1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/AutoUpgrade.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/MemoryBuffer.h" 26 #include "llvm/OperandTraits.h" 27 using namespace llvm; 28 29 void BitcodeReader::FreeState() { 30 delete Buffer; 31 Buffer = 0; 32 std::vector<PATypeHolder>().swap(TypeList); 33 ValueList.clear(); 34 35 std::vector<AttrListPtr>().swap(MAttributes); 36 std::vector<BasicBlock*>().swap(FunctionBBs); 37 std::vector<Function*>().swap(FunctionsWithBodies); 38 DeferredFunctionInfo.clear(); 39 } 40 41 //===----------------------------------------------------------------------===// 42 // Helper functions to implement forward reference resolution, etc. 43 //===----------------------------------------------------------------------===// 44 45 /// ConvertToString - Convert a string from a record into an std::string, return 46 /// true on failure. 47 template<typename StrTy> 48 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 49 StrTy &Result) { 50 if (Idx > Record.size()) 51 return true; 52 53 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 54 Result += (char)Record[i]; 55 return false; 56 } 57 58 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 59 switch (Val) { 60 default: // Map unknown/new linkages to external 61 case 0: return GlobalValue::ExternalLinkage; 62 case 1: return GlobalValue::WeakAnyLinkage; 63 case 2: return GlobalValue::AppendingLinkage; 64 case 3: return GlobalValue::InternalLinkage; 65 case 4: return GlobalValue::LinkOnceAnyLinkage; 66 case 5: return GlobalValue::DLLImportLinkage; 67 case 6: return GlobalValue::DLLExportLinkage; 68 case 7: return GlobalValue::ExternalWeakLinkage; 69 case 8: return GlobalValue::CommonAnyLinkage; 70 case 9: return GlobalValue::PrivateLinkage; 71 case 10: return GlobalValue::WeakODRLinkage; 72 case 11: return GlobalValue::LinkOnceODRLinkage; 73 case 13: return GlobalValue::CommonODRLinkage; 74 } 75 } 76 77 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 78 switch (Val) { 79 default: // Map unknown visibilities to default. 80 case 0: return GlobalValue::DefaultVisibility; 81 case 1: return GlobalValue::HiddenVisibility; 82 case 2: return GlobalValue::ProtectedVisibility; 83 } 84 } 85 86 static int GetDecodedCastOpcode(unsigned Val) { 87 switch (Val) { 88 default: return -1; 89 case bitc::CAST_TRUNC : return Instruction::Trunc; 90 case bitc::CAST_ZEXT : return Instruction::ZExt; 91 case bitc::CAST_SEXT : return Instruction::SExt; 92 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 93 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 94 case bitc::CAST_UITOFP : return Instruction::UIToFP; 95 case bitc::CAST_SITOFP : return Instruction::SIToFP; 96 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 97 case bitc::CAST_FPEXT : return Instruction::FPExt; 98 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 99 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 100 case bitc::CAST_BITCAST : return Instruction::BitCast; 101 } 102 } 103 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 104 switch (Val) { 105 default: return -1; 106 case bitc::BINOP_ADD: return Instruction::Add; 107 case bitc::BINOP_SUB: return Instruction::Sub; 108 case bitc::BINOP_MUL: return Instruction::Mul; 109 case bitc::BINOP_UDIV: return Instruction::UDiv; 110 case bitc::BINOP_SDIV: 111 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 112 case bitc::BINOP_UREM: return Instruction::URem; 113 case bitc::BINOP_SREM: 114 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 115 case bitc::BINOP_SHL: return Instruction::Shl; 116 case bitc::BINOP_LSHR: return Instruction::LShr; 117 case bitc::BINOP_ASHR: return Instruction::AShr; 118 case bitc::BINOP_AND: return Instruction::And; 119 case bitc::BINOP_OR: return Instruction::Or; 120 case bitc::BINOP_XOR: return Instruction::Xor; 121 } 122 } 123 124 namespace llvm { 125 namespace { 126 /// @brief A class for maintaining the slot number definition 127 /// as a placeholder for the actual definition for forward constants defs. 128 class ConstantPlaceHolder : public ConstantExpr { 129 ConstantPlaceHolder(); // DO NOT IMPLEMENT 130 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 131 public: 132 // allocate space for exactly one operand 133 void *operator new(size_t s) { 134 return User::operator new(s, 1); 135 } 136 explicit ConstantPlaceHolder(const Type *Ty) 137 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 138 Op<0>() = UndefValue::get(Type::Int32Ty); 139 } 140 141 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 142 static inline bool classof(const ConstantPlaceHolder *) { return true; } 143 static bool classof(const Value *V) { 144 return isa<ConstantExpr>(V) && 145 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 146 } 147 148 149 /// Provide fast operand accessors 150 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 151 }; 152 } 153 154 155 // FIXME: can we inherit this from ConstantExpr? 156 template <> 157 struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> { 158 }; 159 160 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 161 } 162 163 void BitcodeReaderValueList::resize(unsigned Desired) { 164 if (Desired > Capacity) { 165 // Since we expect many values to come from the bitcode file we better 166 // allocate the double amount, so that the array size grows exponentially 167 // at each reallocation. Also, add a small amount of 100 extra elements 168 // each time, to reallocate less frequently when the array is still small. 169 // 170 Capacity = Desired * 2 + 100; 171 Use *New = allocHungoffUses(Capacity); 172 Use *Old = OperandList; 173 unsigned Ops = getNumOperands(); 174 for (int i(Ops - 1); i >= 0; --i) 175 New[i] = Old[i].get(); 176 OperandList = New; 177 if (Old) Use::zap(Old, Old + Ops, true); 178 } 179 } 180 181 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 182 const Type *Ty) { 183 if (Idx >= size()) { 184 // Insert a bunch of null values. 185 resize(Idx + 1); 186 NumOperands = Idx+1; 187 } 188 189 if (Value *V = OperandList[Idx]) { 190 assert(Ty == V->getType() && "Type mismatch in constant table!"); 191 return cast<Constant>(V); 192 } 193 194 // Create and return a placeholder, which will later be RAUW'd. 195 Constant *C = new ConstantPlaceHolder(Ty); 196 OperandList[Idx] = C; 197 return C; 198 } 199 200 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 201 if (Idx >= size()) { 202 // Insert a bunch of null values. 203 resize(Idx + 1); 204 NumOperands = Idx+1; 205 } 206 207 if (Value *V = OperandList[Idx]) { 208 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 209 return V; 210 } 211 212 // No type specified, must be invalid reference. 213 if (Ty == 0) return 0; 214 215 // Create and return a placeholder, which will later be RAUW'd. 216 Value *V = new Argument(Ty); 217 OperandList[Idx] = V; 218 return V; 219 } 220 221 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 222 /// resolves any forward references. The idea behind this is that we sometimes 223 /// get constants (such as large arrays) which reference *many* forward ref 224 /// constants. Replacing each of these causes a lot of thrashing when 225 /// building/reuniquing the constant. Instead of doing this, we look at all the 226 /// uses and rewrite all the place holders at once for any constant that uses 227 /// a placeholder. 228 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 229 // Sort the values by-pointer so that they are efficient to look up with a 230 // binary search. 231 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 232 233 SmallVector<Constant*, 64> NewOps; 234 235 while (!ResolveConstants.empty()) { 236 Value *RealVal = getOperand(ResolveConstants.back().second); 237 Constant *Placeholder = ResolveConstants.back().first; 238 ResolveConstants.pop_back(); 239 240 // Loop over all users of the placeholder, updating them to reference the 241 // new value. If they reference more than one placeholder, update them all 242 // at once. 243 while (!Placeholder->use_empty()) { 244 Value::use_iterator UI = Placeholder->use_begin(); 245 246 // If the using object isn't uniqued, just update the operands. This 247 // handles instructions and initializers for global variables. 248 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) { 249 UI.getUse().set(RealVal); 250 continue; 251 } 252 253 // Otherwise, we have a constant that uses the placeholder. Replace that 254 // constant with a new constant that has *all* placeholder uses updated. 255 Constant *UserC = cast<Constant>(*UI); 256 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 257 I != E; ++I) { 258 Value *NewOp; 259 if (!isa<ConstantPlaceHolder>(*I)) { 260 // Not a placeholder reference. 261 NewOp = *I; 262 } else if (*I == Placeholder) { 263 // Common case is that it just references this one placeholder. 264 NewOp = RealVal; 265 } else { 266 // Otherwise, look up the placeholder in ResolveConstants. 267 ResolveConstantsTy::iterator It = 268 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 269 std::pair<Constant*, unsigned>(cast<Constant>(*I), 270 0)); 271 assert(It != ResolveConstants.end() && It->first == *I); 272 NewOp = this->getOperand(It->second); 273 } 274 275 NewOps.push_back(cast<Constant>(NewOp)); 276 } 277 278 // Make the new constant. 279 Constant *NewC; 280 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 281 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size()); 282 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 283 NewC = ConstantStruct::get(&NewOps[0], NewOps.size(), 284 UserCS->getType()->isPacked()); 285 } else if (isa<ConstantVector>(UserC)) { 286 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 287 } else { 288 // Must be a constant expression. 289 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 290 NewOps.size()); 291 } 292 293 UserC->replaceAllUsesWith(NewC); 294 UserC->destroyConstant(); 295 NewOps.clear(); 296 } 297 298 delete Placeholder; 299 } 300 } 301 302 303 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 304 // If the TypeID is in range, return it. 305 if (ID < TypeList.size()) 306 return TypeList[ID].get(); 307 if (!isTypeTable) return 0; 308 309 // The type table allows forward references. Push as many Opaque types as 310 // needed to get up to ID. 311 while (TypeList.size() <= ID) 312 TypeList.push_back(OpaqueType::get()); 313 return TypeList.back().get(); 314 } 315 316 //===----------------------------------------------------------------------===// 317 // Functions for parsing blocks from the bitcode file 318 //===----------------------------------------------------------------------===// 319 320 bool BitcodeReader::ParseAttributeBlock() { 321 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 322 return Error("Malformed block record"); 323 324 if (!MAttributes.empty()) 325 return Error("Multiple PARAMATTR blocks found!"); 326 327 SmallVector<uint64_t, 64> Record; 328 329 SmallVector<AttributeWithIndex, 8> Attrs; 330 331 // Read all the records. 332 while (1) { 333 unsigned Code = Stream.ReadCode(); 334 if (Code == bitc::END_BLOCK) { 335 if (Stream.ReadBlockEnd()) 336 return Error("Error at end of PARAMATTR block"); 337 return false; 338 } 339 340 if (Code == bitc::ENTER_SUBBLOCK) { 341 // No known subblocks, always skip them. 342 Stream.ReadSubBlockID(); 343 if (Stream.SkipBlock()) 344 return Error("Malformed block record"); 345 continue; 346 } 347 348 if (Code == bitc::DEFINE_ABBREV) { 349 Stream.ReadAbbrevRecord(); 350 continue; 351 } 352 353 // Read a record. 354 Record.clear(); 355 switch (Stream.ReadRecord(Code, Record)) { 356 default: // Default behavior: ignore. 357 break; 358 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 359 if (Record.size() & 1) 360 return Error("Invalid ENTRY record"); 361 362 // FIXME : Remove this autoupgrade code in LLVM 3.0. 363 // If Function attributes are using index 0 then transfer them 364 // to index ~0. Index 0 is used for return value attributes but used to be 365 // used for function attributes. 366 Attributes RetAttribute = Attribute::None; 367 Attributes FnAttribute = Attribute::None; 368 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 369 // FIXME: remove in LLVM 3.0 370 // The alignment is stored as a 16-bit raw value from bits 31--16. 371 // We shift the bits above 31 down by 11 bits. 372 373 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 374 if (Alignment && !isPowerOf2_32(Alignment)) 375 return Error("Alignment is not a power of two."); 376 377 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 378 if (Alignment) 379 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 380 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 381 Record[i+1] = ReconstitutedAttr; 382 383 if (Record[i] == 0) 384 RetAttribute = Record[i+1]; 385 else if (Record[i] == ~0U) 386 FnAttribute = Record[i+1]; 387 } 388 389 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 390 Attribute::ReadOnly|Attribute::ReadNone); 391 392 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 393 (RetAttribute & OldRetAttrs) != 0) { 394 if (FnAttribute == Attribute::None) { // add a slot so they get added. 395 Record.push_back(~0U); 396 Record.push_back(0); 397 } 398 399 FnAttribute |= RetAttribute & OldRetAttrs; 400 RetAttribute &= ~OldRetAttrs; 401 } 402 403 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 404 if (Record[i] == 0) { 405 if (RetAttribute != Attribute::None) 406 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 407 } else if (Record[i] == ~0U) { 408 if (FnAttribute != Attribute::None) 409 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 410 } else if (Record[i+1] != Attribute::None) 411 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 412 } 413 414 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 415 Attrs.clear(); 416 break; 417 } 418 } 419 } 420 } 421 422 423 bool BitcodeReader::ParseTypeTable() { 424 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 425 return Error("Malformed block record"); 426 427 if (!TypeList.empty()) 428 return Error("Multiple TYPE_BLOCKs found!"); 429 430 SmallVector<uint64_t, 64> Record; 431 unsigned NumRecords = 0; 432 433 // Read all the records for this type table. 434 while (1) { 435 unsigned Code = Stream.ReadCode(); 436 if (Code == bitc::END_BLOCK) { 437 if (NumRecords != TypeList.size()) 438 return Error("Invalid type forward reference in TYPE_BLOCK"); 439 if (Stream.ReadBlockEnd()) 440 return Error("Error at end of type table block"); 441 return false; 442 } 443 444 if (Code == bitc::ENTER_SUBBLOCK) { 445 // No known subblocks, always skip them. 446 Stream.ReadSubBlockID(); 447 if (Stream.SkipBlock()) 448 return Error("Malformed block record"); 449 continue; 450 } 451 452 if (Code == bitc::DEFINE_ABBREV) { 453 Stream.ReadAbbrevRecord(); 454 continue; 455 } 456 457 // Read a record. 458 Record.clear(); 459 const Type *ResultTy = 0; 460 switch (Stream.ReadRecord(Code, Record)) { 461 default: // Default behavior: unknown type. 462 ResultTy = 0; 463 break; 464 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 465 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 466 // type list. This allows us to reserve space. 467 if (Record.size() < 1) 468 return Error("Invalid TYPE_CODE_NUMENTRY record"); 469 TypeList.reserve(Record[0]); 470 continue; 471 case bitc::TYPE_CODE_VOID: // VOID 472 ResultTy = Type::VoidTy; 473 break; 474 case bitc::TYPE_CODE_FLOAT: // FLOAT 475 ResultTy = Type::FloatTy; 476 break; 477 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 478 ResultTy = Type::DoubleTy; 479 break; 480 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 481 ResultTy = Type::X86_FP80Ty; 482 break; 483 case bitc::TYPE_CODE_FP128: // FP128 484 ResultTy = Type::FP128Ty; 485 break; 486 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 487 ResultTy = Type::PPC_FP128Ty; 488 break; 489 case bitc::TYPE_CODE_LABEL: // LABEL 490 ResultTy = Type::LabelTy; 491 break; 492 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 493 ResultTy = 0; 494 break; 495 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 496 if (Record.size() < 1) 497 return Error("Invalid Integer type record"); 498 499 ResultTy = IntegerType::get(Record[0]); 500 break; 501 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 502 // [pointee type, address space] 503 if (Record.size() < 1) 504 return Error("Invalid POINTER type record"); 505 unsigned AddressSpace = 0; 506 if (Record.size() == 2) 507 AddressSpace = Record[1]; 508 ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace); 509 break; 510 } 511 case bitc::TYPE_CODE_FUNCTION: { 512 // FIXME: attrid is dead, remove it in LLVM 3.0 513 // FUNCTION: [vararg, attrid, retty, paramty x N] 514 if (Record.size() < 3) 515 return Error("Invalid FUNCTION type record"); 516 std::vector<const Type*> ArgTys; 517 for (unsigned i = 3, e = Record.size(); i != e; ++i) 518 ArgTys.push_back(getTypeByID(Record[i], true)); 519 520 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 521 Record[0]); 522 break; 523 } 524 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 525 if (Record.size() < 1) 526 return Error("Invalid STRUCT type record"); 527 std::vector<const Type*> EltTys; 528 for (unsigned i = 1, e = Record.size(); i != e; ++i) 529 EltTys.push_back(getTypeByID(Record[i], true)); 530 ResultTy = StructType::get(EltTys, Record[0]); 531 break; 532 } 533 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 534 if (Record.size() < 2) 535 return Error("Invalid ARRAY type record"); 536 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 537 break; 538 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 539 if (Record.size() < 2) 540 return Error("Invalid VECTOR type record"); 541 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 542 break; 543 } 544 545 if (NumRecords == TypeList.size()) { 546 // If this is a new type slot, just append it. 547 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get()); 548 ++NumRecords; 549 } else if (ResultTy == 0) { 550 // Otherwise, this was forward referenced, so an opaque type was created, 551 // but the result type is actually just an opaque. Leave the one we 552 // created previously. 553 ++NumRecords; 554 } else { 555 // Otherwise, this was forward referenced, so an opaque type was created. 556 // Resolve the opaque type to the real type now. 557 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 558 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 559 560 // Don't directly push the new type on the Tab. Instead we want to replace 561 // the opaque type we previously inserted with the new concrete value. The 562 // refinement from the abstract (opaque) type to the new type causes all 563 // uses of the abstract type to use the concrete type (NewTy). This will 564 // also cause the opaque type to be deleted. 565 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 566 567 // This should have replaced the old opaque type with the new type in the 568 // value table... or with a preexisting type that was already in the 569 // system. Let's just make sure it did. 570 assert(TypeList[NumRecords-1].get() != OldTy && 571 "refineAbstractType didn't work!"); 572 } 573 } 574 } 575 576 577 bool BitcodeReader::ParseTypeSymbolTable() { 578 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 579 return Error("Malformed block record"); 580 581 SmallVector<uint64_t, 64> Record; 582 583 // Read all the records for this type table. 584 std::string TypeName; 585 while (1) { 586 unsigned Code = Stream.ReadCode(); 587 if (Code == bitc::END_BLOCK) { 588 if (Stream.ReadBlockEnd()) 589 return Error("Error at end of type symbol table block"); 590 return false; 591 } 592 593 if (Code == bitc::ENTER_SUBBLOCK) { 594 // No known subblocks, always skip them. 595 Stream.ReadSubBlockID(); 596 if (Stream.SkipBlock()) 597 return Error("Malformed block record"); 598 continue; 599 } 600 601 if (Code == bitc::DEFINE_ABBREV) { 602 Stream.ReadAbbrevRecord(); 603 continue; 604 } 605 606 // Read a record. 607 Record.clear(); 608 switch (Stream.ReadRecord(Code, Record)) { 609 default: // Default behavior: unknown type. 610 break; 611 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 612 if (ConvertToString(Record, 1, TypeName)) 613 return Error("Invalid TST_ENTRY record"); 614 unsigned TypeID = Record[0]; 615 if (TypeID >= TypeList.size()) 616 return Error("Invalid Type ID in TST_ENTRY record"); 617 618 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 619 TypeName.clear(); 620 break; 621 } 622 } 623 } 624 625 bool BitcodeReader::ParseValueSymbolTable() { 626 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 627 return Error("Malformed block record"); 628 629 SmallVector<uint64_t, 64> Record; 630 631 // Read all the records for this value table. 632 SmallString<128> ValueName; 633 while (1) { 634 unsigned Code = Stream.ReadCode(); 635 if (Code == bitc::END_BLOCK) { 636 if (Stream.ReadBlockEnd()) 637 return Error("Error at end of value symbol table block"); 638 return false; 639 } 640 if (Code == bitc::ENTER_SUBBLOCK) { 641 // No known subblocks, always skip them. 642 Stream.ReadSubBlockID(); 643 if (Stream.SkipBlock()) 644 return Error("Malformed block record"); 645 continue; 646 } 647 648 if (Code == bitc::DEFINE_ABBREV) { 649 Stream.ReadAbbrevRecord(); 650 continue; 651 } 652 653 // Read a record. 654 Record.clear(); 655 switch (Stream.ReadRecord(Code, Record)) { 656 default: // Default behavior: unknown type. 657 break; 658 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 659 if (ConvertToString(Record, 1, ValueName)) 660 return Error("Invalid TST_ENTRY record"); 661 unsigned ValueID = Record[0]; 662 if (ValueID >= ValueList.size()) 663 return Error("Invalid Value ID in VST_ENTRY record"); 664 Value *V = ValueList[ValueID]; 665 666 V->setName(&ValueName[0], ValueName.size()); 667 ValueName.clear(); 668 break; 669 } 670 case bitc::VST_CODE_BBENTRY: { 671 if (ConvertToString(Record, 1, ValueName)) 672 return Error("Invalid VST_BBENTRY record"); 673 BasicBlock *BB = getBasicBlock(Record[0]); 674 if (BB == 0) 675 return Error("Invalid BB ID in VST_BBENTRY record"); 676 677 BB->setName(&ValueName[0], ValueName.size()); 678 ValueName.clear(); 679 break; 680 } 681 } 682 } 683 } 684 685 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 686 /// the LSB for dense VBR encoding. 687 static uint64_t DecodeSignRotatedValue(uint64_t V) { 688 if ((V & 1) == 0) 689 return V >> 1; 690 if (V != 1) 691 return -(V >> 1); 692 // There is no such thing as -0 with integers. "-0" really means MININT. 693 return 1ULL << 63; 694 } 695 696 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 697 /// values and aliases that we can. 698 bool BitcodeReader::ResolveGlobalAndAliasInits() { 699 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 700 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 701 702 GlobalInitWorklist.swap(GlobalInits); 703 AliasInitWorklist.swap(AliasInits); 704 705 while (!GlobalInitWorklist.empty()) { 706 unsigned ValID = GlobalInitWorklist.back().second; 707 if (ValID >= ValueList.size()) { 708 // Not ready to resolve this yet, it requires something later in the file. 709 GlobalInits.push_back(GlobalInitWorklist.back()); 710 } else { 711 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 712 GlobalInitWorklist.back().first->setInitializer(C); 713 else 714 return Error("Global variable initializer is not a constant!"); 715 } 716 GlobalInitWorklist.pop_back(); 717 } 718 719 while (!AliasInitWorklist.empty()) { 720 unsigned ValID = AliasInitWorklist.back().second; 721 if (ValID >= ValueList.size()) { 722 AliasInits.push_back(AliasInitWorklist.back()); 723 } else { 724 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 725 AliasInitWorklist.back().first->setAliasee(C); 726 else 727 return Error("Alias initializer is not a constant!"); 728 } 729 AliasInitWorklist.pop_back(); 730 } 731 return false; 732 } 733 734 735 bool BitcodeReader::ParseConstants() { 736 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 737 return Error("Malformed block record"); 738 739 SmallVector<uint64_t, 64> Record; 740 741 // Read all the records for this value table. 742 const Type *CurTy = Type::Int32Ty; 743 unsigned NextCstNo = ValueList.size(); 744 while (1) { 745 unsigned Code = Stream.ReadCode(); 746 if (Code == bitc::END_BLOCK) 747 break; 748 749 if (Code == bitc::ENTER_SUBBLOCK) { 750 // No known subblocks, always skip them. 751 Stream.ReadSubBlockID(); 752 if (Stream.SkipBlock()) 753 return Error("Malformed block record"); 754 continue; 755 } 756 757 if (Code == bitc::DEFINE_ABBREV) { 758 Stream.ReadAbbrevRecord(); 759 continue; 760 } 761 762 // Read a record. 763 Record.clear(); 764 Value *V = 0; 765 switch (Stream.ReadRecord(Code, Record)) { 766 default: // Default behavior: unknown constant 767 case bitc::CST_CODE_UNDEF: // UNDEF 768 V = UndefValue::get(CurTy); 769 break; 770 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 771 if (Record.empty()) 772 return Error("Malformed CST_SETTYPE record"); 773 if (Record[0] >= TypeList.size()) 774 return Error("Invalid Type ID in CST_SETTYPE record"); 775 CurTy = TypeList[Record[0]]; 776 continue; // Skip the ValueList manipulation. 777 case bitc::CST_CODE_NULL: // NULL 778 V = Constant::getNullValue(CurTy); 779 break; 780 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 781 if (!isa<IntegerType>(CurTy) || Record.empty()) 782 return Error("Invalid CST_INTEGER record"); 783 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 784 break; 785 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 786 if (!isa<IntegerType>(CurTy) || Record.empty()) 787 return Error("Invalid WIDE_INTEGER record"); 788 789 unsigned NumWords = Record.size(); 790 SmallVector<uint64_t, 8> Words; 791 Words.resize(NumWords); 792 for (unsigned i = 0; i != NumWords; ++i) 793 Words[i] = DecodeSignRotatedValue(Record[i]); 794 V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(), 795 NumWords, &Words[0])); 796 break; 797 } 798 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 799 if (Record.empty()) 800 return Error("Invalid FLOAT record"); 801 if (CurTy == Type::FloatTy) 802 V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0]))); 803 else if (CurTy == Type::DoubleTy) 804 V = ConstantFP::get(APFloat(APInt(64, Record[0]))); 805 else if (CurTy == Type::X86_FP80Ty) 806 V = ConstantFP::get(APFloat(APInt(80, 2, &Record[0]))); 807 else if (CurTy == Type::FP128Ty) 808 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true)); 809 else if (CurTy == Type::PPC_FP128Ty) 810 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]))); 811 else 812 V = UndefValue::get(CurTy); 813 break; 814 } 815 816 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 817 if (Record.empty()) 818 return Error("Invalid CST_AGGREGATE record"); 819 820 unsigned Size = Record.size(); 821 std::vector<Constant*> Elts; 822 823 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 824 for (unsigned i = 0; i != Size; ++i) 825 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 826 STy->getElementType(i))); 827 V = ConstantStruct::get(STy, Elts); 828 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 829 const Type *EltTy = ATy->getElementType(); 830 for (unsigned i = 0; i != Size; ++i) 831 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 832 V = ConstantArray::get(ATy, Elts); 833 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 834 const Type *EltTy = VTy->getElementType(); 835 for (unsigned i = 0; i != Size; ++i) 836 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 837 V = ConstantVector::get(Elts); 838 } else { 839 V = UndefValue::get(CurTy); 840 } 841 break; 842 } 843 case bitc::CST_CODE_STRING: { // STRING: [values] 844 if (Record.empty()) 845 return Error("Invalid CST_AGGREGATE record"); 846 847 const ArrayType *ATy = cast<ArrayType>(CurTy); 848 const Type *EltTy = ATy->getElementType(); 849 850 unsigned Size = Record.size(); 851 std::vector<Constant*> Elts; 852 for (unsigned i = 0; i != Size; ++i) 853 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 854 V = ConstantArray::get(ATy, Elts); 855 break; 856 } 857 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 858 if (Record.empty()) 859 return Error("Invalid CST_AGGREGATE record"); 860 861 const ArrayType *ATy = cast<ArrayType>(CurTy); 862 const Type *EltTy = ATy->getElementType(); 863 864 unsigned Size = Record.size(); 865 std::vector<Constant*> Elts; 866 for (unsigned i = 0; i != Size; ++i) 867 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 868 Elts.push_back(Constant::getNullValue(EltTy)); 869 V = ConstantArray::get(ATy, Elts); 870 break; 871 } 872 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 873 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 874 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 875 if (Opc < 0) { 876 V = UndefValue::get(CurTy); // Unknown binop. 877 } else { 878 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 879 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 880 V = ConstantExpr::get(Opc, LHS, RHS); 881 } 882 break; 883 } 884 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 885 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 886 int Opc = GetDecodedCastOpcode(Record[0]); 887 if (Opc < 0) { 888 V = UndefValue::get(CurTy); // Unknown cast. 889 } else { 890 const Type *OpTy = getTypeByID(Record[1]); 891 if (!OpTy) return Error("Invalid CE_CAST record"); 892 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 893 V = ConstantExpr::getCast(Opc, Op, CurTy); 894 } 895 break; 896 } 897 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 898 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 899 SmallVector<Constant*, 16> Elts; 900 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 901 const Type *ElTy = getTypeByID(Record[i]); 902 if (!ElTy) return Error("Invalid CE_GEP record"); 903 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 904 } 905 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1); 906 break; 907 } 908 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 909 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 910 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 911 Type::Int1Ty), 912 ValueList.getConstantFwdRef(Record[1],CurTy), 913 ValueList.getConstantFwdRef(Record[2],CurTy)); 914 break; 915 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 916 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 917 const VectorType *OpTy = 918 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 919 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 920 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 921 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 922 V = ConstantExpr::getExtractElement(Op0, Op1); 923 break; 924 } 925 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 926 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 927 if (Record.size() < 3 || OpTy == 0) 928 return Error("Invalid CE_INSERTELT record"); 929 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 930 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 931 OpTy->getElementType()); 932 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 933 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 934 break; 935 } 936 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 937 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 938 if (Record.size() < 3 || OpTy == 0) 939 return Error("Invalid CE_SHUFFLEVEC record"); 940 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 941 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 942 const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements()); 943 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 944 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 945 break; 946 } 947 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 948 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 949 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 950 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 951 return Error("Invalid CE_SHUFVEC_EX record"); 952 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 953 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 954 const Type *ShufTy=VectorType::get(Type::Int32Ty, RTy->getNumElements()); 955 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 956 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 957 break; 958 } 959 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 960 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 961 const Type *OpTy = getTypeByID(Record[0]); 962 if (OpTy == 0) return Error("Invalid CE_CMP record"); 963 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 964 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 965 966 if (OpTy->isFloatingPoint()) 967 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 968 else if (!isa<VectorType>(OpTy)) 969 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 970 else if (OpTy->isFPOrFPVector()) 971 V = ConstantExpr::getVFCmp(Record[3], Op0, Op1); 972 else 973 V = ConstantExpr::getVICmp(Record[3], Op0, Op1); 974 break; 975 } 976 case bitc::CST_CODE_INLINEASM: { 977 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 978 std::string AsmStr, ConstrStr; 979 bool HasSideEffects = Record[0]; 980 unsigned AsmStrSize = Record[1]; 981 if (2+AsmStrSize >= Record.size()) 982 return Error("Invalid INLINEASM record"); 983 unsigned ConstStrSize = Record[2+AsmStrSize]; 984 if (3+AsmStrSize+ConstStrSize > Record.size()) 985 return Error("Invalid INLINEASM record"); 986 987 for (unsigned i = 0; i != AsmStrSize; ++i) 988 AsmStr += (char)Record[2+i]; 989 for (unsigned i = 0; i != ConstStrSize; ++i) 990 ConstrStr += (char)Record[3+AsmStrSize+i]; 991 const PointerType *PTy = cast<PointerType>(CurTy); 992 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 993 AsmStr, ConstrStr, HasSideEffects); 994 break; 995 } 996 } 997 998 ValueList.AssignValue(V, NextCstNo); 999 ++NextCstNo; 1000 } 1001 1002 if (NextCstNo != ValueList.size()) 1003 return Error("Invalid constant reference!"); 1004 1005 if (Stream.ReadBlockEnd()) 1006 return Error("Error at end of constants block"); 1007 1008 // Once all the constants have been read, go through and resolve forward 1009 // references. 1010 ValueList.ResolveConstantForwardRefs(); 1011 return false; 1012 } 1013 1014 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1015 /// remember where it is and then skip it. This lets us lazily deserialize the 1016 /// functions. 1017 bool BitcodeReader::RememberAndSkipFunctionBody() { 1018 // Get the function we are talking about. 1019 if (FunctionsWithBodies.empty()) 1020 return Error("Insufficient function protos"); 1021 1022 Function *Fn = FunctionsWithBodies.back(); 1023 FunctionsWithBodies.pop_back(); 1024 1025 // Save the current stream state. 1026 uint64_t CurBit = Stream.GetCurrentBitNo(); 1027 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 1028 1029 // Set the functions linkage to GhostLinkage so we know it is lazily 1030 // deserialized. 1031 Fn->setLinkage(GlobalValue::GhostLinkage); 1032 1033 // Skip over the function block for now. 1034 if (Stream.SkipBlock()) 1035 return Error("Malformed block record"); 1036 return false; 1037 } 1038 1039 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 1040 // Reject multiple MODULE_BLOCK's in a single bitstream. 1041 if (TheModule) 1042 return Error("Multiple MODULE_BLOCKs in same stream"); 1043 1044 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1045 return Error("Malformed block record"); 1046 1047 // Otherwise, create the module. 1048 TheModule = new Module(ModuleID); 1049 1050 SmallVector<uint64_t, 64> Record; 1051 std::vector<std::string> SectionTable; 1052 std::vector<std::string> GCTable; 1053 1054 // Read all the records for this module. 1055 while (!Stream.AtEndOfStream()) { 1056 unsigned Code = Stream.ReadCode(); 1057 if (Code == bitc::END_BLOCK) { 1058 if (Stream.ReadBlockEnd()) 1059 return Error("Error at end of module block"); 1060 1061 // Patch the initializers for globals and aliases up. 1062 ResolveGlobalAndAliasInits(); 1063 if (!GlobalInits.empty() || !AliasInits.empty()) 1064 return Error("Malformed global initializer set"); 1065 if (!FunctionsWithBodies.empty()) 1066 return Error("Too few function bodies found"); 1067 1068 // Look for intrinsic functions which need to be upgraded at some point 1069 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1070 FI != FE; ++FI) { 1071 Function* NewFn; 1072 if (UpgradeIntrinsicFunction(FI, NewFn)) 1073 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1074 } 1075 1076 // Force deallocation of memory for these vectors to favor the client that 1077 // want lazy deserialization. 1078 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1079 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1080 std::vector<Function*>().swap(FunctionsWithBodies); 1081 return false; 1082 } 1083 1084 if (Code == bitc::ENTER_SUBBLOCK) { 1085 switch (Stream.ReadSubBlockID()) { 1086 default: // Skip unknown content. 1087 if (Stream.SkipBlock()) 1088 return Error("Malformed block record"); 1089 break; 1090 case bitc::BLOCKINFO_BLOCK_ID: 1091 if (Stream.ReadBlockInfoBlock()) 1092 return Error("Malformed BlockInfoBlock"); 1093 break; 1094 case bitc::PARAMATTR_BLOCK_ID: 1095 if (ParseAttributeBlock()) 1096 return true; 1097 break; 1098 case bitc::TYPE_BLOCK_ID: 1099 if (ParseTypeTable()) 1100 return true; 1101 break; 1102 case bitc::TYPE_SYMTAB_BLOCK_ID: 1103 if (ParseTypeSymbolTable()) 1104 return true; 1105 break; 1106 case bitc::VALUE_SYMTAB_BLOCK_ID: 1107 if (ParseValueSymbolTable()) 1108 return true; 1109 break; 1110 case bitc::CONSTANTS_BLOCK_ID: 1111 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1112 return true; 1113 break; 1114 case bitc::FUNCTION_BLOCK_ID: 1115 // If this is the first function body we've seen, reverse the 1116 // FunctionsWithBodies list. 1117 if (!HasReversedFunctionsWithBodies) { 1118 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1119 HasReversedFunctionsWithBodies = true; 1120 } 1121 1122 if (RememberAndSkipFunctionBody()) 1123 return true; 1124 break; 1125 } 1126 continue; 1127 } 1128 1129 if (Code == bitc::DEFINE_ABBREV) { 1130 Stream.ReadAbbrevRecord(); 1131 continue; 1132 } 1133 1134 // Read a record. 1135 switch (Stream.ReadRecord(Code, Record)) { 1136 default: break; // Default behavior, ignore unknown content. 1137 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1138 if (Record.size() < 1) 1139 return Error("Malformed MODULE_CODE_VERSION"); 1140 // Only version #0 is supported so far. 1141 if (Record[0] != 0) 1142 return Error("Unknown bitstream version!"); 1143 break; 1144 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1145 std::string S; 1146 if (ConvertToString(Record, 0, S)) 1147 return Error("Invalid MODULE_CODE_TRIPLE record"); 1148 TheModule->setTargetTriple(S); 1149 break; 1150 } 1151 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1152 std::string S; 1153 if (ConvertToString(Record, 0, S)) 1154 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1155 TheModule->setDataLayout(S); 1156 break; 1157 } 1158 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1159 std::string S; 1160 if (ConvertToString(Record, 0, S)) 1161 return Error("Invalid MODULE_CODE_ASM record"); 1162 TheModule->setModuleInlineAsm(S); 1163 break; 1164 } 1165 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1166 std::string S; 1167 if (ConvertToString(Record, 0, S)) 1168 return Error("Invalid MODULE_CODE_DEPLIB record"); 1169 TheModule->addLibrary(S); 1170 break; 1171 } 1172 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1173 std::string S; 1174 if (ConvertToString(Record, 0, S)) 1175 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1176 SectionTable.push_back(S); 1177 break; 1178 } 1179 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1180 std::string S; 1181 if (ConvertToString(Record, 0, S)) 1182 return Error("Invalid MODULE_CODE_GCNAME record"); 1183 GCTable.push_back(S); 1184 break; 1185 } 1186 // GLOBALVAR: [pointer type, isconst, initid, 1187 // linkage, alignment, section, visibility, threadlocal] 1188 case bitc::MODULE_CODE_GLOBALVAR: { 1189 if (Record.size() < 6) 1190 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1191 const Type *Ty = getTypeByID(Record[0]); 1192 if (!isa<PointerType>(Ty)) 1193 return Error("Global not a pointer type!"); 1194 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1195 Ty = cast<PointerType>(Ty)->getElementType(); 1196 1197 bool isConstant = Record[1]; 1198 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1199 unsigned Alignment = (1 << Record[4]) >> 1; 1200 std::string Section; 1201 if (Record[5]) { 1202 if (Record[5]-1 >= SectionTable.size()) 1203 return Error("Invalid section ID"); 1204 Section = SectionTable[Record[5]-1]; 1205 } 1206 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1207 if (Record.size() > 6) 1208 Visibility = GetDecodedVisibility(Record[6]); 1209 bool isThreadLocal = false; 1210 if (Record.size() > 7) 1211 isThreadLocal = Record[7]; 1212 1213 GlobalVariable *NewGV = 1214 new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule, 1215 isThreadLocal, AddressSpace); 1216 NewGV->setAlignment(Alignment); 1217 if (!Section.empty()) 1218 NewGV->setSection(Section); 1219 NewGV->setVisibility(Visibility); 1220 NewGV->setThreadLocal(isThreadLocal); 1221 1222 ValueList.push_back(NewGV); 1223 1224 // Remember which value to use for the global initializer. 1225 if (unsigned InitID = Record[2]) 1226 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1227 break; 1228 } 1229 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1230 // alignment, section, visibility, gc] 1231 case bitc::MODULE_CODE_FUNCTION: { 1232 if (Record.size() < 8) 1233 return Error("Invalid MODULE_CODE_FUNCTION record"); 1234 const Type *Ty = getTypeByID(Record[0]); 1235 if (!isa<PointerType>(Ty)) 1236 return Error("Function not a pointer type!"); 1237 const FunctionType *FTy = 1238 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1239 if (!FTy) 1240 return Error("Function not a pointer to function type!"); 1241 1242 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1243 "", TheModule); 1244 1245 Func->setCallingConv(Record[1]); 1246 bool isProto = Record[2]; 1247 Func->setLinkage(GetDecodedLinkage(Record[3])); 1248 Func->setAttributes(getAttributes(Record[4])); 1249 1250 Func->setAlignment((1 << Record[5]) >> 1); 1251 if (Record[6]) { 1252 if (Record[6]-1 >= SectionTable.size()) 1253 return Error("Invalid section ID"); 1254 Func->setSection(SectionTable[Record[6]-1]); 1255 } 1256 Func->setVisibility(GetDecodedVisibility(Record[7])); 1257 if (Record.size() > 8 && Record[8]) { 1258 if (Record[8]-1 > GCTable.size()) 1259 return Error("Invalid GC ID"); 1260 Func->setGC(GCTable[Record[8]-1].c_str()); 1261 } 1262 ValueList.push_back(Func); 1263 1264 // If this is a function with a body, remember the prototype we are 1265 // creating now, so that we can match up the body with them later. 1266 if (!isProto) 1267 FunctionsWithBodies.push_back(Func); 1268 break; 1269 } 1270 // ALIAS: [alias type, aliasee val#, linkage] 1271 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1272 case bitc::MODULE_CODE_ALIAS: { 1273 if (Record.size() < 3) 1274 return Error("Invalid MODULE_ALIAS record"); 1275 const Type *Ty = getTypeByID(Record[0]); 1276 if (!isa<PointerType>(Ty)) 1277 return Error("Function not a pointer type!"); 1278 1279 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1280 "", 0, TheModule); 1281 // Old bitcode files didn't have visibility field. 1282 if (Record.size() > 3) 1283 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1284 ValueList.push_back(NewGA); 1285 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1286 break; 1287 } 1288 /// MODULE_CODE_PURGEVALS: [numvals] 1289 case bitc::MODULE_CODE_PURGEVALS: 1290 // Trim down the value list to the specified size. 1291 if (Record.size() < 1 || Record[0] > ValueList.size()) 1292 return Error("Invalid MODULE_PURGEVALS record"); 1293 ValueList.shrinkTo(Record[0]); 1294 break; 1295 } 1296 Record.clear(); 1297 } 1298 1299 return Error("Premature end of bitstream"); 1300 } 1301 1302 /// SkipWrapperHeader - Some systems wrap bc files with a special header for 1303 /// padding or other reasons. The format of this header is: 1304 /// 1305 /// struct bc_header { 1306 /// uint32_t Magic; // 0x0B17C0DE 1307 /// uint32_t Version; // Version, currently always 0. 1308 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1309 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1310 /// ... potentially other gunk ... 1311 /// }; 1312 /// 1313 /// This function is called when we find a file with a matching magic number. 1314 /// In this case, skip down to the subsection of the file that is actually a BC 1315 /// file. 1316 static bool SkipWrapperHeader(unsigned char *&BufPtr, unsigned char *&BufEnd) { 1317 enum { 1318 KnownHeaderSize = 4*4, // Size of header we read. 1319 OffsetField = 2*4, // Offset in bytes to Offset field. 1320 SizeField = 3*4 // Offset in bytes to Size field. 1321 }; 1322 1323 1324 // Must contain the header! 1325 if (BufEnd-BufPtr < KnownHeaderSize) return true; 1326 1327 unsigned Offset = ( BufPtr[OffsetField ] | 1328 (BufPtr[OffsetField+1] << 8) | 1329 (BufPtr[OffsetField+2] << 16) | 1330 (BufPtr[OffsetField+3] << 24)); 1331 unsigned Size = ( BufPtr[SizeField ] | 1332 (BufPtr[SizeField +1] << 8) | 1333 (BufPtr[SizeField +2] << 16) | 1334 (BufPtr[SizeField +3] << 24)); 1335 1336 // Verify that Offset+Size fits in the file. 1337 if (Offset+Size > unsigned(BufEnd-BufPtr)) 1338 return true; 1339 BufPtr += Offset; 1340 BufEnd = BufPtr+Size; 1341 return false; 1342 } 1343 1344 bool BitcodeReader::ParseBitcode() { 1345 TheModule = 0; 1346 1347 if (Buffer->getBufferSize() & 3) 1348 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1349 1350 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1351 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1352 1353 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1354 // The magic number is 0x0B17C0DE stored in little endian. 1355 if (BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 && 1356 BufPtr[2] == 0x17 && BufPtr[3] == 0x0B) 1357 if (SkipWrapperHeader(BufPtr, BufEnd)) 1358 return Error("Invalid bitcode wrapper header"); 1359 1360 Stream.init(BufPtr, BufEnd); 1361 1362 // Sniff for the signature. 1363 if (Stream.Read(8) != 'B' || 1364 Stream.Read(8) != 'C' || 1365 Stream.Read(4) != 0x0 || 1366 Stream.Read(4) != 0xC || 1367 Stream.Read(4) != 0xE || 1368 Stream.Read(4) != 0xD) 1369 return Error("Invalid bitcode signature"); 1370 1371 // We expect a number of well-defined blocks, though we don't necessarily 1372 // need to understand them all. 1373 while (!Stream.AtEndOfStream()) { 1374 unsigned Code = Stream.ReadCode(); 1375 1376 if (Code != bitc::ENTER_SUBBLOCK) 1377 return Error("Invalid record at top-level"); 1378 1379 unsigned BlockID = Stream.ReadSubBlockID(); 1380 1381 // We only know the MODULE subblock ID. 1382 switch (BlockID) { 1383 case bitc::BLOCKINFO_BLOCK_ID: 1384 if (Stream.ReadBlockInfoBlock()) 1385 return Error("Malformed BlockInfoBlock"); 1386 break; 1387 case bitc::MODULE_BLOCK_ID: 1388 if (ParseModule(Buffer->getBufferIdentifier())) 1389 return true; 1390 break; 1391 default: 1392 if (Stream.SkipBlock()) 1393 return Error("Malformed block record"); 1394 break; 1395 } 1396 } 1397 1398 return false; 1399 } 1400 1401 1402 /// ParseFunctionBody - Lazily parse the specified function body block. 1403 bool BitcodeReader::ParseFunctionBody(Function *F) { 1404 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1405 return Error("Malformed block record"); 1406 1407 unsigned ModuleValueListSize = ValueList.size(); 1408 1409 // Add all the function arguments to the value table. 1410 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1411 ValueList.push_back(I); 1412 1413 unsigned NextValueNo = ValueList.size(); 1414 BasicBlock *CurBB = 0; 1415 unsigned CurBBNo = 0; 1416 1417 // Read all the records. 1418 SmallVector<uint64_t, 64> Record; 1419 while (1) { 1420 unsigned Code = Stream.ReadCode(); 1421 if (Code == bitc::END_BLOCK) { 1422 if (Stream.ReadBlockEnd()) 1423 return Error("Error at end of function block"); 1424 break; 1425 } 1426 1427 if (Code == bitc::ENTER_SUBBLOCK) { 1428 switch (Stream.ReadSubBlockID()) { 1429 default: // Skip unknown content. 1430 if (Stream.SkipBlock()) 1431 return Error("Malformed block record"); 1432 break; 1433 case bitc::CONSTANTS_BLOCK_ID: 1434 if (ParseConstants()) return true; 1435 NextValueNo = ValueList.size(); 1436 break; 1437 case bitc::VALUE_SYMTAB_BLOCK_ID: 1438 if (ParseValueSymbolTable()) return true; 1439 break; 1440 } 1441 continue; 1442 } 1443 1444 if (Code == bitc::DEFINE_ABBREV) { 1445 Stream.ReadAbbrevRecord(); 1446 continue; 1447 } 1448 1449 // Read a record. 1450 Record.clear(); 1451 Instruction *I = 0; 1452 switch (Stream.ReadRecord(Code, Record)) { 1453 default: // Default behavior: reject 1454 return Error("Unknown instruction"); 1455 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1456 if (Record.size() < 1 || Record[0] == 0) 1457 return Error("Invalid DECLAREBLOCKS record"); 1458 // Create all the basic blocks for the function. 1459 FunctionBBs.resize(Record[0]); 1460 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1461 FunctionBBs[i] = BasicBlock::Create("", F); 1462 CurBB = FunctionBBs[0]; 1463 continue; 1464 1465 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1466 unsigned OpNum = 0; 1467 Value *LHS, *RHS; 1468 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1469 getValue(Record, OpNum, LHS->getType(), RHS) || 1470 OpNum+1 != Record.size()) 1471 return Error("Invalid BINOP record"); 1472 1473 int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType()); 1474 if (Opc == -1) return Error("Invalid BINOP record"); 1475 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1476 break; 1477 } 1478 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1479 unsigned OpNum = 0; 1480 Value *Op; 1481 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1482 OpNum+2 != Record.size()) 1483 return Error("Invalid CAST record"); 1484 1485 const Type *ResTy = getTypeByID(Record[OpNum]); 1486 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1487 if (Opc == -1 || ResTy == 0) 1488 return Error("Invalid CAST record"); 1489 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1490 break; 1491 } 1492 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1493 unsigned OpNum = 0; 1494 Value *BasePtr; 1495 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1496 return Error("Invalid GEP record"); 1497 1498 SmallVector<Value*, 16> GEPIdx; 1499 while (OpNum != Record.size()) { 1500 Value *Op; 1501 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1502 return Error("Invalid GEP record"); 1503 GEPIdx.push_back(Op); 1504 } 1505 1506 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1507 break; 1508 } 1509 1510 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1511 // EXTRACTVAL: [opty, opval, n x indices] 1512 unsigned OpNum = 0; 1513 Value *Agg; 1514 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1515 return Error("Invalid EXTRACTVAL record"); 1516 1517 SmallVector<unsigned, 4> EXTRACTVALIdx; 1518 for (unsigned RecSize = Record.size(); 1519 OpNum != RecSize; ++OpNum) { 1520 uint64_t Index = Record[OpNum]; 1521 if ((unsigned)Index != Index) 1522 return Error("Invalid EXTRACTVAL index"); 1523 EXTRACTVALIdx.push_back((unsigned)Index); 1524 } 1525 1526 I = ExtractValueInst::Create(Agg, 1527 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1528 break; 1529 } 1530 1531 case bitc::FUNC_CODE_INST_INSERTVAL: { 1532 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1533 unsigned OpNum = 0; 1534 Value *Agg; 1535 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1536 return Error("Invalid INSERTVAL record"); 1537 Value *Val; 1538 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1539 return Error("Invalid INSERTVAL record"); 1540 1541 SmallVector<unsigned, 4> INSERTVALIdx; 1542 for (unsigned RecSize = Record.size(); 1543 OpNum != RecSize; ++OpNum) { 1544 uint64_t Index = Record[OpNum]; 1545 if ((unsigned)Index != Index) 1546 return Error("Invalid INSERTVAL index"); 1547 INSERTVALIdx.push_back((unsigned)Index); 1548 } 1549 1550 I = InsertValueInst::Create(Agg, Val, 1551 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1552 break; 1553 } 1554 1555 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1556 // obsolete form of select 1557 // handles select i1 ... in old bitcode 1558 unsigned OpNum = 0; 1559 Value *TrueVal, *FalseVal, *Cond; 1560 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1561 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1562 getValue(Record, OpNum, Type::Int1Ty, Cond)) 1563 return Error("Invalid SELECT record"); 1564 1565 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1566 break; 1567 } 1568 1569 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1570 // new form of select 1571 // handles select i1 or select [N x i1] 1572 unsigned OpNum = 0; 1573 Value *TrueVal, *FalseVal, *Cond; 1574 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1575 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1576 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1577 return Error("Invalid SELECT record"); 1578 1579 // select condition can be either i1 or [N x i1] 1580 if (const VectorType* vector_type = 1581 dyn_cast<const VectorType>(Cond->getType())) { 1582 // expect <n x i1> 1583 if (vector_type->getElementType() != Type::Int1Ty) 1584 return Error("Invalid SELECT condition type"); 1585 } else { 1586 // expect i1 1587 if (Cond->getType() != Type::Int1Ty) 1588 return Error("Invalid SELECT condition type"); 1589 } 1590 1591 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1592 break; 1593 } 1594 1595 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1596 unsigned OpNum = 0; 1597 Value *Vec, *Idx; 1598 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1599 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1600 return Error("Invalid EXTRACTELT record"); 1601 I = new ExtractElementInst(Vec, Idx); 1602 break; 1603 } 1604 1605 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1606 unsigned OpNum = 0; 1607 Value *Vec, *Elt, *Idx; 1608 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1609 getValue(Record, OpNum, 1610 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1611 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1612 return Error("Invalid INSERTELT record"); 1613 I = InsertElementInst::Create(Vec, Elt, Idx); 1614 break; 1615 } 1616 1617 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1618 unsigned OpNum = 0; 1619 Value *Vec1, *Vec2, *Mask; 1620 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1621 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1622 return Error("Invalid SHUFFLEVEC record"); 1623 1624 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1625 return Error("Invalid SHUFFLEVEC record"); 1626 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1627 break; 1628 } 1629 1630 case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred] 1631 // VFCmp/VICmp 1632 // or old form of ICmp/FCmp returning bool 1633 unsigned OpNum = 0; 1634 Value *LHS, *RHS; 1635 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1636 getValue(Record, OpNum, LHS->getType(), RHS) || 1637 OpNum+1 != Record.size()) 1638 return Error("Invalid CMP record"); 1639 1640 if (LHS->getType()->isFloatingPoint()) 1641 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1642 else if (!isa<VectorType>(LHS->getType())) 1643 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1644 else if (LHS->getType()->isFPOrFPVector()) 1645 I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1646 else 1647 I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1648 break; 1649 } 1650 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1651 // Fcmp/ICmp returning bool or vector of bool 1652 unsigned OpNum = 0; 1653 Value *LHS, *RHS; 1654 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1655 getValue(Record, OpNum, LHS->getType(), RHS) || 1656 OpNum+1 != Record.size()) 1657 return Error("Invalid CMP2 record"); 1658 1659 if (LHS->getType()->isFPOrFPVector()) 1660 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1661 else 1662 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1663 break; 1664 } 1665 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1666 if (Record.size() != 2) 1667 return Error("Invalid GETRESULT record"); 1668 unsigned OpNum = 0; 1669 Value *Op; 1670 getValueTypePair(Record, OpNum, NextValueNo, Op); 1671 unsigned Index = Record[1]; 1672 I = ExtractValueInst::Create(Op, Index); 1673 break; 1674 } 1675 1676 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1677 { 1678 unsigned Size = Record.size(); 1679 if (Size == 0) { 1680 I = ReturnInst::Create(); 1681 break; 1682 } 1683 1684 unsigned OpNum = 0; 1685 SmallVector<Value *,4> Vs; 1686 do { 1687 Value *Op = NULL; 1688 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1689 return Error("Invalid RET record"); 1690 Vs.push_back(Op); 1691 } while(OpNum != Record.size()); 1692 1693 const Type *ReturnType = F->getReturnType(); 1694 if (Vs.size() > 1 || 1695 (isa<StructType>(ReturnType) && 1696 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1697 Value *RV = UndefValue::get(ReturnType); 1698 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 1699 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 1700 CurBB->getInstList().push_back(I); 1701 ValueList.AssignValue(I, NextValueNo++); 1702 RV = I; 1703 } 1704 I = ReturnInst::Create(RV); 1705 break; 1706 } 1707 1708 I = ReturnInst::Create(Vs[0]); 1709 break; 1710 } 1711 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1712 if (Record.size() != 1 && Record.size() != 3) 1713 return Error("Invalid BR record"); 1714 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1715 if (TrueDest == 0) 1716 return Error("Invalid BR record"); 1717 1718 if (Record.size() == 1) 1719 I = BranchInst::Create(TrueDest); 1720 else { 1721 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1722 Value *Cond = getFnValueByID(Record[2], Type::Int1Ty); 1723 if (FalseDest == 0 || Cond == 0) 1724 return Error("Invalid BR record"); 1725 I = BranchInst::Create(TrueDest, FalseDest, Cond); 1726 } 1727 break; 1728 } 1729 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops] 1730 if (Record.size() < 3 || (Record.size() & 1) == 0) 1731 return Error("Invalid SWITCH record"); 1732 const Type *OpTy = getTypeByID(Record[0]); 1733 Value *Cond = getFnValueByID(Record[1], OpTy); 1734 BasicBlock *Default = getBasicBlock(Record[2]); 1735 if (OpTy == 0 || Cond == 0 || Default == 0) 1736 return Error("Invalid SWITCH record"); 1737 unsigned NumCases = (Record.size()-3)/2; 1738 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 1739 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1740 ConstantInt *CaseVal = 1741 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1742 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1743 if (CaseVal == 0 || DestBB == 0) { 1744 delete SI; 1745 return Error("Invalid SWITCH record!"); 1746 } 1747 SI->addCase(CaseVal, DestBB); 1748 } 1749 I = SI; 1750 break; 1751 } 1752 1753 case bitc::FUNC_CODE_INST_INVOKE: { 1754 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 1755 if (Record.size() < 4) return Error("Invalid INVOKE record"); 1756 AttrListPtr PAL = getAttributes(Record[0]); 1757 unsigned CCInfo = Record[1]; 1758 BasicBlock *NormalBB = getBasicBlock(Record[2]); 1759 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 1760 1761 unsigned OpNum = 4; 1762 Value *Callee; 1763 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1764 return Error("Invalid INVOKE record"); 1765 1766 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 1767 const FunctionType *FTy = !CalleeTy ? 0 : 1768 dyn_cast<FunctionType>(CalleeTy->getElementType()); 1769 1770 // Check that the right number of fixed parameters are here. 1771 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 1772 Record.size() < OpNum+FTy->getNumParams()) 1773 return Error("Invalid INVOKE record"); 1774 1775 SmallVector<Value*, 16> Ops; 1776 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1777 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1778 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 1779 } 1780 1781 if (!FTy->isVarArg()) { 1782 if (Record.size() != OpNum) 1783 return Error("Invalid INVOKE record"); 1784 } else { 1785 // Read type/value pairs for varargs params. 1786 while (OpNum != Record.size()) { 1787 Value *Op; 1788 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1789 return Error("Invalid INVOKE record"); 1790 Ops.push_back(Op); 1791 } 1792 } 1793 1794 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 1795 Ops.begin(), Ops.end()); 1796 cast<InvokeInst>(I)->setCallingConv(CCInfo); 1797 cast<InvokeInst>(I)->setAttributes(PAL); 1798 break; 1799 } 1800 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 1801 I = new UnwindInst(); 1802 break; 1803 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 1804 I = new UnreachableInst(); 1805 break; 1806 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 1807 if (Record.size() < 1 || ((Record.size()-1)&1)) 1808 return Error("Invalid PHI record"); 1809 const Type *Ty = getTypeByID(Record[0]); 1810 if (!Ty) return Error("Invalid PHI record"); 1811 1812 PHINode *PN = PHINode::Create(Ty); 1813 PN->reserveOperandSpace((Record.size()-1)/2); 1814 1815 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 1816 Value *V = getFnValueByID(Record[1+i], Ty); 1817 BasicBlock *BB = getBasicBlock(Record[2+i]); 1818 if (!V || !BB) return Error("Invalid PHI record"); 1819 PN->addIncoming(V, BB); 1820 } 1821 I = PN; 1822 break; 1823 } 1824 1825 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 1826 if (Record.size() < 3) 1827 return Error("Invalid MALLOC record"); 1828 const PointerType *Ty = 1829 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1830 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1831 unsigned Align = Record[2]; 1832 if (!Ty || !Size) return Error("Invalid MALLOC record"); 1833 I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1834 break; 1835 } 1836 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 1837 unsigned OpNum = 0; 1838 Value *Op; 1839 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1840 OpNum != Record.size()) 1841 return Error("Invalid FREE record"); 1842 I = new FreeInst(Op); 1843 break; 1844 } 1845 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 1846 if (Record.size() < 3) 1847 return Error("Invalid ALLOCA record"); 1848 const PointerType *Ty = 1849 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1850 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1851 unsigned Align = Record[2]; 1852 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 1853 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1854 break; 1855 } 1856 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 1857 unsigned OpNum = 0; 1858 Value *Op; 1859 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1860 OpNum+2 != Record.size()) 1861 return Error("Invalid LOAD record"); 1862 1863 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1864 break; 1865 } 1866 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 1867 unsigned OpNum = 0; 1868 Value *Val, *Ptr; 1869 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 1870 getValue(Record, OpNum, 1871 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 1872 OpNum+2 != Record.size()) 1873 return Error("Invalid STORE record"); 1874 1875 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1876 break; 1877 } 1878 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 1879 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 1880 unsigned OpNum = 0; 1881 Value *Val, *Ptr; 1882 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 1883 getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)|| 1884 OpNum+2 != Record.size()) 1885 return Error("Invalid STORE record"); 1886 1887 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1888 break; 1889 } 1890 case bitc::FUNC_CODE_INST_CALL: { 1891 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 1892 if (Record.size() < 3) 1893 return Error("Invalid CALL record"); 1894 1895 AttrListPtr PAL = getAttributes(Record[0]); 1896 unsigned CCInfo = Record[1]; 1897 1898 unsigned OpNum = 2; 1899 Value *Callee; 1900 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1901 return Error("Invalid CALL record"); 1902 1903 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 1904 const FunctionType *FTy = 0; 1905 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 1906 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 1907 return Error("Invalid CALL record"); 1908 1909 SmallVector<Value*, 16> Args; 1910 // Read the fixed params. 1911 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1912 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 1913 Args.push_back(getBasicBlock(Record[OpNum])); 1914 else 1915 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1916 if (Args.back() == 0) return Error("Invalid CALL record"); 1917 } 1918 1919 // Read type/value pairs for varargs params. 1920 if (!FTy->isVarArg()) { 1921 if (OpNum != Record.size()) 1922 return Error("Invalid CALL record"); 1923 } else { 1924 while (OpNum != Record.size()) { 1925 Value *Op; 1926 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1927 return Error("Invalid CALL record"); 1928 Args.push_back(Op); 1929 } 1930 } 1931 1932 I = CallInst::Create(Callee, Args.begin(), Args.end()); 1933 cast<CallInst>(I)->setCallingConv(CCInfo>>1); 1934 cast<CallInst>(I)->setTailCall(CCInfo & 1); 1935 cast<CallInst>(I)->setAttributes(PAL); 1936 break; 1937 } 1938 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 1939 if (Record.size() < 3) 1940 return Error("Invalid VAARG record"); 1941 const Type *OpTy = getTypeByID(Record[0]); 1942 Value *Op = getFnValueByID(Record[1], OpTy); 1943 const Type *ResTy = getTypeByID(Record[2]); 1944 if (!OpTy || !Op || !ResTy) 1945 return Error("Invalid VAARG record"); 1946 I = new VAArgInst(Op, ResTy); 1947 break; 1948 } 1949 } 1950 1951 // Add instruction to end of current BB. If there is no current BB, reject 1952 // this file. 1953 if (CurBB == 0) { 1954 delete I; 1955 return Error("Invalid instruction with no BB"); 1956 } 1957 CurBB->getInstList().push_back(I); 1958 1959 // If this was a terminator instruction, move to the next block. 1960 if (isa<TerminatorInst>(I)) { 1961 ++CurBBNo; 1962 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 1963 } 1964 1965 // Non-void values get registered in the value table for future use. 1966 if (I && I->getType() != Type::VoidTy) 1967 ValueList.AssignValue(I, NextValueNo++); 1968 } 1969 1970 // Check the function list for unresolved values. 1971 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 1972 if (A->getParent() == 0) { 1973 // We found at least one unresolved value. Nuke them all to avoid leaks. 1974 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 1975 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 1976 A->replaceAllUsesWith(UndefValue::get(A->getType())); 1977 delete A; 1978 } 1979 } 1980 return Error("Never resolved value found in function!"); 1981 } 1982 } 1983 1984 // Trim the value list down to the size it was before we parsed this function. 1985 ValueList.shrinkTo(ModuleValueListSize); 1986 std::vector<BasicBlock*>().swap(FunctionBBs); 1987 1988 return false; 1989 } 1990 1991 //===----------------------------------------------------------------------===// 1992 // ModuleProvider implementation 1993 //===----------------------------------------------------------------------===// 1994 1995 1996 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 1997 // If it already is material, ignore the request. 1998 if (!F->hasNotBeenReadFromBitcode()) return false; 1999 2000 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 2001 DeferredFunctionInfo.find(F); 2002 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2003 2004 // Move the bit stream to the saved position of the deferred function body and 2005 // restore the real linkage type for the function. 2006 Stream.JumpToBit(DFII->second.first); 2007 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 2008 2009 if (ParseFunctionBody(F)) { 2010 if (ErrInfo) *ErrInfo = ErrorString; 2011 return true; 2012 } 2013 2014 // Upgrade any old intrinsic calls in the function. 2015 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2016 E = UpgradedIntrinsics.end(); I != E; ++I) { 2017 if (I->first != I->second) { 2018 for (Value::use_iterator UI = I->first->use_begin(), 2019 UE = I->first->use_end(); UI != UE; ) { 2020 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2021 UpgradeIntrinsicCall(CI, I->second); 2022 } 2023 } 2024 } 2025 2026 return false; 2027 } 2028 2029 void BitcodeReader::dematerializeFunction(Function *F) { 2030 // If this function isn't materialized, or if it is a proto, this is a noop. 2031 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 2032 return; 2033 2034 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2035 2036 // Just forget the function body, we can remat it later. 2037 F->deleteBody(); 2038 F->setLinkage(GlobalValue::GhostLinkage); 2039 } 2040 2041 2042 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 2043 for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I = 2044 DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E; 2045 ++I) { 2046 Function *F = I->first; 2047 if (F->hasNotBeenReadFromBitcode() && 2048 materializeFunction(F, ErrInfo)) 2049 return 0; 2050 } 2051 2052 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2053 // delete the old functions to clean up. We can't do this unless the entire 2054 // module is materialized because there could always be another function body 2055 // with calls to the old function. 2056 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2057 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2058 if (I->first != I->second) { 2059 for (Value::use_iterator UI = I->first->use_begin(), 2060 UE = I->first->use_end(); UI != UE; ) { 2061 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2062 UpgradeIntrinsicCall(CI, I->second); 2063 } 2064 ValueList.replaceUsesOfWith(I->first, I->second); 2065 I->first->eraseFromParent(); 2066 } 2067 } 2068 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2069 2070 return TheModule; 2071 } 2072 2073 2074 /// This method is provided by the parent ModuleProvde class and overriden 2075 /// here. It simply releases the module from its provided and frees up our 2076 /// state. 2077 /// @brief Release our hold on the generated module 2078 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 2079 // Since we're losing control of this Module, we must hand it back complete 2080 Module *M = ModuleProvider::releaseModule(ErrInfo); 2081 FreeState(); 2082 return M; 2083 } 2084 2085 2086 //===----------------------------------------------------------------------===// 2087 // External interface 2088 //===----------------------------------------------------------------------===// 2089 2090 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 2091 /// 2092 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 2093 std::string *ErrMsg) { 2094 BitcodeReader *R = new BitcodeReader(Buffer); 2095 if (R->ParseBitcode()) { 2096 if (ErrMsg) 2097 *ErrMsg = R->getErrorString(); 2098 2099 // Don't let the BitcodeReader dtor delete 'Buffer'. 2100 R->releaseMemoryBuffer(); 2101 delete R; 2102 return 0; 2103 } 2104 return R; 2105 } 2106 2107 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2108 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2109 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){ 2110 BitcodeReader *R; 2111 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg)); 2112 if (!R) return 0; 2113 2114 // Read in the entire module. 2115 Module *M = R->materializeModule(ErrMsg); 2116 2117 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2118 // there was an error. 2119 R->releaseMemoryBuffer(); 2120 2121 // If there was no error, tell ModuleProvider not to delete it when its dtor 2122 // is run. 2123 if (M) 2124 M = R->releaseModule(ErrMsg); 2125 2126 delete R; 2127 return M; 2128 } 2129