xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision ed07fc809c371825ade9cba99966c23b0f23e868)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <optional>
84 #include <set>
85 #include <string>
86 #include <system_error>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 
93 static cl::opt<bool> PrintSummaryGUIDs(
94     "print-summary-global-ids", cl::init(false), cl::Hidden,
95     cl::desc(
96         "Print the global id for each value when reading the module summary"));
97 
98 static cl::opt<bool> ExpandConstantExprs(
99     "expand-constant-exprs", cl::Hidden,
100     cl::desc(
101         "Expand constant expressions to instructions for testing purposes"));
102 
103 namespace {
104 
105 enum {
106   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
107 };
108 
109 } // end anonymous namespace
110 
111 static Error error(const Twine &Message) {
112   return make_error<StringError>(
113       Message, make_error_code(BitcodeError::CorruptedBitcode));
114 }
115 
116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
117   if (!Stream.canSkipToPos(4))
118     return createStringError(std::errc::illegal_byte_sequence,
119                              "file too small to contain bitcode header");
120   for (unsigned C : {'B', 'C'})
121     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
122       if (Res.get() != C)
123         return createStringError(std::errc::illegal_byte_sequence,
124                                  "file doesn't start with bitcode header");
125     } else
126       return Res.takeError();
127   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
128     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
129       if (Res.get() != C)
130         return createStringError(std::errc::illegal_byte_sequence,
131                                  "file doesn't start with bitcode header");
132     } else
133       return Res.takeError();
134   return Error::success();
135 }
136 
137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
138   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
139   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
140 
141   if (Buffer.getBufferSize() & 3)
142     return error("Invalid bitcode signature");
143 
144   // If we have a wrapper header, parse it and ignore the non-bc file contents.
145   // The magic number is 0x0B17C0DE stored in little endian.
146   if (isBitcodeWrapper(BufPtr, BufEnd))
147     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
148       return error("Invalid bitcode wrapper header");
149 
150   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
151   if (Error Err = hasInvalidBitcodeHeader(Stream))
152     return std::move(Err);
153 
154   return std::move(Stream);
155 }
156 
157 /// Convert a string from a record into an std::string, return true on failure.
158 template <typename StrTy>
159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
160                             StrTy &Result) {
161   if (Idx > Record.size())
162     return true;
163 
164   Result.append(Record.begin() + Idx, Record.end());
165   return false;
166 }
167 
168 // Strip all the TBAA attachment for the module.
169 static void stripTBAA(Module *M) {
170   for (auto &F : *M) {
171     if (F.isMaterializable())
172       continue;
173     for (auto &I : instructions(F))
174       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
175   }
176 }
177 
178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
179 /// "epoch" encoded in the bitcode, and return the producer name if any.
180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
181   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
182     return std::move(Err);
183 
184   // Read all the records.
185   SmallVector<uint64_t, 64> Record;
186 
187   std::string ProducerIdentification;
188 
189   while (true) {
190     BitstreamEntry Entry;
191     if (Error E = Stream.advance().moveInto(Entry))
192       return std::move(E);
193 
194     switch (Entry.Kind) {
195     default:
196     case BitstreamEntry::Error:
197       return error("Malformed block");
198     case BitstreamEntry::EndBlock:
199       return ProducerIdentification;
200     case BitstreamEntry::Record:
201       // The interesting case.
202       break;
203     }
204 
205     // Read a record.
206     Record.clear();
207     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
208     if (!MaybeBitCode)
209       return MaybeBitCode.takeError();
210     switch (MaybeBitCode.get()) {
211     default: // Default behavior: reject
212       return error("Invalid value");
213     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
214       convertToString(Record, 0, ProducerIdentification);
215       break;
216     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
217       unsigned epoch = (unsigned)Record[0];
218       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
219         return error(
220           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
221           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
222       }
223     }
224     }
225   }
226 }
227 
228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
229   // We expect a number of well-defined blocks, though we don't necessarily
230   // need to understand them all.
231   while (true) {
232     if (Stream.AtEndOfStream())
233       return "";
234 
235     BitstreamEntry Entry;
236     if (Error E = Stream.advance().moveInto(Entry))
237       return std::move(E);
238 
239     switch (Entry.Kind) {
240     case BitstreamEntry::EndBlock:
241     case BitstreamEntry::Error:
242       return error("Malformed block");
243 
244     case BitstreamEntry::SubBlock:
245       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
246         return readIdentificationBlock(Stream);
247 
248       // Ignore other sub-blocks.
249       if (Error Err = Stream.SkipBlock())
250         return std::move(Err);
251       continue;
252     case BitstreamEntry::Record:
253       if (Error E = Stream.skipRecord(Entry.ID).takeError())
254         return std::move(E);
255       continue;
256     }
257   }
258 }
259 
260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
261   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
262     return std::move(Err);
263 
264   SmallVector<uint64_t, 64> Record;
265   // Read all the records for this module.
266 
267   while (true) {
268     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
269     if (!MaybeEntry)
270       return MaybeEntry.takeError();
271     BitstreamEntry Entry = MaybeEntry.get();
272 
273     switch (Entry.Kind) {
274     case BitstreamEntry::SubBlock: // Handled for us already.
275     case BitstreamEntry::Error:
276       return error("Malformed block");
277     case BitstreamEntry::EndBlock:
278       return false;
279     case BitstreamEntry::Record:
280       // The interesting case.
281       break;
282     }
283 
284     // Read a record.
285     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
286     if (!MaybeRecord)
287       return MaybeRecord.takeError();
288     switch (MaybeRecord.get()) {
289     default:
290       break; // Default behavior, ignore unknown content.
291     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
292       std::string S;
293       if (convertToString(Record, 0, S))
294         return error("Invalid section name record");
295       // Check for the i386 and other (x86_64, ARM) conventions
296       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
297           S.find("__OBJC,__category") != std::string::npos)
298         return true;
299       break;
300     }
301     }
302     Record.clear();
303   }
304   llvm_unreachable("Exit infinite loop");
305 }
306 
307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
308   // We expect a number of well-defined blocks, though we don't necessarily
309   // need to understand them all.
310   while (true) {
311     BitstreamEntry Entry;
312     if (Error E = Stream.advance().moveInto(Entry))
313       return std::move(E);
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Error E = Stream.skipRecord(Entry.ID).takeError())
332         return std::move(E);
333       continue;
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid triple record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   Error readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid version record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 /// This represents a constant expression or constant aggregate using a custom
483 /// structure internal to the bitcode reader. Later, this structure will be
484 /// expanded by materializeValue() either into a constant expression/aggregate,
485 /// or into an instruction sequence at the point of use. This allows us to
486 /// upgrade bitcode using constant expressions even if this kind of constant
487 /// expression is no longer supported.
488 class BitcodeConstant final : public Value,
489                               TrailingObjects<BitcodeConstant, unsigned> {
490   friend TrailingObjects;
491 
492   // Value subclass ID: Pick largest possible value to avoid any clashes.
493   static constexpr uint8_t SubclassID = 255;
494 
495 public:
496   // Opcodes used for non-expressions. This includes constant aggregates
497   // (struct, array, vector) that might need expansion, as well as non-leaf
498   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
499   // but still go through BitcodeConstant to avoid different uselist orders
500   // between the two cases.
501   static constexpr uint8_t ConstantStructOpcode = 255;
502   static constexpr uint8_t ConstantArrayOpcode = 254;
503   static constexpr uint8_t ConstantVectorOpcode = 253;
504   static constexpr uint8_t NoCFIOpcode = 252;
505   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
506   static constexpr uint8_t BlockAddressOpcode = 250;
507   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
508 
509   // Separate struct to make passing different number of parameters to
510   // BitcodeConstant::create() more convenient.
511   struct ExtraInfo {
512     uint8_t Opcode;
513     uint8_t Flags;
514     unsigned Extra;
515     Type *SrcElemTy;
516 
517     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
518               Type *SrcElemTy = nullptr)
519         : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
520   };
521 
522   uint8_t Opcode;
523   uint8_t Flags;
524   unsigned NumOperands;
525   unsigned Extra;  // GEP inrange index or blockaddress BB id.
526   Type *SrcElemTy; // GEP source element type.
527 
528 private:
529   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
530       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
531         NumOperands(OpIDs.size()), Extra(Info.Extra),
532         SrcElemTy(Info.SrcElemTy) {
533     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
534                             getTrailingObjects<unsigned>());
535   }
536 
537   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
538 
539 public:
540   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
541                                  const ExtraInfo &Info,
542                                  ArrayRef<unsigned> OpIDs) {
543     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
544                            alignof(BitcodeConstant));
545     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
546   }
547 
548   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
549 
550   ArrayRef<unsigned> getOperandIDs() const {
551     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
552   }
553 
554   std::optional<unsigned> getInRangeIndex() const {
555     assert(Opcode == Instruction::GetElementPtr);
556     if (Extra == (unsigned)-1)
557       return std::nullopt;
558     return Extra;
559   }
560 
561   const char *getOpcodeName() const {
562     return Instruction::getOpcodeName(Opcode);
563   }
564 };
565 
566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
567   LLVMContext &Context;
568   Module *TheModule = nullptr;
569   // Next offset to start scanning for lazy parsing of function bodies.
570   uint64_t NextUnreadBit = 0;
571   // Last function offset found in the VST.
572   uint64_t LastFunctionBlockBit = 0;
573   bool SeenValueSymbolTable = false;
574   uint64_t VSTOffset = 0;
575 
576   std::vector<std::string> SectionTable;
577   std::vector<std::string> GCTable;
578 
579   std::vector<Type *> TypeList;
580   /// Track type IDs of contained types. Order is the same as the contained
581   /// types of a Type*. This is used during upgrades of typed pointer IR in
582   /// opaque pointer mode.
583   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
584   /// In some cases, we need to create a type ID for a type that was not
585   /// explicitly encoded in the bitcode, or we don't know about at the current
586   /// point. For example, a global may explicitly encode the value type ID, but
587   /// not have a type ID for the pointer to value type, for which we create a
588   /// virtual type ID instead. This map stores the new type ID that was created
589   /// for the given pair of Type and contained type ID.
590   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
591   DenseMap<Function *, unsigned> FunctionTypeIDs;
592   /// Allocator for BitcodeConstants. This should come before ValueList,
593   /// because the ValueList might hold ValueHandles to these constants, so
594   /// ValueList must be destroyed before Alloc.
595   BumpPtrAllocator Alloc;
596   BitcodeReaderValueList ValueList;
597   std::optional<MetadataLoader> MDLoader;
598   std::vector<Comdat *> ComdatList;
599   DenseSet<GlobalObject *> ImplicitComdatObjects;
600   SmallVector<Instruction *, 64> InstructionList;
601 
602   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
603   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
604 
605   struct FunctionOperandInfo {
606     Function *F;
607     unsigned PersonalityFn;
608     unsigned Prefix;
609     unsigned Prologue;
610   };
611   std::vector<FunctionOperandInfo> FunctionOperands;
612 
613   /// The set of attributes by index.  Index zero in the file is for null, and
614   /// is thus not represented here.  As such all indices are off by one.
615   std::vector<AttributeList> MAttributes;
616 
617   /// The set of attribute groups.
618   std::map<unsigned, AttributeList> MAttributeGroups;
619 
620   /// While parsing a function body, this is a list of the basic blocks for the
621   /// function.
622   std::vector<BasicBlock*> FunctionBBs;
623 
624   // When reading the module header, this list is populated with functions that
625   // have bodies later in the file.
626   std::vector<Function*> FunctionsWithBodies;
627 
628   // When intrinsic functions are encountered which require upgrading they are
629   // stored here with their replacement function.
630   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
631   UpdatedIntrinsicMap UpgradedIntrinsics;
632 
633   // Several operations happen after the module header has been read, but
634   // before function bodies are processed. This keeps track of whether
635   // we've done this yet.
636   bool SeenFirstFunctionBody = false;
637 
638   /// When function bodies are initially scanned, this map contains info about
639   /// where to find deferred function body in the stream.
640   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
641 
642   /// When Metadata block is initially scanned when parsing the module, we may
643   /// choose to defer parsing of the metadata. This vector contains info about
644   /// which Metadata blocks are deferred.
645   std::vector<uint64_t> DeferredMetadataInfo;
646 
647   /// These are basic blocks forward-referenced by block addresses.  They are
648   /// inserted lazily into functions when they're loaded.  The basic block ID is
649   /// its index into the vector.
650   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
651   std::deque<Function *> BasicBlockFwdRefQueue;
652 
653   /// These are Functions that contain BlockAddresses which refer a different
654   /// Function. When parsing the different Function, queue Functions that refer
655   /// to the different Function. Those Functions must be materialized in order
656   /// to resolve their BlockAddress constants before the different Function
657   /// gets moved into another Module.
658   std::vector<Function *> BackwardRefFunctions;
659 
660   /// Indicates that we are using a new encoding for instruction operands where
661   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
662   /// instruction number, for a more compact encoding.  Some instruction
663   /// operands are not relative to the instruction ID: basic block numbers, and
664   /// types. Once the old style function blocks have been phased out, we would
665   /// not need this flag.
666   bool UseRelativeIDs = false;
667 
668   /// True if all functions will be materialized, negating the need to process
669   /// (e.g.) blockaddress forward references.
670   bool WillMaterializeAllForwardRefs = false;
671 
672   bool StripDebugInfo = false;
673   TBAAVerifier TBAAVerifyHelper;
674 
675   std::vector<std::string> BundleTags;
676   SmallVector<SyncScope::ID, 8> SSIDs;
677 
678   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
679 
680 public:
681   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
682                 StringRef ProducerIdentification, LLVMContext &Context);
683 
684   Error materializeForwardReferencedFunctions();
685 
686   Error materialize(GlobalValue *GV) override;
687   Error materializeModule() override;
688   std::vector<StructType *> getIdentifiedStructTypes() const override;
689 
690   /// Main interface to parsing a bitcode buffer.
691   /// \returns true if an error occurred.
692   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
693                          bool IsImporting, ParserCallbacks Callbacks = {});
694 
695   static uint64_t decodeSignRotatedValue(uint64_t V);
696 
697   /// Materialize any deferred Metadata block.
698   Error materializeMetadata() override;
699 
700   void setStripDebugInfo() override;
701 
702 private:
703   std::vector<StructType *> IdentifiedStructTypes;
704   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
705   StructType *createIdentifiedStructType(LLVMContext &Context);
706 
707   static constexpr unsigned InvalidTypeID = ~0u;
708 
709   Type *getTypeByID(unsigned ID);
710   Type *getPtrElementTypeByID(unsigned ID);
711   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
712   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
713 
714   void callValueTypeCallback(Value *F, unsigned TypeID);
715   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
716   Expected<Constant *> getValueForInitializer(unsigned ID);
717 
718   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
719                         BasicBlock *ConstExprInsertBB) {
720     if (Ty && Ty->isMetadataTy())
721       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
722     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
723   }
724 
725   Metadata *getFnMetadataByID(unsigned ID) {
726     return MDLoader->getMetadataFwdRefOrLoad(ID);
727   }
728 
729   BasicBlock *getBasicBlock(unsigned ID) const {
730     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
731     return FunctionBBs[ID];
732   }
733 
734   AttributeList getAttributes(unsigned i) const {
735     if (i-1 < MAttributes.size())
736       return MAttributes[i-1];
737     return AttributeList();
738   }
739 
740   /// Read a value/type pair out of the specified record from slot 'Slot'.
741   /// Increment Slot past the number of slots used in the record. Return true on
742   /// failure.
743   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
744                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Slot == Record.size()) return true;
747     unsigned ValNo = (unsigned)Record[Slot++];
748     // Adjust the ValNo, if it was encoded relative to the InstNum.
749     if (UseRelativeIDs)
750       ValNo = InstNum - ValNo;
751     if (ValNo < InstNum) {
752       // If this is not a forward reference, just return the value we already
753       // have.
754       TypeID = ValueList.getTypeID(ValNo);
755       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
756       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
757              "Incorrect type ID stored for value");
758       return ResVal == nullptr;
759     }
760     if (Slot == Record.size())
761       return true;
762 
763     TypeID = (unsigned)Record[Slot++];
764     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
765                             ConstExprInsertBB);
766     return ResVal == nullptr;
767   }
768 
769   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
770   /// past the number of slots used by the value in the record. Return true if
771   /// there is an error.
772   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
773                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
774                 BasicBlock *ConstExprInsertBB) {
775     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
776       return true;
777     // All values currently take a single record slot.
778     ++Slot;
779     return false;
780   }
781 
782   /// Like popValue, but does not increment the Slot number.
783   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
784                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
785                 BasicBlock *ConstExprInsertBB) {
786     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
787     return ResVal == nullptr;
788   }
789 
790   /// Version of getValue that returns ResVal directly, or 0 if there is an
791   /// error.
792   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
793                   unsigned InstNum, Type *Ty, unsigned TyID,
794                   BasicBlock *ConstExprInsertBB) {
795     if (Slot == Record.size()) return nullptr;
796     unsigned ValNo = (unsigned)Record[Slot];
797     // Adjust the ValNo, if it was encoded relative to the InstNum.
798     if (UseRelativeIDs)
799       ValNo = InstNum - ValNo;
800     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
801   }
802 
803   /// Like getValue, but decodes signed VBRs.
804   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
805                         unsigned InstNum, Type *Ty, unsigned TyID,
806                         BasicBlock *ConstExprInsertBB) {
807     if (Slot == Record.size()) return nullptr;
808     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
809     // Adjust the ValNo, if it was encoded relative to the InstNum.
810     if (UseRelativeIDs)
811       ValNo = InstNum - ValNo;
812     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
813   }
814 
815   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
816   /// corresponding argument's pointee type. Also upgrades intrinsics that now
817   /// require an elementtype attribute.
818   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
819 
820   /// Converts alignment exponent (i.e. power of two (or zero)) to the
821   /// corresponding alignment to use. If alignment is too large, returns
822   /// a corresponding error code.
823   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
824   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
825   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
826                     ParserCallbacks Callbacks = {});
827 
828   Error parseComdatRecord(ArrayRef<uint64_t> Record);
829   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
830   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
831   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
832                                         ArrayRef<uint64_t> Record);
833 
834   Error parseAttributeBlock();
835   Error parseAttributeGroupBlock();
836   Error parseTypeTable();
837   Error parseTypeTableBody();
838   Error parseOperandBundleTags();
839   Error parseSyncScopeNames();
840 
841   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
842                                 unsigned NameIndex, Triple &TT);
843   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
844                                ArrayRef<uint64_t> Record);
845   Error parseValueSymbolTable(uint64_t Offset = 0);
846   Error parseGlobalValueSymbolTable();
847   Error parseConstants();
848   Error rememberAndSkipFunctionBodies();
849   Error rememberAndSkipFunctionBody();
850   /// Save the positions of the Metadata blocks and skip parsing the blocks.
851   Error rememberAndSkipMetadata();
852   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
853   Error parseFunctionBody(Function *F);
854   Error globalCleanup();
855   Error resolveGlobalAndIndirectSymbolInits();
856   Error parseUseLists();
857   Error findFunctionInStream(
858       Function *F,
859       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
860 
861   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
862 };
863 
864 /// Class to manage reading and parsing function summary index bitcode
865 /// files/sections.
866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
867   /// The module index built during parsing.
868   ModuleSummaryIndex &TheIndex;
869 
870   /// Indicates whether we have encountered a global value summary section
871   /// yet during parsing.
872   bool SeenGlobalValSummary = false;
873 
874   /// Indicates whether we have already parsed the VST, used for error checking.
875   bool SeenValueSymbolTable = false;
876 
877   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
878   /// Used to enable on-demand parsing of the VST.
879   uint64_t VSTOffset = 0;
880 
881   // Map to save ValueId to ValueInfo association that was recorded in the
882   // ValueSymbolTable. It is used after the VST is parsed to convert
883   // call graph edges read from the function summary from referencing
884   // callees by their ValueId to using the ValueInfo instead, which is how
885   // they are recorded in the summary index being built.
886   // We save a GUID which refers to the same global as the ValueInfo, but
887   // ignoring the linkage, i.e. for values other than local linkage they are
888   // identical (this is the second tuple member).
889   // The third tuple member is the real GUID of the ValueInfo.
890   DenseMap<unsigned,
891            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
892       ValueIdToValueInfoMap;
893 
894   /// Map populated during module path string table parsing, from the
895   /// module ID to a string reference owned by the index's module
896   /// path string table, used to correlate with combined index
897   /// summary records.
898   DenseMap<uint64_t, StringRef> ModuleIdMap;
899 
900   /// Original source file name recorded in a bitcode record.
901   std::string SourceFileName;
902 
903   /// The string identifier given to this module by the client, normally the
904   /// path to the bitcode file.
905   StringRef ModulePath;
906 
907   /// Callback to ask whether a symbol is the prevailing copy when invoked
908   /// during combined index building.
909   std::function<bool(GlobalValue::GUID)> IsPrevailing;
910 
911   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
912   /// ids from the lists in the callsite and alloc entries to the index.
913   std::vector<uint64_t> StackIds;
914 
915 public:
916   ModuleSummaryIndexBitcodeReader(
917       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
918       StringRef ModulePath,
919       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
920 
921   Error parseModule();
922 
923 private:
924   void setValueGUID(uint64_t ValueID, StringRef ValueName,
925                     GlobalValue::LinkageTypes Linkage,
926                     StringRef SourceFileName);
927   Error parseValueSymbolTable(
928       uint64_t Offset,
929       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
930   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
931   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
932                                                     bool IsOldProfileFormat,
933                                                     bool HasProfile,
934                                                     bool HasRelBF);
935   Error parseEntireSummary(unsigned ID);
936   Error parseModuleStringTable();
937   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
938   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
939                                        TypeIdCompatibleVtableInfo &TypeId);
940   std::vector<FunctionSummary::ParamAccess>
941   parseParamAccesses(ArrayRef<uint64_t> Record);
942 
943   template <bool AllowNullValueInfo = false>
944   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
945   getValueInfoFromValueId(unsigned ValueId);
946 
947   void addThisModule();
948   ModuleSummaryIndex::ModuleInfo *getThisModule();
949 };
950 
951 } // end anonymous namespace
952 
953 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
954                                                     Error Err) {
955   if (Err) {
956     std::error_code EC;
957     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
958       EC = EIB.convertToErrorCode();
959       Ctx.emitError(EIB.message());
960     });
961     return EC;
962   }
963   return std::error_code();
964 }
965 
966 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
967                              StringRef ProducerIdentification,
968                              LLVMContext &Context)
969     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
970       ValueList(this->Stream.SizeInBytes(),
971                 [this](unsigned ValID, BasicBlock *InsertBB) {
972                   return materializeValue(ValID, InsertBB);
973                 }) {
974   this->ProducerIdentification = std::string(ProducerIdentification);
975 }
976 
977 Error BitcodeReader::materializeForwardReferencedFunctions() {
978   if (WillMaterializeAllForwardRefs)
979     return Error::success();
980 
981   // Prevent recursion.
982   WillMaterializeAllForwardRefs = true;
983 
984   while (!BasicBlockFwdRefQueue.empty()) {
985     Function *F = BasicBlockFwdRefQueue.front();
986     BasicBlockFwdRefQueue.pop_front();
987     assert(F && "Expected valid function");
988     if (!BasicBlockFwdRefs.count(F))
989       // Already materialized.
990       continue;
991 
992     // Check for a function that isn't materializable to prevent an infinite
993     // loop.  When parsing a blockaddress stored in a global variable, there
994     // isn't a trivial way to check if a function will have a body without a
995     // linear search through FunctionsWithBodies, so just check it here.
996     if (!F->isMaterializable())
997       return error("Never resolved function from blockaddress");
998 
999     // Try to materialize F.
1000     if (Error Err = materialize(F))
1001       return Err;
1002   }
1003   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1004 
1005   for (Function *F : BackwardRefFunctions)
1006     if (Error Err = materialize(F))
1007       return Err;
1008   BackwardRefFunctions.clear();
1009 
1010   // Reset state.
1011   WillMaterializeAllForwardRefs = false;
1012   return Error::success();
1013 }
1014 
1015 //===----------------------------------------------------------------------===//
1016 //  Helper functions to implement forward reference resolution, etc.
1017 //===----------------------------------------------------------------------===//
1018 
1019 static bool hasImplicitComdat(size_t Val) {
1020   switch (Val) {
1021   default:
1022     return false;
1023   case 1:  // Old WeakAnyLinkage
1024   case 4:  // Old LinkOnceAnyLinkage
1025   case 10: // Old WeakODRLinkage
1026   case 11: // Old LinkOnceODRLinkage
1027     return true;
1028   }
1029 }
1030 
1031 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1032   switch (Val) {
1033   default: // Map unknown/new linkages to external
1034   case 0:
1035     return GlobalValue::ExternalLinkage;
1036   case 2:
1037     return GlobalValue::AppendingLinkage;
1038   case 3:
1039     return GlobalValue::InternalLinkage;
1040   case 5:
1041     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1042   case 6:
1043     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1044   case 7:
1045     return GlobalValue::ExternalWeakLinkage;
1046   case 8:
1047     return GlobalValue::CommonLinkage;
1048   case 9:
1049     return GlobalValue::PrivateLinkage;
1050   case 12:
1051     return GlobalValue::AvailableExternallyLinkage;
1052   case 13:
1053     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1054   case 14:
1055     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1056   case 15:
1057     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1058   case 1: // Old value with implicit comdat.
1059   case 16:
1060     return GlobalValue::WeakAnyLinkage;
1061   case 10: // Old value with implicit comdat.
1062   case 17:
1063     return GlobalValue::WeakODRLinkage;
1064   case 4: // Old value with implicit comdat.
1065   case 18:
1066     return GlobalValue::LinkOnceAnyLinkage;
1067   case 11: // Old value with implicit comdat.
1068   case 19:
1069     return GlobalValue::LinkOnceODRLinkage;
1070   }
1071 }
1072 
1073 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1074   FunctionSummary::FFlags Flags;
1075   Flags.ReadNone = RawFlags & 0x1;
1076   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1077   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1078   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1079   Flags.NoInline = (RawFlags >> 4) & 0x1;
1080   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1081   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1082   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1083   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1084   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1085   return Flags;
1086 }
1087 
1088 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1089 //
1090 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1091 // visibility: [8, 10).
1092 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1093                                                             uint64_t Version) {
1094   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1095   // like getDecodedLinkage() above. Any future change to the linkage enum and
1096   // to getDecodedLinkage() will need to be taken into account here as above.
1097   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1098   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1099   RawFlags = RawFlags >> 4;
1100   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1101   // The Live flag wasn't introduced until version 3. For dead stripping
1102   // to work correctly on earlier versions, we must conservatively treat all
1103   // values as live.
1104   bool Live = (RawFlags & 0x2) || Version < 3;
1105   bool Local = (RawFlags & 0x4);
1106   bool AutoHide = (RawFlags & 0x8);
1107 
1108   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1109                                      Live, Local, AutoHide);
1110 }
1111 
1112 // Decode the flags for GlobalVariable in the summary
1113 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1114   return GlobalVarSummary::GVarFlags(
1115       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1116       (RawFlags & 0x4) ? true : false,
1117       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1118 }
1119 
1120 static std::pair<CalleeInfo::HotnessType, bool>
1121 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1122   CalleeInfo::HotnessType Hotness =
1123       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1124   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1125   return {Hotness, HasTailCall};
1126 }
1127 
1128 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1129                                         bool &HasTailCall) {
1130   static constexpr uint64_t RelBlockFreqMask =
1131       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1132   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1133   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1134 }
1135 
1136 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1137   switch (Val) {
1138   default: // Map unknown visibilities to default.
1139   case 0: return GlobalValue::DefaultVisibility;
1140   case 1: return GlobalValue::HiddenVisibility;
1141   case 2: return GlobalValue::ProtectedVisibility;
1142   }
1143 }
1144 
1145 static GlobalValue::DLLStorageClassTypes
1146 getDecodedDLLStorageClass(unsigned Val) {
1147   switch (Val) {
1148   default: // Map unknown values to default.
1149   case 0: return GlobalValue::DefaultStorageClass;
1150   case 1: return GlobalValue::DLLImportStorageClass;
1151   case 2: return GlobalValue::DLLExportStorageClass;
1152   }
1153 }
1154 
1155 static bool getDecodedDSOLocal(unsigned Val) {
1156   switch(Val) {
1157   default: // Map unknown values to preemptable.
1158   case 0:  return false;
1159   case 1:  return true;
1160   }
1161 }
1162 
1163 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1164   switch (Val) {
1165   case 1:
1166     return CodeModel::Tiny;
1167   case 2:
1168     return CodeModel::Small;
1169   case 3:
1170     return CodeModel::Kernel;
1171   case 4:
1172     return CodeModel::Medium;
1173   case 5:
1174     return CodeModel::Large;
1175   }
1176 
1177   return {};
1178 }
1179 
1180 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1181   switch (Val) {
1182     case 0: return GlobalVariable::NotThreadLocal;
1183     default: // Map unknown non-zero value to general dynamic.
1184     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1185     case 2: return GlobalVariable::LocalDynamicTLSModel;
1186     case 3: return GlobalVariable::InitialExecTLSModel;
1187     case 4: return GlobalVariable::LocalExecTLSModel;
1188   }
1189 }
1190 
1191 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1192   switch (Val) {
1193     default: // Map unknown to UnnamedAddr::None.
1194     case 0: return GlobalVariable::UnnamedAddr::None;
1195     case 1: return GlobalVariable::UnnamedAddr::Global;
1196     case 2: return GlobalVariable::UnnamedAddr::Local;
1197   }
1198 }
1199 
1200 static int getDecodedCastOpcode(unsigned Val) {
1201   switch (Val) {
1202   default: return -1;
1203   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1204   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1205   case bitc::CAST_SEXT    : return Instruction::SExt;
1206   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1207   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1208   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1209   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1210   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1211   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1212   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1213   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1214   case bitc::CAST_BITCAST : return Instruction::BitCast;
1215   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1216   }
1217 }
1218 
1219 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1220   bool IsFP = Ty->isFPOrFPVectorTy();
1221   // UnOps are only valid for int/fp or vector of int/fp types
1222   if (!IsFP && !Ty->isIntOrIntVectorTy())
1223     return -1;
1224 
1225   switch (Val) {
1226   default:
1227     return -1;
1228   case bitc::UNOP_FNEG:
1229     return IsFP ? Instruction::FNeg : -1;
1230   }
1231 }
1232 
1233 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1234   bool IsFP = Ty->isFPOrFPVectorTy();
1235   // BinOps are only valid for int/fp or vector of int/fp types
1236   if (!IsFP && !Ty->isIntOrIntVectorTy())
1237     return -1;
1238 
1239   switch (Val) {
1240   default:
1241     return -1;
1242   case bitc::BINOP_ADD:
1243     return IsFP ? Instruction::FAdd : Instruction::Add;
1244   case bitc::BINOP_SUB:
1245     return IsFP ? Instruction::FSub : Instruction::Sub;
1246   case bitc::BINOP_MUL:
1247     return IsFP ? Instruction::FMul : Instruction::Mul;
1248   case bitc::BINOP_UDIV:
1249     return IsFP ? -1 : Instruction::UDiv;
1250   case bitc::BINOP_SDIV:
1251     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1252   case bitc::BINOP_UREM:
1253     return IsFP ? -1 : Instruction::URem;
1254   case bitc::BINOP_SREM:
1255     return IsFP ? Instruction::FRem : Instruction::SRem;
1256   case bitc::BINOP_SHL:
1257     return IsFP ? -1 : Instruction::Shl;
1258   case bitc::BINOP_LSHR:
1259     return IsFP ? -1 : Instruction::LShr;
1260   case bitc::BINOP_ASHR:
1261     return IsFP ? -1 : Instruction::AShr;
1262   case bitc::BINOP_AND:
1263     return IsFP ? -1 : Instruction::And;
1264   case bitc::BINOP_OR:
1265     return IsFP ? -1 : Instruction::Or;
1266   case bitc::BINOP_XOR:
1267     return IsFP ? -1 : Instruction::Xor;
1268   }
1269 }
1270 
1271 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1272   switch (Val) {
1273   default: return AtomicRMWInst::BAD_BINOP;
1274   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1275   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1276   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1277   case bitc::RMW_AND: return AtomicRMWInst::And;
1278   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1279   case bitc::RMW_OR: return AtomicRMWInst::Or;
1280   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1281   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1282   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1283   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1284   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1285   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1286   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1287   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1288   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1289   case bitc::RMW_UINC_WRAP:
1290     return AtomicRMWInst::UIncWrap;
1291   case bitc::RMW_UDEC_WRAP:
1292     return AtomicRMWInst::UDecWrap;
1293   }
1294 }
1295 
1296 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1297   switch (Val) {
1298   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1299   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1300   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1301   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1302   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1303   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1304   default: // Map unknown orderings to sequentially-consistent.
1305   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1306   }
1307 }
1308 
1309 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1310   switch (Val) {
1311   default: // Map unknown selection kinds to any.
1312   case bitc::COMDAT_SELECTION_KIND_ANY:
1313     return Comdat::Any;
1314   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1315     return Comdat::ExactMatch;
1316   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1317     return Comdat::Largest;
1318   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1319     return Comdat::NoDeduplicate;
1320   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1321     return Comdat::SameSize;
1322   }
1323 }
1324 
1325 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1326   FastMathFlags FMF;
1327   if (0 != (Val & bitc::UnsafeAlgebra))
1328     FMF.setFast();
1329   if (0 != (Val & bitc::AllowReassoc))
1330     FMF.setAllowReassoc();
1331   if (0 != (Val & bitc::NoNaNs))
1332     FMF.setNoNaNs();
1333   if (0 != (Val & bitc::NoInfs))
1334     FMF.setNoInfs();
1335   if (0 != (Val & bitc::NoSignedZeros))
1336     FMF.setNoSignedZeros();
1337   if (0 != (Val & bitc::AllowReciprocal))
1338     FMF.setAllowReciprocal();
1339   if (0 != (Val & bitc::AllowContract))
1340     FMF.setAllowContract(true);
1341   if (0 != (Val & bitc::ApproxFunc))
1342     FMF.setApproxFunc();
1343   return FMF;
1344 }
1345 
1346 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1347   // A GlobalValue with local linkage cannot have a DLL storage class.
1348   if (GV->hasLocalLinkage())
1349     return;
1350   switch (Val) {
1351   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1352   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1353   }
1354 }
1355 
1356 Type *BitcodeReader::getTypeByID(unsigned ID) {
1357   // The type table size is always specified correctly.
1358   if (ID >= TypeList.size())
1359     return nullptr;
1360 
1361   if (Type *Ty = TypeList[ID])
1362     return Ty;
1363 
1364   // If we have a forward reference, the only possible case is when it is to a
1365   // named struct.  Just create a placeholder for now.
1366   return TypeList[ID] = createIdentifiedStructType(Context);
1367 }
1368 
1369 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1370   auto It = ContainedTypeIDs.find(ID);
1371   if (It == ContainedTypeIDs.end())
1372     return InvalidTypeID;
1373 
1374   if (Idx >= It->second.size())
1375     return InvalidTypeID;
1376 
1377   return It->second[Idx];
1378 }
1379 
1380 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1381   if (ID >= TypeList.size())
1382     return nullptr;
1383 
1384   Type *Ty = TypeList[ID];
1385   if (!Ty->isPointerTy())
1386     return nullptr;
1387 
1388   return getTypeByID(getContainedTypeID(ID, 0));
1389 }
1390 
1391 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1392                                          ArrayRef<unsigned> ChildTypeIDs) {
1393   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1394   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1395   auto It = VirtualTypeIDs.find(CacheKey);
1396   if (It != VirtualTypeIDs.end()) {
1397     // The cmpxchg return value is the only place we need more than one
1398     // contained type ID, however the second one will always be the same (i1),
1399     // so we don't need to include it in the cache key. This asserts that the
1400     // contained types are indeed as expected and there are no collisions.
1401     assert((ChildTypeIDs.empty() ||
1402             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1403            "Incorrect cached contained type IDs");
1404     return It->second;
1405   }
1406 
1407   unsigned TypeID = TypeList.size();
1408   TypeList.push_back(Ty);
1409   if (!ChildTypeIDs.empty())
1410     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1411   VirtualTypeIDs.insert({CacheKey, TypeID});
1412   return TypeID;
1413 }
1414 
1415 static bool isConstExprSupported(const BitcodeConstant *BC) {
1416   uint8_t Opcode = BC->Opcode;
1417 
1418   // These are not real constant expressions, always consider them supported.
1419   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1420     return true;
1421 
1422   // If -expand-constant-exprs is set, we want to consider all expressions
1423   // as unsupported.
1424   if (ExpandConstantExprs)
1425     return false;
1426 
1427   if (Instruction::isBinaryOp(Opcode))
1428     return ConstantExpr::isSupportedBinOp(Opcode);
1429 
1430   if (Instruction::isCast(Opcode))
1431     return ConstantExpr::isSupportedCastOp(Opcode);
1432 
1433   if (Opcode == Instruction::GetElementPtr)
1434     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1435 
1436   switch (Opcode) {
1437   case Instruction::FNeg:
1438   case Instruction::Select:
1439     return false;
1440   default:
1441     return true;
1442   }
1443 }
1444 
1445 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1446                                                   BasicBlock *InsertBB) {
1447   // Quickly handle the case where there is no BitcodeConstant to resolve.
1448   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1449       !isa<BitcodeConstant>(ValueList[StartValID]))
1450     return ValueList[StartValID];
1451 
1452   SmallDenseMap<unsigned, Value *> MaterializedValues;
1453   SmallVector<unsigned> Worklist;
1454   Worklist.push_back(StartValID);
1455   while (!Worklist.empty()) {
1456     unsigned ValID = Worklist.back();
1457     if (MaterializedValues.count(ValID)) {
1458       // Duplicate expression that was already handled.
1459       Worklist.pop_back();
1460       continue;
1461     }
1462 
1463     if (ValID >= ValueList.size() || !ValueList[ValID])
1464       return error("Invalid value ID");
1465 
1466     Value *V = ValueList[ValID];
1467     auto *BC = dyn_cast<BitcodeConstant>(V);
1468     if (!BC) {
1469       MaterializedValues.insert({ValID, V});
1470       Worklist.pop_back();
1471       continue;
1472     }
1473 
1474     // Iterate in reverse, so values will get popped from the worklist in
1475     // expected order.
1476     SmallVector<Value *> Ops;
1477     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1478       auto It = MaterializedValues.find(OpID);
1479       if (It != MaterializedValues.end())
1480         Ops.push_back(It->second);
1481       else
1482         Worklist.push_back(OpID);
1483     }
1484 
1485     // Some expressions have not been resolved yet, handle them first and then
1486     // revisit this one.
1487     if (Ops.size() != BC->getOperandIDs().size())
1488       continue;
1489     std::reverse(Ops.begin(), Ops.end());
1490 
1491     SmallVector<Constant *> ConstOps;
1492     for (Value *Op : Ops)
1493       if (auto *C = dyn_cast<Constant>(Op))
1494         ConstOps.push_back(C);
1495 
1496     // Materialize as constant expression if possible.
1497     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1498       Constant *C;
1499       if (Instruction::isCast(BC->Opcode)) {
1500         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1501         if (!C)
1502           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1503       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1504         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1505       } else {
1506         switch (BC->Opcode) {
1507         case BitcodeConstant::NoCFIOpcode: {
1508           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1509           if (!GV)
1510             return error("no_cfi operand must be GlobalValue");
1511           C = NoCFIValue::get(GV);
1512           break;
1513         }
1514         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1515           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1516           if (!GV)
1517             return error("dso_local operand must be GlobalValue");
1518           C = DSOLocalEquivalent::get(GV);
1519           break;
1520         }
1521         case BitcodeConstant::BlockAddressOpcode: {
1522           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1523           if (!Fn)
1524             return error("blockaddress operand must be a function");
1525 
1526           // If the function is already parsed we can insert the block address
1527           // right away.
1528           BasicBlock *BB;
1529           unsigned BBID = BC->Extra;
1530           if (!BBID)
1531             // Invalid reference to entry block.
1532             return error("Invalid ID");
1533           if (!Fn->empty()) {
1534             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1535             for (size_t I = 0, E = BBID; I != E; ++I) {
1536               if (BBI == BBE)
1537                 return error("Invalid ID");
1538               ++BBI;
1539             }
1540             BB = &*BBI;
1541           } else {
1542             // Otherwise insert a placeholder and remember it so it can be
1543             // inserted when the function is parsed.
1544             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1545             if (FwdBBs.empty())
1546               BasicBlockFwdRefQueue.push_back(Fn);
1547             if (FwdBBs.size() < BBID + 1)
1548               FwdBBs.resize(BBID + 1);
1549             if (!FwdBBs[BBID])
1550               FwdBBs[BBID] = BasicBlock::Create(Context);
1551             BB = FwdBBs[BBID];
1552           }
1553           C = BlockAddress::get(Fn, BB);
1554           break;
1555         }
1556         case BitcodeConstant::ConstantStructOpcode:
1557           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1558           break;
1559         case BitcodeConstant::ConstantArrayOpcode:
1560           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1561           break;
1562         case BitcodeConstant::ConstantVectorOpcode:
1563           C = ConstantVector::get(ConstOps);
1564           break;
1565         case Instruction::ICmp:
1566         case Instruction::FCmp:
1567           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1568           break;
1569         case Instruction::GetElementPtr:
1570           C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1571                                              ArrayRef(ConstOps).drop_front(),
1572                                              BC->Flags, BC->getInRangeIndex());
1573           break;
1574         case Instruction::ExtractElement:
1575           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1576           break;
1577         case Instruction::InsertElement:
1578           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1579                                              ConstOps[2]);
1580           break;
1581         case Instruction::ShuffleVector: {
1582           SmallVector<int, 16> Mask;
1583           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1584           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1585           break;
1586         }
1587         default:
1588           llvm_unreachable("Unhandled bitcode constant");
1589         }
1590       }
1591 
1592       // Cache resolved constant.
1593       ValueList.replaceValueWithoutRAUW(ValID, C);
1594       MaterializedValues.insert({ValID, C});
1595       Worklist.pop_back();
1596       continue;
1597     }
1598 
1599     if (!InsertBB)
1600       return error(Twine("Value referenced by initializer is an unsupported "
1601                          "constant expression of type ") +
1602                    BC->getOpcodeName());
1603 
1604     // Materialize as instructions if necessary.
1605     Instruction *I;
1606     if (Instruction::isCast(BC->Opcode)) {
1607       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1608                            BC->getType(), "constexpr", InsertBB);
1609     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1610       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1611                                 "constexpr", InsertBB);
1612     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1613       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1614                                  Ops[1], "constexpr", InsertBB);
1615       if (isa<OverflowingBinaryOperator>(I)) {
1616         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1617           I->setHasNoSignedWrap();
1618         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1619           I->setHasNoUnsignedWrap();
1620       }
1621       if (isa<PossiblyExactOperator>(I) &&
1622           (BC->Flags & PossiblyExactOperator::IsExact))
1623         I->setIsExact();
1624     } else {
1625       switch (BC->Opcode) {
1626       case BitcodeConstant::ConstantVectorOpcode: {
1627         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1628         Value *V = PoisonValue::get(BC->getType());
1629         for (auto Pair : enumerate(Ops)) {
1630           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1631           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1632                                         InsertBB);
1633         }
1634         I = cast<Instruction>(V);
1635         break;
1636       }
1637       case BitcodeConstant::ConstantStructOpcode:
1638       case BitcodeConstant::ConstantArrayOpcode: {
1639         Value *V = PoisonValue::get(BC->getType());
1640         for (auto Pair : enumerate(Ops))
1641           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1642                                       "constexpr.ins", InsertBB);
1643         I = cast<Instruction>(V);
1644         break;
1645       }
1646       case Instruction::ICmp:
1647       case Instruction::FCmp:
1648         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1649                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1650                             "constexpr", InsertBB);
1651         break;
1652       case Instruction::GetElementPtr:
1653         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1654                                       ArrayRef(Ops).drop_front(), "constexpr",
1655                                       InsertBB);
1656         if (BC->Flags)
1657           cast<GetElementPtrInst>(I)->setIsInBounds();
1658         break;
1659       case Instruction::Select:
1660         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1661         break;
1662       case Instruction::ExtractElement:
1663         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1664         break;
1665       case Instruction::InsertElement:
1666         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1667                                       InsertBB);
1668         break;
1669       case Instruction::ShuffleVector:
1670         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1671                                   InsertBB);
1672         break;
1673       default:
1674         llvm_unreachable("Unhandled bitcode constant");
1675       }
1676     }
1677 
1678     MaterializedValues.insert({ValID, I});
1679     Worklist.pop_back();
1680   }
1681 
1682   return MaterializedValues[StartValID];
1683 }
1684 
1685 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1686   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1687   if (!MaybeV)
1688     return MaybeV.takeError();
1689 
1690   // Result must be Constant if InsertBB is nullptr.
1691   return cast<Constant>(MaybeV.get());
1692 }
1693 
1694 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1695                                                       StringRef Name) {
1696   auto *Ret = StructType::create(Context, Name);
1697   IdentifiedStructTypes.push_back(Ret);
1698   return Ret;
1699 }
1700 
1701 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1702   auto *Ret = StructType::create(Context);
1703   IdentifiedStructTypes.push_back(Ret);
1704   return Ret;
1705 }
1706 
1707 //===----------------------------------------------------------------------===//
1708 //  Functions for parsing blocks from the bitcode file
1709 //===----------------------------------------------------------------------===//
1710 
1711 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1712   switch (Val) {
1713   case Attribute::EndAttrKinds:
1714   case Attribute::EmptyKey:
1715   case Attribute::TombstoneKey:
1716     llvm_unreachable("Synthetic enumerators which should never get here");
1717 
1718   case Attribute::None:            return 0;
1719   case Attribute::ZExt:            return 1 << 0;
1720   case Attribute::SExt:            return 1 << 1;
1721   case Attribute::NoReturn:        return 1 << 2;
1722   case Attribute::InReg:           return 1 << 3;
1723   case Attribute::StructRet:       return 1 << 4;
1724   case Attribute::NoUnwind:        return 1 << 5;
1725   case Attribute::NoAlias:         return 1 << 6;
1726   case Attribute::ByVal:           return 1 << 7;
1727   case Attribute::Nest:            return 1 << 8;
1728   case Attribute::ReadNone:        return 1 << 9;
1729   case Attribute::ReadOnly:        return 1 << 10;
1730   case Attribute::NoInline:        return 1 << 11;
1731   case Attribute::AlwaysInline:    return 1 << 12;
1732   case Attribute::OptimizeForSize: return 1 << 13;
1733   case Attribute::StackProtect:    return 1 << 14;
1734   case Attribute::StackProtectReq: return 1 << 15;
1735   case Attribute::Alignment:       return 31 << 16;
1736   case Attribute::NoCapture:       return 1 << 21;
1737   case Attribute::NoRedZone:       return 1 << 22;
1738   case Attribute::NoImplicitFloat: return 1 << 23;
1739   case Attribute::Naked:           return 1 << 24;
1740   case Attribute::InlineHint:      return 1 << 25;
1741   case Attribute::StackAlignment:  return 7 << 26;
1742   case Attribute::ReturnsTwice:    return 1 << 29;
1743   case Attribute::UWTable:         return 1 << 30;
1744   case Attribute::NonLazyBind:     return 1U << 31;
1745   case Attribute::SanitizeAddress: return 1ULL << 32;
1746   case Attribute::MinSize:         return 1ULL << 33;
1747   case Attribute::NoDuplicate:     return 1ULL << 34;
1748   case Attribute::StackProtectStrong: return 1ULL << 35;
1749   case Attribute::SanitizeThread:  return 1ULL << 36;
1750   case Attribute::SanitizeMemory:  return 1ULL << 37;
1751   case Attribute::NoBuiltin:       return 1ULL << 38;
1752   case Attribute::Returned:        return 1ULL << 39;
1753   case Attribute::Cold:            return 1ULL << 40;
1754   case Attribute::Builtin:         return 1ULL << 41;
1755   case Attribute::OptimizeNone:    return 1ULL << 42;
1756   case Attribute::InAlloca:        return 1ULL << 43;
1757   case Attribute::NonNull:         return 1ULL << 44;
1758   case Attribute::JumpTable:       return 1ULL << 45;
1759   case Attribute::Convergent:      return 1ULL << 46;
1760   case Attribute::SafeStack:       return 1ULL << 47;
1761   case Attribute::NoRecurse:       return 1ULL << 48;
1762   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1763   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1764   case Attribute::SwiftSelf:       return 1ULL << 51;
1765   case Attribute::SwiftError:      return 1ULL << 52;
1766   case Attribute::WriteOnly:       return 1ULL << 53;
1767   case Attribute::Speculatable:    return 1ULL << 54;
1768   case Attribute::StrictFP:        return 1ULL << 55;
1769   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1770   case Attribute::NoCfCheck:       return 1ULL << 57;
1771   case Attribute::OptForFuzzing:   return 1ULL << 58;
1772   case Attribute::ShadowCallStack: return 1ULL << 59;
1773   case Attribute::SpeculativeLoadHardening:
1774     return 1ULL << 60;
1775   case Attribute::ImmArg:
1776     return 1ULL << 61;
1777   case Attribute::WillReturn:
1778     return 1ULL << 62;
1779   case Attribute::NoFree:
1780     return 1ULL << 63;
1781   default:
1782     // Other attributes are not supported in the raw format,
1783     // as we ran out of space.
1784     return 0;
1785   }
1786   llvm_unreachable("Unsupported attribute type");
1787 }
1788 
1789 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1790   if (!Val) return;
1791 
1792   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1793        I = Attribute::AttrKind(I + 1)) {
1794     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1795       if (I == Attribute::Alignment)
1796         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1797       else if (I == Attribute::StackAlignment)
1798         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1799       else if (Attribute::isTypeAttrKind(I))
1800         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1801       else
1802         B.addAttribute(I);
1803     }
1804   }
1805 }
1806 
1807 /// This fills an AttrBuilder object with the LLVM attributes that have
1808 /// been decoded from the given integer. This function must stay in sync with
1809 /// 'encodeLLVMAttributesForBitcode'.
1810 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1811                                            uint64_t EncodedAttrs,
1812                                            uint64_t AttrIdx) {
1813   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1814   // the bits above 31 down by 11 bits.
1815   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1816   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1817          "Alignment must be a power of two.");
1818 
1819   if (Alignment)
1820     B.addAlignmentAttr(Alignment);
1821 
1822   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1823                    (EncodedAttrs & 0xffff);
1824 
1825   if (AttrIdx == AttributeList::FunctionIndex) {
1826     // Upgrade old memory attributes.
1827     MemoryEffects ME = MemoryEffects::unknown();
1828     if (Attrs & (1ULL << 9)) {
1829       // ReadNone
1830       Attrs &= ~(1ULL << 9);
1831       ME &= MemoryEffects::none();
1832     }
1833     if (Attrs & (1ULL << 10)) {
1834       // ReadOnly
1835       Attrs &= ~(1ULL << 10);
1836       ME &= MemoryEffects::readOnly();
1837     }
1838     if (Attrs & (1ULL << 49)) {
1839       // InaccessibleMemOnly
1840       Attrs &= ~(1ULL << 49);
1841       ME &= MemoryEffects::inaccessibleMemOnly();
1842     }
1843     if (Attrs & (1ULL << 50)) {
1844       // InaccessibleMemOrArgMemOnly
1845       Attrs &= ~(1ULL << 50);
1846       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1847     }
1848     if (Attrs & (1ULL << 53)) {
1849       // WriteOnly
1850       Attrs &= ~(1ULL << 53);
1851       ME &= MemoryEffects::writeOnly();
1852     }
1853     if (ME != MemoryEffects::unknown())
1854       B.addMemoryAttr(ME);
1855   }
1856 
1857   addRawAttributeValue(B, Attrs);
1858 }
1859 
1860 Error BitcodeReader::parseAttributeBlock() {
1861   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1862     return Err;
1863 
1864   if (!MAttributes.empty())
1865     return error("Invalid multiple blocks");
1866 
1867   SmallVector<uint64_t, 64> Record;
1868 
1869   SmallVector<AttributeList, 8> Attrs;
1870 
1871   // Read all the records.
1872   while (true) {
1873     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1874     if (!MaybeEntry)
1875       return MaybeEntry.takeError();
1876     BitstreamEntry Entry = MaybeEntry.get();
1877 
1878     switch (Entry.Kind) {
1879     case BitstreamEntry::SubBlock: // Handled for us already.
1880     case BitstreamEntry::Error:
1881       return error("Malformed block");
1882     case BitstreamEntry::EndBlock:
1883       return Error::success();
1884     case BitstreamEntry::Record:
1885       // The interesting case.
1886       break;
1887     }
1888 
1889     // Read a record.
1890     Record.clear();
1891     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1892     if (!MaybeRecord)
1893       return MaybeRecord.takeError();
1894     switch (MaybeRecord.get()) {
1895     default:  // Default behavior: ignore.
1896       break;
1897     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1898       // Deprecated, but still needed to read old bitcode files.
1899       if (Record.size() & 1)
1900         return error("Invalid parameter attribute record");
1901 
1902       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1903         AttrBuilder B(Context);
1904         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1905         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1906       }
1907 
1908       MAttributes.push_back(AttributeList::get(Context, Attrs));
1909       Attrs.clear();
1910       break;
1911     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1912       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1913         Attrs.push_back(MAttributeGroups[Record[i]]);
1914 
1915       MAttributes.push_back(AttributeList::get(Context, Attrs));
1916       Attrs.clear();
1917       break;
1918     }
1919   }
1920 }
1921 
1922 // Returns Attribute::None on unrecognized codes.
1923 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1924   switch (Code) {
1925   default:
1926     return Attribute::None;
1927   case bitc::ATTR_KIND_ALIGNMENT:
1928     return Attribute::Alignment;
1929   case bitc::ATTR_KIND_ALWAYS_INLINE:
1930     return Attribute::AlwaysInline;
1931   case bitc::ATTR_KIND_BUILTIN:
1932     return Attribute::Builtin;
1933   case bitc::ATTR_KIND_BY_VAL:
1934     return Attribute::ByVal;
1935   case bitc::ATTR_KIND_IN_ALLOCA:
1936     return Attribute::InAlloca;
1937   case bitc::ATTR_KIND_COLD:
1938     return Attribute::Cold;
1939   case bitc::ATTR_KIND_CONVERGENT:
1940     return Attribute::Convergent;
1941   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1942     return Attribute::DisableSanitizerInstrumentation;
1943   case bitc::ATTR_KIND_ELEMENTTYPE:
1944     return Attribute::ElementType;
1945   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1946     return Attribute::FnRetThunkExtern;
1947   case bitc::ATTR_KIND_INLINE_HINT:
1948     return Attribute::InlineHint;
1949   case bitc::ATTR_KIND_IN_REG:
1950     return Attribute::InReg;
1951   case bitc::ATTR_KIND_JUMP_TABLE:
1952     return Attribute::JumpTable;
1953   case bitc::ATTR_KIND_MEMORY:
1954     return Attribute::Memory;
1955   case bitc::ATTR_KIND_NOFPCLASS:
1956     return Attribute::NoFPClass;
1957   case bitc::ATTR_KIND_MIN_SIZE:
1958     return Attribute::MinSize;
1959   case bitc::ATTR_KIND_NAKED:
1960     return Attribute::Naked;
1961   case bitc::ATTR_KIND_NEST:
1962     return Attribute::Nest;
1963   case bitc::ATTR_KIND_NO_ALIAS:
1964     return Attribute::NoAlias;
1965   case bitc::ATTR_KIND_NO_BUILTIN:
1966     return Attribute::NoBuiltin;
1967   case bitc::ATTR_KIND_NO_CALLBACK:
1968     return Attribute::NoCallback;
1969   case bitc::ATTR_KIND_NO_CAPTURE:
1970     return Attribute::NoCapture;
1971   case bitc::ATTR_KIND_NO_DUPLICATE:
1972     return Attribute::NoDuplicate;
1973   case bitc::ATTR_KIND_NOFREE:
1974     return Attribute::NoFree;
1975   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1976     return Attribute::NoImplicitFloat;
1977   case bitc::ATTR_KIND_NO_INLINE:
1978     return Attribute::NoInline;
1979   case bitc::ATTR_KIND_NO_RECURSE:
1980     return Attribute::NoRecurse;
1981   case bitc::ATTR_KIND_NO_MERGE:
1982     return Attribute::NoMerge;
1983   case bitc::ATTR_KIND_NON_LAZY_BIND:
1984     return Attribute::NonLazyBind;
1985   case bitc::ATTR_KIND_NON_NULL:
1986     return Attribute::NonNull;
1987   case bitc::ATTR_KIND_DEREFERENCEABLE:
1988     return Attribute::Dereferenceable;
1989   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1990     return Attribute::DereferenceableOrNull;
1991   case bitc::ATTR_KIND_ALLOC_ALIGN:
1992     return Attribute::AllocAlign;
1993   case bitc::ATTR_KIND_ALLOC_KIND:
1994     return Attribute::AllocKind;
1995   case bitc::ATTR_KIND_ALLOC_SIZE:
1996     return Attribute::AllocSize;
1997   case bitc::ATTR_KIND_ALLOCATED_POINTER:
1998     return Attribute::AllocatedPointer;
1999   case bitc::ATTR_KIND_NO_RED_ZONE:
2000     return Attribute::NoRedZone;
2001   case bitc::ATTR_KIND_NO_RETURN:
2002     return Attribute::NoReturn;
2003   case bitc::ATTR_KIND_NOSYNC:
2004     return Attribute::NoSync;
2005   case bitc::ATTR_KIND_NOCF_CHECK:
2006     return Attribute::NoCfCheck;
2007   case bitc::ATTR_KIND_NO_PROFILE:
2008     return Attribute::NoProfile;
2009   case bitc::ATTR_KIND_SKIP_PROFILE:
2010     return Attribute::SkipProfile;
2011   case bitc::ATTR_KIND_NO_UNWIND:
2012     return Attribute::NoUnwind;
2013   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2014     return Attribute::NoSanitizeBounds;
2015   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2016     return Attribute::NoSanitizeCoverage;
2017   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2018     return Attribute::NullPointerIsValid;
2019   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2020     return Attribute::OptimizeForDebugging;
2021   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2022     return Attribute::OptForFuzzing;
2023   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2024     return Attribute::OptimizeForSize;
2025   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2026     return Attribute::OptimizeNone;
2027   case bitc::ATTR_KIND_READ_NONE:
2028     return Attribute::ReadNone;
2029   case bitc::ATTR_KIND_READ_ONLY:
2030     return Attribute::ReadOnly;
2031   case bitc::ATTR_KIND_RETURNED:
2032     return Attribute::Returned;
2033   case bitc::ATTR_KIND_RETURNS_TWICE:
2034     return Attribute::ReturnsTwice;
2035   case bitc::ATTR_KIND_S_EXT:
2036     return Attribute::SExt;
2037   case bitc::ATTR_KIND_SPECULATABLE:
2038     return Attribute::Speculatable;
2039   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2040     return Attribute::StackAlignment;
2041   case bitc::ATTR_KIND_STACK_PROTECT:
2042     return Attribute::StackProtect;
2043   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2044     return Attribute::StackProtectReq;
2045   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2046     return Attribute::StackProtectStrong;
2047   case bitc::ATTR_KIND_SAFESTACK:
2048     return Attribute::SafeStack;
2049   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2050     return Attribute::ShadowCallStack;
2051   case bitc::ATTR_KIND_STRICT_FP:
2052     return Attribute::StrictFP;
2053   case bitc::ATTR_KIND_STRUCT_RET:
2054     return Attribute::StructRet;
2055   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2056     return Attribute::SanitizeAddress;
2057   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2058     return Attribute::SanitizeHWAddress;
2059   case bitc::ATTR_KIND_SANITIZE_THREAD:
2060     return Attribute::SanitizeThread;
2061   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2062     return Attribute::SanitizeMemory;
2063   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2064     return Attribute::SpeculativeLoadHardening;
2065   case bitc::ATTR_KIND_SWIFT_ERROR:
2066     return Attribute::SwiftError;
2067   case bitc::ATTR_KIND_SWIFT_SELF:
2068     return Attribute::SwiftSelf;
2069   case bitc::ATTR_KIND_SWIFT_ASYNC:
2070     return Attribute::SwiftAsync;
2071   case bitc::ATTR_KIND_UW_TABLE:
2072     return Attribute::UWTable;
2073   case bitc::ATTR_KIND_VSCALE_RANGE:
2074     return Attribute::VScaleRange;
2075   case bitc::ATTR_KIND_WILLRETURN:
2076     return Attribute::WillReturn;
2077   case bitc::ATTR_KIND_WRITEONLY:
2078     return Attribute::WriteOnly;
2079   case bitc::ATTR_KIND_Z_EXT:
2080     return Attribute::ZExt;
2081   case bitc::ATTR_KIND_IMMARG:
2082     return Attribute::ImmArg;
2083   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2084     return Attribute::SanitizeMemTag;
2085   case bitc::ATTR_KIND_PREALLOCATED:
2086     return Attribute::Preallocated;
2087   case bitc::ATTR_KIND_NOUNDEF:
2088     return Attribute::NoUndef;
2089   case bitc::ATTR_KIND_BYREF:
2090     return Attribute::ByRef;
2091   case bitc::ATTR_KIND_MUSTPROGRESS:
2092     return Attribute::MustProgress;
2093   case bitc::ATTR_KIND_HOT:
2094     return Attribute::Hot;
2095   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2096     return Attribute::PresplitCoroutine;
2097   case bitc::ATTR_KIND_WRITABLE:
2098     return Attribute::Writable;
2099   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2100     return Attribute::CoroDestroyOnlyWhenComplete;
2101   }
2102 }
2103 
2104 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2105                                          MaybeAlign &Alignment) {
2106   // Note: Alignment in bitcode files is incremented by 1, so that zero
2107   // can be used for default alignment.
2108   if (Exponent > Value::MaxAlignmentExponent + 1)
2109     return error("Invalid alignment value");
2110   Alignment = decodeMaybeAlign(Exponent);
2111   return Error::success();
2112 }
2113 
2114 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2115   *Kind = getAttrFromCode(Code);
2116   if (*Kind == Attribute::None)
2117     return error("Unknown attribute kind (" + Twine(Code) + ")");
2118   return Error::success();
2119 }
2120 
2121 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2122   switch (EncodedKind) {
2123   case bitc::ATTR_KIND_READ_NONE:
2124     ME &= MemoryEffects::none();
2125     return true;
2126   case bitc::ATTR_KIND_READ_ONLY:
2127     ME &= MemoryEffects::readOnly();
2128     return true;
2129   case bitc::ATTR_KIND_WRITEONLY:
2130     ME &= MemoryEffects::writeOnly();
2131     return true;
2132   case bitc::ATTR_KIND_ARGMEMONLY:
2133     ME &= MemoryEffects::argMemOnly();
2134     return true;
2135   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2136     ME &= MemoryEffects::inaccessibleMemOnly();
2137     return true;
2138   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2139     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2140     return true;
2141   default:
2142     return false;
2143   }
2144 }
2145 
2146 Error BitcodeReader::parseAttributeGroupBlock() {
2147   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2148     return Err;
2149 
2150   if (!MAttributeGroups.empty())
2151     return error("Invalid multiple blocks");
2152 
2153   SmallVector<uint64_t, 64> Record;
2154 
2155   // Read all the records.
2156   while (true) {
2157     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2158     if (!MaybeEntry)
2159       return MaybeEntry.takeError();
2160     BitstreamEntry Entry = MaybeEntry.get();
2161 
2162     switch (Entry.Kind) {
2163     case BitstreamEntry::SubBlock: // Handled for us already.
2164     case BitstreamEntry::Error:
2165       return error("Malformed block");
2166     case BitstreamEntry::EndBlock:
2167       return Error::success();
2168     case BitstreamEntry::Record:
2169       // The interesting case.
2170       break;
2171     }
2172 
2173     // Read a record.
2174     Record.clear();
2175     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2176     if (!MaybeRecord)
2177       return MaybeRecord.takeError();
2178     switch (MaybeRecord.get()) {
2179     default:  // Default behavior: ignore.
2180       break;
2181     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2182       if (Record.size() < 3)
2183         return error("Invalid grp record");
2184 
2185       uint64_t GrpID = Record[0];
2186       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2187 
2188       AttrBuilder B(Context);
2189       MemoryEffects ME = MemoryEffects::unknown();
2190       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2191         if (Record[i] == 0) {        // Enum attribute
2192           Attribute::AttrKind Kind;
2193           uint64_t EncodedKind = Record[++i];
2194           if (Idx == AttributeList::FunctionIndex &&
2195               upgradeOldMemoryAttribute(ME, EncodedKind))
2196             continue;
2197 
2198           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2199             return Err;
2200 
2201           // Upgrade old-style byval attribute to one with a type, even if it's
2202           // nullptr. We will have to insert the real type when we associate
2203           // this AttributeList with a function.
2204           if (Kind == Attribute::ByVal)
2205             B.addByValAttr(nullptr);
2206           else if (Kind == Attribute::StructRet)
2207             B.addStructRetAttr(nullptr);
2208           else if (Kind == Attribute::InAlloca)
2209             B.addInAllocaAttr(nullptr);
2210           else if (Kind == Attribute::UWTable)
2211             B.addUWTableAttr(UWTableKind::Default);
2212           else if (Attribute::isEnumAttrKind(Kind))
2213             B.addAttribute(Kind);
2214           else
2215             return error("Not an enum attribute");
2216         } else if (Record[i] == 1) { // Integer attribute
2217           Attribute::AttrKind Kind;
2218           if (Error Err = parseAttrKind(Record[++i], &Kind))
2219             return Err;
2220           if (!Attribute::isIntAttrKind(Kind))
2221             return error("Not an int attribute");
2222           if (Kind == Attribute::Alignment)
2223             B.addAlignmentAttr(Record[++i]);
2224           else if (Kind == Attribute::StackAlignment)
2225             B.addStackAlignmentAttr(Record[++i]);
2226           else if (Kind == Attribute::Dereferenceable)
2227             B.addDereferenceableAttr(Record[++i]);
2228           else if (Kind == Attribute::DereferenceableOrNull)
2229             B.addDereferenceableOrNullAttr(Record[++i]);
2230           else if (Kind == Attribute::AllocSize)
2231             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2232           else if (Kind == Attribute::VScaleRange)
2233             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2234           else if (Kind == Attribute::UWTable)
2235             B.addUWTableAttr(UWTableKind(Record[++i]));
2236           else if (Kind == Attribute::AllocKind)
2237             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2238           else if (Kind == Attribute::Memory)
2239             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2240           else if (Kind == Attribute::NoFPClass)
2241             B.addNoFPClassAttr(
2242                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2243         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2244           bool HasValue = (Record[i++] == 4);
2245           SmallString<64> KindStr;
2246           SmallString<64> ValStr;
2247 
2248           while (Record[i] != 0 && i != e)
2249             KindStr += Record[i++];
2250           assert(Record[i] == 0 && "Kind string not null terminated");
2251 
2252           if (HasValue) {
2253             // Has a value associated with it.
2254             ++i; // Skip the '0' that terminates the "kind" string.
2255             while (Record[i] != 0 && i != e)
2256               ValStr += Record[i++];
2257             assert(Record[i] == 0 && "Value string not null terminated");
2258           }
2259 
2260           B.addAttribute(KindStr.str(), ValStr.str());
2261         } else if (Record[i] == 5 || Record[i] == 6) {
2262           bool HasType = Record[i] == 6;
2263           Attribute::AttrKind Kind;
2264           if (Error Err = parseAttrKind(Record[++i], &Kind))
2265             return Err;
2266           if (!Attribute::isTypeAttrKind(Kind))
2267             return error("Not a type attribute");
2268 
2269           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2270         } else {
2271           return error("Invalid attribute group entry");
2272         }
2273       }
2274 
2275       if (ME != MemoryEffects::unknown())
2276         B.addMemoryAttr(ME);
2277 
2278       UpgradeAttributes(B);
2279       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2280       break;
2281     }
2282     }
2283   }
2284 }
2285 
2286 Error BitcodeReader::parseTypeTable() {
2287   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2288     return Err;
2289 
2290   return parseTypeTableBody();
2291 }
2292 
2293 Error BitcodeReader::parseTypeTableBody() {
2294   if (!TypeList.empty())
2295     return error("Invalid multiple blocks");
2296 
2297   SmallVector<uint64_t, 64> Record;
2298   unsigned NumRecords = 0;
2299 
2300   SmallString<64> TypeName;
2301 
2302   // Read all the records for this type table.
2303   while (true) {
2304     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2305     if (!MaybeEntry)
2306       return MaybeEntry.takeError();
2307     BitstreamEntry Entry = MaybeEntry.get();
2308 
2309     switch (Entry.Kind) {
2310     case BitstreamEntry::SubBlock: // Handled for us already.
2311     case BitstreamEntry::Error:
2312       return error("Malformed block");
2313     case BitstreamEntry::EndBlock:
2314       if (NumRecords != TypeList.size())
2315         return error("Malformed block");
2316       return Error::success();
2317     case BitstreamEntry::Record:
2318       // The interesting case.
2319       break;
2320     }
2321 
2322     // Read a record.
2323     Record.clear();
2324     Type *ResultTy = nullptr;
2325     SmallVector<unsigned> ContainedIDs;
2326     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2327     if (!MaybeRecord)
2328       return MaybeRecord.takeError();
2329     switch (MaybeRecord.get()) {
2330     default:
2331       return error("Invalid value");
2332     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2333       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2334       // type list.  This allows us to reserve space.
2335       if (Record.empty())
2336         return error("Invalid numentry record");
2337       TypeList.resize(Record[0]);
2338       continue;
2339     case bitc::TYPE_CODE_VOID:      // VOID
2340       ResultTy = Type::getVoidTy(Context);
2341       break;
2342     case bitc::TYPE_CODE_HALF:     // HALF
2343       ResultTy = Type::getHalfTy(Context);
2344       break;
2345     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2346       ResultTy = Type::getBFloatTy(Context);
2347       break;
2348     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2349       ResultTy = Type::getFloatTy(Context);
2350       break;
2351     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2352       ResultTy = Type::getDoubleTy(Context);
2353       break;
2354     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2355       ResultTy = Type::getX86_FP80Ty(Context);
2356       break;
2357     case bitc::TYPE_CODE_FP128:     // FP128
2358       ResultTy = Type::getFP128Ty(Context);
2359       break;
2360     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2361       ResultTy = Type::getPPC_FP128Ty(Context);
2362       break;
2363     case bitc::TYPE_CODE_LABEL:     // LABEL
2364       ResultTy = Type::getLabelTy(Context);
2365       break;
2366     case bitc::TYPE_CODE_METADATA:  // METADATA
2367       ResultTy = Type::getMetadataTy(Context);
2368       break;
2369     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2370       ResultTy = Type::getX86_MMXTy(Context);
2371       break;
2372     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2373       ResultTy = Type::getX86_AMXTy(Context);
2374       break;
2375     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2376       ResultTy = Type::getTokenTy(Context);
2377       break;
2378     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2379       if (Record.empty())
2380         return error("Invalid integer record");
2381 
2382       uint64_t NumBits = Record[0];
2383       if (NumBits < IntegerType::MIN_INT_BITS ||
2384           NumBits > IntegerType::MAX_INT_BITS)
2385         return error("Bitwidth for integer type out of range");
2386       ResultTy = IntegerType::get(Context, NumBits);
2387       break;
2388     }
2389     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2390                                     //          [pointee type, address space]
2391       if (Record.empty())
2392         return error("Invalid pointer record");
2393       unsigned AddressSpace = 0;
2394       if (Record.size() == 2)
2395         AddressSpace = Record[1];
2396       ResultTy = getTypeByID(Record[0]);
2397       if (!ResultTy ||
2398           !PointerType::isValidElementType(ResultTy))
2399         return error("Invalid type");
2400       ContainedIDs.push_back(Record[0]);
2401       ResultTy = PointerType::get(ResultTy, AddressSpace);
2402       break;
2403     }
2404     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2405       if (Record.size() != 1)
2406         return error("Invalid opaque pointer record");
2407       unsigned AddressSpace = Record[0];
2408       ResultTy = PointerType::get(Context, AddressSpace);
2409       break;
2410     }
2411     case bitc::TYPE_CODE_FUNCTION_OLD: {
2412       // Deprecated, but still needed to read old bitcode files.
2413       // FUNCTION: [vararg, attrid, retty, paramty x N]
2414       if (Record.size() < 3)
2415         return error("Invalid function record");
2416       SmallVector<Type*, 8> ArgTys;
2417       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2418         if (Type *T = getTypeByID(Record[i]))
2419           ArgTys.push_back(T);
2420         else
2421           break;
2422       }
2423 
2424       ResultTy = getTypeByID(Record[2]);
2425       if (!ResultTy || ArgTys.size() < Record.size()-3)
2426         return error("Invalid type");
2427 
2428       ContainedIDs.append(Record.begin() + 2, Record.end());
2429       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2430       break;
2431     }
2432     case bitc::TYPE_CODE_FUNCTION: {
2433       // FUNCTION: [vararg, retty, paramty x N]
2434       if (Record.size() < 2)
2435         return error("Invalid function record");
2436       SmallVector<Type*, 8> ArgTys;
2437       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2438         if (Type *T = getTypeByID(Record[i])) {
2439           if (!FunctionType::isValidArgumentType(T))
2440             return error("Invalid function argument type");
2441           ArgTys.push_back(T);
2442         }
2443         else
2444           break;
2445       }
2446 
2447       ResultTy = getTypeByID(Record[1]);
2448       if (!ResultTy || ArgTys.size() < Record.size()-2)
2449         return error("Invalid type");
2450 
2451       ContainedIDs.append(Record.begin() + 1, Record.end());
2452       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2453       break;
2454     }
2455     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2456       if (Record.empty())
2457         return error("Invalid anon struct record");
2458       SmallVector<Type*, 8> EltTys;
2459       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2460         if (Type *T = getTypeByID(Record[i]))
2461           EltTys.push_back(T);
2462         else
2463           break;
2464       }
2465       if (EltTys.size() != Record.size()-1)
2466         return error("Invalid type");
2467       ContainedIDs.append(Record.begin() + 1, Record.end());
2468       ResultTy = StructType::get(Context, EltTys, Record[0]);
2469       break;
2470     }
2471     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2472       if (convertToString(Record, 0, TypeName))
2473         return error("Invalid struct name record");
2474       continue;
2475 
2476     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2477       if (Record.empty())
2478         return error("Invalid named struct record");
2479 
2480       if (NumRecords >= TypeList.size())
2481         return error("Invalid TYPE table");
2482 
2483       // Check to see if this was forward referenced, if so fill in the temp.
2484       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2485       if (Res) {
2486         Res->setName(TypeName);
2487         TypeList[NumRecords] = nullptr;
2488       } else  // Otherwise, create a new struct.
2489         Res = createIdentifiedStructType(Context, TypeName);
2490       TypeName.clear();
2491 
2492       SmallVector<Type*, 8> EltTys;
2493       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2494         if (Type *T = getTypeByID(Record[i]))
2495           EltTys.push_back(T);
2496         else
2497           break;
2498       }
2499       if (EltTys.size() != Record.size()-1)
2500         return error("Invalid named struct record");
2501       Res->setBody(EltTys, Record[0]);
2502       ContainedIDs.append(Record.begin() + 1, Record.end());
2503       ResultTy = Res;
2504       break;
2505     }
2506     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2507       if (Record.size() != 1)
2508         return error("Invalid opaque type record");
2509 
2510       if (NumRecords >= TypeList.size())
2511         return error("Invalid TYPE table");
2512 
2513       // Check to see if this was forward referenced, if so fill in the temp.
2514       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2515       if (Res) {
2516         Res->setName(TypeName);
2517         TypeList[NumRecords] = nullptr;
2518       } else  // Otherwise, create a new struct with no body.
2519         Res = createIdentifiedStructType(Context, TypeName);
2520       TypeName.clear();
2521       ResultTy = Res;
2522       break;
2523     }
2524     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2525       if (Record.size() < 1)
2526         return error("Invalid target extension type record");
2527 
2528       if (NumRecords >= TypeList.size())
2529         return error("Invalid TYPE table");
2530 
2531       if (Record[0] >= Record.size())
2532         return error("Too many type parameters");
2533 
2534       unsigned NumTys = Record[0];
2535       SmallVector<Type *, 4> TypeParams;
2536       SmallVector<unsigned, 8> IntParams;
2537       for (unsigned i = 0; i < NumTys; i++) {
2538         if (Type *T = getTypeByID(Record[i + 1]))
2539           TypeParams.push_back(T);
2540         else
2541           return error("Invalid type");
2542       }
2543 
2544       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2545         if (Record[i] > UINT_MAX)
2546           return error("Integer parameter too large");
2547         IntParams.push_back(Record[i]);
2548       }
2549       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2550       TypeName.clear();
2551       break;
2552     }
2553     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2554       if (Record.size() < 2)
2555         return error("Invalid array type record");
2556       ResultTy = getTypeByID(Record[1]);
2557       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2558         return error("Invalid type");
2559       ContainedIDs.push_back(Record[1]);
2560       ResultTy = ArrayType::get(ResultTy, Record[0]);
2561       break;
2562     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2563                                     //         [numelts, eltty, scalable]
2564       if (Record.size() < 2)
2565         return error("Invalid vector type record");
2566       if (Record[0] == 0)
2567         return error("Invalid vector length");
2568       ResultTy = getTypeByID(Record[1]);
2569       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2570         return error("Invalid type");
2571       bool Scalable = Record.size() > 2 ? Record[2] : false;
2572       ContainedIDs.push_back(Record[1]);
2573       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2574       break;
2575     }
2576 
2577     if (NumRecords >= TypeList.size())
2578       return error("Invalid TYPE table");
2579     if (TypeList[NumRecords])
2580       return error(
2581           "Invalid TYPE table: Only named structs can be forward referenced");
2582     assert(ResultTy && "Didn't read a type?");
2583     TypeList[NumRecords] = ResultTy;
2584     if (!ContainedIDs.empty())
2585       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2586     ++NumRecords;
2587   }
2588 }
2589 
2590 Error BitcodeReader::parseOperandBundleTags() {
2591   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2592     return Err;
2593 
2594   if (!BundleTags.empty())
2595     return error("Invalid multiple blocks");
2596 
2597   SmallVector<uint64_t, 64> Record;
2598 
2599   while (true) {
2600     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2601     if (!MaybeEntry)
2602       return MaybeEntry.takeError();
2603     BitstreamEntry Entry = MaybeEntry.get();
2604 
2605     switch (Entry.Kind) {
2606     case BitstreamEntry::SubBlock: // Handled for us already.
2607     case BitstreamEntry::Error:
2608       return error("Malformed block");
2609     case BitstreamEntry::EndBlock:
2610       return Error::success();
2611     case BitstreamEntry::Record:
2612       // The interesting case.
2613       break;
2614     }
2615 
2616     // Tags are implicitly mapped to integers by their order.
2617 
2618     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2619     if (!MaybeRecord)
2620       return MaybeRecord.takeError();
2621     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2622       return error("Invalid operand bundle record");
2623 
2624     // OPERAND_BUNDLE_TAG: [strchr x N]
2625     BundleTags.emplace_back();
2626     if (convertToString(Record, 0, BundleTags.back()))
2627       return error("Invalid operand bundle record");
2628     Record.clear();
2629   }
2630 }
2631 
2632 Error BitcodeReader::parseSyncScopeNames() {
2633   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2634     return Err;
2635 
2636   if (!SSIDs.empty())
2637     return error("Invalid multiple synchronization scope names blocks");
2638 
2639   SmallVector<uint64_t, 64> Record;
2640   while (true) {
2641     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2642     if (!MaybeEntry)
2643       return MaybeEntry.takeError();
2644     BitstreamEntry Entry = MaybeEntry.get();
2645 
2646     switch (Entry.Kind) {
2647     case BitstreamEntry::SubBlock: // Handled for us already.
2648     case BitstreamEntry::Error:
2649       return error("Malformed block");
2650     case BitstreamEntry::EndBlock:
2651       if (SSIDs.empty())
2652         return error("Invalid empty synchronization scope names block");
2653       return Error::success();
2654     case BitstreamEntry::Record:
2655       // The interesting case.
2656       break;
2657     }
2658 
2659     // Synchronization scope names are implicitly mapped to synchronization
2660     // scope IDs by their order.
2661 
2662     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2663     if (!MaybeRecord)
2664       return MaybeRecord.takeError();
2665     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2666       return error("Invalid sync scope record");
2667 
2668     SmallString<16> SSN;
2669     if (convertToString(Record, 0, SSN))
2670       return error("Invalid sync scope record");
2671 
2672     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2673     Record.clear();
2674   }
2675 }
2676 
2677 /// Associate a value with its name from the given index in the provided record.
2678 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2679                                              unsigned NameIndex, Triple &TT) {
2680   SmallString<128> ValueName;
2681   if (convertToString(Record, NameIndex, ValueName))
2682     return error("Invalid record");
2683   unsigned ValueID = Record[0];
2684   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2685     return error("Invalid record");
2686   Value *V = ValueList[ValueID];
2687 
2688   StringRef NameStr(ValueName.data(), ValueName.size());
2689   if (NameStr.contains(0))
2690     return error("Invalid value name");
2691   V->setName(NameStr);
2692   auto *GO = dyn_cast<GlobalObject>(V);
2693   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2694     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2695   return V;
2696 }
2697 
2698 /// Helper to note and return the current location, and jump to the given
2699 /// offset.
2700 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2701                                                  BitstreamCursor &Stream) {
2702   // Save the current parsing location so we can jump back at the end
2703   // of the VST read.
2704   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2705   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2706     return std::move(JumpFailed);
2707   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2708   if (!MaybeEntry)
2709     return MaybeEntry.takeError();
2710   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2711       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2712     return error("Expected value symbol table subblock");
2713   return CurrentBit;
2714 }
2715 
2716 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2717                                             Function *F,
2718                                             ArrayRef<uint64_t> Record) {
2719   // Note that we subtract 1 here because the offset is relative to one word
2720   // before the start of the identification or module block, which was
2721   // historically always the start of the regular bitcode header.
2722   uint64_t FuncWordOffset = Record[1] - 1;
2723   uint64_t FuncBitOffset = FuncWordOffset * 32;
2724   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2725   // Set the LastFunctionBlockBit to point to the last function block.
2726   // Later when parsing is resumed after function materialization,
2727   // we can simply skip that last function block.
2728   if (FuncBitOffset > LastFunctionBlockBit)
2729     LastFunctionBlockBit = FuncBitOffset;
2730 }
2731 
2732 /// Read a new-style GlobalValue symbol table.
2733 Error BitcodeReader::parseGlobalValueSymbolTable() {
2734   unsigned FuncBitcodeOffsetDelta =
2735       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2736 
2737   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2738     return Err;
2739 
2740   SmallVector<uint64_t, 64> Record;
2741   while (true) {
2742     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2743     if (!MaybeEntry)
2744       return MaybeEntry.takeError();
2745     BitstreamEntry Entry = MaybeEntry.get();
2746 
2747     switch (Entry.Kind) {
2748     case BitstreamEntry::SubBlock:
2749     case BitstreamEntry::Error:
2750       return error("Malformed block");
2751     case BitstreamEntry::EndBlock:
2752       return Error::success();
2753     case BitstreamEntry::Record:
2754       break;
2755     }
2756 
2757     Record.clear();
2758     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2759     if (!MaybeRecord)
2760       return MaybeRecord.takeError();
2761     switch (MaybeRecord.get()) {
2762     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2763       unsigned ValueID = Record[0];
2764       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2765         return error("Invalid value reference in symbol table");
2766       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2767                               cast<Function>(ValueList[ValueID]), Record);
2768       break;
2769     }
2770     }
2771   }
2772 }
2773 
2774 /// Parse the value symbol table at either the current parsing location or
2775 /// at the given bit offset if provided.
2776 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2777   uint64_t CurrentBit;
2778   // Pass in the Offset to distinguish between calling for the module-level
2779   // VST (where we want to jump to the VST offset) and the function-level
2780   // VST (where we don't).
2781   if (Offset > 0) {
2782     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2783     if (!MaybeCurrentBit)
2784       return MaybeCurrentBit.takeError();
2785     CurrentBit = MaybeCurrentBit.get();
2786     // If this module uses a string table, read this as a module-level VST.
2787     if (UseStrtab) {
2788       if (Error Err = parseGlobalValueSymbolTable())
2789         return Err;
2790       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2791         return JumpFailed;
2792       return Error::success();
2793     }
2794     // Otherwise, the VST will be in a similar format to a function-level VST,
2795     // and will contain symbol names.
2796   }
2797 
2798   // Compute the delta between the bitcode indices in the VST (the word offset
2799   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2800   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2801   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2802   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2803   // just before entering the VST subblock because: 1) the EnterSubBlock
2804   // changes the AbbrevID width; 2) the VST block is nested within the same
2805   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2806   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2807   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2808   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2809   unsigned FuncBitcodeOffsetDelta =
2810       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2811 
2812   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2813     return Err;
2814 
2815   SmallVector<uint64_t, 64> Record;
2816 
2817   Triple TT(TheModule->getTargetTriple());
2818 
2819   // Read all the records for this value table.
2820   SmallString<128> ValueName;
2821 
2822   while (true) {
2823     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2824     if (!MaybeEntry)
2825       return MaybeEntry.takeError();
2826     BitstreamEntry Entry = MaybeEntry.get();
2827 
2828     switch (Entry.Kind) {
2829     case BitstreamEntry::SubBlock: // Handled for us already.
2830     case BitstreamEntry::Error:
2831       return error("Malformed block");
2832     case BitstreamEntry::EndBlock:
2833       if (Offset > 0)
2834         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2835           return JumpFailed;
2836       return Error::success();
2837     case BitstreamEntry::Record:
2838       // The interesting case.
2839       break;
2840     }
2841 
2842     // Read a record.
2843     Record.clear();
2844     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2845     if (!MaybeRecord)
2846       return MaybeRecord.takeError();
2847     switch (MaybeRecord.get()) {
2848     default:  // Default behavior: unknown type.
2849       break;
2850     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2851       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2852       if (Error Err = ValOrErr.takeError())
2853         return Err;
2854       ValOrErr.get();
2855       break;
2856     }
2857     case bitc::VST_CODE_FNENTRY: {
2858       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2859       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2860       if (Error Err = ValOrErr.takeError())
2861         return Err;
2862       Value *V = ValOrErr.get();
2863 
2864       // Ignore function offsets emitted for aliases of functions in older
2865       // versions of LLVM.
2866       if (auto *F = dyn_cast<Function>(V))
2867         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2868       break;
2869     }
2870     case bitc::VST_CODE_BBENTRY: {
2871       if (convertToString(Record, 1, ValueName))
2872         return error("Invalid bbentry record");
2873       BasicBlock *BB = getBasicBlock(Record[0]);
2874       if (!BB)
2875         return error("Invalid bbentry record");
2876 
2877       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2878       ValueName.clear();
2879       break;
2880     }
2881     }
2882   }
2883 }
2884 
2885 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2886 /// encoding.
2887 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2888   if ((V & 1) == 0)
2889     return V >> 1;
2890   if (V != 1)
2891     return -(V >> 1);
2892   // There is no such thing as -0 with integers.  "-0" really means MININT.
2893   return 1ULL << 63;
2894 }
2895 
2896 /// Resolve all of the initializers for global values and aliases that we can.
2897 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2898   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2899   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2900   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2901 
2902   GlobalInitWorklist.swap(GlobalInits);
2903   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2904   FunctionOperandWorklist.swap(FunctionOperands);
2905 
2906   while (!GlobalInitWorklist.empty()) {
2907     unsigned ValID = GlobalInitWorklist.back().second;
2908     if (ValID >= ValueList.size()) {
2909       // Not ready to resolve this yet, it requires something later in the file.
2910       GlobalInits.push_back(GlobalInitWorklist.back());
2911     } else {
2912       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2913       if (!MaybeC)
2914         return MaybeC.takeError();
2915       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2916     }
2917     GlobalInitWorklist.pop_back();
2918   }
2919 
2920   while (!IndirectSymbolInitWorklist.empty()) {
2921     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2922     if (ValID >= ValueList.size()) {
2923       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2924     } else {
2925       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2926       if (!MaybeC)
2927         return MaybeC.takeError();
2928       Constant *C = MaybeC.get();
2929       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2930       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2931         if (C->getType() != GV->getType())
2932           return error("Alias and aliasee types don't match");
2933         GA->setAliasee(C);
2934       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2935         GI->setResolver(C);
2936       } else {
2937         return error("Expected an alias or an ifunc");
2938       }
2939     }
2940     IndirectSymbolInitWorklist.pop_back();
2941   }
2942 
2943   while (!FunctionOperandWorklist.empty()) {
2944     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2945     if (Info.PersonalityFn) {
2946       unsigned ValID = Info.PersonalityFn - 1;
2947       if (ValID < ValueList.size()) {
2948         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2949         if (!MaybeC)
2950           return MaybeC.takeError();
2951         Info.F->setPersonalityFn(MaybeC.get());
2952         Info.PersonalityFn = 0;
2953       }
2954     }
2955     if (Info.Prefix) {
2956       unsigned ValID = Info.Prefix - 1;
2957       if (ValID < ValueList.size()) {
2958         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2959         if (!MaybeC)
2960           return MaybeC.takeError();
2961         Info.F->setPrefixData(MaybeC.get());
2962         Info.Prefix = 0;
2963       }
2964     }
2965     if (Info.Prologue) {
2966       unsigned ValID = Info.Prologue - 1;
2967       if (ValID < ValueList.size()) {
2968         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2969         if (!MaybeC)
2970           return MaybeC.takeError();
2971         Info.F->setPrologueData(MaybeC.get());
2972         Info.Prologue = 0;
2973       }
2974     }
2975     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2976       FunctionOperands.push_back(Info);
2977     FunctionOperandWorklist.pop_back();
2978   }
2979 
2980   return Error::success();
2981 }
2982 
2983 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2984   SmallVector<uint64_t, 8> Words(Vals.size());
2985   transform(Vals, Words.begin(),
2986                  BitcodeReader::decodeSignRotatedValue);
2987 
2988   return APInt(TypeBits, Words);
2989 }
2990 
2991 Error BitcodeReader::parseConstants() {
2992   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2993     return Err;
2994 
2995   SmallVector<uint64_t, 64> Record;
2996 
2997   // Read all the records for this value table.
2998   Type *CurTy = Type::getInt32Ty(Context);
2999   unsigned Int32TyID = getVirtualTypeID(CurTy);
3000   unsigned CurTyID = Int32TyID;
3001   Type *CurElemTy = nullptr;
3002   unsigned NextCstNo = ValueList.size();
3003 
3004   while (true) {
3005     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3006     if (!MaybeEntry)
3007       return MaybeEntry.takeError();
3008     BitstreamEntry Entry = MaybeEntry.get();
3009 
3010     switch (Entry.Kind) {
3011     case BitstreamEntry::SubBlock: // Handled for us already.
3012     case BitstreamEntry::Error:
3013       return error("Malformed block");
3014     case BitstreamEntry::EndBlock:
3015       if (NextCstNo != ValueList.size())
3016         return error("Invalid constant reference");
3017       return Error::success();
3018     case BitstreamEntry::Record:
3019       // The interesting case.
3020       break;
3021     }
3022 
3023     // Read a record.
3024     Record.clear();
3025     Type *VoidType = Type::getVoidTy(Context);
3026     Value *V = nullptr;
3027     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3028     if (!MaybeBitCode)
3029       return MaybeBitCode.takeError();
3030     switch (unsigned BitCode = MaybeBitCode.get()) {
3031     default:  // Default behavior: unknown constant
3032     case bitc::CST_CODE_UNDEF:     // UNDEF
3033       V = UndefValue::get(CurTy);
3034       break;
3035     case bitc::CST_CODE_POISON:    // POISON
3036       V = PoisonValue::get(CurTy);
3037       break;
3038     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3039       if (Record.empty())
3040         return error("Invalid settype record");
3041       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3042         return error("Invalid settype record");
3043       if (TypeList[Record[0]] == VoidType)
3044         return error("Invalid constant type");
3045       CurTyID = Record[0];
3046       CurTy = TypeList[CurTyID];
3047       CurElemTy = getPtrElementTypeByID(CurTyID);
3048       continue;  // Skip the ValueList manipulation.
3049     case bitc::CST_CODE_NULL:      // NULL
3050       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3051         return error("Invalid type for a constant null value");
3052       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3053         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3054           return error("Invalid type for a constant null value");
3055       V = Constant::getNullValue(CurTy);
3056       break;
3057     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3058       if (!CurTy->isIntegerTy() || Record.empty())
3059         return error("Invalid integer const record");
3060       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3061       break;
3062     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3063       if (!CurTy->isIntegerTy() || Record.empty())
3064         return error("Invalid wide integer const record");
3065 
3066       APInt VInt =
3067           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3068       V = ConstantInt::get(Context, VInt);
3069 
3070       break;
3071     }
3072     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3073       if (Record.empty())
3074         return error("Invalid float const record");
3075       if (CurTy->isHalfTy())
3076         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
3077                                              APInt(16, (uint16_t)Record[0])));
3078       else if (CurTy->isBFloatTy())
3079         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
3080                                              APInt(16, (uint32_t)Record[0])));
3081       else if (CurTy->isFloatTy())
3082         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
3083                                              APInt(32, (uint32_t)Record[0])));
3084       else if (CurTy->isDoubleTy())
3085         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
3086                                              APInt(64, Record[0])));
3087       else if (CurTy->isX86_FP80Ty()) {
3088         // Bits are not stored the same way as a normal i80 APInt, compensate.
3089         uint64_t Rearrange[2];
3090         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3091         Rearrange[1] = Record[0] >> 48;
3092         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
3093                                              APInt(80, Rearrange)));
3094       } else if (CurTy->isFP128Ty())
3095         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
3096                                              APInt(128, Record)));
3097       else if (CurTy->isPPC_FP128Ty())
3098         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
3099                                              APInt(128, Record)));
3100       else
3101         V = UndefValue::get(CurTy);
3102       break;
3103     }
3104 
3105     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3106       if (Record.empty())
3107         return error("Invalid aggregate record");
3108 
3109       unsigned Size = Record.size();
3110       SmallVector<unsigned, 16> Elts;
3111       for (unsigned i = 0; i != Size; ++i)
3112         Elts.push_back(Record[i]);
3113 
3114       if (isa<StructType>(CurTy)) {
3115         V = BitcodeConstant::create(
3116             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3117       } else if (isa<ArrayType>(CurTy)) {
3118         V = BitcodeConstant::create(Alloc, CurTy,
3119                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3120       } else if (isa<VectorType>(CurTy)) {
3121         V = BitcodeConstant::create(
3122             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3123       } else {
3124         V = UndefValue::get(CurTy);
3125       }
3126       break;
3127     }
3128     case bitc::CST_CODE_STRING:    // STRING: [values]
3129     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3130       if (Record.empty())
3131         return error("Invalid string record");
3132 
3133       SmallString<16> Elts(Record.begin(), Record.end());
3134       V = ConstantDataArray::getString(Context, Elts,
3135                                        BitCode == bitc::CST_CODE_CSTRING);
3136       break;
3137     }
3138     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3139       if (Record.empty())
3140         return error("Invalid data record");
3141 
3142       Type *EltTy;
3143       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3144         EltTy = Array->getElementType();
3145       else
3146         EltTy = cast<VectorType>(CurTy)->getElementType();
3147       if (EltTy->isIntegerTy(8)) {
3148         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3149         if (isa<VectorType>(CurTy))
3150           V = ConstantDataVector::get(Context, Elts);
3151         else
3152           V = ConstantDataArray::get(Context, Elts);
3153       } else if (EltTy->isIntegerTy(16)) {
3154         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3155         if (isa<VectorType>(CurTy))
3156           V = ConstantDataVector::get(Context, Elts);
3157         else
3158           V = ConstantDataArray::get(Context, Elts);
3159       } else if (EltTy->isIntegerTy(32)) {
3160         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3161         if (isa<VectorType>(CurTy))
3162           V = ConstantDataVector::get(Context, Elts);
3163         else
3164           V = ConstantDataArray::get(Context, Elts);
3165       } else if (EltTy->isIntegerTy(64)) {
3166         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3167         if (isa<VectorType>(CurTy))
3168           V = ConstantDataVector::get(Context, Elts);
3169         else
3170           V = ConstantDataArray::get(Context, Elts);
3171       } else if (EltTy->isHalfTy()) {
3172         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3173         if (isa<VectorType>(CurTy))
3174           V = ConstantDataVector::getFP(EltTy, Elts);
3175         else
3176           V = ConstantDataArray::getFP(EltTy, Elts);
3177       } else if (EltTy->isBFloatTy()) {
3178         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3179         if (isa<VectorType>(CurTy))
3180           V = ConstantDataVector::getFP(EltTy, Elts);
3181         else
3182           V = ConstantDataArray::getFP(EltTy, Elts);
3183       } else if (EltTy->isFloatTy()) {
3184         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3185         if (isa<VectorType>(CurTy))
3186           V = ConstantDataVector::getFP(EltTy, Elts);
3187         else
3188           V = ConstantDataArray::getFP(EltTy, Elts);
3189       } else if (EltTy->isDoubleTy()) {
3190         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3191         if (isa<VectorType>(CurTy))
3192           V = ConstantDataVector::getFP(EltTy, Elts);
3193         else
3194           V = ConstantDataArray::getFP(EltTy, Elts);
3195       } else {
3196         return error("Invalid type for value");
3197       }
3198       break;
3199     }
3200     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3201       if (Record.size() < 2)
3202         return error("Invalid unary op constexpr record");
3203       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3204       if (Opc < 0) {
3205         V = UndefValue::get(CurTy);  // Unknown unop.
3206       } else {
3207         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3208       }
3209       break;
3210     }
3211     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3212       if (Record.size() < 3)
3213         return error("Invalid binary op constexpr record");
3214       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3215       if (Opc < 0) {
3216         V = UndefValue::get(CurTy);  // Unknown binop.
3217       } else {
3218         uint8_t Flags = 0;
3219         if (Record.size() >= 4) {
3220           if (Opc == Instruction::Add ||
3221               Opc == Instruction::Sub ||
3222               Opc == Instruction::Mul ||
3223               Opc == Instruction::Shl) {
3224             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3225               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3226             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3227               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3228           } else if (Opc == Instruction::SDiv ||
3229                      Opc == Instruction::UDiv ||
3230                      Opc == Instruction::LShr ||
3231                      Opc == Instruction::AShr) {
3232             if (Record[3] & (1 << bitc::PEO_EXACT))
3233               Flags |= PossiblyExactOperator::IsExact;
3234           }
3235         }
3236         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3237                                     {(unsigned)Record[1], (unsigned)Record[2]});
3238       }
3239       break;
3240     }
3241     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3242       if (Record.size() < 3)
3243         return error("Invalid cast constexpr record");
3244       int Opc = getDecodedCastOpcode(Record[0]);
3245       if (Opc < 0) {
3246         V = UndefValue::get(CurTy);  // Unknown cast.
3247       } else {
3248         unsigned OpTyID = Record[1];
3249         Type *OpTy = getTypeByID(OpTyID);
3250         if (!OpTy)
3251           return error("Invalid cast constexpr record");
3252         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3253       }
3254       break;
3255     }
3256     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3257     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3258     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3259                                                      // operands]
3260       if (Record.size() < 2)
3261         return error("Constant GEP record must have at least two elements");
3262       unsigned OpNum = 0;
3263       Type *PointeeType = nullptr;
3264       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3265           Record.size() % 2)
3266         PointeeType = getTypeByID(Record[OpNum++]);
3267 
3268       bool InBounds = false;
3269       std::optional<unsigned> InRangeIndex;
3270       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3271         uint64_t Op = Record[OpNum++];
3272         InBounds = Op & 1;
3273         InRangeIndex = Op >> 1;
3274       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3275         InBounds = true;
3276 
3277       SmallVector<unsigned, 16> Elts;
3278       unsigned BaseTypeID = Record[OpNum];
3279       while (OpNum != Record.size()) {
3280         unsigned ElTyID = Record[OpNum++];
3281         Type *ElTy = getTypeByID(ElTyID);
3282         if (!ElTy)
3283           return error("Invalid getelementptr constexpr record");
3284         Elts.push_back(Record[OpNum++]);
3285       }
3286 
3287       if (Elts.size() < 1)
3288         return error("Invalid gep with no operands");
3289 
3290       Type *BaseType = getTypeByID(BaseTypeID);
3291       if (isa<VectorType>(BaseType)) {
3292         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3293         BaseType = getTypeByID(BaseTypeID);
3294       }
3295 
3296       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3297       if (!OrigPtrTy)
3298         return error("GEP base operand must be pointer or vector of pointer");
3299 
3300       if (!PointeeType) {
3301         PointeeType = getPtrElementTypeByID(BaseTypeID);
3302         if (!PointeeType)
3303           return error("Missing element type for old-style constant GEP");
3304       }
3305 
3306       V = BitcodeConstant::create(Alloc, CurTy,
3307                                   {Instruction::GetElementPtr, InBounds,
3308                                    InRangeIndex.value_or(-1), PointeeType},
3309                                   Elts);
3310       break;
3311     }
3312     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3313       if (Record.size() < 3)
3314         return error("Invalid select constexpr record");
3315 
3316       V = BitcodeConstant::create(
3317           Alloc, CurTy, Instruction::Select,
3318           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3319       break;
3320     }
3321     case bitc::CST_CODE_CE_EXTRACTELT
3322         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3323       if (Record.size() < 3)
3324         return error("Invalid extractelement constexpr record");
3325       unsigned OpTyID = Record[0];
3326       VectorType *OpTy =
3327         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3328       if (!OpTy)
3329         return error("Invalid extractelement constexpr record");
3330       unsigned IdxRecord;
3331       if (Record.size() == 4) {
3332         unsigned IdxTyID = Record[2];
3333         Type *IdxTy = getTypeByID(IdxTyID);
3334         if (!IdxTy)
3335           return error("Invalid extractelement constexpr record");
3336         IdxRecord = Record[3];
3337       } else {
3338         // Deprecated, but still needed to read old bitcode files.
3339         IdxRecord = Record[2];
3340       }
3341       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3342                                   {(unsigned)Record[1], IdxRecord});
3343       break;
3344     }
3345     case bitc::CST_CODE_CE_INSERTELT
3346         : { // CE_INSERTELT: [opval, opval, opty, opval]
3347       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3348       if (Record.size() < 3 || !OpTy)
3349         return error("Invalid insertelement constexpr record");
3350       unsigned IdxRecord;
3351       if (Record.size() == 4) {
3352         unsigned IdxTyID = Record[2];
3353         Type *IdxTy = getTypeByID(IdxTyID);
3354         if (!IdxTy)
3355           return error("Invalid insertelement constexpr record");
3356         IdxRecord = Record[3];
3357       } else {
3358         // Deprecated, but still needed to read old bitcode files.
3359         IdxRecord = Record[2];
3360       }
3361       V = BitcodeConstant::create(
3362           Alloc, CurTy, Instruction::InsertElement,
3363           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3364       break;
3365     }
3366     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3367       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3368       if (Record.size() < 3 || !OpTy)
3369         return error("Invalid shufflevector constexpr record");
3370       V = BitcodeConstant::create(
3371           Alloc, CurTy, Instruction::ShuffleVector,
3372           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3373       break;
3374     }
3375     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3376       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3377       VectorType *OpTy =
3378         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3379       if (Record.size() < 4 || !RTy || !OpTy)
3380         return error("Invalid shufflevector constexpr record");
3381       V = BitcodeConstant::create(
3382           Alloc, CurTy, Instruction::ShuffleVector,
3383           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3384       break;
3385     }
3386     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3387       if (Record.size() < 4)
3388         return error("Invalid cmp constexpt record");
3389       unsigned OpTyID = Record[0];
3390       Type *OpTy = getTypeByID(OpTyID);
3391       if (!OpTy)
3392         return error("Invalid cmp constexpr record");
3393       V = BitcodeConstant::create(
3394           Alloc, CurTy,
3395           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3396                                               : Instruction::ICmp),
3397            (uint8_t)Record[3]},
3398           {(unsigned)Record[1], (unsigned)Record[2]});
3399       break;
3400     }
3401     // This maintains backward compatibility, pre-asm dialect keywords.
3402     // Deprecated, but still needed to read old bitcode files.
3403     case bitc::CST_CODE_INLINEASM_OLD: {
3404       if (Record.size() < 2)
3405         return error("Invalid inlineasm record");
3406       std::string AsmStr, ConstrStr;
3407       bool HasSideEffects = Record[0] & 1;
3408       bool IsAlignStack = Record[0] >> 1;
3409       unsigned AsmStrSize = Record[1];
3410       if (2+AsmStrSize >= Record.size())
3411         return error("Invalid inlineasm record");
3412       unsigned ConstStrSize = Record[2+AsmStrSize];
3413       if (3+AsmStrSize+ConstStrSize > Record.size())
3414         return error("Invalid inlineasm record");
3415 
3416       for (unsigned i = 0; i != AsmStrSize; ++i)
3417         AsmStr += (char)Record[2+i];
3418       for (unsigned i = 0; i != ConstStrSize; ++i)
3419         ConstrStr += (char)Record[3+AsmStrSize+i];
3420       UpgradeInlineAsmString(&AsmStr);
3421       if (!CurElemTy)
3422         return error("Missing element type for old-style inlineasm");
3423       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3424                          HasSideEffects, IsAlignStack);
3425       break;
3426     }
3427     // This version adds support for the asm dialect keywords (e.g.,
3428     // inteldialect).
3429     case bitc::CST_CODE_INLINEASM_OLD2: {
3430       if (Record.size() < 2)
3431         return error("Invalid inlineasm record");
3432       std::string AsmStr, ConstrStr;
3433       bool HasSideEffects = Record[0] & 1;
3434       bool IsAlignStack = (Record[0] >> 1) & 1;
3435       unsigned AsmDialect = Record[0] >> 2;
3436       unsigned AsmStrSize = Record[1];
3437       if (2+AsmStrSize >= Record.size())
3438         return error("Invalid inlineasm record");
3439       unsigned ConstStrSize = Record[2+AsmStrSize];
3440       if (3+AsmStrSize+ConstStrSize > Record.size())
3441         return error("Invalid inlineasm record");
3442 
3443       for (unsigned i = 0; i != AsmStrSize; ++i)
3444         AsmStr += (char)Record[2+i];
3445       for (unsigned i = 0; i != ConstStrSize; ++i)
3446         ConstrStr += (char)Record[3+AsmStrSize+i];
3447       UpgradeInlineAsmString(&AsmStr);
3448       if (!CurElemTy)
3449         return error("Missing element type for old-style inlineasm");
3450       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3451                          HasSideEffects, IsAlignStack,
3452                          InlineAsm::AsmDialect(AsmDialect));
3453       break;
3454     }
3455     // This version adds support for the unwind keyword.
3456     case bitc::CST_CODE_INLINEASM_OLD3: {
3457       if (Record.size() < 2)
3458         return error("Invalid inlineasm record");
3459       unsigned OpNum = 0;
3460       std::string AsmStr, ConstrStr;
3461       bool HasSideEffects = Record[OpNum] & 1;
3462       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3463       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3464       bool CanThrow = (Record[OpNum] >> 3) & 1;
3465       ++OpNum;
3466       unsigned AsmStrSize = Record[OpNum];
3467       ++OpNum;
3468       if (OpNum + AsmStrSize >= Record.size())
3469         return error("Invalid inlineasm record");
3470       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3471       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3472         return error("Invalid inlineasm record");
3473 
3474       for (unsigned i = 0; i != AsmStrSize; ++i)
3475         AsmStr += (char)Record[OpNum + i];
3476       ++OpNum;
3477       for (unsigned i = 0; i != ConstStrSize; ++i)
3478         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3479       UpgradeInlineAsmString(&AsmStr);
3480       if (!CurElemTy)
3481         return error("Missing element type for old-style inlineasm");
3482       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3483                          HasSideEffects, IsAlignStack,
3484                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3485       break;
3486     }
3487     // This version adds explicit function type.
3488     case bitc::CST_CODE_INLINEASM: {
3489       if (Record.size() < 3)
3490         return error("Invalid inlineasm record");
3491       unsigned OpNum = 0;
3492       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3493       ++OpNum;
3494       if (!FnTy)
3495         return error("Invalid inlineasm record");
3496       std::string AsmStr, ConstrStr;
3497       bool HasSideEffects = Record[OpNum] & 1;
3498       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3499       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3500       bool CanThrow = (Record[OpNum] >> 3) & 1;
3501       ++OpNum;
3502       unsigned AsmStrSize = Record[OpNum];
3503       ++OpNum;
3504       if (OpNum + AsmStrSize >= Record.size())
3505         return error("Invalid inlineasm record");
3506       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3507       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3508         return error("Invalid inlineasm record");
3509 
3510       for (unsigned i = 0; i != AsmStrSize; ++i)
3511         AsmStr += (char)Record[OpNum + i];
3512       ++OpNum;
3513       for (unsigned i = 0; i != ConstStrSize; ++i)
3514         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3515       UpgradeInlineAsmString(&AsmStr);
3516       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3517                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3518       break;
3519     }
3520     case bitc::CST_CODE_BLOCKADDRESS:{
3521       if (Record.size() < 3)
3522         return error("Invalid blockaddress record");
3523       unsigned FnTyID = Record[0];
3524       Type *FnTy = getTypeByID(FnTyID);
3525       if (!FnTy)
3526         return error("Invalid blockaddress record");
3527       V = BitcodeConstant::create(
3528           Alloc, CurTy,
3529           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3530           Record[1]);
3531       break;
3532     }
3533     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3534       if (Record.size() < 2)
3535         return error("Invalid dso_local record");
3536       unsigned GVTyID = Record[0];
3537       Type *GVTy = getTypeByID(GVTyID);
3538       if (!GVTy)
3539         return error("Invalid dso_local record");
3540       V = BitcodeConstant::create(
3541           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3542       break;
3543     }
3544     case bitc::CST_CODE_NO_CFI_VALUE: {
3545       if (Record.size() < 2)
3546         return error("Invalid no_cfi record");
3547       unsigned GVTyID = Record[0];
3548       Type *GVTy = getTypeByID(GVTyID);
3549       if (!GVTy)
3550         return error("Invalid no_cfi record");
3551       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3552                                   Record[1]);
3553       break;
3554     }
3555     }
3556 
3557     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3558     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3559       return Err;
3560     ++NextCstNo;
3561   }
3562 }
3563 
3564 Error BitcodeReader::parseUseLists() {
3565   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3566     return Err;
3567 
3568   // Read all the records.
3569   SmallVector<uint64_t, 64> Record;
3570 
3571   while (true) {
3572     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3573     if (!MaybeEntry)
3574       return MaybeEntry.takeError();
3575     BitstreamEntry Entry = MaybeEntry.get();
3576 
3577     switch (Entry.Kind) {
3578     case BitstreamEntry::SubBlock: // Handled for us already.
3579     case BitstreamEntry::Error:
3580       return error("Malformed block");
3581     case BitstreamEntry::EndBlock:
3582       return Error::success();
3583     case BitstreamEntry::Record:
3584       // The interesting case.
3585       break;
3586     }
3587 
3588     // Read a use list record.
3589     Record.clear();
3590     bool IsBB = false;
3591     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3592     if (!MaybeRecord)
3593       return MaybeRecord.takeError();
3594     switch (MaybeRecord.get()) {
3595     default:  // Default behavior: unknown type.
3596       break;
3597     case bitc::USELIST_CODE_BB:
3598       IsBB = true;
3599       [[fallthrough]];
3600     case bitc::USELIST_CODE_DEFAULT: {
3601       unsigned RecordLength = Record.size();
3602       if (RecordLength < 3)
3603         // Records should have at least an ID and two indexes.
3604         return error("Invalid record");
3605       unsigned ID = Record.pop_back_val();
3606 
3607       Value *V;
3608       if (IsBB) {
3609         assert(ID < FunctionBBs.size() && "Basic block not found");
3610         V = FunctionBBs[ID];
3611       } else
3612         V = ValueList[ID];
3613       unsigned NumUses = 0;
3614       SmallDenseMap<const Use *, unsigned, 16> Order;
3615       for (const Use &U : V->materialized_uses()) {
3616         if (++NumUses > Record.size())
3617           break;
3618         Order[&U] = Record[NumUses - 1];
3619       }
3620       if (Order.size() != Record.size() || NumUses > Record.size())
3621         // Mismatches can happen if the functions are being materialized lazily
3622         // (out-of-order), or a value has been upgraded.
3623         break;
3624 
3625       V->sortUseList([&](const Use &L, const Use &R) {
3626         return Order.lookup(&L) < Order.lookup(&R);
3627       });
3628       break;
3629     }
3630     }
3631   }
3632 }
3633 
3634 /// When we see the block for metadata, remember where it is and then skip it.
3635 /// This lets us lazily deserialize the metadata.
3636 Error BitcodeReader::rememberAndSkipMetadata() {
3637   // Save the current stream state.
3638   uint64_t CurBit = Stream.GetCurrentBitNo();
3639   DeferredMetadataInfo.push_back(CurBit);
3640 
3641   // Skip over the block for now.
3642   if (Error Err = Stream.SkipBlock())
3643     return Err;
3644   return Error::success();
3645 }
3646 
3647 Error BitcodeReader::materializeMetadata() {
3648   for (uint64_t BitPos : DeferredMetadataInfo) {
3649     // Move the bit stream to the saved position.
3650     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3651       return JumpFailed;
3652     if (Error Err = MDLoader->parseModuleMetadata())
3653       return Err;
3654   }
3655 
3656   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3657   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3658   // multiple times.
3659   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3660     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3661       NamedMDNode *LinkerOpts =
3662           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3663       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3664         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3665     }
3666   }
3667 
3668   DeferredMetadataInfo.clear();
3669   return Error::success();
3670 }
3671 
3672 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3673 
3674 /// When we see the block for a function body, remember where it is and then
3675 /// skip it.  This lets us lazily deserialize the functions.
3676 Error BitcodeReader::rememberAndSkipFunctionBody() {
3677   // Get the function we are talking about.
3678   if (FunctionsWithBodies.empty())
3679     return error("Insufficient function protos");
3680 
3681   Function *Fn = FunctionsWithBodies.back();
3682   FunctionsWithBodies.pop_back();
3683 
3684   // Save the current stream state.
3685   uint64_t CurBit = Stream.GetCurrentBitNo();
3686   assert(
3687       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3688       "Mismatch between VST and scanned function offsets");
3689   DeferredFunctionInfo[Fn] = CurBit;
3690 
3691   // Skip over the function block for now.
3692   if (Error Err = Stream.SkipBlock())
3693     return Err;
3694   return Error::success();
3695 }
3696 
3697 Error BitcodeReader::globalCleanup() {
3698   // Patch the initializers for globals and aliases up.
3699   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3700     return Err;
3701   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3702     return error("Malformed global initializer set");
3703 
3704   // Look for intrinsic functions which need to be upgraded at some point
3705   // and functions that need to have their function attributes upgraded.
3706   for (Function &F : *TheModule) {
3707     MDLoader->upgradeDebugIntrinsics(F);
3708     Function *NewFn;
3709     if (UpgradeIntrinsicFunction(&F, NewFn))
3710       UpgradedIntrinsics[&F] = NewFn;
3711     // Look for functions that rely on old function attribute behavior.
3712     UpgradeFunctionAttributes(F);
3713   }
3714 
3715   // Look for global variables which need to be renamed.
3716   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3717   for (GlobalVariable &GV : TheModule->globals())
3718     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3719       UpgradedVariables.emplace_back(&GV, Upgraded);
3720   for (auto &Pair : UpgradedVariables) {
3721     Pair.first->eraseFromParent();
3722     TheModule->insertGlobalVariable(Pair.second);
3723   }
3724 
3725   // Force deallocation of memory for these vectors to favor the client that
3726   // want lazy deserialization.
3727   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3728   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3729   return Error::success();
3730 }
3731 
3732 /// Support for lazy parsing of function bodies. This is required if we
3733 /// either have an old bitcode file without a VST forward declaration record,
3734 /// or if we have an anonymous function being materialized, since anonymous
3735 /// functions do not have a name and are therefore not in the VST.
3736 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3737   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3738     return JumpFailed;
3739 
3740   if (Stream.AtEndOfStream())
3741     return error("Could not find function in stream");
3742 
3743   if (!SeenFirstFunctionBody)
3744     return error("Trying to materialize functions before seeing function blocks");
3745 
3746   // An old bitcode file with the symbol table at the end would have
3747   // finished the parse greedily.
3748   assert(SeenValueSymbolTable);
3749 
3750   SmallVector<uint64_t, 64> Record;
3751 
3752   while (true) {
3753     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3754     if (!MaybeEntry)
3755       return MaybeEntry.takeError();
3756     llvm::BitstreamEntry Entry = MaybeEntry.get();
3757 
3758     switch (Entry.Kind) {
3759     default:
3760       return error("Expect SubBlock");
3761     case BitstreamEntry::SubBlock:
3762       switch (Entry.ID) {
3763       default:
3764         return error("Expect function block");
3765       case bitc::FUNCTION_BLOCK_ID:
3766         if (Error Err = rememberAndSkipFunctionBody())
3767           return Err;
3768         NextUnreadBit = Stream.GetCurrentBitNo();
3769         return Error::success();
3770       }
3771     }
3772   }
3773 }
3774 
3775 Error BitcodeReaderBase::readBlockInfo() {
3776   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3777       Stream.ReadBlockInfoBlock();
3778   if (!MaybeNewBlockInfo)
3779     return MaybeNewBlockInfo.takeError();
3780   std::optional<BitstreamBlockInfo> NewBlockInfo =
3781       std::move(MaybeNewBlockInfo.get());
3782   if (!NewBlockInfo)
3783     return error("Malformed block");
3784   BlockInfo = std::move(*NewBlockInfo);
3785   return Error::success();
3786 }
3787 
3788 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3789   // v1: [selection_kind, name]
3790   // v2: [strtab_offset, strtab_size, selection_kind]
3791   StringRef Name;
3792   std::tie(Name, Record) = readNameFromStrtab(Record);
3793 
3794   if (Record.empty())
3795     return error("Invalid record");
3796   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3797   std::string OldFormatName;
3798   if (!UseStrtab) {
3799     if (Record.size() < 2)
3800       return error("Invalid record");
3801     unsigned ComdatNameSize = Record[1];
3802     if (ComdatNameSize > Record.size() - 2)
3803       return error("Comdat name size too large");
3804     OldFormatName.reserve(ComdatNameSize);
3805     for (unsigned i = 0; i != ComdatNameSize; ++i)
3806       OldFormatName += (char)Record[2 + i];
3807     Name = OldFormatName;
3808   }
3809   Comdat *C = TheModule->getOrInsertComdat(Name);
3810   C->setSelectionKind(SK);
3811   ComdatList.push_back(C);
3812   return Error::success();
3813 }
3814 
3815 static void inferDSOLocal(GlobalValue *GV) {
3816   // infer dso_local from linkage and visibility if it is not encoded.
3817   if (GV->hasLocalLinkage() ||
3818       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3819     GV->setDSOLocal(true);
3820 }
3821 
3822 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3823   GlobalValue::SanitizerMetadata Meta;
3824   if (V & (1 << 0))
3825     Meta.NoAddress = true;
3826   if (V & (1 << 1))
3827     Meta.NoHWAddress = true;
3828   if (V & (1 << 2))
3829     Meta.Memtag = true;
3830   if (V & (1 << 3))
3831     Meta.IsDynInit = true;
3832   return Meta;
3833 }
3834 
3835 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3836   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3837   // visibility, threadlocal, unnamed_addr, externally_initialized,
3838   // dllstorageclass, comdat, attributes, preemption specifier,
3839   // partition strtab offset, partition strtab size] (name in VST)
3840   // v2: [strtab_offset, strtab_size, v1]
3841   // v3: [v2, code_model]
3842   StringRef Name;
3843   std::tie(Name, Record) = readNameFromStrtab(Record);
3844 
3845   if (Record.size() < 6)
3846     return error("Invalid record");
3847   unsigned TyID = Record[0];
3848   Type *Ty = getTypeByID(TyID);
3849   if (!Ty)
3850     return error("Invalid record");
3851   bool isConstant = Record[1] & 1;
3852   bool explicitType = Record[1] & 2;
3853   unsigned AddressSpace;
3854   if (explicitType) {
3855     AddressSpace = Record[1] >> 2;
3856   } else {
3857     if (!Ty->isPointerTy())
3858       return error("Invalid type for value");
3859     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3860     TyID = getContainedTypeID(TyID);
3861     Ty = getTypeByID(TyID);
3862     if (!Ty)
3863       return error("Missing element type for old-style global");
3864   }
3865 
3866   uint64_t RawLinkage = Record[3];
3867   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3868   MaybeAlign Alignment;
3869   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3870     return Err;
3871   std::string Section;
3872   if (Record[5]) {
3873     if (Record[5] - 1 >= SectionTable.size())
3874       return error("Invalid ID");
3875     Section = SectionTable[Record[5] - 1];
3876   }
3877   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3878   // Local linkage must have default visibility.
3879   // auto-upgrade `hidden` and `protected` for old bitcode.
3880   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3881     Visibility = getDecodedVisibility(Record[6]);
3882 
3883   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3884   if (Record.size() > 7)
3885     TLM = getDecodedThreadLocalMode(Record[7]);
3886 
3887   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3888   if (Record.size() > 8)
3889     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3890 
3891   bool ExternallyInitialized = false;
3892   if (Record.size() > 9)
3893     ExternallyInitialized = Record[9];
3894 
3895   GlobalVariable *NewGV =
3896       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3897                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3898   if (Alignment)
3899     NewGV->setAlignment(*Alignment);
3900   if (!Section.empty())
3901     NewGV->setSection(Section);
3902   NewGV->setVisibility(Visibility);
3903   NewGV->setUnnamedAddr(UnnamedAddr);
3904 
3905   if (Record.size() > 10) {
3906     // A GlobalValue with local linkage cannot have a DLL storage class.
3907     if (!NewGV->hasLocalLinkage()) {
3908       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3909     }
3910   } else {
3911     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3912   }
3913 
3914   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3915 
3916   // Remember which value to use for the global initializer.
3917   if (unsigned InitID = Record[2])
3918     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3919 
3920   if (Record.size() > 11) {
3921     if (unsigned ComdatID = Record[11]) {
3922       if (ComdatID > ComdatList.size())
3923         return error("Invalid global variable comdat ID");
3924       NewGV->setComdat(ComdatList[ComdatID - 1]);
3925     }
3926   } else if (hasImplicitComdat(RawLinkage)) {
3927     ImplicitComdatObjects.insert(NewGV);
3928   }
3929 
3930   if (Record.size() > 12) {
3931     auto AS = getAttributes(Record[12]).getFnAttrs();
3932     NewGV->setAttributes(AS);
3933   }
3934 
3935   if (Record.size() > 13) {
3936     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3937   }
3938   inferDSOLocal(NewGV);
3939 
3940   // Check whether we have enough values to read a partition name.
3941   if (Record.size() > 15)
3942     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3943 
3944   if (Record.size() > 16 && Record[16]) {
3945     llvm::GlobalValue::SanitizerMetadata Meta =
3946         deserializeSanitizerMetadata(Record[16]);
3947     NewGV->setSanitizerMetadata(Meta);
3948   }
3949 
3950   if (Record.size() > 17 && Record[17]) {
3951     if (auto CM = getDecodedCodeModel(Record[17]))
3952       NewGV->setCodeModel(*CM);
3953     else
3954       return error("Invalid global variable code model");
3955   }
3956 
3957   return Error::success();
3958 }
3959 
3960 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
3961   if (ValueTypeCallback) {
3962     (*ValueTypeCallback)(
3963         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
3964         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
3965   }
3966 }
3967 
3968 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3969   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3970   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3971   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3972   // v2: [strtab_offset, strtab_size, v1]
3973   StringRef Name;
3974   std::tie(Name, Record) = readNameFromStrtab(Record);
3975 
3976   if (Record.size() < 8)
3977     return error("Invalid record");
3978   unsigned FTyID = Record[0];
3979   Type *FTy = getTypeByID(FTyID);
3980   if (!FTy)
3981     return error("Invalid record");
3982   if (isa<PointerType>(FTy)) {
3983     FTyID = getContainedTypeID(FTyID, 0);
3984     FTy = getTypeByID(FTyID);
3985     if (!FTy)
3986       return error("Missing element type for old-style function");
3987   }
3988 
3989   if (!isa<FunctionType>(FTy))
3990     return error("Invalid type for value");
3991   auto CC = static_cast<CallingConv::ID>(Record[1]);
3992   if (CC & ~CallingConv::MaxID)
3993     return error("Invalid calling convention ID");
3994 
3995   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3996   if (Record.size() > 16)
3997     AddrSpace = Record[16];
3998 
3999   Function *Func =
4000       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4001                        AddrSpace, Name, TheModule);
4002 
4003   assert(Func->getFunctionType() == FTy &&
4004          "Incorrect fully specified type provided for function");
4005   FunctionTypeIDs[Func] = FTyID;
4006 
4007   Func->setCallingConv(CC);
4008   bool isProto = Record[2];
4009   uint64_t RawLinkage = Record[3];
4010   Func->setLinkage(getDecodedLinkage(RawLinkage));
4011   Func->setAttributes(getAttributes(Record[4]));
4012   callValueTypeCallback(Func, FTyID);
4013 
4014   // Upgrade any old-style byval or sret without a type by propagating the
4015   // argument's pointee type. There should be no opaque pointers where the byval
4016   // type is implicit.
4017   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4018     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4019                                      Attribute::InAlloca}) {
4020       if (!Func->hasParamAttribute(i, Kind))
4021         continue;
4022 
4023       if (Func->getParamAttribute(i, Kind).getValueAsType())
4024         continue;
4025 
4026       Func->removeParamAttr(i, Kind);
4027 
4028       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4029       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4030       if (!PtrEltTy)
4031         return error("Missing param element type for attribute upgrade");
4032 
4033       Attribute NewAttr;
4034       switch (Kind) {
4035       case Attribute::ByVal:
4036         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4037         break;
4038       case Attribute::StructRet:
4039         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4040         break;
4041       case Attribute::InAlloca:
4042         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4043         break;
4044       default:
4045         llvm_unreachable("not an upgraded type attribute");
4046       }
4047 
4048       Func->addParamAttr(i, NewAttr);
4049     }
4050   }
4051 
4052   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4053       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4054     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4055     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4056     if (!ByValTy)
4057       return error("Missing param element type for x86_intrcc upgrade");
4058     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4059     Func->addParamAttr(0, NewAttr);
4060   }
4061 
4062   MaybeAlign Alignment;
4063   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4064     return Err;
4065   if (Alignment)
4066     Func->setAlignment(*Alignment);
4067   if (Record[6]) {
4068     if (Record[6] - 1 >= SectionTable.size())
4069       return error("Invalid ID");
4070     Func->setSection(SectionTable[Record[6] - 1]);
4071   }
4072   // Local linkage must have default visibility.
4073   // auto-upgrade `hidden` and `protected` for old bitcode.
4074   if (!Func->hasLocalLinkage())
4075     Func->setVisibility(getDecodedVisibility(Record[7]));
4076   if (Record.size() > 8 && Record[8]) {
4077     if (Record[8] - 1 >= GCTable.size())
4078       return error("Invalid ID");
4079     Func->setGC(GCTable[Record[8] - 1]);
4080   }
4081   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4082   if (Record.size() > 9)
4083     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4084   Func->setUnnamedAddr(UnnamedAddr);
4085 
4086   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4087   if (Record.size() > 10)
4088     OperandInfo.Prologue = Record[10];
4089 
4090   if (Record.size() > 11) {
4091     // A GlobalValue with local linkage cannot have a DLL storage class.
4092     if (!Func->hasLocalLinkage()) {
4093       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4094     }
4095   } else {
4096     upgradeDLLImportExportLinkage(Func, RawLinkage);
4097   }
4098 
4099   if (Record.size() > 12) {
4100     if (unsigned ComdatID = Record[12]) {
4101       if (ComdatID > ComdatList.size())
4102         return error("Invalid function comdat ID");
4103       Func->setComdat(ComdatList[ComdatID - 1]);
4104     }
4105   } else if (hasImplicitComdat(RawLinkage)) {
4106     ImplicitComdatObjects.insert(Func);
4107   }
4108 
4109   if (Record.size() > 13)
4110     OperandInfo.Prefix = Record[13];
4111 
4112   if (Record.size() > 14)
4113     OperandInfo.PersonalityFn = Record[14];
4114 
4115   if (Record.size() > 15) {
4116     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4117   }
4118   inferDSOLocal(Func);
4119 
4120   // Record[16] is the address space number.
4121 
4122   // Check whether we have enough values to read a partition name. Also make
4123   // sure Strtab has enough values.
4124   if (Record.size() > 18 && Strtab.data() &&
4125       Record[17] + Record[18] <= Strtab.size()) {
4126     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4127   }
4128 
4129   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4130 
4131   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4132     FunctionOperands.push_back(OperandInfo);
4133 
4134   // If this is a function with a body, remember the prototype we are
4135   // creating now, so that we can match up the body with them later.
4136   if (!isProto) {
4137     Func->setIsMaterializable(true);
4138     FunctionsWithBodies.push_back(Func);
4139     DeferredFunctionInfo[Func] = 0;
4140   }
4141   return Error::success();
4142 }
4143 
4144 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4145     unsigned BitCode, ArrayRef<uint64_t> Record) {
4146   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4147   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4148   // dllstorageclass, threadlocal, unnamed_addr,
4149   // preemption specifier] (name in VST)
4150   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4151   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4152   // preemption specifier] (name in VST)
4153   // v2: [strtab_offset, strtab_size, v1]
4154   StringRef Name;
4155   std::tie(Name, Record) = readNameFromStrtab(Record);
4156 
4157   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4158   if (Record.size() < (3 + (unsigned)NewRecord))
4159     return error("Invalid record");
4160   unsigned OpNum = 0;
4161   unsigned TypeID = Record[OpNum++];
4162   Type *Ty = getTypeByID(TypeID);
4163   if (!Ty)
4164     return error("Invalid record");
4165 
4166   unsigned AddrSpace;
4167   if (!NewRecord) {
4168     auto *PTy = dyn_cast<PointerType>(Ty);
4169     if (!PTy)
4170       return error("Invalid type for value");
4171     AddrSpace = PTy->getAddressSpace();
4172     TypeID = getContainedTypeID(TypeID);
4173     Ty = getTypeByID(TypeID);
4174     if (!Ty)
4175       return error("Missing element type for old-style indirect symbol");
4176   } else {
4177     AddrSpace = Record[OpNum++];
4178   }
4179 
4180   auto Val = Record[OpNum++];
4181   auto Linkage = Record[OpNum++];
4182   GlobalValue *NewGA;
4183   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4184       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4185     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4186                                 TheModule);
4187   else
4188     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4189                                 nullptr, TheModule);
4190 
4191   // Local linkage must have default visibility.
4192   // auto-upgrade `hidden` and `protected` for old bitcode.
4193   if (OpNum != Record.size()) {
4194     auto VisInd = OpNum++;
4195     if (!NewGA->hasLocalLinkage())
4196       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4197   }
4198   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4199       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4200     if (OpNum != Record.size()) {
4201       auto S = Record[OpNum++];
4202       // A GlobalValue with local linkage cannot have a DLL storage class.
4203       if (!NewGA->hasLocalLinkage())
4204         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4205     }
4206     else
4207       upgradeDLLImportExportLinkage(NewGA, Linkage);
4208     if (OpNum != Record.size())
4209       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4210     if (OpNum != Record.size())
4211       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4212   }
4213   if (OpNum != Record.size())
4214     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4215   inferDSOLocal(NewGA);
4216 
4217   // Check whether we have enough values to read a partition name.
4218   if (OpNum + 1 < Record.size()) {
4219     NewGA->setPartition(
4220         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4221     OpNum += 2;
4222   }
4223 
4224   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4225   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4226   return Error::success();
4227 }
4228 
4229 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4230                                  bool ShouldLazyLoadMetadata,
4231                                  ParserCallbacks Callbacks) {
4232   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4233   if (ResumeBit) {
4234     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4235       return JumpFailed;
4236   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4237     return Err;
4238 
4239   SmallVector<uint64_t, 64> Record;
4240 
4241   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4242   // finalize the datalayout before we run any of that code.
4243   bool ResolvedDataLayout = false;
4244   // In order to support importing modules with illegal data layout strings,
4245   // delay parsing the data layout string until after upgrades and overrides
4246   // have been applied, allowing to fix illegal data layout strings.
4247   // Initialize to the current module's layout string in case none is specified.
4248   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4249 
4250   auto ResolveDataLayout = [&]() -> Error {
4251     if (ResolvedDataLayout)
4252       return Error::success();
4253 
4254     // Datalayout and triple can't be parsed after this point.
4255     ResolvedDataLayout = true;
4256 
4257     // Auto-upgrade the layout string
4258     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4259         TentativeDataLayoutStr, TheModule->getTargetTriple());
4260 
4261     // Apply override
4262     if (Callbacks.DataLayout) {
4263       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4264               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4265         TentativeDataLayoutStr = *LayoutOverride;
4266     }
4267 
4268     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4269     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4270     if (!MaybeDL)
4271       return MaybeDL.takeError();
4272 
4273     TheModule->setDataLayout(MaybeDL.get());
4274     return Error::success();
4275   };
4276 
4277   // Read all the records for this module.
4278   while (true) {
4279     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4280     if (!MaybeEntry)
4281       return MaybeEntry.takeError();
4282     llvm::BitstreamEntry Entry = MaybeEntry.get();
4283 
4284     switch (Entry.Kind) {
4285     case BitstreamEntry::Error:
4286       return error("Malformed block");
4287     case BitstreamEntry::EndBlock:
4288       if (Error Err = ResolveDataLayout())
4289         return Err;
4290       return globalCleanup();
4291 
4292     case BitstreamEntry::SubBlock:
4293       switch (Entry.ID) {
4294       default:  // Skip unknown content.
4295         if (Error Err = Stream.SkipBlock())
4296           return Err;
4297         break;
4298       case bitc::BLOCKINFO_BLOCK_ID:
4299         if (Error Err = readBlockInfo())
4300           return Err;
4301         break;
4302       case bitc::PARAMATTR_BLOCK_ID:
4303         if (Error Err = parseAttributeBlock())
4304           return Err;
4305         break;
4306       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4307         if (Error Err = parseAttributeGroupBlock())
4308           return Err;
4309         break;
4310       case bitc::TYPE_BLOCK_ID_NEW:
4311         if (Error Err = parseTypeTable())
4312           return Err;
4313         break;
4314       case bitc::VALUE_SYMTAB_BLOCK_ID:
4315         if (!SeenValueSymbolTable) {
4316           // Either this is an old form VST without function index and an
4317           // associated VST forward declaration record (which would have caused
4318           // the VST to be jumped to and parsed before it was encountered
4319           // normally in the stream), or there were no function blocks to
4320           // trigger an earlier parsing of the VST.
4321           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4322           if (Error Err = parseValueSymbolTable())
4323             return Err;
4324           SeenValueSymbolTable = true;
4325         } else {
4326           // We must have had a VST forward declaration record, which caused
4327           // the parser to jump to and parse the VST earlier.
4328           assert(VSTOffset > 0);
4329           if (Error Err = Stream.SkipBlock())
4330             return Err;
4331         }
4332         break;
4333       case bitc::CONSTANTS_BLOCK_ID:
4334         if (Error Err = parseConstants())
4335           return Err;
4336         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4337           return Err;
4338         break;
4339       case bitc::METADATA_BLOCK_ID:
4340         if (ShouldLazyLoadMetadata) {
4341           if (Error Err = rememberAndSkipMetadata())
4342             return Err;
4343           break;
4344         }
4345         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4346         if (Error Err = MDLoader->parseModuleMetadata())
4347           return Err;
4348         break;
4349       case bitc::METADATA_KIND_BLOCK_ID:
4350         if (Error Err = MDLoader->parseMetadataKinds())
4351           return Err;
4352         break;
4353       case bitc::FUNCTION_BLOCK_ID:
4354         if (Error Err = ResolveDataLayout())
4355           return Err;
4356 
4357         // If this is the first function body we've seen, reverse the
4358         // FunctionsWithBodies list.
4359         if (!SeenFirstFunctionBody) {
4360           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4361           if (Error Err = globalCleanup())
4362             return Err;
4363           SeenFirstFunctionBody = true;
4364         }
4365 
4366         if (VSTOffset > 0) {
4367           // If we have a VST forward declaration record, make sure we
4368           // parse the VST now if we haven't already. It is needed to
4369           // set up the DeferredFunctionInfo vector for lazy reading.
4370           if (!SeenValueSymbolTable) {
4371             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4372               return Err;
4373             SeenValueSymbolTable = true;
4374             // Fall through so that we record the NextUnreadBit below.
4375             // This is necessary in case we have an anonymous function that
4376             // is later materialized. Since it will not have a VST entry we
4377             // need to fall back to the lazy parse to find its offset.
4378           } else {
4379             // If we have a VST forward declaration record, but have already
4380             // parsed the VST (just above, when the first function body was
4381             // encountered here), then we are resuming the parse after
4382             // materializing functions. The ResumeBit points to the
4383             // start of the last function block recorded in the
4384             // DeferredFunctionInfo map. Skip it.
4385             if (Error Err = Stream.SkipBlock())
4386               return Err;
4387             continue;
4388           }
4389         }
4390 
4391         // Support older bitcode files that did not have the function
4392         // index in the VST, nor a VST forward declaration record, as
4393         // well as anonymous functions that do not have VST entries.
4394         // Build the DeferredFunctionInfo vector on the fly.
4395         if (Error Err = rememberAndSkipFunctionBody())
4396           return Err;
4397 
4398         // Suspend parsing when we reach the function bodies. Subsequent
4399         // materialization calls will resume it when necessary. If the bitcode
4400         // file is old, the symbol table will be at the end instead and will not
4401         // have been seen yet. In this case, just finish the parse now.
4402         if (SeenValueSymbolTable) {
4403           NextUnreadBit = Stream.GetCurrentBitNo();
4404           // After the VST has been parsed, we need to make sure intrinsic name
4405           // are auto-upgraded.
4406           return globalCleanup();
4407         }
4408         break;
4409       case bitc::USELIST_BLOCK_ID:
4410         if (Error Err = parseUseLists())
4411           return Err;
4412         break;
4413       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4414         if (Error Err = parseOperandBundleTags())
4415           return Err;
4416         break;
4417       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4418         if (Error Err = parseSyncScopeNames())
4419           return Err;
4420         break;
4421       }
4422       continue;
4423 
4424     case BitstreamEntry::Record:
4425       // The interesting case.
4426       break;
4427     }
4428 
4429     // Read a record.
4430     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4431     if (!MaybeBitCode)
4432       return MaybeBitCode.takeError();
4433     switch (unsigned BitCode = MaybeBitCode.get()) {
4434     default: break;  // Default behavior, ignore unknown content.
4435     case bitc::MODULE_CODE_VERSION: {
4436       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4437       if (!VersionOrErr)
4438         return VersionOrErr.takeError();
4439       UseRelativeIDs = *VersionOrErr >= 1;
4440       break;
4441     }
4442     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4443       if (ResolvedDataLayout)
4444         return error("target triple too late in module");
4445       std::string S;
4446       if (convertToString(Record, 0, S))
4447         return error("Invalid record");
4448       TheModule->setTargetTriple(S);
4449       break;
4450     }
4451     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4452       if (ResolvedDataLayout)
4453         return error("datalayout too late in module");
4454       if (convertToString(Record, 0, TentativeDataLayoutStr))
4455         return error("Invalid record");
4456       break;
4457     }
4458     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4459       std::string S;
4460       if (convertToString(Record, 0, S))
4461         return error("Invalid record");
4462       TheModule->setModuleInlineAsm(S);
4463       break;
4464     }
4465     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4466       // Deprecated, but still needed to read old bitcode files.
4467       std::string S;
4468       if (convertToString(Record, 0, S))
4469         return error("Invalid record");
4470       // Ignore value.
4471       break;
4472     }
4473     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4474       std::string S;
4475       if (convertToString(Record, 0, S))
4476         return error("Invalid record");
4477       SectionTable.push_back(S);
4478       break;
4479     }
4480     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4481       std::string S;
4482       if (convertToString(Record, 0, S))
4483         return error("Invalid record");
4484       GCTable.push_back(S);
4485       break;
4486     }
4487     case bitc::MODULE_CODE_COMDAT:
4488       if (Error Err = parseComdatRecord(Record))
4489         return Err;
4490       break;
4491     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4492     // written by ThinLinkBitcodeWriter. See
4493     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4494     // record
4495     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4496     case bitc::MODULE_CODE_GLOBALVAR:
4497       if (Error Err = parseGlobalVarRecord(Record))
4498         return Err;
4499       break;
4500     case bitc::MODULE_CODE_FUNCTION:
4501       if (Error Err = ResolveDataLayout())
4502         return Err;
4503       if (Error Err = parseFunctionRecord(Record))
4504         return Err;
4505       break;
4506     case bitc::MODULE_CODE_IFUNC:
4507     case bitc::MODULE_CODE_ALIAS:
4508     case bitc::MODULE_CODE_ALIAS_OLD:
4509       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4510         return Err;
4511       break;
4512     /// MODULE_CODE_VSTOFFSET: [offset]
4513     case bitc::MODULE_CODE_VSTOFFSET:
4514       if (Record.empty())
4515         return error("Invalid record");
4516       // Note that we subtract 1 here because the offset is relative to one word
4517       // before the start of the identification or module block, which was
4518       // historically always the start of the regular bitcode header.
4519       VSTOffset = Record[0] - 1;
4520       break;
4521     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4522     case bitc::MODULE_CODE_SOURCE_FILENAME:
4523       SmallString<128> ValueName;
4524       if (convertToString(Record, 0, ValueName))
4525         return error("Invalid record");
4526       TheModule->setSourceFileName(ValueName);
4527       break;
4528     }
4529     Record.clear();
4530   }
4531   this->ValueTypeCallback = std::nullopt;
4532   return Error::success();
4533 }
4534 
4535 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4536                                       bool IsImporting,
4537                                       ParserCallbacks Callbacks) {
4538   TheModule = M;
4539   MetadataLoaderCallbacks MDCallbacks;
4540   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4541   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4542     return getContainedTypeID(I, J);
4543   };
4544   MDCallbacks.MDType = Callbacks.MDType;
4545   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4546   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4547 }
4548 
4549 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4550   if (!isa<PointerType>(PtrType))
4551     return error("Load/Store operand is not a pointer type");
4552   if (!PointerType::isLoadableOrStorableType(ValType))
4553     return error("Cannot load/store from pointer");
4554   return Error::success();
4555 }
4556 
4557 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4558                                              ArrayRef<unsigned> ArgTyIDs) {
4559   AttributeList Attrs = CB->getAttributes();
4560   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4561     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4562                                      Attribute::InAlloca}) {
4563       if (!Attrs.hasParamAttr(i, Kind) ||
4564           Attrs.getParamAttr(i, Kind).getValueAsType())
4565         continue;
4566 
4567       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4568       if (!PtrEltTy)
4569         return error("Missing element type for typed attribute upgrade");
4570 
4571       Attribute NewAttr;
4572       switch (Kind) {
4573       case Attribute::ByVal:
4574         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4575         break;
4576       case Attribute::StructRet:
4577         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4578         break;
4579       case Attribute::InAlloca:
4580         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4581         break;
4582       default:
4583         llvm_unreachable("not an upgraded type attribute");
4584       }
4585 
4586       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4587     }
4588   }
4589 
4590   if (CB->isInlineAsm()) {
4591     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4592     unsigned ArgNo = 0;
4593     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4594       if (!CI.hasArg())
4595         continue;
4596 
4597       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4598         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4599         if (!ElemTy)
4600           return error("Missing element type for inline asm upgrade");
4601         Attrs = Attrs.addParamAttribute(
4602             Context, ArgNo,
4603             Attribute::get(Context, Attribute::ElementType, ElemTy));
4604       }
4605 
4606       ArgNo++;
4607     }
4608   }
4609 
4610   switch (CB->getIntrinsicID()) {
4611   case Intrinsic::preserve_array_access_index:
4612   case Intrinsic::preserve_struct_access_index:
4613   case Intrinsic::aarch64_ldaxr:
4614   case Intrinsic::aarch64_ldxr:
4615   case Intrinsic::aarch64_stlxr:
4616   case Intrinsic::aarch64_stxr:
4617   case Intrinsic::arm_ldaex:
4618   case Intrinsic::arm_ldrex:
4619   case Intrinsic::arm_stlex:
4620   case Intrinsic::arm_strex: {
4621     unsigned ArgNo;
4622     switch (CB->getIntrinsicID()) {
4623     case Intrinsic::aarch64_stlxr:
4624     case Intrinsic::aarch64_stxr:
4625     case Intrinsic::arm_stlex:
4626     case Intrinsic::arm_strex:
4627       ArgNo = 1;
4628       break;
4629     default:
4630       ArgNo = 0;
4631       break;
4632     }
4633     if (!Attrs.getParamElementType(ArgNo)) {
4634       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4635       if (!ElTy)
4636         return error("Missing element type for elementtype upgrade");
4637       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4638       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4639     }
4640     break;
4641   }
4642   default:
4643     break;
4644   }
4645 
4646   CB->setAttributes(Attrs);
4647   return Error::success();
4648 }
4649 
4650 /// Lazily parse the specified function body block.
4651 Error BitcodeReader::parseFunctionBody(Function *F) {
4652   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4653     return Err;
4654 
4655   // Unexpected unresolved metadata when parsing function.
4656   if (MDLoader->hasFwdRefs())
4657     return error("Invalid function metadata: incoming forward references");
4658 
4659   InstructionList.clear();
4660   unsigned ModuleValueListSize = ValueList.size();
4661   unsigned ModuleMDLoaderSize = MDLoader->size();
4662 
4663   // Add all the function arguments to the value table.
4664   unsigned ArgNo = 0;
4665   unsigned FTyID = FunctionTypeIDs[F];
4666   for (Argument &I : F->args()) {
4667     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4668     assert(I.getType() == getTypeByID(ArgTyID) &&
4669            "Incorrect fully specified type for Function Argument");
4670     ValueList.push_back(&I, ArgTyID);
4671     ++ArgNo;
4672   }
4673   unsigned NextValueNo = ValueList.size();
4674   BasicBlock *CurBB = nullptr;
4675   unsigned CurBBNo = 0;
4676   // Block into which constant expressions from phi nodes are materialized.
4677   BasicBlock *PhiConstExprBB = nullptr;
4678   // Edge blocks for phi nodes into which constant expressions have been
4679   // expanded.
4680   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4681     ConstExprEdgeBBs;
4682 
4683   DebugLoc LastLoc;
4684   auto getLastInstruction = [&]() -> Instruction * {
4685     if (CurBB && !CurBB->empty())
4686       return &CurBB->back();
4687     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4688              !FunctionBBs[CurBBNo - 1]->empty())
4689       return &FunctionBBs[CurBBNo - 1]->back();
4690     return nullptr;
4691   };
4692 
4693   std::vector<OperandBundleDef> OperandBundles;
4694 
4695   // Read all the records.
4696   SmallVector<uint64_t, 64> Record;
4697 
4698   while (true) {
4699     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4700     if (!MaybeEntry)
4701       return MaybeEntry.takeError();
4702     llvm::BitstreamEntry Entry = MaybeEntry.get();
4703 
4704     switch (Entry.Kind) {
4705     case BitstreamEntry::Error:
4706       return error("Malformed block");
4707     case BitstreamEntry::EndBlock:
4708       goto OutOfRecordLoop;
4709 
4710     case BitstreamEntry::SubBlock:
4711       switch (Entry.ID) {
4712       default:  // Skip unknown content.
4713         if (Error Err = Stream.SkipBlock())
4714           return Err;
4715         break;
4716       case bitc::CONSTANTS_BLOCK_ID:
4717         if (Error Err = parseConstants())
4718           return Err;
4719         NextValueNo = ValueList.size();
4720         break;
4721       case bitc::VALUE_SYMTAB_BLOCK_ID:
4722         if (Error Err = parseValueSymbolTable())
4723           return Err;
4724         break;
4725       case bitc::METADATA_ATTACHMENT_ID:
4726         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4727           return Err;
4728         break;
4729       case bitc::METADATA_BLOCK_ID:
4730         assert(DeferredMetadataInfo.empty() &&
4731                "Must read all module-level metadata before function-level");
4732         if (Error Err = MDLoader->parseFunctionMetadata())
4733           return Err;
4734         break;
4735       case bitc::USELIST_BLOCK_ID:
4736         if (Error Err = parseUseLists())
4737           return Err;
4738         break;
4739       }
4740       continue;
4741 
4742     case BitstreamEntry::Record:
4743       // The interesting case.
4744       break;
4745     }
4746 
4747     // Read a record.
4748     Record.clear();
4749     Instruction *I = nullptr;
4750     unsigned ResTypeID = InvalidTypeID;
4751     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4752     if (!MaybeBitCode)
4753       return MaybeBitCode.takeError();
4754     switch (unsigned BitCode = MaybeBitCode.get()) {
4755     default: // Default behavior: reject
4756       return error("Invalid value");
4757     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4758       if (Record.empty() || Record[0] == 0)
4759         return error("Invalid record");
4760       // Create all the basic blocks for the function.
4761       FunctionBBs.resize(Record[0]);
4762 
4763       // See if anything took the address of blocks in this function.
4764       auto BBFRI = BasicBlockFwdRefs.find(F);
4765       if (BBFRI == BasicBlockFwdRefs.end()) {
4766         for (BasicBlock *&BB : FunctionBBs)
4767           BB = BasicBlock::Create(Context, "", F);
4768       } else {
4769         auto &BBRefs = BBFRI->second;
4770         // Check for invalid basic block references.
4771         if (BBRefs.size() > FunctionBBs.size())
4772           return error("Invalid ID");
4773         assert(!BBRefs.empty() && "Unexpected empty array");
4774         assert(!BBRefs.front() && "Invalid reference to entry block");
4775         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4776              ++I)
4777           if (I < RE && BBRefs[I]) {
4778             BBRefs[I]->insertInto(F);
4779             FunctionBBs[I] = BBRefs[I];
4780           } else {
4781             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4782           }
4783 
4784         // Erase from the table.
4785         BasicBlockFwdRefs.erase(BBFRI);
4786       }
4787 
4788       CurBB = FunctionBBs[0];
4789       continue;
4790     }
4791 
4792     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4793       // The record should not be emitted if it's an empty list.
4794       if (Record.empty())
4795         return error("Invalid record");
4796       // When we have the RARE case of a BlockAddress Constant that is not
4797       // scoped to the Function it refers to, we need to conservatively
4798       // materialize the referred to Function, regardless of whether or not
4799       // that Function will ultimately be linked, otherwise users of
4800       // BitcodeReader might start splicing out Function bodies such that we
4801       // might no longer be able to materialize the BlockAddress since the
4802       // BasicBlock (and entire body of the Function) the BlockAddress refers
4803       // to may have been moved. In the case that the user of BitcodeReader
4804       // decides ultimately not to link the Function body, materializing here
4805       // could be considered wasteful, but it's better than a deserialization
4806       // failure as described. This keeps BitcodeReader unaware of complex
4807       // linkage policy decisions such as those use by LTO, leaving those
4808       // decisions "one layer up."
4809       for (uint64_t ValID : Record)
4810         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4811           BackwardRefFunctions.push_back(F);
4812         else
4813           return error("Invalid record");
4814 
4815       continue;
4816 
4817     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4818       // This record indicates that the last instruction is at the same
4819       // location as the previous instruction with a location.
4820       I = getLastInstruction();
4821 
4822       if (!I)
4823         return error("Invalid record");
4824       I->setDebugLoc(LastLoc);
4825       I = nullptr;
4826       continue;
4827 
4828     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4829       I = getLastInstruction();
4830       if (!I || Record.size() < 4)
4831         return error("Invalid record");
4832 
4833       unsigned Line = Record[0], Col = Record[1];
4834       unsigned ScopeID = Record[2], IAID = Record[3];
4835       bool isImplicitCode = Record.size() == 5 && Record[4];
4836 
4837       MDNode *Scope = nullptr, *IA = nullptr;
4838       if (ScopeID) {
4839         Scope = dyn_cast_or_null<MDNode>(
4840             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4841         if (!Scope)
4842           return error("Invalid record");
4843       }
4844       if (IAID) {
4845         IA = dyn_cast_or_null<MDNode>(
4846             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4847         if (!IA)
4848           return error("Invalid record");
4849       }
4850       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4851                                 isImplicitCode);
4852       I->setDebugLoc(LastLoc);
4853       I = nullptr;
4854       continue;
4855     }
4856     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4857       unsigned OpNum = 0;
4858       Value *LHS;
4859       unsigned TypeID;
4860       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4861           OpNum+1 > Record.size())
4862         return error("Invalid record");
4863 
4864       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4865       if (Opc == -1)
4866         return error("Invalid record");
4867       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4868       ResTypeID = TypeID;
4869       InstructionList.push_back(I);
4870       if (OpNum < Record.size()) {
4871         if (isa<FPMathOperator>(I)) {
4872           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4873           if (FMF.any())
4874             I->setFastMathFlags(FMF);
4875         }
4876       }
4877       break;
4878     }
4879     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4880       unsigned OpNum = 0;
4881       Value *LHS, *RHS;
4882       unsigned TypeID;
4883       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4884           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4885                    CurBB) ||
4886           OpNum+1 > Record.size())
4887         return error("Invalid record");
4888 
4889       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4890       if (Opc == -1)
4891         return error("Invalid record");
4892       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4893       ResTypeID = TypeID;
4894       InstructionList.push_back(I);
4895       if (OpNum < Record.size()) {
4896         if (Opc == Instruction::Add ||
4897             Opc == Instruction::Sub ||
4898             Opc == Instruction::Mul ||
4899             Opc == Instruction::Shl) {
4900           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4901             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4902           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4903             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4904         } else if (Opc == Instruction::SDiv ||
4905                    Opc == Instruction::UDiv ||
4906                    Opc == Instruction::LShr ||
4907                    Opc == Instruction::AShr) {
4908           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4909             cast<BinaryOperator>(I)->setIsExact(true);
4910         } else if (Opc == Instruction::Or) {
4911           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
4912             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
4913         } else if (isa<FPMathOperator>(I)) {
4914           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4915           if (FMF.any())
4916             I->setFastMathFlags(FMF);
4917         }
4918       }
4919       break;
4920     }
4921     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4922       unsigned OpNum = 0;
4923       Value *Op;
4924       unsigned OpTypeID;
4925       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4926           OpNum + 1 > Record.size())
4927         return error("Invalid record");
4928 
4929       ResTypeID = Record[OpNum++];
4930       Type *ResTy = getTypeByID(ResTypeID);
4931       int Opc = getDecodedCastOpcode(Record[OpNum++]);
4932 
4933       if (Opc == -1 || !ResTy)
4934         return error("Invalid record");
4935       Instruction *Temp = nullptr;
4936       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4937         if (Temp) {
4938           InstructionList.push_back(Temp);
4939           assert(CurBB && "No current BB?");
4940           Temp->insertInto(CurBB, CurBB->end());
4941         }
4942       } else {
4943         auto CastOp = (Instruction::CastOps)Opc;
4944         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4945           return error("Invalid cast");
4946         I = CastInst::Create(CastOp, Op, ResTy);
4947       }
4948       if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) &&
4949           (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)))
4950         I->setNonNeg(true);
4951       InstructionList.push_back(I);
4952       break;
4953     }
4954     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4955     case bitc::FUNC_CODE_INST_GEP_OLD:
4956     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4957       unsigned OpNum = 0;
4958 
4959       unsigned TyID;
4960       Type *Ty;
4961       bool InBounds;
4962 
4963       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4964         InBounds = Record[OpNum++];
4965         TyID = Record[OpNum++];
4966         Ty = getTypeByID(TyID);
4967       } else {
4968         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4969         TyID = InvalidTypeID;
4970         Ty = nullptr;
4971       }
4972 
4973       Value *BasePtr;
4974       unsigned BasePtrTypeID;
4975       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4976                            CurBB))
4977         return error("Invalid record");
4978 
4979       if (!Ty) {
4980         TyID = getContainedTypeID(BasePtrTypeID);
4981         if (BasePtr->getType()->isVectorTy())
4982           TyID = getContainedTypeID(TyID);
4983         Ty = getTypeByID(TyID);
4984       }
4985 
4986       SmallVector<Value*, 16> GEPIdx;
4987       while (OpNum != Record.size()) {
4988         Value *Op;
4989         unsigned OpTypeID;
4990         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4991           return error("Invalid record");
4992         GEPIdx.push_back(Op);
4993       }
4994 
4995       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4996 
4997       ResTypeID = TyID;
4998       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4999         auto GTI = std::next(gep_type_begin(I));
5000         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5001           unsigned SubType = 0;
5002           if (GTI.isStruct()) {
5003             ConstantInt *IdxC =
5004                 Idx->getType()->isVectorTy()
5005                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5006                     : cast<ConstantInt>(Idx);
5007             SubType = IdxC->getZExtValue();
5008           }
5009           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5010           ++GTI;
5011         }
5012       }
5013 
5014       // At this point ResTypeID is the result element type. We need a pointer
5015       // or vector of pointer to it.
5016       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5017       if (I->getType()->isVectorTy())
5018         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5019 
5020       InstructionList.push_back(I);
5021       if (InBounds)
5022         cast<GetElementPtrInst>(I)->setIsInBounds(true);
5023       break;
5024     }
5025 
5026     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5027                                        // EXTRACTVAL: [opty, opval, n x indices]
5028       unsigned OpNum = 0;
5029       Value *Agg;
5030       unsigned AggTypeID;
5031       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5032         return error("Invalid record");
5033       Type *Ty = Agg->getType();
5034 
5035       unsigned RecSize = Record.size();
5036       if (OpNum == RecSize)
5037         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5038 
5039       SmallVector<unsigned, 4> EXTRACTVALIdx;
5040       ResTypeID = AggTypeID;
5041       for (; OpNum != RecSize; ++OpNum) {
5042         bool IsArray = Ty->isArrayTy();
5043         bool IsStruct = Ty->isStructTy();
5044         uint64_t Index = Record[OpNum];
5045 
5046         if (!IsStruct && !IsArray)
5047           return error("EXTRACTVAL: Invalid type");
5048         if ((unsigned)Index != Index)
5049           return error("Invalid value");
5050         if (IsStruct && Index >= Ty->getStructNumElements())
5051           return error("EXTRACTVAL: Invalid struct index");
5052         if (IsArray && Index >= Ty->getArrayNumElements())
5053           return error("EXTRACTVAL: Invalid array index");
5054         EXTRACTVALIdx.push_back((unsigned)Index);
5055 
5056         if (IsStruct) {
5057           Ty = Ty->getStructElementType(Index);
5058           ResTypeID = getContainedTypeID(ResTypeID, Index);
5059         } else {
5060           Ty = Ty->getArrayElementType();
5061           ResTypeID = getContainedTypeID(ResTypeID);
5062         }
5063       }
5064 
5065       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5066       InstructionList.push_back(I);
5067       break;
5068     }
5069 
5070     case bitc::FUNC_CODE_INST_INSERTVAL: {
5071                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5072       unsigned OpNum = 0;
5073       Value *Agg;
5074       unsigned AggTypeID;
5075       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5076         return error("Invalid record");
5077       Value *Val;
5078       unsigned ValTypeID;
5079       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5080         return error("Invalid record");
5081 
5082       unsigned RecSize = Record.size();
5083       if (OpNum == RecSize)
5084         return error("INSERTVAL: Invalid instruction with 0 indices");
5085 
5086       SmallVector<unsigned, 4> INSERTVALIdx;
5087       Type *CurTy = Agg->getType();
5088       for (; OpNum != RecSize; ++OpNum) {
5089         bool IsArray = CurTy->isArrayTy();
5090         bool IsStruct = CurTy->isStructTy();
5091         uint64_t Index = Record[OpNum];
5092 
5093         if (!IsStruct && !IsArray)
5094           return error("INSERTVAL: Invalid type");
5095         if ((unsigned)Index != Index)
5096           return error("Invalid value");
5097         if (IsStruct && Index >= CurTy->getStructNumElements())
5098           return error("INSERTVAL: Invalid struct index");
5099         if (IsArray && Index >= CurTy->getArrayNumElements())
5100           return error("INSERTVAL: Invalid array index");
5101 
5102         INSERTVALIdx.push_back((unsigned)Index);
5103         if (IsStruct)
5104           CurTy = CurTy->getStructElementType(Index);
5105         else
5106           CurTy = CurTy->getArrayElementType();
5107       }
5108 
5109       if (CurTy != Val->getType())
5110         return error("Inserted value type doesn't match aggregate type");
5111 
5112       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5113       ResTypeID = AggTypeID;
5114       InstructionList.push_back(I);
5115       break;
5116     }
5117 
5118     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5119       // obsolete form of select
5120       // handles select i1 ... in old bitcode
5121       unsigned OpNum = 0;
5122       Value *TrueVal, *FalseVal, *Cond;
5123       unsigned TypeID;
5124       Type *CondType = Type::getInt1Ty(Context);
5125       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5126                            CurBB) ||
5127           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5128                    FalseVal, CurBB) ||
5129           popValue(Record, OpNum, NextValueNo, CondType,
5130                    getVirtualTypeID(CondType), Cond, CurBB))
5131         return error("Invalid record");
5132 
5133       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5134       ResTypeID = TypeID;
5135       InstructionList.push_back(I);
5136       break;
5137     }
5138 
5139     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5140       // new form of select
5141       // handles select i1 or select [N x i1]
5142       unsigned OpNum = 0;
5143       Value *TrueVal, *FalseVal, *Cond;
5144       unsigned ValTypeID, CondTypeID;
5145       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5146                            CurBB) ||
5147           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5148                    FalseVal, CurBB) ||
5149           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5150         return error("Invalid record");
5151 
5152       // select condition can be either i1 or [N x i1]
5153       if (VectorType* vector_type =
5154           dyn_cast<VectorType>(Cond->getType())) {
5155         // expect <n x i1>
5156         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5157           return error("Invalid type for value");
5158       } else {
5159         // expect i1
5160         if (Cond->getType() != Type::getInt1Ty(Context))
5161           return error("Invalid type for value");
5162       }
5163 
5164       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5165       ResTypeID = ValTypeID;
5166       InstructionList.push_back(I);
5167       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5168         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5169         if (FMF.any())
5170           I->setFastMathFlags(FMF);
5171       }
5172       break;
5173     }
5174 
5175     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5176       unsigned OpNum = 0;
5177       Value *Vec, *Idx;
5178       unsigned VecTypeID, IdxTypeID;
5179       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5180           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5181         return error("Invalid record");
5182       if (!Vec->getType()->isVectorTy())
5183         return error("Invalid type for value");
5184       I = ExtractElementInst::Create(Vec, Idx);
5185       ResTypeID = getContainedTypeID(VecTypeID);
5186       InstructionList.push_back(I);
5187       break;
5188     }
5189 
5190     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5191       unsigned OpNum = 0;
5192       Value *Vec, *Elt, *Idx;
5193       unsigned VecTypeID, IdxTypeID;
5194       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5195         return error("Invalid record");
5196       if (!Vec->getType()->isVectorTy())
5197         return error("Invalid type for value");
5198       if (popValue(Record, OpNum, NextValueNo,
5199                    cast<VectorType>(Vec->getType())->getElementType(),
5200                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5201           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5202         return error("Invalid record");
5203       I = InsertElementInst::Create(Vec, Elt, Idx);
5204       ResTypeID = VecTypeID;
5205       InstructionList.push_back(I);
5206       break;
5207     }
5208 
5209     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5210       unsigned OpNum = 0;
5211       Value *Vec1, *Vec2, *Mask;
5212       unsigned Vec1TypeID;
5213       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5214                            CurBB) ||
5215           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5216                    Vec2, CurBB))
5217         return error("Invalid record");
5218 
5219       unsigned MaskTypeID;
5220       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5221         return error("Invalid record");
5222       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5223         return error("Invalid type for value");
5224 
5225       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5226       ResTypeID =
5227           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5228       InstructionList.push_back(I);
5229       break;
5230     }
5231 
5232     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5233       // Old form of ICmp/FCmp returning bool
5234       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5235       // both legal on vectors but had different behaviour.
5236     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5237       // FCmp/ICmp returning bool or vector of bool
5238 
5239       unsigned OpNum = 0;
5240       Value *LHS, *RHS;
5241       unsigned LHSTypeID;
5242       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5243           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5244                    CurBB))
5245         return error("Invalid record");
5246 
5247       if (OpNum >= Record.size())
5248         return error(
5249             "Invalid record: operand number exceeded available operands");
5250 
5251       unsigned PredVal = Record[OpNum];
5252       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5253       FastMathFlags FMF;
5254       if (IsFP && Record.size() > OpNum+1)
5255         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5256 
5257       if (OpNum+1 != Record.size())
5258         return error("Invalid record");
5259 
5260       if (LHS->getType()->isFPOrFPVectorTy())
5261         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5262       else
5263         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5264 
5265       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5266       if (LHS->getType()->isVectorTy())
5267         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5268 
5269       if (FMF.any())
5270         I->setFastMathFlags(FMF);
5271       InstructionList.push_back(I);
5272       break;
5273     }
5274 
5275     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5276       {
5277         unsigned Size = Record.size();
5278         if (Size == 0) {
5279           I = ReturnInst::Create(Context);
5280           InstructionList.push_back(I);
5281           break;
5282         }
5283 
5284         unsigned OpNum = 0;
5285         Value *Op = nullptr;
5286         unsigned OpTypeID;
5287         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5288           return error("Invalid record");
5289         if (OpNum != Record.size())
5290           return error("Invalid record");
5291 
5292         I = ReturnInst::Create(Context, Op);
5293         InstructionList.push_back(I);
5294         break;
5295       }
5296     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5297       if (Record.size() != 1 && Record.size() != 3)
5298         return error("Invalid record");
5299       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5300       if (!TrueDest)
5301         return error("Invalid record");
5302 
5303       if (Record.size() == 1) {
5304         I = BranchInst::Create(TrueDest);
5305         InstructionList.push_back(I);
5306       }
5307       else {
5308         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5309         Type *CondType = Type::getInt1Ty(Context);
5310         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5311                                getVirtualTypeID(CondType), CurBB);
5312         if (!FalseDest || !Cond)
5313           return error("Invalid record");
5314         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5315         InstructionList.push_back(I);
5316       }
5317       break;
5318     }
5319     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5320       if (Record.size() != 1 && Record.size() != 2)
5321         return error("Invalid record");
5322       unsigned Idx = 0;
5323       Type *TokenTy = Type::getTokenTy(Context);
5324       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5325                                    getVirtualTypeID(TokenTy), CurBB);
5326       if (!CleanupPad)
5327         return error("Invalid record");
5328       BasicBlock *UnwindDest = nullptr;
5329       if (Record.size() == 2) {
5330         UnwindDest = getBasicBlock(Record[Idx++]);
5331         if (!UnwindDest)
5332           return error("Invalid record");
5333       }
5334 
5335       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5336       InstructionList.push_back(I);
5337       break;
5338     }
5339     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5340       if (Record.size() != 2)
5341         return error("Invalid record");
5342       unsigned Idx = 0;
5343       Type *TokenTy = Type::getTokenTy(Context);
5344       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5345                                  getVirtualTypeID(TokenTy), CurBB);
5346       if (!CatchPad)
5347         return error("Invalid record");
5348       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5349       if (!BB)
5350         return error("Invalid record");
5351 
5352       I = CatchReturnInst::Create(CatchPad, BB);
5353       InstructionList.push_back(I);
5354       break;
5355     }
5356     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5357       // We must have, at minimum, the outer scope and the number of arguments.
5358       if (Record.size() < 2)
5359         return error("Invalid record");
5360 
5361       unsigned Idx = 0;
5362 
5363       Type *TokenTy = Type::getTokenTy(Context);
5364       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5365                                   getVirtualTypeID(TokenTy), CurBB);
5366       if (!ParentPad)
5367         return error("Invalid record");
5368 
5369       unsigned NumHandlers = Record[Idx++];
5370 
5371       SmallVector<BasicBlock *, 2> Handlers;
5372       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5373         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5374         if (!BB)
5375           return error("Invalid record");
5376         Handlers.push_back(BB);
5377       }
5378 
5379       BasicBlock *UnwindDest = nullptr;
5380       if (Idx + 1 == Record.size()) {
5381         UnwindDest = getBasicBlock(Record[Idx++]);
5382         if (!UnwindDest)
5383           return error("Invalid record");
5384       }
5385 
5386       if (Record.size() != Idx)
5387         return error("Invalid record");
5388 
5389       auto *CatchSwitch =
5390           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5391       for (BasicBlock *Handler : Handlers)
5392         CatchSwitch->addHandler(Handler);
5393       I = CatchSwitch;
5394       ResTypeID = getVirtualTypeID(I->getType());
5395       InstructionList.push_back(I);
5396       break;
5397     }
5398     case bitc::FUNC_CODE_INST_CATCHPAD:
5399     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5400       // We must have, at minimum, the outer scope and the number of arguments.
5401       if (Record.size() < 2)
5402         return error("Invalid record");
5403 
5404       unsigned Idx = 0;
5405 
5406       Type *TokenTy = Type::getTokenTy(Context);
5407       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5408                                   getVirtualTypeID(TokenTy), CurBB);
5409       if (!ParentPad)
5410         return error("Invald record");
5411 
5412       unsigned NumArgOperands = Record[Idx++];
5413 
5414       SmallVector<Value *, 2> Args;
5415       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5416         Value *Val;
5417         unsigned ValTypeID;
5418         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5419           return error("Invalid record");
5420         Args.push_back(Val);
5421       }
5422 
5423       if (Record.size() != Idx)
5424         return error("Invalid record");
5425 
5426       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5427         I = CleanupPadInst::Create(ParentPad, Args);
5428       else
5429         I = CatchPadInst::Create(ParentPad, Args);
5430       ResTypeID = getVirtualTypeID(I->getType());
5431       InstructionList.push_back(I);
5432       break;
5433     }
5434     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5435       // Check magic
5436       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5437         // "New" SwitchInst format with case ranges. The changes to write this
5438         // format were reverted but we still recognize bitcode that uses it.
5439         // Hopefully someday we will have support for case ranges and can use
5440         // this format again.
5441 
5442         unsigned OpTyID = Record[1];
5443         Type *OpTy = getTypeByID(OpTyID);
5444         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5445 
5446         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5447         BasicBlock *Default = getBasicBlock(Record[3]);
5448         if (!OpTy || !Cond || !Default)
5449           return error("Invalid record");
5450 
5451         unsigned NumCases = Record[4];
5452 
5453         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5454         InstructionList.push_back(SI);
5455 
5456         unsigned CurIdx = 5;
5457         for (unsigned i = 0; i != NumCases; ++i) {
5458           SmallVector<ConstantInt*, 1> CaseVals;
5459           unsigned NumItems = Record[CurIdx++];
5460           for (unsigned ci = 0; ci != NumItems; ++ci) {
5461             bool isSingleNumber = Record[CurIdx++];
5462 
5463             APInt Low;
5464             unsigned ActiveWords = 1;
5465             if (ValueBitWidth > 64)
5466               ActiveWords = Record[CurIdx++];
5467             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5468                                 ValueBitWidth);
5469             CurIdx += ActiveWords;
5470 
5471             if (!isSingleNumber) {
5472               ActiveWords = 1;
5473               if (ValueBitWidth > 64)
5474                 ActiveWords = Record[CurIdx++];
5475               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5476                                          ValueBitWidth);
5477               CurIdx += ActiveWords;
5478 
5479               // FIXME: It is not clear whether values in the range should be
5480               // compared as signed or unsigned values. The partially
5481               // implemented changes that used this format in the past used
5482               // unsigned comparisons.
5483               for ( ; Low.ule(High); ++Low)
5484                 CaseVals.push_back(ConstantInt::get(Context, Low));
5485             } else
5486               CaseVals.push_back(ConstantInt::get(Context, Low));
5487           }
5488           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5489           for (ConstantInt *Cst : CaseVals)
5490             SI->addCase(Cst, DestBB);
5491         }
5492         I = SI;
5493         break;
5494       }
5495 
5496       // Old SwitchInst format without case ranges.
5497 
5498       if (Record.size() < 3 || (Record.size() & 1) == 0)
5499         return error("Invalid record");
5500       unsigned OpTyID = Record[0];
5501       Type *OpTy = getTypeByID(OpTyID);
5502       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5503       BasicBlock *Default = getBasicBlock(Record[2]);
5504       if (!OpTy || !Cond || !Default)
5505         return error("Invalid record");
5506       unsigned NumCases = (Record.size()-3)/2;
5507       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5508       InstructionList.push_back(SI);
5509       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5510         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5511             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5512         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5513         if (!CaseVal || !DestBB) {
5514           delete SI;
5515           return error("Invalid record");
5516         }
5517         SI->addCase(CaseVal, DestBB);
5518       }
5519       I = SI;
5520       break;
5521     }
5522     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5523       if (Record.size() < 2)
5524         return error("Invalid record");
5525       unsigned OpTyID = Record[0];
5526       Type *OpTy = getTypeByID(OpTyID);
5527       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5528       if (!OpTy || !Address)
5529         return error("Invalid record");
5530       unsigned NumDests = Record.size()-2;
5531       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5532       InstructionList.push_back(IBI);
5533       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5534         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5535           IBI->addDestination(DestBB);
5536         } else {
5537           delete IBI;
5538           return error("Invalid record");
5539         }
5540       }
5541       I = IBI;
5542       break;
5543     }
5544 
5545     case bitc::FUNC_CODE_INST_INVOKE: {
5546       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5547       if (Record.size() < 4)
5548         return error("Invalid record");
5549       unsigned OpNum = 0;
5550       AttributeList PAL = getAttributes(Record[OpNum++]);
5551       unsigned CCInfo = Record[OpNum++];
5552       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5553       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5554 
5555       unsigned FTyID = InvalidTypeID;
5556       FunctionType *FTy = nullptr;
5557       if ((CCInfo >> 13) & 1) {
5558         FTyID = Record[OpNum++];
5559         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5560         if (!FTy)
5561           return error("Explicit invoke type is not a function type");
5562       }
5563 
5564       Value *Callee;
5565       unsigned CalleeTypeID;
5566       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5567                            CurBB))
5568         return error("Invalid record");
5569 
5570       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5571       if (!CalleeTy)
5572         return error("Callee is not a pointer");
5573       if (!FTy) {
5574         FTyID = getContainedTypeID(CalleeTypeID);
5575         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5576         if (!FTy)
5577           return error("Callee is not of pointer to function type");
5578       }
5579       if (Record.size() < FTy->getNumParams() + OpNum)
5580         return error("Insufficient operands to call");
5581 
5582       SmallVector<Value*, 16> Ops;
5583       SmallVector<unsigned, 16> ArgTyIDs;
5584       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5585         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5586         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5587                                ArgTyID, CurBB));
5588         ArgTyIDs.push_back(ArgTyID);
5589         if (!Ops.back())
5590           return error("Invalid record");
5591       }
5592 
5593       if (!FTy->isVarArg()) {
5594         if (Record.size() != OpNum)
5595           return error("Invalid record");
5596       } else {
5597         // Read type/value pairs for varargs params.
5598         while (OpNum != Record.size()) {
5599           Value *Op;
5600           unsigned OpTypeID;
5601           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5602             return error("Invalid record");
5603           Ops.push_back(Op);
5604           ArgTyIDs.push_back(OpTypeID);
5605         }
5606       }
5607 
5608       // Upgrade the bundles if needed.
5609       if (!OperandBundles.empty())
5610         UpgradeOperandBundles(OperandBundles);
5611 
5612       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5613                              OperandBundles);
5614       ResTypeID = getContainedTypeID(FTyID);
5615       OperandBundles.clear();
5616       InstructionList.push_back(I);
5617       cast<InvokeInst>(I)->setCallingConv(
5618           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5619       cast<InvokeInst>(I)->setAttributes(PAL);
5620       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5621         I->deleteValue();
5622         return Err;
5623       }
5624 
5625       break;
5626     }
5627     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5628       unsigned Idx = 0;
5629       Value *Val = nullptr;
5630       unsigned ValTypeID;
5631       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5632         return error("Invalid record");
5633       I = ResumeInst::Create(Val);
5634       InstructionList.push_back(I);
5635       break;
5636     }
5637     case bitc::FUNC_CODE_INST_CALLBR: {
5638       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5639       unsigned OpNum = 0;
5640       AttributeList PAL = getAttributes(Record[OpNum++]);
5641       unsigned CCInfo = Record[OpNum++];
5642 
5643       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5644       unsigned NumIndirectDests = Record[OpNum++];
5645       SmallVector<BasicBlock *, 16> IndirectDests;
5646       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5647         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5648 
5649       unsigned FTyID = InvalidTypeID;
5650       FunctionType *FTy = nullptr;
5651       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5652         FTyID = Record[OpNum++];
5653         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5654         if (!FTy)
5655           return error("Explicit call type is not a function type");
5656       }
5657 
5658       Value *Callee;
5659       unsigned CalleeTypeID;
5660       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5661                            CurBB))
5662         return error("Invalid record");
5663 
5664       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5665       if (!OpTy)
5666         return error("Callee is not a pointer type");
5667       if (!FTy) {
5668         FTyID = getContainedTypeID(CalleeTypeID);
5669         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5670         if (!FTy)
5671           return error("Callee is not of pointer to function type");
5672       }
5673       if (Record.size() < FTy->getNumParams() + OpNum)
5674         return error("Insufficient operands to call");
5675 
5676       SmallVector<Value*, 16> Args;
5677       SmallVector<unsigned, 16> ArgTyIDs;
5678       // Read the fixed params.
5679       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5680         Value *Arg;
5681         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5682         if (FTy->getParamType(i)->isLabelTy())
5683           Arg = getBasicBlock(Record[OpNum]);
5684         else
5685           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5686                          ArgTyID, CurBB);
5687         if (!Arg)
5688           return error("Invalid record");
5689         Args.push_back(Arg);
5690         ArgTyIDs.push_back(ArgTyID);
5691       }
5692 
5693       // Read type/value pairs for varargs params.
5694       if (!FTy->isVarArg()) {
5695         if (OpNum != Record.size())
5696           return error("Invalid record");
5697       } else {
5698         while (OpNum != Record.size()) {
5699           Value *Op;
5700           unsigned OpTypeID;
5701           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5702             return error("Invalid record");
5703           Args.push_back(Op);
5704           ArgTyIDs.push_back(OpTypeID);
5705         }
5706       }
5707 
5708       // Upgrade the bundles if needed.
5709       if (!OperandBundles.empty())
5710         UpgradeOperandBundles(OperandBundles);
5711 
5712       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5713         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5714         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5715           return CI.Type == InlineAsm::isLabel;
5716         };
5717         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5718           // Upgrade explicit blockaddress arguments to label constraints.
5719           // Verify that the last arguments are blockaddress arguments that
5720           // match the indirect destinations. Clang always generates callbr
5721           // in this form. We could support reordering with more effort.
5722           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5723           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5724             unsigned LabelNo = ArgNo - FirstBlockArg;
5725             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5726             if (!BA || BA->getFunction() != F ||
5727                 LabelNo > IndirectDests.size() ||
5728                 BA->getBasicBlock() != IndirectDests[LabelNo])
5729               return error("callbr argument does not match indirect dest");
5730           }
5731 
5732           // Remove blockaddress arguments.
5733           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5734           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5735 
5736           // Recreate the function type with less arguments.
5737           SmallVector<Type *> ArgTys;
5738           for (Value *Arg : Args)
5739             ArgTys.push_back(Arg->getType());
5740           FTy =
5741               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5742 
5743           // Update constraint string to use label constraints.
5744           std::string Constraints = IA->getConstraintString();
5745           unsigned ArgNo = 0;
5746           size_t Pos = 0;
5747           for (const auto &CI : ConstraintInfo) {
5748             if (CI.hasArg()) {
5749               if (ArgNo >= FirstBlockArg)
5750                 Constraints.insert(Pos, "!");
5751               ++ArgNo;
5752             }
5753 
5754             // Go to next constraint in string.
5755             Pos = Constraints.find(',', Pos);
5756             if (Pos == std::string::npos)
5757               break;
5758             ++Pos;
5759           }
5760 
5761           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5762                                   IA->hasSideEffects(), IA->isAlignStack(),
5763                                   IA->getDialect(), IA->canThrow());
5764         }
5765       }
5766 
5767       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5768                              OperandBundles);
5769       ResTypeID = getContainedTypeID(FTyID);
5770       OperandBundles.clear();
5771       InstructionList.push_back(I);
5772       cast<CallBrInst>(I)->setCallingConv(
5773           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5774       cast<CallBrInst>(I)->setAttributes(PAL);
5775       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5776         I->deleteValue();
5777         return Err;
5778       }
5779       break;
5780     }
5781     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5782       I = new UnreachableInst(Context);
5783       InstructionList.push_back(I);
5784       break;
5785     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5786       if (Record.empty())
5787         return error("Invalid phi record");
5788       // The first record specifies the type.
5789       unsigned TyID = Record[0];
5790       Type *Ty = getTypeByID(TyID);
5791       if (!Ty)
5792         return error("Invalid phi record");
5793 
5794       // Phi arguments are pairs of records of [value, basic block].
5795       // There is an optional final record for fast-math-flags if this phi has a
5796       // floating-point type.
5797       size_t NumArgs = (Record.size() - 1) / 2;
5798       PHINode *PN = PHINode::Create(Ty, NumArgs);
5799       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5800         PN->deleteValue();
5801         return error("Invalid phi record");
5802       }
5803       InstructionList.push_back(PN);
5804 
5805       SmallDenseMap<BasicBlock *, Value *> Args;
5806       for (unsigned i = 0; i != NumArgs; i++) {
5807         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5808         if (!BB) {
5809           PN->deleteValue();
5810           return error("Invalid phi BB");
5811         }
5812 
5813         // Phi nodes may contain the same predecessor multiple times, in which
5814         // case the incoming value must be identical. Directly reuse the already
5815         // seen value here, to avoid expanding a constant expression multiple
5816         // times.
5817         auto It = Args.find(BB);
5818         if (It != Args.end()) {
5819           PN->addIncoming(It->second, BB);
5820           continue;
5821         }
5822 
5823         // If there already is a block for this edge (from a different phi),
5824         // use it.
5825         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5826         if (!EdgeBB) {
5827           // Otherwise, use a temporary block (that we will discard if it
5828           // turns out to be unnecessary).
5829           if (!PhiConstExprBB)
5830             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5831           EdgeBB = PhiConstExprBB;
5832         }
5833 
5834         // With the new function encoding, it is possible that operands have
5835         // negative IDs (for forward references).  Use a signed VBR
5836         // representation to keep the encoding small.
5837         Value *V;
5838         if (UseRelativeIDs)
5839           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5840         else
5841           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5842         if (!V) {
5843           PN->deleteValue();
5844           PhiConstExprBB->eraseFromParent();
5845           return error("Invalid phi record");
5846         }
5847 
5848         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5849           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5850           PhiConstExprBB = nullptr;
5851         }
5852         PN->addIncoming(V, BB);
5853         Args.insert({BB, V});
5854       }
5855       I = PN;
5856       ResTypeID = TyID;
5857 
5858       // If there are an even number of records, the final record must be FMF.
5859       if (Record.size() % 2 == 0) {
5860         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5861         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5862         if (FMF.any())
5863           I->setFastMathFlags(FMF);
5864       }
5865 
5866       break;
5867     }
5868 
5869     case bitc::FUNC_CODE_INST_LANDINGPAD:
5870     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5871       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5872       unsigned Idx = 0;
5873       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5874         if (Record.size() < 3)
5875           return error("Invalid record");
5876       } else {
5877         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5878         if (Record.size() < 4)
5879           return error("Invalid record");
5880       }
5881       ResTypeID = Record[Idx++];
5882       Type *Ty = getTypeByID(ResTypeID);
5883       if (!Ty)
5884         return error("Invalid record");
5885       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5886         Value *PersFn = nullptr;
5887         unsigned PersFnTypeID;
5888         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5889                              nullptr))
5890           return error("Invalid record");
5891 
5892         if (!F->hasPersonalityFn())
5893           F->setPersonalityFn(cast<Constant>(PersFn));
5894         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5895           return error("Personality function mismatch");
5896       }
5897 
5898       bool IsCleanup = !!Record[Idx++];
5899       unsigned NumClauses = Record[Idx++];
5900       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5901       LP->setCleanup(IsCleanup);
5902       for (unsigned J = 0; J != NumClauses; ++J) {
5903         LandingPadInst::ClauseType CT =
5904           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5905         Value *Val;
5906         unsigned ValTypeID;
5907 
5908         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5909                              nullptr)) {
5910           delete LP;
5911           return error("Invalid record");
5912         }
5913 
5914         assert((CT != LandingPadInst::Catch ||
5915                 !isa<ArrayType>(Val->getType())) &&
5916                "Catch clause has a invalid type!");
5917         assert((CT != LandingPadInst::Filter ||
5918                 isa<ArrayType>(Val->getType())) &&
5919                "Filter clause has invalid type!");
5920         LP->addClause(cast<Constant>(Val));
5921       }
5922 
5923       I = LP;
5924       InstructionList.push_back(I);
5925       break;
5926     }
5927 
5928     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5929       if (Record.size() != 4 && Record.size() != 5)
5930         return error("Invalid record");
5931       using APV = AllocaPackedValues;
5932       const uint64_t Rec = Record[3];
5933       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5934       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5935       unsigned TyID = Record[0];
5936       Type *Ty = getTypeByID(TyID);
5937       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5938         TyID = getContainedTypeID(TyID);
5939         Ty = getTypeByID(TyID);
5940         if (!Ty)
5941           return error("Missing element type for old-style alloca");
5942       }
5943       unsigned OpTyID = Record[1];
5944       Type *OpTy = getTypeByID(OpTyID);
5945       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5946       MaybeAlign Align;
5947       uint64_t AlignExp =
5948           Bitfield::get<APV::AlignLower>(Rec) |
5949           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5950       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5951         return Err;
5952       }
5953       if (!Ty || !Size)
5954         return error("Invalid record");
5955 
5956       const DataLayout &DL = TheModule->getDataLayout();
5957       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5958 
5959       SmallPtrSet<Type *, 4> Visited;
5960       if (!Align && !Ty->isSized(&Visited))
5961         return error("alloca of unsized type");
5962       if (!Align)
5963         Align = DL.getPrefTypeAlign(Ty);
5964 
5965       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5966       AI->setUsedWithInAlloca(InAlloca);
5967       AI->setSwiftError(SwiftError);
5968       I = AI;
5969       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5970       InstructionList.push_back(I);
5971       break;
5972     }
5973     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5974       unsigned OpNum = 0;
5975       Value *Op;
5976       unsigned OpTypeID;
5977       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5978           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5979         return error("Invalid record");
5980 
5981       if (!isa<PointerType>(Op->getType()))
5982         return error("Load operand is not a pointer type");
5983 
5984       Type *Ty = nullptr;
5985       if (OpNum + 3 == Record.size()) {
5986         ResTypeID = Record[OpNum++];
5987         Ty = getTypeByID(ResTypeID);
5988       } else {
5989         ResTypeID = getContainedTypeID(OpTypeID);
5990         Ty = getTypeByID(ResTypeID);
5991       }
5992 
5993       if (!Ty)
5994         return error("Missing load type");
5995 
5996       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5997         return Err;
5998 
5999       MaybeAlign Align;
6000       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6001         return Err;
6002       SmallPtrSet<Type *, 4> Visited;
6003       if (!Align && !Ty->isSized(&Visited))
6004         return error("load of unsized type");
6005       if (!Align)
6006         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6007       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6008       InstructionList.push_back(I);
6009       break;
6010     }
6011     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6012        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6013       unsigned OpNum = 0;
6014       Value *Op;
6015       unsigned OpTypeID;
6016       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6017           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6018         return error("Invalid record");
6019 
6020       if (!isa<PointerType>(Op->getType()))
6021         return error("Load operand is not a pointer type");
6022 
6023       Type *Ty = nullptr;
6024       if (OpNum + 5 == Record.size()) {
6025         ResTypeID = Record[OpNum++];
6026         Ty = getTypeByID(ResTypeID);
6027       } else {
6028         ResTypeID = getContainedTypeID(OpTypeID);
6029         Ty = getTypeByID(ResTypeID);
6030       }
6031 
6032       if (!Ty)
6033         return error("Missing atomic load type");
6034 
6035       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6036         return Err;
6037 
6038       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6039       if (Ordering == AtomicOrdering::NotAtomic ||
6040           Ordering == AtomicOrdering::Release ||
6041           Ordering == AtomicOrdering::AcquireRelease)
6042         return error("Invalid record");
6043       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6044         return error("Invalid record");
6045       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6046 
6047       MaybeAlign Align;
6048       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6049         return Err;
6050       if (!Align)
6051         return error("Alignment missing from atomic load");
6052       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6053       InstructionList.push_back(I);
6054       break;
6055     }
6056     case bitc::FUNC_CODE_INST_STORE:
6057     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6058       unsigned OpNum = 0;
6059       Value *Val, *Ptr;
6060       unsigned PtrTypeID, ValTypeID;
6061       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6062         return error("Invalid record");
6063 
6064       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6065         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6066           return error("Invalid record");
6067       } else {
6068         ValTypeID = getContainedTypeID(PtrTypeID);
6069         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6070                      ValTypeID, Val, CurBB))
6071           return error("Invalid record");
6072       }
6073 
6074       if (OpNum + 2 != Record.size())
6075         return error("Invalid record");
6076 
6077       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6078         return Err;
6079       MaybeAlign Align;
6080       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6081         return Err;
6082       SmallPtrSet<Type *, 4> Visited;
6083       if (!Align && !Val->getType()->isSized(&Visited))
6084         return error("store of unsized type");
6085       if (!Align)
6086         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6087       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6088       InstructionList.push_back(I);
6089       break;
6090     }
6091     case bitc::FUNC_CODE_INST_STOREATOMIC:
6092     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6093       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6094       unsigned OpNum = 0;
6095       Value *Val, *Ptr;
6096       unsigned PtrTypeID, ValTypeID;
6097       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6098           !isa<PointerType>(Ptr->getType()))
6099         return error("Invalid record");
6100       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6101         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6102           return error("Invalid record");
6103       } else {
6104         ValTypeID = getContainedTypeID(PtrTypeID);
6105         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6106                      ValTypeID, Val, CurBB))
6107           return error("Invalid record");
6108       }
6109 
6110       if (OpNum + 4 != Record.size())
6111         return error("Invalid record");
6112 
6113       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6114         return Err;
6115       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6116       if (Ordering == AtomicOrdering::NotAtomic ||
6117           Ordering == AtomicOrdering::Acquire ||
6118           Ordering == AtomicOrdering::AcquireRelease)
6119         return error("Invalid record");
6120       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6121       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6122         return error("Invalid record");
6123 
6124       MaybeAlign Align;
6125       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6126         return Err;
6127       if (!Align)
6128         return error("Alignment missing from atomic store");
6129       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6130       InstructionList.push_back(I);
6131       break;
6132     }
6133     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6134       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6135       // failure_ordering?, weak?]
6136       const size_t NumRecords = Record.size();
6137       unsigned OpNum = 0;
6138       Value *Ptr = nullptr;
6139       unsigned PtrTypeID;
6140       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6141         return error("Invalid record");
6142 
6143       if (!isa<PointerType>(Ptr->getType()))
6144         return error("Cmpxchg operand is not a pointer type");
6145 
6146       Value *Cmp = nullptr;
6147       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6148       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6149                    CmpTypeID, Cmp, CurBB))
6150         return error("Invalid record");
6151 
6152       Value *New = nullptr;
6153       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6154                    New, CurBB) ||
6155           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6156         return error("Invalid record");
6157 
6158       const AtomicOrdering SuccessOrdering =
6159           getDecodedOrdering(Record[OpNum + 1]);
6160       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6161           SuccessOrdering == AtomicOrdering::Unordered)
6162         return error("Invalid record");
6163 
6164       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6165 
6166       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6167         return Err;
6168 
6169       const AtomicOrdering FailureOrdering =
6170           NumRecords < 7
6171               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6172               : getDecodedOrdering(Record[OpNum + 3]);
6173 
6174       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6175           FailureOrdering == AtomicOrdering::Unordered)
6176         return error("Invalid record");
6177 
6178       const Align Alignment(
6179           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6180 
6181       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6182                                 FailureOrdering, SSID);
6183       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6184 
6185       if (NumRecords < 8) {
6186         // Before weak cmpxchgs existed, the instruction simply returned the
6187         // value loaded from memory, so bitcode files from that era will be
6188         // expecting the first component of a modern cmpxchg.
6189         I->insertInto(CurBB, CurBB->end());
6190         I = ExtractValueInst::Create(I, 0);
6191         ResTypeID = CmpTypeID;
6192       } else {
6193         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6194         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6195         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6196       }
6197 
6198       InstructionList.push_back(I);
6199       break;
6200     }
6201     case bitc::FUNC_CODE_INST_CMPXCHG: {
6202       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6203       // failure_ordering, weak, align?]
6204       const size_t NumRecords = Record.size();
6205       unsigned OpNum = 0;
6206       Value *Ptr = nullptr;
6207       unsigned PtrTypeID;
6208       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6209         return error("Invalid record");
6210 
6211       if (!isa<PointerType>(Ptr->getType()))
6212         return error("Cmpxchg operand is not a pointer type");
6213 
6214       Value *Cmp = nullptr;
6215       unsigned CmpTypeID;
6216       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6217         return error("Invalid record");
6218 
6219       Value *Val = nullptr;
6220       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6221                    CurBB))
6222         return error("Invalid record");
6223 
6224       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6225         return error("Invalid record");
6226 
6227       const bool IsVol = Record[OpNum];
6228 
6229       const AtomicOrdering SuccessOrdering =
6230           getDecodedOrdering(Record[OpNum + 1]);
6231       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6232         return error("Invalid cmpxchg success ordering");
6233 
6234       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6235 
6236       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6237         return Err;
6238 
6239       const AtomicOrdering FailureOrdering =
6240           getDecodedOrdering(Record[OpNum + 3]);
6241       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6242         return error("Invalid cmpxchg failure ordering");
6243 
6244       const bool IsWeak = Record[OpNum + 4];
6245 
6246       MaybeAlign Alignment;
6247 
6248       if (NumRecords == (OpNum + 6)) {
6249         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6250           return Err;
6251       }
6252       if (!Alignment)
6253         Alignment =
6254             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6255 
6256       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6257                                 FailureOrdering, SSID);
6258       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6259       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6260 
6261       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6262       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6263 
6264       InstructionList.push_back(I);
6265       break;
6266     }
6267     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6268     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6269       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6270       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6271       const size_t NumRecords = Record.size();
6272       unsigned OpNum = 0;
6273 
6274       Value *Ptr = nullptr;
6275       unsigned PtrTypeID;
6276       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6277         return error("Invalid record");
6278 
6279       if (!isa<PointerType>(Ptr->getType()))
6280         return error("Invalid record");
6281 
6282       Value *Val = nullptr;
6283       unsigned ValTypeID = InvalidTypeID;
6284       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6285         ValTypeID = getContainedTypeID(PtrTypeID);
6286         if (popValue(Record, OpNum, NextValueNo,
6287                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6288           return error("Invalid record");
6289       } else {
6290         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6291           return error("Invalid record");
6292       }
6293 
6294       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6295         return error("Invalid record");
6296 
6297       const AtomicRMWInst::BinOp Operation =
6298           getDecodedRMWOperation(Record[OpNum]);
6299       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6300           Operation > AtomicRMWInst::LAST_BINOP)
6301         return error("Invalid record");
6302 
6303       const bool IsVol = Record[OpNum + 1];
6304 
6305       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6306       if (Ordering == AtomicOrdering::NotAtomic ||
6307           Ordering == AtomicOrdering::Unordered)
6308         return error("Invalid record");
6309 
6310       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6311 
6312       MaybeAlign Alignment;
6313 
6314       if (NumRecords == (OpNum + 5)) {
6315         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6316           return Err;
6317       }
6318 
6319       if (!Alignment)
6320         Alignment =
6321             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6322 
6323       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6324       ResTypeID = ValTypeID;
6325       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6326 
6327       InstructionList.push_back(I);
6328       break;
6329     }
6330     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6331       if (2 != Record.size())
6332         return error("Invalid record");
6333       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6334       if (Ordering == AtomicOrdering::NotAtomic ||
6335           Ordering == AtomicOrdering::Unordered ||
6336           Ordering == AtomicOrdering::Monotonic)
6337         return error("Invalid record");
6338       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6339       I = new FenceInst(Context, Ordering, SSID);
6340       InstructionList.push_back(I);
6341       break;
6342     }
6343     case bitc::FUNC_CODE_INST_CALL: {
6344       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6345       if (Record.size() < 3)
6346         return error("Invalid record");
6347 
6348       unsigned OpNum = 0;
6349       AttributeList PAL = getAttributes(Record[OpNum++]);
6350       unsigned CCInfo = Record[OpNum++];
6351 
6352       FastMathFlags FMF;
6353       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6354         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6355         if (!FMF.any())
6356           return error("Fast math flags indicator set for call with no FMF");
6357       }
6358 
6359       unsigned FTyID = InvalidTypeID;
6360       FunctionType *FTy = nullptr;
6361       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6362         FTyID = Record[OpNum++];
6363         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6364         if (!FTy)
6365           return error("Explicit call type is not a function type");
6366       }
6367 
6368       Value *Callee;
6369       unsigned CalleeTypeID;
6370       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6371                            CurBB))
6372         return error("Invalid record");
6373 
6374       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6375       if (!OpTy)
6376         return error("Callee is not a pointer type");
6377       if (!FTy) {
6378         FTyID = getContainedTypeID(CalleeTypeID);
6379         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6380         if (!FTy)
6381           return error("Callee is not of pointer to function type");
6382       }
6383       if (Record.size() < FTy->getNumParams() + OpNum)
6384         return error("Insufficient operands to call");
6385 
6386       SmallVector<Value*, 16> Args;
6387       SmallVector<unsigned, 16> ArgTyIDs;
6388       // Read the fixed params.
6389       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6390         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6391         if (FTy->getParamType(i)->isLabelTy())
6392           Args.push_back(getBasicBlock(Record[OpNum]));
6393         else
6394           Args.push_back(getValue(Record, OpNum, NextValueNo,
6395                                   FTy->getParamType(i), ArgTyID, CurBB));
6396         ArgTyIDs.push_back(ArgTyID);
6397         if (!Args.back())
6398           return error("Invalid record");
6399       }
6400 
6401       // Read type/value pairs for varargs params.
6402       if (!FTy->isVarArg()) {
6403         if (OpNum != Record.size())
6404           return error("Invalid record");
6405       } else {
6406         while (OpNum != Record.size()) {
6407           Value *Op;
6408           unsigned OpTypeID;
6409           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6410             return error("Invalid record");
6411           Args.push_back(Op);
6412           ArgTyIDs.push_back(OpTypeID);
6413         }
6414       }
6415 
6416       // Upgrade the bundles if needed.
6417       if (!OperandBundles.empty())
6418         UpgradeOperandBundles(OperandBundles);
6419 
6420       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6421       ResTypeID = getContainedTypeID(FTyID);
6422       OperandBundles.clear();
6423       InstructionList.push_back(I);
6424       cast<CallInst>(I)->setCallingConv(
6425           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6426       CallInst::TailCallKind TCK = CallInst::TCK_None;
6427       if (CCInfo & (1 << bitc::CALL_TAIL))
6428         TCK = CallInst::TCK_Tail;
6429       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6430         TCK = CallInst::TCK_MustTail;
6431       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6432         TCK = CallInst::TCK_NoTail;
6433       cast<CallInst>(I)->setTailCallKind(TCK);
6434       cast<CallInst>(I)->setAttributes(PAL);
6435       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6436         I->deleteValue();
6437         return Err;
6438       }
6439       if (FMF.any()) {
6440         if (!isa<FPMathOperator>(I))
6441           return error("Fast-math-flags specified for call without "
6442                        "floating-point scalar or vector return type");
6443         I->setFastMathFlags(FMF);
6444       }
6445       break;
6446     }
6447     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6448       if (Record.size() < 3)
6449         return error("Invalid record");
6450       unsigned OpTyID = Record[0];
6451       Type *OpTy = getTypeByID(OpTyID);
6452       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6453       ResTypeID = Record[2];
6454       Type *ResTy = getTypeByID(ResTypeID);
6455       if (!OpTy || !Op || !ResTy)
6456         return error("Invalid record");
6457       I = new VAArgInst(Op, ResTy);
6458       InstructionList.push_back(I);
6459       break;
6460     }
6461 
6462     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6463       // A call or an invoke can be optionally prefixed with some variable
6464       // number of operand bundle blocks.  These blocks are read into
6465       // OperandBundles and consumed at the next call or invoke instruction.
6466 
6467       if (Record.empty() || Record[0] >= BundleTags.size())
6468         return error("Invalid record");
6469 
6470       std::vector<Value *> Inputs;
6471 
6472       unsigned OpNum = 1;
6473       while (OpNum != Record.size()) {
6474         Value *Op;
6475         unsigned OpTypeID;
6476         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6477           return error("Invalid record");
6478         Inputs.push_back(Op);
6479       }
6480 
6481       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6482       continue;
6483     }
6484 
6485     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6486       unsigned OpNum = 0;
6487       Value *Op = nullptr;
6488       unsigned OpTypeID;
6489       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6490         return error("Invalid record");
6491       if (OpNum != Record.size())
6492         return error("Invalid record");
6493 
6494       I = new FreezeInst(Op);
6495       ResTypeID = OpTypeID;
6496       InstructionList.push_back(I);
6497       break;
6498     }
6499     }
6500 
6501     // Add instruction to end of current BB.  If there is no current BB, reject
6502     // this file.
6503     if (!CurBB) {
6504       I->deleteValue();
6505       return error("Invalid instruction with no BB");
6506     }
6507     if (!OperandBundles.empty()) {
6508       I->deleteValue();
6509       return error("Operand bundles found with no consumer");
6510     }
6511     I->insertInto(CurBB, CurBB->end());
6512 
6513     // If this was a terminator instruction, move to the next block.
6514     if (I->isTerminator()) {
6515       ++CurBBNo;
6516       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6517     }
6518 
6519     // Non-void values get registered in the value table for future use.
6520     if (!I->getType()->isVoidTy()) {
6521       assert(I->getType() == getTypeByID(ResTypeID) &&
6522              "Incorrect result type ID");
6523       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6524         return Err;
6525     }
6526   }
6527 
6528 OutOfRecordLoop:
6529 
6530   if (!OperandBundles.empty())
6531     return error("Operand bundles found with no consumer");
6532 
6533   // Check the function list for unresolved values.
6534   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6535     if (!A->getParent()) {
6536       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6537       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6538         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6539           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6540           delete A;
6541         }
6542       }
6543       return error("Never resolved value found in function");
6544     }
6545   }
6546 
6547   // Unexpected unresolved metadata about to be dropped.
6548   if (MDLoader->hasFwdRefs())
6549     return error("Invalid function metadata: outgoing forward refs");
6550 
6551   if (PhiConstExprBB)
6552     PhiConstExprBB->eraseFromParent();
6553 
6554   for (const auto &Pair : ConstExprEdgeBBs) {
6555     BasicBlock *From = Pair.first.first;
6556     BasicBlock *To = Pair.first.second;
6557     BasicBlock *EdgeBB = Pair.second;
6558     BranchInst::Create(To, EdgeBB);
6559     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6560     To->replacePhiUsesWith(From, EdgeBB);
6561     EdgeBB->moveBefore(To);
6562   }
6563 
6564   // Trim the value list down to the size it was before we parsed this function.
6565   ValueList.shrinkTo(ModuleValueListSize);
6566   MDLoader->shrinkTo(ModuleMDLoaderSize);
6567   std::vector<BasicBlock*>().swap(FunctionBBs);
6568   return Error::success();
6569 }
6570 
6571 /// Find the function body in the bitcode stream
6572 Error BitcodeReader::findFunctionInStream(
6573     Function *F,
6574     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6575   while (DeferredFunctionInfoIterator->second == 0) {
6576     // This is the fallback handling for the old format bitcode that
6577     // didn't contain the function index in the VST, or when we have
6578     // an anonymous function which would not have a VST entry.
6579     // Assert that we have one of those two cases.
6580     assert(VSTOffset == 0 || !F->hasName());
6581     // Parse the next body in the stream and set its position in the
6582     // DeferredFunctionInfo map.
6583     if (Error Err = rememberAndSkipFunctionBodies())
6584       return Err;
6585   }
6586   return Error::success();
6587 }
6588 
6589 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6590   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6591     return SyncScope::ID(Val);
6592   if (Val >= SSIDs.size())
6593     return SyncScope::System; // Map unknown synchronization scopes to system.
6594   return SSIDs[Val];
6595 }
6596 
6597 //===----------------------------------------------------------------------===//
6598 // GVMaterializer implementation
6599 //===----------------------------------------------------------------------===//
6600 
6601 Error BitcodeReader::materialize(GlobalValue *GV) {
6602   Function *F = dyn_cast<Function>(GV);
6603   // If it's not a function or is already material, ignore the request.
6604   if (!F || !F->isMaterializable())
6605     return Error::success();
6606 
6607   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6608   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6609   // If its position is recorded as 0, its body is somewhere in the stream
6610   // but we haven't seen it yet.
6611   if (DFII->second == 0)
6612     if (Error Err = findFunctionInStream(F, DFII))
6613       return Err;
6614 
6615   // Materialize metadata before parsing any function bodies.
6616   if (Error Err = materializeMetadata())
6617     return Err;
6618 
6619   // Move the bit stream to the saved position of the deferred function body.
6620   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6621     return JumpFailed;
6622   if (Error Err = parseFunctionBody(F))
6623     return Err;
6624   F->setIsMaterializable(false);
6625 
6626   if (StripDebugInfo)
6627     stripDebugInfo(*F);
6628 
6629   // Upgrade any old intrinsic calls in the function.
6630   for (auto &I : UpgradedIntrinsics) {
6631     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6632       if (CallInst *CI = dyn_cast<CallInst>(U))
6633         UpgradeIntrinsicCall(CI, I.second);
6634   }
6635 
6636   // Finish fn->subprogram upgrade for materialized functions.
6637   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6638     F->setSubprogram(SP);
6639 
6640   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6641   if (!MDLoader->isStrippingTBAA()) {
6642     for (auto &I : instructions(F)) {
6643       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6644       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6645         continue;
6646       MDLoader->setStripTBAA(true);
6647       stripTBAA(F->getParent());
6648     }
6649   }
6650 
6651   for (auto &I : instructions(F)) {
6652     // "Upgrade" older incorrect branch weights by dropping them.
6653     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6654       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6655         MDString *MDS = cast<MDString>(MD->getOperand(0));
6656         StringRef ProfName = MDS->getString();
6657         // Check consistency of !prof branch_weights metadata.
6658         if (!ProfName.equals("branch_weights"))
6659           continue;
6660         unsigned ExpectedNumOperands = 0;
6661         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6662           ExpectedNumOperands = BI->getNumSuccessors();
6663         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6664           ExpectedNumOperands = SI->getNumSuccessors();
6665         else if (isa<CallInst>(&I))
6666           ExpectedNumOperands = 1;
6667         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6668           ExpectedNumOperands = IBI->getNumDestinations();
6669         else if (isa<SelectInst>(&I))
6670           ExpectedNumOperands = 2;
6671         else
6672           continue; // ignore and continue.
6673 
6674         // If branch weight doesn't match, just strip branch weight.
6675         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6676           I.setMetadata(LLVMContext::MD_prof, nullptr);
6677       }
6678     }
6679 
6680     // Remove incompatible attributes on function calls.
6681     if (auto *CI = dyn_cast<CallBase>(&I)) {
6682       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6683           CI->getFunctionType()->getReturnType()));
6684 
6685       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6686         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6687                                         CI->getArgOperand(ArgNo)->getType()));
6688     }
6689   }
6690 
6691   // Look for functions that rely on old function attribute behavior.
6692   UpgradeFunctionAttributes(*F);
6693 
6694   // Bring in any functions that this function forward-referenced via
6695   // blockaddresses.
6696   return materializeForwardReferencedFunctions();
6697 }
6698 
6699 Error BitcodeReader::materializeModule() {
6700   if (Error Err = materializeMetadata())
6701     return Err;
6702 
6703   // Promise to materialize all forward references.
6704   WillMaterializeAllForwardRefs = true;
6705 
6706   // Iterate over the module, deserializing any functions that are still on
6707   // disk.
6708   for (Function &F : *TheModule) {
6709     if (Error Err = materialize(&F))
6710       return Err;
6711   }
6712   // At this point, if there are any function bodies, parse the rest of
6713   // the bits in the module past the last function block we have recorded
6714   // through either lazy scanning or the VST.
6715   if (LastFunctionBlockBit || NextUnreadBit)
6716     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6717                                     ? LastFunctionBlockBit
6718                                     : NextUnreadBit))
6719       return Err;
6720 
6721   // Check that all block address forward references got resolved (as we
6722   // promised above).
6723   if (!BasicBlockFwdRefs.empty())
6724     return error("Never resolved function from blockaddress");
6725 
6726   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6727   // delete the old functions to clean up. We can't do this unless the entire
6728   // module is materialized because there could always be another function body
6729   // with calls to the old function.
6730   for (auto &I : UpgradedIntrinsics) {
6731     for (auto *U : I.first->users()) {
6732       if (CallInst *CI = dyn_cast<CallInst>(U))
6733         UpgradeIntrinsicCall(CI, I.second);
6734     }
6735     if (!I.first->use_empty())
6736       I.first->replaceAllUsesWith(I.second);
6737     I.first->eraseFromParent();
6738   }
6739   UpgradedIntrinsics.clear();
6740 
6741   UpgradeDebugInfo(*TheModule);
6742 
6743   UpgradeModuleFlags(*TheModule);
6744 
6745   UpgradeARCRuntime(*TheModule);
6746 
6747   return Error::success();
6748 }
6749 
6750 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6751   return IdentifiedStructTypes;
6752 }
6753 
6754 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6755     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6756     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
6757     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6758       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
6759 
6760 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6761   TheIndex.addModule(ModulePath);
6762 }
6763 
6764 ModuleSummaryIndex::ModuleInfo *
6765 ModuleSummaryIndexBitcodeReader::getThisModule() {
6766   return TheIndex.getModule(ModulePath);
6767 }
6768 
6769 template <bool AllowNullValueInfo>
6770 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
6771 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6772   auto VGI = ValueIdToValueInfoMap[ValueId];
6773   // We can have a null value info for memprof callsite info records in
6774   // distributed ThinLTO index files when the callee function summary is not
6775   // included in the index. The bitcode writer records 0 in that case,
6776   // and the caller of this helper will set AllowNullValueInfo to true.
6777   assert(AllowNullValueInfo || std::get<0>(VGI));
6778   return VGI;
6779 }
6780 
6781 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6782     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6783     StringRef SourceFileName) {
6784   std::string GlobalId =
6785       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6786   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6787   auto OriginalNameID = ValueGUID;
6788   if (GlobalValue::isLocalLinkage(Linkage))
6789     OriginalNameID = GlobalValue::getGUID(ValueName);
6790   if (PrintSummaryGUIDs)
6791     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6792            << ValueName << "\n";
6793 
6794   // UseStrtab is false for legacy summary formats and value names are
6795   // created on stack. In that case we save the name in a string saver in
6796   // the index so that the value name can be recorded.
6797   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6798       TheIndex.getOrInsertValueInfo(
6799           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6800       OriginalNameID, ValueGUID);
6801 }
6802 
6803 // Specialized value symbol table parser used when reading module index
6804 // blocks where we don't actually create global values. The parsed information
6805 // is saved in the bitcode reader for use when later parsing summaries.
6806 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6807     uint64_t Offset,
6808     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6809   // With a strtab the VST is not required to parse the summary.
6810   if (UseStrtab)
6811     return Error::success();
6812 
6813   assert(Offset > 0 && "Expected non-zero VST offset");
6814   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6815   if (!MaybeCurrentBit)
6816     return MaybeCurrentBit.takeError();
6817   uint64_t CurrentBit = MaybeCurrentBit.get();
6818 
6819   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6820     return Err;
6821 
6822   SmallVector<uint64_t, 64> Record;
6823 
6824   // Read all the records for this value table.
6825   SmallString<128> ValueName;
6826 
6827   while (true) {
6828     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6829     if (!MaybeEntry)
6830       return MaybeEntry.takeError();
6831     BitstreamEntry Entry = MaybeEntry.get();
6832 
6833     switch (Entry.Kind) {
6834     case BitstreamEntry::SubBlock: // Handled for us already.
6835     case BitstreamEntry::Error:
6836       return error("Malformed block");
6837     case BitstreamEntry::EndBlock:
6838       // Done parsing VST, jump back to wherever we came from.
6839       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6840         return JumpFailed;
6841       return Error::success();
6842     case BitstreamEntry::Record:
6843       // The interesting case.
6844       break;
6845     }
6846 
6847     // Read a record.
6848     Record.clear();
6849     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6850     if (!MaybeRecord)
6851       return MaybeRecord.takeError();
6852     switch (MaybeRecord.get()) {
6853     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6854       break;
6855     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6856       if (convertToString(Record, 1, ValueName))
6857         return error("Invalid record");
6858       unsigned ValueID = Record[0];
6859       assert(!SourceFileName.empty());
6860       auto VLI = ValueIdToLinkageMap.find(ValueID);
6861       assert(VLI != ValueIdToLinkageMap.end() &&
6862              "No linkage found for VST entry?");
6863       auto Linkage = VLI->second;
6864       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6865       ValueName.clear();
6866       break;
6867     }
6868     case bitc::VST_CODE_FNENTRY: {
6869       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6870       if (convertToString(Record, 2, ValueName))
6871         return error("Invalid record");
6872       unsigned ValueID = Record[0];
6873       assert(!SourceFileName.empty());
6874       auto VLI = ValueIdToLinkageMap.find(ValueID);
6875       assert(VLI != ValueIdToLinkageMap.end() &&
6876              "No linkage found for VST entry?");
6877       auto Linkage = VLI->second;
6878       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6879       ValueName.clear();
6880       break;
6881     }
6882     case bitc::VST_CODE_COMBINED_ENTRY: {
6883       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6884       unsigned ValueID = Record[0];
6885       GlobalValue::GUID RefGUID = Record[1];
6886       // The "original name", which is the second value of the pair will be
6887       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6888       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6889           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
6890       break;
6891     }
6892     }
6893   }
6894 }
6895 
6896 // Parse just the blocks needed for building the index out of the module.
6897 // At the end of this routine the module Index is populated with a map
6898 // from global value id to GlobalValueSummary objects.
6899 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6900   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6901     return Err;
6902 
6903   SmallVector<uint64_t, 64> Record;
6904   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6905   unsigned ValueId = 0;
6906 
6907   // Read the index for this module.
6908   while (true) {
6909     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6910     if (!MaybeEntry)
6911       return MaybeEntry.takeError();
6912     llvm::BitstreamEntry Entry = MaybeEntry.get();
6913 
6914     switch (Entry.Kind) {
6915     case BitstreamEntry::Error:
6916       return error("Malformed block");
6917     case BitstreamEntry::EndBlock:
6918       return Error::success();
6919 
6920     case BitstreamEntry::SubBlock:
6921       switch (Entry.ID) {
6922       default: // Skip unknown content.
6923         if (Error Err = Stream.SkipBlock())
6924           return Err;
6925         break;
6926       case bitc::BLOCKINFO_BLOCK_ID:
6927         // Need to parse these to get abbrev ids (e.g. for VST)
6928         if (Error Err = readBlockInfo())
6929           return Err;
6930         break;
6931       case bitc::VALUE_SYMTAB_BLOCK_ID:
6932         // Should have been parsed earlier via VSTOffset, unless there
6933         // is no summary section.
6934         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6935                 !SeenGlobalValSummary) &&
6936                "Expected early VST parse via VSTOffset record");
6937         if (Error Err = Stream.SkipBlock())
6938           return Err;
6939         break;
6940       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6941       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6942         // Add the module if it is a per-module index (has a source file name).
6943         if (!SourceFileName.empty())
6944           addThisModule();
6945         assert(!SeenValueSymbolTable &&
6946                "Already read VST when parsing summary block?");
6947         // We might not have a VST if there were no values in the
6948         // summary. An empty summary block generated when we are
6949         // performing ThinLTO compiles so we don't later invoke
6950         // the regular LTO process on them.
6951         if (VSTOffset > 0) {
6952           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6953             return Err;
6954           SeenValueSymbolTable = true;
6955         }
6956         SeenGlobalValSummary = true;
6957         if (Error Err = parseEntireSummary(Entry.ID))
6958           return Err;
6959         break;
6960       case bitc::MODULE_STRTAB_BLOCK_ID:
6961         if (Error Err = parseModuleStringTable())
6962           return Err;
6963         break;
6964       }
6965       continue;
6966 
6967     case BitstreamEntry::Record: {
6968         Record.clear();
6969         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6970         if (!MaybeBitCode)
6971           return MaybeBitCode.takeError();
6972         switch (MaybeBitCode.get()) {
6973         default:
6974           break; // Default behavior, ignore unknown content.
6975         case bitc::MODULE_CODE_VERSION: {
6976           if (Error Err = parseVersionRecord(Record).takeError())
6977             return Err;
6978           break;
6979         }
6980         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6981         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6982           SmallString<128> ValueName;
6983           if (convertToString(Record, 0, ValueName))
6984             return error("Invalid record");
6985           SourceFileName = ValueName.c_str();
6986           break;
6987         }
6988         /// MODULE_CODE_HASH: [5*i32]
6989         case bitc::MODULE_CODE_HASH: {
6990           if (Record.size() != 5)
6991             return error("Invalid hash length " + Twine(Record.size()).str());
6992           auto &Hash = getThisModule()->second;
6993           int Pos = 0;
6994           for (auto &Val : Record) {
6995             assert(!(Val >> 32) && "Unexpected high bits set");
6996             Hash[Pos++] = Val;
6997           }
6998           break;
6999         }
7000         /// MODULE_CODE_VSTOFFSET: [offset]
7001         case bitc::MODULE_CODE_VSTOFFSET:
7002           if (Record.empty())
7003             return error("Invalid record");
7004           // Note that we subtract 1 here because the offset is relative to one
7005           // word before the start of the identification or module block, which
7006           // was historically always the start of the regular bitcode header.
7007           VSTOffset = Record[0] - 1;
7008           break;
7009         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7010         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7011         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7012         // v2: [strtab offset, strtab size, v1]
7013         case bitc::MODULE_CODE_GLOBALVAR:
7014         case bitc::MODULE_CODE_FUNCTION:
7015         case bitc::MODULE_CODE_ALIAS: {
7016           StringRef Name;
7017           ArrayRef<uint64_t> GVRecord;
7018           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7019           if (GVRecord.size() <= 3)
7020             return error("Invalid record");
7021           uint64_t RawLinkage = GVRecord[3];
7022           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7023           if (!UseStrtab) {
7024             ValueIdToLinkageMap[ValueId++] = Linkage;
7025             break;
7026           }
7027 
7028           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7029           break;
7030         }
7031         }
7032       }
7033       continue;
7034     }
7035   }
7036 }
7037 
7038 std::vector<ValueInfo>
7039 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7040   std::vector<ValueInfo> Ret;
7041   Ret.reserve(Record.size());
7042   for (uint64_t RefValueId : Record)
7043     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7044   return Ret;
7045 }
7046 
7047 std::vector<FunctionSummary::EdgeTy>
7048 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7049                                               bool IsOldProfileFormat,
7050                                               bool HasProfile, bool HasRelBF) {
7051   std::vector<FunctionSummary::EdgeTy> Ret;
7052   Ret.reserve(Record.size());
7053   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7054     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7055     bool HasTailCall = false;
7056     uint64_t RelBF = 0;
7057     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7058     if (IsOldProfileFormat) {
7059       I += 1; // Skip old callsitecount field
7060       if (HasProfile)
7061         I += 1; // Skip old profilecount field
7062     } else if (HasProfile)
7063       std::tie(Hotness, HasTailCall) =
7064           getDecodedHotnessCallEdgeInfo(Record[++I]);
7065     else if (HasRelBF)
7066       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7067     Ret.push_back(FunctionSummary::EdgeTy{
7068         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7069   }
7070   return Ret;
7071 }
7072 
7073 static void
7074 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7075                                        WholeProgramDevirtResolution &Wpd) {
7076   uint64_t ArgNum = Record[Slot++];
7077   WholeProgramDevirtResolution::ByArg &B =
7078       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7079   Slot += ArgNum;
7080 
7081   B.TheKind =
7082       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7083   B.Info = Record[Slot++];
7084   B.Byte = Record[Slot++];
7085   B.Bit = Record[Slot++];
7086 }
7087 
7088 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7089                                               StringRef Strtab, size_t &Slot,
7090                                               TypeIdSummary &TypeId) {
7091   uint64_t Id = Record[Slot++];
7092   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7093 
7094   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7095   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7096                         static_cast<size_t>(Record[Slot + 1])};
7097   Slot += 2;
7098 
7099   uint64_t ResByArgNum = Record[Slot++];
7100   for (uint64_t I = 0; I != ResByArgNum; ++I)
7101     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7102 }
7103 
7104 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7105                                      StringRef Strtab,
7106                                      ModuleSummaryIndex &TheIndex) {
7107   size_t Slot = 0;
7108   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7109       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7110   Slot += 2;
7111 
7112   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7113   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7114   TypeId.TTRes.AlignLog2 = Record[Slot++];
7115   TypeId.TTRes.SizeM1 = Record[Slot++];
7116   TypeId.TTRes.BitMask = Record[Slot++];
7117   TypeId.TTRes.InlineBits = Record[Slot++];
7118 
7119   while (Slot < Record.size())
7120     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7121 }
7122 
7123 std::vector<FunctionSummary::ParamAccess>
7124 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7125   auto ReadRange = [&]() {
7126     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7127                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7128     Record = Record.drop_front();
7129     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7130                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7131     Record = Record.drop_front();
7132     ConstantRange Range{Lower, Upper};
7133     assert(!Range.isFullSet());
7134     assert(!Range.isUpperSignWrapped());
7135     return Range;
7136   };
7137 
7138   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7139   while (!Record.empty()) {
7140     PendingParamAccesses.emplace_back();
7141     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7142     ParamAccess.ParamNo = Record.front();
7143     Record = Record.drop_front();
7144     ParamAccess.Use = ReadRange();
7145     ParamAccess.Calls.resize(Record.front());
7146     Record = Record.drop_front();
7147     for (auto &Call : ParamAccess.Calls) {
7148       Call.ParamNo = Record.front();
7149       Record = Record.drop_front();
7150       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7151       Record = Record.drop_front();
7152       Call.Offsets = ReadRange();
7153     }
7154   }
7155   return PendingParamAccesses;
7156 }
7157 
7158 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7159     ArrayRef<uint64_t> Record, size_t &Slot,
7160     TypeIdCompatibleVtableInfo &TypeId) {
7161   uint64_t Offset = Record[Slot++];
7162   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7163   TypeId.push_back({Offset, Callee});
7164 }
7165 
7166 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7167     ArrayRef<uint64_t> Record) {
7168   size_t Slot = 0;
7169   TypeIdCompatibleVtableInfo &TypeId =
7170       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7171           {Strtab.data() + Record[Slot],
7172            static_cast<size_t>(Record[Slot + 1])});
7173   Slot += 2;
7174 
7175   while (Slot < Record.size())
7176     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7177 }
7178 
7179 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7180                            unsigned WOCnt) {
7181   // Readonly and writeonly refs are in the end of the refs list.
7182   assert(ROCnt + WOCnt <= Refs.size());
7183   unsigned FirstWORef = Refs.size() - WOCnt;
7184   unsigned RefNo = FirstWORef - ROCnt;
7185   for (; RefNo < FirstWORef; ++RefNo)
7186     Refs[RefNo].setReadOnly();
7187   for (; RefNo < Refs.size(); ++RefNo)
7188     Refs[RefNo].setWriteOnly();
7189 }
7190 
7191 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7192 // objects in the index.
7193 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7194   if (Error Err = Stream.EnterSubBlock(ID))
7195     return Err;
7196   SmallVector<uint64_t, 64> Record;
7197 
7198   // Parse version
7199   {
7200     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7201     if (!MaybeEntry)
7202       return MaybeEntry.takeError();
7203     BitstreamEntry Entry = MaybeEntry.get();
7204 
7205     if (Entry.Kind != BitstreamEntry::Record)
7206       return error("Invalid Summary Block: record for version expected");
7207     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7208     if (!MaybeRecord)
7209       return MaybeRecord.takeError();
7210     if (MaybeRecord.get() != bitc::FS_VERSION)
7211       return error("Invalid Summary Block: version expected");
7212   }
7213   const uint64_t Version = Record[0];
7214   const bool IsOldProfileFormat = Version == 1;
7215   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7216     return error("Invalid summary version " + Twine(Version) +
7217                  ". Version should be in the range [1-" +
7218                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7219                  "].");
7220   Record.clear();
7221 
7222   // Keep around the last seen summary to be used when we see an optional
7223   // "OriginalName" attachement.
7224   GlobalValueSummary *LastSeenSummary = nullptr;
7225   GlobalValue::GUID LastSeenGUID = 0;
7226 
7227   // We can expect to see any number of type ID information records before
7228   // each function summary records; these variables store the information
7229   // collected so far so that it can be used to create the summary object.
7230   std::vector<GlobalValue::GUID> PendingTypeTests;
7231   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7232       PendingTypeCheckedLoadVCalls;
7233   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7234       PendingTypeCheckedLoadConstVCalls;
7235   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7236 
7237   std::vector<CallsiteInfo> PendingCallsites;
7238   std::vector<AllocInfo> PendingAllocs;
7239 
7240   while (true) {
7241     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7242     if (!MaybeEntry)
7243       return MaybeEntry.takeError();
7244     BitstreamEntry Entry = MaybeEntry.get();
7245 
7246     switch (Entry.Kind) {
7247     case BitstreamEntry::SubBlock: // Handled for us already.
7248     case BitstreamEntry::Error:
7249       return error("Malformed block");
7250     case BitstreamEntry::EndBlock:
7251       return Error::success();
7252     case BitstreamEntry::Record:
7253       // The interesting case.
7254       break;
7255     }
7256 
7257     // Read a record. The record format depends on whether this
7258     // is a per-module index or a combined index file. In the per-module
7259     // case the records contain the associated value's ID for correlation
7260     // with VST entries. In the combined index the correlation is done
7261     // via the bitcode offset of the summary records (which were saved
7262     // in the combined index VST entries). The records also contain
7263     // information used for ThinLTO renaming and importing.
7264     Record.clear();
7265     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7266     if (!MaybeBitCode)
7267       return MaybeBitCode.takeError();
7268     switch (unsigned BitCode = MaybeBitCode.get()) {
7269     default: // Default behavior: ignore.
7270       break;
7271     case bitc::FS_FLAGS: {  // [flags]
7272       TheIndex.setFlags(Record[0]);
7273       break;
7274     }
7275     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7276       uint64_t ValueID = Record[0];
7277       GlobalValue::GUID RefGUID = Record[1];
7278       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7279           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7280       break;
7281     }
7282     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7283     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7284     //                numrefs x valueid, n x (valueid)]
7285     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7286     //                        numrefs x valueid,
7287     //                        n x (valueid, hotness+tailcall flags)]
7288     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7289     //                      numrefs x valueid,
7290     //                      n x (valueid, relblockfreq+tailcall)]
7291     case bitc::FS_PERMODULE:
7292     case bitc::FS_PERMODULE_RELBF:
7293     case bitc::FS_PERMODULE_PROFILE: {
7294       unsigned ValueID = Record[0];
7295       uint64_t RawFlags = Record[1];
7296       unsigned InstCount = Record[2];
7297       uint64_t RawFunFlags = 0;
7298       unsigned NumRefs = Record[3];
7299       unsigned NumRORefs = 0, NumWORefs = 0;
7300       int RefListStartIndex = 4;
7301       if (Version >= 4) {
7302         RawFunFlags = Record[3];
7303         NumRefs = Record[4];
7304         RefListStartIndex = 5;
7305         if (Version >= 5) {
7306           NumRORefs = Record[5];
7307           RefListStartIndex = 6;
7308           if (Version >= 7) {
7309             NumWORefs = Record[6];
7310             RefListStartIndex = 7;
7311           }
7312         }
7313       }
7314 
7315       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7316       // The module path string ref set in the summary must be owned by the
7317       // index's module string table. Since we don't have a module path
7318       // string table section in the per-module index, we create a single
7319       // module path string table entry with an empty (0) ID to take
7320       // ownership.
7321       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7322       assert(Record.size() >= RefListStartIndex + NumRefs &&
7323              "Record size inconsistent with number of references");
7324       std::vector<ValueInfo> Refs = makeRefList(
7325           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7326       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7327       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7328       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7329           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7330           IsOldProfileFormat, HasProfile, HasRelBF);
7331       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7332       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7333       // In order to save memory, only record the memprof summaries if this is
7334       // the prevailing copy of a symbol. The linker doesn't resolve local
7335       // linkage values so don't check whether those are prevailing.
7336       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7337       if (IsPrevailing &&
7338           !GlobalValue::isLocalLinkage(LT) &&
7339           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7340         PendingCallsites.clear();
7341         PendingAllocs.clear();
7342       }
7343       auto FS = std::make_unique<FunctionSummary>(
7344           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7345           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7346           std::move(PendingTypeTestAssumeVCalls),
7347           std::move(PendingTypeCheckedLoadVCalls),
7348           std::move(PendingTypeTestAssumeConstVCalls),
7349           std::move(PendingTypeCheckedLoadConstVCalls),
7350           std::move(PendingParamAccesses), std::move(PendingCallsites),
7351           std::move(PendingAllocs));
7352       FS->setModulePath(getThisModule()->first());
7353       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7354       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7355                                      std::move(FS));
7356       break;
7357     }
7358     // FS_ALIAS: [valueid, flags, valueid]
7359     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7360     // they expect all aliasee summaries to be available.
7361     case bitc::FS_ALIAS: {
7362       unsigned ValueID = Record[0];
7363       uint64_t RawFlags = Record[1];
7364       unsigned AliaseeID = Record[2];
7365       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7366       auto AS = std::make_unique<AliasSummary>(Flags);
7367       // The module path string ref set in the summary must be owned by the
7368       // index's module string table. Since we don't have a module path
7369       // string table section in the per-module index, we create a single
7370       // module path string table entry with an empty (0) ID to take
7371       // ownership.
7372       AS->setModulePath(getThisModule()->first());
7373 
7374       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7375       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7376       if (!AliaseeInModule)
7377         return error("Alias expects aliasee summary to be parsed");
7378       AS->setAliasee(AliaseeVI, AliaseeInModule);
7379 
7380       auto GUID = getValueInfoFromValueId(ValueID);
7381       AS->setOriginalName(std::get<1>(GUID));
7382       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7383       break;
7384     }
7385     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7386     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7387       unsigned ValueID = Record[0];
7388       uint64_t RawFlags = Record[1];
7389       unsigned RefArrayStart = 2;
7390       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7391                                       /* WriteOnly */ false,
7392                                       /* Constant */ false,
7393                                       GlobalObject::VCallVisibilityPublic);
7394       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7395       if (Version >= 5) {
7396         GVF = getDecodedGVarFlags(Record[2]);
7397         RefArrayStart = 3;
7398       }
7399       std::vector<ValueInfo> Refs =
7400           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7401       auto FS =
7402           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7403       FS->setModulePath(getThisModule()->first());
7404       auto GUID = getValueInfoFromValueId(ValueID);
7405       FS->setOriginalName(std::get<1>(GUID));
7406       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7407       break;
7408     }
7409     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7410     //                        numrefs, numrefs x valueid,
7411     //                        n x (valueid, offset)]
7412     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7413       unsigned ValueID = Record[0];
7414       uint64_t RawFlags = Record[1];
7415       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7416       unsigned NumRefs = Record[3];
7417       unsigned RefListStartIndex = 4;
7418       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7419       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7420       std::vector<ValueInfo> Refs = makeRefList(
7421           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7422       VTableFuncList VTableFuncs;
7423       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7424         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7425         uint64_t Offset = Record[++I];
7426         VTableFuncs.push_back({Callee, Offset});
7427       }
7428       auto VS =
7429           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7430       VS->setModulePath(getThisModule()->first());
7431       VS->setVTableFuncs(VTableFuncs);
7432       auto GUID = getValueInfoFromValueId(ValueID);
7433       VS->setOriginalName(std::get<1>(GUID));
7434       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7435       break;
7436     }
7437     // FS_COMBINED is legacy and does not have support for the tail call flag.
7438     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7439     //               numrefs x valueid, n x (valueid)]
7440     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7441     //                       numrefs x valueid,
7442     //                       n x (valueid, hotness+tailcall flags)]
7443     case bitc::FS_COMBINED:
7444     case bitc::FS_COMBINED_PROFILE: {
7445       unsigned ValueID = Record[0];
7446       uint64_t ModuleId = Record[1];
7447       uint64_t RawFlags = Record[2];
7448       unsigned InstCount = Record[3];
7449       uint64_t RawFunFlags = 0;
7450       uint64_t EntryCount = 0;
7451       unsigned NumRefs = Record[4];
7452       unsigned NumRORefs = 0, NumWORefs = 0;
7453       int RefListStartIndex = 5;
7454 
7455       if (Version >= 4) {
7456         RawFunFlags = Record[4];
7457         RefListStartIndex = 6;
7458         size_t NumRefsIndex = 5;
7459         if (Version >= 5) {
7460           unsigned NumRORefsOffset = 1;
7461           RefListStartIndex = 7;
7462           if (Version >= 6) {
7463             NumRefsIndex = 6;
7464             EntryCount = Record[5];
7465             RefListStartIndex = 8;
7466             if (Version >= 7) {
7467               RefListStartIndex = 9;
7468               NumWORefs = Record[8];
7469               NumRORefsOffset = 2;
7470             }
7471           }
7472           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7473         }
7474         NumRefs = Record[NumRefsIndex];
7475       }
7476 
7477       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7478       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7479       assert(Record.size() >= RefListStartIndex + NumRefs &&
7480              "Record size inconsistent with number of references");
7481       std::vector<ValueInfo> Refs = makeRefList(
7482           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7483       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7484       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7485           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7486           IsOldProfileFormat, HasProfile, false);
7487       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7488       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7489       auto FS = std::make_unique<FunctionSummary>(
7490           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7491           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7492           std::move(PendingTypeTestAssumeVCalls),
7493           std::move(PendingTypeCheckedLoadVCalls),
7494           std::move(PendingTypeTestAssumeConstVCalls),
7495           std::move(PendingTypeCheckedLoadConstVCalls),
7496           std::move(PendingParamAccesses), std::move(PendingCallsites),
7497           std::move(PendingAllocs));
7498       LastSeenSummary = FS.get();
7499       LastSeenGUID = VI.getGUID();
7500       FS->setModulePath(ModuleIdMap[ModuleId]);
7501       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7502       break;
7503     }
7504     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7505     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7506     // they expect all aliasee summaries to be available.
7507     case bitc::FS_COMBINED_ALIAS: {
7508       unsigned ValueID = Record[0];
7509       uint64_t ModuleId = Record[1];
7510       uint64_t RawFlags = Record[2];
7511       unsigned AliaseeValueId = Record[3];
7512       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7513       auto AS = std::make_unique<AliasSummary>(Flags);
7514       LastSeenSummary = AS.get();
7515       AS->setModulePath(ModuleIdMap[ModuleId]);
7516 
7517       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7518       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7519       AS->setAliasee(AliaseeVI, AliaseeInModule);
7520 
7521       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7522       LastSeenGUID = VI.getGUID();
7523       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7524       break;
7525     }
7526     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7527     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7528       unsigned ValueID = Record[0];
7529       uint64_t ModuleId = Record[1];
7530       uint64_t RawFlags = Record[2];
7531       unsigned RefArrayStart = 3;
7532       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7533                                       /* WriteOnly */ false,
7534                                       /* Constant */ false,
7535                                       GlobalObject::VCallVisibilityPublic);
7536       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7537       if (Version >= 5) {
7538         GVF = getDecodedGVarFlags(Record[3]);
7539         RefArrayStart = 4;
7540       }
7541       std::vector<ValueInfo> Refs =
7542           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7543       auto FS =
7544           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7545       LastSeenSummary = FS.get();
7546       FS->setModulePath(ModuleIdMap[ModuleId]);
7547       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7548       LastSeenGUID = VI.getGUID();
7549       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7550       break;
7551     }
7552     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7553     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7554       uint64_t OriginalName = Record[0];
7555       if (!LastSeenSummary)
7556         return error("Name attachment that does not follow a combined record");
7557       LastSeenSummary->setOriginalName(OriginalName);
7558       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7559       // Reset the LastSeenSummary
7560       LastSeenSummary = nullptr;
7561       LastSeenGUID = 0;
7562       break;
7563     }
7564     case bitc::FS_TYPE_TESTS:
7565       assert(PendingTypeTests.empty());
7566       llvm::append_range(PendingTypeTests, Record);
7567       break;
7568 
7569     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7570       assert(PendingTypeTestAssumeVCalls.empty());
7571       for (unsigned I = 0; I != Record.size(); I += 2)
7572         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7573       break;
7574 
7575     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7576       assert(PendingTypeCheckedLoadVCalls.empty());
7577       for (unsigned I = 0; I != Record.size(); I += 2)
7578         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7579       break;
7580 
7581     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7582       PendingTypeTestAssumeConstVCalls.push_back(
7583           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7584       break;
7585 
7586     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7587       PendingTypeCheckedLoadConstVCalls.push_back(
7588           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7589       break;
7590 
7591     case bitc::FS_CFI_FUNCTION_DEFS: {
7592       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7593       for (unsigned I = 0; I != Record.size(); I += 2)
7594         CfiFunctionDefs.insert(
7595             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7596       break;
7597     }
7598 
7599     case bitc::FS_CFI_FUNCTION_DECLS: {
7600       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7601       for (unsigned I = 0; I != Record.size(); I += 2)
7602         CfiFunctionDecls.insert(
7603             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7604       break;
7605     }
7606 
7607     case bitc::FS_TYPE_ID:
7608       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7609       break;
7610 
7611     case bitc::FS_TYPE_ID_METADATA:
7612       parseTypeIdCompatibleVtableSummaryRecord(Record);
7613       break;
7614 
7615     case bitc::FS_BLOCK_COUNT:
7616       TheIndex.addBlockCount(Record[0]);
7617       break;
7618 
7619     case bitc::FS_PARAM_ACCESS: {
7620       PendingParamAccesses = parseParamAccesses(Record);
7621       break;
7622     }
7623 
7624     case bitc::FS_STACK_IDS: { // [n x stackid]
7625       // Save stack ids in the reader to consult when adding stack ids from the
7626       // lists in the stack node and alloc node entries.
7627       StackIds = ArrayRef<uint64_t>(Record);
7628       break;
7629     }
7630 
7631     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7632       unsigned ValueID = Record[0];
7633       SmallVector<unsigned> StackIdList;
7634       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7635         assert(*R < StackIds.size());
7636         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7637       }
7638       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7639       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7640       break;
7641     }
7642 
7643     case bitc::FS_COMBINED_CALLSITE_INFO: {
7644       auto RecordIter = Record.begin();
7645       unsigned ValueID = *RecordIter++;
7646       unsigned NumStackIds = *RecordIter++;
7647       unsigned NumVersions = *RecordIter++;
7648       assert(Record.size() == 3 + NumStackIds + NumVersions);
7649       SmallVector<unsigned> StackIdList;
7650       for (unsigned J = 0; J < NumStackIds; J++) {
7651         assert(*RecordIter < StackIds.size());
7652         StackIdList.push_back(
7653             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7654       }
7655       SmallVector<unsigned> Versions;
7656       for (unsigned J = 0; J < NumVersions; J++)
7657         Versions.push_back(*RecordIter++);
7658       ValueInfo VI = std::get<0>(
7659           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7660       PendingCallsites.push_back(
7661           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7662       break;
7663     }
7664 
7665     case bitc::FS_PERMODULE_ALLOC_INFO: {
7666       unsigned I = 0;
7667       std::vector<MIBInfo> MIBs;
7668       while (I < Record.size()) {
7669         assert(Record.size() - I >= 2);
7670         AllocationType AllocType = (AllocationType)Record[I++];
7671         unsigned NumStackEntries = Record[I++];
7672         assert(Record.size() - I >= NumStackEntries);
7673         SmallVector<unsigned> StackIdList;
7674         for (unsigned J = 0; J < NumStackEntries; J++) {
7675           assert(Record[I] < StackIds.size());
7676           StackIdList.push_back(
7677               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7678         }
7679         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7680       }
7681       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7682       break;
7683     }
7684 
7685     case bitc::FS_COMBINED_ALLOC_INFO: {
7686       unsigned I = 0;
7687       std::vector<MIBInfo> MIBs;
7688       unsigned NumMIBs = Record[I++];
7689       unsigned NumVersions = Record[I++];
7690       unsigned MIBsRead = 0;
7691       while (MIBsRead++ < NumMIBs) {
7692         assert(Record.size() - I >= 2);
7693         AllocationType AllocType = (AllocationType)Record[I++];
7694         unsigned NumStackEntries = Record[I++];
7695         assert(Record.size() - I >= NumStackEntries);
7696         SmallVector<unsigned> StackIdList;
7697         for (unsigned J = 0; J < NumStackEntries; J++) {
7698           assert(Record[I] < StackIds.size());
7699           StackIdList.push_back(
7700               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7701         }
7702         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7703       }
7704       assert(Record.size() - I >= NumVersions);
7705       SmallVector<uint8_t> Versions;
7706       for (unsigned J = 0; J < NumVersions; J++)
7707         Versions.push_back(Record[I++]);
7708       PendingAllocs.push_back(
7709           AllocInfo(std::move(Versions), std::move(MIBs)));
7710       break;
7711     }
7712     }
7713   }
7714   llvm_unreachable("Exit infinite loop");
7715 }
7716 
7717 // Parse the  module string table block into the Index.
7718 // This populates the ModulePathStringTable map in the index.
7719 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7720   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7721     return Err;
7722 
7723   SmallVector<uint64_t, 64> Record;
7724 
7725   SmallString<128> ModulePath;
7726   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7727 
7728   while (true) {
7729     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7730     if (!MaybeEntry)
7731       return MaybeEntry.takeError();
7732     BitstreamEntry Entry = MaybeEntry.get();
7733 
7734     switch (Entry.Kind) {
7735     case BitstreamEntry::SubBlock: // Handled for us already.
7736     case BitstreamEntry::Error:
7737       return error("Malformed block");
7738     case BitstreamEntry::EndBlock:
7739       return Error::success();
7740     case BitstreamEntry::Record:
7741       // The interesting case.
7742       break;
7743     }
7744 
7745     Record.clear();
7746     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7747     if (!MaybeRecord)
7748       return MaybeRecord.takeError();
7749     switch (MaybeRecord.get()) {
7750     default: // Default behavior: ignore.
7751       break;
7752     case bitc::MST_CODE_ENTRY: {
7753       // MST_ENTRY: [modid, namechar x N]
7754       uint64_t ModuleId = Record[0];
7755 
7756       if (convertToString(Record, 1, ModulePath))
7757         return error("Invalid record");
7758 
7759       LastSeenModule = TheIndex.addModule(ModulePath);
7760       ModuleIdMap[ModuleId] = LastSeenModule->first();
7761 
7762       ModulePath.clear();
7763       break;
7764     }
7765     /// MST_CODE_HASH: [5*i32]
7766     case bitc::MST_CODE_HASH: {
7767       if (Record.size() != 5)
7768         return error("Invalid hash length " + Twine(Record.size()).str());
7769       if (!LastSeenModule)
7770         return error("Invalid hash that does not follow a module path");
7771       int Pos = 0;
7772       for (auto &Val : Record) {
7773         assert(!(Val >> 32) && "Unexpected high bits set");
7774         LastSeenModule->second[Pos++] = Val;
7775       }
7776       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7777       LastSeenModule = nullptr;
7778       break;
7779     }
7780     }
7781   }
7782   llvm_unreachable("Exit infinite loop");
7783 }
7784 
7785 namespace {
7786 
7787 // FIXME: This class is only here to support the transition to llvm::Error. It
7788 // will be removed once this transition is complete. Clients should prefer to
7789 // deal with the Error value directly, rather than converting to error_code.
7790 class BitcodeErrorCategoryType : public std::error_category {
7791   const char *name() const noexcept override {
7792     return "llvm.bitcode";
7793   }
7794 
7795   std::string message(int IE) const override {
7796     BitcodeError E = static_cast<BitcodeError>(IE);
7797     switch (E) {
7798     case BitcodeError::CorruptedBitcode:
7799       return "Corrupted bitcode";
7800     }
7801     llvm_unreachable("Unknown error type!");
7802   }
7803 };
7804 
7805 } // end anonymous namespace
7806 
7807 const std::error_category &llvm::BitcodeErrorCategory() {
7808   static BitcodeErrorCategoryType ErrorCategory;
7809   return ErrorCategory;
7810 }
7811 
7812 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7813                                             unsigned Block, unsigned RecordID) {
7814   if (Error Err = Stream.EnterSubBlock(Block))
7815     return std::move(Err);
7816 
7817   StringRef Strtab;
7818   while (true) {
7819     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7820     if (!MaybeEntry)
7821       return MaybeEntry.takeError();
7822     llvm::BitstreamEntry Entry = MaybeEntry.get();
7823 
7824     switch (Entry.Kind) {
7825     case BitstreamEntry::EndBlock:
7826       return Strtab;
7827 
7828     case BitstreamEntry::Error:
7829       return error("Malformed block");
7830 
7831     case BitstreamEntry::SubBlock:
7832       if (Error Err = Stream.SkipBlock())
7833         return std::move(Err);
7834       break;
7835 
7836     case BitstreamEntry::Record:
7837       StringRef Blob;
7838       SmallVector<uint64_t, 1> Record;
7839       Expected<unsigned> MaybeRecord =
7840           Stream.readRecord(Entry.ID, Record, &Blob);
7841       if (!MaybeRecord)
7842         return MaybeRecord.takeError();
7843       if (MaybeRecord.get() == RecordID)
7844         Strtab = Blob;
7845       break;
7846     }
7847   }
7848 }
7849 
7850 //===----------------------------------------------------------------------===//
7851 // External interface
7852 //===----------------------------------------------------------------------===//
7853 
7854 Expected<std::vector<BitcodeModule>>
7855 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7856   auto FOrErr = getBitcodeFileContents(Buffer);
7857   if (!FOrErr)
7858     return FOrErr.takeError();
7859   return std::move(FOrErr->Mods);
7860 }
7861 
7862 Expected<BitcodeFileContents>
7863 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7864   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7865   if (!StreamOrErr)
7866     return StreamOrErr.takeError();
7867   BitstreamCursor &Stream = *StreamOrErr;
7868 
7869   BitcodeFileContents F;
7870   while (true) {
7871     uint64_t BCBegin = Stream.getCurrentByteNo();
7872 
7873     // We may be consuming bitcode from a client that leaves garbage at the end
7874     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7875     // the end that there cannot possibly be another module, stop looking.
7876     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7877       return F;
7878 
7879     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7880     if (!MaybeEntry)
7881       return MaybeEntry.takeError();
7882     llvm::BitstreamEntry Entry = MaybeEntry.get();
7883 
7884     switch (Entry.Kind) {
7885     case BitstreamEntry::EndBlock:
7886     case BitstreamEntry::Error:
7887       return error("Malformed block");
7888 
7889     case BitstreamEntry::SubBlock: {
7890       uint64_t IdentificationBit = -1ull;
7891       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7892         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7893         if (Error Err = Stream.SkipBlock())
7894           return std::move(Err);
7895 
7896         {
7897           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7898           if (!MaybeEntry)
7899             return MaybeEntry.takeError();
7900           Entry = MaybeEntry.get();
7901         }
7902 
7903         if (Entry.Kind != BitstreamEntry::SubBlock ||
7904             Entry.ID != bitc::MODULE_BLOCK_ID)
7905           return error("Malformed block");
7906       }
7907 
7908       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7909         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7910         if (Error Err = Stream.SkipBlock())
7911           return std::move(Err);
7912 
7913         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7914                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7915                           Buffer.getBufferIdentifier(), IdentificationBit,
7916                           ModuleBit});
7917         continue;
7918       }
7919 
7920       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7921         Expected<StringRef> Strtab =
7922             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7923         if (!Strtab)
7924           return Strtab.takeError();
7925         // This string table is used by every preceding bitcode module that does
7926         // not have its own string table. A bitcode file may have multiple
7927         // string tables if it was created by binary concatenation, for example
7928         // with "llvm-cat -b".
7929         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7930           if (!I.Strtab.empty())
7931             break;
7932           I.Strtab = *Strtab;
7933         }
7934         // Similarly, the string table is used by every preceding symbol table;
7935         // normally there will be just one unless the bitcode file was created
7936         // by binary concatenation.
7937         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7938           F.StrtabForSymtab = *Strtab;
7939         continue;
7940       }
7941 
7942       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7943         Expected<StringRef> SymtabOrErr =
7944             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7945         if (!SymtabOrErr)
7946           return SymtabOrErr.takeError();
7947 
7948         // We can expect the bitcode file to have multiple symbol tables if it
7949         // was created by binary concatenation. In that case we silently
7950         // ignore any subsequent symbol tables, which is fine because this is a
7951         // low level function. The client is expected to notice that the number
7952         // of modules in the symbol table does not match the number of modules
7953         // in the input file and regenerate the symbol table.
7954         if (F.Symtab.empty())
7955           F.Symtab = *SymtabOrErr;
7956         continue;
7957       }
7958 
7959       if (Error Err = Stream.SkipBlock())
7960         return std::move(Err);
7961       continue;
7962     }
7963     case BitstreamEntry::Record:
7964       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7965         return std::move(E);
7966       continue;
7967     }
7968   }
7969 }
7970 
7971 /// Get a lazy one-at-time loading module from bitcode.
7972 ///
7973 /// This isn't always used in a lazy context.  In particular, it's also used by
7974 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7975 /// in forward-referenced functions from block address references.
7976 ///
7977 /// \param[in] MaterializeAll Set to \c true if we should materialize
7978 /// everything.
7979 Expected<std::unique_ptr<Module>>
7980 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7981                              bool ShouldLazyLoadMetadata, bool IsImporting,
7982                              ParserCallbacks Callbacks) {
7983   BitstreamCursor Stream(Buffer);
7984 
7985   std::string ProducerIdentification;
7986   if (IdentificationBit != -1ull) {
7987     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7988       return std::move(JumpFailed);
7989     if (Error E =
7990             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7991       return std::move(E);
7992   }
7993 
7994   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7995     return std::move(JumpFailed);
7996   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7997                               Context);
7998 
7999   std::unique_ptr<Module> M =
8000       std::make_unique<Module>(ModuleIdentifier, Context);
8001   M->setMaterializer(R);
8002 
8003   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8004   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8005                                       IsImporting, Callbacks))
8006     return std::move(Err);
8007 
8008   if (MaterializeAll) {
8009     // Read in the entire module, and destroy the BitcodeReader.
8010     if (Error Err = M->materializeAll())
8011       return std::move(Err);
8012   } else {
8013     // Resolve forward references from blockaddresses.
8014     if (Error Err = R->materializeForwardReferencedFunctions())
8015       return std::move(Err);
8016   }
8017   return std::move(M);
8018 }
8019 
8020 Expected<std::unique_ptr<Module>>
8021 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8022                              bool IsImporting, ParserCallbacks Callbacks) {
8023   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8024                        Callbacks);
8025 }
8026 
8027 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8028 // We don't use ModuleIdentifier here because the client may need to control the
8029 // module path used in the combined summary (e.g. when reading summaries for
8030 // regular LTO modules).
8031 Error BitcodeModule::readSummary(
8032     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8033     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8034   BitstreamCursor Stream(Buffer);
8035   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8036     return JumpFailed;
8037 
8038   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8039                                     ModulePath, IsPrevailing);
8040   return R.parseModule();
8041 }
8042 
8043 // Parse the specified bitcode buffer, returning the function info index.
8044 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8045   BitstreamCursor Stream(Buffer);
8046   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8047     return std::move(JumpFailed);
8048 
8049   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8050   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8051                                     ModuleIdentifier, 0);
8052 
8053   if (Error Err = R.parseModule())
8054     return std::move(Err);
8055 
8056   return std::move(Index);
8057 }
8058 
8059 static Expected<std::pair<bool, bool>>
8060 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8061                                                  unsigned ID,
8062                                                  BitcodeLTOInfo &LTOInfo) {
8063   if (Error Err = Stream.EnterSubBlock(ID))
8064     return std::move(Err);
8065   SmallVector<uint64_t, 64> Record;
8066 
8067   while (true) {
8068     BitstreamEntry Entry;
8069     std::pair<bool, bool> Result = {false,false};
8070     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8071       return std::move(E);
8072 
8073     switch (Entry.Kind) {
8074     case BitstreamEntry::SubBlock: // Handled for us already.
8075     case BitstreamEntry::Error:
8076       return error("Malformed block");
8077     case BitstreamEntry::EndBlock: {
8078       // If no flags record found, set both flags to false.
8079       return Result;
8080     }
8081     case BitstreamEntry::Record:
8082       // The interesting case.
8083       break;
8084     }
8085 
8086     // Look for the FS_FLAGS record.
8087     Record.clear();
8088     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8089     if (!MaybeBitCode)
8090       return MaybeBitCode.takeError();
8091     switch (MaybeBitCode.get()) {
8092     default: // Default behavior: ignore.
8093       break;
8094     case bitc::FS_FLAGS: { // [flags]
8095       uint64_t Flags = Record[0];
8096       // Scan flags.
8097       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8098 
8099       bool EnableSplitLTOUnit = Flags & 0x8;
8100       bool UnifiedLTO = Flags & 0x200;
8101       Result = {EnableSplitLTOUnit, UnifiedLTO};
8102 
8103       return Result;
8104     }
8105     }
8106   }
8107   llvm_unreachable("Exit infinite loop");
8108 }
8109 
8110 // Check if the given bitcode buffer contains a global value summary block.
8111 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8112   BitstreamCursor Stream(Buffer);
8113   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8114     return std::move(JumpFailed);
8115 
8116   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8117     return std::move(Err);
8118 
8119   while (true) {
8120     llvm::BitstreamEntry Entry;
8121     if (Error E = Stream.advance().moveInto(Entry))
8122       return std::move(E);
8123 
8124     switch (Entry.Kind) {
8125     case BitstreamEntry::Error:
8126       return error("Malformed block");
8127     case BitstreamEntry::EndBlock:
8128       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8129                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8130 
8131     case BitstreamEntry::SubBlock:
8132       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8133         BitcodeLTOInfo LTOInfo;
8134         Expected<std::pair<bool, bool>> Flags =
8135             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8136         if (!Flags)
8137           return Flags.takeError();
8138         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8139         LTOInfo.IsThinLTO = true;
8140         LTOInfo.HasSummary = true;
8141         return LTOInfo;
8142       }
8143 
8144       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8145         BitcodeLTOInfo LTOInfo;
8146         Expected<std::pair<bool, bool>> Flags =
8147             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8148         if (!Flags)
8149           return Flags.takeError();
8150         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8151         LTOInfo.IsThinLTO = false;
8152         LTOInfo.HasSummary = true;
8153         return LTOInfo;
8154       }
8155 
8156       // Ignore other sub-blocks.
8157       if (Error Err = Stream.SkipBlock())
8158         return std::move(Err);
8159       continue;
8160 
8161     case BitstreamEntry::Record:
8162       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8163         continue;
8164       else
8165         return StreamFailed.takeError();
8166     }
8167   }
8168 }
8169 
8170 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8171   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8172   if (!MsOrErr)
8173     return MsOrErr.takeError();
8174 
8175   if (MsOrErr->size() != 1)
8176     return error("Expected a single module");
8177 
8178   return (*MsOrErr)[0];
8179 }
8180 
8181 Expected<std::unique_ptr<Module>>
8182 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8183                            bool ShouldLazyLoadMetadata, bool IsImporting,
8184                            ParserCallbacks Callbacks) {
8185   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8186   if (!BM)
8187     return BM.takeError();
8188 
8189   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8190                            Callbacks);
8191 }
8192 
8193 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8194     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8195     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8196   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8197                                      IsImporting, Callbacks);
8198   if (MOrErr)
8199     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8200   return MOrErr;
8201 }
8202 
8203 Expected<std::unique_ptr<Module>>
8204 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8205   return getModuleImpl(Context, true, false, false, Callbacks);
8206   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8207   // written.  We must defer until the Module has been fully materialized.
8208 }
8209 
8210 Expected<std::unique_ptr<Module>>
8211 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8212                        ParserCallbacks Callbacks) {
8213   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8214   if (!BM)
8215     return BM.takeError();
8216 
8217   return BM->parseModule(Context, Callbacks);
8218 }
8219 
8220 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8221   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8222   if (!StreamOrErr)
8223     return StreamOrErr.takeError();
8224 
8225   return readTriple(*StreamOrErr);
8226 }
8227 
8228 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8229   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8230   if (!StreamOrErr)
8231     return StreamOrErr.takeError();
8232 
8233   return hasObjCCategory(*StreamOrErr);
8234 }
8235 
8236 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8237   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8238   if (!StreamOrErr)
8239     return StreamOrErr.takeError();
8240 
8241   return readIdentificationCode(*StreamOrErr);
8242 }
8243 
8244 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8245                                    ModuleSummaryIndex &CombinedIndex) {
8246   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8247   if (!BM)
8248     return BM.takeError();
8249 
8250   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8251 }
8252 
8253 Expected<std::unique_ptr<ModuleSummaryIndex>>
8254 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8255   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8256   if (!BM)
8257     return BM.takeError();
8258 
8259   return BM->getSummary();
8260 }
8261 
8262 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8263   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8264   if (!BM)
8265     return BM.takeError();
8266 
8267   return BM->getLTOInfo();
8268 }
8269 
8270 Expected<std::unique_ptr<ModuleSummaryIndex>>
8271 llvm::getModuleSummaryIndexForFile(StringRef Path,
8272                                    bool IgnoreEmptyThinLTOIndexFile) {
8273   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8274       MemoryBuffer::getFileOrSTDIN(Path);
8275   if (!FileOrErr)
8276     return errorCodeToError(FileOrErr.getError());
8277   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8278     return nullptr;
8279   return getModuleSummaryIndex(**FileOrErr);
8280 }
8281