xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision e4a4122eb6768b69640173b4c32fd88de4547227)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <optional>
84 #include <set>
85 #include <string>
86 #include <system_error>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 
93 static cl::opt<bool> PrintSummaryGUIDs(
94     "print-summary-global-ids", cl::init(false), cl::Hidden,
95     cl::desc(
96         "Print the global id for each value when reading the module summary"));
97 
98 static cl::opt<bool> ExpandConstantExprs(
99     "expand-constant-exprs", cl::Hidden,
100     cl::desc(
101         "Expand constant expressions to instructions for testing purposes"));
102 
103 namespace {
104 
105 enum {
106   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
107 };
108 
109 } // end anonymous namespace
110 
111 static Error error(const Twine &Message) {
112   return make_error<StringError>(
113       Message, make_error_code(BitcodeError::CorruptedBitcode));
114 }
115 
116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
117   if (!Stream.canSkipToPos(4))
118     return createStringError(std::errc::illegal_byte_sequence,
119                              "file too small to contain bitcode header");
120   for (unsigned C : {'B', 'C'})
121     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
122       if (Res.get() != C)
123         return createStringError(std::errc::illegal_byte_sequence,
124                                  "file doesn't start with bitcode header");
125     } else
126       return Res.takeError();
127   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
128     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
129       if (Res.get() != C)
130         return createStringError(std::errc::illegal_byte_sequence,
131                                  "file doesn't start with bitcode header");
132     } else
133       return Res.takeError();
134   return Error::success();
135 }
136 
137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
138   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
139   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
140 
141   if (Buffer.getBufferSize() & 3)
142     return error("Invalid bitcode signature");
143 
144   // If we have a wrapper header, parse it and ignore the non-bc file contents.
145   // The magic number is 0x0B17C0DE stored in little endian.
146   if (isBitcodeWrapper(BufPtr, BufEnd))
147     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
148       return error("Invalid bitcode wrapper header");
149 
150   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
151   if (Error Err = hasInvalidBitcodeHeader(Stream))
152     return std::move(Err);
153 
154   return std::move(Stream);
155 }
156 
157 /// Convert a string from a record into an std::string, return true on failure.
158 template <typename StrTy>
159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
160                             StrTy &Result) {
161   if (Idx > Record.size())
162     return true;
163 
164   Result.append(Record.begin() + Idx, Record.end());
165   return false;
166 }
167 
168 // Strip all the TBAA attachment for the module.
169 static void stripTBAA(Module *M) {
170   for (auto &F : *M) {
171     if (F.isMaterializable())
172       continue;
173     for (auto &I : instructions(F))
174       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
175   }
176 }
177 
178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
179 /// "epoch" encoded in the bitcode, and return the producer name if any.
180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
181   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
182     return std::move(Err);
183 
184   // Read all the records.
185   SmallVector<uint64_t, 64> Record;
186 
187   std::string ProducerIdentification;
188 
189   while (true) {
190     BitstreamEntry Entry;
191     if (Error E = Stream.advance().moveInto(Entry))
192       return std::move(E);
193 
194     switch (Entry.Kind) {
195     default:
196     case BitstreamEntry::Error:
197       return error("Malformed block");
198     case BitstreamEntry::EndBlock:
199       return ProducerIdentification;
200     case BitstreamEntry::Record:
201       // The interesting case.
202       break;
203     }
204 
205     // Read a record.
206     Record.clear();
207     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
208     if (!MaybeBitCode)
209       return MaybeBitCode.takeError();
210     switch (MaybeBitCode.get()) {
211     default: // Default behavior: reject
212       return error("Invalid value");
213     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
214       convertToString(Record, 0, ProducerIdentification);
215       break;
216     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
217       unsigned epoch = (unsigned)Record[0];
218       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
219         return error(
220           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
221           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
222       }
223     }
224     }
225   }
226 }
227 
228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
229   // We expect a number of well-defined blocks, though we don't necessarily
230   // need to understand them all.
231   while (true) {
232     if (Stream.AtEndOfStream())
233       return "";
234 
235     BitstreamEntry Entry;
236     if (Error E = Stream.advance().moveInto(Entry))
237       return std::move(E);
238 
239     switch (Entry.Kind) {
240     case BitstreamEntry::EndBlock:
241     case BitstreamEntry::Error:
242       return error("Malformed block");
243 
244     case BitstreamEntry::SubBlock:
245       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
246         return readIdentificationBlock(Stream);
247 
248       // Ignore other sub-blocks.
249       if (Error Err = Stream.SkipBlock())
250         return std::move(Err);
251       continue;
252     case BitstreamEntry::Record:
253       if (Error E = Stream.skipRecord(Entry.ID).takeError())
254         return std::move(E);
255       continue;
256     }
257   }
258 }
259 
260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
261   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
262     return std::move(Err);
263 
264   SmallVector<uint64_t, 64> Record;
265   // Read all the records for this module.
266 
267   while (true) {
268     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
269     if (!MaybeEntry)
270       return MaybeEntry.takeError();
271     BitstreamEntry Entry = MaybeEntry.get();
272 
273     switch (Entry.Kind) {
274     case BitstreamEntry::SubBlock: // Handled for us already.
275     case BitstreamEntry::Error:
276       return error("Malformed block");
277     case BitstreamEntry::EndBlock:
278       return false;
279     case BitstreamEntry::Record:
280       // The interesting case.
281       break;
282     }
283 
284     // Read a record.
285     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
286     if (!MaybeRecord)
287       return MaybeRecord.takeError();
288     switch (MaybeRecord.get()) {
289     default:
290       break; // Default behavior, ignore unknown content.
291     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
292       std::string S;
293       if (convertToString(Record, 0, S))
294         return error("Invalid section name record");
295       // Check for the i386 and other (x86_64, ARM) conventions
296       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
297           S.find("__OBJC,__category") != std::string::npos)
298         return true;
299       break;
300     }
301     }
302     Record.clear();
303   }
304   llvm_unreachable("Exit infinite loop");
305 }
306 
307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
308   // We expect a number of well-defined blocks, though we don't necessarily
309   // need to understand them all.
310   while (true) {
311     BitstreamEntry Entry;
312     if (Error E = Stream.advance().moveInto(Entry))
313       return std::move(E);
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Error E = Stream.skipRecord(Entry.ID).takeError())
332         return std::move(E);
333       continue;
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid triple record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   Error readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid version record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 /// This represents a constant expression or constant aggregate using a custom
483 /// structure internal to the bitcode reader. Later, this structure will be
484 /// expanded by materializeValue() either into a constant expression/aggregate,
485 /// or into an instruction sequence at the point of use. This allows us to
486 /// upgrade bitcode using constant expressions even if this kind of constant
487 /// expression is no longer supported.
488 class BitcodeConstant final : public Value,
489                               TrailingObjects<BitcodeConstant, unsigned> {
490   friend TrailingObjects;
491 
492   // Value subclass ID: Pick largest possible value to avoid any clashes.
493   static constexpr uint8_t SubclassID = 255;
494 
495 public:
496   // Opcodes used for non-expressions. This includes constant aggregates
497   // (struct, array, vector) that might need expansion, as well as non-leaf
498   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
499   // but still go through BitcodeConstant to avoid different uselist orders
500   // between the two cases.
501   static constexpr uint8_t ConstantStructOpcode = 255;
502   static constexpr uint8_t ConstantArrayOpcode = 254;
503   static constexpr uint8_t ConstantVectorOpcode = 253;
504   static constexpr uint8_t NoCFIOpcode = 252;
505   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
506   static constexpr uint8_t BlockAddressOpcode = 250;
507   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
508 
509   // Separate struct to make passing different number of parameters to
510   // BitcodeConstant::create() more convenient.
511   struct ExtraInfo {
512     uint8_t Opcode;
513     uint8_t Flags;
514     unsigned Extra;
515     Type *SrcElemTy;
516 
517     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
518               Type *SrcElemTy = nullptr)
519         : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
520   };
521 
522   uint8_t Opcode;
523   uint8_t Flags;
524   unsigned NumOperands;
525   unsigned Extra;  // GEP inrange index or blockaddress BB id.
526   Type *SrcElemTy; // GEP source element type.
527 
528 private:
529   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
530       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
531         NumOperands(OpIDs.size()), Extra(Info.Extra),
532         SrcElemTy(Info.SrcElemTy) {
533     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
534                             getTrailingObjects<unsigned>());
535   }
536 
537   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
538 
539 public:
540   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
541                                  const ExtraInfo &Info,
542                                  ArrayRef<unsigned> OpIDs) {
543     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
544                            alignof(BitcodeConstant));
545     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
546   }
547 
548   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
549 
550   ArrayRef<unsigned> getOperandIDs() const {
551     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
552   }
553 
554   std::optional<unsigned> getInRangeIndex() const {
555     assert(Opcode == Instruction::GetElementPtr);
556     if (Extra == (unsigned)-1)
557       return std::nullopt;
558     return Extra;
559   }
560 
561   const char *getOpcodeName() const {
562     return Instruction::getOpcodeName(Opcode);
563   }
564 };
565 
566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
567   LLVMContext &Context;
568   Module *TheModule = nullptr;
569   // Next offset to start scanning for lazy parsing of function bodies.
570   uint64_t NextUnreadBit = 0;
571   // Last function offset found in the VST.
572   uint64_t LastFunctionBlockBit = 0;
573   bool SeenValueSymbolTable = false;
574   uint64_t VSTOffset = 0;
575 
576   std::vector<std::string> SectionTable;
577   std::vector<std::string> GCTable;
578 
579   std::vector<Type *> TypeList;
580   /// Track type IDs of contained types. Order is the same as the contained
581   /// types of a Type*. This is used during upgrades of typed pointer IR in
582   /// opaque pointer mode.
583   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
584   /// In some cases, we need to create a type ID for a type that was not
585   /// explicitly encoded in the bitcode, or we don't know about at the current
586   /// point. For example, a global may explicitly encode the value type ID, but
587   /// not have a type ID for the pointer to value type, for which we create a
588   /// virtual type ID instead. This map stores the new type ID that was created
589   /// for the given pair of Type and contained type ID.
590   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
591   DenseMap<Function *, unsigned> FunctionTypeIDs;
592   /// Allocator for BitcodeConstants. This should come before ValueList,
593   /// because the ValueList might hold ValueHandles to these constants, so
594   /// ValueList must be destroyed before Alloc.
595   BumpPtrAllocator Alloc;
596   BitcodeReaderValueList ValueList;
597   std::optional<MetadataLoader> MDLoader;
598   std::vector<Comdat *> ComdatList;
599   DenseSet<GlobalObject *> ImplicitComdatObjects;
600   SmallVector<Instruction *, 64> InstructionList;
601 
602   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
603   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
604 
605   struct FunctionOperandInfo {
606     Function *F;
607     unsigned PersonalityFn;
608     unsigned Prefix;
609     unsigned Prologue;
610   };
611   std::vector<FunctionOperandInfo> FunctionOperands;
612 
613   /// The set of attributes by index.  Index zero in the file is for null, and
614   /// is thus not represented here.  As such all indices are off by one.
615   std::vector<AttributeList> MAttributes;
616 
617   /// The set of attribute groups.
618   std::map<unsigned, AttributeList> MAttributeGroups;
619 
620   /// While parsing a function body, this is a list of the basic blocks for the
621   /// function.
622   std::vector<BasicBlock*> FunctionBBs;
623 
624   // When reading the module header, this list is populated with functions that
625   // have bodies later in the file.
626   std::vector<Function*> FunctionsWithBodies;
627 
628   // When intrinsic functions are encountered which require upgrading they are
629   // stored here with their replacement function.
630   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
631   UpdatedIntrinsicMap UpgradedIntrinsics;
632 
633   // Several operations happen after the module header has been read, but
634   // before function bodies are processed. This keeps track of whether
635   // we've done this yet.
636   bool SeenFirstFunctionBody = false;
637 
638   /// When function bodies are initially scanned, this map contains info about
639   /// where to find deferred function body in the stream.
640   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
641 
642   /// When Metadata block is initially scanned when parsing the module, we may
643   /// choose to defer parsing of the metadata. This vector contains info about
644   /// which Metadata blocks are deferred.
645   std::vector<uint64_t> DeferredMetadataInfo;
646 
647   /// These are basic blocks forward-referenced by block addresses.  They are
648   /// inserted lazily into functions when they're loaded.  The basic block ID is
649   /// its index into the vector.
650   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
651   std::deque<Function *> BasicBlockFwdRefQueue;
652 
653   /// These are Functions that contain BlockAddresses which refer a different
654   /// Function. When parsing the different Function, queue Functions that refer
655   /// to the different Function. Those Functions must be materialized in order
656   /// to resolve their BlockAddress constants before the different Function
657   /// gets moved into another Module.
658   std::vector<Function *> BackwardRefFunctions;
659 
660   /// Indicates that we are using a new encoding for instruction operands where
661   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
662   /// instruction number, for a more compact encoding.  Some instruction
663   /// operands are not relative to the instruction ID: basic block numbers, and
664   /// types. Once the old style function blocks have been phased out, we would
665   /// not need this flag.
666   bool UseRelativeIDs = false;
667 
668   /// True if all functions will be materialized, negating the need to process
669   /// (e.g.) blockaddress forward references.
670   bool WillMaterializeAllForwardRefs = false;
671 
672   bool StripDebugInfo = false;
673   TBAAVerifier TBAAVerifyHelper;
674 
675   std::vector<std::string> BundleTags;
676   SmallVector<SyncScope::ID, 8> SSIDs;
677 
678   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
679 
680 public:
681   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
682                 StringRef ProducerIdentification, LLVMContext &Context);
683 
684   Error materializeForwardReferencedFunctions();
685 
686   Error materialize(GlobalValue *GV) override;
687   Error materializeModule() override;
688   std::vector<StructType *> getIdentifiedStructTypes() const override;
689 
690   /// Main interface to parsing a bitcode buffer.
691   /// \returns true if an error occurred.
692   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
693                          bool IsImporting, ParserCallbacks Callbacks = {});
694 
695   static uint64_t decodeSignRotatedValue(uint64_t V);
696 
697   /// Materialize any deferred Metadata block.
698   Error materializeMetadata() override;
699 
700   void setStripDebugInfo() override;
701 
702 private:
703   std::vector<StructType *> IdentifiedStructTypes;
704   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
705   StructType *createIdentifiedStructType(LLVMContext &Context);
706 
707   static constexpr unsigned InvalidTypeID = ~0u;
708 
709   Type *getTypeByID(unsigned ID);
710   Type *getPtrElementTypeByID(unsigned ID);
711   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
712   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
713 
714   void callValueTypeCallback(Value *F, unsigned TypeID);
715   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
716   Expected<Constant *> getValueForInitializer(unsigned ID);
717 
718   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
719                         BasicBlock *ConstExprInsertBB) {
720     if (Ty && Ty->isMetadataTy())
721       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
722     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
723   }
724 
725   Metadata *getFnMetadataByID(unsigned ID) {
726     return MDLoader->getMetadataFwdRefOrLoad(ID);
727   }
728 
729   BasicBlock *getBasicBlock(unsigned ID) const {
730     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
731     return FunctionBBs[ID];
732   }
733 
734   AttributeList getAttributes(unsigned i) const {
735     if (i-1 < MAttributes.size())
736       return MAttributes[i-1];
737     return AttributeList();
738   }
739 
740   /// Read a value/type pair out of the specified record from slot 'Slot'.
741   /// Increment Slot past the number of slots used in the record. Return true on
742   /// failure.
743   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
744                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Slot == Record.size()) return true;
747     unsigned ValNo = (unsigned)Record[Slot++];
748     // Adjust the ValNo, if it was encoded relative to the InstNum.
749     if (UseRelativeIDs)
750       ValNo = InstNum - ValNo;
751     if (ValNo < InstNum) {
752       // If this is not a forward reference, just return the value we already
753       // have.
754       TypeID = ValueList.getTypeID(ValNo);
755       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
756       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
757              "Incorrect type ID stored for value");
758       return ResVal == nullptr;
759     }
760     if (Slot == Record.size())
761       return true;
762 
763     TypeID = (unsigned)Record[Slot++];
764     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
765                             ConstExprInsertBB);
766     return ResVal == nullptr;
767   }
768 
769   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
770   /// past the number of slots used by the value in the record. Return true if
771   /// there is an error.
772   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
773                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
774                 BasicBlock *ConstExprInsertBB) {
775     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
776       return true;
777     // All values currently take a single record slot.
778     ++Slot;
779     return false;
780   }
781 
782   /// Like popValue, but does not increment the Slot number.
783   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
784                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
785                 BasicBlock *ConstExprInsertBB) {
786     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
787     return ResVal == nullptr;
788   }
789 
790   /// Version of getValue that returns ResVal directly, or 0 if there is an
791   /// error.
792   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
793                   unsigned InstNum, Type *Ty, unsigned TyID,
794                   BasicBlock *ConstExprInsertBB) {
795     if (Slot == Record.size()) return nullptr;
796     unsigned ValNo = (unsigned)Record[Slot];
797     // Adjust the ValNo, if it was encoded relative to the InstNum.
798     if (UseRelativeIDs)
799       ValNo = InstNum - ValNo;
800     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
801   }
802 
803   /// Like getValue, but decodes signed VBRs.
804   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
805                         unsigned InstNum, Type *Ty, unsigned TyID,
806                         BasicBlock *ConstExprInsertBB) {
807     if (Slot == Record.size()) return nullptr;
808     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
809     // Adjust the ValNo, if it was encoded relative to the InstNum.
810     if (UseRelativeIDs)
811       ValNo = InstNum - ValNo;
812     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
813   }
814 
815   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
816   /// corresponding argument's pointee type. Also upgrades intrinsics that now
817   /// require an elementtype attribute.
818   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
819 
820   /// Converts alignment exponent (i.e. power of two (or zero)) to the
821   /// corresponding alignment to use. If alignment is too large, returns
822   /// a corresponding error code.
823   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
824   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
825   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
826                     ParserCallbacks Callbacks = {});
827 
828   Error parseComdatRecord(ArrayRef<uint64_t> Record);
829   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
830   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
831   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
832                                         ArrayRef<uint64_t> Record);
833 
834   Error parseAttributeBlock();
835   Error parseAttributeGroupBlock();
836   Error parseTypeTable();
837   Error parseTypeTableBody();
838   Error parseOperandBundleTags();
839   Error parseSyncScopeNames();
840 
841   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
842                                 unsigned NameIndex, Triple &TT);
843   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
844                                ArrayRef<uint64_t> Record);
845   Error parseValueSymbolTable(uint64_t Offset = 0);
846   Error parseGlobalValueSymbolTable();
847   Error parseConstants();
848   Error rememberAndSkipFunctionBodies();
849   Error rememberAndSkipFunctionBody();
850   /// Save the positions of the Metadata blocks and skip parsing the blocks.
851   Error rememberAndSkipMetadata();
852   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
853   Error parseFunctionBody(Function *F);
854   Error globalCleanup();
855   Error resolveGlobalAndIndirectSymbolInits();
856   Error parseUseLists();
857   Error findFunctionInStream(
858       Function *F,
859       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
860 
861   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
862 };
863 
864 /// Class to manage reading and parsing function summary index bitcode
865 /// files/sections.
866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
867   /// The module index built during parsing.
868   ModuleSummaryIndex &TheIndex;
869 
870   /// Indicates whether we have encountered a global value summary section
871   /// yet during parsing.
872   bool SeenGlobalValSummary = false;
873 
874   /// Indicates whether we have already parsed the VST, used for error checking.
875   bool SeenValueSymbolTable = false;
876 
877   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
878   /// Used to enable on-demand parsing of the VST.
879   uint64_t VSTOffset = 0;
880 
881   // Map to save ValueId to ValueInfo association that was recorded in the
882   // ValueSymbolTable. It is used after the VST is parsed to convert
883   // call graph edges read from the function summary from referencing
884   // callees by their ValueId to using the ValueInfo instead, which is how
885   // they are recorded in the summary index being built.
886   // We save a GUID which refers to the same global as the ValueInfo, but
887   // ignoring the linkage, i.e. for values other than local linkage they are
888   // identical (this is the second tuple member).
889   // The third tuple member is the real GUID of the ValueInfo.
890   DenseMap<unsigned,
891            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
892       ValueIdToValueInfoMap;
893 
894   /// Map populated during module path string table parsing, from the
895   /// module ID to a string reference owned by the index's module
896   /// path string table, used to correlate with combined index
897   /// summary records.
898   DenseMap<uint64_t, StringRef> ModuleIdMap;
899 
900   /// Original source file name recorded in a bitcode record.
901   std::string SourceFileName;
902 
903   /// The string identifier given to this module by the client, normally the
904   /// path to the bitcode file.
905   StringRef ModulePath;
906 
907   /// Callback to ask whether a symbol is the prevailing copy when invoked
908   /// during combined index building.
909   std::function<bool(GlobalValue::GUID)> IsPrevailing;
910 
911   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
912   /// ids from the lists in the callsite and alloc entries to the index.
913   std::vector<uint64_t> StackIds;
914 
915 public:
916   ModuleSummaryIndexBitcodeReader(
917       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
918       StringRef ModulePath,
919       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
920 
921   Error parseModule();
922 
923 private:
924   void setValueGUID(uint64_t ValueID, StringRef ValueName,
925                     GlobalValue::LinkageTypes Linkage,
926                     StringRef SourceFileName);
927   Error parseValueSymbolTable(
928       uint64_t Offset,
929       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
930   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
931   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
932                                                     bool IsOldProfileFormat,
933                                                     bool HasProfile,
934                                                     bool HasRelBF);
935   Error parseEntireSummary(unsigned ID);
936   Error parseModuleStringTable();
937   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
938   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
939                                        TypeIdCompatibleVtableInfo &TypeId);
940   std::vector<FunctionSummary::ParamAccess>
941   parseParamAccesses(ArrayRef<uint64_t> Record);
942 
943   template <bool AllowNullValueInfo = false>
944   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
945   getValueInfoFromValueId(unsigned ValueId);
946 
947   void addThisModule();
948   ModuleSummaryIndex::ModuleInfo *getThisModule();
949 };
950 
951 } // end anonymous namespace
952 
953 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
954                                                     Error Err) {
955   if (Err) {
956     std::error_code EC;
957     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
958       EC = EIB.convertToErrorCode();
959       Ctx.emitError(EIB.message());
960     });
961     return EC;
962   }
963   return std::error_code();
964 }
965 
966 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
967                              StringRef ProducerIdentification,
968                              LLVMContext &Context)
969     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
970       ValueList(this->Stream.SizeInBytes(),
971                 [this](unsigned ValID, BasicBlock *InsertBB) {
972                   return materializeValue(ValID, InsertBB);
973                 }) {
974   this->ProducerIdentification = std::string(ProducerIdentification);
975 }
976 
977 Error BitcodeReader::materializeForwardReferencedFunctions() {
978   if (WillMaterializeAllForwardRefs)
979     return Error::success();
980 
981   // Prevent recursion.
982   WillMaterializeAllForwardRefs = true;
983 
984   while (!BasicBlockFwdRefQueue.empty()) {
985     Function *F = BasicBlockFwdRefQueue.front();
986     BasicBlockFwdRefQueue.pop_front();
987     assert(F && "Expected valid function");
988     if (!BasicBlockFwdRefs.count(F))
989       // Already materialized.
990       continue;
991 
992     // Check for a function that isn't materializable to prevent an infinite
993     // loop.  When parsing a blockaddress stored in a global variable, there
994     // isn't a trivial way to check if a function will have a body without a
995     // linear search through FunctionsWithBodies, so just check it here.
996     if (!F->isMaterializable())
997       return error("Never resolved function from blockaddress");
998 
999     // Try to materialize F.
1000     if (Error Err = materialize(F))
1001       return Err;
1002   }
1003   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1004 
1005   for (Function *F : BackwardRefFunctions)
1006     if (Error Err = materialize(F))
1007       return Err;
1008   BackwardRefFunctions.clear();
1009 
1010   // Reset state.
1011   WillMaterializeAllForwardRefs = false;
1012   return Error::success();
1013 }
1014 
1015 //===----------------------------------------------------------------------===//
1016 //  Helper functions to implement forward reference resolution, etc.
1017 //===----------------------------------------------------------------------===//
1018 
1019 static bool hasImplicitComdat(size_t Val) {
1020   switch (Val) {
1021   default:
1022     return false;
1023   case 1:  // Old WeakAnyLinkage
1024   case 4:  // Old LinkOnceAnyLinkage
1025   case 10: // Old WeakODRLinkage
1026   case 11: // Old LinkOnceODRLinkage
1027     return true;
1028   }
1029 }
1030 
1031 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1032   switch (Val) {
1033   default: // Map unknown/new linkages to external
1034   case 0:
1035     return GlobalValue::ExternalLinkage;
1036   case 2:
1037     return GlobalValue::AppendingLinkage;
1038   case 3:
1039     return GlobalValue::InternalLinkage;
1040   case 5:
1041     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1042   case 6:
1043     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1044   case 7:
1045     return GlobalValue::ExternalWeakLinkage;
1046   case 8:
1047     return GlobalValue::CommonLinkage;
1048   case 9:
1049     return GlobalValue::PrivateLinkage;
1050   case 12:
1051     return GlobalValue::AvailableExternallyLinkage;
1052   case 13:
1053     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1054   case 14:
1055     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1056   case 15:
1057     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1058   case 1: // Old value with implicit comdat.
1059   case 16:
1060     return GlobalValue::WeakAnyLinkage;
1061   case 10: // Old value with implicit comdat.
1062   case 17:
1063     return GlobalValue::WeakODRLinkage;
1064   case 4: // Old value with implicit comdat.
1065   case 18:
1066     return GlobalValue::LinkOnceAnyLinkage;
1067   case 11: // Old value with implicit comdat.
1068   case 19:
1069     return GlobalValue::LinkOnceODRLinkage;
1070   }
1071 }
1072 
1073 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1074   FunctionSummary::FFlags Flags;
1075   Flags.ReadNone = RawFlags & 0x1;
1076   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1077   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1078   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1079   Flags.NoInline = (RawFlags >> 4) & 0x1;
1080   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1081   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1082   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1083   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1084   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1085   return Flags;
1086 }
1087 
1088 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1089 //
1090 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1091 // visibility: [8, 10).
1092 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1093                                                             uint64_t Version) {
1094   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1095   // like getDecodedLinkage() above. Any future change to the linkage enum and
1096   // to getDecodedLinkage() will need to be taken into account here as above.
1097   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1098   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1099   RawFlags = RawFlags >> 4;
1100   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1101   // The Live flag wasn't introduced until version 3. For dead stripping
1102   // to work correctly on earlier versions, we must conservatively treat all
1103   // values as live.
1104   bool Live = (RawFlags & 0x2) || Version < 3;
1105   bool Local = (RawFlags & 0x4);
1106   bool AutoHide = (RawFlags & 0x8);
1107 
1108   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1109                                      Live, Local, AutoHide);
1110 }
1111 
1112 // Decode the flags for GlobalVariable in the summary
1113 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1114   return GlobalVarSummary::GVarFlags(
1115       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1116       (RawFlags & 0x4) ? true : false,
1117       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1118 }
1119 
1120 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1121   switch (Val) {
1122   default: // Map unknown visibilities to default.
1123   case 0: return GlobalValue::DefaultVisibility;
1124   case 1: return GlobalValue::HiddenVisibility;
1125   case 2: return GlobalValue::ProtectedVisibility;
1126   }
1127 }
1128 
1129 static GlobalValue::DLLStorageClassTypes
1130 getDecodedDLLStorageClass(unsigned Val) {
1131   switch (Val) {
1132   default: // Map unknown values to default.
1133   case 0: return GlobalValue::DefaultStorageClass;
1134   case 1: return GlobalValue::DLLImportStorageClass;
1135   case 2: return GlobalValue::DLLExportStorageClass;
1136   }
1137 }
1138 
1139 static bool getDecodedDSOLocal(unsigned Val) {
1140   switch(Val) {
1141   default: // Map unknown values to preemptable.
1142   case 0:  return false;
1143   case 1:  return true;
1144   }
1145 }
1146 
1147 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1148   switch (Val) {
1149     case 0: return GlobalVariable::NotThreadLocal;
1150     default: // Map unknown non-zero value to general dynamic.
1151     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1152     case 2: return GlobalVariable::LocalDynamicTLSModel;
1153     case 3: return GlobalVariable::InitialExecTLSModel;
1154     case 4: return GlobalVariable::LocalExecTLSModel;
1155   }
1156 }
1157 
1158 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1159   switch (Val) {
1160     default: // Map unknown to UnnamedAddr::None.
1161     case 0: return GlobalVariable::UnnamedAddr::None;
1162     case 1: return GlobalVariable::UnnamedAddr::Global;
1163     case 2: return GlobalVariable::UnnamedAddr::Local;
1164   }
1165 }
1166 
1167 static int getDecodedCastOpcode(unsigned Val) {
1168   switch (Val) {
1169   default: return -1;
1170   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1171   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1172   case bitc::CAST_SEXT    : return Instruction::SExt;
1173   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1174   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1175   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1176   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1177   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1178   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1179   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1180   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1181   case bitc::CAST_BITCAST : return Instruction::BitCast;
1182   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1183   }
1184 }
1185 
1186 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1187   bool IsFP = Ty->isFPOrFPVectorTy();
1188   // UnOps are only valid for int/fp or vector of int/fp types
1189   if (!IsFP && !Ty->isIntOrIntVectorTy())
1190     return -1;
1191 
1192   switch (Val) {
1193   default:
1194     return -1;
1195   case bitc::UNOP_FNEG:
1196     return IsFP ? Instruction::FNeg : -1;
1197   }
1198 }
1199 
1200 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1201   bool IsFP = Ty->isFPOrFPVectorTy();
1202   // BinOps are only valid for int/fp or vector of int/fp types
1203   if (!IsFP && !Ty->isIntOrIntVectorTy())
1204     return -1;
1205 
1206   switch (Val) {
1207   default:
1208     return -1;
1209   case bitc::BINOP_ADD:
1210     return IsFP ? Instruction::FAdd : Instruction::Add;
1211   case bitc::BINOP_SUB:
1212     return IsFP ? Instruction::FSub : Instruction::Sub;
1213   case bitc::BINOP_MUL:
1214     return IsFP ? Instruction::FMul : Instruction::Mul;
1215   case bitc::BINOP_UDIV:
1216     return IsFP ? -1 : Instruction::UDiv;
1217   case bitc::BINOP_SDIV:
1218     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1219   case bitc::BINOP_UREM:
1220     return IsFP ? -1 : Instruction::URem;
1221   case bitc::BINOP_SREM:
1222     return IsFP ? Instruction::FRem : Instruction::SRem;
1223   case bitc::BINOP_SHL:
1224     return IsFP ? -1 : Instruction::Shl;
1225   case bitc::BINOP_LSHR:
1226     return IsFP ? -1 : Instruction::LShr;
1227   case bitc::BINOP_ASHR:
1228     return IsFP ? -1 : Instruction::AShr;
1229   case bitc::BINOP_AND:
1230     return IsFP ? -1 : Instruction::And;
1231   case bitc::BINOP_OR:
1232     return IsFP ? -1 : Instruction::Or;
1233   case bitc::BINOP_XOR:
1234     return IsFP ? -1 : Instruction::Xor;
1235   }
1236 }
1237 
1238 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1239   switch (Val) {
1240   default: return AtomicRMWInst::BAD_BINOP;
1241   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1242   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1243   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1244   case bitc::RMW_AND: return AtomicRMWInst::And;
1245   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1246   case bitc::RMW_OR: return AtomicRMWInst::Or;
1247   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1248   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1249   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1250   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1251   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1252   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1253   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1254   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1255   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1256   case bitc::RMW_UINC_WRAP:
1257     return AtomicRMWInst::UIncWrap;
1258   case bitc::RMW_UDEC_WRAP:
1259     return AtomicRMWInst::UDecWrap;
1260   }
1261 }
1262 
1263 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1264   switch (Val) {
1265   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1266   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1267   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1268   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1269   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1270   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1271   default: // Map unknown orderings to sequentially-consistent.
1272   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1273   }
1274 }
1275 
1276 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1277   switch (Val) {
1278   default: // Map unknown selection kinds to any.
1279   case bitc::COMDAT_SELECTION_KIND_ANY:
1280     return Comdat::Any;
1281   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1282     return Comdat::ExactMatch;
1283   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1284     return Comdat::Largest;
1285   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1286     return Comdat::NoDeduplicate;
1287   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1288     return Comdat::SameSize;
1289   }
1290 }
1291 
1292 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1293   FastMathFlags FMF;
1294   if (0 != (Val & bitc::UnsafeAlgebra))
1295     FMF.setFast();
1296   if (0 != (Val & bitc::AllowReassoc))
1297     FMF.setAllowReassoc();
1298   if (0 != (Val & bitc::NoNaNs))
1299     FMF.setNoNaNs();
1300   if (0 != (Val & bitc::NoInfs))
1301     FMF.setNoInfs();
1302   if (0 != (Val & bitc::NoSignedZeros))
1303     FMF.setNoSignedZeros();
1304   if (0 != (Val & bitc::AllowReciprocal))
1305     FMF.setAllowReciprocal();
1306   if (0 != (Val & bitc::AllowContract))
1307     FMF.setAllowContract(true);
1308   if (0 != (Val & bitc::ApproxFunc))
1309     FMF.setApproxFunc();
1310   return FMF;
1311 }
1312 
1313 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1314   // A GlobalValue with local linkage cannot have a DLL storage class.
1315   if (GV->hasLocalLinkage())
1316     return;
1317   switch (Val) {
1318   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1319   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1320   }
1321 }
1322 
1323 Type *BitcodeReader::getTypeByID(unsigned ID) {
1324   // The type table size is always specified correctly.
1325   if (ID >= TypeList.size())
1326     return nullptr;
1327 
1328   if (Type *Ty = TypeList[ID])
1329     return Ty;
1330 
1331   // If we have a forward reference, the only possible case is when it is to a
1332   // named struct.  Just create a placeholder for now.
1333   return TypeList[ID] = createIdentifiedStructType(Context);
1334 }
1335 
1336 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1337   auto It = ContainedTypeIDs.find(ID);
1338   if (It == ContainedTypeIDs.end())
1339     return InvalidTypeID;
1340 
1341   if (Idx >= It->second.size())
1342     return InvalidTypeID;
1343 
1344   return It->second[Idx];
1345 }
1346 
1347 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1348   if (ID >= TypeList.size())
1349     return nullptr;
1350 
1351   Type *Ty = TypeList[ID];
1352   if (!Ty->isPointerTy())
1353     return nullptr;
1354 
1355   return getTypeByID(getContainedTypeID(ID, 0));
1356 }
1357 
1358 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1359                                          ArrayRef<unsigned> ChildTypeIDs) {
1360   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1361   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1362   auto It = VirtualTypeIDs.find(CacheKey);
1363   if (It != VirtualTypeIDs.end()) {
1364     // The cmpxchg return value is the only place we need more than one
1365     // contained type ID, however the second one will always be the same (i1),
1366     // so we don't need to include it in the cache key. This asserts that the
1367     // contained types are indeed as expected and there are no collisions.
1368     assert((ChildTypeIDs.empty() ||
1369             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1370            "Incorrect cached contained type IDs");
1371     return It->second;
1372   }
1373 
1374   unsigned TypeID = TypeList.size();
1375   TypeList.push_back(Ty);
1376   if (!ChildTypeIDs.empty())
1377     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1378   VirtualTypeIDs.insert({CacheKey, TypeID});
1379   return TypeID;
1380 }
1381 
1382 static bool isConstExprSupported(const BitcodeConstant *BC) {
1383   uint8_t Opcode = BC->Opcode;
1384 
1385   // These are not real constant expressions, always consider them supported.
1386   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1387     return true;
1388 
1389   // If -expand-constant-exprs is set, we want to consider all expressions
1390   // as unsupported.
1391   if (ExpandConstantExprs)
1392     return false;
1393 
1394   if (Instruction::isBinaryOp(Opcode))
1395     return ConstantExpr::isSupportedBinOp(Opcode);
1396 
1397   if (Instruction::isCast(Opcode))
1398     return ConstantExpr::isSupportedCastOp(Opcode);
1399 
1400   if (Opcode == Instruction::GetElementPtr)
1401     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1402 
1403   switch (Opcode) {
1404   case Instruction::FNeg:
1405   case Instruction::Select:
1406     return false;
1407   default:
1408     return true;
1409   }
1410 }
1411 
1412 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1413                                                   BasicBlock *InsertBB) {
1414   // Quickly handle the case where there is no BitcodeConstant to resolve.
1415   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1416       !isa<BitcodeConstant>(ValueList[StartValID]))
1417     return ValueList[StartValID];
1418 
1419   SmallDenseMap<unsigned, Value *> MaterializedValues;
1420   SmallVector<unsigned> Worklist;
1421   Worklist.push_back(StartValID);
1422   while (!Worklist.empty()) {
1423     unsigned ValID = Worklist.back();
1424     if (MaterializedValues.count(ValID)) {
1425       // Duplicate expression that was already handled.
1426       Worklist.pop_back();
1427       continue;
1428     }
1429 
1430     if (ValID >= ValueList.size() || !ValueList[ValID])
1431       return error("Invalid value ID");
1432 
1433     Value *V = ValueList[ValID];
1434     auto *BC = dyn_cast<BitcodeConstant>(V);
1435     if (!BC) {
1436       MaterializedValues.insert({ValID, V});
1437       Worklist.pop_back();
1438       continue;
1439     }
1440 
1441     // Iterate in reverse, so values will get popped from the worklist in
1442     // expected order.
1443     SmallVector<Value *> Ops;
1444     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1445       auto It = MaterializedValues.find(OpID);
1446       if (It != MaterializedValues.end())
1447         Ops.push_back(It->second);
1448       else
1449         Worklist.push_back(OpID);
1450     }
1451 
1452     // Some expressions have not been resolved yet, handle them first and then
1453     // revisit this one.
1454     if (Ops.size() != BC->getOperandIDs().size())
1455       continue;
1456     std::reverse(Ops.begin(), Ops.end());
1457 
1458     SmallVector<Constant *> ConstOps;
1459     for (Value *Op : Ops)
1460       if (auto *C = dyn_cast<Constant>(Op))
1461         ConstOps.push_back(C);
1462 
1463     // Materialize as constant expression if possible.
1464     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1465       Constant *C;
1466       if (Instruction::isCast(BC->Opcode)) {
1467         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1468         if (!C)
1469           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1470       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1471         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1472       } else {
1473         switch (BC->Opcode) {
1474         case BitcodeConstant::NoCFIOpcode: {
1475           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1476           if (!GV)
1477             return error("no_cfi operand must be GlobalValue");
1478           C = NoCFIValue::get(GV);
1479           break;
1480         }
1481         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1482           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1483           if (!GV)
1484             return error("dso_local operand must be GlobalValue");
1485           C = DSOLocalEquivalent::get(GV);
1486           break;
1487         }
1488         case BitcodeConstant::BlockAddressOpcode: {
1489           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1490           if (!Fn)
1491             return error("blockaddress operand must be a function");
1492 
1493           // If the function is already parsed we can insert the block address
1494           // right away.
1495           BasicBlock *BB;
1496           unsigned BBID = BC->Extra;
1497           if (!BBID)
1498             // Invalid reference to entry block.
1499             return error("Invalid ID");
1500           if (!Fn->empty()) {
1501             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1502             for (size_t I = 0, E = BBID; I != E; ++I) {
1503               if (BBI == BBE)
1504                 return error("Invalid ID");
1505               ++BBI;
1506             }
1507             BB = &*BBI;
1508           } else {
1509             // Otherwise insert a placeholder and remember it so it can be
1510             // inserted when the function is parsed.
1511             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1512             if (FwdBBs.empty())
1513               BasicBlockFwdRefQueue.push_back(Fn);
1514             if (FwdBBs.size() < BBID + 1)
1515               FwdBBs.resize(BBID + 1);
1516             if (!FwdBBs[BBID])
1517               FwdBBs[BBID] = BasicBlock::Create(Context);
1518             BB = FwdBBs[BBID];
1519           }
1520           C = BlockAddress::get(Fn, BB);
1521           break;
1522         }
1523         case BitcodeConstant::ConstantStructOpcode:
1524           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1525           break;
1526         case BitcodeConstant::ConstantArrayOpcode:
1527           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1528           break;
1529         case BitcodeConstant::ConstantVectorOpcode:
1530           C = ConstantVector::get(ConstOps);
1531           break;
1532         case Instruction::ICmp:
1533         case Instruction::FCmp:
1534           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1535           break;
1536         case Instruction::GetElementPtr:
1537           C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1538                                              ArrayRef(ConstOps).drop_front(),
1539                                              BC->Flags, BC->getInRangeIndex());
1540           break;
1541         case Instruction::ExtractElement:
1542           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1543           break;
1544         case Instruction::InsertElement:
1545           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1546                                              ConstOps[2]);
1547           break;
1548         case Instruction::ShuffleVector: {
1549           SmallVector<int, 16> Mask;
1550           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1551           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1552           break;
1553         }
1554         default:
1555           llvm_unreachable("Unhandled bitcode constant");
1556         }
1557       }
1558 
1559       // Cache resolved constant.
1560       ValueList.replaceValueWithoutRAUW(ValID, C);
1561       MaterializedValues.insert({ValID, C});
1562       Worklist.pop_back();
1563       continue;
1564     }
1565 
1566     if (!InsertBB)
1567       return error(Twine("Value referenced by initializer is an unsupported "
1568                          "constant expression of type ") +
1569                    BC->getOpcodeName());
1570 
1571     // Materialize as instructions if necessary.
1572     Instruction *I;
1573     if (Instruction::isCast(BC->Opcode)) {
1574       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1575                            BC->getType(), "constexpr", InsertBB);
1576     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1577       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1578                                 "constexpr", InsertBB);
1579     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1580       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1581                                  Ops[1], "constexpr", InsertBB);
1582       if (isa<OverflowingBinaryOperator>(I)) {
1583         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1584           I->setHasNoSignedWrap();
1585         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1586           I->setHasNoUnsignedWrap();
1587       }
1588       if (isa<PossiblyExactOperator>(I) &&
1589           (BC->Flags & PossiblyExactOperator::IsExact))
1590         I->setIsExact();
1591     } else {
1592       switch (BC->Opcode) {
1593       case BitcodeConstant::ConstantVectorOpcode: {
1594         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1595         Value *V = PoisonValue::get(BC->getType());
1596         for (auto Pair : enumerate(Ops)) {
1597           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1598           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1599                                         InsertBB);
1600         }
1601         I = cast<Instruction>(V);
1602         break;
1603       }
1604       case BitcodeConstant::ConstantStructOpcode:
1605       case BitcodeConstant::ConstantArrayOpcode: {
1606         Value *V = PoisonValue::get(BC->getType());
1607         for (auto Pair : enumerate(Ops))
1608           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1609                                       "constexpr.ins", InsertBB);
1610         I = cast<Instruction>(V);
1611         break;
1612       }
1613       case Instruction::ICmp:
1614       case Instruction::FCmp:
1615         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1616                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1617                             "constexpr", InsertBB);
1618         break;
1619       case Instruction::GetElementPtr:
1620         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1621                                       ArrayRef(Ops).drop_front(), "constexpr",
1622                                       InsertBB);
1623         if (BC->Flags)
1624           cast<GetElementPtrInst>(I)->setIsInBounds();
1625         break;
1626       case Instruction::Select:
1627         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1628         break;
1629       case Instruction::ExtractElement:
1630         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1631         break;
1632       case Instruction::InsertElement:
1633         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1634                                       InsertBB);
1635         break;
1636       case Instruction::ShuffleVector:
1637         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1638                                   InsertBB);
1639         break;
1640       default:
1641         llvm_unreachable("Unhandled bitcode constant");
1642       }
1643     }
1644 
1645     MaterializedValues.insert({ValID, I});
1646     Worklist.pop_back();
1647   }
1648 
1649   return MaterializedValues[StartValID];
1650 }
1651 
1652 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1653   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1654   if (!MaybeV)
1655     return MaybeV.takeError();
1656 
1657   // Result must be Constant if InsertBB is nullptr.
1658   return cast<Constant>(MaybeV.get());
1659 }
1660 
1661 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1662                                                       StringRef Name) {
1663   auto *Ret = StructType::create(Context, Name);
1664   IdentifiedStructTypes.push_back(Ret);
1665   return Ret;
1666 }
1667 
1668 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1669   auto *Ret = StructType::create(Context);
1670   IdentifiedStructTypes.push_back(Ret);
1671   return Ret;
1672 }
1673 
1674 //===----------------------------------------------------------------------===//
1675 //  Functions for parsing blocks from the bitcode file
1676 //===----------------------------------------------------------------------===//
1677 
1678 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1679   switch (Val) {
1680   case Attribute::EndAttrKinds:
1681   case Attribute::EmptyKey:
1682   case Attribute::TombstoneKey:
1683     llvm_unreachable("Synthetic enumerators which should never get here");
1684 
1685   case Attribute::None:            return 0;
1686   case Attribute::ZExt:            return 1 << 0;
1687   case Attribute::SExt:            return 1 << 1;
1688   case Attribute::NoReturn:        return 1 << 2;
1689   case Attribute::InReg:           return 1 << 3;
1690   case Attribute::StructRet:       return 1 << 4;
1691   case Attribute::NoUnwind:        return 1 << 5;
1692   case Attribute::NoAlias:         return 1 << 6;
1693   case Attribute::ByVal:           return 1 << 7;
1694   case Attribute::Nest:            return 1 << 8;
1695   case Attribute::ReadNone:        return 1 << 9;
1696   case Attribute::ReadOnly:        return 1 << 10;
1697   case Attribute::NoInline:        return 1 << 11;
1698   case Attribute::AlwaysInline:    return 1 << 12;
1699   case Attribute::OptimizeForSize: return 1 << 13;
1700   case Attribute::StackProtect:    return 1 << 14;
1701   case Attribute::StackProtectReq: return 1 << 15;
1702   case Attribute::Alignment:       return 31 << 16;
1703   case Attribute::NoCapture:       return 1 << 21;
1704   case Attribute::NoRedZone:       return 1 << 22;
1705   case Attribute::NoImplicitFloat: return 1 << 23;
1706   case Attribute::Naked:           return 1 << 24;
1707   case Attribute::InlineHint:      return 1 << 25;
1708   case Attribute::StackAlignment:  return 7 << 26;
1709   case Attribute::ReturnsTwice:    return 1 << 29;
1710   case Attribute::UWTable:         return 1 << 30;
1711   case Attribute::NonLazyBind:     return 1U << 31;
1712   case Attribute::SanitizeAddress: return 1ULL << 32;
1713   case Attribute::MinSize:         return 1ULL << 33;
1714   case Attribute::NoDuplicate:     return 1ULL << 34;
1715   case Attribute::StackProtectStrong: return 1ULL << 35;
1716   case Attribute::SanitizeThread:  return 1ULL << 36;
1717   case Attribute::SanitizeMemory:  return 1ULL << 37;
1718   case Attribute::NoBuiltin:       return 1ULL << 38;
1719   case Attribute::Returned:        return 1ULL << 39;
1720   case Attribute::Cold:            return 1ULL << 40;
1721   case Attribute::Builtin:         return 1ULL << 41;
1722   case Attribute::OptimizeNone:    return 1ULL << 42;
1723   case Attribute::InAlloca:        return 1ULL << 43;
1724   case Attribute::NonNull:         return 1ULL << 44;
1725   case Attribute::JumpTable:       return 1ULL << 45;
1726   case Attribute::Convergent:      return 1ULL << 46;
1727   case Attribute::SafeStack:       return 1ULL << 47;
1728   case Attribute::NoRecurse:       return 1ULL << 48;
1729   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1730   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1731   case Attribute::SwiftSelf:       return 1ULL << 51;
1732   case Attribute::SwiftError:      return 1ULL << 52;
1733   case Attribute::WriteOnly:       return 1ULL << 53;
1734   case Attribute::Speculatable:    return 1ULL << 54;
1735   case Attribute::StrictFP:        return 1ULL << 55;
1736   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1737   case Attribute::NoCfCheck:       return 1ULL << 57;
1738   case Attribute::OptForFuzzing:   return 1ULL << 58;
1739   case Attribute::ShadowCallStack: return 1ULL << 59;
1740   case Attribute::SpeculativeLoadHardening:
1741     return 1ULL << 60;
1742   case Attribute::ImmArg:
1743     return 1ULL << 61;
1744   case Attribute::WillReturn:
1745     return 1ULL << 62;
1746   case Attribute::NoFree:
1747     return 1ULL << 63;
1748   default:
1749     // Other attributes are not supported in the raw format,
1750     // as we ran out of space.
1751     return 0;
1752   }
1753   llvm_unreachable("Unsupported attribute type");
1754 }
1755 
1756 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1757   if (!Val) return;
1758 
1759   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1760        I = Attribute::AttrKind(I + 1)) {
1761     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1762       if (I == Attribute::Alignment)
1763         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1764       else if (I == Attribute::StackAlignment)
1765         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1766       else if (Attribute::isTypeAttrKind(I))
1767         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1768       else
1769         B.addAttribute(I);
1770     }
1771   }
1772 }
1773 
1774 /// This fills an AttrBuilder object with the LLVM attributes that have
1775 /// been decoded from the given integer. This function must stay in sync with
1776 /// 'encodeLLVMAttributesForBitcode'.
1777 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1778                                            uint64_t EncodedAttrs,
1779                                            uint64_t AttrIdx) {
1780   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1781   // the bits above 31 down by 11 bits.
1782   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1783   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1784          "Alignment must be a power of two.");
1785 
1786   if (Alignment)
1787     B.addAlignmentAttr(Alignment);
1788 
1789   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1790                    (EncodedAttrs & 0xffff);
1791 
1792   if (AttrIdx == AttributeList::FunctionIndex) {
1793     // Upgrade old memory attributes.
1794     MemoryEffects ME = MemoryEffects::unknown();
1795     if (Attrs & (1ULL << 9)) {
1796       // ReadNone
1797       Attrs &= ~(1ULL << 9);
1798       ME &= MemoryEffects::none();
1799     }
1800     if (Attrs & (1ULL << 10)) {
1801       // ReadOnly
1802       Attrs &= ~(1ULL << 10);
1803       ME &= MemoryEffects::readOnly();
1804     }
1805     if (Attrs & (1ULL << 49)) {
1806       // InaccessibleMemOnly
1807       Attrs &= ~(1ULL << 49);
1808       ME &= MemoryEffects::inaccessibleMemOnly();
1809     }
1810     if (Attrs & (1ULL << 50)) {
1811       // InaccessibleMemOrArgMemOnly
1812       Attrs &= ~(1ULL << 50);
1813       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1814     }
1815     if (Attrs & (1ULL << 53)) {
1816       // WriteOnly
1817       Attrs &= ~(1ULL << 53);
1818       ME &= MemoryEffects::writeOnly();
1819     }
1820     if (ME != MemoryEffects::unknown())
1821       B.addMemoryAttr(ME);
1822   }
1823 
1824   addRawAttributeValue(B, Attrs);
1825 }
1826 
1827 Error BitcodeReader::parseAttributeBlock() {
1828   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1829     return Err;
1830 
1831   if (!MAttributes.empty())
1832     return error("Invalid multiple blocks");
1833 
1834   SmallVector<uint64_t, 64> Record;
1835 
1836   SmallVector<AttributeList, 8> Attrs;
1837 
1838   // Read all the records.
1839   while (true) {
1840     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1841     if (!MaybeEntry)
1842       return MaybeEntry.takeError();
1843     BitstreamEntry Entry = MaybeEntry.get();
1844 
1845     switch (Entry.Kind) {
1846     case BitstreamEntry::SubBlock: // Handled for us already.
1847     case BitstreamEntry::Error:
1848       return error("Malformed block");
1849     case BitstreamEntry::EndBlock:
1850       return Error::success();
1851     case BitstreamEntry::Record:
1852       // The interesting case.
1853       break;
1854     }
1855 
1856     // Read a record.
1857     Record.clear();
1858     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1859     if (!MaybeRecord)
1860       return MaybeRecord.takeError();
1861     switch (MaybeRecord.get()) {
1862     default:  // Default behavior: ignore.
1863       break;
1864     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1865       // Deprecated, but still needed to read old bitcode files.
1866       if (Record.size() & 1)
1867         return error("Invalid parameter attribute record");
1868 
1869       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1870         AttrBuilder B(Context);
1871         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1872         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1873       }
1874 
1875       MAttributes.push_back(AttributeList::get(Context, Attrs));
1876       Attrs.clear();
1877       break;
1878     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1879       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1880         Attrs.push_back(MAttributeGroups[Record[i]]);
1881 
1882       MAttributes.push_back(AttributeList::get(Context, Attrs));
1883       Attrs.clear();
1884       break;
1885     }
1886   }
1887 }
1888 
1889 // Returns Attribute::None on unrecognized codes.
1890 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1891   switch (Code) {
1892   default:
1893     return Attribute::None;
1894   case bitc::ATTR_KIND_ALIGNMENT:
1895     return Attribute::Alignment;
1896   case bitc::ATTR_KIND_ALWAYS_INLINE:
1897     return Attribute::AlwaysInline;
1898   case bitc::ATTR_KIND_BUILTIN:
1899     return Attribute::Builtin;
1900   case bitc::ATTR_KIND_BY_VAL:
1901     return Attribute::ByVal;
1902   case bitc::ATTR_KIND_IN_ALLOCA:
1903     return Attribute::InAlloca;
1904   case bitc::ATTR_KIND_COLD:
1905     return Attribute::Cold;
1906   case bitc::ATTR_KIND_CONVERGENT:
1907     return Attribute::Convergent;
1908   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1909     return Attribute::DisableSanitizerInstrumentation;
1910   case bitc::ATTR_KIND_ELEMENTTYPE:
1911     return Attribute::ElementType;
1912   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1913     return Attribute::FnRetThunkExtern;
1914   case bitc::ATTR_KIND_INLINE_HINT:
1915     return Attribute::InlineHint;
1916   case bitc::ATTR_KIND_IN_REG:
1917     return Attribute::InReg;
1918   case bitc::ATTR_KIND_JUMP_TABLE:
1919     return Attribute::JumpTable;
1920   case bitc::ATTR_KIND_MEMORY:
1921     return Attribute::Memory;
1922   case bitc::ATTR_KIND_NOFPCLASS:
1923     return Attribute::NoFPClass;
1924   case bitc::ATTR_KIND_MIN_SIZE:
1925     return Attribute::MinSize;
1926   case bitc::ATTR_KIND_NAKED:
1927     return Attribute::Naked;
1928   case bitc::ATTR_KIND_NEST:
1929     return Attribute::Nest;
1930   case bitc::ATTR_KIND_NO_ALIAS:
1931     return Attribute::NoAlias;
1932   case bitc::ATTR_KIND_NO_BUILTIN:
1933     return Attribute::NoBuiltin;
1934   case bitc::ATTR_KIND_NO_CALLBACK:
1935     return Attribute::NoCallback;
1936   case bitc::ATTR_KIND_NO_CAPTURE:
1937     return Attribute::NoCapture;
1938   case bitc::ATTR_KIND_NO_DUPLICATE:
1939     return Attribute::NoDuplicate;
1940   case bitc::ATTR_KIND_NOFREE:
1941     return Attribute::NoFree;
1942   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1943     return Attribute::NoImplicitFloat;
1944   case bitc::ATTR_KIND_NO_INLINE:
1945     return Attribute::NoInline;
1946   case bitc::ATTR_KIND_NO_RECURSE:
1947     return Attribute::NoRecurse;
1948   case bitc::ATTR_KIND_NO_MERGE:
1949     return Attribute::NoMerge;
1950   case bitc::ATTR_KIND_NON_LAZY_BIND:
1951     return Attribute::NonLazyBind;
1952   case bitc::ATTR_KIND_NON_NULL:
1953     return Attribute::NonNull;
1954   case bitc::ATTR_KIND_DEREFERENCEABLE:
1955     return Attribute::Dereferenceable;
1956   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1957     return Attribute::DereferenceableOrNull;
1958   case bitc::ATTR_KIND_ALLOC_ALIGN:
1959     return Attribute::AllocAlign;
1960   case bitc::ATTR_KIND_ALLOC_KIND:
1961     return Attribute::AllocKind;
1962   case bitc::ATTR_KIND_ALLOC_SIZE:
1963     return Attribute::AllocSize;
1964   case bitc::ATTR_KIND_ALLOCATED_POINTER:
1965     return Attribute::AllocatedPointer;
1966   case bitc::ATTR_KIND_NO_RED_ZONE:
1967     return Attribute::NoRedZone;
1968   case bitc::ATTR_KIND_NO_RETURN:
1969     return Attribute::NoReturn;
1970   case bitc::ATTR_KIND_NOSYNC:
1971     return Attribute::NoSync;
1972   case bitc::ATTR_KIND_NOCF_CHECK:
1973     return Attribute::NoCfCheck;
1974   case bitc::ATTR_KIND_NO_PROFILE:
1975     return Attribute::NoProfile;
1976   case bitc::ATTR_KIND_SKIP_PROFILE:
1977     return Attribute::SkipProfile;
1978   case bitc::ATTR_KIND_NO_UNWIND:
1979     return Attribute::NoUnwind;
1980   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1981     return Attribute::NoSanitizeBounds;
1982   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1983     return Attribute::NoSanitizeCoverage;
1984   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1985     return Attribute::NullPointerIsValid;
1986   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
1987     return Attribute::OptimizeForDebugging;
1988   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1989     return Attribute::OptForFuzzing;
1990   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1991     return Attribute::OptimizeForSize;
1992   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1993     return Attribute::OptimizeNone;
1994   case bitc::ATTR_KIND_READ_NONE:
1995     return Attribute::ReadNone;
1996   case bitc::ATTR_KIND_READ_ONLY:
1997     return Attribute::ReadOnly;
1998   case bitc::ATTR_KIND_RETURNED:
1999     return Attribute::Returned;
2000   case bitc::ATTR_KIND_RETURNS_TWICE:
2001     return Attribute::ReturnsTwice;
2002   case bitc::ATTR_KIND_S_EXT:
2003     return Attribute::SExt;
2004   case bitc::ATTR_KIND_SPECULATABLE:
2005     return Attribute::Speculatable;
2006   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2007     return Attribute::StackAlignment;
2008   case bitc::ATTR_KIND_STACK_PROTECT:
2009     return Attribute::StackProtect;
2010   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2011     return Attribute::StackProtectReq;
2012   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2013     return Attribute::StackProtectStrong;
2014   case bitc::ATTR_KIND_SAFESTACK:
2015     return Attribute::SafeStack;
2016   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2017     return Attribute::ShadowCallStack;
2018   case bitc::ATTR_KIND_STRICT_FP:
2019     return Attribute::StrictFP;
2020   case bitc::ATTR_KIND_STRUCT_RET:
2021     return Attribute::StructRet;
2022   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2023     return Attribute::SanitizeAddress;
2024   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2025     return Attribute::SanitizeHWAddress;
2026   case bitc::ATTR_KIND_SANITIZE_THREAD:
2027     return Attribute::SanitizeThread;
2028   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2029     return Attribute::SanitizeMemory;
2030   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2031     return Attribute::SpeculativeLoadHardening;
2032   case bitc::ATTR_KIND_SWIFT_ERROR:
2033     return Attribute::SwiftError;
2034   case bitc::ATTR_KIND_SWIFT_SELF:
2035     return Attribute::SwiftSelf;
2036   case bitc::ATTR_KIND_SWIFT_ASYNC:
2037     return Attribute::SwiftAsync;
2038   case bitc::ATTR_KIND_UW_TABLE:
2039     return Attribute::UWTable;
2040   case bitc::ATTR_KIND_VSCALE_RANGE:
2041     return Attribute::VScaleRange;
2042   case bitc::ATTR_KIND_WILLRETURN:
2043     return Attribute::WillReturn;
2044   case bitc::ATTR_KIND_WRITEONLY:
2045     return Attribute::WriteOnly;
2046   case bitc::ATTR_KIND_Z_EXT:
2047     return Attribute::ZExt;
2048   case bitc::ATTR_KIND_IMMARG:
2049     return Attribute::ImmArg;
2050   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2051     return Attribute::SanitizeMemTag;
2052   case bitc::ATTR_KIND_PREALLOCATED:
2053     return Attribute::Preallocated;
2054   case bitc::ATTR_KIND_NOUNDEF:
2055     return Attribute::NoUndef;
2056   case bitc::ATTR_KIND_BYREF:
2057     return Attribute::ByRef;
2058   case bitc::ATTR_KIND_MUSTPROGRESS:
2059     return Attribute::MustProgress;
2060   case bitc::ATTR_KIND_HOT:
2061     return Attribute::Hot;
2062   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2063     return Attribute::PresplitCoroutine;
2064   case bitc::ATTR_KIND_WRITABLE:
2065     return Attribute::Writable;
2066   }
2067 }
2068 
2069 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2070                                          MaybeAlign &Alignment) {
2071   // Note: Alignment in bitcode files is incremented by 1, so that zero
2072   // can be used for default alignment.
2073   if (Exponent > Value::MaxAlignmentExponent + 1)
2074     return error("Invalid alignment value");
2075   Alignment = decodeMaybeAlign(Exponent);
2076   return Error::success();
2077 }
2078 
2079 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2080   *Kind = getAttrFromCode(Code);
2081   if (*Kind == Attribute::None)
2082     return error("Unknown attribute kind (" + Twine(Code) + ")");
2083   return Error::success();
2084 }
2085 
2086 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2087   switch (EncodedKind) {
2088   case bitc::ATTR_KIND_READ_NONE:
2089     ME &= MemoryEffects::none();
2090     return true;
2091   case bitc::ATTR_KIND_READ_ONLY:
2092     ME &= MemoryEffects::readOnly();
2093     return true;
2094   case bitc::ATTR_KIND_WRITEONLY:
2095     ME &= MemoryEffects::writeOnly();
2096     return true;
2097   case bitc::ATTR_KIND_ARGMEMONLY:
2098     ME &= MemoryEffects::argMemOnly();
2099     return true;
2100   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2101     ME &= MemoryEffects::inaccessibleMemOnly();
2102     return true;
2103   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2104     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2105     return true;
2106   default:
2107     return false;
2108   }
2109 }
2110 
2111 Error BitcodeReader::parseAttributeGroupBlock() {
2112   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2113     return Err;
2114 
2115   if (!MAttributeGroups.empty())
2116     return error("Invalid multiple blocks");
2117 
2118   SmallVector<uint64_t, 64> Record;
2119 
2120   // Read all the records.
2121   while (true) {
2122     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2123     if (!MaybeEntry)
2124       return MaybeEntry.takeError();
2125     BitstreamEntry Entry = MaybeEntry.get();
2126 
2127     switch (Entry.Kind) {
2128     case BitstreamEntry::SubBlock: // Handled for us already.
2129     case BitstreamEntry::Error:
2130       return error("Malformed block");
2131     case BitstreamEntry::EndBlock:
2132       return Error::success();
2133     case BitstreamEntry::Record:
2134       // The interesting case.
2135       break;
2136     }
2137 
2138     // Read a record.
2139     Record.clear();
2140     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2141     if (!MaybeRecord)
2142       return MaybeRecord.takeError();
2143     switch (MaybeRecord.get()) {
2144     default:  // Default behavior: ignore.
2145       break;
2146     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2147       if (Record.size() < 3)
2148         return error("Invalid grp record");
2149 
2150       uint64_t GrpID = Record[0];
2151       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2152 
2153       AttrBuilder B(Context);
2154       MemoryEffects ME = MemoryEffects::unknown();
2155       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2156         if (Record[i] == 0) {        // Enum attribute
2157           Attribute::AttrKind Kind;
2158           uint64_t EncodedKind = Record[++i];
2159           if (Idx == AttributeList::FunctionIndex &&
2160               upgradeOldMemoryAttribute(ME, EncodedKind))
2161             continue;
2162 
2163           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2164             return Err;
2165 
2166           // Upgrade old-style byval attribute to one with a type, even if it's
2167           // nullptr. We will have to insert the real type when we associate
2168           // this AttributeList with a function.
2169           if (Kind == Attribute::ByVal)
2170             B.addByValAttr(nullptr);
2171           else if (Kind == Attribute::StructRet)
2172             B.addStructRetAttr(nullptr);
2173           else if (Kind == Attribute::InAlloca)
2174             B.addInAllocaAttr(nullptr);
2175           else if (Kind == Attribute::UWTable)
2176             B.addUWTableAttr(UWTableKind::Default);
2177           else if (Attribute::isEnumAttrKind(Kind))
2178             B.addAttribute(Kind);
2179           else
2180             return error("Not an enum attribute");
2181         } else if (Record[i] == 1) { // Integer attribute
2182           Attribute::AttrKind Kind;
2183           if (Error Err = parseAttrKind(Record[++i], &Kind))
2184             return Err;
2185           if (!Attribute::isIntAttrKind(Kind))
2186             return error("Not an int attribute");
2187           if (Kind == Attribute::Alignment)
2188             B.addAlignmentAttr(Record[++i]);
2189           else if (Kind == Attribute::StackAlignment)
2190             B.addStackAlignmentAttr(Record[++i]);
2191           else if (Kind == Attribute::Dereferenceable)
2192             B.addDereferenceableAttr(Record[++i]);
2193           else if (Kind == Attribute::DereferenceableOrNull)
2194             B.addDereferenceableOrNullAttr(Record[++i]);
2195           else if (Kind == Attribute::AllocSize)
2196             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2197           else if (Kind == Attribute::VScaleRange)
2198             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2199           else if (Kind == Attribute::UWTable)
2200             B.addUWTableAttr(UWTableKind(Record[++i]));
2201           else if (Kind == Attribute::AllocKind)
2202             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2203           else if (Kind == Attribute::Memory)
2204             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2205           else if (Kind == Attribute::NoFPClass)
2206             B.addNoFPClassAttr(
2207                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2208         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2209           bool HasValue = (Record[i++] == 4);
2210           SmallString<64> KindStr;
2211           SmallString<64> ValStr;
2212 
2213           while (Record[i] != 0 && i != e)
2214             KindStr += Record[i++];
2215           assert(Record[i] == 0 && "Kind string not null terminated");
2216 
2217           if (HasValue) {
2218             // Has a value associated with it.
2219             ++i; // Skip the '0' that terminates the "kind" string.
2220             while (Record[i] != 0 && i != e)
2221               ValStr += Record[i++];
2222             assert(Record[i] == 0 && "Value string not null terminated");
2223           }
2224 
2225           B.addAttribute(KindStr.str(), ValStr.str());
2226         } else if (Record[i] == 5 || Record[i] == 6) {
2227           bool HasType = Record[i] == 6;
2228           Attribute::AttrKind Kind;
2229           if (Error Err = parseAttrKind(Record[++i], &Kind))
2230             return Err;
2231           if (!Attribute::isTypeAttrKind(Kind))
2232             return error("Not a type attribute");
2233 
2234           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2235         } else {
2236           return error("Invalid attribute group entry");
2237         }
2238       }
2239 
2240       if (ME != MemoryEffects::unknown())
2241         B.addMemoryAttr(ME);
2242 
2243       UpgradeAttributes(B);
2244       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2245       break;
2246     }
2247     }
2248   }
2249 }
2250 
2251 Error BitcodeReader::parseTypeTable() {
2252   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2253     return Err;
2254 
2255   return parseTypeTableBody();
2256 }
2257 
2258 Error BitcodeReader::parseTypeTableBody() {
2259   if (!TypeList.empty())
2260     return error("Invalid multiple blocks");
2261 
2262   SmallVector<uint64_t, 64> Record;
2263   unsigned NumRecords = 0;
2264 
2265   SmallString<64> TypeName;
2266 
2267   // Read all the records for this type table.
2268   while (true) {
2269     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2270     if (!MaybeEntry)
2271       return MaybeEntry.takeError();
2272     BitstreamEntry Entry = MaybeEntry.get();
2273 
2274     switch (Entry.Kind) {
2275     case BitstreamEntry::SubBlock: // Handled for us already.
2276     case BitstreamEntry::Error:
2277       return error("Malformed block");
2278     case BitstreamEntry::EndBlock:
2279       if (NumRecords != TypeList.size())
2280         return error("Malformed block");
2281       return Error::success();
2282     case BitstreamEntry::Record:
2283       // The interesting case.
2284       break;
2285     }
2286 
2287     // Read a record.
2288     Record.clear();
2289     Type *ResultTy = nullptr;
2290     SmallVector<unsigned> ContainedIDs;
2291     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2292     if (!MaybeRecord)
2293       return MaybeRecord.takeError();
2294     switch (MaybeRecord.get()) {
2295     default:
2296       return error("Invalid value");
2297     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2298       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2299       // type list.  This allows us to reserve space.
2300       if (Record.empty())
2301         return error("Invalid numentry record");
2302       TypeList.resize(Record[0]);
2303       continue;
2304     case bitc::TYPE_CODE_VOID:      // VOID
2305       ResultTy = Type::getVoidTy(Context);
2306       break;
2307     case bitc::TYPE_CODE_HALF:     // HALF
2308       ResultTy = Type::getHalfTy(Context);
2309       break;
2310     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2311       ResultTy = Type::getBFloatTy(Context);
2312       break;
2313     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2314       ResultTy = Type::getFloatTy(Context);
2315       break;
2316     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2317       ResultTy = Type::getDoubleTy(Context);
2318       break;
2319     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2320       ResultTy = Type::getX86_FP80Ty(Context);
2321       break;
2322     case bitc::TYPE_CODE_FP128:     // FP128
2323       ResultTy = Type::getFP128Ty(Context);
2324       break;
2325     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2326       ResultTy = Type::getPPC_FP128Ty(Context);
2327       break;
2328     case bitc::TYPE_CODE_LABEL:     // LABEL
2329       ResultTy = Type::getLabelTy(Context);
2330       break;
2331     case bitc::TYPE_CODE_METADATA:  // METADATA
2332       ResultTy = Type::getMetadataTy(Context);
2333       break;
2334     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2335       ResultTy = Type::getX86_MMXTy(Context);
2336       break;
2337     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2338       ResultTy = Type::getX86_AMXTy(Context);
2339       break;
2340     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2341       ResultTy = Type::getTokenTy(Context);
2342       break;
2343     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2344       if (Record.empty())
2345         return error("Invalid integer record");
2346 
2347       uint64_t NumBits = Record[0];
2348       if (NumBits < IntegerType::MIN_INT_BITS ||
2349           NumBits > IntegerType::MAX_INT_BITS)
2350         return error("Bitwidth for integer type out of range");
2351       ResultTy = IntegerType::get(Context, NumBits);
2352       break;
2353     }
2354     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2355                                     //          [pointee type, address space]
2356       if (Record.empty())
2357         return error("Invalid pointer record");
2358       unsigned AddressSpace = 0;
2359       if (Record.size() == 2)
2360         AddressSpace = Record[1];
2361       ResultTy = getTypeByID(Record[0]);
2362       if (!ResultTy ||
2363           !PointerType::isValidElementType(ResultTy))
2364         return error("Invalid type");
2365       ContainedIDs.push_back(Record[0]);
2366       ResultTy = PointerType::get(ResultTy, AddressSpace);
2367       break;
2368     }
2369     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2370       if (Record.size() != 1)
2371         return error("Invalid opaque pointer record");
2372       unsigned AddressSpace = Record[0];
2373       ResultTy = PointerType::get(Context, AddressSpace);
2374       break;
2375     }
2376     case bitc::TYPE_CODE_FUNCTION_OLD: {
2377       // Deprecated, but still needed to read old bitcode files.
2378       // FUNCTION: [vararg, attrid, retty, paramty x N]
2379       if (Record.size() < 3)
2380         return error("Invalid function record");
2381       SmallVector<Type*, 8> ArgTys;
2382       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2383         if (Type *T = getTypeByID(Record[i]))
2384           ArgTys.push_back(T);
2385         else
2386           break;
2387       }
2388 
2389       ResultTy = getTypeByID(Record[2]);
2390       if (!ResultTy || ArgTys.size() < Record.size()-3)
2391         return error("Invalid type");
2392 
2393       ContainedIDs.append(Record.begin() + 2, Record.end());
2394       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2395       break;
2396     }
2397     case bitc::TYPE_CODE_FUNCTION: {
2398       // FUNCTION: [vararg, retty, paramty x N]
2399       if (Record.size() < 2)
2400         return error("Invalid function record");
2401       SmallVector<Type*, 8> ArgTys;
2402       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2403         if (Type *T = getTypeByID(Record[i])) {
2404           if (!FunctionType::isValidArgumentType(T))
2405             return error("Invalid function argument type");
2406           ArgTys.push_back(T);
2407         }
2408         else
2409           break;
2410       }
2411 
2412       ResultTy = getTypeByID(Record[1]);
2413       if (!ResultTy || ArgTys.size() < Record.size()-2)
2414         return error("Invalid type");
2415 
2416       ContainedIDs.append(Record.begin() + 1, Record.end());
2417       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2418       break;
2419     }
2420     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2421       if (Record.empty())
2422         return error("Invalid anon struct record");
2423       SmallVector<Type*, 8> EltTys;
2424       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2425         if (Type *T = getTypeByID(Record[i]))
2426           EltTys.push_back(T);
2427         else
2428           break;
2429       }
2430       if (EltTys.size() != Record.size()-1)
2431         return error("Invalid type");
2432       ContainedIDs.append(Record.begin() + 1, Record.end());
2433       ResultTy = StructType::get(Context, EltTys, Record[0]);
2434       break;
2435     }
2436     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2437       if (convertToString(Record, 0, TypeName))
2438         return error("Invalid struct name record");
2439       continue;
2440 
2441     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2442       if (Record.empty())
2443         return error("Invalid named struct record");
2444 
2445       if (NumRecords >= TypeList.size())
2446         return error("Invalid TYPE table");
2447 
2448       // Check to see if this was forward referenced, if so fill in the temp.
2449       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2450       if (Res) {
2451         Res->setName(TypeName);
2452         TypeList[NumRecords] = nullptr;
2453       } else  // Otherwise, create a new struct.
2454         Res = createIdentifiedStructType(Context, TypeName);
2455       TypeName.clear();
2456 
2457       SmallVector<Type*, 8> EltTys;
2458       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2459         if (Type *T = getTypeByID(Record[i]))
2460           EltTys.push_back(T);
2461         else
2462           break;
2463       }
2464       if (EltTys.size() != Record.size()-1)
2465         return error("Invalid named struct record");
2466       Res->setBody(EltTys, Record[0]);
2467       ContainedIDs.append(Record.begin() + 1, Record.end());
2468       ResultTy = Res;
2469       break;
2470     }
2471     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2472       if (Record.size() != 1)
2473         return error("Invalid opaque type record");
2474 
2475       if (NumRecords >= TypeList.size())
2476         return error("Invalid TYPE table");
2477 
2478       // Check to see if this was forward referenced, if so fill in the temp.
2479       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2480       if (Res) {
2481         Res->setName(TypeName);
2482         TypeList[NumRecords] = nullptr;
2483       } else  // Otherwise, create a new struct with no body.
2484         Res = createIdentifiedStructType(Context, TypeName);
2485       TypeName.clear();
2486       ResultTy = Res;
2487       break;
2488     }
2489     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2490       if (Record.size() < 1)
2491         return error("Invalid target extension type record");
2492 
2493       if (NumRecords >= TypeList.size())
2494         return error("Invalid TYPE table");
2495 
2496       if (Record[0] >= Record.size())
2497         return error("Too many type parameters");
2498 
2499       unsigned NumTys = Record[0];
2500       SmallVector<Type *, 4> TypeParams;
2501       SmallVector<unsigned, 8> IntParams;
2502       for (unsigned i = 0; i < NumTys; i++) {
2503         if (Type *T = getTypeByID(Record[i + 1]))
2504           TypeParams.push_back(T);
2505         else
2506           return error("Invalid type");
2507       }
2508 
2509       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2510         if (Record[i] > UINT_MAX)
2511           return error("Integer parameter too large");
2512         IntParams.push_back(Record[i]);
2513       }
2514       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2515       TypeName.clear();
2516       break;
2517     }
2518     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2519       if (Record.size() < 2)
2520         return error("Invalid array type record");
2521       ResultTy = getTypeByID(Record[1]);
2522       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2523         return error("Invalid type");
2524       ContainedIDs.push_back(Record[1]);
2525       ResultTy = ArrayType::get(ResultTy, Record[0]);
2526       break;
2527     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2528                                     //         [numelts, eltty, scalable]
2529       if (Record.size() < 2)
2530         return error("Invalid vector type record");
2531       if (Record[0] == 0)
2532         return error("Invalid vector length");
2533       ResultTy = getTypeByID(Record[1]);
2534       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2535         return error("Invalid type");
2536       bool Scalable = Record.size() > 2 ? Record[2] : false;
2537       ContainedIDs.push_back(Record[1]);
2538       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2539       break;
2540     }
2541 
2542     if (NumRecords >= TypeList.size())
2543       return error("Invalid TYPE table");
2544     if (TypeList[NumRecords])
2545       return error(
2546           "Invalid TYPE table: Only named structs can be forward referenced");
2547     assert(ResultTy && "Didn't read a type?");
2548     TypeList[NumRecords] = ResultTy;
2549     if (!ContainedIDs.empty())
2550       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2551     ++NumRecords;
2552   }
2553 }
2554 
2555 Error BitcodeReader::parseOperandBundleTags() {
2556   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2557     return Err;
2558 
2559   if (!BundleTags.empty())
2560     return error("Invalid multiple blocks");
2561 
2562   SmallVector<uint64_t, 64> Record;
2563 
2564   while (true) {
2565     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2566     if (!MaybeEntry)
2567       return MaybeEntry.takeError();
2568     BitstreamEntry Entry = MaybeEntry.get();
2569 
2570     switch (Entry.Kind) {
2571     case BitstreamEntry::SubBlock: // Handled for us already.
2572     case BitstreamEntry::Error:
2573       return error("Malformed block");
2574     case BitstreamEntry::EndBlock:
2575       return Error::success();
2576     case BitstreamEntry::Record:
2577       // The interesting case.
2578       break;
2579     }
2580 
2581     // Tags are implicitly mapped to integers by their order.
2582 
2583     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2584     if (!MaybeRecord)
2585       return MaybeRecord.takeError();
2586     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2587       return error("Invalid operand bundle record");
2588 
2589     // OPERAND_BUNDLE_TAG: [strchr x N]
2590     BundleTags.emplace_back();
2591     if (convertToString(Record, 0, BundleTags.back()))
2592       return error("Invalid operand bundle record");
2593     Record.clear();
2594   }
2595 }
2596 
2597 Error BitcodeReader::parseSyncScopeNames() {
2598   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2599     return Err;
2600 
2601   if (!SSIDs.empty())
2602     return error("Invalid multiple synchronization scope names blocks");
2603 
2604   SmallVector<uint64_t, 64> Record;
2605   while (true) {
2606     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2607     if (!MaybeEntry)
2608       return MaybeEntry.takeError();
2609     BitstreamEntry Entry = MaybeEntry.get();
2610 
2611     switch (Entry.Kind) {
2612     case BitstreamEntry::SubBlock: // Handled for us already.
2613     case BitstreamEntry::Error:
2614       return error("Malformed block");
2615     case BitstreamEntry::EndBlock:
2616       if (SSIDs.empty())
2617         return error("Invalid empty synchronization scope names block");
2618       return Error::success();
2619     case BitstreamEntry::Record:
2620       // The interesting case.
2621       break;
2622     }
2623 
2624     // Synchronization scope names are implicitly mapped to synchronization
2625     // scope IDs by their order.
2626 
2627     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2628     if (!MaybeRecord)
2629       return MaybeRecord.takeError();
2630     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2631       return error("Invalid sync scope record");
2632 
2633     SmallString<16> SSN;
2634     if (convertToString(Record, 0, SSN))
2635       return error("Invalid sync scope record");
2636 
2637     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2638     Record.clear();
2639   }
2640 }
2641 
2642 /// Associate a value with its name from the given index in the provided record.
2643 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2644                                              unsigned NameIndex, Triple &TT) {
2645   SmallString<128> ValueName;
2646   if (convertToString(Record, NameIndex, ValueName))
2647     return error("Invalid record");
2648   unsigned ValueID = Record[0];
2649   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2650     return error("Invalid record");
2651   Value *V = ValueList[ValueID];
2652 
2653   StringRef NameStr(ValueName.data(), ValueName.size());
2654   if (NameStr.contains(0))
2655     return error("Invalid value name");
2656   V->setName(NameStr);
2657   auto *GO = dyn_cast<GlobalObject>(V);
2658   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2659     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2660   return V;
2661 }
2662 
2663 /// Helper to note and return the current location, and jump to the given
2664 /// offset.
2665 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2666                                                  BitstreamCursor &Stream) {
2667   // Save the current parsing location so we can jump back at the end
2668   // of the VST read.
2669   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2670   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2671     return std::move(JumpFailed);
2672   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2673   if (!MaybeEntry)
2674     return MaybeEntry.takeError();
2675   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2676       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2677     return error("Expected value symbol table subblock");
2678   return CurrentBit;
2679 }
2680 
2681 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2682                                             Function *F,
2683                                             ArrayRef<uint64_t> Record) {
2684   // Note that we subtract 1 here because the offset is relative to one word
2685   // before the start of the identification or module block, which was
2686   // historically always the start of the regular bitcode header.
2687   uint64_t FuncWordOffset = Record[1] - 1;
2688   uint64_t FuncBitOffset = FuncWordOffset * 32;
2689   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2690   // Set the LastFunctionBlockBit to point to the last function block.
2691   // Later when parsing is resumed after function materialization,
2692   // we can simply skip that last function block.
2693   if (FuncBitOffset > LastFunctionBlockBit)
2694     LastFunctionBlockBit = FuncBitOffset;
2695 }
2696 
2697 /// Read a new-style GlobalValue symbol table.
2698 Error BitcodeReader::parseGlobalValueSymbolTable() {
2699   unsigned FuncBitcodeOffsetDelta =
2700       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2701 
2702   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2703     return Err;
2704 
2705   SmallVector<uint64_t, 64> Record;
2706   while (true) {
2707     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2708     if (!MaybeEntry)
2709       return MaybeEntry.takeError();
2710     BitstreamEntry Entry = MaybeEntry.get();
2711 
2712     switch (Entry.Kind) {
2713     case BitstreamEntry::SubBlock:
2714     case BitstreamEntry::Error:
2715       return error("Malformed block");
2716     case BitstreamEntry::EndBlock:
2717       return Error::success();
2718     case BitstreamEntry::Record:
2719       break;
2720     }
2721 
2722     Record.clear();
2723     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2724     if (!MaybeRecord)
2725       return MaybeRecord.takeError();
2726     switch (MaybeRecord.get()) {
2727     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2728       unsigned ValueID = Record[0];
2729       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2730         return error("Invalid value reference in symbol table");
2731       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2732                               cast<Function>(ValueList[ValueID]), Record);
2733       break;
2734     }
2735     }
2736   }
2737 }
2738 
2739 /// Parse the value symbol table at either the current parsing location or
2740 /// at the given bit offset if provided.
2741 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2742   uint64_t CurrentBit;
2743   // Pass in the Offset to distinguish between calling for the module-level
2744   // VST (where we want to jump to the VST offset) and the function-level
2745   // VST (where we don't).
2746   if (Offset > 0) {
2747     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2748     if (!MaybeCurrentBit)
2749       return MaybeCurrentBit.takeError();
2750     CurrentBit = MaybeCurrentBit.get();
2751     // If this module uses a string table, read this as a module-level VST.
2752     if (UseStrtab) {
2753       if (Error Err = parseGlobalValueSymbolTable())
2754         return Err;
2755       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2756         return JumpFailed;
2757       return Error::success();
2758     }
2759     // Otherwise, the VST will be in a similar format to a function-level VST,
2760     // and will contain symbol names.
2761   }
2762 
2763   // Compute the delta between the bitcode indices in the VST (the word offset
2764   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2765   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2766   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2767   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2768   // just before entering the VST subblock because: 1) the EnterSubBlock
2769   // changes the AbbrevID width; 2) the VST block is nested within the same
2770   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2771   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2772   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2773   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2774   unsigned FuncBitcodeOffsetDelta =
2775       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2776 
2777   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2778     return Err;
2779 
2780   SmallVector<uint64_t, 64> Record;
2781 
2782   Triple TT(TheModule->getTargetTriple());
2783 
2784   // Read all the records for this value table.
2785   SmallString<128> ValueName;
2786 
2787   while (true) {
2788     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2789     if (!MaybeEntry)
2790       return MaybeEntry.takeError();
2791     BitstreamEntry Entry = MaybeEntry.get();
2792 
2793     switch (Entry.Kind) {
2794     case BitstreamEntry::SubBlock: // Handled for us already.
2795     case BitstreamEntry::Error:
2796       return error("Malformed block");
2797     case BitstreamEntry::EndBlock:
2798       if (Offset > 0)
2799         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2800           return JumpFailed;
2801       return Error::success();
2802     case BitstreamEntry::Record:
2803       // The interesting case.
2804       break;
2805     }
2806 
2807     // Read a record.
2808     Record.clear();
2809     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2810     if (!MaybeRecord)
2811       return MaybeRecord.takeError();
2812     switch (MaybeRecord.get()) {
2813     default:  // Default behavior: unknown type.
2814       break;
2815     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2816       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2817       if (Error Err = ValOrErr.takeError())
2818         return Err;
2819       ValOrErr.get();
2820       break;
2821     }
2822     case bitc::VST_CODE_FNENTRY: {
2823       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2824       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2825       if (Error Err = ValOrErr.takeError())
2826         return Err;
2827       Value *V = ValOrErr.get();
2828 
2829       // Ignore function offsets emitted for aliases of functions in older
2830       // versions of LLVM.
2831       if (auto *F = dyn_cast<Function>(V))
2832         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2833       break;
2834     }
2835     case bitc::VST_CODE_BBENTRY: {
2836       if (convertToString(Record, 1, ValueName))
2837         return error("Invalid bbentry record");
2838       BasicBlock *BB = getBasicBlock(Record[0]);
2839       if (!BB)
2840         return error("Invalid bbentry record");
2841 
2842       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2843       ValueName.clear();
2844       break;
2845     }
2846     }
2847   }
2848 }
2849 
2850 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2851 /// encoding.
2852 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2853   if ((V & 1) == 0)
2854     return V >> 1;
2855   if (V != 1)
2856     return -(V >> 1);
2857   // There is no such thing as -0 with integers.  "-0" really means MININT.
2858   return 1ULL << 63;
2859 }
2860 
2861 /// Resolve all of the initializers for global values and aliases that we can.
2862 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2863   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2864   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2865   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2866 
2867   GlobalInitWorklist.swap(GlobalInits);
2868   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2869   FunctionOperandWorklist.swap(FunctionOperands);
2870 
2871   while (!GlobalInitWorklist.empty()) {
2872     unsigned ValID = GlobalInitWorklist.back().second;
2873     if (ValID >= ValueList.size()) {
2874       // Not ready to resolve this yet, it requires something later in the file.
2875       GlobalInits.push_back(GlobalInitWorklist.back());
2876     } else {
2877       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2878       if (!MaybeC)
2879         return MaybeC.takeError();
2880       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2881     }
2882     GlobalInitWorklist.pop_back();
2883   }
2884 
2885   while (!IndirectSymbolInitWorklist.empty()) {
2886     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2887     if (ValID >= ValueList.size()) {
2888       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2889     } else {
2890       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2891       if (!MaybeC)
2892         return MaybeC.takeError();
2893       Constant *C = MaybeC.get();
2894       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2895       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2896         if (C->getType() != GV->getType())
2897           return error("Alias and aliasee types don't match");
2898         GA->setAliasee(C);
2899       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2900         Type *ResolverFTy =
2901             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2902         // Transparently fix up the type for compatibility with older bitcode
2903         GI->setResolver(ConstantExpr::getBitCast(
2904             C, ResolverFTy->getPointerTo(GI->getAddressSpace())));
2905       } else {
2906         return error("Expected an alias or an ifunc");
2907       }
2908     }
2909     IndirectSymbolInitWorklist.pop_back();
2910   }
2911 
2912   while (!FunctionOperandWorklist.empty()) {
2913     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2914     if (Info.PersonalityFn) {
2915       unsigned ValID = Info.PersonalityFn - 1;
2916       if (ValID < ValueList.size()) {
2917         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2918         if (!MaybeC)
2919           return MaybeC.takeError();
2920         Info.F->setPersonalityFn(MaybeC.get());
2921         Info.PersonalityFn = 0;
2922       }
2923     }
2924     if (Info.Prefix) {
2925       unsigned ValID = Info.Prefix - 1;
2926       if (ValID < ValueList.size()) {
2927         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2928         if (!MaybeC)
2929           return MaybeC.takeError();
2930         Info.F->setPrefixData(MaybeC.get());
2931         Info.Prefix = 0;
2932       }
2933     }
2934     if (Info.Prologue) {
2935       unsigned ValID = Info.Prologue - 1;
2936       if (ValID < ValueList.size()) {
2937         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2938         if (!MaybeC)
2939           return MaybeC.takeError();
2940         Info.F->setPrologueData(MaybeC.get());
2941         Info.Prologue = 0;
2942       }
2943     }
2944     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2945       FunctionOperands.push_back(Info);
2946     FunctionOperandWorklist.pop_back();
2947   }
2948 
2949   return Error::success();
2950 }
2951 
2952 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2953   SmallVector<uint64_t, 8> Words(Vals.size());
2954   transform(Vals, Words.begin(),
2955                  BitcodeReader::decodeSignRotatedValue);
2956 
2957   return APInt(TypeBits, Words);
2958 }
2959 
2960 Error BitcodeReader::parseConstants() {
2961   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2962     return Err;
2963 
2964   SmallVector<uint64_t, 64> Record;
2965 
2966   // Read all the records for this value table.
2967   Type *CurTy = Type::getInt32Ty(Context);
2968   unsigned Int32TyID = getVirtualTypeID(CurTy);
2969   unsigned CurTyID = Int32TyID;
2970   Type *CurElemTy = nullptr;
2971   unsigned NextCstNo = ValueList.size();
2972 
2973   while (true) {
2974     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2975     if (!MaybeEntry)
2976       return MaybeEntry.takeError();
2977     BitstreamEntry Entry = MaybeEntry.get();
2978 
2979     switch (Entry.Kind) {
2980     case BitstreamEntry::SubBlock: // Handled for us already.
2981     case BitstreamEntry::Error:
2982       return error("Malformed block");
2983     case BitstreamEntry::EndBlock:
2984       if (NextCstNo != ValueList.size())
2985         return error("Invalid constant reference");
2986       return Error::success();
2987     case BitstreamEntry::Record:
2988       // The interesting case.
2989       break;
2990     }
2991 
2992     // Read a record.
2993     Record.clear();
2994     Type *VoidType = Type::getVoidTy(Context);
2995     Value *V = nullptr;
2996     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2997     if (!MaybeBitCode)
2998       return MaybeBitCode.takeError();
2999     switch (unsigned BitCode = MaybeBitCode.get()) {
3000     default:  // Default behavior: unknown constant
3001     case bitc::CST_CODE_UNDEF:     // UNDEF
3002       V = UndefValue::get(CurTy);
3003       break;
3004     case bitc::CST_CODE_POISON:    // POISON
3005       V = PoisonValue::get(CurTy);
3006       break;
3007     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3008       if (Record.empty())
3009         return error("Invalid settype record");
3010       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3011         return error("Invalid settype record");
3012       if (TypeList[Record[0]] == VoidType)
3013         return error("Invalid constant type");
3014       CurTyID = Record[0];
3015       CurTy = TypeList[CurTyID];
3016       CurElemTy = getPtrElementTypeByID(CurTyID);
3017       continue;  // Skip the ValueList manipulation.
3018     case bitc::CST_CODE_NULL:      // NULL
3019       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3020         return error("Invalid type for a constant null value");
3021       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3022         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3023           return error("Invalid type for a constant null value");
3024       V = Constant::getNullValue(CurTy);
3025       break;
3026     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3027       if (!CurTy->isIntegerTy() || Record.empty())
3028         return error("Invalid integer const record");
3029       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3030       break;
3031     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3032       if (!CurTy->isIntegerTy() || Record.empty())
3033         return error("Invalid wide integer const record");
3034 
3035       APInt VInt =
3036           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3037       V = ConstantInt::get(Context, VInt);
3038 
3039       break;
3040     }
3041     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3042       if (Record.empty())
3043         return error("Invalid float const record");
3044       if (CurTy->isHalfTy())
3045         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
3046                                              APInt(16, (uint16_t)Record[0])));
3047       else if (CurTy->isBFloatTy())
3048         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
3049                                              APInt(16, (uint32_t)Record[0])));
3050       else if (CurTy->isFloatTy())
3051         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
3052                                              APInt(32, (uint32_t)Record[0])));
3053       else if (CurTy->isDoubleTy())
3054         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
3055                                              APInt(64, Record[0])));
3056       else if (CurTy->isX86_FP80Ty()) {
3057         // Bits are not stored the same way as a normal i80 APInt, compensate.
3058         uint64_t Rearrange[2];
3059         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3060         Rearrange[1] = Record[0] >> 48;
3061         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
3062                                              APInt(80, Rearrange)));
3063       } else if (CurTy->isFP128Ty())
3064         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
3065                                              APInt(128, Record)));
3066       else if (CurTy->isPPC_FP128Ty())
3067         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
3068                                              APInt(128, Record)));
3069       else
3070         V = UndefValue::get(CurTy);
3071       break;
3072     }
3073 
3074     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3075       if (Record.empty())
3076         return error("Invalid aggregate record");
3077 
3078       unsigned Size = Record.size();
3079       SmallVector<unsigned, 16> Elts;
3080       for (unsigned i = 0; i != Size; ++i)
3081         Elts.push_back(Record[i]);
3082 
3083       if (isa<StructType>(CurTy)) {
3084         V = BitcodeConstant::create(
3085             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3086       } else if (isa<ArrayType>(CurTy)) {
3087         V = BitcodeConstant::create(Alloc, CurTy,
3088                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3089       } else if (isa<VectorType>(CurTy)) {
3090         V = BitcodeConstant::create(
3091             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3092       } else {
3093         V = UndefValue::get(CurTy);
3094       }
3095       break;
3096     }
3097     case bitc::CST_CODE_STRING:    // STRING: [values]
3098     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3099       if (Record.empty())
3100         return error("Invalid string record");
3101 
3102       SmallString<16> Elts(Record.begin(), Record.end());
3103       V = ConstantDataArray::getString(Context, Elts,
3104                                        BitCode == bitc::CST_CODE_CSTRING);
3105       break;
3106     }
3107     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3108       if (Record.empty())
3109         return error("Invalid data record");
3110 
3111       Type *EltTy;
3112       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3113         EltTy = Array->getElementType();
3114       else
3115         EltTy = cast<VectorType>(CurTy)->getElementType();
3116       if (EltTy->isIntegerTy(8)) {
3117         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3118         if (isa<VectorType>(CurTy))
3119           V = ConstantDataVector::get(Context, Elts);
3120         else
3121           V = ConstantDataArray::get(Context, Elts);
3122       } else if (EltTy->isIntegerTy(16)) {
3123         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3124         if (isa<VectorType>(CurTy))
3125           V = ConstantDataVector::get(Context, Elts);
3126         else
3127           V = ConstantDataArray::get(Context, Elts);
3128       } else if (EltTy->isIntegerTy(32)) {
3129         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3130         if (isa<VectorType>(CurTy))
3131           V = ConstantDataVector::get(Context, Elts);
3132         else
3133           V = ConstantDataArray::get(Context, Elts);
3134       } else if (EltTy->isIntegerTy(64)) {
3135         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3136         if (isa<VectorType>(CurTy))
3137           V = ConstantDataVector::get(Context, Elts);
3138         else
3139           V = ConstantDataArray::get(Context, Elts);
3140       } else if (EltTy->isHalfTy()) {
3141         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3142         if (isa<VectorType>(CurTy))
3143           V = ConstantDataVector::getFP(EltTy, Elts);
3144         else
3145           V = ConstantDataArray::getFP(EltTy, Elts);
3146       } else if (EltTy->isBFloatTy()) {
3147         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3148         if (isa<VectorType>(CurTy))
3149           V = ConstantDataVector::getFP(EltTy, Elts);
3150         else
3151           V = ConstantDataArray::getFP(EltTy, Elts);
3152       } else if (EltTy->isFloatTy()) {
3153         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3154         if (isa<VectorType>(CurTy))
3155           V = ConstantDataVector::getFP(EltTy, Elts);
3156         else
3157           V = ConstantDataArray::getFP(EltTy, Elts);
3158       } else if (EltTy->isDoubleTy()) {
3159         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3160         if (isa<VectorType>(CurTy))
3161           V = ConstantDataVector::getFP(EltTy, Elts);
3162         else
3163           V = ConstantDataArray::getFP(EltTy, Elts);
3164       } else {
3165         return error("Invalid type for value");
3166       }
3167       break;
3168     }
3169     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3170       if (Record.size() < 2)
3171         return error("Invalid unary op constexpr record");
3172       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3173       if (Opc < 0) {
3174         V = UndefValue::get(CurTy);  // Unknown unop.
3175       } else {
3176         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3177       }
3178       break;
3179     }
3180     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3181       if (Record.size() < 3)
3182         return error("Invalid binary op constexpr record");
3183       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3184       if (Opc < 0) {
3185         V = UndefValue::get(CurTy);  // Unknown binop.
3186       } else {
3187         uint8_t Flags = 0;
3188         if (Record.size() >= 4) {
3189           if (Opc == Instruction::Add ||
3190               Opc == Instruction::Sub ||
3191               Opc == Instruction::Mul ||
3192               Opc == Instruction::Shl) {
3193             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3194               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3195             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3196               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3197           } else if (Opc == Instruction::SDiv ||
3198                      Opc == Instruction::UDiv ||
3199                      Opc == Instruction::LShr ||
3200                      Opc == Instruction::AShr) {
3201             if (Record[3] & (1 << bitc::PEO_EXACT))
3202               Flags |= PossiblyExactOperator::IsExact;
3203           }
3204         }
3205         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3206                                     {(unsigned)Record[1], (unsigned)Record[2]});
3207       }
3208       break;
3209     }
3210     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3211       if (Record.size() < 3)
3212         return error("Invalid cast constexpr record");
3213       int Opc = getDecodedCastOpcode(Record[0]);
3214       if (Opc < 0) {
3215         V = UndefValue::get(CurTy);  // Unknown cast.
3216       } else {
3217         unsigned OpTyID = Record[1];
3218         Type *OpTy = getTypeByID(OpTyID);
3219         if (!OpTy)
3220           return error("Invalid cast constexpr record");
3221         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3222       }
3223       break;
3224     }
3225     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3226     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3227     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3228                                                      // operands]
3229       if (Record.size() < 2)
3230         return error("Constant GEP record must have at least two elements");
3231       unsigned OpNum = 0;
3232       Type *PointeeType = nullptr;
3233       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3234           Record.size() % 2)
3235         PointeeType = getTypeByID(Record[OpNum++]);
3236 
3237       bool InBounds = false;
3238       std::optional<unsigned> InRangeIndex;
3239       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3240         uint64_t Op = Record[OpNum++];
3241         InBounds = Op & 1;
3242         InRangeIndex = Op >> 1;
3243       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3244         InBounds = true;
3245 
3246       SmallVector<unsigned, 16> Elts;
3247       unsigned BaseTypeID = Record[OpNum];
3248       while (OpNum != Record.size()) {
3249         unsigned ElTyID = Record[OpNum++];
3250         Type *ElTy = getTypeByID(ElTyID);
3251         if (!ElTy)
3252           return error("Invalid getelementptr constexpr record");
3253         Elts.push_back(Record[OpNum++]);
3254       }
3255 
3256       if (Elts.size() < 1)
3257         return error("Invalid gep with no operands");
3258 
3259       Type *BaseType = getTypeByID(BaseTypeID);
3260       if (isa<VectorType>(BaseType)) {
3261         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3262         BaseType = getTypeByID(BaseTypeID);
3263       }
3264 
3265       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3266       if (!OrigPtrTy)
3267         return error("GEP base operand must be pointer or vector of pointer");
3268 
3269       if (!PointeeType) {
3270         PointeeType = getPtrElementTypeByID(BaseTypeID);
3271         if (!PointeeType)
3272           return error("Missing element type for old-style constant GEP");
3273       }
3274 
3275       V = BitcodeConstant::create(Alloc, CurTy,
3276                                   {Instruction::GetElementPtr, InBounds,
3277                                    InRangeIndex.value_or(-1), PointeeType},
3278                                   Elts);
3279       break;
3280     }
3281     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3282       if (Record.size() < 3)
3283         return error("Invalid select constexpr record");
3284 
3285       V = BitcodeConstant::create(
3286           Alloc, CurTy, Instruction::Select,
3287           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3288       break;
3289     }
3290     case bitc::CST_CODE_CE_EXTRACTELT
3291         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3292       if (Record.size() < 3)
3293         return error("Invalid extractelement constexpr record");
3294       unsigned OpTyID = Record[0];
3295       VectorType *OpTy =
3296         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3297       if (!OpTy)
3298         return error("Invalid extractelement constexpr record");
3299       unsigned IdxRecord;
3300       if (Record.size() == 4) {
3301         unsigned IdxTyID = Record[2];
3302         Type *IdxTy = getTypeByID(IdxTyID);
3303         if (!IdxTy)
3304           return error("Invalid extractelement constexpr record");
3305         IdxRecord = Record[3];
3306       } else {
3307         // Deprecated, but still needed to read old bitcode files.
3308         IdxRecord = Record[2];
3309       }
3310       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3311                                   {(unsigned)Record[1], IdxRecord});
3312       break;
3313     }
3314     case bitc::CST_CODE_CE_INSERTELT
3315         : { // CE_INSERTELT: [opval, opval, opty, opval]
3316       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3317       if (Record.size() < 3 || !OpTy)
3318         return error("Invalid insertelement constexpr record");
3319       unsigned IdxRecord;
3320       if (Record.size() == 4) {
3321         unsigned IdxTyID = Record[2];
3322         Type *IdxTy = getTypeByID(IdxTyID);
3323         if (!IdxTy)
3324           return error("Invalid insertelement constexpr record");
3325         IdxRecord = Record[3];
3326       } else {
3327         // Deprecated, but still needed to read old bitcode files.
3328         IdxRecord = Record[2];
3329       }
3330       V = BitcodeConstant::create(
3331           Alloc, CurTy, Instruction::InsertElement,
3332           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3333       break;
3334     }
3335     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3336       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3337       if (Record.size() < 3 || !OpTy)
3338         return error("Invalid shufflevector constexpr record");
3339       V = BitcodeConstant::create(
3340           Alloc, CurTy, Instruction::ShuffleVector,
3341           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3342       break;
3343     }
3344     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3345       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3346       VectorType *OpTy =
3347         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3348       if (Record.size() < 4 || !RTy || !OpTy)
3349         return error("Invalid shufflevector constexpr record");
3350       V = BitcodeConstant::create(
3351           Alloc, CurTy, Instruction::ShuffleVector,
3352           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3353       break;
3354     }
3355     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3356       if (Record.size() < 4)
3357         return error("Invalid cmp constexpt record");
3358       unsigned OpTyID = Record[0];
3359       Type *OpTy = getTypeByID(OpTyID);
3360       if (!OpTy)
3361         return error("Invalid cmp constexpr record");
3362       V = BitcodeConstant::create(
3363           Alloc, CurTy,
3364           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3365                                               : Instruction::ICmp),
3366            (uint8_t)Record[3]},
3367           {(unsigned)Record[1], (unsigned)Record[2]});
3368       break;
3369     }
3370     // This maintains backward compatibility, pre-asm dialect keywords.
3371     // Deprecated, but still needed to read old bitcode files.
3372     case bitc::CST_CODE_INLINEASM_OLD: {
3373       if (Record.size() < 2)
3374         return error("Invalid inlineasm record");
3375       std::string AsmStr, ConstrStr;
3376       bool HasSideEffects = Record[0] & 1;
3377       bool IsAlignStack = Record[0] >> 1;
3378       unsigned AsmStrSize = Record[1];
3379       if (2+AsmStrSize >= Record.size())
3380         return error("Invalid inlineasm record");
3381       unsigned ConstStrSize = Record[2+AsmStrSize];
3382       if (3+AsmStrSize+ConstStrSize > Record.size())
3383         return error("Invalid inlineasm record");
3384 
3385       for (unsigned i = 0; i != AsmStrSize; ++i)
3386         AsmStr += (char)Record[2+i];
3387       for (unsigned i = 0; i != ConstStrSize; ++i)
3388         ConstrStr += (char)Record[3+AsmStrSize+i];
3389       UpgradeInlineAsmString(&AsmStr);
3390       if (!CurElemTy)
3391         return error("Missing element type for old-style inlineasm");
3392       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3393                          HasSideEffects, IsAlignStack);
3394       break;
3395     }
3396     // This version adds support for the asm dialect keywords (e.g.,
3397     // inteldialect).
3398     case bitc::CST_CODE_INLINEASM_OLD2: {
3399       if (Record.size() < 2)
3400         return error("Invalid inlineasm record");
3401       std::string AsmStr, ConstrStr;
3402       bool HasSideEffects = Record[0] & 1;
3403       bool IsAlignStack = (Record[0] >> 1) & 1;
3404       unsigned AsmDialect = Record[0] >> 2;
3405       unsigned AsmStrSize = Record[1];
3406       if (2+AsmStrSize >= Record.size())
3407         return error("Invalid inlineasm record");
3408       unsigned ConstStrSize = Record[2+AsmStrSize];
3409       if (3+AsmStrSize+ConstStrSize > Record.size())
3410         return error("Invalid inlineasm record");
3411 
3412       for (unsigned i = 0; i != AsmStrSize; ++i)
3413         AsmStr += (char)Record[2+i];
3414       for (unsigned i = 0; i != ConstStrSize; ++i)
3415         ConstrStr += (char)Record[3+AsmStrSize+i];
3416       UpgradeInlineAsmString(&AsmStr);
3417       if (!CurElemTy)
3418         return error("Missing element type for old-style inlineasm");
3419       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3420                          HasSideEffects, IsAlignStack,
3421                          InlineAsm::AsmDialect(AsmDialect));
3422       break;
3423     }
3424     // This version adds support for the unwind keyword.
3425     case bitc::CST_CODE_INLINEASM_OLD3: {
3426       if (Record.size() < 2)
3427         return error("Invalid inlineasm record");
3428       unsigned OpNum = 0;
3429       std::string AsmStr, ConstrStr;
3430       bool HasSideEffects = Record[OpNum] & 1;
3431       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3432       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3433       bool CanThrow = (Record[OpNum] >> 3) & 1;
3434       ++OpNum;
3435       unsigned AsmStrSize = Record[OpNum];
3436       ++OpNum;
3437       if (OpNum + AsmStrSize >= Record.size())
3438         return error("Invalid inlineasm record");
3439       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3440       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3441         return error("Invalid inlineasm record");
3442 
3443       for (unsigned i = 0; i != AsmStrSize; ++i)
3444         AsmStr += (char)Record[OpNum + i];
3445       ++OpNum;
3446       for (unsigned i = 0; i != ConstStrSize; ++i)
3447         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3448       UpgradeInlineAsmString(&AsmStr);
3449       if (!CurElemTy)
3450         return error("Missing element type for old-style inlineasm");
3451       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3452                          HasSideEffects, IsAlignStack,
3453                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3454       break;
3455     }
3456     // This version adds explicit function type.
3457     case bitc::CST_CODE_INLINEASM: {
3458       if (Record.size() < 3)
3459         return error("Invalid inlineasm record");
3460       unsigned OpNum = 0;
3461       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3462       ++OpNum;
3463       if (!FnTy)
3464         return error("Invalid inlineasm record");
3465       std::string AsmStr, ConstrStr;
3466       bool HasSideEffects = Record[OpNum] & 1;
3467       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3468       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3469       bool CanThrow = (Record[OpNum] >> 3) & 1;
3470       ++OpNum;
3471       unsigned AsmStrSize = Record[OpNum];
3472       ++OpNum;
3473       if (OpNum + AsmStrSize >= Record.size())
3474         return error("Invalid inlineasm record");
3475       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3476       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3477         return error("Invalid inlineasm record");
3478 
3479       for (unsigned i = 0; i != AsmStrSize; ++i)
3480         AsmStr += (char)Record[OpNum + i];
3481       ++OpNum;
3482       for (unsigned i = 0; i != ConstStrSize; ++i)
3483         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3484       UpgradeInlineAsmString(&AsmStr);
3485       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3486                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3487       break;
3488     }
3489     case bitc::CST_CODE_BLOCKADDRESS:{
3490       if (Record.size() < 3)
3491         return error("Invalid blockaddress record");
3492       unsigned FnTyID = Record[0];
3493       Type *FnTy = getTypeByID(FnTyID);
3494       if (!FnTy)
3495         return error("Invalid blockaddress record");
3496       V = BitcodeConstant::create(
3497           Alloc, CurTy,
3498           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3499           Record[1]);
3500       break;
3501     }
3502     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3503       if (Record.size() < 2)
3504         return error("Invalid dso_local record");
3505       unsigned GVTyID = Record[0];
3506       Type *GVTy = getTypeByID(GVTyID);
3507       if (!GVTy)
3508         return error("Invalid dso_local record");
3509       V = BitcodeConstant::create(
3510           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3511       break;
3512     }
3513     case bitc::CST_CODE_NO_CFI_VALUE: {
3514       if (Record.size() < 2)
3515         return error("Invalid no_cfi record");
3516       unsigned GVTyID = Record[0];
3517       Type *GVTy = getTypeByID(GVTyID);
3518       if (!GVTy)
3519         return error("Invalid no_cfi record");
3520       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3521                                   Record[1]);
3522       break;
3523     }
3524     }
3525 
3526     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3527     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3528       return Err;
3529     ++NextCstNo;
3530   }
3531 }
3532 
3533 Error BitcodeReader::parseUseLists() {
3534   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3535     return Err;
3536 
3537   // Read all the records.
3538   SmallVector<uint64_t, 64> Record;
3539 
3540   while (true) {
3541     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3542     if (!MaybeEntry)
3543       return MaybeEntry.takeError();
3544     BitstreamEntry Entry = MaybeEntry.get();
3545 
3546     switch (Entry.Kind) {
3547     case BitstreamEntry::SubBlock: // Handled for us already.
3548     case BitstreamEntry::Error:
3549       return error("Malformed block");
3550     case BitstreamEntry::EndBlock:
3551       return Error::success();
3552     case BitstreamEntry::Record:
3553       // The interesting case.
3554       break;
3555     }
3556 
3557     // Read a use list record.
3558     Record.clear();
3559     bool IsBB = false;
3560     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3561     if (!MaybeRecord)
3562       return MaybeRecord.takeError();
3563     switch (MaybeRecord.get()) {
3564     default:  // Default behavior: unknown type.
3565       break;
3566     case bitc::USELIST_CODE_BB:
3567       IsBB = true;
3568       [[fallthrough]];
3569     case bitc::USELIST_CODE_DEFAULT: {
3570       unsigned RecordLength = Record.size();
3571       if (RecordLength < 3)
3572         // Records should have at least an ID and two indexes.
3573         return error("Invalid record");
3574       unsigned ID = Record.pop_back_val();
3575 
3576       Value *V;
3577       if (IsBB) {
3578         assert(ID < FunctionBBs.size() && "Basic block not found");
3579         V = FunctionBBs[ID];
3580       } else
3581         V = ValueList[ID];
3582       unsigned NumUses = 0;
3583       SmallDenseMap<const Use *, unsigned, 16> Order;
3584       for (const Use &U : V->materialized_uses()) {
3585         if (++NumUses > Record.size())
3586           break;
3587         Order[&U] = Record[NumUses - 1];
3588       }
3589       if (Order.size() != Record.size() || NumUses > Record.size())
3590         // Mismatches can happen if the functions are being materialized lazily
3591         // (out-of-order), or a value has been upgraded.
3592         break;
3593 
3594       V->sortUseList([&](const Use &L, const Use &R) {
3595         return Order.lookup(&L) < Order.lookup(&R);
3596       });
3597       break;
3598     }
3599     }
3600   }
3601 }
3602 
3603 /// When we see the block for metadata, remember where it is and then skip it.
3604 /// This lets us lazily deserialize the metadata.
3605 Error BitcodeReader::rememberAndSkipMetadata() {
3606   // Save the current stream state.
3607   uint64_t CurBit = Stream.GetCurrentBitNo();
3608   DeferredMetadataInfo.push_back(CurBit);
3609 
3610   // Skip over the block for now.
3611   if (Error Err = Stream.SkipBlock())
3612     return Err;
3613   return Error::success();
3614 }
3615 
3616 Error BitcodeReader::materializeMetadata() {
3617   for (uint64_t BitPos : DeferredMetadataInfo) {
3618     // Move the bit stream to the saved position.
3619     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3620       return JumpFailed;
3621     if (Error Err = MDLoader->parseModuleMetadata())
3622       return Err;
3623   }
3624 
3625   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3626   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3627   // multiple times.
3628   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3629     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3630       NamedMDNode *LinkerOpts =
3631           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3632       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3633         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3634     }
3635   }
3636 
3637   DeferredMetadataInfo.clear();
3638   return Error::success();
3639 }
3640 
3641 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3642 
3643 /// When we see the block for a function body, remember where it is and then
3644 /// skip it.  This lets us lazily deserialize the functions.
3645 Error BitcodeReader::rememberAndSkipFunctionBody() {
3646   // Get the function we are talking about.
3647   if (FunctionsWithBodies.empty())
3648     return error("Insufficient function protos");
3649 
3650   Function *Fn = FunctionsWithBodies.back();
3651   FunctionsWithBodies.pop_back();
3652 
3653   // Save the current stream state.
3654   uint64_t CurBit = Stream.GetCurrentBitNo();
3655   assert(
3656       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3657       "Mismatch between VST and scanned function offsets");
3658   DeferredFunctionInfo[Fn] = CurBit;
3659 
3660   // Skip over the function block for now.
3661   if (Error Err = Stream.SkipBlock())
3662     return Err;
3663   return Error::success();
3664 }
3665 
3666 Error BitcodeReader::globalCleanup() {
3667   // Patch the initializers for globals and aliases up.
3668   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3669     return Err;
3670   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3671     return error("Malformed global initializer set");
3672 
3673   // Look for intrinsic functions which need to be upgraded at some point
3674   // and functions that need to have their function attributes upgraded.
3675   for (Function &F : *TheModule) {
3676     MDLoader->upgradeDebugIntrinsics(F);
3677     Function *NewFn;
3678     if (UpgradeIntrinsicFunction(&F, NewFn))
3679       UpgradedIntrinsics[&F] = NewFn;
3680     // Look for functions that rely on old function attribute behavior.
3681     UpgradeFunctionAttributes(F);
3682   }
3683 
3684   // Look for global variables which need to be renamed.
3685   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3686   for (GlobalVariable &GV : TheModule->globals())
3687     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3688       UpgradedVariables.emplace_back(&GV, Upgraded);
3689   for (auto &Pair : UpgradedVariables) {
3690     Pair.first->eraseFromParent();
3691     TheModule->insertGlobalVariable(Pair.second);
3692   }
3693 
3694   // Force deallocation of memory for these vectors to favor the client that
3695   // want lazy deserialization.
3696   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3697   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3698   return Error::success();
3699 }
3700 
3701 /// Support for lazy parsing of function bodies. This is required if we
3702 /// either have an old bitcode file without a VST forward declaration record,
3703 /// or if we have an anonymous function being materialized, since anonymous
3704 /// functions do not have a name and are therefore not in the VST.
3705 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3706   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3707     return JumpFailed;
3708 
3709   if (Stream.AtEndOfStream())
3710     return error("Could not find function in stream");
3711 
3712   if (!SeenFirstFunctionBody)
3713     return error("Trying to materialize functions before seeing function blocks");
3714 
3715   // An old bitcode file with the symbol table at the end would have
3716   // finished the parse greedily.
3717   assert(SeenValueSymbolTable);
3718 
3719   SmallVector<uint64_t, 64> Record;
3720 
3721   while (true) {
3722     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3723     if (!MaybeEntry)
3724       return MaybeEntry.takeError();
3725     llvm::BitstreamEntry Entry = MaybeEntry.get();
3726 
3727     switch (Entry.Kind) {
3728     default:
3729       return error("Expect SubBlock");
3730     case BitstreamEntry::SubBlock:
3731       switch (Entry.ID) {
3732       default:
3733         return error("Expect function block");
3734       case bitc::FUNCTION_BLOCK_ID:
3735         if (Error Err = rememberAndSkipFunctionBody())
3736           return Err;
3737         NextUnreadBit = Stream.GetCurrentBitNo();
3738         return Error::success();
3739       }
3740     }
3741   }
3742 }
3743 
3744 Error BitcodeReaderBase::readBlockInfo() {
3745   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3746       Stream.ReadBlockInfoBlock();
3747   if (!MaybeNewBlockInfo)
3748     return MaybeNewBlockInfo.takeError();
3749   std::optional<BitstreamBlockInfo> NewBlockInfo =
3750       std::move(MaybeNewBlockInfo.get());
3751   if (!NewBlockInfo)
3752     return error("Malformed block");
3753   BlockInfo = std::move(*NewBlockInfo);
3754   return Error::success();
3755 }
3756 
3757 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3758   // v1: [selection_kind, name]
3759   // v2: [strtab_offset, strtab_size, selection_kind]
3760   StringRef Name;
3761   std::tie(Name, Record) = readNameFromStrtab(Record);
3762 
3763   if (Record.empty())
3764     return error("Invalid record");
3765   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3766   std::string OldFormatName;
3767   if (!UseStrtab) {
3768     if (Record.size() < 2)
3769       return error("Invalid record");
3770     unsigned ComdatNameSize = Record[1];
3771     if (ComdatNameSize > Record.size() - 2)
3772       return error("Comdat name size too large");
3773     OldFormatName.reserve(ComdatNameSize);
3774     for (unsigned i = 0; i != ComdatNameSize; ++i)
3775       OldFormatName += (char)Record[2 + i];
3776     Name = OldFormatName;
3777   }
3778   Comdat *C = TheModule->getOrInsertComdat(Name);
3779   C->setSelectionKind(SK);
3780   ComdatList.push_back(C);
3781   return Error::success();
3782 }
3783 
3784 static void inferDSOLocal(GlobalValue *GV) {
3785   // infer dso_local from linkage and visibility if it is not encoded.
3786   if (GV->hasLocalLinkage() ||
3787       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3788     GV->setDSOLocal(true);
3789 }
3790 
3791 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3792   GlobalValue::SanitizerMetadata Meta;
3793   if (V & (1 << 0))
3794     Meta.NoAddress = true;
3795   if (V & (1 << 1))
3796     Meta.NoHWAddress = true;
3797   if (V & (1 << 2))
3798     Meta.Memtag = true;
3799   if (V & (1 << 3))
3800     Meta.IsDynInit = true;
3801   return Meta;
3802 }
3803 
3804 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3805   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3806   // visibility, threadlocal, unnamed_addr, externally_initialized,
3807   // dllstorageclass, comdat, attributes, preemption specifier,
3808   // partition strtab offset, partition strtab size] (name in VST)
3809   // v2: [strtab_offset, strtab_size, v1]
3810   StringRef Name;
3811   std::tie(Name, Record) = readNameFromStrtab(Record);
3812 
3813   if (Record.size() < 6)
3814     return error("Invalid record");
3815   unsigned TyID = Record[0];
3816   Type *Ty = getTypeByID(TyID);
3817   if (!Ty)
3818     return error("Invalid record");
3819   bool isConstant = Record[1] & 1;
3820   bool explicitType = Record[1] & 2;
3821   unsigned AddressSpace;
3822   if (explicitType) {
3823     AddressSpace = Record[1] >> 2;
3824   } else {
3825     if (!Ty->isPointerTy())
3826       return error("Invalid type for value");
3827     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3828     TyID = getContainedTypeID(TyID);
3829     Ty = getTypeByID(TyID);
3830     if (!Ty)
3831       return error("Missing element type for old-style global");
3832   }
3833 
3834   uint64_t RawLinkage = Record[3];
3835   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3836   MaybeAlign Alignment;
3837   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3838     return Err;
3839   std::string Section;
3840   if (Record[5]) {
3841     if (Record[5] - 1 >= SectionTable.size())
3842       return error("Invalid ID");
3843     Section = SectionTable[Record[5] - 1];
3844   }
3845   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3846   // Local linkage must have default visibility.
3847   // auto-upgrade `hidden` and `protected` for old bitcode.
3848   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3849     Visibility = getDecodedVisibility(Record[6]);
3850 
3851   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3852   if (Record.size() > 7)
3853     TLM = getDecodedThreadLocalMode(Record[7]);
3854 
3855   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3856   if (Record.size() > 8)
3857     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3858 
3859   bool ExternallyInitialized = false;
3860   if (Record.size() > 9)
3861     ExternallyInitialized = Record[9];
3862 
3863   GlobalVariable *NewGV =
3864       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3865                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3866   if (Alignment)
3867     NewGV->setAlignment(*Alignment);
3868   if (!Section.empty())
3869     NewGV->setSection(Section);
3870   NewGV->setVisibility(Visibility);
3871   NewGV->setUnnamedAddr(UnnamedAddr);
3872 
3873   if (Record.size() > 10) {
3874     // A GlobalValue with local linkage cannot have a DLL storage class.
3875     if (!NewGV->hasLocalLinkage()) {
3876       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3877     }
3878   } else {
3879     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3880   }
3881 
3882   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3883 
3884   // Remember which value to use for the global initializer.
3885   if (unsigned InitID = Record[2])
3886     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3887 
3888   if (Record.size() > 11) {
3889     if (unsigned ComdatID = Record[11]) {
3890       if (ComdatID > ComdatList.size())
3891         return error("Invalid global variable comdat ID");
3892       NewGV->setComdat(ComdatList[ComdatID - 1]);
3893     }
3894   } else if (hasImplicitComdat(RawLinkage)) {
3895     ImplicitComdatObjects.insert(NewGV);
3896   }
3897 
3898   if (Record.size() > 12) {
3899     auto AS = getAttributes(Record[12]).getFnAttrs();
3900     NewGV->setAttributes(AS);
3901   }
3902 
3903   if (Record.size() > 13) {
3904     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3905   }
3906   inferDSOLocal(NewGV);
3907 
3908   // Check whether we have enough values to read a partition name.
3909   if (Record.size() > 15)
3910     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3911 
3912   if (Record.size() > 16 && Record[16]) {
3913     llvm::GlobalValue::SanitizerMetadata Meta =
3914         deserializeSanitizerMetadata(Record[16]);
3915     NewGV->setSanitizerMetadata(Meta);
3916   }
3917 
3918   return Error::success();
3919 }
3920 
3921 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
3922   if (ValueTypeCallback) {
3923     (*ValueTypeCallback)(
3924         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
3925         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
3926   }
3927 }
3928 
3929 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3930   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3931   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3932   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3933   // v2: [strtab_offset, strtab_size, v1]
3934   StringRef Name;
3935   std::tie(Name, Record) = readNameFromStrtab(Record);
3936 
3937   if (Record.size() < 8)
3938     return error("Invalid record");
3939   unsigned FTyID = Record[0];
3940   Type *FTy = getTypeByID(FTyID);
3941   if (!FTy)
3942     return error("Invalid record");
3943   if (isa<PointerType>(FTy)) {
3944     FTyID = getContainedTypeID(FTyID, 0);
3945     FTy = getTypeByID(FTyID);
3946     if (!FTy)
3947       return error("Missing element type for old-style function");
3948   }
3949 
3950   if (!isa<FunctionType>(FTy))
3951     return error("Invalid type for value");
3952   auto CC = static_cast<CallingConv::ID>(Record[1]);
3953   if (CC & ~CallingConv::MaxID)
3954     return error("Invalid calling convention ID");
3955 
3956   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3957   if (Record.size() > 16)
3958     AddrSpace = Record[16];
3959 
3960   Function *Func =
3961       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3962                        AddrSpace, Name, TheModule);
3963 
3964   assert(Func->getFunctionType() == FTy &&
3965          "Incorrect fully specified type provided for function");
3966   FunctionTypeIDs[Func] = FTyID;
3967 
3968   Func->setCallingConv(CC);
3969   bool isProto = Record[2];
3970   uint64_t RawLinkage = Record[3];
3971   Func->setLinkage(getDecodedLinkage(RawLinkage));
3972   Func->setAttributes(getAttributes(Record[4]));
3973   callValueTypeCallback(Func, FTyID);
3974 
3975   // Upgrade any old-style byval or sret without a type by propagating the
3976   // argument's pointee type. There should be no opaque pointers where the byval
3977   // type is implicit.
3978   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3979     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3980                                      Attribute::InAlloca}) {
3981       if (!Func->hasParamAttribute(i, Kind))
3982         continue;
3983 
3984       if (Func->getParamAttribute(i, Kind).getValueAsType())
3985         continue;
3986 
3987       Func->removeParamAttr(i, Kind);
3988 
3989       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
3990       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
3991       if (!PtrEltTy)
3992         return error("Missing param element type for attribute upgrade");
3993 
3994       Attribute NewAttr;
3995       switch (Kind) {
3996       case Attribute::ByVal:
3997         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3998         break;
3999       case Attribute::StructRet:
4000         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4001         break;
4002       case Attribute::InAlloca:
4003         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4004         break;
4005       default:
4006         llvm_unreachable("not an upgraded type attribute");
4007       }
4008 
4009       Func->addParamAttr(i, NewAttr);
4010     }
4011   }
4012 
4013   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4014       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4015     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4016     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4017     if (!ByValTy)
4018       return error("Missing param element type for x86_intrcc upgrade");
4019     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4020     Func->addParamAttr(0, NewAttr);
4021   }
4022 
4023   MaybeAlign Alignment;
4024   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4025     return Err;
4026   if (Alignment)
4027     Func->setAlignment(*Alignment);
4028   if (Record[6]) {
4029     if (Record[6] - 1 >= SectionTable.size())
4030       return error("Invalid ID");
4031     Func->setSection(SectionTable[Record[6] - 1]);
4032   }
4033   // Local linkage must have default visibility.
4034   // auto-upgrade `hidden` and `protected` for old bitcode.
4035   if (!Func->hasLocalLinkage())
4036     Func->setVisibility(getDecodedVisibility(Record[7]));
4037   if (Record.size() > 8 && Record[8]) {
4038     if (Record[8] - 1 >= GCTable.size())
4039       return error("Invalid ID");
4040     Func->setGC(GCTable[Record[8] - 1]);
4041   }
4042   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4043   if (Record.size() > 9)
4044     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4045   Func->setUnnamedAddr(UnnamedAddr);
4046 
4047   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4048   if (Record.size() > 10)
4049     OperandInfo.Prologue = Record[10];
4050 
4051   if (Record.size() > 11) {
4052     // A GlobalValue with local linkage cannot have a DLL storage class.
4053     if (!Func->hasLocalLinkage()) {
4054       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4055     }
4056   } else {
4057     upgradeDLLImportExportLinkage(Func, RawLinkage);
4058   }
4059 
4060   if (Record.size() > 12) {
4061     if (unsigned ComdatID = Record[12]) {
4062       if (ComdatID > ComdatList.size())
4063         return error("Invalid function comdat ID");
4064       Func->setComdat(ComdatList[ComdatID - 1]);
4065     }
4066   } else if (hasImplicitComdat(RawLinkage)) {
4067     ImplicitComdatObjects.insert(Func);
4068   }
4069 
4070   if (Record.size() > 13)
4071     OperandInfo.Prefix = Record[13];
4072 
4073   if (Record.size() > 14)
4074     OperandInfo.PersonalityFn = Record[14];
4075 
4076   if (Record.size() > 15) {
4077     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4078   }
4079   inferDSOLocal(Func);
4080 
4081   // Record[16] is the address space number.
4082 
4083   // Check whether we have enough values to read a partition name. Also make
4084   // sure Strtab has enough values.
4085   if (Record.size() > 18 && Strtab.data() &&
4086       Record[17] + Record[18] <= Strtab.size()) {
4087     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4088   }
4089 
4090   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4091 
4092   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4093     FunctionOperands.push_back(OperandInfo);
4094 
4095   // If this is a function with a body, remember the prototype we are
4096   // creating now, so that we can match up the body with them later.
4097   if (!isProto) {
4098     Func->setIsMaterializable(true);
4099     FunctionsWithBodies.push_back(Func);
4100     DeferredFunctionInfo[Func] = 0;
4101   }
4102   return Error::success();
4103 }
4104 
4105 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4106     unsigned BitCode, ArrayRef<uint64_t> Record) {
4107   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4108   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4109   // dllstorageclass, threadlocal, unnamed_addr,
4110   // preemption specifier] (name in VST)
4111   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4112   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4113   // preemption specifier] (name in VST)
4114   // v2: [strtab_offset, strtab_size, v1]
4115   StringRef Name;
4116   std::tie(Name, Record) = readNameFromStrtab(Record);
4117 
4118   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4119   if (Record.size() < (3 + (unsigned)NewRecord))
4120     return error("Invalid record");
4121   unsigned OpNum = 0;
4122   unsigned TypeID = Record[OpNum++];
4123   Type *Ty = getTypeByID(TypeID);
4124   if (!Ty)
4125     return error("Invalid record");
4126 
4127   unsigned AddrSpace;
4128   if (!NewRecord) {
4129     auto *PTy = dyn_cast<PointerType>(Ty);
4130     if (!PTy)
4131       return error("Invalid type for value");
4132     AddrSpace = PTy->getAddressSpace();
4133     TypeID = getContainedTypeID(TypeID);
4134     Ty = getTypeByID(TypeID);
4135     if (!Ty)
4136       return error("Missing element type for old-style indirect symbol");
4137   } else {
4138     AddrSpace = Record[OpNum++];
4139   }
4140 
4141   auto Val = Record[OpNum++];
4142   auto Linkage = Record[OpNum++];
4143   GlobalValue *NewGA;
4144   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4145       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4146     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4147                                 TheModule);
4148   else
4149     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4150                                 nullptr, TheModule);
4151 
4152   // Local linkage must have default visibility.
4153   // auto-upgrade `hidden` and `protected` for old bitcode.
4154   if (OpNum != Record.size()) {
4155     auto VisInd = OpNum++;
4156     if (!NewGA->hasLocalLinkage())
4157       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4158   }
4159   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4160       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4161     if (OpNum != Record.size()) {
4162       auto S = Record[OpNum++];
4163       // A GlobalValue with local linkage cannot have a DLL storage class.
4164       if (!NewGA->hasLocalLinkage())
4165         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4166     }
4167     else
4168       upgradeDLLImportExportLinkage(NewGA, Linkage);
4169     if (OpNum != Record.size())
4170       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4171     if (OpNum != Record.size())
4172       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4173   }
4174   if (OpNum != Record.size())
4175     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4176   inferDSOLocal(NewGA);
4177 
4178   // Check whether we have enough values to read a partition name.
4179   if (OpNum + 1 < Record.size()) {
4180     NewGA->setPartition(
4181         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4182     OpNum += 2;
4183   }
4184 
4185   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4186   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4187   return Error::success();
4188 }
4189 
4190 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4191                                  bool ShouldLazyLoadMetadata,
4192                                  ParserCallbacks Callbacks) {
4193   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4194   if (ResumeBit) {
4195     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4196       return JumpFailed;
4197   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4198     return Err;
4199 
4200   SmallVector<uint64_t, 64> Record;
4201 
4202   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4203   // finalize the datalayout before we run any of that code.
4204   bool ResolvedDataLayout = false;
4205   // In order to support importing modules with illegal data layout strings,
4206   // delay parsing the data layout string until after upgrades and overrides
4207   // have been applied, allowing to fix illegal data layout strings.
4208   // Initialize to the current module's layout string in case none is specified.
4209   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4210 
4211   auto ResolveDataLayout = [&]() -> Error {
4212     if (ResolvedDataLayout)
4213       return Error::success();
4214 
4215     // Datalayout and triple can't be parsed after this point.
4216     ResolvedDataLayout = true;
4217 
4218     // Auto-upgrade the layout string
4219     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4220         TentativeDataLayoutStr, TheModule->getTargetTriple());
4221 
4222     // Apply override
4223     if (Callbacks.DataLayout) {
4224       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4225               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4226         TentativeDataLayoutStr = *LayoutOverride;
4227     }
4228 
4229     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4230     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4231     if (!MaybeDL)
4232       return MaybeDL.takeError();
4233 
4234     TheModule->setDataLayout(MaybeDL.get());
4235     return Error::success();
4236   };
4237 
4238   // Read all the records for this module.
4239   while (true) {
4240     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4241     if (!MaybeEntry)
4242       return MaybeEntry.takeError();
4243     llvm::BitstreamEntry Entry = MaybeEntry.get();
4244 
4245     switch (Entry.Kind) {
4246     case BitstreamEntry::Error:
4247       return error("Malformed block");
4248     case BitstreamEntry::EndBlock:
4249       if (Error Err = ResolveDataLayout())
4250         return Err;
4251       return globalCleanup();
4252 
4253     case BitstreamEntry::SubBlock:
4254       switch (Entry.ID) {
4255       default:  // Skip unknown content.
4256         if (Error Err = Stream.SkipBlock())
4257           return Err;
4258         break;
4259       case bitc::BLOCKINFO_BLOCK_ID:
4260         if (Error Err = readBlockInfo())
4261           return Err;
4262         break;
4263       case bitc::PARAMATTR_BLOCK_ID:
4264         if (Error Err = parseAttributeBlock())
4265           return Err;
4266         break;
4267       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4268         if (Error Err = parseAttributeGroupBlock())
4269           return Err;
4270         break;
4271       case bitc::TYPE_BLOCK_ID_NEW:
4272         if (Error Err = parseTypeTable())
4273           return Err;
4274         break;
4275       case bitc::VALUE_SYMTAB_BLOCK_ID:
4276         if (!SeenValueSymbolTable) {
4277           // Either this is an old form VST without function index and an
4278           // associated VST forward declaration record (which would have caused
4279           // the VST to be jumped to and parsed before it was encountered
4280           // normally in the stream), or there were no function blocks to
4281           // trigger an earlier parsing of the VST.
4282           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4283           if (Error Err = parseValueSymbolTable())
4284             return Err;
4285           SeenValueSymbolTable = true;
4286         } else {
4287           // We must have had a VST forward declaration record, which caused
4288           // the parser to jump to and parse the VST earlier.
4289           assert(VSTOffset > 0);
4290           if (Error Err = Stream.SkipBlock())
4291             return Err;
4292         }
4293         break;
4294       case bitc::CONSTANTS_BLOCK_ID:
4295         if (Error Err = parseConstants())
4296           return Err;
4297         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4298           return Err;
4299         break;
4300       case bitc::METADATA_BLOCK_ID:
4301         if (ShouldLazyLoadMetadata) {
4302           if (Error Err = rememberAndSkipMetadata())
4303             return Err;
4304           break;
4305         }
4306         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4307         if (Error Err = MDLoader->parseModuleMetadata())
4308           return Err;
4309         break;
4310       case bitc::METADATA_KIND_BLOCK_ID:
4311         if (Error Err = MDLoader->parseMetadataKinds())
4312           return Err;
4313         break;
4314       case bitc::FUNCTION_BLOCK_ID:
4315         if (Error Err = ResolveDataLayout())
4316           return Err;
4317 
4318         // If this is the first function body we've seen, reverse the
4319         // FunctionsWithBodies list.
4320         if (!SeenFirstFunctionBody) {
4321           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4322           if (Error Err = globalCleanup())
4323             return Err;
4324           SeenFirstFunctionBody = true;
4325         }
4326 
4327         if (VSTOffset > 0) {
4328           // If we have a VST forward declaration record, make sure we
4329           // parse the VST now if we haven't already. It is needed to
4330           // set up the DeferredFunctionInfo vector for lazy reading.
4331           if (!SeenValueSymbolTable) {
4332             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4333               return Err;
4334             SeenValueSymbolTable = true;
4335             // Fall through so that we record the NextUnreadBit below.
4336             // This is necessary in case we have an anonymous function that
4337             // is later materialized. Since it will not have a VST entry we
4338             // need to fall back to the lazy parse to find its offset.
4339           } else {
4340             // If we have a VST forward declaration record, but have already
4341             // parsed the VST (just above, when the first function body was
4342             // encountered here), then we are resuming the parse after
4343             // materializing functions. The ResumeBit points to the
4344             // start of the last function block recorded in the
4345             // DeferredFunctionInfo map. Skip it.
4346             if (Error Err = Stream.SkipBlock())
4347               return Err;
4348             continue;
4349           }
4350         }
4351 
4352         // Support older bitcode files that did not have the function
4353         // index in the VST, nor a VST forward declaration record, as
4354         // well as anonymous functions that do not have VST entries.
4355         // Build the DeferredFunctionInfo vector on the fly.
4356         if (Error Err = rememberAndSkipFunctionBody())
4357           return Err;
4358 
4359         // Suspend parsing when we reach the function bodies. Subsequent
4360         // materialization calls will resume it when necessary. If the bitcode
4361         // file is old, the symbol table will be at the end instead and will not
4362         // have been seen yet. In this case, just finish the parse now.
4363         if (SeenValueSymbolTable) {
4364           NextUnreadBit = Stream.GetCurrentBitNo();
4365           // After the VST has been parsed, we need to make sure intrinsic name
4366           // are auto-upgraded.
4367           return globalCleanup();
4368         }
4369         break;
4370       case bitc::USELIST_BLOCK_ID:
4371         if (Error Err = parseUseLists())
4372           return Err;
4373         break;
4374       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4375         if (Error Err = parseOperandBundleTags())
4376           return Err;
4377         break;
4378       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4379         if (Error Err = parseSyncScopeNames())
4380           return Err;
4381         break;
4382       }
4383       continue;
4384 
4385     case BitstreamEntry::Record:
4386       // The interesting case.
4387       break;
4388     }
4389 
4390     // Read a record.
4391     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4392     if (!MaybeBitCode)
4393       return MaybeBitCode.takeError();
4394     switch (unsigned BitCode = MaybeBitCode.get()) {
4395     default: break;  // Default behavior, ignore unknown content.
4396     case bitc::MODULE_CODE_VERSION: {
4397       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4398       if (!VersionOrErr)
4399         return VersionOrErr.takeError();
4400       UseRelativeIDs = *VersionOrErr >= 1;
4401       break;
4402     }
4403     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4404       if (ResolvedDataLayout)
4405         return error("target triple too late in module");
4406       std::string S;
4407       if (convertToString(Record, 0, S))
4408         return error("Invalid record");
4409       TheModule->setTargetTriple(S);
4410       break;
4411     }
4412     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4413       if (ResolvedDataLayout)
4414         return error("datalayout too late in module");
4415       if (convertToString(Record, 0, TentativeDataLayoutStr))
4416         return error("Invalid record");
4417       break;
4418     }
4419     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4420       std::string S;
4421       if (convertToString(Record, 0, S))
4422         return error("Invalid record");
4423       TheModule->setModuleInlineAsm(S);
4424       break;
4425     }
4426     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4427       // Deprecated, but still needed to read old bitcode files.
4428       std::string S;
4429       if (convertToString(Record, 0, S))
4430         return error("Invalid record");
4431       // Ignore value.
4432       break;
4433     }
4434     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4435       std::string S;
4436       if (convertToString(Record, 0, S))
4437         return error("Invalid record");
4438       SectionTable.push_back(S);
4439       break;
4440     }
4441     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4442       std::string S;
4443       if (convertToString(Record, 0, S))
4444         return error("Invalid record");
4445       GCTable.push_back(S);
4446       break;
4447     }
4448     case bitc::MODULE_CODE_COMDAT:
4449       if (Error Err = parseComdatRecord(Record))
4450         return Err;
4451       break;
4452     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4453     // written by ThinLinkBitcodeWriter. See
4454     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4455     // record
4456     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4457     case bitc::MODULE_CODE_GLOBALVAR:
4458       if (Error Err = parseGlobalVarRecord(Record))
4459         return Err;
4460       break;
4461     case bitc::MODULE_CODE_FUNCTION:
4462       if (Error Err = ResolveDataLayout())
4463         return Err;
4464       if (Error Err = parseFunctionRecord(Record))
4465         return Err;
4466       break;
4467     case bitc::MODULE_CODE_IFUNC:
4468     case bitc::MODULE_CODE_ALIAS:
4469     case bitc::MODULE_CODE_ALIAS_OLD:
4470       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4471         return Err;
4472       break;
4473     /// MODULE_CODE_VSTOFFSET: [offset]
4474     case bitc::MODULE_CODE_VSTOFFSET:
4475       if (Record.empty())
4476         return error("Invalid record");
4477       // Note that we subtract 1 here because the offset is relative to one word
4478       // before the start of the identification or module block, which was
4479       // historically always the start of the regular bitcode header.
4480       VSTOffset = Record[0] - 1;
4481       break;
4482     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4483     case bitc::MODULE_CODE_SOURCE_FILENAME:
4484       SmallString<128> ValueName;
4485       if (convertToString(Record, 0, ValueName))
4486         return error("Invalid record");
4487       TheModule->setSourceFileName(ValueName);
4488       break;
4489     }
4490     Record.clear();
4491   }
4492   this->ValueTypeCallback = std::nullopt;
4493   return Error::success();
4494 }
4495 
4496 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4497                                       bool IsImporting,
4498                                       ParserCallbacks Callbacks) {
4499   TheModule = M;
4500   MetadataLoaderCallbacks MDCallbacks;
4501   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4502   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4503     return getContainedTypeID(I, J);
4504   };
4505   MDCallbacks.MDType = Callbacks.MDType;
4506   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4507   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4508 }
4509 
4510 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4511   if (!isa<PointerType>(PtrType))
4512     return error("Load/Store operand is not a pointer type");
4513   if (!PointerType::isLoadableOrStorableType(ValType))
4514     return error("Cannot load/store from pointer");
4515   return Error::success();
4516 }
4517 
4518 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4519                                              ArrayRef<unsigned> ArgTyIDs) {
4520   AttributeList Attrs = CB->getAttributes();
4521   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4522     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4523                                      Attribute::InAlloca}) {
4524       if (!Attrs.hasParamAttr(i, Kind) ||
4525           Attrs.getParamAttr(i, Kind).getValueAsType())
4526         continue;
4527 
4528       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4529       if (!PtrEltTy)
4530         return error("Missing element type for typed attribute upgrade");
4531 
4532       Attribute NewAttr;
4533       switch (Kind) {
4534       case Attribute::ByVal:
4535         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4536         break;
4537       case Attribute::StructRet:
4538         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4539         break;
4540       case Attribute::InAlloca:
4541         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4542         break;
4543       default:
4544         llvm_unreachable("not an upgraded type attribute");
4545       }
4546 
4547       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4548     }
4549   }
4550 
4551   if (CB->isInlineAsm()) {
4552     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4553     unsigned ArgNo = 0;
4554     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4555       if (!CI.hasArg())
4556         continue;
4557 
4558       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4559         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4560         if (!ElemTy)
4561           return error("Missing element type for inline asm upgrade");
4562         Attrs = Attrs.addParamAttribute(
4563             Context, ArgNo,
4564             Attribute::get(Context, Attribute::ElementType, ElemTy));
4565       }
4566 
4567       ArgNo++;
4568     }
4569   }
4570 
4571   switch (CB->getIntrinsicID()) {
4572   case Intrinsic::preserve_array_access_index:
4573   case Intrinsic::preserve_struct_access_index:
4574   case Intrinsic::aarch64_ldaxr:
4575   case Intrinsic::aarch64_ldxr:
4576   case Intrinsic::aarch64_stlxr:
4577   case Intrinsic::aarch64_stxr:
4578   case Intrinsic::arm_ldaex:
4579   case Intrinsic::arm_ldrex:
4580   case Intrinsic::arm_stlex:
4581   case Intrinsic::arm_strex: {
4582     unsigned ArgNo;
4583     switch (CB->getIntrinsicID()) {
4584     case Intrinsic::aarch64_stlxr:
4585     case Intrinsic::aarch64_stxr:
4586     case Intrinsic::arm_stlex:
4587     case Intrinsic::arm_strex:
4588       ArgNo = 1;
4589       break;
4590     default:
4591       ArgNo = 0;
4592       break;
4593     }
4594     if (!Attrs.getParamElementType(ArgNo)) {
4595       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4596       if (!ElTy)
4597         return error("Missing element type for elementtype upgrade");
4598       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4599       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4600     }
4601     break;
4602   }
4603   default:
4604     break;
4605   }
4606 
4607   CB->setAttributes(Attrs);
4608   return Error::success();
4609 }
4610 
4611 /// Lazily parse the specified function body block.
4612 Error BitcodeReader::parseFunctionBody(Function *F) {
4613   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4614     return Err;
4615 
4616   // Unexpected unresolved metadata when parsing function.
4617   if (MDLoader->hasFwdRefs())
4618     return error("Invalid function metadata: incoming forward references");
4619 
4620   InstructionList.clear();
4621   unsigned ModuleValueListSize = ValueList.size();
4622   unsigned ModuleMDLoaderSize = MDLoader->size();
4623 
4624   // Add all the function arguments to the value table.
4625   unsigned ArgNo = 0;
4626   unsigned FTyID = FunctionTypeIDs[F];
4627   for (Argument &I : F->args()) {
4628     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4629     assert(I.getType() == getTypeByID(ArgTyID) &&
4630            "Incorrect fully specified type for Function Argument");
4631     ValueList.push_back(&I, ArgTyID);
4632     ++ArgNo;
4633   }
4634   unsigned NextValueNo = ValueList.size();
4635   BasicBlock *CurBB = nullptr;
4636   unsigned CurBBNo = 0;
4637   // Block into which constant expressions from phi nodes are materialized.
4638   BasicBlock *PhiConstExprBB = nullptr;
4639   // Edge blocks for phi nodes into which constant expressions have been
4640   // expanded.
4641   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4642     ConstExprEdgeBBs;
4643 
4644   DebugLoc LastLoc;
4645   auto getLastInstruction = [&]() -> Instruction * {
4646     if (CurBB && !CurBB->empty())
4647       return &CurBB->back();
4648     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4649              !FunctionBBs[CurBBNo - 1]->empty())
4650       return &FunctionBBs[CurBBNo - 1]->back();
4651     return nullptr;
4652   };
4653 
4654   std::vector<OperandBundleDef> OperandBundles;
4655 
4656   // Read all the records.
4657   SmallVector<uint64_t, 64> Record;
4658 
4659   while (true) {
4660     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4661     if (!MaybeEntry)
4662       return MaybeEntry.takeError();
4663     llvm::BitstreamEntry Entry = MaybeEntry.get();
4664 
4665     switch (Entry.Kind) {
4666     case BitstreamEntry::Error:
4667       return error("Malformed block");
4668     case BitstreamEntry::EndBlock:
4669       goto OutOfRecordLoop;
4670 
4671     case BitstreamEntry::SubBlock:
4672       switch (Entry.ID) {
4673       default:  // Skip unknown content.
4674         if (Error Err = Stream.SkipBlock())
4675           return Err;
4676         break;
4677       case bitc::CONSTANTS_BLOCK_ID:
4678         if (Error Err = parseConstants())
4679           return Err;
4680         NextValueNo = ValueList.size();
4681         break;
4682       case bitc::VALUE_SYMTAB_BLOCK_ID:
4683         if (Error Err = parseValueSymbolTable())
4684           return Err;
4685         break;
4686       case bitc::METADATA_ATTACHMENT_ID:
4687         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4688           return Err;
4689         break;
4690       case bitc::METADATA_BLOCK_ID:
4691         assert(DeferredMetadataInfo.empty() &&
4692                "Must read all module-level metadata before function-level");
4693         if (Error Err = MDLoader->parseFunctionMetadata())
4694           return Err;
4695         break;
4696       case bitc::USELIST_BLOCK_ID:
4697         if (Error Err = parseUseLists())
4698           return Err;
4699         break;
4700       }
4701       continue;
4702 
4703     case BitstreamEntry::Record:
4704       // The interesting case.
4705       break;
4706     }
4707 
4708     // Read a record.
4709     Record.clear();
4710     Instruction *I = nullptr;
4711     unsigned ResTypeID = InvalidTypeID;
4712     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4713     if (!MaybeBitCode)
4714       return MaybeBitCode.takeError();
4715     switch (unsigned BitCode = MaybeBitCode.get()) {
4716     default: // Default behavior: reject
4717       return error("Invalid value");
4718     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4719       if (Record.empty() || Record[0] == 0)
4720         return error("Invalid record");
4721       // Create all the basic blocks for the function.
4722       FunctionBBs.resize(Record[0]);
4723 
4724       // See if anything took the address of blocks in this function.
4725       auto BBFRI = BasicBlockFwdRefs.find(F);
4726       if (BBFRI == BasicBlockFwdRefs.end()) {
4727         for (BasicBlock *&BB : FunctionBBs)
4728           BB = BasicBlock::Create(Context, "", F);
4729       } else {
4730         auto &BBRefs = BBFRI->second;
4731         // Check for invalid basic block references.
4732         if (BBRefs.size() > FunctionBBs.size())
4733           return error("Invalid ID");
4734         assert(!BBRefs.empty() && "Unexpected empty array");
4735         assert(!BBRefs.front() && "Invalid reference to entry block");
4736         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4737              ++I)
4738           if (I < RE && BBRefs[I]) {
4739             BBRefs[I]->insertInto(F);
4740             FunctionBBs[I] = BBRefs[I];
4741           } else {
4742             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4743           }
4744 
4745         // Erase from the table.
4746         BasicBlockFwdRefs.erase(BBFRI);
4747       }
4748 
4749       CurBB = FunctionBBs[0];
4750       continue;
4751     }
4752 
4753     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4754       // The record should not be emitted if it's an empty list.
4755       if (Record.empty())
4756         return error("Invalid record");
4757       // When we have the RARE case of a BlockAddress Constant that is not
4758       // scoped to the Function it refers to, we need to conservatively
4759       // materialize the referred to Function, regardless of whether or not
4760       // that Function will ultimately be linked, otherwise users of
4761       // BitcodeReader might start splicing out Function bodies such that we
4762       // might no longer be able to materialize the BlockAddress since the
4763       // BasicBlock (and entire body of the Function) the BlockAddress refers
4764       // to may have been moved. In the case that the user of BitcodeReader
4765       // decides ultimately not to link the Function body, materializing here
4766       // could be considered wasteful, but it's better than a deserialization
4767       // failure as described. This keeps BitcodeReader unaware of complex
4768       // linkage policy decisions such as those use by LTO, leaving those
4769       // decisions "one layer up."
4770       for (uint64_t ValID : Record)
4771         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4772           BackwardRefFunctions.push_back(F);
4773         else
4774           return error("Invalid record");
4775 
4776       continue;
4777 
4778     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4779       // This record indicates that the last instruction is at the same
4780       // location as the previous instruction with a location.
4781       I = getLastInstruction();
4782 
4783       if (!I)
4784         return error("Invalid record");
4785       I->setDebugLoc(LastLoc);
4786       I = nullptr;
4787       continue;
4788 
4789     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4790       I = getLastInstruction();
4791       if (!I || Record.size() < 4)
4792         return error("Invalid record");
4793 
4794       unsigned Line = Record[0], Col = Record[1];
4795       unsigned ScopeID = Record[2], IAID = Record[3];
4796       bool isImplicitCode = Record.size() == 5 && Record[4];
4797 
4798       MDNode *Scope = nullptr, *IA = nullptr;
4799       if (ScopeID) {
4800         Scope = dyn_cast_or_null<MDNode>(
4801             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4802         if (!Scope)
4803           return error("Invalid record");
4804       }
4805       if (IAID) {
4806         IA = dyn_cast_or_null<MDNode>(
4807             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4808         if (!IA)
4809           return error("Invalid record");
4810       }
4811       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4812                                 isImplicitCode);
4813       I->setDebugLoc(LastLoc);
4814       I = nullptr;
4815       continue;
4816     }
4817     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4818       unsigned OpNum = 0;
4819       Value *LHS;
4820       unsigned TypeID;
4821       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4822           OpNum+1 > Record.size())
4823         return error("Invalid record");
4824 
4825       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4826       if (Opc == -1)
4827         return error("Invalid record");
4828       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4829       ResTypeID = TypeID;
4830       InstructionList.push_back(I);
4831       if (OpNum < Record.size()) {
4832         if (isa<FPMathOperator>(I)) {
4833           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4834           if (FMF.any())
4835             I->setFastMathFlags(FMF);
4836         }
4837       }
4838       break;
4839     }
4840     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4841       unsigned OpNum = 0;
4842       Value *LHS, *RHS;
4843       unsigned TypeID;
4844       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4845           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4846                    CurBB) ||
4847           OpNum+1 > Record.size())
4848         return error("Invalid record");
4849 
4850       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4851       if (Opc == -1)
4852         return error("Invalid record");
4853       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4854       ResTypeID = TypeID;
4855       InstructionList.push_back(I);
4856       if (OpNum < Record.size()) {
4857         if (Opc == Instruction::Add ||
4858             Opc == Instruction::Sub ||
4859             Opc == Instruction::Mul ||
4860             Opc == Instruction::Shl) {
4861           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4862             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4863           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4864             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4865         } else if (Opc == Instruction::SDiv ||
4866                    Opc == Instruction::UDiv ||
4867                    Opc == Instruction::LShr ||
4868                    Opc == Instruction::AShr) {
4869           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4870             cast<BinaryOperator>(I)->setIsExact(true);
4871         } else if (isa<FPMathOperator>(I)) {
4872           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4873           if (FMF.any())
4874             I->setFastMathFlags(FMF);
4875         }
4876 
4877       }
4878       break;
4879     }
4880     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4881       unsigned OpNum = 0;
4882       Value *Op;
4883       unsigned OpTypeID;
4884       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4885           OpNum + 1 > Record.size())
4886         return error("Invalid record");
4887 
4888       ResTypeID = Record[OpNum++];
4889       Type *ResTy = getTypeByID(ResTypeID);
4890       int Opc = getDecodedCastOpcode(Record[OpNum++]);
4891 
4892       if (Opc == -1 || !ResTy)
4893         return error("Invalid record");
4894       Instruction *Temp = nullptr;
4895       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4896         if (Temp) {
4897           InstructionList.push_back(Temp);
4898           assert(CurBB && "No current BB?");
4899           Temp->insertInto(CurBB, CurBB->end());
4900         }
4901       } else {
4902         auto CastOp = (Instruction::CastOps)Opc;
4903         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4904           return error("Invalid cast");
4905         I = CastInst::Create(CastOp, Op, ResTy);
4906       }
4907       if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) &&
4908           (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)))
4909         I->setNonNeg(true);
4910       InstructionList.push_back(I);
4911       break;
4912     }
4913     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4914     case bitc::FUNC_CODE_INST_GEP_OLD:
4915     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4916       unsigned OpNum = 0;
4917 
4918       unsigned TyID;
4919       Type *Ty;
4920       bool InBounds;
4921 
4922       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4923         InBounds = Record[OpNum++];
4924         TyID = Record[OpNum++];
4925         Ty = getTypeByID(TyID);
4926       } else {
4927         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4928         TyID = InvalidTypeID;
4929         Ty = nullptr;
4930       }
4931 
4932       Value *BasePtr;
4933       unsigned BasePtrTypeID;
4934       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4935                            CurBB))
4936         return error("Invalid record");
4937 
4938       if (!Ty) {
4939         TyID = getContainedTypeID(BasePtrTypeID);
4940         if (BasePtr->getType()->isVectorTy())
4941           TyID = getContainedTypeID(TyID);
4942         Ty = getTypeByID(TyID);
4943       }
4944 
4945       SmallVector<Value*, 16> GEPIdx;
4946       while (OpNum != Record.size()) {
4947         Value *Op;
4948         unsigned OpTypeID;
4949         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4950           return error("Invalid record");
4951         GEPIdx.push_back(Op);
4952       }
4953 
4954       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4955 
4956       ResTypeID = TyID;
4957       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4958         auto GTI = std::next(gep_type_begin(I));
4959         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4960           unsigned SubType = 0;
4961           if (GTI.isStruct()) {
4962             ConstantInt *IdxC =
4963                 Idx->getType()->isVectorTy()
4964                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4965                     : cast<ConstantInt>(Idx);
4966             SubType = IdxC->getZExtValue();
4967           }
4968           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4969           ++GTI;
4970         }
4971       }
4972 
4973       // At this point ResTypeID is the result element type. We need a pointer
4974       // or vector of pointer to it.
4975       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4976       if (I->getType()->isVectorTy())
4977         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4978 
4979       InstructionList.push_back(I);
4980       if (InBounds)
4981         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4982       break;
4983     }
4984 
4985     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4986                                        // EXTRACTVAL: [opty, opval, n x indices]
4987       unsigned OpNum = 0;
4988       Value *Agg;
4989       unsigned AggTypeID;
4990       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
4991         return error("Invalid record");
4992       Type *Ty = Agg->getType();
4993 
4994       unsigned RecSize = Record.size();
4995       if (OpNum == RecSize)
4996         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4997 
4998       SmallVector<unsigned, 4> EXTRACTVALIdx;
4999       ResTypeID = AggTypeID;
5000       for (; OpNum != RecSize; ++OpNum) {
5001         bool IsArray = Ty->isArrayTy();
5002         bool IsStruct = Ty->isStructTy();
5003         uint64_t Index = Record[OpNum];
5004 
5005         if (!IsStruct && !IsArray)
5006           return error("EXTRACTVAL: Invalid type");
5007         if ((unsigned)Index != Index)
5008           return error("Invalid value");
5009         if (IsStruct && Index >= Ty->getStructNumElements())
5010           return error("EXTRACTVAL: Invalid struct index");
5011         if (IsArray && Index >= Ty->getArrayNumElements())
5012           return error("EXTRACTVAL: Invalid array index");
5013         EXTRACTVALIdx.push_back((unsigned)Index);
5014 
5015         if (IsStruct) {
5016           Ty = Ty->getStructElementType(Index);
5017           ResTypeID = getContainedTypeID(ResTypeID, Index);
5018         } else {
5019           Ty = Ty->getArrayElementType();
5020           ResTypeID = getContainedTypeID(ResTypeID);
5021         }
5022       }
5023 
5024       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5025       InstructionList.push_back(I);
5026       break;
5027     }
5028 
5029     case bitc::FUNC_CODE_INST_INSERTVAL: {
5030                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5031       unsigned OpNum = 0;
5032       Value *Agg;
5033       unsigned AggTypeID;
5034       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5035         return error("Invalid record");
5036       Value *Val;
5037       unsigned ValTypeID;
5038       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5039         return error("Invalid record");
5040 
5041       unsigned RecSize = Record.size();
5042       if (OpNum == RecSize)
5043         return error("INSERTVAL: Invalid instruction with 0 indices");
5044 
5045       SmallVector<unsigned, 4> INSERTVALIdx;
5046       Type *CurTy = Agg->getType();
5047       for (; OpNum != RecSize; ++OpNum) {
5048         bool IsArray = CurTy->isArrayTy();
5049         bool IsStruct = CurTy->isStructTy();
5050         uint64_t Index = Record[OpNum];
5051 
5052         if (!IsStruct && !IsArray)
5053           return error("INSERTVAL: Invalid type");
5054         if ((unsigned)Index != Index)
5055           return error("Invalid value");
5056         if (IsStruct && Index >= CurTy->getStructNumElements())
5057           return error("INSERTVAL: Invalid struct index");
5058         if (IsArray && Index >= CurTy->getArrayNumElements())
5059           return error("INSERTVAL: Invalid array index");
5060 
5061         INSERTVALIdx.push_back((unsigned)Index);
5062         if (IsStruct)
5063           CurTy = CurTy->getStructElementType(Index);
5064         else
5065           CurTy = CurTy->getArrayElementType();
5066       }
5067 
5068       if (CurTy != Val->getType())
5069         return error("Inserted value type doesn't match aggregate type");
5070 
5071       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5072       ResTypeID = AggTypeID;
5073       InstructionList.push_back(I);
5074       break;
5075     }
5076 
5077     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5078       // obsolete form of select
5079       // handles select i1 ... in old bitcode
5080       unsigned OpNum = 0;
5081       Value *TrueVal, *FalseVal, *Cond;
5082       unsigned TypeID;
5083       Type *CondType = Type::getInt1Ty(Context);
5084       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5085                            CurBB) ||
5086           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5087                    FalseVal, CurBB) ||
5088           popValue(Record, OpNum, NextValueNo, CondType,
5089                    getVirtualTypeID(CondType), Cond, CurBB))
5090         return error("Invalid record");
5091 
5092       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5093       ResTypeID = TypeID;
5094       InstructionList.push_back(I);
5095       break;
5096     }
5097 
5098     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5099       // new form of select
5100       // handles select i1 or select [N x i1]
5101       unsigned OpNum = 0;
5102       Value *TrueVal, *FalseVal, *Cond;
5103       unsigned ValTypeID, CondTypeID;
5104       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5105                            CurBB) ||
5106           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5107                    FalseVal, CurBB) ||
5108           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5109         return error("Invalid record");
5110 
5111       // select condition can be either i1 or [N x i1]
5112       if (VectorType* vector_type =
5113           dyn_cast<VectorType>(Cond->getType())) {
5114         // expect <n x i1>
5115         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5116           return error("Invalid type for value");
5117       } else {
5118         // expect i1
5119         if (Cond->getType() != Type::getInt1Ty(Context))
5120           return error("Invalid type for value");
5121       }
5122 
5123       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5124       ResTypeID = ValTypeID;
5125       InstructionList.push_back(I);
5126       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5127         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5128         if (FMF.any())
5129           I->setFastMathFlags(FMF);
5130       }
5131       break;
5132     }
5133 
5134     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5135       unsigned OpNum = 0;
5136       Value *Vec, *Idx;
5137       unsigned VecTypeID, IdxTypeID;
5138       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5139           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5140         return error("Invalid record");
5141       if (!Vec->getType()->isVectorTy())
5142         return error("Invalid type for value");
5143       I = ExtractElementInst::Create(Vec, Idx);
5144       ResTypeID = getContainedTypeID(VecTypeID);
5145       InstructionList.push_back(I);
5146       break;
5147     }
5148 
5149     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5150       unsigned OpNum = 0;
5151       Value *Vec, *Elt, *Idx;
5152       unsigned VecTypeID, IdxTypeID;
5153       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5154         return error("Invalid record");
5155       if (!Vec->getType()->isVectorTy())
5156         return error("Invalid type for value");
5157       if (popValue(Record, OpNum, NextValueNo,
5158                    cast<VectorType>(Vec->getType())->getElementType(),
5159                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5160           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5161         return error("Invalid record");
5162       I = InsertElementInst::Create(Vec, Elt, Idx);
5163       ResTypeID = VecTypeID;
5164       InstructionList.push_back(I);
5165       break;
5166     }
5167 
5168     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5169       unsigned OpNum = 0;
5170       Value *Vec1, *Vec2, *Mask;
5171       unsigned Vec1TypeID;
5172       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5173                            CurBB) ||
5174           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5175                    Vec2, CurBB))
5176         return error("Invalid record");
5177 
5178       unsigned MaskTypeID;
5179       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5180         return error("Invalid record");
5181       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5182         return error("Invalid type for value");
5183 
5184       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5185       ResTypeID =
5186           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5187       InstructionList.push_back(I);
5188       break;
5189     }
5190 
5191     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5192       // Old form of ICmp/FCmp returning bool
5193       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5194       // both legal on vectors but had different behaviour.
5195     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5196       // FCmp/ICmp returning bool or vector of bool
5197 
5198       unsigned OpNum = 0;
5199       Value *LHS, *RHS;
5200       unsigned LHSTypeID;
5201       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5202           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5203                    CurBB))
5204         return error("Invalid record");
5205 
5206       if (OpNum >= Record.size())
5207         return error(
5208             "Invalid record: operand number exceeded available operands");
5209 
5210       unsigned PredVal = Record[OpNum];
5211       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5212       FastMathFlags FMF;
5213       if (IsFP && Record.size() > OpNum+1)
5214         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5215 
5216       if (OpNum+1 != Record.size())
5217         return error("Invalid record");
5218 
5219       if (LHS->getType()->isFPOrFPVectorTy())
5220         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5221       else
5222         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5223 
5224       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5225       if (LHS->getType()->isVectorTy())
5226         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5227 
5228       if (FMF.any())
5229         I->setFastMathFlags(FMF);
5230       InstructionList.push_back(I);
5231       break;
5232     }
5233 
5234     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5235       {
5236         unsigned Size = Record.size();
5237         if (Size == 0) {
5238           I = ReturnInst::Create(Context);
5239           InstructionList.push_back(I);
5240           break;
5241         }
5242 
5243         unsigned OpNum = 0;
5244         Value *Op = nullptr;
5245         unsigned OpTypeID;
5246         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5247           return error("Invalid record");
5248         if (OpNum != Record.size())
5249           return error("Invalid record");
5250 
5251         I = ReturnInst::Create(Context, Op);
5252         InstructionList.push_back(I);
5253         break;
5254       }
5255     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5256       if (Record.size() != 1 && Record.size() != 3)
5257         return error("Invalid record");
5258       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5259       if (!TrueDest)
5260         return error("Invalid record");
5261 
5262       if (Record.size() == 1) {
5263         I = BranchInst::Create(TrueDest);
5264         InstructionList.push_back(I);
5265       }
5266       else {
5267         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5268         Type *CondType = Type::getInt1Ty(Context);
5269         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5270                                getVirtualTypeID(CondType), CurBB);
5271         if (!FalseDest || !Cond)
5272           return error("Invalid record");
5273         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5274         InstructionList.push_back(I);
5275       }
5276       break;
5277     }
5278     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5279       if (Record.size() != 1 && Record.size() != 2)
5280         return error("Invalid record");
5281       unsigned Idx = 0;
5282       Type *TokenTy = Type::getTokenTy(Context);
5283       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5284                                    getVirtualTypeID(TokenTy), CurBB);
5285       if (!CleanupPad)
5286         return error("Invalid record");
5287       BasicBlock *UnwindDest = nullptr;
5288       if (Record.size() == 2) {
5289         UnwindDest = getBasicBlock(Record[Idx++]);
5290         if (!UnwindDest)
5291           return error("Invalid record");
5292       }
5293 
5294       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5295       InstructionList.push_back(I);
5296       break;
5297     }
5298     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5299       if (Record.size() != 2)
5300         return error("Invalid record");
5301       unsigned Idx = 0;
5302       Type *TokenTy = Type::getTokenTy(Context);
5303       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5304                                  getVirtualTypeID(TokenTy), CurBB);
5305       if (!CatchPad)
5306         return error("Invalid record");
5307       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5308       if (!BB)
5309         return error("Invalid record");
5310 
5311       I = CatchReturnInst::Create(CatchPad, BB);
5312       InstructionList.push_back(I);
5313       break;
5314     }
5315     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5316       // We must have, at minimum, the outer scope and the number of arguments.
5317       if (Record.size() < 2)
5318         return error("Invalid record");
5319 
5320       unsigned Idx = 0;
5321 
5322       Type *TokenTy = Type::getTokenTy(Context);
5323       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5324                                   getVirtualTypeID(TokenTy), CurBB);
5325 
5326       unsigned NumHandlers = Record[Idx++];
5327 
5328       SmallVector<BasicBlock *, 2> Handlers;
5329       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5330         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5331         if (!BB)
5332           return error("Invalid record");
5333         Handlers.push_back(BB);
5334       }
5335 
5336       BasicBlock *UnwindDest = nullptr;
5337       if (Idx + 1 == Record.size()) {
5338         UnwindDest = getBasicBlock(Record[Idx++]);
5339         if (!UnwindDest)
5340           return error("Invalid record");
5341       }
5342 
5343       if (Record.size() != Idx)
5344         return error("Invalid record");
5345 
5346       auto *CatchSwitch =
5347           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5348       for (BasicBlock *Handler : Handlers)
5349         CatchSwitch->addHandler(Handler);
5350       I = CatchSwitch;
5351       ResTypeID = getVirtualTypeID(I->getType());
5352       InstructionList.push_back(I);
5353       break;
5354     }
5355     case bitc::FUNC_CODE_INST_CATCHPAD:
5356     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5357       // We must have, at minimum, the outer scope and the number of arguments.
5358       if (Record.size() < 2)
5359         return error("Invalid record");
5360 
5361       unsigned Idx = 0;
5362 
5363       Type *TokenTy = Type::getTokenTy(Context);
5364       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5365                                   getVirtualTypeID(TokenTy), CurBB);
5366 
5367       unsigned NumArgOperands = Record[Idx++];
5368 
5369       SmallVector<Value *, 2> Args;
5370       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5371         Value *Val;
5372         unsigned ValTypeID;
5373         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5374           return error("Invalid record");
5375         Args.push_back(Val);
5376       }
5377 
5378       if (Record.size() != Idx)
5379         return error("Invalid record");
5380 
5381       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5382         I = CleanupPadInst::Create(ParentPad, Args);
5383       else
5384         I = CatchPadInst::Create(ParentPad, Args);
5385       ResTypeID = getVirtualTypeID(I->getType());
5386       InstructionList.push_back(I);
5387       break;
5388     }
5389     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5390       // Check magic
5391       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5392         // "New" SwitchInst format with case ranges. The changes to write this
5393         // format were reverted but we still recognize bitcode that uses it.
5394         // Hopefully someday we will have support for case ranges and can use
5395         // this format again.
5396 
5397         unsigned OpTyID = Record[1];
5398         Type *OpTy = getTypeByID(OpTyID);
5399         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5400 
5401         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5402         BasicBlock *Default = getBasicBlock(Record[3]);
5403         if (!OpTy || !Cond || !Default)
5404           return error("Invalid record");
5405 
5406         unsigned NumCases = Record[4];
5407 
5408         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5409         InstructionList.push_back(SI);
5410 
5411         unsigned CurIdx = 5;
5412         for (unsigned i = 0; i != NumCases; ++i) {
5413           SmallVector<ConstantInt*, 1> CaseVals;
5414           unsigned NumItems = Record[CurIdx++];
5415           for (unsigned ci = 0; ci != NumItems; ++ci) {
5416             bool isSingleNumber = Record[CurIdx++];
5417 
5418             APInt Low;
5419             unsigned ActiveWords = 1;
5420             if (ValueBitWidth > 64)
5421               ActiveWords = Record[CurIdx++];
5422             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5423                                 ValueBitWidth);
5424             CurIdx += ActiveWords;
5425 
5426             if (!isSingleNumber) {
5427               ActiveWords = 1;
5428               if (ValueBitWidth > 64)
5429                 ActiveWords = Record[CurIdx++];
5430               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5431                                          ValueBitWidth);
5432               CurIdx += ActiveWords;
5433 
5434               // FIXME: It is not clear whether values in the range should be
5435               // compared as signed or unsigned values. The partially
5436               // implemented changes that used this format in the past used
5437               // unsigned comparisons.
5438               for ( ; Low.ule(High); ++Low)
5439                 CaseVals.push_back(ConstantInt::get(Context, Low));
5440             } else
5441               CaseVals.push_back(ConstantInt::get(Context, Low));
5442           }
5443           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5444           for (ConstantInt *Cst : CaseVals)
5445             SI->addCase(Cst, DestBB);
5446         }
5447         I = SI;
5448         break;
5449       }
5450 
5451       // Old SwitchInst format without case ranges.
5452 
5453       if (Record.size() < 3 || (Record.size() & 1) == 0)
5454         return error("Invalid record");
5455       unsigned OpTyID = Record[0];
5456       Type *OpTy = getTypeByID(OpTyID);
5457       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5458       BasicBlock *Default = getBasicBlock(Record[2]);
5459       if (!OpTy || !Cond || !Default)
5460         return error("Invalid record");
5461       unsigned NumCases = (Record.size()-3)/2;
5462       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5463       InstructionList.push_back(SI);
5464       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5465         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5466             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5467         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5468         if (!CaseVal || !DestBB) {
5469           delete SI;
5470           return error("Invalid record");
5471         }
5472         SI->addCase(CaseVal, DestBB);
5473       }
5474       I = SI;
5475       break;
5476     }
5477     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5478       if (Record.size() < 2)
5479         return error("Invalid record");
5480       unsigned OpTyID = Record[0];
5481       Type *OpTy = getTypeByID(OpTyID);
5482       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5483       if (!OpTy || !Address)
5484         return error("Invalid record");
5485       unsigned NumDests = Record.size()-2;
5486       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5487       InstructionList.push_back(IBI);
5488       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5489         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5490           IBI->addDestination(DestBB);
5491         } else {
5492           delete IBI;
5493           return error("Invalid record");
5494         }
5495       }
5496       I = IBI;
5497       break;
5498     }
5499 
5500     case bitc::FUNC_CODE_INST_INVOKE: {
5501       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5502       if (Record.size() < 4)
5503         return error("Invalid record");
5504       unsigned OpNum = 0;
5505       AttributeList PAL = getAttributes(Record[OpNum++]);
5506       unsigned CCInfo = Record[OpNum++];
5507       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5508       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5509 
5510       unsigned FTyID = InvalidTypeID;
5511       FunctionType *FTy = nullptr;
5512       if ((CCInfo >> 13) & 1) {
5513         FTyID = Record[OpNum++];
5514         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5515         if (!FTy)
5516           return error("Explicit invoke type is not a function type");
5517       }
5518 
5519       Value *Callee;
5520       unsigned CalleeTypeID;
5521       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5522                            CurBB))
5523         return error("Invalid record");
5524 
5525       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5526       if (!CalleeTy)
5527         return error("Callee is not a pointer");
5528       if (!FTy) {
5529         FTyID = getContainedTypeID(CalleeTypeID);
5530         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5531         if (!FTy)
5532           return error("Callee is not of pointer to function type");
5533       }
5534       if (Record.size() < FTy->getNumParams() + OpNum)
5535         return error("Insufficient operands to call");
5536 
5537       SmallVector<Value*, 16> Ops;
5538       SmallVector<unsigned, 16> ArgTyIDs;
5539       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5540         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5541         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5542                                ArgTyID, CurBB));
5543         ArgTyIDs.push_back(ArgTyID);
5544         if (!Ops.back())
5545           return error("Invalid record");
5546       }
5547 
5548       if (!FTy->isVarArg()) {
5549         if (Record.size() != OpNum)
5550           return error("Invalid record");
5551       } else {
5552         // Read type/value pairs for varargs params.
5553         while (OpNum != Record.size()) {
5554           Value *Op;
5555           unsigned OpTypeID;
5556           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5557             return error("Invalid record");
5558           Ops.push_back(Op);
5559           ArgTyIDs.push_back(OpTypeID);
5560         }
5561       }
5562 
5563       // Upgrade the bundles if needed.
5564       if (!OperandBundles.empty())
5565         UpgradeOperandBundles(OperandBundles);
5566 
5567       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5568                              OperandBundles);
5569       ResTypeID = getContainedTypeID(FTyID);
5570       OperandBundles.clear();
5571       InstructionList.push_back(I);
5572       cast<InvokeInst>(I)->setCallingConv(
5573           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5574       cast<InvokeInst>(I)->setAttributes(PAL);
5575       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5576         I->deleteValue();
5577         return Err;
5578       }
5579 
5580       break;
5581     }
5582     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5583       unsigned Idx = 0;
5584       Value *Val = nullptr;
5585       unsigned ValTypeID;
5586       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5587         return error("Invalid record");
5588       I = ResumeInst::Create(Val);
5589       InstructionList.push_back(I);
5590       break;
5591     }
5592     case bitc::FUNC_CODE_INST_CALLBR: {
5593       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5594       unsigned OpNum = 0;
5595       AttributeList PAL = getAttributes(Record[OpNum++]);
5596       unsigned CCInfo = Record[OpNum++];
5597 
5598       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5599       unsigned NumIndirectDests = Record[OpNum++];
5600       SmallVector<BasicBlock *, 16> IndirectDests;
5601       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5602         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5603 
5604       unsigned FTyID = InvalidTypeID;
5605       FunctionType *FTy = nullptr;
5606       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5607         FTyID = Record[OpNum++];
5608         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5609         if (!FTy)
5610           return error("Explicit call type is not a function type");
5611       }
5612 
5613       Value *Callee;
5614       unsigned CalleeTypeID;
5615       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5616                            CurBB))
5617         return error("Invalid record");
5618 
5619       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5620       if (!OpTy)
5621         return error("Callee is not a pointer type");
5622       if (!FTy) {
5623         FTyID = getContainedTypeID(CalleeTypeID);
5624         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5625         if (!FTy)
5626           return error("Callee is not of pointer to function type");
5627       }
5628       if (Record.size() < FTy->getNumParams() + OpNum)
5629         return error("Insufficient operands to call");
5630 
5631       SmallVector<Value*, 16> Args;
5632       SmallVector<unsigned, 16> ArgTyIDs;
5633       // Read the fixed params.
5634       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5635         Value *Arg;
5636         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5637         if (FTy->getParamType(i)->isLabelTy())
5638           Arg = getBasicBlock(Record[OpNum]);
5639         else
5640           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5641                          ArgTyID, CurBB);
5642         if (!Arg)
5643           return error("Invalid record");
5644         Args.push_back(Arg);
5645         ArgTyIDs.push_back(ArgTyID);
5646       }
5647 
5648       // Read type/value pairs for varargs params.
5649       if (!FTy->isVarArg()) {
5650         if (OpNum != Record.size())
5651           return error("Invalid record");
5652       } else {
5653         while (OpNum != Record.size()) {
5654           Value *Op;
5655           unsigned OpTypeID;
5656           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5657             return error("Invalid record");
5658           Args.push_back(Op);
5659           ArgTyIDs.push_back(OpTypeID);
5660         }
5661       }
5662 
5663       // Upgrade the bundles if needed.
5664       if (!OperandBundles.empty())
5665         UpgradeOperandBundles(OperandBundles);
5666 
5667       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5668         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5669         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5670           return CI.Type == InlineAsm::isLabel;
5671         };
5672         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5673           // Upgrade explicit blockaddress arguments to label constraints.
5674           // Verify that the last arguments are blockaddress arguments that
5675           // match the indirect destinations. Clang always generates callbr
5676           // in this form. We could support reordering with more effort.
5677           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5678           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5679             unsigned LabelNo = ArgNo - FirstBlockArg;
5680             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5681             if (!BA || BA->getFunction() != F ||
5682                 LabelNo > IndirectDests.size() ||
5683                 BA->getBasicBlock() != IndirectDests[LabelNo])
5684               return error("callbr argument does not match indirect dest");
5685           }
5686 
5687           // Remove blockaddress arguments.
5688           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5689           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5690 
5691           // Recreate the function type with less arguments.
5692           SmallVector<Type *> ArgTys;
5693           for (Value *Arg : Args)
5694             ArgTys.push_back(Arg->getType());
5695           FTy =
5696               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5697 
5698           // Update constraint string to use label constraints.
5699           std::string Constraints = IA->getConstraintString();
5700           unsigned ArgNo = 0;
5701           size_t Pos = 0;
5702           for (const auto &CI : ConstraintInfo) {
5703             if (CI.hasArg()) {
5704               if (ArgNo >= FirstBlockArg)
5705                 Constraints.insert(Pos, "!");
5706               ++ArgNo;
5707             }
5708 
5709             // Go to next constraint in string.
5710             Pos = Constraints.find(',', Pos);
5711             if (Pos == std::string::npos)
5712               break;
5713             ++Pos;
5714           }
5715 
5716           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5717                                   IA->hasSideEffects(), IA->isAlignStack(),
5718                                   IA->getDialect(), IA->canThrow());
5719         }
5720       }
5721 
5722       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5723                              OperandBundles);
5724       ResTypeID = getContainedTypeID(FTyID);
5725       OperandBundles.clear();
5726       InstructionList.push_back(I);
5727       cast<CallBrInst>(I)->setCallingConv(
5728           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5729       cast<CallBrInst>(I)->setAttributes(PAL);
5730       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5731         I->deleteValue();
5732         return Err;
5733       }
5734       break;
5735     }
5736     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5737       I = new UnreachableInst(Context);
5738       InstructionList.push_back(I);
5739       break;
5740     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5741       if (Record.empty())
5742         return error("Invalid phi record");
5743       // The first record specifies the type.
5744       unsigned TyID = Record[0];
5745       Type *Ty = getTypeByID(TyID);
5746       if (!Ty)
5747         return error("Invalid phi record");
5748 
5749       // Phi arguments are pairs of records of [value, basic block].
5750       // There is an optional final record for fast-math-flags if this phi has a
5751       // floating-point type.
5752       size_t NumArgs = (Record.size() - 1) / 2;
5753       PHINode *PN = PHINode::Create(Ty, NumArgs);
5754       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5755         PN->deleteValue();
5756         return error("Invalid phi record");
5757       }
5758       InstructionList.push_back(PN);
5759 
5760       SmallDenseMap<BasicBlock *, Value *> Args;
5761       for (unsigned i = 0; i != NumArgs; i++) {
5762         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5763         if (!BB) {
5764           PN->deleteValue();
5765           return error("Invalid phi BB");
5766         }
5767 
5768         // Phi nodes may contain the same predecessor multiple times, in which
5769         // case the incoming value must be identical. Directly reuse the already
5770         // seen value here, to avoid expanding a constant expression multiple
5771         // times.
5772         auto It = Args.find(BB);
5773         if (It != Args.end()) {
5774           PN->addIncoming(It->second, BB);
5775           continue;
5776         }
5777 
5778         // If there already is a block for this edge (from a different phi),
5779         // use it.
5780         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5781         if (!EdgeBB) {
5782           // Otherwise, use a temporary block (that we will discard if it
5783           // turns out to be unnecessary).
5784           if (!PhiConstExprBB)
5785             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5786           EdgeBB = PhiConstExprBB;
5787         }
5788 
5789         // With the new function encoding, it is possible that operands have
5790         // negative IDs (for forward references).  Use a signed VBR
5791         // representation to keep the encoding small.
5792         Value *V;
5793         if (UseRelativeIDs)
5794           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5795         else
5796           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5797         if (!V) {
5798           PN->deleteValue();
5799           PhiConstExprBB->eraseFromParent();
5800           return error("Invalid phi record");
5801         }
5802 
5803         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5804           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5805           PhiConstExprBB = nullptr;
5806         }
5807         PN->addIncoming(V, BB);
5808         Args.insert({BB, V});
5809       }
5810       I = PN;
5811       ResTypeID = TyID;
5812 
5813       // If there are an even number of records, the final record must be FMF.
5814       if (Record.size() % 2 == 0) {
5815         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5816         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5817         if (FMF.any())
5818           I->setFastMathFlags(FMF);
5819       }
5820 
5821       break;
5822     }
5823 
5824     case bitc::FUNC_CODE_INST_LANDINGPAD:
5825     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5826       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5827       unsigned Idx = 0;
5828       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5829         if (Record.size() < 3)
5830           return error("Invalid record");
5831       } else {
5832         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5833         if (Record.size() < 4)
5834           return error("Invalid record");
5835       }
5836       ResTypeID = Record[Idx++];
5837       Type *Ty = getTypeByID(ResTypeID);
5838       if (!Ty)
5839         return error("Invalid record");
5840       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5841         Value *PersFn = nullptr;
5842         unsigned PersFnTypeID;
5843         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5844                              nullptr))
5845           return error("Invalid record");
5846 
5847         if (!F->hasPersonalityFn())
5848           F->setPersonalityFn(cast<Constant>(PersFn));
5849         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5850           return error("Personality function mismatch");
5851       }
5852 
5853       bool IsCleanup = !!Record[Idx++];
5854       unsigned NumClauses = Record[Idx++];
5855       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5856       LP->setCleanup(IsCleanup);
5857       for (unsigned J = 0; J != NumClauses; ++J) {
5858         LandingPadInst::ClauseType CT =
5859           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5860         Value *Val;
5861         unsigned ValTypeID;
5862 
5863         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5864                              nullptr)) {
5865           delete LP;
5866           return error("Invalid record");
5867         }
5868 
5869         assert((CT != LandingPadInst::Catch ||
5870                 !isa<ArrayType>(Val->getType())) &&
5871                "Catch clause has a invalid type!");
5872         assert((CT != LandingPadInst::Filter ||
5873                 isa<ArrayType>(Val->getType())) &&
5874                "Filter clause has invalid type!");
5875         LP->addClause(cast<Constant>(Val));
5876       }
5877 
5878       I = LP;
5879       InstructionList.push_back(I);
5880       break;
5881     }
5882 
5883     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5884       if (Record.size() != 4 && Record.size() != 5)
5885         return error("Invalid record");
5886       using APV = AllocaPackedValues;
5887       const uint64_t Rec = Record[3];
5888       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5889       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5890       unsigned TyID = Record[0];
5891       Type *Ty = getTypeByID(TyID);
5892       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5893         TyID = getContainedTypeID(TyID);
5894         Ty = getTypeByID(TyID);
5895         if (!Ty)
5896           return error("Missing element type for old-style alloca");
5897       }
5898       unsigned OpTyID = Record[1];
5899       Type *OpTy = getTypeByID(OpTyID);
5900       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5901       MaybeAlign Align;
5902       uint64_t AlignExp =
5903           Bitfield::get<APV::AlignLower>(Rec) |
5904           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5905       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5906         return Err;
5907       }
5908       if (!Ty || !Size)
5909         return error("Invalid record");
5910 
5911       const DataLayout &DL = TheModule->getDataLayout();
5912       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5913 
5914       SmallPtrSet<Type *, 4> Visited;
5915       if (!Align && !Ty->isSized(&Visited))
5916         return error("alloca of unsized type");
5917       if (!Align)
5918         Align = DL.getPrefTypeAlign(Ty);
5919 
5920       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5921       AI->setUsedWithInAlloca(InAlloca);
5922       AI->setSwiftError(SwiftError);
5923       I = AI;
5924       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5925       InstructionList.push_back(I);
5926       break;
5927     }
5928     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5929       unsigned OpNum = 0;
5930       Value *Op;
5931       unsigned OpTypeID;
5932       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5933           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5934         return error("Invalid record");
5935 
5936       if (!isa<PointerType>(Op->getType()))
5937         return error("Load operand is not a pointer type");
5938 
5939       Type *Ty = nullptr;
5940       if (OpNum + 3 == Record.size()) {
5941         ResTypeID = Record[OpNum++];
5942         Ty = getTypeByID(ResTypeID);
5943       } else {
5944         ResTypeID = getContainedTypeID(OpTypeID);
5945         Ty = getTypeByID(ResTypeID);
5946         if (!Ty)
5947           return error("Missing element type for old-style load");
5948       }
5949 
5950       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5951         return Err;
5952 
5953       MaybeAlign Align;
5954       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5955         return Err;
5956       SmallPtrSet<Type *, 4> Visited;
5957       if (!Align && !Ty->isSized(&Visited))
5958         return error("load of unsized type");
5959       if (!Align)
5960         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5961       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5962       InstructionList.push_back(I);
5963       break;
5964     }
5965     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5966        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5967       unsigned OpNum = 0;
5968       Value *Op;
5969       unsigned OpTypeID;
5970       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5971           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5972         return error("Invalid record");
5973 
5974       if (!isa<PointerType>(Op->getType()))
5975         return error("Load operand is not a pointer type");
5976 
5977       Type *Ty = nullptr;
5978       if (OpNum + 5 == Record.size()) {
5979         ResTypeID = Record[OpNum++];
5980         Ty = getTypeByID(ResTypeID);
5981       } else {
5982         ResTypeID = getContainedTypeID(OpTypeID);
5983         Ty = getTypeByID(ResTypeID);
5984         if (!Ty)
5985           return error("Missing element type for old style atomic load");
5986       }
5987 
5988       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5989         return Err;
5990 
5991       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5992       if (Ordering == AtomicOrdering::NotAtomic ||
5993           Ordering == AtomicOrdering::Release ||
5994           Ordering == AtomicOrdering::AcquireRelease)
5995         return error("Invalid record");
5996       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5997         return error("Invalid record");
5998       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5999 
6000       MaybeAlign Align;
6001       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6002         return Err;
6003       if (!Align)
6004         return error("Alignment missing from atomic load");
6005       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6006       InstructionList.push_back(I);
6007       break;
6008     }
6009     case bitc::FUNC_CODE_INST_STORE:
6010     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6011       unsigned OpNum = 0;
6012       Value *Val, *Ptr;
6013       unsigned PtrTypeID, ValTypeID;
6014       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6015         return error("Invalid record");
6016 
6017       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6018         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6019           return error("Invalid record");
6020       } else {
6021         ValTypeID = getContainedTypeID(PtrTypeID);
6022         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6023                      ValTypeID, Val, CurBB))
6024           return error("Invalid record");
6025       }
6026 
6027       if (OpNum + 2 != Record.size())
6028         return error("Invalid record");
6029 
6030       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6031         return Err;
6032       MaybeAlign Align;
6033       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6034         return Err;
6035       SmallPtrSet<Type *, 4> Visited;
6036       if (!Align && !Val->getType()->isSized(&Visited))
6037         return error("store of unsized type");
6038       if (!Align)
6039         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6040       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6041       InstructionList.push_back(I);
6042       break;
6043     }
6044     case bitc::FUNC_CODE_INST_STOREATOMIC:
6045     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6046       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6047       unsigned OpNum = 0;
6048       Value *Val, *Ptr;
6049       unsigned PtrTypeID, ValTypeID;
6050       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6051           !isa<PointerType>(Ptr->getType()))
6052         return error("Invalid record");
6053       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6054         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6055           return error("Invalid record");
6056       } else {
6057         ValTypeID = getContainedTypeID(PtrTypeID);
6058         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6059                      ValTypeID, Val, CurBB))
6060           return error("Invalid record");
6061       }
6062 
6063       if (OpNum + 4 != Record.size())
6064         return error("Invalid record");
6065 
6066       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6067         return Err;
6068       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6069       if (Ordering == AtomicOrdering::NotAtomic ||
6070           Ordering == AtomicOrdering::Acquire ||
6071           Ordering == AtomicOrdering::AcquireRelease)
6072         return error("Invalid record");
6073       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6074       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6075         return error("Invalid record");
6076 
6077       MaybeAlign Align;
6078       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6079         return Err;
6080       if (!Align)
6081         return error("Alignment missing from atomic store");
6082       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6083       InstructionList.push_back(I);
6084       break;
6085     }
6086     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6087       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6088       // failure_ordering?, weak?]
6089       const size_t NumRecords = Record.size();
6090       unsigned OpNum = 0;
6091       Value *Ptr = nullptr;
6092       unsigned PtrTypeID;
6093       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6094         return error("Invalid record");
6095 
6096       if (!isa<PointerType>(Ptr->getType()))
6097         return error("Cmpxchg operand is not a pointer type");
6098 
6099       Value *Cmp = nullptr;
6100       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6101       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6102                    CmpTypeID, Cmp, CurBB))
6103         return error("Invalid record");
6104 
6105       Value *New = nullptr;
6106       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6107                    New, CurBB) ||
6108           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6109         return error("Invalid record");
6110 
6111       const AtomicOrdering SuccessOrdering =
6112           getDecodedOrdering(Record[OpNum + 1]);
6113       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6114           SuccessOrdering == AtomicOrdering::Unordered)
6115         return error("Invalid record");
6116 
6117       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6118 
6119       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6120         return Err;
6121 
6122       const AtomicOrdering FailureOrdering =
6123           NumRecords < 7
6124               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6125               : getDecodedOrdering(Record[OpNum + 3]);
6126 
6127       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6128           FailureOrdering == AtomicOrdering::Unordered)
6129         return error("Invalid record");
6130 
6131       const Align Alignment(
6132           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6133 
6134       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6135                                 FailureOrdering, SSID);
6136       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6137 
6138       if (NumRecords < 8) {
6139         // Before weak cmpxchgs existed, the instruction simply returned the
6140         // value loaded from memory, so bitcode files from that era will be
6141         // expecting the first component of a modern cmpxchg.
6142         I->insertInto(CurBB, CurBB->end());
6143         I = ExtractValueInst::Create(I, 0);
6144         ResTypeID = CmpTypeID;
6145       } else {
6146         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6147         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6148         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6149       }
6150 
6151       InstructionList.push_back(I);
6152       break;
6153     }
6154     case bitc::FUNC_CODE_INST_CMPXCHG: {
6155       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6156       // failure_ordering, weak, align?]
6157       const size_t NumRecords = Record.size();
6158       unsigned OpNum = 0;
6159       Value *Ptr = nullptr;
6160       unsigned PtrTypeID;
6161       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6162         return error("Invalid record");
6163 
6164       if (!isa<PointerType>(Ptr->getType()))
6165         return error("Cmpxchg operand is not a pointer type");
6166 
6167       Value *Cmp = nullptr;
6168       unsigned CmpTypeID;
6169       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6170         return error("Invalid record");
6171 
6172       Value *Val = nullptr;
6173       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6174                    CurBB))
6175         return error("Invalid record");
6176 
6177       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6178         return error("Invalid record");
6179 
6180       const bool IsVol = Record[OpNum];
6181 
6182       const AtomicOrdering SuccessOrdering =
6183           getDecodedOrdering(Record[OpNum + 1]);
6184       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6185         return error("Invalid cmpxchg success ordering");
6186 
6187       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6188 
6189       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6190         return Err;
6191 
6192       const AtomicOrdering FailureOrdering =
6193           getDecodedOrdering(Record[OpNum + 3]);
6194       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6195         return error("Invalid cmpxchg failure ordering");
6196 
6197       const bool IsWeak = Record[OpNum + 4];
6198 
6199       MaybeAlign Alignment;
6200 
6201       if (NumRecords == (OpNum + 6)) {
6202         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6203           return Err;
6204       }
6205       if (!Alignment)
6206         Alignment =
6207             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6208 
6209       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6210                                 FailureOrdering, SSID);
6211       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6212       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6213 
6214       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6215       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6216 
6217       InstructionList.push_back(I);
6218       break;
6219     }
6220     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6221     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6222       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6223       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6224       const size_t NumRecords = Record.size();
6225       unsigned OpNum = 0;
6226 
6227       Value *Ptr = nullptr;
6228       unsigned PtrTypeID;
6229       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6230         return error("Invalid record");
6231 
6232       if (!isa<PointerType>(Ptr->getType()))
6233         return error("Invalid record");
6234 
6235       Value *Val = nullptr;
6236       unsigned ValTypeID = InvalidTypeID;
6237       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6238         ValTypeID = getContainedTypeID(PtrTypeID);
6239         if (popValue(Record, OpNum, NextValueNo,
6240                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6241           return error("Invalid record");
6242       } else {
6243         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6244           return error("Invalid record");
6245       }
6246 
6247       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6248         return error("Invalid record");
6249 
6250       const AtomicRMWInst::BinOp Operation =
6251           getDecodedRMWOperation(Record[OpNum]);
6252       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6253           Operation > AtomicRMWInst::LAST_BINOP)
6254         return error("Invalid record");
6255 
6256       const bool IsVol = Record[OpNum + 1];
6257 
6258       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6259       if (Ordering == AtomicOrdering::NotAtomic ||
6260           Ordering == AtomicOrdering::Unordered)
6261         return error("Invalid record");
6262 
6263       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6264 
6265       MaybeAlign Alignment;
6266 
6267       if (NumRecords == (OpNum + 5)) {
6268         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6269           return Err;
6270       }
6271 
6272       if (!Alignment)
6273         Alignment =
6274             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6275 
6276       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6277       ResTypeID = ValTypeID;
6278       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6279 
6280       InstructionList.push_back(I);
6281       break;
6282     }
6283     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6284       if (2 != Record.size())
6285         return error("Invalid record");
6286       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6287       if (Ordering == AtomicOrdering::NotAtomic ||
6288           Ordering == AtomicOrdering::Unordered ||
6289           Ordering == AtomicOrdering::Monotonic)
6290         return error("Invalid record");
6291       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6292       I = new FenceInst(Context, Ordering, SSID);
6293       InstructionList.push_back(I);
6294       break;
6295     }
6296     case bitc::FUNC_CODE_INST_CALL: {
6297       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6298       if (Record.size() < 3)
6299         return error("Invalid record");
6300 
6301       unsigned OpNum = 0;
6302       AttributeList PAL = getAttributes(Record[OpNum++]);
6303       unsigned CCInfo = Record[OpNum++];
6304 
6305       FastMathFlags FMF;
6306       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6307         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6308         if (!FMF.any())
6309           return error("Fast math flags indicator set for call with no FMF");
6310       }
6311 
6312       unsigned FTyID = InvalidTypeID;
6313       FunctionType *FTy = nullptr;
6314       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6315         FTyID = Record[OpNum++];
6316         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6317         if (!FTy)
6318           return error("Explicit call type is not a function type");
6319       }
6320 
6321       Value *Callee;
6322       unsigned CalleeTypeID;
6323       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6324                            CurBB))
6325         return error("Invalid record");
6326 
6327       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6328       if (!OpTy)
6329         return error("Callee is not a pointer type");
6330       if (!FTy) {
6331         FTyID = getContainedTypeID(CalleeTypeID);
6332         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6333         if (!FTy)
6334           return error("Callee is not of pointer to function type");
6335       }
6336       if (Record.size() < FTy->getNumParams() + OpNum)
6337         return error("Insufficient operands to call");
6338 
6339       SmallVector<Value*, 16> Args;
6340       SmallVector<unsigned, 16> ArgTyIDs;
6341       // Read the fixed params.
6342       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6343         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6344         if (FTy->getParamType(i)->isLabelTy())
6345           Args.push_back(getBasicBlock(Record[OpNum]));
6346         else
6347           Args.push_back(getValue(Record, OpNum, NextValueNo,
6348                                   FTy->getParamType(i), ArgTyID, CurBB));
6349         ArgTyIDs.push_back(ArgTyID);
6350         if (!Args.back())
6351           return error("Invalid record");
6352       }
6353 
6354       // Read type/value pairs for varargs params.
6355       if (!FTy->isVarArg()) {
6356         if (OpNum != Record.size())
6357           return error("Invalid record");
6358       } else {
6359         while (OpNum != Record.size()) {
6360           Value *Op;
6361           unsigned OpTypeID;
6362           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6363             return error("Invalid record");
6364           Args.push_back(Op);
6365           ArgTyIDs.push_back(OpTypeID);
6366         }
6367       }
6368 
6369       // Upgrade the bundles if needed.
6370       if (!OperandBundles.empty())
6371         UpgradeOperandBundles(OperandBundles);
6372 
6373       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6374       ResTypeID = getContainedTypeID(FTyID);
6375       OperandBundles.clear();
6376       InstructionList.push_back(I);
6377       cast<CallInst>(I)->setCallingConv(
6378           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6379       CallInst::TailCallKind TCK = CallInst::TCK_None;
6380       if (CCInfo & (1 << bitc::CALL_TAIL))
6381         TCK = CallInst::TCK_Tail;
6382       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6383         TCK = CallInst::TCK_MustTail;
6384       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6385         TCK = CallInst::TCK_NoTail;
6386       cast<CallInst>(I)->setTailCallKind(TCK);
6387       cast<CallInst>(I)->setAttributes(PAL);
6388       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6389         I->deleteValue();
6390         return Err;
6391       }
6392       if (FMF.any()) {
6393         if (!isa<FPMathOperator>(I))
6394           return error("Fast-math-flags specified for call without "
6395                        "floating-point scalar or vector return type");
6396         I->setFastMathFlags(FMF);
6397       }
6398       break;
6399     }
6400     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6401       if (Record.size() < 3)
6402         return error("Invalid record");
6403       unsigned OpTyID = Record[0];
6404       Type *OpTy = getTypeByID(OpTyID);
6405       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6406       ResTypeID = Record[2];
6407       Type *ResTy = getTypeByID(ResTypeID);
6408       if (!OpTy || !Op || !ResTy)
6409         return error("Invalid record");
6410       I = new VAArgInst(Op, ResTy);
6411       InstructionList.push_back(I);
6412       break;
6413     }
6414 
6415     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6416       // A call or an invoke can be optionally prefixed with some variable
6417       // number of operand bundle blocks.  These blocks are read into
6418       // OperandBundles and consumed at the next call or invoke instruction.
6419 
6420       if (Record.empty() || Record[0] >= BundleTags.size())
6421         return error("Invalid record");
6422 
6423       std::vector<Value *> Inputs;
6424 
6425       unsigned OpNum = 1;
6426       while (OpNum != Record.size()) {
6427         Value *Op;
6428         unsigned OpTypeID;
6429         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6430           return error("Invalid record");
6431         Inputs.push_back(Op);
6432       }
6433 
6434       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6435       continue;
6436     }
6437 
6438     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6439       unsigned OpNum = 0;
6440       Value *Op = nullptr;
6441       unsigned OpTypeID;
6442       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6443         return error("Invalid record");
6444       if (OpNum != Record.size())
6445         return error("Invalid record");
6446 
6447       I = new FreezeInst(Op);
6448       ResTypeID = OpTypeID;
6449       InstructionList.push_back(I);
6450       break;
6451     }
6452     }
6453 
6454     // Add instruction to end of current BB.  If there is no current BB, reject
6455     // this file.
6456     if (!CurBB) {
6457       I->deleteValue();
6458       return error("Invalid instruction with no BB");
6459     }
6460     if (!OperandBundles.empty()) {
6461       I->deleteValue();
6462       return error("Operand bundles found with no consumer");
6463     }
6464     I->insertInto(CurBB, CurBB->end());
6465 
6466     // If this was a terminator instruction, move to the next block.
6467     if (I->isTerminator()) {
6468       ++CurBBNo;
6469       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6470     }
6471 
6472     // Non-void values get registered in the value table for future use.
6473     if (!I->getType()->isVoidTy()) {
6474       assert(I->getType() == getTypeByID(ResTypeID) &&
6475              "Incorrect result type ID");
6476       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6477         return Err;
6478     }
6479   }
6480 
6481 OutOfRecordLoop:
6482 
6483   if (!OperandBundles.empty())
6484     return error("Operand bundles found with no consumer");
6485 
6486   // Check the function list for unresolved values.
6487   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6488     if (!A->getParent()) {
6489       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6490       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6491         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6492           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6493           delete A;
6494         }
6495       }
6496       return error("Never resolved value found in function");
6497     }
6498   }
6499 
6500   // Unexpected unresolved metadata about to be dropped.
6501   if (MDLoader->hasFwdRefs())
6502     return error("Invalid function metadata: outgoing forward refs");
6503 
6504   if (PhiConstExprBB)
6505     PhiConstExprBB->eraseFromParent();
6506 
6507   for (const auto &Pair : ConstExprEdgeBBs) {
6508     BasicBlock *From = Pair.first.first;
6509     BasicBlock *To = Pair.first.second;
6510     BasicBlock *EdgeBB = Pair.second;
6511     BranchInst::Create(To, EdgeBB);
6512     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6513     To->replacePhiUsesWith(From, EdgeBB);
6514     EdgeBB->moveBefore(To);
6515   }
6516 
6517   // Trim the value list down to the size it was before we parsed this function.
6518   ValueList.shrinkTo(ModuleValueListSize);
6519   MDLoader->shrinkTo(ModuleMDLoaderSize);
6520   std::vector<BasicBlock*>().swap(FunctionBBs);
6521   return Error::success();
6522 }
6523 
6524 /// Find the function body in the bitcode stream
6525 Error BitcodeReader::findFunctionInStream(
6526     Function *F,
6527     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6528   while (DeferredFunctionInfoIterator->second == 0) {
6529     // This is the fallback handling for the old format bitcode that
6530     // didn't contain the function index in the VST, or when we have
6531     // an anonymous function which would not have a VST entry.
6532     // Assert that we have one of those two cases.
6533     assert(VSTOffset == 0 || !F->hasName());
6534     // Parse the next body in the stream and set its position in the
6535     // DeferredFunctionInfo map.
6536     if (Error Err = rememberAndSkipFunctionBodies())
6537       return Err;
6538   }
6539   return Error::success();
6540 }
6541 
6542 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6543   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6544     return SyncScope::ID(Val);
6545   if (Val >= SSIDs.size())
6546     return SyncScope::System; // Map unknown synchronization scopes to system.
6547   return SSIDs[Val];
6548 }
6549 
6550 //===----------------------------------------------------------------------===//
6551 // GVMaterializer implementation
6552 //===----------------------------------------------------------------------===//
6553 
6554 Error BitcodeReader::materialize(GlobalValue *GV) {
6555   Function *F = dyn_cast<Function>(GV);
6556   // If it's not a function or is already material, ignore the request.
6557   if (!F || !F->isMaterializable())
6558     return Error::success();
6559 
6560   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6561   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6562   // If its position is recorded as 0, its body is somewhere in the stream
6563   // but we haven't seen it yet.
6564   if (DFII->second == 0)
6565     if (Error Err = findFunctionInStream(F, DFII))
6566       return Err;
6567 
6568   // Materialize metadata before parsing any function bodies.
6569   if (Error Err = materializeMetadata())
6570     return Err;
6571 
6572   // Move the bit stream to the saved position of the deferred function body.
6573   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6574     return JumpFailed;
6575   if (Error Err = parseFunctionBody(F))
6576     return Err;
6577   F->setIsMaterializable(false);
6578 
6579   if (StripDebugInfo)
6580     stripDebugInfo(*F);
6581 
6582   // Upgrade any old intrinsic calls in the function.
6583   for (auto &I : UpgradedIntrinsics) {
6584     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6585       if (CallInst *CI = dyn_cast<CallInst>(U))
6586         UpgradeIntrinsicCall(CI, I.second);
6587   }
6588 
6589   // Finish fn->subprogram upgrade for materialized functions.
6590   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6591     F->setSubprogram(SP);
6592 
6593   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6594   if (!MDLoader->isStrippingTBAA()) {
6595     for (auto &I : instructions(F)) {
6596       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6597       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6598         continue;
6599       MDLoader->setStripTBAA(true);
6600       stripTBAA(F->getParent());
6601     }
6602   }
6603 
6604   for (auto &I : instructions(F)) {
6605     // "Upgrade" older incorrect branch weights by dropping them.
6606     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6607       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6608         MDString *MDS = cast<MDString>(MD->getOperand(0));
6609         StringRef ProfName = MDS->getString();
6610         // Check consistency of !prof branch_weights metadata.
6611         if (!ProfName.equals("branch_weights"))
6612           continue;
6613         unsigned ExpectedNumOperands = 0;
6614         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6615           ExpectedNumOperands = BI->getNumSuccessors();
6616         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6617           ExpectedNumOperands = SI->getNumSuccessors();
6618         else if (isa<CallInst>(&I))
6619           ExpectedNumOperands = 1;
6620         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6621           ExpectedNumOperands = IBI->getNumDestinations();
6622         else if (isa<SelectInst>(&I))
6623           ExpectedNumOperands = 2;
6624         else
6625           continue; // ignore and continue.
6626 
6627         // If branch weight doesn't match, just strip branch weight.
6628         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6629           I.setMetadata(LLVMContext::MD_prof, nullptr);
6630       }
6631     }
6632 
6633     // Remove incompatible attributes on function calls.
6634     if (auto *CI = dyn_cast<CallBase>(&I)) {
6635       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6636           CI->getFunctionType()->getReturnType()));
6637 
6638       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6639         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6640                                         CI->getArgOperand(ArgNo)->getType()));
6641     }
6642   }
6643 
6644   // Look for functions that rely on old function attribute behavior.
6645   UpgradeFunctionAttributes(*F);
6646 
6647   // Bring in any functions that this function forward-referenced via
6648   // blockaddresses.
6649   return materializeForwardReferencedFunctions();
6650 }
6651 
6652 Error BitcodeReader::materializeModule() {
6653   if (Error Err = materializeMetadata())
6654     return Err;
6655 
6656   // Promise to materialize all forward references.
6657   WillMaterializeAllForwardRefs = true;
6658 
6659   // Iterate over the module, deserializing any functions that are still on
6660   // disk.
6661   for (Function &F : *TheModule) {
6662     if (Error Err = materialize(&F))
6663       return Err;
6664   }
6665   // At this point, if there are any function bodies, parse the rest of
6666   // the bits in the module past the last function block we have recorded
6667   // through either lazy scanning or the VST.
6668   if (LastFunctionBlockBit || NextUnreadBit)
6669     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6670                                     ? LastFunctionBlockBit
6671                                     : NextUnreadBit))
6672       return Err;
6673 
6674   // Check that all block address forward references got resolved (as we
6675   // promised above).
6676   if (!BasicBlockFwdRefs.empty())
6677     return error("Never resolved function from blockaddress");
6678 
6679   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6680   // delete the old functions to clean up. We can't do this unless the entire
6681   // module is materialized because there could always be another function body
6682   // with calls to the old function.
6683   for (auto &I : UpgradedIntrinsics) {
6684     for (auto *U : I.first->users()) {
6685       if (CallInst *CI = dyn_cast<CallInst>(U))
6686         UpgradeIntrinsicCall(CI, I.second);
6687     }
6688     if (!I.first->use_empty())
6689       I.first->replaceAllUsesWith(I.second);
6690     I.first->eraseFromParent();
6691   }
6692   UpgradedIntrinsics.clear();
6693 
6694   UpgradeDebugInfo(*TheModule);
6695 
6696   UpgradeModuleFlags(*TheModule);
6697 
6698   UpgradeARCRuntime(*TheModule);
6699 
6700   return Error::success();
6701 }
6702 
6703 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6704   return IdentifiedStructTypes;
6705 }
6706 
6707 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6708     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6709     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
6710     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6711       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
6712 
6713 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6714   TheIndex.addModule(ModulePath);
6715 }
6716 
6717 ModuleSummaryIndex::ModuleInfo *
6718 ModuleSummaryIndexBitcodeReader::getThisModule() {
6719   return TheIndex.getModule(ModulePath);
6720 }
6721 
6722 template <bool AllowNullValueInfo>
6723 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
6724 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6725   auto VGI = ValueIdToValueInfoMap[ValueId];
6726   // We can have a null value info for memprof callsite info records in
6727   // distributed ThinLTO index files when the callee function summary is not
6728   // included in the index. The bitcode writer records 0 in that case,
6729   // and the caller of this helper will set AllowNullValueInfo to true.
6730   assert(AllowNullValueInfo || std::get<0>(VGI));
6731   return VGI;
6732 }
6733 
6734 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6735     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6736     StringRef SourceFileName) {
6737   std::string GlobalId =
6738       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6739   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6740   auto OriginalNameID = ValueGUID;
6741   if (GlobalValue::isLocalLinkage(Linkage))
6742     OriginalNameID = GlobalValue::getGUID(ValueName);
6743   if (PrintSummaryGUIDs)
6744     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6745            << ValueName << "\n";
6746 
6747   // UseStrtab is false for legacy summary formats and value names are
6748   // created on stack. In that case we save the name in a string saver in
6749   // the index so that the value name can be recorded.
6750   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6751       TheIndex.getOrInsertValueInfo(
6752           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6753       OriginalNameID, ValueGUID);
6754 }
6755 
6756 // Specialized value symbol table parser used when reading module index
6757 // blocks where we don't actually create global values. The parsed information
6758 // is saved in the bitcode reader for use when later parsing summaries.
6759 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6760     uint64_t Offset,
6761     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6762   // With a strtab the VST is not required to parse the summary.
6763   if (UseStrtab)
6764     return Error::success();
6765 
6766   assert(Offset > 0 && "Expected non-zero VST offset");
6767   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6768   if (!MaybeCurrentBit)
6769     return MaybeCurrentBit.takeError();
6770   uint64_t CurrentBit = MaybeCurrentBit.get();
6771 
6772   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6773     return Err;
6774 
6775   SmallVector<uint64_t, 64> Record;
6776 
6777   // Read all the records for this value table.
6778   SmallString<128> ValueName;
6779 
6780   while (true) {
6781     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6782     if (!MaybeEntry)
6783       return MaybeEntry.takeError();
6784     BitstreamEntry Entry = MaybeEntry.get();
6785 
6786     switch (Entry.Kind) {
6787     case BitstreamEntry::SubBlock: // Handled for us already.
6788     case BitstreamEntry::Error:
6789       return error("Malformed block");
6790     case BitstreamEntry::EndBlock:
6791       // Done parsing VST, jump back to wherever we came from.
6792       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6793         return JumpFailed;
6794       return Error::success();
6795     case BitstreamEntry::Record:
6796       // The interesting case.
6797       break;
6798     }
6799 
6800     // Read a record.
6801     Record.clear();
6802     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6803     if (!MaybeRecord)
6804       return MaybeRecord.takeError();
6805     switch (MaybeRecord.get()) {
6806     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6807       break;
6808     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6809       if (convertToString(Record, 1, ValueName))
6810         return error("Invalid record");
6811       unsigned ValueID = Record[0];
6812       assert(!SourceFileName.empty());
6813       auto VLI = ValueIdToLinkageMap.find(ValueID);
6814       assert(VLI != ValueIdToLinkageMap.end() &&
6815              "No linkage found for VST entry?");
6816       auto Linkage = VLI->second;
6817       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6818       ValueName.clear();
6819       break;
6820     }
6821     case bitc::VST_CODE_FNENTRY: {
6822       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6823       if (convertToString(Record, 2, ValueName))
6824         return error("Invalid record");
6825       unsigned ValueID = Record[0];
6826       assert(!SourceFileName.empty());
6827       auto VLI = ValueIdToLinkageMap.find(ValueID);
6828       assert(VLI != ValueIdToLinkageMap.end() &&
6829              "No linkage found for VST entry?");
6830       auto Linkage = VLI->second;
6831       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6832       ValueName.clear();
6833       break;
6834     }
6835     case bitc::VST_CODE_COMBINED_ENTRY: {
6836       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6837       unsigned ValueID = Record[0];
6838       GlobalValue::GUID RefGUID = Record[1];
6839       // The "original name", which is the second value of the pair will be
6840       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6841       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6842           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
6843       break;
6844     }
6845     }
6846   }
6847 }
6848 
6849 // Parse just the blocks needed for building the index out of the module.
6850 // At the end of this routine the module Index is populated with a map
6851 // from global value id to GlobalValueSummary objects.
6852 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6853   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6854     return Err;
6855 
6856   SmallVector<uint64_t, 64> Record;
6857   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6858   unsigned ValueId = 0;
6859 
6860   // Read the index for this module.
6861   while (true) {
6862     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6863     if (!MaybeEntry)
6864       return MaybeEntry.takeError();
6865     llvm::BitstreamEntry Entry = MaybeEntry.get();
6866 
6867     switch (Entry.Kind) {
6868     case BitstreamEntry::Error:
6869       return error("Malformed block");
6870     case BitstreamEntry::EndBlock:
6871       return Error::success();
6872 
6873     case BitstreamEntry::SubBlock:
6874       switch (Entry.ID) {
6875       default: // Skip unknown content.
6876         if (Error Err = Stream.SkipBlock())
6877           return Err;
6878         break;
6879       case bitc::BLOCKINFO_BLOCK_ID:
6880         // Need to parse these to get abbrev ids (e.g. for VST)
6881         if (Error Err = readBlockInfo())
6882           return Err;
6883         break;
6884       case bitc::VALUE_SYMTAB_BLOCK_ID:
6885         // Should have been parsed earlier via VSTOffset, unless there
6886         // is no summary section.
6887         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6888                 !SeenGlobalValSummary) &&
6889                "Expected early VST parse via VSTOffset record");
6890         if (Error Err = Stream.SkipBlock())
6891           return Err;
6892         break;
6893       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6894       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6895         // Add the module if it is a per-module index (has a source file name).
6896         if (!SourceFileName.empty())
6897           addThisModule();
6898         assert(!SeenValueSymbolTable &&
6899                "Already read VST when parsing summary block?");
6900         // We might not have a VST if there were no values in the
6901         // summary. An empty summary block generated when we are
6902         // performing ThinLTO compiles so we don't later invoke
6903         // the regular LTO process on them.
6904         if (VSTOffset > 0) {
6905           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6906             return Err;
6907           SeenValueSymbolTable = true;
6908         }
6909         SeenGlobalValSummary = true;
6910         if (Error Err = parseEntireSummary(Entry.ID))
6911           return Err;
6912         break;
6913       case bitc::MODULE_STRTAB_BLOCK_ID:
6914         if (Error Err = parseModuleStringTable())
6915           return Err;
6916         break;
6917       }
6918       continue;
6919 
6920     case BitstreamEntry::Record: {
6921         Record.clear();
6922         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6923         if (!MaybeBitCode)
6924           return MaybeBitCode.takeError();
6925         switch (MaybeBitCode.get()) {
6926         default:
6927           break; // Default behavior, ignore unknown content.
6928         case bitc::MODULE_CODE_VERSION: {
6929           if (Error Err = parseVersionRecord(Record).takeError())
6930             return Err;
6931           break;
6932         }
6933         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6934         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6935           SmallString<128> ValueName;
6936           if (convertToString(Record, 0, ValueName))
6937             return error("Invalid record");
6938           SourceFileName = ValueName.c_str();
6939           break;
6940         }
6941         /// MODULE_CODE_HASH: [5*i32]
6942         case bitc::MODULE_CODE_HASH: {
6943           if (Record.size() != 5)
6944             return error("Invalid hash length " + Twine(Record.size()).str());
6945           auto &Hash = getThisModule()->second;
6946           int Pos = 0;
6947           for (auto &Val : Record) {
6948             assert(!(Val >> 32) && "Unexpected high bits set");
6949             Hash[Pos++] = Val;
6950           }
6951           break;
6952         }
6953         /// MODULE_CODE_VSTOFFSET: [offset]
6954         case bitc::MODULE_CODE_VSTOFFSET:
6955           if (Record.empty())
6956             return error("Invalid record");
6957           // Note that we subtract 1 here because the offset is relative to one
6958           // word before the start of the identification or module block, which
6959           // was historically always the start of the regular bitcode header.
6960           VSTOffset = Record[0] - 1;
6961           break;
6962         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6963         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6964         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6965         // v2: [strtab offset, strtab size, v1]
6966         case bitc::MODULE_CODE_GLOBALVAR:
6967         case bitc::MODULE_CODE_FUNCTION:
6968         case bitc::MODULE_CODE_ALIAS: {
6969           StringRef Name;
6970           ArrayRef<uint64_t> GVRecord;
6971           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6972           if (GVRecord.size() <= 3)
6973             return error("Invalid record");
6974           uint64_t RawLinkage = GVRecord[3];
6975           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6976           if (!UseStrtab) {
6977             ValueIdToLinkageMap[ValueId++] = Linkage;
6978             break;
6979           }
6980 
6981           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6982           break;
6983         }
6984         }
6985       }
6986       continue;
6987     }
6988   }
6989 }
6990 
6991 std::vector<ValueInfo>
6992 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6993   std::vector<ValueInfo> Ret;
6994   Ret.reserve(Record.size());
6995   for (uint64_t RefValueId : Record)
6996     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
6997   return Ret;
6998 }
6999 
7000 std::vector<FunctionSummary::EdgeTy>
7001 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7002                                               bool IsOldProfileFormat,
7003                                               bool HasProfile, bool HasRelBF) {
7004   std::vector<FunctionSummary::EdgeTy> Ret;
7005   Ret.reserve(Record.size());
7006   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7007     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7008     uint64_t RelBF = 0;
7009     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7010     if (IsOldProfileFormat) {
7011       I += 1; // Skip old callsitecount field
7012       if (HasProfile)
7013         I += 1; // Skip old profilecount field
7014     } else if (HasProfile)
7015       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
7016     else if (HasRelBF)
7017       RelBF = Record[++I];
7018     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
7019   }
7020   return Ret;
7021 }
7022 
7023 static void
7024 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7025                                        WholeProgramDevirtResolution &Wpd) {
7026   uint64_t ArgNum = Record[Slot++];
7027   WholeProgramDevirtResolution::ByArg &B =
7028       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7029   Slot += ArgNum;
7030 
7031   B.TheKind =
7032       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7033   B.Info = Record[Slot++];
7034   B.Byte = Record[Slot++];
7035   B.Bit = Record[Slot++];
7036 }
7037 
7038 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7039                                               StringRef Strtab, size_t &Slot,
7040                                               TypeIdSummary &TypeId) {
7041   uint64_t Id = Record[Slot++];
7042   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7043 
7044   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7045   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7046                         static_cast<size_t>(Record[Slot + 1])};
7047   Slot += 2;
7048 
7049   uint64_t ResByArgNum = Record[Slot++];
7050   for (uint64_t I = 0; I != ResByArgNum; ++I)
7051     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7052 }
7053 
7054 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7055                                      StringRef Strtab,
7056                                      ModuleSummaryIndex &TheIndex) {
7057   size_t Slot = 0;
7058   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7059       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7060   Slot += 2;
7061 
7062   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7063   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7064   TypeId.TTRes.AlignLog2 = Record[Slot++];
7065   TypeId.TTRes.SizeM1 = Record[Slot++];
7066   TypeId.TTRes.BitMask = Record[Slot++];
7067   TypeId.TTRes.InlineBits = Record[Slot++];
7068 
7069   while (Slot < Record.size())
7070     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7071 }
7072 
7073 std::vector<FunctionSummary::ParamAccess>
7074 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7075   auto ReadRange = [&]() {
7076     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7077                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7078     Record = Record.drop_front();
7079     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7080                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7081     Record = Record.drop_front();
7082     ConstantRange Range{Lower, Upper};
7083     assert(!Range.isFullSet());
7084     assert(!Range.isUpperSignWrapped());
7085     return Range;
7086   };
7087 
7088   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7089   while (!Record.empty()) {
7090     PendingParamAccesses.emplace_back();
7091     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7092     ParamAccess.ParamNo = Record.front();
7093     Record = Record.drop_front();
7094     ParamAccess.Use = ReadRange();
7095     ParamAccess.Calls.resize(Record.front());
7096     Record = Record.drop_front();
7097     for (auto &Call : ParamAccess.Calls) {
7098       Call.ParamNo = Record.front();
7099       Record = Record.drop_front();
7100       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7101       Record = Record.drop_front();
7102       Call.Offsets = ReadRange();
7103     }
7104   }
7105   return PendingParamAccesses;
7106 }
7107 
7108 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7109     ArrayRef<uint64_t> Record, size_t &Slot,
7110     TypeIdCompatibleVtableInfo &TypeId) {
7111   uint64_t Offset = Record[Slot++];
7112   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7113   TypeId.push_back({Offset, Callee});
7114 }
7115 
7116 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7117     ArrayRef<uint64_t> Record) {
7118   size_t Slot = 0;
7119   TypeIdCompatibleVtableInfo &TypeId =
7120       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7121           {Strtab.data() + Record[Slot],
7122            static_cast<size_t>(Record[Slot + 1])});
7123   Slot += 2;
7124 
7125   while (Slot < Record.size())
7126     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7127 }
7128 
7129 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7130                            unsigned WOCnt) {
7131   // Readonly and writeonly refs are in the end of the refs list.
7132   assert(ROCnt + WOCnt <= Refs.size());
7133   unsigned FirstWORef = Refs.size() - WOCnt;
7134   unsigned RefNo = FirstWORef - ROCnt;
7135   for (; RefNo < FirstWORef; ++RefNo)
7136     Refs[RefNo].setReadOnly();
7137   for (; RefNo < Refs.size(); ++RefNo)
7138     Refs[RefNo].setWriteOnly();
7139 }
7140 
7141 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7142 // objects in the index.
7143 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7144   if (Error Err = Stream.EnterSubBlock(ID))
7145     return Err;
7146   SmallVector<uint64_t, 64> Record;
7147 
7148   // Parse version
7149   {
7150     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7151     if (!MaybeEntry)
7152       return MaybeEntry.takeError();
7153     BitstreamEntry Entry = MaybeEntry.get();
7154 
7155     if (Entry.Kind != BitstreamEntry::Record)
7156       return error("Invalid Summary Block: record for version expected");
7157     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7158     if (!MaybeRecord)
7159       return MaybeRecord.takeError();
7160     if (MaybeRecord.get() != bitc::FS_VERSION)
7161       return error("Invalid Summary Block: version expected");
7162   }
7163   const uint64_t Version = Record[0];
7164   const bool IsOldProfileFormat = Version == 1;
7165   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7166     return error("Invalid summary version " + Twine(Version) +
7167                  ". Version should be in the range [1-" +
7168                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7169                  "].");
7170   Record.clear();
7171 
7172   // Keep around the last seen summary to be used when we see an optional
7173   // "OriginalName" attachement.
7174   GlobalValueSummary *LastSeenSummary = nullptr;
7175   GlobalValue::GUID LastSeenGUID = 0;
7176 
7177   // We can expect to see any number of type ID information records before
7178   // each function summary records; these variables store the information
7179   // collected so far so that it can be used to create the summary object.
7180   std::vector<GlobalValue::GUID> PendingTypeTests;
7181   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7182       PendingTypeCheckedLoadVCalls;
7183   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7184       PendingTypeCheckedLoadConstVCalls;
7185   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7186 
7187   std::vector<CallsiteInfo> PendingCallsites;
7188   std::vector<AllocInfo> PendingAllocs;
7189 
7190   while (true) {
7191     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7192     if (!MaybeEntry)
7193       return MaybeEntry.takeError();
7194     BitstreamEntry Entry = MaybeEntry.get();
7195 
7196     switch (Entry.Kind) {
7197     case BitstreamEntry::SubBlock: // Handled for us already.
7198     case BitstreamEntry::Error:
7199       return error("Malformed block");
7200     case BitstreamEntry::EndBlock:
7201       return Error::success();
7202     case BitstreamEntry::Record:
7203       // The interesting case.
7204       break;
7205     }
7206 
7207     // Read a record. The record format depends on whether this
7208     // is a per-module index or a combined index file. In the per-module
7209     // case the records contain the associated value's ID for correlation
7210     // with VST entries. In the combined index the correlation is done
7211     // via the bitcode offset of the summary records (which were saved
7212     // in the combined index VST entries). The records also contain
7213     // information used for ThinLTO renaming and importing.
7214     Record.clear();
7215     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7216     if (!MaybeBitCode)
7217       return MaybeBitCode.takeError();
7218     switch (unsigned BitCode = MaybeBitCode.get()) {
7219     default: // Default behavior: ignore.
7220       break;
7221     case bitc::FS_FLAGS: {  // [flags]
7222       TheIndex.setFlags(Record[0]);
7223       break;
7224     }
7225     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7226       uint64_t ValueID = Record[0];
7227       GlobalValue::GUID RefGUID = Record[1];
7228       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7229           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7230       break;
7231     }
7232     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7233     //                numrefs x valueid, n x (valueid)]
7234     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7235     //                        numrefs x valueid,
7236     //                        n x (valueid, hotness)]
7237     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7238     //                      numrefs x valueid,
7239     //                      n x (valueid, relblockfreq)]
7240     case bitc::FS_PERMODULE:
7241     case bitc::FS_PERMODULE_RELBF:
7242     case bitc::FS_PERMODULE_PROFILE: {
7243       unsigned ValueID = Record[0];
7244       uint64_t RawFlags = Record[1];
7245       unsigned InstCount = Record[2];
7246       uint64_t RawFunFlags = 0;
7247       unsigned NumRefs = Record[3];
7248       unsigned NumRORefs = 0, NumWORefs = 0;
7249       int RefListStartIndex = 4;
7250       if (Version >= 4) {
7251         RawFunFlags = Record[3];
7252         NumRefs = Record[4];
7253         RefListStartIndex = 5;
7254         if (Version >= 5) {
7255           NumRORefs = Record[5];
7256           RefListStartIndex = 6;
7257           if (Version >= 7) {
7258             NumWORefs = Record[6];
7259             RefListStartIndex = 7;
7260           }
7261         }
7262       }
7263 
7264       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7265       // The module path string ref set in the summary must be owned by the
7266       // index's module string table. Since we don't have a module path
7267       // string table section in the per-module index, we create a single
7268       // module path string table entry with an empty (0) ID to take
7269       // ownership.
7270       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7271       assert(Record.size() >= RefListStartIndex + NumRefs &&
7272              "Record size inconsistent with number of references");
7273       std::vector<ValueInfo> Refs = makeRefList(
7274           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7275       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7276       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7277       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7278           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7279           IsOldProfileFormat, HasProfile, HasRelBF);
7280       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7281       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7282       // In order to save memory, only record the memprof summaries if this is
7283       // the prevailing copy of a symbol. The linker doesn't resolve local
7284       // linkage values so don't check whether those are prevailing.
7285       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7286       if (IsPrevailing &&
7287           !GlobalValue::isLocalLinkage(LT) &&
7288           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7289         PendingCallsites.clear();
7290         PendingAllocs.clear();
7291       }
7292       auto FS = std::make_unique<FunctionSummary>(
7293           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7294           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7295           std::move(PendingTypeTestAssumeVCalls),
7296           std::move(PendingTypeCheckedLoadVCalls),
7297           std::move(PendingTypeTestAssumeConstVCalls),
7298           std::move(PendingTypeCheckedLoadConstVCalls),
7299           std::move(PendingParamAccesses), std::move(PendingCallsites),
7300           std::move(PendingAllocs));
7301       FS->setModulePath(getThisModule()->first());
7302       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7303       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7304                                      std::move(FS));
7305       break;
7306     }
7307     // FS_ALIAS: [valueid, flags, valueid]
7308     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7309     // they expect all aliasee summaries to be available.
7310     case bitc::FS_ALIAS: {
7311       unsigned ValueID = Record[0];
7312       uint64_t RawFlags = Record[1];
7313       unsigned AliaseeID = Record[2];
7314       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7315       auto AS = std::make_unique<AliasSummary>(Flags);
7316       // The module path string ref set in the summary must be owned by the
7317       // index's module string table. Since we don't have a module path
7318       // string table section in the per-module index, we create a single
7319       // module path string table entry with an empty (0) ID to take
7320       // ownership.
7321       AS->setModulePath(getThisModule()->first());
7322 
7323       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7324       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7325       if (!AliaseeInModule)
7326         return error("Alias expects aliasee summary to be parsed");
7327       AS->setAliasee(AliaseeVI, AliaseeInModule);
7328 
7329       auto GUID = getValueInfoFromValueId(ValueID);
7330       AS->setOriginalName(std::get<1>(GUID));
7331       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7332       break;
7333     }
7334     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7335     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7336       unsigned ValueID = Record[0];
7337       uint64_t RawFlags = Record[1];
7338       unsigned RefArrayStart = 2;
7339       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7340                                       /* WriteOnly */ false,
7341                                       /* Constant */ false,
7342                                       GlobalObject::VCallVisibilityPublic);
7343       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7344       if (Version >= 5) {
7345         GVF = getDecodedGVarFlags(Record[2]);
7346         RefArrayStart = 3;
7347       }
7348       std::vector<ValueInfo> Refs =
7349           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7350       auto FS =
7351           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7352       FS->setModulePath(getThisModule()->first());
7353       auto GUID = getValueInfoFromValueId(ValueID);
7354       FS->setOriginalName(std::get<1>(GUID));
7355       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7356       break;
7357     }
7358     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7359     //                        numrefs, numrefs x valueid,
7360     //                        n x (valueid, offset)]
7361     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7362       unsigned ValueID = Record[0];
7363       uint64_t RawFlags = Record[1];
7364       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7365       unsigned NumRefs = Record[3];
7366       unsigned RefListStartIndex = 4;
7367       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7368       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7369       std::vector<ValueInfo> Refs = makeRefList(
7370           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7371       VTableFuncList VTableFuncs;
7372       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7373         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7374         uint64_t Offset = Record[++I];
7375         VTableFuncs.push_back({Callee, Offset});
7376       }
7377       auto VS =
7378           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7379       VS->setModulePath(getThisModule()->first());
7380       VS->setVTableFuncs(VTableFuncs);
7381       auto GUID = getValueInfoFromValueId(ValueID);
7382       VS->setOriginalName(std::get<1>(GUID));
7383       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7384       break;
7385     }
7386     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7387     //               numrefs x valueid, n x (valueid)]
7388     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7389     //                       numrefs x valueid, n x (valueid, hotness)]
7390     case bitc::FS_COMBINED:
7391     case bitc::FS_COMBINED_PROFILE: {
7392       unsigned ValueID = Record[0];
7393       uint64_t ModuleId = Record[1];
7394       uint64_t RawFlags = Record[2];
7395       unsigned InstCount = Record[3];
7396       uint64_t RawFunFlags = 0;
7397       uint64_t EntryCount = 0;
7398       unsigned NumRefs = Record[4];
7399       unsigned NumRORefs = 0, NumWORefs = 0;
7400       int RefListStartIndex = 5;
7401 
7402       if (Version >= 4) {
7403         RawFunFlags = Record[4];
7404         RefListStartIndex = 6;
7405         size_t NumRefsIndex = 5;
7406         if (Version >= 5) {
7407           unsigned NumRORefsOffset = 1;
7408           RefListStartIndex = 7;
7409           if (Version >= 6) {
7410             NumRefsIndex = 6;
7411             EntryCount = Record[5];
7412             RefListStartIndex = 8;
7413             if (Version >= 7) {
7414               RefListStartIndex = 9;
7415               NumWORefs = Record[8];
7416               NumRORefsOffset = 2;
7417             }
7418           }
7419           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7420         }
7421         NumRefs = Record[NumRefsIndex];
7422       }
7423 
7424       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7425       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7426       assert(Record.size() >= RefListStartIndex + NumRefs &&
7427              "Record size inconsistent with number of references");
7428       std::vector<ValueInfo> Refs = makeRefList(
7429           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7430       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7431       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7432           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7433           IsOldProfileFormat, HasProfile, false);
7434       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7435       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7436       auto FS = std::make_unique<FunctionSummary>(
7437           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7438           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7439           std::move(PendingTypeTestAssumeVCalls),
7440           std::move(PendingTypeCheckedLoadVCalls),
7441           std::move(PendingTypeTestAssumeConstVCalls),
7442           std::move(PendingTypeCheckedLoadConstVCalls),
7443           std::move(PendingParamAccesses), std::move(PendingCallsites),
7444           std::move(PendingAllocs));
7445       LastSeenSummary = FS.get();
7446       LastSeenGUID = VI.getGUID();
7447       FS->setModulePath(ModuleIdMap[ModuleId]);
7448       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7449       break;
7450     }
7451     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7452     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7453     // they expect all aliasee summaries to be available.
7454     case bitc::FS_COMBINED_ALIAS: {
7455       unsigned ValueID = Record[0];
7456       uint64_t ModuleId = Record[1];
7457       uint64_t RawFlags = Record[2];
7458       unsigned AliaseeValueId = Record[3];
7459       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7460       auto AS = std::make_unique<AliasSummary>(Flags);
7461       LastSeenSummary = AS.get();
7462       AS->setModulePath(ModuleIdMap[ModuleId]);
7463 
7464       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7465       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7466       AS->setAliasee(AliaseeVI, AliaseeInModule);
7467 
7468       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7469       LastSeenGUID = VI.getGUID();
7470       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7471       break;
7472     }
7473     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7474     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7475       unsigned ValueID = Record[0];
7476       uint64_t ModuleId = Record[1];
7477       uint64_t RawFlags = Record[2];
7478       unsigned RefArrayStart = 3;
7479       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7480                                       /* WriteOnly */ false,
7481                                       /* Constant */ false,
7482                                       GlobalObject::VCallVisibilityPublic);
7483       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7484       if (Version >= 5) {
7485         GVF = getDecodedGVarFlags(Record[3]);
7486         RefArrayStart = 4;
7487       }
7488       std::vector<ValueInfo> Refs =
7489           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7490       auto FS =
7491           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7492       LastSeenSummary = FS.get();
7493       FS->setModulePath(ModuleIdMap[ModuleId]);
7494       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7495       LastSeenGUID = VI.getGUID();
7496       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7497       break;
7498     }
7499     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7500     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7501       uint64_t OriginalName = Record[0];
7502       if (!LastSeenSummary)
7503         return error("Name attachment that does not follow a combined record");
7504       LastSeenSummary->setOriginalName(OriginalName);
7505       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7506       // Reset the LastSeenSummary
7507       LastSeenSummary = nullptr;
7508       LastSeenGUID = 0;
7509       break;
7510     }
7511     case bitc::FS_TYPE_TESTS:
7512       assert(PendingTypeTests.empty());
7513       llvm::append_range(PendingTypeTests, Record);
7514       break;
7515 
7516     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7517       assert(PendingTypeTestAssumeVCalls.empty());
7518       for (unsigned I = 0; I != Record.size(); I += 2)
7519         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7520       break;
7521 
7522     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7523       assert(PendingTypeCheckedLoadVCalls.empty());
7524       for (unsigned I = 0; I != Record.size(); I += 2)
7525         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7526       break;
7527 
7528     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7529       PendingTypeTestAssumeConstVCalls.push_back(
7530           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7531       break;
7532 
7533     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7534       PendingTypeCheckedLoadConstVCalls.push_back(
7535           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7536       break;
7537 
7538     case bitc::FS_CFI_FUNCTION_DEFS: {
7539       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7540       for (unsigned I = 0; I != Record.size(); I += 2)
7541         CfiFunctionDefs.insert(
7542             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7543       break;
7544     }
7545 
7546     case bitc::FS_CFI_FUNCTION_DECLS: {
7547       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7548       for (unsigned I = 0; I != Record.size(); I += 2)
7549         CfiFunctionDecls.insert(
7550             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7551       break;
7552     }
7553 
7554     case bitc::FS_TYPE_ID:
7555       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7556       break;
7557 
7558     case bitc::FS_TYPE_ID_METADATA:
7559       parseTypeIdCompatibleVtableSummaryRecord(Record);
7560       break;
7561 
7562     case bitc::FS_BLOCK_COUNT:
7563       TheIndex.addBlockCount(Record[0]);
7564       break;
7565 
7566     case bitc::FS_PARAM_ACCESS: {
7567       PendingParamAccesses = parseParamAccesses(Record);
7568       break;
7569     }
7570 
7571     case bitc::FS_STACK_IDS: { // [n x stackid]
7572       // Save stack ids in the reader to consult when adding stack ids from the
7573       // lists in the stack node and alloc node entries.
7574       StackIds = ArrayRef<uint64_t>(Record);
7575       break;
7576     }
7577 
7578     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7579       unsigned ValueID = Record[0];
7580       SmallVector<unsigned> StackIdList;
7581       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7582         assert(*R < StackIds.size());
7583         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7584       }
7585       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7586       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7587       break;
7588     }
7589 
7590     case bitc::FS_COMBINED_CALLSITE_INFO: {
7591       auto RecordIter = Record.begin();
7592       unsigned ValueID = *RecordIter++;
7593       unsigned NumStackIds = *RecordIter++;
7594       unsigned NumVersions = *RecordIter++;
7595       assert(Record.size() == 3 + NumStackIds + NumVersions);
7596       SmallVector<unsigned> StackIdList;
7597       for (unsigned J = 0; J < NumStackIds; J++) {
7598         assert(*RecordIter < StackIds.size());
7599         StackIdList.push_back(
7600             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7601       }
7602       SmallVector<unsigned> Versions;
7603       for (unsigned J = 0; J < NumVersions; J++)
7604         Versions.push_back(*RecordIter++);
7605       ValueInfo VI = std::get<0>(
7606           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7607       PendingCallsites.push_back(
7608           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7609       break;
7610     }
7611 
7612     case bitc::FS_PERMODULE_ALLOC_INFO: {
7613       unsigned I = 0;
7614       std::vector<MIBInfo> MIBs;
7615       while (I < Record.size()) {
7616         assert(Record.size() - I >= 2);
7617         AllocationType AllocType = (AllocationType)Record[I++];
7618         unsigned NumStackEntries = Record[I++];
7619         assert(Record.size() - I >= NumStackEntries);
7620         SmallVector<unsigned> StackIdList;
7621         for (unsigned J = 0; J < NumStackEntries; J++) {
7622           assert(Record[I] < StackIds.size());
7623           StackIdList.push_back(
7624               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7625         }
7626         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7627       }
7628       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7629       break;
7630     }
7631 
7632     case bitc::FS_COMBINED_ALLOC_INFO: {
7633       unsigned I = 0;
7634       std::vector<MIBInfo> MIBs;
7635       unsigned NumMIBs = Record[I++];
7636       unsigned NumVersions = Record[I++];
7637       unsigned MIBsRead = 0;
7638       while (MIBsRead++ < NumMIBs) {
7639         assert(Record.size() - I >= 2);
7640         AllocationType AllocType = (AllocationType)Record[I++];
7641         unsigned NumStackEntries = Record[I++];
7642         assert(Record.size() - I >= NumStackEntries);
7643         SmallVector<unsigned> StackIdList;
7644         for (unsigned J = 0; J < NumStackEntries; J++) {
7645           assert(Record[I] < StackIds.size());
7646           StackIdList.push_back(
7647               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7648         }
7649         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7650       }
7651       assert(Record.size() - I >= NumVersions);
7652       SmallVector<uint8_t> Versions;
7653       for (unsigned J = 0; J < NumVersions; J++)
7654         Versions.push_back(Record[I++]);
7655       PendingAllocs.push_back(
7656           AllocInfo(std::move(Versions), std::move(MIBs)));
7657       break;
7658     }
7659     }
7660   }
7661   llvm_unreachable("Exit infinite loop");
7662 }
7663 
7664 // Parse the  module string table block into the Index.
7665 // This populates the ModulePathStringTable map in the index.
7666 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7667   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7668     return Err;
7669 
7670   SmallVector<uint64_t, 64> Record;
7671 
7672   SmallString<128> ModulePath;
7673   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7674 
7675   while (true) {
7676     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7677     if (!MaybeEntry)
7678       return MaybeEntry.takeError();
7679     BitstreamEntry Entry = MaybeEntry.get();
7680 
7681     switch (Entry.Kind) {
7682     case BitstreamEntry::SubBlock: // Handled for us already.
7683     case BitstreamEntry::Error:
7684       return error("Malformed block");
7685     case BitstreamEntry::EndBlock:
7686       return Error::success();
7687     case BitstreamEntry::Record:
7688       // The interesting case.
7689       break;
7690     }
7691 
7692     Record.clear();
7693     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7694     if (!MaybeRecord)
7695       return MaybeRecord.takeError();
7696     switch (MaybeRecord.get()) {
7697     default: // Default behavior: ignore.
7698       break;
7699     case bitc::MST_CODE_ENTRY: {
7700       // MST_ENTRY: [modid, namechar x N]
7701       uint64_t ModuleId = Record[0];
7702 
7703       if (convertToString(Record, 1, ModulePath))
7704         return error("Invalid record");
7705 
7706       LastSeenModule = TheIndex.addModule(ModulePath);
7707       ModuleIdMap[ModuleId] = LastSeenModule->first();
7708 
7709       ModulePath.clear();
7710       break;
7711     }
7712     /// MST_CODE_HASH: [5*i32]
7713     case bitc::MST_CODE_HASH: {
7714       if (Record.size() != 5)
7715         return error("Invalid hash length " + Twine(Record.size()).str());
7716       if (!LastSeenModule)
7717         return error("Invalid hash that does not follow a module path");
7718       int Pos = 0;
7719       for (auto &Val : Record) {
7720         assert(!(Val >> 32) && "Unexpected high bits set");
7721         LastSeenModule->second[Pos++] = Val;
7722       }
7723       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7724       LastSeenModule = nullptr;
7725       break;
7726     }
7727     }
7728   }
7729   llvm_unreachable("Exit infinite loop");
7730 }
7731 
7732 namespace {
7733 
7734 // FIXME: This class is only here to support the transition to llvm::Error. It
7735 // will be removed once this transition is complete. Clients should prefer to
7736 // deal with the Error value directly, rather than converting to error_code.
7737 class BitcodeErrorCategoryType : public std::error_category {
7738   const char *name() const noexcept override {
7739     return "llvm.bitcode";
7740   }
7741 
7742   std::string message(int IE) const override {
7743     BitcodeError E = static_cast<BitcodeError>(IE);
7744     switch (E) {
7745     case BitcodeError::CorruptedBitcode:
7746       return "Corrupted bitcode";
7747     }
7748     llvm_unreachable("Unknown error type!");
7749   }
7750 };
7751 
7752 } // end anonymous namespace
7753 
7754 const std::error_category &llvm::BitcodeErrorCategory() {
7755   static BitcodeErrorCategoryType ErrorCategory;
7756   return ErrorCategory;
7757 }
7758 
7759 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7760                                             unsigned Block, unsigned RecordID) {
7761   if (Error Err = Stream.EnterSubBlock(Block))
7762     return std::move(Err);
7763 
7764   StringRef Strtab;
7765   while (true) {
7766     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7767     if (!MaybeEntry)
7768       return MaybeEntry.takeError();
7769     llvm::BitstreamEntry Entry = MaybeEntry.get();
7770 
7771     switch (Entry.Kind) {
7772     case BitstreamEntry::EndBlock:
7773       return Strtab;
7774 
7775     case BitstreamEntry::Error:
7776       return error("Malformed block");
7777 
7778     case BitstreamEntry::SubBlock:
7779       if (Error Err = Stream.SkipBlock())
7780         return std::move(Err);
7781       break;
7782 
7783     case BitstreamEntry::Record:
7784       StringRef Blob;
7785       SmallVector<uint64_t, 1> Record;
7786       Expected<unsigned> MaybeRecord =
7787           Stream.readRecord(Entry.ID, Record, &Blob);
7788       if (!MaybeRecord)
7789         return MaybeRecord.takeError();
7790       if (MaybeRecord.get() == RecordID)
7791         Strtab = Blob;
7792       break;
7793     }
7794   }
7795 }
7796 
7797 //===----------------------------------------------------------------------===//
7798 // External interface
7799 //===----------------------------------------------------------------------===//
7800 
7801 Expected<std::vector<BitcodeModule>>
7802 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7803   auto FOrErr = getBitcodeFileContents(Buffer);
7804   if (!FOrErr)
7805     return FOrErr.takeError();
7806   return std::move(FOrErr->Mods);
7807 }
7808 
7809 Expected<BitcodeFileContents>
7810 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7811   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7812   if (!StreamOrErr)
7813     return StreamOrErr.takeError();
7814   BitstreamCursor &Stream = *StreamOrErr;
7815 
7816   BitcodeFileContents F;
7817   while (true) {
7818     uint64_t BCBegin = Stream.getCurrentByteNo();
7819 
7820     // We may be consuming bitcode from a client that leaves garbage at the end
7821     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7822     // the end that there cannot possibly be another module, stop looking.
7823     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7824       return F;
7825 
7826     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7827     if (!MaybeEntry)
7828       return MaybeEntry.takeError();
7829     llvm::BitstreamEntry Entry = MaybeEntry.get();
7830 
7831     switch (Entry.Kind) {
7832     case BitstreamEntry::EndBlock:
7833     case BitstreamEntry::Error:
7834       return error("Malformed block");
7835 
7836     case BitstreamEntry::SubBlock: {
7837       uint64_t IdentificationBit = -1ull;
7838       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7839         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7840         if (Error Err = Stream.SkipBlock())
7841           return std::move(Err);
7842 
7843         {
7844           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7845           if (!MaybeEntry)
7846             return MaybeEntry.takeError();
7847           Entry = MaybeEntry.get();
7848         }
7849 
7850         if (Entry.Kind != BitstreamEntry::SubBlock ||
7851             Entry.ID != bitc::MODULE_BLOCK_ID)
7852           return error("Malformed block");
7853       }
7854 
7855       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7856         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7857         if (Error Err = Stream.SkipBlock())
7858           return std::move(Err);
7859 
7860         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7861                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7862                           Buffer.getBufferIdentifier(), IdentificationBit,
7863                           ModuleBit});
7864         continue;
7865       }
7866 
7867       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7868         Expected<StringRef> Strtab =
7869             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7870         if (!Strtab)
7871           return Strtab.takeError();
7872         // This string table is used by every preceding bitcode module that does
7873         // not have its own string table. A bitcode file may have multiple
7874         // string tables if it was created by binary concatenation, for example
7875         // with "llvm-cat -b".
7876         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7877           if (!I.Strtab.empty())
7878             break;
7879           I.Strtab = *Strtab;
7880         }
7881         // Similarly, the string table is used by every preceding symbol table;
7882         // normally there will be just one unless the bitcode file was created
7883         // by binary concatenation.
7884         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7885           F.StrtabForSymtab = *Strtab;
7886         continue;
7887       }
7888 
7889       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7890         Expected<StringRef> SymtabOrErr =
7891             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7892         if (!SymtabOrErr)
7893           return SymtabOrErr.takeError();
7894 
7895         // We can expect the bitcode file to have multiple symbol tables if it
7896         // was created by binary concatenation. In that case we silently
7897         // ignore any subsequent symbol tables, which is fine because this is a
7898         // low level function. The client is expected to notice that the number
7899         // of modules in the symbol table does not match the number of modules
7900         // in the input file and regenerate the symbol table.
7901         if (F.Symtab.empty())
7902           F.Symtab = *SymtabOrErr;
7903         continue;
7904       }
7905 
7906       if (Error Err = Stream.SkipBlock())
7907         return std::move(Err);
7908       continue;
7909     }
7910     case BitstreamEntry::Record:
7911       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7912         return std::move(E);
7913       continue;
7914     }
7915   }
7916 }
7917 
7918 /// Get a lazy one-at-time loading module from bitcode.
7919 ///
7920 /// This isn't always used in a lazy context.  In particular, it's also used by
7921 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7922 /// in forward-referenced functions from block address references.
7923 ///
7924 /// \param[in] MaterializeAll Set to \c true if we should materialize
7925 /// everything.
7926 Expected<std::unique_ptr<Module>>
7927 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7928                              bool ShouldLazyLoadMetadata, bool IsImporting,
7929                              ParserCallbacks Callbacks) {
7930   BitstreamCursor Stream(Buffer);
7931 
7932   std::string ProducerIdentification;
7933   if (IdentificationBit != -1ull) {
7934     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7935       return std::move(JumpFailed);
7936     if (Error E =
7937             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7938       return std::move(E);
7939   }
7940 
7941   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7942     return std::move(JumpFailed);
7943   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7944                               Context);
7945 
7946   std::unique_ptr<Module> M =
7947       std::make_unique<Module>(ModuleIdentifier, Context);
7948   M->setMaterializer(R);
7949 
7950   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7951   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7952                                       IsImporting, Callbacks))
7953     return std::move(Err);
7954 
7955   if (MaterializeAll) {
7956     // Read in the entire module, and destroy the BitcodeReader.
7957     if (Error Err = M->materializeAll())
7958       return std::move(Err);
7959   } else {
7960     // Resolve forward references from blockaddresses.
7961     if (Error Err = R->materializeForwardReferencedFunctions())
7962       return std::move(Err);
7963   }
7964   return std::move(M);
7965 }
7966 
7967 Expected<std::unique_ptr<Module>>
7968 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7969                              bool IsImporting, ParserCallbacks Callbacks) {
7970   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7971                        Callbacks);
7972 }
7973 
7974 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
7975 // We don't use ModuleIdentifier here because the client may need to control the
7976 // module path used in the combined summary (e.g. when reading summaries for
7977 // regular LTO modules).
7978 Error BitcodeModule::readSummary(
7979     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
7980     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
7981   BitstreamCursor Stream(Buffer);
7982   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7983     return JumpFailed;
7984 
7985   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
7986                                     ModulePath, IsPrevailing);
7987   return R.parseModule();
7988 }
7989 
7990 // Parse the specified bitcode buffer, returning the function info index.
7991 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
7992   BitstreamCursor Stream(Buffer);
7993   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7994     return std::move(JumpFailed);
7995 
7996   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
7997   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
7998                                     ModuleIdentifier, 0);
7999 
8000   if (Error Err = R.parseModule())
8001     return std::move(Err);
8002 
8003   return std::move(Index);
8004 }
8005 
8006 static Expected<std::pair<bool, bool>>
8007 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8008                                                  unsigned ID,
8009                                                  BitcodeLTOInfo &LTOInfo) {
8010   if (Error Err = Stream.EnterSubBlock(ID))
8011     return std::move(Err);
8012   SmallVector<uint64_t, 64> Record;
8013 
8014   while (true) {
8015     BitstreamEntry Entry;
8016     std::pair<bool, bool> Result = {false,false};
8017     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8018       return std::move(E);
8019 
8020     switch (Entry.Kind) {
8021     case BitstreamEntry::SubBlock: // Handled for us already.
8022     case BitstreamEntry::Error:
8023       return error("Malformed block");
8024     case BitstreamEntry::EndBlock: {
8025       // If no flags record found, set both flags to false.
8026       return Result;
8027     }
8028     case BitstreamEntry::Record:
8029       // The interesting case.
8030       break;
8031     }
8032 
8033     // Look for the FS_FLAGS record.
8034     Record.clear();
8035     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8036     if (!MaybeBitCode)
8037       return MaybeBitCode.takeError();
8038     switch (MaybeBitCode.get()) {
8039     default: // Default behavior: ignore.
8040       break;
8041     case bitc::FS_FLAGS: { // [flags]
8042       uint64_t Flags = Record[0];
8043       // Scan flags.
8044       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8045 
8046       bool EnableSplitLTOUnit = Flags & 0x8;
8047       bool UnifiedLTO = Flags & 0x200;
8048       Result = {EnableSplitLTOUnit, UnifiedLTO};
8049 
8050       return Result;
8051     }
8052     }
8053   }
8054   llvm_unreachable("Exit infinite loop");
8055 }
8056 
8057 // Check if the given bitcode buffer contains a global value summary block.
8058 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8059   BitstreamCursor Stream(Buffer);
8060   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8061     return std::move(JumpFailed);
8062 
8063   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8064     return std::move(Err);
8065 
8066   while (true) {
8067     llvm::BitstreamEntry Entry;
8068     if (Error E = Stream.advance().moveInto(Entry))
8069       return std::move(E);
8070 
8071     switch (Entry.Kind) {
8072     case BitstreamEntry::Error:
8073       return error("Malformed block");
8074     case BitstreamEntry::EndBlock:
8075       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8076                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8077 
8078     case BitstreamEntry::SubBlock:
8079       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8080         BitcodeLTOInfo LTOInfo;
8081         Expected<std::pair<bool, bool>> Flags =
8082             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8083         if (!Flags)
8084           return Flags.takeError();
8085         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8086         LTOInfo.IsThinLTO = true;
8087         LTOInfo.HasSummary = true;
8088         return LTOInfo;
8089       }
8090 
8091       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8092         BitcodeLTOInfo LTOInfo;
8093         Expected<std::pair<bool, bool>> Flags =
8094             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8095         if (!Flags)
8096           return Flags.takeError();
8097         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8098         LTOInfo.IsThinLTO = false;
8099         LTOInfo.HasSummary = true;
8100         return LTOInfo;
8101       }
8102 
8103       // Ignore other sub-blocks.
8104       if (Error Err = Stream.SkipBlock())
8105         return std::move(Err);
8106       continue;
8107 
8108     case BitstreamEntry::Record:
8109       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8110         continue;
8111       else
8112         return StreamFailed.takeError();
8113     }
8114   }
8115 }
8116 
8117 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8118   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8119   if (!MsOrErr)
8120     return MsOrErr.takeError();
8121 
8122   if (MsOrErr->size() != 1)
8123     return error("Expected a single module");
8124 
8125   return (*MsOrErr)[0];
8126 }
8127 
8128 Expected<std::unique_ptr<Module>>
8129 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8130                            bool ShouldLazyLoadMetadata, bool IsImporting,
8131                            ParserCallbacks Callbacks) {
8132   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8133   if (!BM)
8134     return BM.takeError();
8135 
8136   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8137                            Callbacks);
8138 }
8139 
8140 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8141     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8142     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8143   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8144                                      IsImporting, Callbacks);
8145   if (MOrErr)
8146     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8147   return MOrErr;
8148 }
8149 
8150 Expected<std::unique_ptr<Module>>
8151 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8152   return getModuleImpl(Context, true, false, false, Callbacks);
8153   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8154   // written.  We must defer until the Module has been fully materialized.
8155 }
8156 
8157 Expected<std::unique_ptr<Module>>
8158 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8159                        ParserCallbacks Callbacks) {
8160   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8161   if (!BM)
8162     return BM.takeError();
8163 
8164   return BM->parseModule(Context, Callbacks);
8165 }
8166 
8167 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8168   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8169   if (!StreamOrErr)
8170     return StreamOrErr.takeError();
8171 
8172   return readTriple(*StreamOrErr);
8173 }
8174 
8175 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8176   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8177   if (!StreamOrErr)
8178     return StreamOrErr.takeError();
8179 
8180   return hasObjCCategory(*StreamOrErr);
8181 }
8182 
8183 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8184   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8185   if (!StreamOrErr)
8186     return StreamOrErr.takeError();
8187 
8188   return readIdentificationCode(*StreamOrErr);
8189 }
8190 
8191 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8192                                    ModuleSummaryIndex &CombinedIndex) {
8193   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8194   if (!BM)
8195     return BM.takeError();
8196 
8197   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8198 }
8199 
8200 Expected<std::unique_ptr<ModuleSummaryIndex>>
8201 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8202   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8203   if (!BM)
8204     return BM.takeError();
8205 
8206   return BM->getSummary();
8207 }
8208 
8209 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8210   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8211   if (!BM)
8212     return BM.takeError();
8213 
8214   return BM->getLTOInfo();
8215 }
8216 
8217 Expected<std::unique_ptr<ModuleSummaryIndex>>
8218 llvm::getModuleSummaryIndexForFile(StringRef Path,
8219                                    bool IgnoreEmptyThinLTOIndexFile) {
8220   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8221       MemoryBuffer::getFileOrSTDIN(Path);
8222   if (!FileOrErr)
8223     return errorCodeToError(FileOrErr.getError());
8224   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8225     return nullptr;
8226   return getModuleSummaryIndex(**FileOrErr);
8227 }
8228