Pair.second; 6558 BranchInst::Create(To, EdgeBB); 6559 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6560 To->replacePhiUsesWith(From, EdgeBB); 6561 EdgeBB->moveBefore(To); 6562 } 6563 6564 // Trim the value list down to the size it was before we parsed this function. 6565 ValueList.shrinkTo(ModuleValueListSize); 6566 MDLoader->shrinkTo(ModuleMDLoaderSize); 6567 std::vector<BasicBlock*>().swap(FunctionBBs); 6568 return Error::success(); 6569 } 6570 6571 /// Find the function body in the bitcode stream 6572 Error BitcodeReader::findFunctionInStream( 6573 Function *F, 6574 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6575 while (DeferredFunctionInfoIterator->second == 0) { 6576 // This is the fallback handling for the old format bitcode that 6577 // didn't contain the function index in the VST, or when we have 6578 // an anonymous function which would not have a VST entry. 6579 // Assert that we have one of those two cases. 6580 assert(VSTOffset == 0 || !F->hasName()); 6581 // Parse the next body in the stream and set its position in the 6582 // DeferredFunctionInfo map. 6583 if (Error Err = rememberAndSkipFunctionBodies()) 6584 return Err; 6585 } 6586 return Error::success(); 6587 } 6588 6589 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6590 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6591 return SyncScope::ID(Val); 6592 if (Val >= SSIDs.size()) 6593 return SyncScope::System; // Map unknown synchronization scopes to system. 6594 return SSIDs[Val]; 6595 } 6596 6597 //===----------------------------------------------------------------------===// 6598 // GVMaterializer implementation 6599 //===----------------------------------------------------------------------===// 6600 6601 Error BitcodeReader::materialize(GlobalValue *GV) { 6602 Function *F = dyn_cast<Function>(GV); 6603 // If it's not a function or is already material, ignore the request. 6604 if (!F || !F->isMaterializable()) 6605 return Error::success(); 6606 6607 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6608 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6609 // If its position is recorded as 0, its body is somewhere in the stream 6610 // but we haven't seen it yet. 6611 if (DFII->second == 0) 6612 if (Error Err = findFunctionInStream(F, DFII)) 6613 return Err; 6614 6615 // Materialize metadata before parsing any function bodies. 6616 if (Error Err = materializeMetadata()) 6617 return Err; 6618 6619 // Move the bit stream to the saved position of the deferred function body. 6620 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6621 return JumpFailed; 6622 if (Error Err = parseFunctionBody(F)) 6623 return Err; 6624 F->setIsMaterializable(false); 6625 6626 if (StripDebugInfo) 6627 stripDebugInfo(*F); 6628 6629 // Upgrade any old intrinsic calls in the function. 6630 for (auto &I : UpgradedIntrinsics) { 6631 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6632 if (CallInst *CI = dyn_cast<CallInst>(U)) 6633 UpgradeIntrinsicCall(CI, I.second); 6634 } 6635 6636 // Finish fn->subprogram upgrade for materialized functions. 6637 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6638 F->setSubprogram(SP); 6639 6640 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6641 if (!MDLoader->isStrippingTBAA()) { 6642 for (auto &I : instructions(F)) { 6643 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6644 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6645 continue; 6646 MDLoader->setStripTBAA(true); 6647 stripTBAA(F->getParent()); 6648 } 6649 } 6650 6651 for (auto &I : instructions(F)) { 6652 // "Upgrade" older incorrect branch weights by dropping them. 6653 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6654 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6655 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6656 StringRef ProfName = MDS->getString(); 6657 // Check consistency of !prof branch_weights metadata. 6658 if (!ProfName.equals("branch_weights")) 6659 continue; 6660 unsigned ExpectedNumOperands = 0; 6661 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6662 ExpectedNumOperands = BI->getNumSuccessors(); 6663 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6664 ExpectedNumOperands = SI->getNumSuccessors(); 6665 else if (isa<CallInst>(&I)) 6666 ExpectedNumOperands = 1; 6667 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6668 ExpectedNumOperands = IBI->getNumDestinations(); 6669 else if (isa<SelectInst>(&I)) 6670 ExpectedNumOperands = 2; 6671 else 6672 continue; // ignore and continue. 6673 6674 // If branch weight doesn't match, just strip branch weight. 6675 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6676 I.setMetadata(LLVMContext::MD_prof, nullptr); 6677 } 6678 } 6679 6680 // Remove incompatible attributes on function calls. 6681 if (auto *CI = dyn_cast<CallBase>(&I)) { 6682 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6683 CI->getFunctionType()->getReturnType())); 6684 6685 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6686 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6687 CI->getArgOperand(ArgNo)->getType())); 6688 } 6689 } 6690 6691 // Look for functions that rely on old function attribute behavior. 6692 UpgradeFunctionAttributes(*F); 6693 6694 // Bring in any functions that this function forward-referenced via 6695 // blockaddresses. 6696 return materializeForwardReferencedFunctions(); 6697 } 6698 6699 Error BitcodeReader::materializeModule() { 6700 if (Error Err = materializeMetadata()) 6701 return Err; 6702 6703 // Promise to materialize all forward references. 6704 WillMaterializeAllForwardRefs = true; 6705 6706 // Iterate over the module, deserializing any functions that are still on 6707 // disk. 6708 for (Function &F : *TheModule) { 6709 if (Error Err = materialize(&F)) 6710 return Err; 6711 } 6712 // At this point, if there are any function bodies, parse the rest of 6713 // the bits in the module past the last function block we have recorded 6714 // through either lazy scanning or the VST. 6715 if (LastFunctionBlockBit || NextUnreadBit) 6716 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6717 ? LastFunctionBlockBit 6718 : NextUnreadBit)) 6719 return Err; 6720 6721 // Check that all block address forward references got resolved (as we 6722 // promised above). 6723 if (!BasicBlockFwdRefs.empty()) 6724 return error("Never resolved function from blockaddress"); 6725 6726 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6727 // delete the old functions to clean up. We can't do this unless the entire 6728 // module is materialized because there could always be another function body 6729 // with calls to the old function. 6730 for (auto &I : UpgradedIntrinsics) { 6731 for (auto *U : I.first->users()) { 6732 if (CallInst *CI = dyn_cast<CallInst>(U)) 6733 UpgradeIntrinsicCall(CI, I.second); 6734 } 6735 if (!I.first->use_empty()) 6736 I.first->replaceAllUsesWith(I.second); 6737 I.first->eraseFromParent(); 6738 } 6739 UpgradedIntrinsics.clear(); 6740 6741 UpgradeDebugInfo(*TheModule); 6742 6743 UpgradeModuleFlags(*TheModule); 6744 6745 UpgradeARCRuntime(*TheModule); 6746 6747 return Error::success(); 6748 } 6749 6750 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6751 return IdentifiedStructTypes; 6752 } 6753 6754 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6755 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6756 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 6757 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6758 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 6759 6760 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6761 TheIndex.addModule(ModulePath); 6762 } 6763 6764 ModuleSummaryIndex::ModuleInfo * 6765 ModuleSummaryIndexBitcodeReader::getThisModule() { 6766 return TheIndex.getModule(ModulePath); 6767 } 6768 6769 template <bool AllowNullValueInfo> 6770 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6771 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6772 auto VGI = ValueIdToValueInfoMap[ValueId]; 6773 // We can have a null value info for memprof callsite info records in 6774 // distributed ThinLTO index files when the callee function summary is not 6775 // included in the index. The bitcode writer records 0 in that case, 6776 // and the caller of this helper will set AllowNullValueInfo to true. 6777 assert(AllowNullValueInfo || std::get<0>(VGI)); 6778 return VGI; 6779 } 6780 6781 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6782 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6783 StringRef SourceFileName) { 6784 std::string GlobalId = 6785 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6786 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6787 auto OriginalNameID = ValueGUID; 6788 if (GlobalValue::isLocalLinkage(Linkage)) 6789 OriginalNameID = GlobalValue::getGUID(ValueName); 6790 if (PrintSummaryGUIDs) 6791 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6792 << ValueName << "\n"; 6793 6794 // UseStrtab is false for legacy summary formats and value names are 6795 // created on stack. In that case we save the name in a string saver in 6796 // the index so that the value name can be recorded. 6797 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6798 TheIndex.getOrInsertValueInfo( 6799 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6800 OriginalNameID, ValueGUID); 6801 } 6802 6803 // Specialized value symbol table parser used when reading module index 6804 // blocks where we don't actually create global values. The parsed information 6805 // is saved in the bitcode reader for use when later parsing summaries. 6806 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6807 uint64_t Offset, 6808 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6809 // With a strtab the VST is not required to parse the summary. 6810 if (UseStrtab) 6811 return Error::success(); 6812 6813 assert(Offset > 0 && "Expected non-zero VST offset"); 6814 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6815 if (!MaybeCurrentBit) 6816 return MaybeCurrentBit.takeError(); 6817 uint64_t CurrentBit = MaybeCurrentBit.get(); 6818 6819 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6820 return Err; 6821 6822 SmallVector<uint64_t, 64> Record; 6823 6824 // Read all the records for this value table. 6825 SmallString<128> ValueName; 6826 6827 while (true) { 6828 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6829 if (!MaybeEntry) 6830 return MaybeEntry.takeError(); 6831 BitstreamEntry Entry = MaybeEntry.get(); 6832 6833 switch (Entry.Kind) { 6834 case BitstreamEntry::SubBlock: // Handled for us already. 6835 case BitstreamEntry::Error: 6836 return error("Malformed block"); 6837 case BitstreamEntry::EndBlock: 6838 // Done parsing VST, jump back to wherever we came from. 6839 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6840 return JumpFailed; 6841 return Error::success(); 6842 case BitstreamEntry::Record: 6843 // The interesting case. 6844 break; 6845 } 6846 6847 // Read a record. 6848 Record.clear(); 6849 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6850 if (!MaybeRecord) 6851 return MaybeRecord.takeError(); 6852 switch (MaybeRecord.get()) { 6853 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6854 break; 6855 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6856 if (convertToString(Record, 1, ValueName)) 6857 return error("Invalid record"); 6858 unsigned ValueID = Record[0]; 6859 assert(!SourceFileName.empty()); 6860 auto VLI = ValueIdToLinkageMap.find(ValueID); 6861 assert(VLI != ValueIdToLinkageMap.end() && 6862 "No linkage found for VST entry?"); 6863 auto Linkage = VLI->second; 6864 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6865 ValueName.clear(); 6866 break; 6867 } 6868 case bitc::VST_CODE_FNENTRY: { 6869 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6870 if (convertToString(Record, 2, ValueName)) 6871 return error("Invalid record"); 6872 unsigned ValueID = Record[0]; 6873 assert(!SourceFileName.empty()); 6874 auto VLI = ValueIdToLinkageMap.find(ValueID); 6875 assert(VLI != ValueIdToLinkageMap.end() && 6876 "No linkage found for VST entry?"); 6877 auto Linkage = VLI->second; 6878 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6879 ValueName.clear(); 6880 break; 6881 } 6882 case bitc::VST_CODE_COMBINED_ENTRY: { 6883 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6884 unsigned ValueID = Record[0]; 6885 GlobalValue::GUID RefGUID = Record[1]; 6886 // The "original name", which is the second value of the pair will be 6887 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6888 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6889 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 6890 break; 6891 } 6892 } 6893 } 6894 } 6895 6896 // Parse just the blocks needed for building the index out of the module. 6897 // At the end of this routine the module Index is populated with a map 6898 // from global value id to GlobalValueSummary objects. 6899 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6900 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6901 return Err; 6902 6903 SmallVector<uint64_t, 64> Record; 6904 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6905 unsigned ValueId = 0; 6906 6907 // Read the index for this module. 6908 while (true) { 6909 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6910 if (!MaybeEntry) 6911 return MaybeEntry.takeError(); 6912 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6913 6914 switch (Entry.Kind) { 6915 case BitstreamEntry::Error: 6916 return error("Malformed block"); 6917 case BitstreamEntry::EndBlock: 6918 return Error::success(); 6919 6920 case BitstreamEntry::SubBlock: 6921 switch (Entry.ID) { 6922 default: // Skip unknown content. 6923 if (Error Err = Stream.SkipBlock()) 6924 return Err; 6925 break; 6926 case bitc::BLOCKINFO_BLOCK_ID: 6927 // Need to parse these to get abbrev ids (e.g. for VST) 6928 if (Error Err = readBlockInfo()) 6929 return Err; 6930 break; 6931 case bitc::VALUE_SYMTAB_BLOCK_ID: 6932 // Should have been parsed earlier via VSTOffset, unless there 6933 // is no summary section. 6934 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6935 !SeenGlobalValSummary) && 6936 "Expected early VST parse via VSTOffset record"); 6937 if (Error Err = Stream.SkipBlock()) 6938 return Err; 6939 break; 6940 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6941 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6942 // Add the module if it is a per-module index (has a source file name). 6943 if (!SourceFileName.empty()) 6944 addThisModule(); 6945 assert(!SeenValueSymbolTable && 6946 "Already read VST when parsing summary block?"); 6947 // We might not have a VST if there were no values in the 6948 // summary. An empty summary block generated when we are 6949 // performing ThinLTO compiles so we don't later invoke 6950 // the regular LTO process on them. 6951 if (VSTOffset > 0) { 6952 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6953 return Err; 6954 SeenValueSymbolTable = true; 6955 } 6956 SeenGlobalValSummary = true; 6957 if (Error Err = parseEntireSummary(Entry.ID)) 6958 return Err; 6959 break; 6960 case bitc::MODULE_STRTAB_BLOCK_ID: 6961 if (Error Err = parseModuleStringTable()) 6962 return Err; 6963 break; 6964 } 6965 continue; 6966 6967 case BitstreamEntry::Record: { 6968 Record.clear(); 6969 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6970 if (!MaybeBitCode) 6971 return MaybeBitCode.takeError(); 6972 switch (MaybeBitCode.get()) { 6973 default: 6974 break; // Default behavior, ignore unknown content. 6975 case bitc::MODULE_CODE_VERSION: { 6976 if (Error Err = parseVersionRecord(Record).takeError()) 6977 return Err; 6978 break; 6979 } 6980 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6981 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6982 SmallString<128> ValueName; 6983 if (convertToString(Record, 0, ValueName)) 6984 return error("Invalid record"); 6985 SourceFileName = ValueName.c_str(); 6986 break; 6987 } 6988 /// MODULE_CODE_HASH: [5*i32] 6989 case bitc::MODULE_CODE_HASH: { 6990 if (Record.size() != 5) 6991 return error("Invalid hash length " + Twine(Record.size()).str()); 6992 auto &Hash = getThisModule()->second; 6993 int Pos = 0; 6994 for (auto &Val : Record) { 6995 assert(!(Val >> 32) && "Unexpected high bits set"); 6996 Hash[Pos++] = Val; 6997 } 6998 break; 6999 } 7000 /// MODULE_CODE_VSTOFFSET: [offset] 7001 case bitc::MODULE_CODE_VSTOFFSET: 7002 if (Record.empty()) 7003 return error("Invalid record"); 7004 // Note that we subtract 1 here because the offset is relative to one 7005 // word before the start of the identification or module block, which 7006 // was historically always the start of the regular bitcode header. 7007 VSTOffset = Record[0] - 1; 7008 break; 7009 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7010 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7011 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7012 // v2: [strtab offset, strtab size, v1] 7013 case bitc::MODULE_CODE_GLOBALVAR: 7014 case bitc::MODULE_CODE_FUNCTION: 7015 case bitc::MODULE_CODE_ALIAS: { 7016 StringRef Name; 7017 ArrayRef<uint64_t> GVRecord; 7018 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7019 if (GVRecord.size() <= 3) 7020 return error("Invalid record"); 7021 uint64_t RawLinkage = GVRecord[3]; 7022 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7023 if (!UseStrtab) { 7024 ValueIdToLinkageMap[ValueId++] = Linkage; 7025 break; 7026 } 7027 7028 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7029 break; 7030 } 7031 } 7032 } 7033 continue; 7034 } 7035 } 7036 } 7037 7038 std::vector<ValueInfo> 7039 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7040 std::vector<ValueInfo> Ret; 7041 Ret.reserve(Record.size()); 7042 for (uint64_t RefValueId : Record) 7043 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7044 return Ret; 7045 } 7046 7047 std::vector<FunctionSummary::EdgeTy> 7048 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7049 bool IsOldProfileFormat, 7050 bool HasProfile, bool HasRelBF) { 7051 std::vector<FunctionSummary::EdgeTy> Ret; 7052 Ret.reserve(Record.size()); 7053 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7054 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7055 bool HasTailCall = false; 7056 uint64_t RelBF = 0; 7057 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7058 if (IsOldProfileFormat) { 7059 I += 1; // Skip old callsitecount field 7060 if (HasProfile) 7061 I += 1; // Skip old profilecount field 7062 } else if (HasProfile) 7063 std::tie(Hotness, HasTailCall) = 7064 getDecodedHotnessCallEdgeInfo(Record[++I]); 7065 else if (HasRelBF) 7066 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7067 Ret.push_back(FunctionSummary::EdgeTy{ 7068 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7069 } 7070 return Ret; 7071 } 7072 7073 static void 7074 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7075 WholeProgramDevirtResolution &Wpd) { 7076 uint64_t ArgNum = Record[Slot++]; 7077 WholeProgramDevirtResolution::ByArg &B = 7078 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7079 Slot += ArgNum; 7080 7081 B.TheKind = 7082 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7083 B.Info = Record[Slot++]; 7084 B.Byte = Record[Slot++]; 7085 B.Bit = Record[Slot++]; 7086 } 7087 7088 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7089 StringRef Strtab, size_t &Slot, 7090 TypeIdSummary &TypeId) { 7091 uint64_t Id = Record[Slot++]; 7092 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7093 7094 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7095 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7096 static_cast<size_t>(Record[Slot + 1])}; 7097 Slot += 2; 7098 7099 uint64_t ResByArgNum = Record[Slot++]; 7100 for (uint64_t I = 0; I != ResByArgNum; ++I) 7101 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7102 } 7103 7104 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7105 StringRef Strtab, 7106 ModuleSummaryIndex &TheIndex) { 7107 size_t Slot = 0; 7108 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7109 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7110 Slot += 2; 7111 7112 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7113 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7114 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7115 TypeId.TTRes.SizeM1 = Record[Slot++]; 7116 TypeId.TTRes.BitMask = Record[Slot++]; 7117 TypeId.TTRes.InlineBits = Record[Slot++]; 7118 7119 while (Slot < Record.size()) 7120 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7121 } 7122 7123 std::vector<FunctionSummary::ParamAccess> 7124 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7125 auto ReadRange = [&]() { 7126 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7127 BitcodeReader::decodeSignRotatedValue(Record.front())); 7128 Record = Record.drop_front(); 7129 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7130 BitcodeReader::decodeSignRotatedValue(Record.front())); 7131 Record = Record.drop_front(); 7132 ConstantRange Range{Lower, Upper}; 7133 assert(!Range.isFullSet()); 7134 assert(!Range.isUpperSignWrapped()); 7135 return Range; 7136 }; 7137 7138 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7139 while (!Record.empty()) { 7140 PendingParamAccesses.emplace_back(); 7141 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7142 ParamAccess.ParamNo = Record.front(); 7143 Record = Record.drop_front(); 7144 ParamAccess.Use = ReadRange(); 7145 ParamAccess.Calls.resize(Record.front()); 7146 Record = Record.drop_front(); 7147 for (auto &Call : ParamAccess.Calls) { 7148 Call.ParamNo = Record.front(); 7149 Record = Record.drop_front(); 7150 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7151 Record = Record.drop_front(); 7152 Call.Offsets = ReadRange(); 7153 } 7154 } 7155 return PendingParamAccesses; 7156 } 7157 7158 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7159 ArrayRef<uint64_t> Record, size_t &Slot, 7160 TypeIdCompatibleVtableInfo &TypeId) { 7161 uint64_t Offset = Record[Slot++]; 7162 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7163 TypeId.push_back({Offset, Callee}); 7164 } 7165 7166 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7167 ArrayRef<uint64_t> Record) { 7168 size_t Slot = 0; 7169 TypeIdCompatibleVtableInfo &TypeId = 7170 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7171 {Strtab.data() + Record[Slot], 7172 static_cast<size_t>(Record[Slot + 1])}); 7173 Slot += 2; 7174 7175 while (Slot < Record.size()) 7176 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7177 } 7178 7179 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7180 unsigned WOCnt) { 7181 // Readonly and writeonly refs are in the end of the refs list. 7182 assert(ROCnt + WOCnt <= Refs.size()); 7183 unsigned FirstWORef = Refs.size() - WOCnt; 7184 unsigned RefNo = FirstWORef - ROCnt; 7185 for (; RefNo < FirstWORef; ++RefNo) 7186 Refs[RefNo].setReadOnly(); 7187 for (; RefNo < Refs.size(); ++RefNo) 7188 Refs[RefNo].setWriteOnly(); 7189 } 7190 7191 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7192 // objects in the index. 7193 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7194 if (Error Err = Stream.EnterSubBlock(ID)) 7195 return Err; 7196 SmallVector<uint64_t, 64> Record; 7197 7198 // Parse version 7199 { 7200 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7201 if (!MaybeEntry) 7202 return MaybeEntry.takeError(); 7203 BitstreamEntry Entry = MaybeEntry.get(); 7204 7205 if (Entry.Kind != BitstreamEntry::Record) 7206 return error("Invalid Summary Block: record for version expected"); 7207 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7208 if (!MaybeRecord) 7209 return MaybeRecord.takeError(); 7210 if (MaybeRecord.get() != bitc::FS_VERSION) 7211 return error("Invalid Summary Block: version expected"); 7212 } 7213 const uint64_t Version = Record[0]; 7214 const bool IsOldProfileFormat = Version == 1; 7215 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7216 return error("Invalid summary version " + Twine(Version) + 7217 ". Version should be in the range [1-" + 7218 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7219 "]."); 7220 Record.clear(); 7221 7222 // Keep around the last seen summary to be used when we see an optional 7223 // "OriginalName" attachement. 7224 GlobalValueSummary *LastSeenSummary = nullptr; 7225 GlobalValue::GUID LastSeenGUID = 0; 7226 7227 // We can expect to see any number of type ID information records before 7228 // each function summary records; these variables store the information 7229 // collected so far so that it can be used to create the summary object. 7230 std::vector<GlobalValue::GUID> PendingTypeTests; 7231 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7232 PendingTypeCheckedLoadVCalls; 7233 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7234 PendingTypeCheckedLoadConstVCalls; 7235 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7236 7237 std::vector<CallsiteInfo> PendingCallsites; 7238 std::vector<AllocInfo> PendingAllocs; 7239 7240 while (true) { 7241 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7242 if (!MaybeEntry) 7243 return MaybeEntry.takeError(); 7244 BitstreamEntry Entry = MaybeEntry.get(); 7245 7246 switch (Entry.Kind) { 7247 case BitstreamEntry::SubBlock: // Handled for us already. 7248 case BitstreamEntry::Error: 7249 return error("Malformed block"); 7250 case BitstreamEntry::EndBlock: 7251 return Error::success(); 7252 case BitstreamEntry::Record: 7253 // The interesting case. 7254 break; 7255 } 7256 7257 // Read a record. The record format depends on whether this 7258 // is a per-module index or a combined index file. In the per-module 7259 // case the records contain the associated value's ID for correlation 7260 // with VST entries. In the combined index the correlation is done 7261 // via the bitcode offset of the summary records (which were saved 7262 // in the combined index VST entries). The records also contain 7263 // information used for ThinLTO renaming and importing. 7264 Record.clear(); 7265 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7266 if (!MaybeBitCode) 7267 return MaybeBitCode.takeError(); 7268 switch (unsigned BitCode = MaybeBitCode.get()) { 7269 default: // Default behavior: ignore. 7270 break; 7271 case bitc::FS_FLAGS: { // [flags] 7272 TheIndex.setFlags(Record[0]); 7273 break; 7274 } 7275 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7276 uint64_t ValueID = Record[0]; 7277 GlobalValue::GUID RefGUID = Record[1]; 7278 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7279 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7280 break; 7281 } 7282 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7283 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7284 // numrefs x valueid, n x (valueid)] 7285 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7286 // numrefs x valueid, 7287 // n x (valueid, hotness+tailcall flags)] 7288 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7289 // numrefs x valueid, 7290 // n x (valueid, relblockfreq+tailcall)] 7291 case bitc::FS_PERMODULE: 7292 case bitc::FS_PERMODULE_RELBF: 7293 case bitc::FS_PERMODULE_PROFILE: { 7294 unsigned ValueID = Record[0]; 7295 uint64_t RawFlags = Record[1]; 7296 unsigned InstCount = Record[2]; 7297 uint64_t RawFunFlags = 0; 7298 unsigned NumRefs = Record[3]; 7299 unsigned NumRORefs = 0, NumWORefs = 0; 7300 int RefListStartIndex = 4; 7301 if (Version >= 4) { 7302 RawFunFlags = Record[3]; 7303 NumRefs = Record[4]; 7304 RefListStartIndex = 5; 7305 if (Version >= 5) { 7306 NumRORefs = Record[5]; 7307 RefListStartIndex = 6; 7308 if (Version >= 7) { 7309 NumWORefs = Record[6]; 7310 RefListStartIndex = 7; 7311 } 7312 } 7313 } 7314 7315 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7316 // The module path string ref set in the summary must be owned by the 7317 // index's module string table. Since we don't have a module path 7318 // string table section in the per-module index, we create a single 7319 // module path string table entry with an empty (0) ID to take 7320 // ownership. 7321 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7322 assert(Record.size() >= RefListStartIndex + NumRefs && 7323 "Record size inconsistent with number of references"); 7324 std::vector<ValueInfo> Refs = makeRefList( 7325 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7326 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7327 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7328 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7329 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7330 IsOldProfileFormat, HasProfile, HasRelBF); 7331 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7332 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7333 // In order to save memory, only record the memprof summaries if this is 7334 // the prevailing copy of a symbol. The linker doesn't resolve local 7335 // linkage values so don't check whether those are prevailing. 7336 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7337 if (IsPrevailing && 7338 !GlobalValue::isLocalLinkage(LT) && 7339 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7340 PendingCallsites.clear(); 7341 PendingAllocs.clear(); 7342 } 7343 auto FS = std::make_unique<FunctionSummary>( 7344 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7345 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7346 std::move(PendingTypeTestAssumeVCalls), 7347 std::move(PendingTypeCheckedLoadVCalls), 7348 std::move(PendingTypeTestAssumeConstVCalls), 7349 std::move(PendingTypeCheckedLoadConstVCalls), 7350 std::move(PendingParamAccesses), std::move(PendingCallsites), 7351 std::move(PendingAllocs)); 7352 FS->setModulePath(getThisModule()->first()); 7353 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7354 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7355 std::move(FS)); 7356 break; 7357 } 7358 // FS_ALIAS: [valueid, flags, valueid] 7359 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7360 // they expect all aliasee summaries to be available. 7361 case bitc::FS_ALIAS: { 7362 unsigned ValueID = Record[0]; 7363 uint64_t RawFlags = Record[1]; 7364 unsigned AliaseeID = Record[2]; 7365 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7366 auto AS = std::make_unique<AliasSummary>(Flags); 7367 // The module path string ref set in the summary must be owned by the 7368 // index's module string table. Since we don't have a module path 7369 // string table section in the per-module index, we create a single 7370 // module path string table entry with an empty (0) ID to take 7371 // ownership. 7372 AS->setModulePath(getThisModule()->first()); 7373 7374 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7375 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7376 if (!AliaseeInModule) 7377 return error("Alias expects aliasee summary to be parsed"); 7378 AS->setAliasee(AliaseeVI, AliaseeInModule); 7379 7380 auto GUID = getValueInfoFromValueId(ValueID); 7381 AS->setOriginalName(std::get<1>(GUID)); 7382 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7383 break; 7384 } 7385 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7386 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7387 unsigned ValueID = Record[0]; 7388 uint64_t RawFlags = Record[1]; 7389 unsigned RefArrayStart = 2; 7390 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7391 /* WriteOnly */ false, 7392 /* Constant */ false, 7393 GlobalObject::VCallVisibilityPublic); 7394 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7395 if (Version >= 5) { 7396 GVF = getDecodedGVarFlags(Record[2]); 7397 RefArrayStart = 3; 7398 } 7399 std::vector<ValueInfo> Refs = 7400 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7401 auto FS = 7402 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7403 FS->setModulePath(getThisModule()->first()); 7404 auto GUID = getValueInfoFromValueId(ValueID); 7405 FS->setOriginalName(std::get<1>(GUID)); 7406 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7407 break; 7408 } 7409 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7410 // numrefs, numrefs x valueid, 7411 // n x (valueid, offset)] 7412 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7413 unsigned ValueID = Record[0]; 7414 uint64_t RawFlags = Record[1]; 7415 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7416 unsigned NumRefs = Record[3]; 7417 unsigned RefListStartIndex = 4; 7418 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7419 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7420 std::vector<ValueInfo> Refs = makeRefList( 7421 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7422 VTableFuncList VTableFuncs; 7423 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7424 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7425 uint64_t Offset = Record[++I]; 7426 VTableFuncs.push_back({Callee, Offset}); 7427 } 7428 auto VS = 7429 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7430 VS->setModulePath(getThisModule()->first()); 7431 VS->setVTableFuncs(VTableFuncs); 7432 auto GUID = getValueInfoFromValueId(ValueID); 7433 VS->setOriginalName(std::get<1>(GUID)); 7434 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7435 break; 7436 } 7437 // FS_COMBINED is legacy and does not have support for the tail call flag. 7438 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7439 // numrefs x valueid, n x (valueid)] 7440 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7441 // numrefs x valueid, 7442 // n x (valueid, hotness+tailcall flags)] 7443 case bitc::FS_COMBINED: 7444 case bitc::FS_COMBINED_PROFILE: { 7445 unsigned ValueID = Record[0]; 7446 uint64_t ModuleId = Record[1]; 7447 uint64_t RawFlags = Record[2]; 7448 unsigned InstCount = Record[3]; 7449 uint64_t RawFunFlags = 0; 7450 uint64_t EntryCount = 0; 7451 unsigned NumRefs = Record[4]; 7452 unsigned NumRORefs = 0, NumWORefs = 0; 7453 int RefListStartIndex = 5; 7454 7455 if (Version >= 4) { 7456 RawFunFlags = Record[4]; 7457 RefListStartIndex = 6; 7458 size_t NumRefsIndex = 5; 7459 if (Version >= 5) { 7460 unsigned NumRORefsOffset = 1; 7461 RefListStartIndex = 7; 7462 if (Version >= 6) { 7463 NumRefsIndex = 6; 7464 EntryCount = Record[5]; 7465 RefListStartIndex = 8; 7466 if (Version >= 7) { 7467 RefListStartIndex = 9; 7468 NumWORefs = Record[8]; 7469 NumRORefsOffset = 2; 7470 } 7471 } 7472 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7473 } 7474 NumRefs = Record[NumRefsIndex]; 7475 } 7476 7477 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7478 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7479 assert(Record.size() >= RefListStartIndex + NumRefs && 7480 "Record size inconsistent with number of references"); 7481 std::vector<ValueInfo> Refs = makeRefList( 7482 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7483 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7484 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7485 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7486 IsOldProfileFormat, HasProfile, false); 7487 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7488 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7489 auto FS = std::make_unique<FunctionSummary>( 7490 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7491 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7492 std::move(PendingTypeTestAssumeVCalls), 7493 std::move(PendingTypeCheckedLoadVCalls), 7494 std::move(PendingTypeTestAssumeConstVCalls), 7495 std::move(PendingTypeCheckedLoadConstVCalls), 7496 std::move(PendingParamAccesses), std::move(PendingCallsites), 7497 std::move(PendingAllocs)); 7498 LastSeenSummary = FS.get(); 7499 LastSeenGUID = VI.getGUID(); 7500 FS->setModulePath(ModuleIdMap[ModuleId]); 7501 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7502 break; 7503 } 7504 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7505 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7506 // they expect all aliasee summaries to be available. 7507 case bitc::FS_COMBINED_ALIAS: { 7508 unsigned ValueID = Record[0]; 7509 uint64_t ModuleId = Record[1]; 7510 uint64_t RawFlags = Record[2]; 7511 unsigned AliaseeValueId = Record[3]; 7512 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7513 auto AS = std::make_unique<AliasSummary>(Flags); 7514 LastSeenSummary = AS.get(); 7515 AS->setModulePath(ModuleIdMap[ModuleId]); 7516 7517 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7518 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7519 AS->setAliasee(AliaseeVI, AliaseeInModule); 7520 7521 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7522 LastSeenGUID = VI.getGUID(); 7523 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7524 break; 7525 } 7526 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7527 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7528 unsigned ValueID = Record[0]; 7529 uint64_t ModuleId = Record[1]; 7530 uint64_t RawFlags = Record[2]; 7531 unsigned RefArrayStart = 3; 7532 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7533 /* WriteOnly */ false, 7534 /* Constant */ false, 7535 GlobalObject::VCallVisibilityPublic); 7536 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7537 if (Version >= 5) { 7538 GVF = getDecodedGVarFlags(Record[3]); 7539 RefArrayStart = 4; 7540 } 7541 std::vector<ValueInfo> Refs = 7542 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7543 auto FS = 7544 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7545 LastSeenSummary = FS.get(); 7546 FS->setModulePath(ModuleIdMap[ModuleId]); 7547 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7548 LastSeenGUID = VI.getGUID(); 7549 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7550 break; 7551 } 7552 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7553 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7554 uint64_t OriginalName = Record[0]; 7555 if (!LastSeenSummary) 7556 return error("Name attachment that does not follow a combined record"); 7557 LastSeenSummary->setOriginalName(OriginalName); 7558 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7559 // Reset the LastSeenSummary 7560 LastSeenSummary = nullptr; 7561 LastSeenGUID = 0; 7562 break; 7563 } 7564 case bitc::FS_TYPE_TESTS: 7565 assert(PendingTypeTests.empty()); 7566 llvm::append_range(PendingTypeTests, Record); 7567 break; 7568 7569 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7570 assert(PendingTypeTestAssumeVCalls.empty()); 7571 for (unsigned I = 0; I != Record.size(); I += 2) 7572 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7573 break; 7574 7575 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7576 assert(PendingTypeCheckedLoadVCalls.empty()); 7577 for (unsigned I = 0; I != Record.size(); I += 2) 7578 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7579 break; 7580 7581 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7582 PendingTypeTestAssumeConstVCalls.push_back( 7583 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7584 break; 7585 7586 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7587 PendingTypeCheckedLoadConstVCalls.push_back( 7588 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7589 break; 7590 7591 case bitc::FS_CFI_FUNCTION_DEFS: { 7592 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7593 for (unsigned I = 0; I != Record.size(); I += 2) 7594 CfiFunctionDefs.insert( 7595 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7596 break; 7597 } 7598 7599 case bitc::FS_CFI_FUNCTION_DECLS: { 7600 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7601 for (unsigned I = 0; I != Record.size(); I += 2) 7602 CfiFunctionDecls.insert( 7603 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7604 break; 7605 } 7606 7607 case bitc::FS_TYPE_ID: 7608 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7609 break; 7610 7611 case bitc::FS_TYPE_ID_METADATA: 7612 parseTypeIdCompatibleVtableSummaryRecord(Record); 7613 break; 7614 7615 case bitc::FS_BLOCK_COUNT: 7616 TheIndex.addBlockCount(Record[0]); 7617 break; 7618 7619 case bitc::FS_PARAM_ACCESS: { 7620 PendingParamAccesses = parseParamAccesses(Record); 7621 break; 7622 } 7623 7624 case bitc::FS_STACK_IDS: { // [n x stackid] 7625 // Save stack ids in the reader to consult when adding stack ids from the 7626 // lists in the stack node and alloc node entries. 7627 StackIds = ArrayRef<uint64_t>(Record); 7628 break; 7629 } 7630 7631 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7632 unsigned ValueID = Record[0]; 7633 SmallVector<unsigned> StackIdList; 7634 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7635 assert(*R < StackIds.size()); 7636 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7637 } 7638 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7639 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7640 break; 7641 } 7642 7643 case bitc::FS_COMBINED_CALLSITE_INFO: { 7644 auto RecordIter = Record.begin(); 7645 unsigned ValueID = *RecordIter++; 7646 unsigned NumStackIds = *RecordIter++; 7647 unsigned NumVersions = *RecordIter++; 7648 assert(Record.size() == 3 + NumStackIds + NumVersions); 7649 SmallVector<unsigned> StackIdList; 7650 for (unsigned J = 0; J < NumStackIds; J++) { 7651 assert(*RecordIter < StackIds.size()); 7652 StackIdList.push_back( 7653 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7654 } 7655 SmallVector<unsigned> Versions; 7656 for (unsigned J = 0; J < NumVersions; J++) 7657 Versions.push_back(*RecordIter++); 7658 ValueInfo VI = std::get<0>( 7659 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7660 PendingCallsites.push_back( 7661 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7662 break; 7663 } 7664 7665 case bitc::FS_PERMODULE_ALLOC_INFO: { 7666 unsigned I = 0; 7667 std::vector<MIBInfo> MIBs; 7668 while (I < Record.size()) { 7669 assert(Record.size() - I >= 2); 7670 AllocationType AllocType = (AllocationType)Record[I++]; 7671 unsigned NumStackEntries = Record[I++]; 7672 assert(Record.size() - I >= NumStackEntries); 7673 SmallVector<unsigned> StackIdList; 7674 for (unsigned J = 0; J < NumStackEntries; J++) { 7675 assert(Record[I] < StackIds.size()); 7676 StackIdList.push_back( 7677 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7678 } 7679 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7680 } 7681 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7682 break; 7683 } 7684 7685 case bitc::FS_COMBINED_ALLOC_INFO: { 7686 unsigned I = 0; 7687 std::vector<MIBInfo> MIBs; 7688 unsigned NumMIBs = Record[I++]; 7689 unsigned NumVersions = Record[I++]; 7690 unsigned MIBsRead = 0; 7691 while (MIBsRead++ < NumMIBs) { 7692 assert(Record.size() - I >= 2); 7693 AllocationType AllocType = (AllocationType)Record[I++]; 7694 unsigned NumStackEntries = Record[I++]; 7695 assert(Record.size() - I >= NumStackEntries); 7696 SmallVector<unsigned> StackIdList; 7697 for (unsigned J = 0; J < NumStackEntries; J++) { 7698 assert(Record[I] < StackIds.size()); 7699 StackIdList.push_back( 7700 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7701 } 7702 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7703 } 7704 assert(Record.size() - I >= NumVersions); 7705 SmallVector<uint8_t> Versions; 7706 for (unsigned J = 0; J < NumVersions; J++) 7707 Versions.push_back(Record[I++]); 7708 PendingAllocs.push_back( 7709 AllocInfo(std::move(Versions), std::move(MIBs))); 7710 break; 7711 } 7712 } 7713 } 7714 llvm_unreachable("Exit infinite loop"); 7715 } 7716 7717 // Parse the module string table block into the Index. 7718 // This populates the ModulePathStringTable map in the index. 7719 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7720 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7721 return Err; 7722 7723 SmallVector<uint64_t, 64> Record; 7724 7725 SmallString<128> ModulePath; 7726 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7727 7728 while (true) { 7729 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7730 if (!MaybeEntry) 7731 return MaybeEntry.takeError(); 7732 BitstreamEntry Entry = MaybeEntry.get(); 7733 7734 switch (Entry.Kind) { 7735 case BitstreamEntry::SubBlock: // Handled for us already. 7736 case BitstreamEntry::Error: 7737 return error("Malformed block"); 7738 case BitstreamEntry::EndBlock: 7739 return Error::success(); 7740 case BitstreamEntry::Record: 7741 // The interesting case. 7742 break; 7743 } 7744 7745 Record.clear(); 7746 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7747 if (!MaybeRecord) 7748 return MaybeRecord.takeError(); 7749 switch (MaybeRecord.get()) { 7750 default: // Default behavior: ignore. 7751 break; 7752 case bitc::MST_CODE_ENTRY: { 7753 // MST_ENTRY: [modid, namechar x N] 7754 uint64_t ModuleId = Record[0]; 7755 7756 if (convertToString(Record, 1, ModulePath)) 7757 return error("Invalid record"); 7758 7759 LastSeenModule = TheIndex.addModule(ModulePath); 7760 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7761 7762 ModulePath.clear(); 7763 break; 7764 } 7765 /// MST_CODE_HASH: [5*i32] 7766 case bitc::MST_CODE_HASH: { 7767 if (Record.size() != 5) 7768 return error("Invalid hash length " + Twine(Record.size()).str()); 7769 if (!LastSeenModule) 7770 return error("Invalid hash that does not follow a module path"); 7771 int Pos = 0; 7772 for (auto &Val : Record) { 7773 assert(!(Val >> 32) && "Unexpected high bits set"); 7774 LastSeenModule->second[Pos++] = Val; 7775 } 7776 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7777 LastSeenModule = nullptr; 7778 break; 7779 } 7780 } 7781 } 7782 llvm_unreachable("Exit infinite loop"); 7783 } 7784 7785 namespace { 7786 7787 // FIXME: This class is only here to support the transition to llvm::Error. It 7788 // will be removed once this transition is complete. Clients should prefer to 7789 // deal with the Error value directly, rather than converting to error_code. 7790 class BitcodeErrorCategoryType : public std::error_category { 7791 const char *name() const noexcept override { 7792 return "llvm.bitcode"; 7793 } 7794 7795 std::string message(int IE) const override { 7796 BitcodeError E = static_cast<BitcodeError>(IE); 7797 switch (E) { 7798 case BitcodeError::CorruptedBitcode: 7799 return "Corrupted bitcode"; 7800 } 7801 llvm_unreachable("Unknown error type!"); 7802 } 7803 }; 7804 7805 } // end anonymous namespace 7806 7807 const std::error_category &llvm::BitcodeErrorCategory() { 7808 static BitcodeErrorCategoryType ErrorCategory; 7809 return ErrorCategory; 7810 } 7811 7812 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7813 unsigned Block, unsigned RecordID) { 7814 if (Error Err = Stream.EnterSubBlock(Block)) 7815 return std::move(Err); 7816 7817 StringRef Strtab; 7818 while (true) { 7819 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7820 if (!MaybeEntry) 7821 return MaybeEntry.takeError(); 7822 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7823 7824 switch (Entry.Kind) { 7825 case BitstreamEntry::EndBlock: 7826 return Strtab; 7827 7828 case BitstreamEntry::Error: 7829 return error("Malformed block"); 7830 7831 case BitstreamEntry::SubBlock: 7832 if (Error Err = Stream.SkipBlock()) 7833 return std::move(Err); 7834 break; 7835 7836 case BitstreamEntry::Record: 7837 StringRef Blob; 7838 SmallVector<uint64_t, 1> Record; 7839 Expected<unsigned> MaybeRecord = 7840 Stream.readRecord(Entry.ID, Record, &Blob); 7841 if (!MaybeRecord) 7842 return MaybeRecord.takeError(); 7843 if (MaybeRecord.get() == RecordID) 7844 Strtab = Blob; 7845 break; 7846 } 7847 } 7848 } 7849 7850 //===----------------------------------------------------------------------===// 7851 // External interface 7852 //===----------------------------------------------------------------------===// 7853 7854 Expected<std::vector<BitcodeModule>> 7855 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7856 auto FOrErr = getBitcodeFileContents(Buffer); 7857 if (!FOrErr) 7858 return FOrErr.takeError(); 7859 return std::move(FOrErr->Mods); 7860 } 7861 7862 Expected<BitcodeFileContents> 7863 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7864 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7865 if (!StreamOrErr) 7866 return StreamOrErr.takeError(); 7867 BitstreamCursor &Stream = *StreamOrErr; 7868 7869 BitcodeFileContents F; 7870 while (true) { 7871 uint64_t BCBegin = Stream.getCurrentByteNo(); 7872 7873 // We may be consuming bitcode from a client that leaves garbage at the end 7874 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7875 // the end that there cannot possibly be another module, stop looking. 7876 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7877 return F; 7878 7879 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7880 if (!MaybeEntry) 7881 return MaybeEntry.takeError(); 7882 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7883 7884 switch (Entry.Kind) { 7885 case BitstreamEntry::EndBlock: 7886 case BitstreamEntry::Error: 7887 return error("Malformed block"); 7888 7889 case BitstreamEntry::SubBlock: { 7890 uint64_t IdentificationBit = -1ull; 7891 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7892 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7893 if (Error Err = Stream.SkipBlock()) 7894 return std::move(Err); 7895 7896 { 7897 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7898 if (!MaybeEntry) 7899 return MaybeEntry.takeError(); 7900 Entry = MaybeEntry.get(); 7901 } 7902 7903 if (Entry.Kind != BitstreamEntry::SubBlock || 7904 Entry.ID != bitc::MODULE_BLOCK_ID) 7905 return error("Malformed block"); 7906 } 7907 7908 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7909 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7910 if (Error Err = Stream.SkipBlock()) 7911 return std::move(Err); 7912 7913 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7914 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7915 Buffer.getBufferIdentifier(), IdentificationBit, 7916 ModuleBit}); 7917 continue; 7918 } 7919 7920 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7921 Expected<StringRef> Strtab = 7922 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7923 if (!Strtab) 7924 return Strtab.takeError(); 7925 // This string table is used by every preceding bitcode module that does 7926 // not have its own string table. A bitcode file may have multiple 7927 // string tables if it was created by binary concatenation, for example 7928 // with "llvm-cat -b". 7929 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7930 if (!I.Strtab.empty()) 7931 break; 7932 I.Strtab = *Strtab; 7933 } 7934 // Similarly, the string table is used by every preceding symbol table; 7935 // normally there will be just one unless the bitcode file was created 7936 // by binary concatenation. 7937 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7938 F.StrtabForSymtab = *Strtab; 7939 continue; 7940 } 7941 7942 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7943 Expected<StringRef> SymtabOrErr = 7944 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7945 if (!SymtabOrErr) 7946 return SymtabOrErr.takeError(); 7947 7948 // We can expect the bitcode file to have multiple symbol tables if it 7949 // was created by binary concatenation. In that case we silently 7950 // ignore any subsequent symbol tables, which is fine because this is a 7951 // low level function. The client is expected to notice that the number 7952 // of modules in the symbol table does not match the number of modules 7953 // in the input file and regenerate the symbol table. 7954 if (F.Symtab.empty()) 7955 F.Symtab = *SymtabOrErr; 7956 continue; 7957 } 7958 7959 if (Error Err = Stream.SkipBlock()) 7960 return std::move(Err); 7961 continue; 7962 } 7963 case BitstreamEntry::Record: 7964 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7965 return std::move(E); 7966 continue; 7967 } 7968 } 7969 } 7970 7971 /// Get a lazy one-at-time loading module from bitcode. 7972 /// 7973 /// This isn't always used in a lazy context. In particular, it's also used by 7974 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7975 /// in forward-referenced functions from block address references. 7976 /// 7977 /// \param[in] MaterializeAll Set to \c true if we should materialize 7978 /// everything. 7979 Expected<std::unique_ptr<Module>> 7980 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7981 bool ShouldLazyLoadMetadata, bool IsImporting, 7982 ParserCallbacks Callbacks) { 7983 BitstreamCursor Stream(Buffer); 7984 7985 std::string ProducerIdentification; 7986 if (IdentificationBit != -1ull) { 7987 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7988 return std::move(JumpFailed); 7989 if (Error E = 7990 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7991 return std::move(E); 7992 } 7993 7994 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7995 return std::move(JumpFailed); 7996 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7997 Context); 7998 7999 std::unique_ptr<Module> M = 8000 std::make_unique<Module>(ModuleIdentifier, Context); 8001 M->setMaterializer(R); 8002 8003 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8004 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8005 IsImporting, Callbacks)) 8006 return std::move(Err); 8007 8008 if (MaterializeAll) { 8009 // Read in the entire module, and destroy the BitcodeReader. 8010 if (Error Err = M->materializeAll()) 8011 return std::move(Err); 8012 } else { 8013 // Resolve forward references from blockaddresses. 8014 if (Error Err = R->materializeForwardReferencedFunctions()) 8015 return std::move(Err); 8016 } 8017 return std::move(M); 8018 } 8019 8020 Expected<std::unique_ptr<Module>> 8021 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8022 bool IsImporting, ParserCallbacks Callbacks) { 8023 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8024 Callbacks); 8025 } 8026 8027 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8028 // We don't use ModuleIdentifier here because the client may need to control the 8029 // module path used in the combined summary (e.g. when reading summaries for 8030 // regular LTO modules). 8031 Error BitcodeModule::readSummary( 8032 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8033 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8034 BitstreamCursor Stream(Buffer); 8035 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8036 return JumpFailed; 8037 8038 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8039 ModulePath, IsPrevailing); 8040 return R.parseModule(); 8041 } 8042 8043 // Parse the specified bitcode buffer, returning the function info index. 8044 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8045 BitstreamCursor Stream(Buffer); 8046 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8047 return std::move(JumpFailed); 8048 8049 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8050 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8051 ModuleIdentifier, 0); 8052 8053 if (Error Err = R.parseModule()) 8054 return std::move(Err); 8055 8056 return std::move(Index); 8057 } 8058 8059 static Expected<std::pair<bool, bool>> 8060 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8061 unsigned ID, 8062 BitcodeLTOInfo <OInfo) { 8063 if (Error Err = Stream.EnterSubBlock(ID)) 8064 return std::move(Err); 8065 SmallVector<uint64_t, 64> Record; 8066 8067 while (true) { 8068 BitstreamEntry Entry; 8069 std::pair<bool, bool> Result = {false,false}; 8070 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8071 return std::move(E); 8072 8073 switch (Entry.Kind) { 8074 case BitstreamEntry::SubBlock: // Handled for us already. 8075 case BitstreamEntry::Error: 8076 return error("Malformed block"); 8077 case BitstreamEntry::EndBlock: { 8078 // If no flags record found, set both flags to false. 8079 return Result; 8080 } 8081 case BitstreamEntry::Record: 8082 // The interesting case. 8083 break; 8084 } 8085 8086 // Look for the FS_FLAGS record. 8087 Record.clear(); 8088 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8089 if (!MaybeBitCode) 8090 return MaybeBitCode.takeError(); 8091 switch (MaybeBitCode.get()) { 8092 default: // Default behavior: ignore. 8093 break; 8094 case bitc::FS_FLAGS: { // [flags] 8095 uint64_t Flags = Record[0]; 8096 // Scan flags. 8097 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8098 8099 bool EnableSplitLTOUnit = Flags & 0x8; 8100 bool UnifiedLTO = Flags & 0x200; 8101 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8102 8103 return Result; 8104 } 8105 } 8106 } 8107 llvm_unreachable("Exit infinite loop"); 8108 } 8109 8110 // Check if the given bitcode buffer contains a global value summary block. 8111 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8112 BitstreamCursor Stream(Buffer); 8113 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8114 return std::move(JumpFailed); 8115 8116 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8117 return std::move(Err); 8118 8119 while (true) { 8120 llvm::BitstreamEntry Entry; 8121 if (Error E = Stream.advance().moveInto(Entry)) 8122 return std::move(E); 8123 8124 switch (Entry.Kind) { 8125 case BitstreamEntry::Error: 8126 return error("Malformed block"); 8127 case BitstreamEntry::EndBlock: 8128 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8129 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8130 8131 case BitstreamEntry::SubBlock: 8132 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8133 BitcodeLTOInfo LTOInfo; 8134 Expected<std::pair<bool, bool>> Flags = 8135 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8136 if (!Flags) 8137 return Flags.takeError(); 8138 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8139 LTOInfo.IsThinLTO = true; 8140 LTOInfo.HasSummary = true; 8141 return LTOInfo; 8142 } 8143 8144 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8145 BitcodeLTOInfo LTOInfo; 8146 Expected<std::pair<bool, bool>> Flags = 8147 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8148 if (!Flags) 8149 return Flags.takeError(); 8150 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8151 LTOInfo.IsThinLTO = false; 8152 LTOInfo.HasSummary = true; 8153 return LTOInfo; 8154 } 8155 8156 // Ignore other sub-blocks. 8157 if (Error Err = Stream.SkipBlock()) 8158 return std::move(Err); 8159 continue; 8160 8161 case BitstreamEntry::Record: 8162 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8163 continue; 8164 else 8165 return StreamFailed.takeError(); 8166 } 8167 } 8168 } 8169 8170 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8171 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8172 if (!MsOrErr) 8173 return MsOrErr.takeError(); 8174 8175 if (MsOrErr->size() != 1) 8176 return error("Expected a single module"); 8177 8178 return (*MsOrErr)[0]; 8179 } 8180 8181 Expected<std::unique_ptr<Module>> 8182 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8183 bool ShouldLazyLoadMetadata, bool IsImporting, 8184 ParserCallbacks Callbacks) { 8185 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8186 if (!BM) 8187 return BM.takeError(); 8188 8189 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8190 Callbacks); 8191 } 8192 8193 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8194 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8195 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8196 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8197 IsImporting, Callbacks); 8198 if (MOrErr) 8199 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8200 return MOrErr; 8201 } 8202 8203 Expected<std::unique_ptr<Module>> 8204 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8205 return getModuleImpl(Context, true, false, false, Callbacks); 8206 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8207 // written. We must defer until the Module has been fully materialized. 8208 } 8209 8210 Expected<std::unique_ptr<Module>> 8211 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8212 ParserCallbacks Callbacks) { 8213 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8214 if (!BM) 8215 return BM.takeError(); 8216 8217 return BM->parseModule(Context, Callbacks); 8218 } 8219 8220 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8221 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8222 if (!StreamOrErr) 8223 return StreamOrErr.takeError(); 8224 8225 return readTriple(*StreamOrErr); 8226 } 8227 8228 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8229 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8230 if (!StreamOrErr) 8231 return StreamOrErr.takeError(); 8232 8233 return hasObjCCategory(*StreamOrErr); 8234 } 8235 8236 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8237 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8238 if (!StreamOrErr) 8239 return StreamOrErr.takeError(); 8240 8241 return readIdentificationCode(*StreamOrErr); 8242 } 8243 8244 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8245 ModuleSummaryIndex &CombinedIndex) { 8246 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8247 if (!BM) 8248 return BM.takeError(); 8249 8250 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8251 } 8252 8253 Expected<std::unique_ptr<ModuleSummaryIndex>> 8254 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8255 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8256 if (!BM) 8257 return BM.takeError(); 8258 8259 return BM->getSummary(); 8260 } 8261 8262 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8263 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8264 if (!BM) 8265 return BM.takeError(); 8266 8267 return BM->getLTOInfo(); 8268 } 8269 8270 Expected<std::unique_ptr<ModuleSummaryIndex>> 8271 llvm::getModuleSummaryIndexForFile(StringRef Path, 8272 bool IgnoreEmptyThinLTOIndexFile) { 8273 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8274 MemoryBuffer::getFileOrSTDIN(Path); 8275 if (!FileOrErr) 8276 return errorCodeToError(FileOrErr.getError()); 8277 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8278 return nullptr; 8279 return getModuleSummaryIndex(**FileOrErr); 8280 } 8281