xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision e2881053c9d977cbe1176c2fdaf2a5049a0e7dad)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/AutoUpgrade.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/OperandTraits.h"
27 using namespace llvm;
28 
29 void BitcodeReader::FreeState() {
30   delete Buffer;
31   Buffer = 0;
32   std::vector<PATypeHolder>().swap(TypeList);
33   ValueList.clear();
34 
35   std::vector<AttrListPtr>().swap(MAttributes);
36   std::vector<BasicBlock*>().swap(FunctionBBs);
37   std::vector<Function*>().swap(FunctionsWithBodies);
38   DeferredFunctionInfo.clear();
39 }
40 
41 //===----------------------------------------------------------------------===//
42 //  Helper functions to implement forward reference resolution, etc.
43 //===----------------------------------------------------------------------===//
44 
45 /// ConvertToString - Convert a string from a record into an std::string, return
46 /// true on failure.
47 template<typename StrTy>
48 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
49                             StrTy &Result) {
50   if (Idx > Record.size())
51     return true;
52 
53   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
54     Result += (char)Record[i];
55   return false;
56 }
57 
58 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
59   switch (Val) {
60   default: // Map unknown/new linkages to external
61   case 0: return GlobalValue::ExternalLinkage;
62   case 1: return GlobalValue::WeakAnyLinkage;
63   case 2: return GlobalValue::AppendingLinkage;
64   case 3: return GlobalValue::InternalLinkage;
65   case 4: return GlobalValue::LinkOnceAnyLinkage;
66   case 5: return GlobalValue::DLLImportLinkage;
67   case 6: return GlobalValue::DLLExportLinkage;
68   case 7: return GlobalValue::ExternalWeakLinkage;
69   case 8: return GlobalValue::CommonAnyLinkage;
70   case 9: return GlobalValue::PrivateLinkage;
71   case 10: return GlobalValue::WeakODRLinkage;
72   case 11: return GlobalValue::LinkOnceODRLinkage;
73   case 13: return GlobalValue::CommonODRLinkage;
74   }
75 }
76 
77 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
78   switch (Val) {
79   default: // Map unknown visibilities to default.
80   case 0: return GlobalValue::DefaultVisibility;
81   case 1: return GlobalValue::HiddenVisibility;
82   case 2: return GlobalValue::ProtectedVisibility;
83   }
84 }
85 
86 static int GetDecodedCastOpcode(unsigned Val) {
87   switch (Val) {
88   default: return -1;
89   case bitc::CAST_TRUNC   : return Instruction::Trunc;
90   case bitc::CAST_ZEXT    : return Instruction::ZExt;
91   case bitc::CAST_SEXT    : return Instruction::SExt;
92   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
93   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
94   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
95   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
96   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
97   case bitc::CAST_FPEXT   : return Instruction::FPExt;
98   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
99   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
100   case bitc::CAST_BITCAST : return Instruction::BitCast;
101   }
102 }
103 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
104   switch (Val) {
105   default: return -1;
106   case bitc::BINOP_ADD:  return Instruction::Add;
107   case bitc::BINOP_SUB:  return Instruction::Sub;
108   case bitc::BINOP_MUL:  return Instruction::Mul;
109   case bitc::BINOP_UDIV: return Instruction::UDiv;
110   case bitc::BINOP_SDIV:
111     return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
112   case bitc::BINOP_UREM: return Instruction::URem;
113   case bitc::BINOP_SREM:
114     return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
115   case bitc::BINOP_SHL:  return Instruction::Shl;
116   case bitc::BINOP_LSHR: return Instruction::LShr;
117   case bitc::BINOP_ASHR: return Instruction::AShr;
118   case bitc::BINOP_AND:  return Instruction::And;
119   case bitc::BINOP_OR:   return Instruction::Or;
120   case bitc::BINOP_XOR:  return Instruction::Xor;
121   }
122 }
123 
124 namespace llvm {
125 namespace {
126   /// @brief A class for maintaining the slot number definition
127   /// as a placeholder for the actual definition for forward constants defs.
128   class ConstantPlaceHolder : public ConstantExpr {
129     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
130     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
131   public:
132     // allocate space for exactly one operand
133     void *operator new(size_t s) {
134       return User::operator new(s, 1);
135     }
136     explicit ConstantPlaceHolder(const Type *Ty)
137       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
138       Op<0>() = UndefValue::get(Type::Int32Ty);
139     }
140 
141     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
142     static inline bool classof(const ConstantPlaceHolder *) { return true; }
143     static bool classof(const Value *V) {
144       return isa<ConstantExpr>(V) &&
145              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
146     }
147 
148 
149     /// Provide fast operand accessors
150     DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
151   };
152 }
153 
154 
155   // FIXME: can we inherit this from ConstantExpr?
156 template <>
157 struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
158 };
159 
160 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
161 }
162 
163 void BitcodeReaderValueList::resize(unsigned Desired) {
164   if (Desired > Capacity) {
165     // Since we expect many values to come from the bitcode file we better
166     // allocate the double amount, so that the array size grows exponentially
167     // at each reallocation.  Also, add a small amount of 100 extra elements
168     // each time, to reallocate less frequently when the array is still small.
169     //
170     Capacity = Desired * 2 + 100;
171     Use *New = allocHungoffUses(Capacity);
172     Use *Old = OperandList;
173     unsigned Ops = getNumOperands();
174     for (int i(Ops - 1); i >= 0; --i)
175       New[i] = Old[i].get();
176     OperandList = New;
177     if (Old) Use::zap(Old, Old + Ops, true);
178   }
179 }
180 
181 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
182                                                     const Type *Ty) {
183   if (Idx >= size()) {
184     // Insert a bunch of null values.
185     resize(Idx + 1);
186     NumOperands = Idx+1;
187   }
188 
189   if (Value *V = OperandList[Idx]) {
190     assert(Ty == V->getType() && "Type mismatch in constant table!");
191     return cast<Constant>(V);
192   }
193 
194   // Create and return a placeholder, which will later be RAUW'd.
195   Constant *C = new ConstantPlaceHolder(Ty);
196   OperandList[Idx] = C;
197   return C;
198 }
199 
200 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
201   if (Idx >= size()) {
202     // Insert a bunch of null values.
203     resize(Idx + 1);
204     NumOperands = Idx+1;
205   }
206 
207   if (Value *V = OperandList[Idx]) {
208     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
209     return V;
210   }
211 
212   // No type specified, must be invalid reference.
213   if (Ty == 0) return 0;
214 
215   // Create and return a placeholder, which will later be RAUW'd.
216   Value *V = new Argument(Ty);
217   OperandList[Idx] = V;
218   return V;
219 }
220 
221 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
222 /// resolves any forward references.  The idea behind this is that we sometimes
223 /// get constants (such as large arrays) which reference *many* forward ref
224 /// constants.  Replacing each of these causes a lot of thrashing when
225 /// building/reuniquing the constant.  Instead of doing this, we look at all the
226 /// uses and rewrite all the place holders at once for any constant that uses
227 /// a placeholder.
228 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
229   // Sort the values by-pointer so that they are efficient to look up with a
230   // binary search.
231   std::sort(ResolveConstants.begin(), ResolveConstants.end());
232 
233   SmallVector<Constant*, 64> NewOps;
234 
235   while (!ResolveConstants.empty()) {
236     Value *RealVal = getOperand(ResolveConstants.back().second);
237     Constant *Placeholder = ResolveConstants.back().first;
238     ResolveConstants.pop_back();
239 
240     // Loop over all users of the placeholder, updating them to reference the
241     // new value.  If they reference more than one placeholder, update them all
242     // at once.
243     while (!Placeholder->use_empty()) {
244       Value::use_iterator UI = Placeholder->use_begin();
245 
246       // If the using object isn't uniqued, just update the operands.  This
247       // handles instructions and initializers for global variables.
248       if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
249         UI.getUse().set(RealVal);
250         continue;
251       }
252 
253       // Otherwise, we have a constant that uses the placeholder.  Replace that
254       // constant with a new constant that has *all* placeholder uses updated.
255       Constant *UserC = cast<Constant>(*UI);
256       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
257            I != E; ++I) {
258         Value *NewOp;
259         if (!isa<ConstantPlaceHolder>(*I)) {
260           // Not a placeholder reference.
261           NewOp = *I;
262         } else if (*I == Placeholder) {
263           // Common case is that it just references this one placeholder.
264           NewOp = RealVal;
265         } else {
266           // Otherwise, look up the placeholder in ResolveConstants.
267           ResolveConstantsTy::iterator It =
268             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
269                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
270                                                             0));
271           assert(It != ResolveConstants.end() && It->first == *I);
272           NewOp = this->getOperand(It->second);
273         }
274 
275         NewOps.push_back(cast<Constant>(NewOp));
276       }
277 
278       // Make the new constant.
279       Constant *NewC;
280       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
281         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size());
282       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
283         NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
284                                    UserCS->getType()->isPacked());
285       } else if (isa<ConstantVector>(UserC)) {
286         NewC = ConstantVector::get(&NewOps[0], NewOps.size());
287       } else {
288         // Must be a constant expression.
289         NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
290                                                           NewOps.size());
291       }
292 
293       UserC->replaceAllUsesWith(NewC);
294       UserC->destroyConstant();
295       NewOps.clear();
296     }
297 
298     delete Placeholder;
299   }
300 }
301 
302 
303 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
304   // If the TypeID is in range, return it.
305   if (ID < TypeList.size())
306     return TypeList[ID].get();
307   if (!isTypeTable) return 0;
308 
309   // The type table allows forward references.  Push as many Opaque types as
310   // needed to get up to ID.
311   while (TypeList.size() <= ID)
312     TypeList.push_back(OpaqueType::get());
313   return TypeList.back().get();
314 }
315 
316 //===----------------------------------------------------------------------===//
317 //  Functions for parsing blocks from the bitcode file
318 //===----------------------------------------------------------------------===//
319 
320 bool BitcodeReader::ParseAttributeBlock() {
321   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
322     return Error("Malformed block record");
323 
324   if (!MAttributes.empty())
325     return Error("Multiple PARAMATTR blocks found!");
326 
327   SmallVector<uint64_t, 64> Record;
328 
329   SmallVector<AttributeWithIndex, 8> Attrs;
330 
331   // Read all the records.
332   while (1) {
333     unsigned Code = Stream.ReadCode();
334     if (Code == bitc::END_BLOCK) {
335       if (Stream.ReadBlockEnd())
336         return Error("Error at end of PARAMATTR block");
337       return false;
338     }
339 
340     if (Code == bitc::ENTER_SUBBLOCK) {
341       // No known subblocks, always skip them.
342       Stream.ReadSubBlockID();
343       if (Stream.SkipBlock())
344         return Error("Malformed block record");
345       continue;
346     }
347 
348     if (Code == bitc::DEFINE_ABBREV) {
349       Stream.ReadAbbrevRecord();
350       continue;
351     }
352 
353     // Read a record.
354     Record.clear();
355     switch (Stream.ReadRecord(Code, Record)) {
356     default:  // Default behavior: ignore.
357       break;
358     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
359       if (Record.size() & 1)
360         return Error("Invalid ENTRY record");
361 
362       // FIXME : Remove this autoupgrade code in LLVM 3.0.
363       // If Function attributes are using index 0 then transfer them
364       // to index ~0. Index 0 is used for return value attributes but used to be
365       // used for function attributes.
366       Attributes RetAttribute = Attribute::None;
367       Attributes FnAttribute = Attribute::None;
368       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
369         // FIXME: remove in LLVM 3.0
370         // The alignment is stored as a 16-bit raw value from bits 31--16.
371         // We shift the bits above 31 down by 11 bits.
372 
373         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
374         if (Alignment && !isPowerOf2_32(Alignment))
375           return Error("Alignment is not a power of two.");
376 
377         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
378         if (Alignment)
379           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
380         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
381         Record[i+1] = ReconstitutedAttr;
382 
383         if (Record[i] == 0)
384           RetAttribute = Record[i+1];
385         else if (Record[i] == ~0U)
386           FnAttribute = Record[i+1];
387       }
388 
389       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
390                               Attribute::ReadOnly|Attribute::ReadNone);
391 
392       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
393           (RetAttribute & OldRetAttrs) != 0) {
394         if (FnAttribute == Attribute::None) { // add a slot so they get added.
395           Record.push_back(~0U);
396           Record.push_back(0);
397         }
398 
399         FnAttribute  |= RetAttribute & OldRetAttrs;
400         RetAttribute &= ~OldRetAttrs;
401       }
402 
403       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
404         if (Record[i] == 0) {
405           if (RetAttribute != Attribute::None)
406             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
407         } else if (Record[i] == ~0U) {
408           if (FnAttribute != Attribute::None)
409             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
410         } else if (Record[i+1] != Attribute::None)
411           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
412       }
413 
414       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
415       Attrs.clear();
416       break;
417     }
418     }
419   }
420 }
421 
422 
423 bool BitcodeReader::ParseTypeTable() {
424   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
425     return Error("Malformed block record");
426 
427   if (!TypeList.empty())
428     return Error("Multiple TYPE_BLOCKs found!");
429 
430   SmallVector<uint64_t, 64> Record;
431   unsigned NumRecords = 0;
432 
433   // Read all the records for this type table.
434   while (1) {
435     unsigned Code = Stream.ReadCode();
436     if (Code == bitc::END_BLOCK) {
437       if (NumRecords != TypeList.size())
438         return Error("Invalid type forward reference in TYPE_BLOCK");
439       if (Stream.ReadBlockEnd())
440         return Error("Error at end of type table block");
441       return false;
442     }
443 
444     if (Code == bitc::ENTER_SUBBLOCK) {
445       // No known subblocks, always skip them.
446       Stream.ReadSubBlockID();
447       if (Stream.SkipBlock())
448         return Error("Malformed block record");
449       continue;
450     }
451 
452     if (Code == bitc::DEFINE_ABBREV) {
453       Stream.ReadAbbrevRecord();
454       continue;
455     }
456 
457     // Read a record.
458     Record.clear();
459     const Type *ResultTy = 0;
460     switch (Stream.ReadRecord(Code, Record)) {
461     default:  // Default behavior: unknown type.
462       ResultTy = 0;
463       break;
464     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
465       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
466       // type list.  This allows us to reserve space.
467       if (Record.size() < 1)
468         return Error("Invalid TYPE_CODE_NUMENTRY record");
469       TypeList.reserve(Record[0]);
470       continue;
471     case bitc::TYPE_CODE_VOID:      // VOID
472       ResultTy = Type::VoidTy;
473       break;
474     case bitc::TYPE_CODE_FLOAT:     // FLOAT
475       ResultTy = Type::FloatTy;
476       break;
477     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
478       ResultTy = Type::DoubleTy;
479       break;
480     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
481       ResultTy = Type::X86_FP80Ty;
482       break;
483     case bitc::TYPE_CODE_FP128:     // FP128
484       ResultTy = Type::FP128Ty;
485       break;
486     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
487       ResultTy = Type::PPC_FP128Ty;
488       break;
489     case bitc::TYPE_CODE_LABEL:     // LABEL
490       ResultTy = Type::LabelTy;
491       break;
492     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
493       ResultTy = 0;
494       break;
495     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
496       if (Record.size() < 1)
497         return Error("Invalid Integer type record");
498 
499       ResultTy = IntegerType::get(Record[0]);
500       break;
501     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
502                                     //          [pointee type, address space]
503       if (Record.size() < 1)
504         return Error("Invalid POINTER type record");
505       unsigned AddressSpace = 0;
506       if (Record.size() == 2)
507         AddressSpace = Record[1];
508       ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace);
509       break;
510     }
511     case bitc::TYPE_CODE_FUNCTION: {
512       // FIXME: attrid is dead, remove it in LLVM 3.0
513       // FUNCTION: [vararg, attrid, retty, paramty x N]
514       if (Record.size() < 3)
515         return Error("Invalid FUNCTION type record");
516       std::vector<const Type*> ArgTys;
517       for (unsigned i = 3, e = Record.size(); i != e; ++i)
518         ArgTys.push_back(getTypeByID(Record[i], true));
519 
520       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
521                                    Record[0]);
522       break;
523     }
524     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
525       if (Record.size() < 1)
526         return Error("Invalid STRUCT type record");
527       std::vector<const Type*> EltTys;
528       for (unsigned i = 1, e = Record.size(); i != e; ++i)
529         EltTys.push_back(getTypeByID(Record[i], true));
530       ResultTy = StructType::get(EltTys, Record[0]);
531       break;
532     }
533     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
534       if (Record.size() < 2)
535         return Error("Invalid ARRAY type record");
536       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
537       break;
538     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
539       if (Record.size() < 2)
540         return Error("Invalid VECTOR type record");
541       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
542       break;
543     }
544 
545     if (NumRecords == TypeList.size()) {
546       // If this is a new type slot, just append it.
547       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
548       ++NumRecords;
549     } else if (ResultTy == 0) {
550       // Otherwise, this was forward referenced, so an opaque type was created,
551       // but the result type is actually just an opaque.  Leave the one we
552       // created previously.
553       ++NumRecords;
554     } else {
555       // Otherwise, this was forward referenced, so an opaque type was created.
556       // Resolve the opaque type to the real type now.
557       assert(NumRecords < TypeList.size() && "Typelist imbalance");
558       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
559 
560       // Don't directly push the new type on the Tab. Instead we want to replace
561       // the opaque type we previously inserted with the new concrete value. The
562       // refinement from the abstract (opaque) type to the new type causes all
563       // uses of the abstract type to use the concrete type (NewTy). This will
564       // also cause the opaque type to be deleted.
565       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
566 
567       // This should have replaced the old opaque type with the new type in the
568       // value table... or with a preexisting type that was already in the
569       // system.  Let's just make sure it did.
570       assert(TypeList[NumRecords-1].get() != OldTy &&
571              "refineAbstractType didn't work!");
572     }
573   }
574 }
575 
576 
577 bool BitcodeReader::ParseTypeSymbolTable() {
578   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
579     return Error("Malformed block record");
580 
581   SmallVector<uint64_t, 64> Record;
582 
583   // Read all the records for this type table.
584   std::string TypeName;
585   while (1) {
586     unsigned Code = Stream.ReadCode();
587     if (Code == bitc::END_BLOCK) {
588       if (Stream.ReadBlockEnd())
589         return Error("Error at end of type symbol table block");
590       return false;
591     }
592 
593     if (Code == bitc::ENTER_SUBBLOCK) {
594       // No known subblocks, always skip them.
595       Stream.ReadSubBlockID();
596       if (Stream.SkipBlock())
597         return Error("Malformed block record");
598       continue;
599     }
600 
601     if (Code == bitc::DEFINE_ABBREV) {
602       Stream.ReadAbbrevRecord();
603       continue;
604     }
605 
606     // Read a record.
607     Record.clear();
608     switch (Stream.ReadRecord(Code, Record)) {
609     default:  // Default behavior: unknown type.
610       break;
611     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
612       if (ConvertToString(Record, 1, TypeName))
613         return Error("Invalid TST_ENTRY record");
614       unsigned TypeID = Record[0];
615       if (TypeID >= TypeList.size())
616         return Error("Invalid Type ID in TST_ENTRY record");
617 
618       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
619       TypeName.clear();
620       break;
621     }
622   }
623 }
624 
625 bool BitcodeReader::ParseValueSymbolTable() {
626   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
627     return Error("Malformed block record");
628 
629   SmallVector<uint64_t, 64> Record;
630 
631   // Read all the records for this value table.
632   SmallString<128> ValueName;
633   while (1) {
634     unsigned Code = Stream.ReadCode();
635     if (Code == bitc::END_BLOCK) {
636       if (Stream.ReadBlockEnd())
637         return Error("Error at end of value symbol table block");
638       return false;
639     }
640     if (Code == bitc::ENTER_SUBBLOCK) {
641       // No known subblocks, always skip them.
642       Stream.ReadSubBlockID();
643       if (Stream.SkipBlock())
644         return Error("Malformed block record");
645       continue;
646     }
647 
648     if (Code == bitc::DEFINE_ABBREV) {
649       Stream.ReadAbbrevRecord();
650       continue;
651     }
652 
653     // Read a record.
654     Record.clear();
655     switch (Stream.ReadRecord(Code, Record)) {
656     default:  // Default behavior: unknown type.
657       break;
658     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
659       if (ConvertToString(Record, 1, ValueName))
660         return Error("Invalid TST_ENTRY record");
661       unsigned ValueID = Record[0];
662       if (ValueID >= ValueList.size())
663         return Error("Invalid Value ID in VST_ENTRY record");
664       Value *V = ValueList[ValueID];
665 
666       V->setName(&ValueName[0], ValueName.size());
667       ValueName.clear();
668       break;
669     }
670     case bitc::VST_CODE_BBENTRY: {
671       if (ConvertToString(Record, 1, ValueName))
672         return Error("Invalid VST_BBENTRY record");
673       BasicBlock *BB = getBasicBlock(Record[0]);
674       if (BB == 0)
675         return Error("Invalid BB ID in VST_BBENTRY record");
676 
677       BB->setName(&ValueName[0], ValueName.size());
678       ValueName.clear();
679       break;
680     }
681     }
682   }
683 }
684 
685 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
686 /// the LSB for dense VBR encoding.
687 static uint64_t DecodeSignRotatedValue(uint64_t V) {
688   if ((V & 1) == 0)
689     return V >> 1;
690   if (V != 1)
691     return -(V >> 1);
692   // There is no such thing as -0 with integers.  "-0" really means MININT.
693   return 1ULL << 63;
694 }
695 
696 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
697 /// values and aliases that we can.
698 bool BitcodeReader::ResolveGlobalAndAliasInits() {
699   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
700   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
701 
702   GlobalInitWorklist.swap(GlobalInits);
703   AliasInitWorklist.swap(AliasInits);
704 
705   while (!GlobalInitWorklist.empty()) {
706     unsigned ValID = GlobalInitWorklist.back().second;
707     if (ValID >= ValueList.size()) {
708       // Not ready to resolve this yet, it requires something later in the file.
709       GlobalInits.push_back(GlobalInitWorklist.back());
710     } else {
711       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
712         GlobalInitWorklist.back().first->setInitializer(C);
713       else
714         return Error("Global variable initializer is not a constant!");
715     }
716     GlobalInitWorklist.pop_back();
717   }
718 
719   while (!AliasInitWorklist.empty()) {
720     unsigned ValID = AliasInitWorklist.back().second;
721     if (ValID >= ValueList.size()) {
722       AliasInits.push_back(AliasInitWorklist.back());
723     } else {
724       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
725         AliasInitWorklist.back().first->setAliasee(C);
726       else
727         return Error("Alias initializer is not a constant!");
728     }
729     AliasInitWorklist.pop_back();
730   }
731   return false;
732 }
733 
734 
735 bool BitcodeReader::ParseConstants() {
736   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
737     return Error("Malformed block record");
738 
739   SmallVector<uint64_t, 64> Record;
740 
741   // Read all the records for this value table.
742   const Type *CurTy = Type::Int32Ty;
743   unsigned NextCstNo = ValueList.size();
744   while (1) {
745     unsigned Code = Stream.ReadCode();
746     if (Code == bitc::END_BLOCK)
747       break;
748 
749     if (Code == bitc::ENTER_SUBBLOCK) {
750       // No known subblocks, always skip them.
751       Stream.ReadSubBlockID();
752       if (Stream.SkipBlock())
753         return Error("Malformed block record");
754       continue;
755     }
756 
757     if (Code == bitc::DEFINE_ABBREV) {
758       Stream.ReadAbbrevRecord();
759       continue;
760     }
761 
762     // Read a record.
763     Record.clear();
764     Value *V = 0;
765     switch (Stream.ReadRecord(Code, Record)) {
766     default:  // Default behavior: unknown constant
767     case bitc::CST_CODE_UNDEF:     // UNDEF
768       V = UndefValue::get(CurTy);
769       break;
770     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
771       if (Record.empty())
772         return Error("Malformed CST_SETTYPE record");
773       if (Record[0] >= TypeList.size())
774         return Error("Invalid Type ID in CST_SETTYPE record");
775       CurTy = TypeList[Record[0]];
776       continue;  // Skip the ValueList manipulation.
777     case bitc::CST_CODE_NULL:      // NULL
778       V = Constant::getNullValue(CurTy);
779       break;
780     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
781       if (!isa<IntegerType>(CurTy) || Record.empty())
782         return Error("Invalid CST_INTEGER record");
783       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
784       break;
785     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
786       if (!isa<IntegerType>(CurTy) || Record.empty())
787         return Error("Invalid WIDE_INTEGER record");
788 
789       unsigned NumWords = Record.size();
790       SmallVector<uint64_t, 8> Words;
791       Words.resize(NumWords);
792       for (unsigned i = 0; i != NumWords; ++i)
793         Words[i] = DecodeSignRotatedValue(Record[i]);
794       V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
795                                  NumWords, &Words[0]));
796       break;
797     }
798     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
799       if (Record.empty())
800         return Error("Invalid FLOAT record");
801       if (CurTy == Type::FloatTy)
802         V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0])));
803       else if (CurTy == Type::DoubleTy)
804         V = ConstantFP::get(APFloat(APInt(64, Record[0])));
805       else if (CurTy == Type::X86_FP80Ty)
806         V = ConstantFP::get(APFloat(APInt(80, 2, &Record[0])));
807       else if (CurTy == Type::FP128Ty)
808         V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true));
809       else if (CurTy == Type::PPC_FP128Ty)
810         V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0])));
811       else
812         V = UndefValue::get(CurTy);
813       break;
814     }
815 
816     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
817       if (Record.empty())
818         return Error("Invalid CST_AGGREGATE record");
819 
820       unsigned Size = Record.size();
821       std::vector<Constant*> Elts;
822 
823       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
824         for (unsigned i = 0; i != Size; ++i)
825           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
826                                                      STy->getElementType(i)));
827         V = ConstantStruct::get(STy, Elts);
828       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
829         const Type *EltTy = ATy->getElementType();
830         for (unsigned i = 0; i != Size; ++i)
831           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
832         V = ConstantArray::get(ATy, Elts);
833       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
834         const Type *EltTy = VTy->getElementType();
835         for (unsigned i = 0; i != Size; ++i)
836           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
837         V = ConstantVector::get(Elts);
838       } else {
839         V = UndefValue::get(CurTy);
840       }
841       break;
842     }
843     case bitc::CST_CODE_STRING: { // STRING: [values]
844       if (Record.empty())
845         return Error("Invalid CST_AGGREGATE record");
846 
847       const ArrayType *ATy = cast<ArrayType>(CurTy);
848       const Type *EltTy = ATy->getElementType();
849 
850       unsigned Size = Record.size();
851       std::vector<Constant*> Elts;
852       for (unsigned i = 0; i != Size; ++i)
853         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
854       V = ConstantArray::get(ATy, Elts);
855       break;
856     }
857     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
858       if (Record.empty())
859         return Error("Invalid CST_AGGREGATE record");
860 
861       const ArrayType *ATy = cast<ArrayType>(CurTy);
862       const Type *EltTy = ATy->getElementType();
863 
864       unsigned Size = Record.size();
865       std::vector<Constant*> Elts;
866       for (unsigned i = 0; i != Size; ++i)
867         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
868       Elts.push_back(Constant::getNullValue(EltTy));
869       V = ConstantArray::get(ATy, Elts);
870       break;
871     }
872     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
873       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
874       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
875       if (Opc < 0) {
876         V = UndefValue::get(CurTy);  // Unknown binop.
877       } else {
878         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
879         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
880         V = ConstantExpr::get(Opc, LHS, RHS);
881       }
882       break;
883     }
884     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
885       if (Record.size() < 3) return Error("Invalid CE_CAST record");
886       int Opc = GetDecodedCastOpcode(Record[0]);
887       if (Opc < 0) {
888         V = UndefValue::get(CurTy);  // Unknown cast.
889       } else {
890         const Type *OpTy = getTypeByID(Record[1]);
891         if (!OpTy) return Error("Invalid CE_CAST record");
892         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
893         V = ConstantExpr::getCast(Opc, Op, CurTy);
894       }
895       break;
896     }
897     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
898       if (Record.size() & 1) return Error("Invalid CE_GEP record");
899       SmallVector<Constant*, 16> Elts;
900       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
901         const Type *ElTy = getTypeByID(Record[i]);
902         if (!ElTy) return Error("Invalid CE_GEP record");
903         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
904       }
905       V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
906       break;
907     }
908     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
909       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
910       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
911                                                               Type::Int1Ty),
912                                   ValueList.getConstantFwdRef(Record[1],CurTy),
913                                   ValueList.getConstantFwdRef(Record[2],CurTy));
914       break;
915     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
916       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
917       const VectorType *OpTy =
918         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
919       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
920       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
921       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
922       V = ConstantExpr::getExtractElement(Op0, Op1);
923       break;
924     }
925     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
926       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
927       if (Record.size() < 3 || OpTy == 0)
928         return Error("Invalid CE_INSERTELT record");
929       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
930       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
931                                                   OpTy->getElementType());
932       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
933       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
934       break;
935     }
936     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
937       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
938       if (Record.size() < 3 || OpTy == 0)
939         return Error("Invalid CE_SHUFFLEVEC record");
940       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
941       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
942       const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
943       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
944       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
945       break;
946     }
947     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
948       const VectorType *RTy = dyn_cast<VectorType>(CurTy);
949       const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
950       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
951         return Error("Invalid CE_SHUFVEC_EX record");
952       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
953       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
954       const Type *ShufTy=VectorType::get(Type::Int32Ty, RTy->getNumElements());
955       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
956       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
957       break;
958     }
959     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
960       if (Record.size() < 4) return Error("Invalid CE_CMP record");
961       const Type *OpTy = getTypeByID(Record[0]);
962       if (OpTy == 0) return Error("Invalid CE_CMP record");
963       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
964       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
965 
966       if (OpTy->isFloatingPoint())
967         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
968       else if (!isa<VectorType>(OpTy))
969         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
970       else if (OpTy->isFPOrFPVector())
971         V = ConstantExpr::getVFCmp(Record[3], Op0, Op1);
972       else
973         V = ConstantExpr::getVICmp(Record[3], Op0, Op1);
974       break;
975     }
976     case bitc::CST_CODE_INLINEASM: {
977       if (Record.size() < 2) return Error("Invalid INLINEASM record");
978       std::string AsmStr, ConstrStr;
979       bool HasSideEffects = Record[0];
980       unsigned AsmStrSize = Record[1];
981       if (2+AsmStrSize >= Record.size())
982         return Error("Invalid INLINEASM record");
983       unsigned ConstStrSize = Record[2+AsmStrSize];
984       if (3+AsmStrSize+ConstStrSize > Record.size())
985         return Error("Invalid INLINEASM record");
986 
987       for (unsigned i = 0; i != AsmStrSize; ++i)
988         AsmStr += (char)Record[2+i];
989       for (unsigned i = 0; i != ConstStrSize; ++i)
990         ConstrStr += (char)Record[3+AsmStrSize+i];
991       const PointerType *PTy = cast<PointerType>(CurTy);
992       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
993                          AsmStr, ConstrStr, HasSideEffects);
994       break;
995     }
996     }
997 
998     ValueList.AssignValue(V, NextCstNo);
999     ++NextCstNo;
1000   }
1001 
1002   if (NextCstNo != ValueList.size())
1003     return Error("Invalid constant reference!");
1004 
1005   if (Stream.ReadBlockEnd())
1006     return Error("Error at end of constants block");
1007 
1008   // Once all the constants have been read, go through and resolve forward
1009   // references.
1010   ValueList.ResolveConstantForwardRefs();
1011   return false;
1012 }
1013 
1014 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1015 /// remember where it is and then skip it.  This lets us lazily deserialize the
1016 /// functions.
1017 bool BitcodeReader::RememberAndSkipFunctionBody() {
1018   // Get the function we are talking about.
1019   if (FunctionsWithBodies.empty())
1020     return Error("Insufficient function protos");
1021 
1022   Function *Fn = FunctionsWithBodies.back();
1023   FunctionsWithBodies.pop_back();
1024 
1025   // Save the current stream state.
1026   uint64_t CurBit = Stream.GetCurrentBitNo();
1027   DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1028 
1029   // Set the functions linkage to GhostLinkage so we know it is lazily
1030   // deserialized.
1031   Fn->setLinkage(GlobalValue::GhostLinkage);
1032 
1033   // Skip over the function block for now.
1034   if (Stream.SkipBlock())
1035     return Error("Malformed block record");
1036   return false;
1037 }
1038 
1039 bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1040   // Reject multiple MODULE_BLOCK's in a single bitstream.
1041   if (TheModule)
1042     return Error("Multiple MODULE_BLOCKs in same stream");
1043 
1044   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1045     return Error("Malformed block record");
1046 
1047   // Otherwise, create the module.
1048   TheModule = new Module(ModuleID);
1049 
1050   SmallVector<uint64_t, 64> Record;
1051   std::vector<std::string> SectionTable;
1052   std::vector<std::string> GCTable;
1053 
1054   // Read all the records for this module.
1055   while (!Stream.AtEndOfStream()) {
1056     unsigned Code = Stream.ReadCode();
1057     if (Code == bitc::END_BLOCK) {
1058       if (Stream.ReadBlockEnd())
1059         return Error("Error at end of module block");
1060 
1061       // Patch the initializers for globals and aliases up.
1062       ResolveGlobalAndAliasInits();
1063       if (!GlobalInits.empty() || !AliasInits.empty())
1064         return Error("Malformed global initializer set");
1065       if (!FunctionsWithBodies.empty())
1066         return Error("Too few function bodies found");
1067 
1068       // Look for intrinsic functions which need to be upgraded at some point
1069       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1070            FI != FE; ++FI) {
1071         Function* NewFn;
1072         if (UpgradeIntrinsicFunction(FI, NewFn))
1073           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1074       }
1075 
1076       // Force deallocation of memory for these vectors to favor the client that
1077       // want lazy deserialization.
1078       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1079       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1080       std::vector<Function*>().swap(FunctionsWithBodies);
1081       return false;
1082     }
1083 
1084     if (Code == bitc::ENTER_SUBBLOCK) {
1085       switch (Stream.ReadSubBlockID()) {
1086       default:  // Skip unknown content.
1087         if (Stream.SkipBlock())
1088           return Error("Malformed block record");
1089         break;
1090       case bitc::BLOCKINFO_BLOCK_ID:
1091         if (Stream.ReadBlockInfoBlock())
1092           return Error("Malformed BlockInfoBlock");
1093         break;
1094       case bitc::PARAMATTR_BLOCK_ID:
1095         if (ParseAttributeBlock())
1096           return true;
1097         break;
1098       case bitc::TYPE_BLOCK_ID:
1099         if (ParseTypeTable())
1100           return true;
1101         break;
1102       case bitc::TYPE_SYMTAB_BLOCK_ID:
1103         if (ParseTypeSymbolTable())
1104           return true;
1105         break;
1106       case bitc::VALUE_SYMTAB_BLOCK_ID:
1107         if (ParseValueSymbolTable())
1108           return true;
1109         break;
1110       case bitc::CONSTANTS_BLOCK_ID:
1111         if (ParseConstants() || ResolveGlobalAndAliasInits())
1112           return true;
1113         break;
1114       case bitc::FUNCTION_BLOCK_ID:
1115         // If this is the first function body we've seen, reverse the
1116         // FunctionsWithBodies list.
1117         if (!HasReversedFunctionsWithBodies) {
1118           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1119           HasReversedFunctionsWithBodies = true;
1120         }
1121 
1122         if (RememberAndSkipFunctionBody())
1123           return true;
1124         break;
1125       }
1126       continue;
1127     }
1128 
1129     if (Code == bitc::DEFINE_ABBREV) {
1130       Stream.ReadAbbrevRecord();
1131       continue;
1132     }
1133 
1134     // Read a record.
1135     switch (Stream.ReadRecord(Code, Record)) {
1136     default: break;  // Default behavior, ignore unknown content.
1137     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1138       if (Record.size() < 1)
1139         return Error("Malformed MODULE_CODE_VERSION");
1140       // Only version #0 is supported so far.
1141       if (Record[0] != 0)
1142         return Error("Unknown bitstream version!");
1143       break;
1144     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1145       std::string S;
1146       if (ConvertToString(Record, 0, S))
1147         return Error("Invalid MODULE_CODE_TRIPLE record");
1148       TheModule->setTargetTriple(S);
1149       break;
1150     }
1151     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1152       std::string S;
1153       if (ConvertToString(Record, 0, S))
1154         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1155       TheModule->setDataLayout(S);
1156       break;
1157     }
1158     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1159       std::string S;
1160       if (ConvertToString(Record, 0, S))
1161         return Error("Invalid MODULE_CODE_ASM record");
1162       TheModule->setModuleInlineAsm(S);
1163       break;
1164     }
1165     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1166       std::string S;
1167       if (ConvertToString(Record, 0, S))
1168         return Error("Invalid MODULE_CODE_DEPLIB record");
1169       TheModule->addLibrary(S);
1170       break;
1171     }
1172     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1173       std::string S;
1174       if (ConvertToString(Record, 0, S))
1175         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1176       SectionTable.push_back(S);
1177       break;
1178     }
1179     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1180       std::string S;
1181       if (ConvertToString(Record, 0, S))
1182         return Error("Invalid MODULE_CODE_GCNAME record");
1183       GCTable.push_back(S);
1184       break;
1185     }
1186     // GLOBALVAR: [pointer type, isconst, initid,
1187     //             linkage, alignment, section, visibility, threadlocal]
1188     case bitc::MODULE_CODE_GLOBALVAR: {
1189       if (Record.size() < 6)
1190         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1191       const Type *Ty = getTypeByID(Record[0]);
1192       if (!isa<PointerType>(Ty))
1193         return Error("Global not a pointer type!");
1194       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1195       Ty = cast<PointerType>(Ty)->getElementType();
1196 
1197       bool isConstant = Record[1];
1198       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1199       unsigned Alignment = (1 << Record[4]) >> 1;
1200       std::string Section;
1201       if (Record[5]) {
1202         if (Record[5]-1 >= SectionTable.size())
1203           return Error("Invalid section ID");
1204         Section = SectionTable[Record[5]-1];
1205       }
1206       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1207       if (Record.size() > 6)
1208         Visibility = GetDecodedVisibility(Record[6]);
1209       bool isThreadLocal = false;
1210       if (Record.size() > 7)
1211         isThreadLocal = Record[7];
1212 
1213       GlobalVariable *NewGV =
1214         new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
1215                            isThreadLocal, AddressSpace);
1216       NewGV->setAlignment(Alignment);
1217       if (!Section.empty())
1218         NewGV->setSection(Section);
1219       NewGV->setVisibility(Visibility);
1220       NewGV->setThreadLocal(isThreadLocal);
1221 
1222       ValueList.push_back(NewGV);
1223 
1224       // Remember which value to use for the global initializer.
1225       if (unsigned InitID = Record[2])
1226         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1227       break;
1228     }
1229     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1230     //             alignment, section, visibility, gc]
1231     case bitc::MODULE_CODE_FUNCTION: {
1232       if (Record.size() < 8)
1233         return Error("Invalid MODULE_CODE_FUNCTION record");
1234       const Type *Ty = getTypeByID(Record[0]);
1235       if (!isa<PointerType>(Ty))
1236         return Error("Function not a pointer type!");
1237       const FunctionType *FTy =
1238         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1239       if (!FTy)
1240         return Error("Function not a pointer to function type!");
1241 
1242       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1243                                         "", TheModule);
1244 
1245       Func->setCallingConv(Record[1]);
1246       bool isProto = Record[2];
1247       Func->setLinkage(GetDecodedLinkage(Record[3]));
1248       Func->setAttributes(getAttributes(Record[4]));
1249 
1250       Func->setAlignment((1 << Record[5]) >> 1);
1251       if (Record[6]) {
1252         if (Record[6]-1 >= SectionTable.size())
1253           return Error("Invalid section ID");
1254         Func->setSection(SectionTable[Record[6]-1]);
1255       }
1256       Func->setVisibility(GetDecodedVisibility(Record[7]));
1257       if (Record.size() > 8 && Record[8]) {
1258         if (Record[8]-1 > GCTable.size())
1259           return Error("Invalid GC ID");
1260         Func->setGC(GCTable[Record[8]-1].c_str());
1261       }
1262       ValueList.push_back(Func);
1263 
1264       // If this is a function with a body, remember the prototype we are
1265       // creating now, so that we can match up the body with them later.
1266       if (!isProto)
1267         FunctionsWithBodies.push_back(Func);
1268       break;
1269     }
1270     // ALIAS: [alias type, aliasee val#, linkage]
1271     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1272     case bitc::MODULE_CODE_ALIAS: {
1273       if (Record.size() < 3)
1274         return Error("Invalid MODULE_ALIAS record");
1275       const Type *Ty = getTypeByID(Record[0]);
1276       if (!isa<PointerType>(Ty))
1277         return Error("Function not a pointer type!");
1278 
1279       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1280                                            "", 0, TheModule);
1281       // Old bitcode files didn't have visibility field.
1282       if (Record.size() > 3)
1283         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1284       ValueList.push_back(NewGA);
1285       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1286       break;
1287     }
1288     /// MODULE_CODE_PURGEVALS: [numvals]
1289     case bitc::MODULE_CODE_PURGEVALS:
1290       // Trim down the value list to the specified size.
1291       if (Record.size() < 1 || Record[0] > ValueList.size())
1292         return Error("Invalid MODULE_PURGEVALS record");
1293       ValueList.shrinkTo(Record[0]);
1294       break;
1295     }
1296     Record.clear();
1297   }
1298 
1299   return Error("Premature end of bitstream");
1300 }
1301 
1302 /// SkipWrapperHeader - Some systems wrap bc files with a special header for
1303 /// padding or other reasons.  The format of this header is:
1304 ///
1305 /// struct bc_header {
1306 ///   uint32_t Magic;         // 0x0B17C0DE
1307 ///   uint32_t Version;       // Version, currently always 0.
1308 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1309 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1310 ///   ... potentially other gunk ...
1311 /// };
1312 ///
1313 /// This function is called when we find a file with a matching magic number.
1314 /// In this case, skip down to the subsection of the file that is actually a BC
1315 /// file.
1316 static bool SkipWrapperHeader(unsigned char *&BufPtr, unsigned char *&BufEnd) {
1317   enum {
1318     KnownHeaderSize = 4*4,  // Size of header we read.
1319     OffsetField = 2*4,      // Offset in bytes to Offset field.
1320     SizeField = 3*4         // Offset in bytes to Size field.
1321   };
1322 
1323 
1324   // Must contain the header!
1325   if (BufEnd-BufPtr < KnownHeaderSize) return true;
1326 
1327   unsigned Offset = ( BufPtr[OffsetField  ]        |
1328                      (BufPtr[OffsetField+1] << 8)  |
1329                      (BufPtr[OffsetField+2] << 16) |
1330                      (BufPtr[OffsetField+3] << 24));
1331   unsigned Size   = ( BufPtr[SizeField    ]        |
1332                      (BufPtr[SizeField  +1] << 8)  |
1333                      (BufPtr[SizeField  +2] << 16) |
1334                      (BufPtr[SizeField  +3] << 24));
1335 
1336   // Verify that Offset+Size fits in the file.
1337   if (Offset+Size > unsigned(BufEnd-BufPtr))
1338     return true;
1339   BufPtr += Offset;
1340   BufEnd = BufPtr+Size;
1341   return false;
1342 }
1343 
1344 bool BitcodeReader::ParseBitcode() {
1345   TheModule = 0;
1346 
1347   if (Buffer->getBufferSize() & 3)
1348     return Error("Bitcode stream should be a multiple of 4 bytes in length");
1349 
1350   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1351   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1352 
1353   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1354   // The magic number is 0x0B17C0DE stored in little endian.
1355   if (BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 &&
1356       BufPtr[2] == 0x17 && BufPtr[3] == 0x0B)
1357     if (SkipWrapperHeader(BufPtr, BufEnd))
1358       return Error("Invalid bitcode wrapper header");
1359 
1360   Stream.init(BufPtr, BufEnd);
1361 
1362   // Sniff for the signature.
1363   if (Stream.Read(8) != 'B' ||
1364       Stream.Read(8) != 'C' ||
1365       Stream.Read(4) != 0x0 ||
1366       Stream.Read(4) != 0xC ||
1367       Stream.Read(4) != 0xE ||
1368       Stream.Read(4) != 0xD)
1369     return Error("Invalid bitcode signature");
1370 
1371   // We expect a number of well-defined blocks, though we don't necessarily
1372   // need to understand them all.
1373   while (!Stream.AtEndOfStream()) {
1374     unsigned Code = Stream.ReadCode();
1375 
1376     if (Code != bitc::ENTER_SUBBLOCK)
1377       return Error("Invalid record at top-level");
1378 
1379     unsigned BlockID = Stream.ReadSubBlockID();
1380 
1381     // We only know the MODULE subblock ID.
1382     switch (BlockID) {
1383     case bitc::BLOCKINFO_BLOCK_ID:
1384       if (Stream.ReadBlockInfoBlock())
1385         return Error("Malformed BlockInfoBlock");
1386       break;
1387     case bitc::MODULE_BLOCK_ID:
1388       if (ParseModule(Buffer->getBufferIdentifier()))
1389         return true;
1390       break;
1391     default:
1392       if (Stream.SkipBlock())
1393         return Error("Malformed block record");
1394       break;
1395     }
1396   }
1397 
1398   return false;
1399 }
1400 
1401 
1402 /// ParseFunctionBody - Lazily parse the specified function body block.
1403 bool BitcodeReader::ParseFunctionBody(Function *F) {
1404   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1405     return Error("Malformed block record");
1406 
1407   unsigned ModuleValueListSize = ValueList.size();
1408 
1409   // Add all the function arguments to the value table.
1410   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1411     ValueList.push_back(I);
1412 
1413   unsigned NextValueNo = ValueList.size();
1414   BasicBlock *CurBB = 0;
1415   unsigned CurBBNo = 0;
1416 
1417   // Read all the records.
1418   SmallVector<uint64_t, 64> Record;
1419   while (1) {
1420     unsigned Code = Stream.ReadCode();
1421     if (Code == bitc::END_BLOCK) {
1422       if (Stream.ReadBlockEnd())
1423         return Error("Error at end of function block");
1424       break;
1425     }
1426 
1427     if (Code == bitc::ENTER_SUBBLOCK) {
1428       switch (Stream.ReadSubBlockID()) {
1429       default:  // Skip unknown content.
1430         if (Stream.SkipBlock())
1431           return Error("Malformed block record");
1432         break;
1433       case bitc::CONSTANTS_BLOCK_ID:
1434         if (ParseConstants()) return true;
1435         NextValueNo = ValueList.size();
1436         break;
1437       case bitc::VALUE_SYMTAB_BLOCK_ID:
1438         if (ParseValueSymbolTable()) return true;
1439         break;
1440       }
1441       continue;
1442     }
1443 
1444     if (Code == bitc::DEFINE_ABBREV) {
1445       Stream.ReadAbbrevRecord();
1446       continue;
1447     }
1448 
1449     // Read a record.
1450     Record.clear();
1451     Instruction *I = 0;
1452     switch (Stream.ReadRecord(Code, Record)) {
1453     default: // Default behavior: reject
1454       return Error("Unknown instruction");
1455     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1456       if (Record.size() < 1 || Record[0] == 0)
1457         return Error("Invalid DECLAREBLOCKS record");
1458       // Create all the basic blocks for the function.
1459       FunctionBBs.resize(Record[0]);
1460       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1461         FunctionBBs[i] = BasicBlock::Create("", F);
1462       CurBB = FunctionBBs[0];
1463       continue;
1464 
1465     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1466       unsigned OpNum = 0;
1467       Value *LHS, *RHS;
1468       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1469           getValue(Record, OpNum, LHS->getType(), RHS) ||
1470           OpNum+1 != Record.size())
1471         return Error("Invalid BINOP record");
1472 
1473       int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
1474       if (Opc == -1) return Error("Invalid BINOP record");
1475       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1476       break;
1477     }
1478     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1479       unsigned OpNum = 0;
1480       Value *Op;
1481       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1482           OpNum+2 != Record.size())
1483         return Error("Invalid CAST record");
1484 
1485       const Type *ResTy = getTypeByID(Record[OpNum]);
1486       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1487       if (Opc == -1 || ResTy == 0)
1488         return Error("Invalid CAST record");
1489       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1490       break;
1491     }
1492     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1493       unsigned OpNum = 0;
1494       Value *BasePtr;
1495       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1496         return Error("Invalid GEP record");
1497 
1498       SmallVector<Value*, 16> GEPIdx;
1499       while (OpNum != Record.size()) {
1500         Value *Op;
1501         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1502           return Error("Invalid GEP record");
1503         GEPIdx.push_back(Op);
1504       }
1505 
1506       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1507       break;
1508     }
1509 
1510     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1511                                        // EXTRACTVAL: [opty, opval, n x indices]
1512       unsigned OpNum = 0;
1513       Value *Agg;
1514       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1515         return Error("Invalid EXTRACTVAL record");
1516 
1517       SmallVector<unsigned, 4> EXTRACTVALIdx;
1518       for (unsigned RecSize = Record.size();
1519            OpNum != RecSize; ++OpNum) {
1520         uint64_t Index = Record[OpNum];
1521         if ((unsigned)Index != Index)
1522           return Error("Invalid EXTRACTVAL index");
1523         EXTRACTVALIdx.push_back((unsigned)Index);
1524       }
1525 
1526       I = ExtractValueInst::Create(Agg,
1527                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1528       break;
1529     }
1530 
1531     case bitc::FUNC_CODE_INST_INSERTVAL: {
1532                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1533       unsigned OpNum = 0;
1534       Value *Agg;
1535       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1536         return Error("Invalid INSERTVAL record");
1537       Value *Val;
1538       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1539         return Error("Invalid INSERTVAL record");
1540 
1541       SmallVector<unsigned, 4> INSERTVALIdx;
1542       for (unsigned RecSize = Record.size();
1543            OpNum != RecSize; ++OpNum) {
1544         uint64_t Index = Record[OpNum];
1545         if ((unsigned)Index != Index)
1546           return Error("Invalid INSERTVAL index");
1547         INSERTVALIdx.push_back((unsigned)Index);
1548       }
1549 
1550       I = InsertValueInst::Create(Agg, Val,
1551                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
1552       break;
1553     }
1554 
1555     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1556       // obsolete form of select
1557       // handles select i1 ... in old bitcode
1558       unsigned OpNum = 0;
1559       Value *TrueVal, *FalseVal, *Cond;
1560       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1561           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1562           getValue(Record, OpNum, Type::Int1Ty, Cond))
1563         return Error("Invalid SELECT record");
1564 
1565       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1566       break;
1567     }
1568 
1569     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1570       // new form of select
1571       // handles select i1 or select [N x i1]
1572       unsigned OpNum = 0;
1573       Value *TrueVal, *FalseVal, *Cond;
1574       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1575           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1576           getValueTypePair(Record, OpNum, NextValueNo, Cond))
1577         return Error("Invalid SELECT record");
1578 
1579       // select condition can be either i1 or [N x i1]
1580       if (const VectorType* vector_type =
1581           dyn_cast<const VectorType>(Cond->getType())) {
1582         // expect <n x i1>
1583         if (vector_type->getElementType() != Type::Int1Ty)
1584           return Error("Invalid SELECT condition type");
1585       } else {
1586         // expect i1
1587         if (Cond->getType() != Type::Int1Ty)
1588           return Error("Invalid SELECT condition type");
1589       }
1590 
1591       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1592       break;
1593     }
1594 
1595     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1596       unsigned OpNum = 0;
1597       Value *Vec, *Idx;
1598       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1599           getValue(Record, OpNum, Type::Int32Ty, Idx))
1600         return Error("Invalid EXTRACTELT record");
1601       I = new ExtractElementInst(Vec, Idx);
1602       break;
1603     }
1604 
1605     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1606       unsigned OpNum = 0;
1607       Value *Vec, *Elt, *Idx;
1608       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1609           getValue(Record, OpNum,
1610                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1611           getValue(Record, OpNum, Type::Int32Ty, Idx))
1612         return Error("Invalid INSERTELT record");
1613       I = InsertElementInst::Create(Vec, Elt, Idx);
1614       break;
1615     }
1616 
1617     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1618       unsigned OpNum = 0;
1619       Value *Vec1, *Vec2, *Mask;
1620       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1621           getValue(Record, OpNum, Vec1->getType(), Vec2))
1622         return Error("Invalid SHUFFLEVEC record");
1623 
1624       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1625         return Error("Invalid SHUFFLEVEC record");
1626       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1627       break;
1628     }
1629 
1630     case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
1631       // VFCmp/VICmp
1632       // or old form of ICmp/FCmp returning bool
1633       unsigned OpNum = 0;
1634       Value *LHS, *RHS;
1635       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1636           getValue(Record, OpNum, LHS->getType(), RHS) ||
1637           OpNum+1 != Record.size())
1638         return Error("Invalid CMP record");
1639 
1640       if (LHS->getType()->isFloatingPoint())
1641         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1642       else if (!isa<VectorType>(LHS->getType()))
1643         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1644       else if (LHS->getType()->isFPOrFPVector())
1645         I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1646       else
1647         I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1648       break;
1649     }
1650     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1651       // Fcmp/ICmp returning bool or vector of bool
1652       unsigned OpNum = 0;
1653       Value *LHS, *RHS;
1654       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1655           getValue(Record, OpNum, LHS->getType(), RHS) ||
1656           OpNum+1 != Record.size())
1657         return Error("Invalid CMP2 record");
1658 
1659       if (LHS->getType()->isFPOrFPVector())
1660         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1661       else
1662         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1663       break;
1664     }
1665     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1666       if (Record.size() != 2)
1667         return Error("Invalid GETRESULT record");
1668       unsigned OpNum = 0;
1669       Value *Op;
1670       getValueTypePair(Record, OpNum, NextValueNo, Op);
1671       unsigned Index = Record[1];
1672       I = ExtractValueInst::Create(Op, Index);
1673       break;
1674     }
1675 
1676     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1677       {
1678         unsigned Size = Record.size();
1679         if (Size == 0) {
1680           I = ReturnInst::Create();
1681           break;
1682         }
1683 
1684         unsigned OpNum = 0;
1685         SmallVector<Value *,4> Vs;
1686         do {
1687           Value *Op = NULL;
1688           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1689             return Error("Invalid RET record");
1690           Vs.push_back(Op);
1691         } while(OpNum != Record.size());
1692 
1693         const Type *ReturnType = F->getReturnType();
1694         if (Vs.size() > 1 ||
1695             (isa<StructType>(ReturnType) &&
1696              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1697           Value *RV = UndefValue::get(ReturnType);
1698           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1699             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1700             CurBB->getInstList().push_back(I);
1701             ValueList.AssignValue(I, NextValueNo++);
1702             RV = I;
1703           }
1704           I = ReturnInst::Create(RV);
1705           break;
1706         }
1707 
1708         I = ReturnInst::Create(Vs[0]);
1709         break;
1710       }
1711     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1712       if (Record.size() != 1 && Record.size() != 3)
1713         return Error("Invalid BR record");
1714       BasicBlock *TrueDest = getBasicBlock(Record[0]);
1715       if (TrueDest == 0)
1716         return Error("Invalid BR record");
1717 
1718       if (Record.size() == 1)
1719         I = BranchInst::Create(TrueDest);
1720       else {
1721         BasicBlock *FalseDest = getBasicBlock(Record[1]);
1722         Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1723         if (FalseDest == 0 || Cond == 0)
1724           return Error("Invalid BR record");
1725         I = BranchInst::Create(TrueDest, FalseDest, Cond);
1726       }
1727       break;
1728     }
1729     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1730       if (Record.size() < 3 || (Record.size() & 1) == 0)
1731         return Error("Invalid SWITCH record");
1732       const Type *OpTy = getTypeByID(Record[0]);
1733       Value *Cond = getFnValueByID(Record[1], OpTy);
1734       BasicBlock *Default = getBasicBlock(Record[2]);
1735       if (OpTy == 0 || Cond == 0 || Default == 0)
1736         return Error("Invalid SWITCH record");
1737       unsigned NumCases = (Record.size()-3)/2;
1738       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1739       for (unsigned i = 0, e = NumCases; i != e; ++i) {
1740         ConstantInt *CaseVal =
1741           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1742         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1743         if (CaseVal == 0 || DestBB == 0) {
1744           delete SI;
1745           return Error("Invalid SWITCH record!");
1746         }
1747         SI->addCase(CaseVal, DestBB);
1748       }
1749       I = SI;
1750       break;
1751     }
1752 
1753     case bitc::FUNC_CODE_INST_INVOKE: {
1754       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1755       if (Record.size() < 4) return Error("Invalid INVOKE record");
1756       AttrListPtr PAL = getAttributes(Record[0]);
1757       unsigned CCInfo = Record[1];
1758       BasicBlock *NormalBB = getBasicBlock(Record[2]);
1759       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1760 
1761       unsigned OpNum = 4;
1762       Value *Callee;
1763       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1764         return Error("Invalid INVOKE record");
1765 
1766       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1767       const FunctionType *FTy = !CalleeTy ? 0 :
1768         dyn_cast<FunctionType>(CalleeTy->getElementType());
1769 
1770       // Check that the right number of fixed parameters are here.
1771       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1772           Record.size() < OpNum+FTy->getNumParams())
1773         return Error("Invalid INVOKE record");
1774 
1775       SmallVector<Value*, 16> Ops;
1776       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1777         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1778         if (Ops.back() == 0) return Error("Invalid INVOKE record");
1779       }
1780 
1781       if (!FTy->isVarArg()) {
1782         if (Record.size() != OpNum)
1783           return Error("Invalid INVOKE record");
1784       } else {
1785         // Read type/value pairs for varargs params.
1786         while (OpNum != Record.size()) {
1787           Value *Op;
1788           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1789             return Error("Invalid INVOKE record");
1790           Ops.push_back(Op);
1791         }
1792       }
1793 
1794       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1795                              Ops.begin(), Ops.end());
1796       cast<InvokeInst>(I)->setCallingConv(CCInfo);
1797       cast<InvokeInst>(I)->setAttributes(PAL);
1798       break;
1799     }
1800     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1801       I = new UnwindInst();
1802       break;
1803     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1804       I = new UnreachableInst();
1805       break;
1806     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1807       if (Record.size() < 1 || ((Record.size()-1)&1))
1808         return Error("Invalid PHI record");
1809       const Type *Ty = getTypeByID(Record[0]);
1810       if (!Ty) return Error("Invalid PHI record");
1811 
1812       PHINode *PN = PHINode::Create(Ty);
1813       PN->reserveOperandSpace((Record.size()-1)/2);
1814 
1815       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1816         Value *V = getFnValueByID(Record[1+i], Ty);
1817         BasicBlock *BB = getBasicBlock(Record[2+i]);
1818         if (!V || !BB) return Error("Invalid PHI record");
1819         PN->addIncoming(V, BB);
1820       }
1821       I = PN;
1822       break;
1823     }
1824 
1825     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1826       if (Record.size() < 3)
1827         return Error("Invalid MALLOC record");
1828       const PointerType *Ty =
1829         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1830       Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1831       unsigned Align = Record[2];
1832       if (!Ty || !Size) return Error("Invalid MALLOC record");
1833       I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1834       break;
1835     }
1836     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1837       unsigned OpNum = 0;
1838       Value *Op;
1839       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1840           OpNum != Record.size())
1841         return Error("Invalid FREE record");
1842       I = new FreeInst(Op);
1843       break;
1844     }
1845     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1846       if (Record.size() < 3)
1847         return Error("Invalid ALLOCA record");
1848       const PointerType *Ty =
1849         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1850       Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1851       unsigned Align = Record[2];
1852       if (!Ty || !Size) return Error("Invalid ALLOCA record");
1853       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1854       break;
1855     }
1856     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1857       unsigned OpNum = 0;
1858       Value *Op;
1859       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1860           OpNum+2 != Record.size())
1861         return Error("Invalid LOAD record");
1862 
1863       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1864       break;
1865     }
1866     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1867       unsigned OpNum = 0;
1868       Value *Val, *Ptr;
1869       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1870           getValue(Record, OpNum,
1871                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1872           OpNum+2 != Record.size())
1873         return Error("Invalid STORE record");
1874 
1875       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1876       break;
1877     }
1878     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1879       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1880       unsigned OpNum = 0;
1881       Value *Val, *Ptr;
1882       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1883           getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)||
1884           OpNum+2 != Record.size())
1885         return Error("Invalid STORE record");
1886 
1887       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1888       break;
1889     }
1890     case bitc::FUNC_CODE_INST_CALL: {
1891       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1892       if (Record.size() < 3)
1893         return Error("Invalid CALL record");
1894 
1895       AttrListPtr PAL = getAttributes(Record[0]);
1896       unsigned CCInfo = Record[1];
1897 
1898       unsigned OpNum = 2;
1899       Value *Callee;
1900       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1901         return Error("Invalid CALL record");
1902 
1903       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1904       const FunctionType *FTy = 0;
1905       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1906       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1907         return Error("Invalid CALL record");
1908 
1909       SmallVector<Value*, 16> Args;
1910       // Read the fixed params.
1911       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1912         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1913           Args.push_back(getBasicBlock(Record[OpNum]));
1914         else
1915           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1916         if (Args.back() == 0) return Error("Invalid CALL record");
1917       }
1918 
1919       // Read type/value pairs for varargs params.
1920       if (!FTy->isVarArg()) {
1921         if (OpNum != Record.size())
1922           return Error("Invalid CALL record");
1923       } else {
1924         while (OpNum != Record.size()) {
1925           Value *Op;
1926           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1927             return Error("Invalid CALL record");
1928           Args.push_back(Op);
1929         }
1930       }
1931 
1932       I = CallInst::Create(Callee, Args.begin(), Args.end());
1933       cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1934       cast<CallInst>(I)->setTailCall(CCInfo & 1);
1935       cast<CallInst>(I)->setAttributes(PAL);
1936       break;
1937     }
1938     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1939       if (Record.size() < 3)
1940         return Error("Invalid VAARG record");
1941       const Type *OpTy = getTypeByID(Record[0]);
1942       Value *Op = getFnValueByID(Record[1], OpTy);
1943       const Type *ResTy = getTypeByID(Record[2]);
1944       if (!OpTy || !Op || !ResTy)
1945         return Error("Invalid VAARG record");
1946       I = new VAArgInst(Op, ResTy);
1947       break;
1948     }
1949     }
1950 
1951     // Add instruction to end of current BB.  If there is no current BB, reject
1952     // this file.
1953     if (CurBB == 0) {
1954       delete I;
1955       return Error("Invalid instruction with no BB");
1956     }
1957     CurBB->getInstList().push_back(I);
1958 
1959     // If this was a terminator instruction, move to the next block.
1960     if (isa<TerminatorInst>(I)) {
1961       ++CurBBNo;
1962       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
1963     }
1964 
1965     // Non-void values get registered in the value table for future use.
1966     if (I && I->getType() != Type::VoidTy)
1967       ValueList.AssignValue(I, NextValueNo++);
1968   }
1969 
1970   // Check the function list for unresolved values.
1971   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
1972     if (A->getParent() == 0) {
1973       // We found at least one unresolved value.  Nuke them all to avoid leaks.
1974       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
1975         if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
1976           A->replaceAllUsesWith(UndefValue::get(A->getType()));
1977           delete A;
1978         }
1979       }
1980       return Error("Never resolved value found in function!");
1981     }
1982   }
1983 
1984   // Trim the value list down to the size it was before we parsed this function.
1985   ValueList.shrinkTo(ModuleValueListSize);
1986   std::vector<BasicBlock*>().swap(FunctionBBs);
1987 
1988   return false;
1989 }
1990 
1991 //===----------------------------------------------------------------------===//
1992 // ModuleProvider implementation
1993 //===----------------------------------------------------------------------===//
1994 
1995 
1996 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
1997   // If it already is material, ignore the request.
1998   if (!F->hasNotBeenReadFromBitcode()) return false;
1999 
2000   DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2001     DeferredFunctionInfo.find(F);
2002   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2003 
2004   // Move the bit stream to the saved position of the deferred function body and
2005   // restore the real linkage type for the function.
2006   Stream.JumpToBit(DFII->second.first);
2007   F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2008 
2009   if (ParseFunctionBody(F)) {
2010     if (ErrInfo) *ErrInfo = ErrorString;
2011     return true;
2012   }
2013 
2014   // Upgrade any old intrinsic calls in the function.
2015   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2016        E = UpgradedIntrinsics.end(); I != E; ++I) {
2017     if (I->first != I->second) {
2018       for (Value::use_iterator UI = I->first->use_begin(),
2019            UE = I->first->use_end(); UI != UE; ) {
2020         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2021           UpgradeIntrinsicCall(CI, I->second);
2022       }
2023     }
2024   }
2025 
2026   return false;
2027 }
2028 
2029 void BitcodeReader::dematerializeFunction(Function *F) {
2030   // If this function isn't materialized, or if it is a proto, this is a noop.
2031   if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2032     return;
2033 
2034   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2035 
2036   // Just forget the function body, we can remat it later.
2037   F->deleteBody();
2038   F->setLinkage(GlobalValue::GhostLinkage);
2039 }
2040 
2041 
2042 Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2043   for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
2044        DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E;
2045        ++I) {
2046     Function *F = I->first;
2047     if (F->hasNotBeenReadFromBitcode() &&
2048         materializeFunction(F, ErrInfo))
2049       return 0;
2050   }
2051 
2052   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2053   // delete the old functions to clean up. We can't do this unless the entire
2054   // module is materialized because there could always be another function body
2055   // with calls to the old function.
2056   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2057        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2058     if (I->first != I->second) {
2059       for (Value::use_iterator UI = I->first->use_begin(),
2060            UE = I->first->use_end(); UI != UE; ) {
2061         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2062           UpgradeIntrinsicCall(CI, I->second);
2063       }
2064       ValueList.replaceUsesOfWith(I->first, I->second);
2065       I->first->eraseFromParent();
2066     }
2067   }
2068   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2069 
2070   return TheModule;
2071 }
2072 
2073 
2074 /// This method is provided by the parent ModuleProvde class and overriden
2075 /// here. It simply releases the module from its provided and frees up our
2076 /// state.
2077 /// @brief Release our hold on the generated module
2078 Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2079   // Since we're losing control of this Module, we must hand it back complete
2080   Module *M = ModuleProvider::releaseModule(ErrInfo);
2081   FreeState();
2082   return M;
2083 }
2084 
2085 
2086 //===----------------------------------------------------------------------===//
2087 // External interface
2088 //===----------------------------------------------------------------------===//
2089 
2090 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2091 ///
2092 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2093                                                std::string *ErrMsg) {
2094   BitcodeReader *R = new BitcodeReader(Buffer);
2095   if (R->ParseBitcode()) {
2096     if (ErrMsg)
2097       *ErrMsg = R->getErrorString();
2098 
2099     // Don't let the BitcodeReader dtor delete 'Buffer'.
2100     R->releaseMemoryBuffer();
2101     delete R;
2102     return 0;
2103   }
2104   return R;
2105 }
2106 
2107 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2108 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2109 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
2110   BitcodeReader *R;
2111   R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
2112   if (!R) return 0;
2113 
2114   // Read in the entire module.
2115   Module *M = R->materializeModule(ErrMsg);
2116 
2117   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2118   // there was an error.
2119   R->releaseMemoryBuffer();
2120 
2121   // If there was no error, tell ModuleProvider not to delete it when its dtor
2122   // is run.
2123   if (M)
2124     M = R->releaseModule(ErrMsg);
2125 
2126   delete R;
2127   return M;
2128 }
2129